WO2022116082A1 - 一种车用水冷空气压缩机气源系统 - Google Patents

一种车用水冷空气压缩机气源系统 Download PDF

Info

Publication number
WO2022116082A1
WO2022116082A1 PCT/CN2020/133580 CN2020133580W WO2022116082A1 WO 2022116082 A1 WO2022116082 A1 WO 2022116082A1 CN 2020133580 W CN2020133580 W CN 2020133580W WO 2022116082 A1 WO2022116082 A1 WO 2022116082A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
pressure
air compressor
vehicle
controller
Prior art date
Application number
PCT/CN2020/133580
Other languages
English (en)
French (fr)
Inventor
李传武
朱彬
钟周乐
周胜博
贾濠宇
Original Assignee
浙江瑞立空压装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江瑞立空压装备有限公司 filed Critical 浙江瑞立空压装备有限公司
Priority to PCT/CN2020/133580 priority Critical patent/WO2022116082A1/zh
Publication of WO2022116082A1 publication Critical patent/WO2022116082A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity

Definitions

  • the invention relates to the field of air compression equipment for automobiles, in particular to an air source system of a water-cooled air compressor for automobiles.
  • the inner support double crank transmission structure adopts maintenance-free double row bearing between the two piston connecting rod groups, which is used to support and place on the crankshaft to ensure the strength of the transmission structure is reliable and the operation is stable.
  • the main method to be considered first is to balance the crank connecting rod mechanism to eliminate or limit the unbalanced inertial force and inertial moment of the rotating mechanism or the reciprocating mechanism.
  • the non-cantilever double-crank transmission structure adopted by a few oil-free piston air compressors can only balance the reciprocating inertial force and the rotating inertial force.
  • Automobile air compressors are mainly used to provide necessary air sources for automobile braking systems, air suspension systems, door opening and closing and auxiliary pneumatic devices.
  • the commonly used on-board air compressors mainly include sliding vane, scroll and piston air compressors.
  • the oil-free reciprocating piston air compressor is limited by the characteristics of its own oil-free transmission structure.
  • the transmission structure is bulky and the running vibration is large, which affects the comfort of the whole vehicle.
  • the air source system of the vehicle air compressor is composed of the air compressor and the vehicle controller (inverter).
  • the vehicle controller (inverter) provides the power source to the air compressor motor and controls the operation of the air compressor.
  • the vehicle controller is usually an all-in-one controller, which is bulky and requires extra space for installation and arrangement; at the same time, if a single function of the controller is damaged, the entire controller assembly needs to be replaced, and the maintenance cost is high.
  • the purpose of the invention is to propose an air source system of a water-cooled air compressor for a vehicle in view of the deficiencies of the prior art.
  • an air source system for a water-cooled air compressor for a vehicle comprising a double-crank inner support transmission structure, a controller and a water-cooling system;
  • the inner support transmission structure of the double crank is driven by a motor, and the crankshaft is connected to the motor through an elastic coupling.
  • the cranks on both sides of the crankshaft drive the low-pressure cylinder piston assembly and the high-pressure cylinder piston assembly to reciprocate up and down, so that the two piston cylinders move up and down.
  • the inner volume changes periodically to complete the gas compression process.
  • the controller is fixed on the motor, and the high-voltage power supply harness connected to the motor is built in through inner bolts.
  • the controller is provided with a labyrinth-type cooling water channel, and the controller is equipped with a vehicle interactive CAN communication interface for real-time sharing of the gas supply system. Working status and feedback fault information through sensor monitoring;
  • the water cooling system is supplied by the water pump system of the whole vehicle, and enters the crankcase water tank after passing through the labyrinth cooling water channel inside the controller, and then enters the cylinder head through the water passage bolt through the water groove in the piston cylinder, and passes through the water channel in the inner cavity of the cylinder head.
  • the water-passing bolts are returned to the piston cylinder and crankcase, and finally discharged into the circulating water circuit of the whole vehicle.
  • the main shaft of the motor drives the active end of the elastic coupling to rotate
  • the driven end of the elastic coupling drives the crankshaft 7 to rotate
  • the driven end of the elastic coupling is provided with a counterweight structure, which can transmit power and at the same time to the balance block to reduce the vibration of the whole machine.
  • the low-pressure cylinder piston assembly is provided with a low-pressure intake valve plate, and the valve plate has a unidirectional flow function.
  • the valve plate When the low-pressure piston moves downward from the top dead center, the cylinder becomes larger to generate negative pressure, so that natural air is sucked into the piston cylinder.
  • a valve plate In the stage cylinder, a valve plate is arranged on the upper side of the piston cylinder, and a first exhaust valve assembly is arranged on the valve plate; the low-pressure piston moves upward from the bottom dead center, the gas in the cylinder is reduced, and the gas is compressed, and the low-pressure intake valve plate is closed.
  • the first exhaust valve assembly opens the exhaust gas to complete the gas compression of the primary cylinder.
  • the primary compressed gas enters the secondary cylinder of the piston cylinder through the flow passage of the cylinder head under the action of the high-pressure intake valve plate, and is compressed in the piston of the high-pressure cylinder and the secondary cylinder.
  • the secondary compression is completed under the joint action of the second exhaust valve assembly.
  • the low-pressure intake valve sheet is arranged on the end face of the annular groove of the low-pressure piston, and the end face of the annular groove is provided with an air inlet and a limit screw, and the limit screw acts as a limiter for the low-pressure intake valve sheet, and
  • the fixed-stroke bolt is used, and the annular wave or butterfly valve plate is arranged on it to reduce the stress concentration at the root of the valve plate and improve the service life of the valve plate.
  • balance block is installed on each of the cranks on both sides of the crankshaft, and a through hole structure is provided on the crank outside the crankshaft. Balance, eliminate the rotational inertia force and moment of the piston air compressor during operation, and further reduce the vibration of oil-free piston air compression.
  • crankshaft is arranged on the crankcase through a maintenance-free double row support bearing.
  • crankcase and the piston cylinder adopt an inner cavity water channel structure, and the surface is a closed structure; the end faces of the crankcase and the piston cylinder are provided with a number of water holes, and the double-channel sealing is realized by an O-ring or a rubber compound gasket. Reduce the risk of water leakage.
  • the controller is provided with a gas temperature sensor and a motor temperature sensor, and the controller judges whether the gas system pressure is higher than the safety air pressure of the whole vehicle through the monitoring of the gas temperature sensor and the motor temperature sensor; if the gas system pressure is higher than the safety air pressure of the whole vehicle , the controller stops the air compressor, and then starts the air compressor after the temperature drops or the air pressure is lower than the safety air pressure of the vehicle; if the gas system pressure is lower than the safety air pressure of the vehicle, the controller feeds back a fault signal to the vehicle control system, and control the water pump to speed up the flow rate to cool down, and at the same time judge whether there is a fault that the running time is too long.
  • the controller is provided with a water temperature sensor, the controller monitors the cooling water temperature through the water temperature sensor, and adjusts the cooling water temperature by controlling the working load rate of the air compressor.
  • the controller monitors that the system pressure is between the safety pressure of the whole vehicle and the rated pressure, and then adjusts the speed of the air compressor to increase the load rate of the air compressor. On the contrary, increase the speed of the air compressor, reduce the load rate of the air compressor, reduce the working temperature, protect the safety of the air brake system of the vehicle and prolong the service life of the air compressor.
  • the present invention adopts an external water-cooled vertical double-cylinder two-stage compression structure, which is supplemented by a double-crank inner support transmission structure: by reducing the axial distance between the connecting rod and the crankshaft support, the vibration during operation is reduced, At the same time, by arranging an integrated balance weight on the cranks on both sides, the balance weight is balanced with the rotating mass of the crank connecting rod mechanism, so as to eliminate the rotational inertia force and moment of the piston air compressor during operation, thereby further reducing the Vibration of oil-free piston air compression.
  • the invention adopts integrated controller design, has compact structure, convenient installation, high efficiency and energy saving, and has the functions of intelligent control, fault detection, vehicle information interaction and the like.
  • the invention adopts an efficient and reliable water-cooling structure, which can meet the working environment of the controller and reduce the internal operating temperature and exhaust temperature of the air compressor, so as to meet the requirements of continuous operation of the air compressor; Compressor running noise.
  • Fig. 2 is the left side sectional view of the present invention
  • FIG. 3 is a perspective view of the present invention.
  • Fig. 4 is the sectional view of the water channel of the cylinder head of the present invention.
  • FIG. 5 is a cross-sectional view of a top view of the water channel of the present invention.
  • FIG. 6 is a sectional view of a partial water channel of the pump head of the present invention.
  • Fig. 7 is the crankcase structure diagram of the present invention.
  • Figure 8 is a structural diagram of the piston cylinder of the present invention.
  • Fig. 9 is the cylinder head structure diagram of the present invention.
  • Figure 10 is a sectional view of the cylinder head of the present invention.
  • Figure 11 is a structural diagram of the piston valve group of the present invention.
  • Figure 12 is a structural diagram of the driven end of the coupling according to the present invention.
  • the present invention provides an air source system for a water-cooled air compressor for a vehicle, which adopts an inner supporting double crankshaft 7, and a high-pressure connecting rod-piston assembly 13 and a low-pressure connecting rod-piston assembly 14 are respectively arranged on the eccentric cranks on both sides of the crankshaft;
  • the side crank is provided with a tapered hole, and the driven end 5 of the coupling is arranged through the fastening bolt and the key structure, and the driving end 4 of the coupling is arranged on the main shaft of the motor 3.
  • the elastic coupling has axial and radial directions. The deviation compensation function ensures the smooth and reliable transmission of the main shaft.
  • the motor 3 is arranged on the rear side of the crankcase 9, and the crankshaft 7 is arranged on the crankcase 9 through the maintenance-free double-row support bearing 6; its structure ensures the strength and reliability of the transmission structure and stable operation.
  • the inner support structure of the double crank reduces the vibration during operation by reducing the axial distance between the connecting rod and the crankshaft support;
  • an end cover 10 is arranged on the front side of the crankcase 9, and the end cover has a built-in muffler structure 11, and the material is aluminum foam , muffler cotton, etc.
  • the low-pressure cylinder piston connecting rod assembly 14 and the high-pressure cylinder piston connecting rod assembly 13 are respectively arranged with a low-pressure piston ring 17, a low-pressure guide ring 16, a high-pressure sealing ring 23, and a high-pressure guide ring 24, which play the role of gas sealing and movement.
  • the high and low pressure pistons are made of materials with different densities, so that the high and low pressure cylinder piston connecting rod assemblies achieve the same weight.
  • the intake joint 34 is arranged on the side of the crankcase 9 , and the exhaust joint 33 and the safety valve 32 are arranged on the cylinder head 20 .
  • the whole machine is placed on the rubber shock-absorbing pad 1 through the mounting bracket 2 and the crankcase 9 .
  • the crank outside the crankshaft 7 is provided with a through-hole structure, and the balance block 8 is arranged on the crankshaft 7 through the fastening bolt and the flat key structure, and the balance block and the rotating part of the crank connecting rod mechanism reach a balance, so as to eliminate the piston air
  • the rotational inertia force and moment of the compressor during operation further reduce the vibration of oil-free piston air compression.
  • the driven end 5 of the coupling is provided with a counterweight structure 55, which can transmit power and also act as a counterweight to reduce the vibration of the whole machine.
  • this structure design makes the transmission structure volume Greatly reduced; to ensure the elimination of the rotational inertial force and moment generated by the piston air compressor during operation.
  • the compression working process of the present invention is as follows: As shown in Figures 1-2, the main shaft of the motor 3 drives the driving end 4 of the elastic coupling to rotate, and the driven end 5 of the elastic coupling drives the crankshaft 7 to rotate.
  • the cranks on both sides of the crankshaft are provided with maintenance-free grease-lubricated bearings 12, which drive the low-pressure cylinder piston connecting rod assembly 14 and the high-pressure cylinder piston connecting rod assembly 13 to reciprocate up and down, so that the inner volume of the two cylinders changes periodically.
  • a valve plate 19 is arranged on the upper side of the piston cylinder, and a first exhaust valve assembly 26 is arranged on the valve plate; the low-pressure piston moves upward from the bottom dead center, the gas in the cylinder is reduced and the gas is compressed, and the low-pressure intake valve plate 18 is closed at this time. , the first exhaust valve assembly 26 opens the exhaust gas, and the gas compression of the primary cylinder is completed at this time.
  • the primary compressed gas enters into the secondary cylinder of the piston cylinder through the flow passage of the cylinder head 20 under the action of the high-pressure intake valve plate 22, and completes the secondary compression under the combined action of the high-pressure cylinder piston and the second exhaust valve assembly 21 .
  • the low-pressure intake valve plate 18 is arranged on the end surface of the annular groove of the low-pressure piston 54, and the end surface of the annular groove is provided with an air inlet 53 and a limit screw 50.
  • the limit screw 50 acts as a fixed limit for the low-pressure intake valve plate, preventing the valve plate from rising and opening too high, causing the root of the valve plate to be easily broken, and ensuring that the valve plate is closed in time during the compression stroke to improve the compression efficiency. .
  • the fixed-stroke bolt 51 is provided with an annular butterfly valve plate 52 or an annular wave valve plate, so as to control the pressing force of the valve plate and the free stroke of the root of the valve plate, thereby greatly reducing the problem of stress concentration at the root of the valve plate, and greatly improving the valve life.
  • the annular butterfly valve plate or annular wave valve plate structure is matched with the annular groove design on the end face of the piston. When the top dead center is compressed, the valve plate completely avoids the piston groove, so as to avoid the valve plate being dry at the top dead center of the piston.
  • the design of the fixed-stroke bolt and the limit bolt screw head completely avoids the design of the exhaust hole of the valve plate, which minimizes the clearance volume and greatly improves the compression efficiency.
  • the screw head is located in the inner hole of the valve plate, and is equipped with a piston annular groove design.
  • This structure greatly reduces the clearance volume when the piston runs at the top dead center and improves the compression efficiency of the whole machine.
  • the design of the intake piston of the present invention has the advantages of small volume, light weight, high compression efficiency, long life and the like.
  • the invention adopts a water cooling system, and the efficient cooling greatly reduces the internal operating temperature of the controller and the pump head of the compressor, and meets the requirements of continuous operation of the air supply system.
  • the air compressor can work in a controllable compression temperature range, which makes the compressor more efficient and energy-saving; at the same time, the exhaust temperature of the air compressor is greatly reduced, and the design of the pump head water channel can effectively suppress the expansion of noise, so that the The running noise of the whole machine is reduced.
  • the cooling water of the circulating water circuit 35 is supplied by the water pump system of the whole vehicle, enters through the water inlet joint 37, passes through the labyrinth cooling water channel provided in the controller 25, and then enters the water tank of the crankcase 9 through the connecting water pipe 38 After passing through the water groove in the piston cylinder 15, it enters the cylinder head 20 through the water-through bolts 39 arranged on the cylinder head 20, and after passing through the water channel in the cylinder head cavity, it returns to the piston cylinder 15 and the crankcase 9 through the water-through bolts.
  • the drain joint 36 is discharged and merged into the circulating waterway of the whole vehicle.
  • the crankcase 9 and the piston cylinder 15 can use the cavity water channel 40 in the crankcase and the cavity water channel 45 in the piston cylinder, which have higher structural reliability, and the crankcase 9 and the piston cylinder 15 use sand cores Die casting molding, the surface of the parts is a closed structure, and its inner cavity is formed by a sand mold; the end surface of the crankcase 9 is provided with a number of crankcase water holes 42, and the end surface of the piston cylinder 15 is provided with a number of piston cylinder water holes 43, The water hole also acts as a process hole to realize the positioning and support of the sand core.
  • a low-pressure area 46 and a high-pressure area 48 are arranged on the inner side of the cylinder head, and mesh reinforcement ribs are designed on its surface, which can play the role of exhaust noise reduction.
  • the water inlet and outlet channels 47 are connected to the cavity water channels 49 in the cylinder head, and have high structural reliability, large heat dissipation area and high cooling efficiency.
  • the internal cavity structure design of the main part through casting the water-passing cavity structure, achieves efficient cooling, and at the same time, greatly reduces the leakage surface of the water channel at the connection of each part,
  • connection between the cylinder head and the piston cylinder adopts the design of internal water-passing bolts, which not only play the role of the flow channel, but also play the role of connection and tightening. It can play a waterproof effect everywhere, thus forming a multi-layer protection, which greatly improves the reliability.
  • the controller 25 of the present invention adopts a lightweight design, so that it can be directly installed and fixed on the air compressor motor 3, and the high-voltage power supply wiring harness connected to the motor 3 is built in, which has a compact structure and is easy to install; a cooling water channel is designed inside, which is efficient and energy-saving; and With intelligent control, fault detection, vehicle information interaction and other functions.
  • the controller 25 is fixed on the motor 3 through countersunk screws 27 , and the high-voltage power supply wiring harness connected to the motor 3 is built in through the through bolts 28 ; its structure is compact, safe and reliable.
  • the controller is arranged with a vehicle interactive CAN communication interface 31 to share the working status of the gas supply system and feedback fault information in real time, and a high-voltage power supply interface 30 and a debugging interface 29 are arranged.
  • the intelligent control process of the controller 25 is: between the predetermined safe air pressure and the highest rated air pressure of the air brake system of the whole vehicle, realize intelligent start and stop, and control the working speed of the air compressor motor to make the air compressor operate under the optimal performance load rate. work, and then ensure the service life of the air compressor, make the air compressor more efficient and energy-saving, and improve the safety performance of the vehicle.
  • the functions of the controller 25 are as follows:
  • Function 1 When the gas temperature sensor and motor temperature sensor on the controller 25 detect that the temperature is too high, the controller system determines whether the gas system pressure is higher than the safety pressure of the vehicle; if the gas system pressure is higher than the safety pressure of the vehicle, Then the controller stops the air compressor, and then starts the air compressor after the temperature drops or the air pressure is lower than the safety air pressure of the whole vehicle; if the gas system pressure is lower than the safety air pressure of the whole vehicle, the controller feeds back a fault signal to the vehicle control system , and detect whether the air compressor has started running at this time. If it is detected that the air compressor is running at this time, the water pump will be controlled to speed up the flow rate to cool down to prevent the compressor from running too high temperature continuously, and judge whether the running time is too long. failure.
  • the controller 25 monitors the working state of the air compressor and controls its working load rate to make the air compressor run more efficiently and save energy.
  • the controller When driving, when the controller system detects that the air compressor has been shut down for a long time and the load rate is low, and the system pressure at this time is between the safety pressure and the rated pressure of the whole vehicle, the controller will appropriately reduce the speed of the air compressor and increase the air compressor properly.
  • the load rate of the press On the contrary, when the controller system detects that the air compressor has been shut down for a long time and the load rate is high, the controller will appropriately increase the speed of the air compressor, appropriately reduce the load rate of the air compressor, reduce the working temperature, and protect the air brake system of the vehicle. Safety and prolong the service life of the air compressor.
  • Function 3 The water temperature sensor on the controller 25 monitors that the cooling water temperature is too low and feeds back to the vehicle controller, and communicates and interacts with the vehicle control system. When the vehicle controller judges that the water temperature is too low and affects the performance life of the battery and other components, The air compressor controller controls the working load rate of the air compressor to increase the temperature of the cooling water.
  • the controller of the invention adopts an integrated compressor design, shares a water channel and a shell structure, has a compact structure and a small volume, and can operate the controller compressor more efficiently.

Abstract

一种车用水冷空气压缩机气源系统,包括双曲柄内支撑传动结构、控制器(25)和水冷系统;双曲柄内支撑传动结构通过电机(3)、弹性联轴器和曲轴(7)驱动,曲轴(7)两侧曲柄带动低压缸活塞组件和高压缸活塞组件做上下往复运动,完成气体压缩过程。控制器(25)固定在电机(3)上,控制器(25)内部设置迷宫型冷却水道,控制器(25)实时共享供气系统工作状态及反馈故障信息;水冷系统由整车水泵系统供水,经过控制器(25)内部迷宫型冷却水道后进入曲轴箱水槽内,然后经活塞缸内水槽后进入缸盖(20),经过缸盖(20)内腔水道后重新返回至活塞缸和曲轴箱内,最后排出汇入整车循环水路。具有压缩效率高、振动小、体积小便于安装布置等优点。

Description

一种车用水冷空气压缩机气源系统 技术领域
本发明涉及汽车用空气压缩设备领域,尤其涉及一种车用水冷空气压缩机气源系统。
背景技术
无油往复活塞式空气压缩机由于内部完全无润滑油的参与,在连杆大小头及曲柄部位的运动副必须通过采用免维护轴承来承载,受限于自身无油润滑结构特点,曲柄处难以套入免维护轴承,故目前大多数无油活塞式空气压缩机均采用单曲柄悬臂结构,其支点较长结构强度差、运行振动大。内支撑双曲柄传动结构,在两活塞连杆组之间采用免维护的双列轴承,用于支承放置在曲轴上以保证其传动结构的强度可靠、运行平稳。同时要减小传动结构的振动,首先考虑的主要方式是对曲柄连杆机构进行平衡,消除或限制旋转机构或往复机构的不平衡惯性力和惯性力矩。目前少数无油活塞式空气压缩机采用的非悬臂双曲柄传动结构,只能使往复惯性力和旋转惯性力得以平衡,其往复惯性力矩依然无法减小且旋转惯性力矩也难于平衡。
汽车空气压缩机主要用于向汽车制动系统、空气悬挂系统、车门开启关闭及辅助用气动装置提供必要气源。目前常用的车载空气压缩机主要有滑片式、涡旋式、活塞式空气压缩机。
1.目前市场上常用的车载空气压缩机多数为风冷式空气压缩机,其排气温度高,且内部高温度难于导出影响各部件的使用寿命,不能满足连续工作的要求;且气体温度越高越难以被压缩,致使压缩效率低下,功耗增大,而一些水冷式压缩机水道密封结构差,漏水严重,可靠性差。
2.无油往复活塞式空气压缩机受限于自身无油传动结构特点,其传动结构体积庞大,运行振动大,影响整车舒适性。
3.车用空气压缩机气源系统由空压机及整车控制器(逆变器)构成,整车控制器(逆变器)向空压机电机提供动力源并控制空压机工作。整车控制器通常为多合一控制器,其体积庞大且需额外空间安装布置;同时若控制器的单一功能损害则需要更换整个控制器总成其维修成本较高。
发明内容
本发明目的在于针对现有技术的不足,提出一种车用水冷空气压缩机气源系统。
本发明的目的是通过以下技术方案来实现的:一种车用水冷空气压缩机气源系统,包括双曲柄内支撑传动结构、控制器和水冷系统;
所述双曲柄内支撑传动结构通过电机驱动,曲轴通过弹性联轴器与电机连接,所述曲轴两侧曲柄带动其上的低压缸活塞组件和高压缸活塞组件做上下往复运动,使得两活塞缸内容积发生周期性变化,完成气体压缩过程。
所述控制器固定在电机上,与电机连接的高压电源线束通过内通螺栓内置,控制器内部设置有迷宫型冷却水道,控制器上布置有整车交互CAN通讯接口用于实时共享供气系统工作状态及通过传感器监测反馈故障信息;
所述水冷系统由整车水泵系统供水,经过控制器内部的迷宫型冷却水道后进入曲轴箱水槽内,然后经活塞缸内水槽后通过通水螺栓进入缸盖,经过缸盖内腔水道后通过通水螺栓重新返回至活塞缸和曲轴箱内,最后排出汇入整车循环水路。
进一步地,电机主轴带动弹性联轴器主动端旋转,弹性联轴器从动端带动曲轴7旋转;所述弹性联轴器从动端设置有配重结构,起到传递动力作用的同时可起到平衡块作用,减小整机振动。
进一步地,低压缸活塞组件上设有低压进气阀片,阀片具有单向导流作用,当低压活塞从上止点向下运动,缸内变大产生负压,使得自然空气吸入活塞缸一级缸内,活塞缸上侧设有阀板,阀板上设置有第一排气阀门组件;低压活塞从下止点向上运动,缸内容积减小气体被压缩,低压进气阀片关闭,第一排气阀门组件开启排出气体,完成一级缸的气体压缩,一级压缩气体经过缸盖流道在高压进气阀片的作用下进入活塞缸二级缸内,并在高压缸活塞及第二排气阀门组件的共同作用下完成二次压缩。
进一步地,低压进气阀片布置在低压活塞的环形槽端面上,环形槽端面上设置有进气口以及限位螺钉,限位螺钉对低压进气阀片起到定程限位作用,并采用定程螺栓,其上设有环状波形或蝶形阀片减小阀片根部应力集中,提高阀片使用寿命。
进一步地,曲轴两侧曲柄上各加装一个平衡块,曲轴外侧曲柄上设置有通孔结构,平衡块通过固紧螺栓及平键结构布置在曲轴上,平衡块与曲柄连杆的旋转部分达成平衡,消除活塞式空气压缩机运行时的旋转惯性力及力矩,进一步减小无油活塞式空气压缩的振动。
进一步地,曲轴通过免维护双列支撑轴承布置在曲轴箱上。
进一步地,曲轴箱和活塞缸采用内型腔水道结构,表面为封闭式结构;曲轴箱和活塞缸端面均设置有若干个通水孔,通过O型圈或橡胶复合垫片实现双道密封,降低漏水风险。
进一步地,控制器上具有气体温度传感器和电机温度传感器,控制器通过气体温度传感器和电机温度传感器的监测,判断气体系统压力是否高于整车安全气压;若气体系统压力高于整车安全气压,则控制器停止空压机工作,等温度下降或气压低于整车安全气压后再启动空压机工作;若气体系统压力低于整车安全气压,则控制器反馈故障信号给整车控制系统, 并控制水泵加快流速进行降温,同时判断是否出现运行时间过长的故障。
进一步地,控制器上具有水温传感器,控制器通过水温传感器监测到冷却水温度,并通过控制空压机的工作负荷率,调节冷却水温度。
进一步地,控制器监测系统压力在整车安全压力和额定压力之间,则调低空压机转速,提升空压机的负荷率。反之则调高空压机转速,降低空压机的负荷率,使其降低工作温度,保护整车气制动系统安全及延长空压机使用寿命。
本发明的有益效果:本发明采用外置水冷搭载立式双缸两级压缩结构,辅于双曲柄内支撑传动结构:通过减小其连杆与曲轴支承的轴向距离降低了运行时振动,同时通过在两侧曲柄上布置有集成式平衡块,其平衡块与曲柄连杆机构的旋转质量达成平衡,以此来消除活塞式空气压缩机运行时的旋转惯性力和力矩,从而进一步降低了无油活塞式空气压缩的振动。本发明采用集成控制器设计,结构紧凑、安装方便、高效节能,并具备智能控制、故障检测、整车信息交互等功能。本发明采用高效、可靠的水冷结构,满足控制器的工作环境的同时降低空气压缩机的内部运行温度及排气温度,满足空压机连续工作的要求;同时抑制泵头噪音外扩,降低空压机运行噪声。
附图说明
图1为本发明主视主体结构剖视图;
图2为本发明左视剖视图;
图3为本发明立体视图;
图4为本发明缸盖水道剖视图;
图5为本发明俯视水道剖视图;
图6为本发明泵头局部水道剖视图;
图7为本发明曲轴箱结构图;
图8为本发明活塞缸结构图;
图9为本发明缸盖结构图;
图10为本发明缸盖剖视图;
图11为本发明活塞阀组结构图;
图12为本发明联轴器从动端结构图;
图中,1.橡胶减震垫;2.安装支架;3.电机;4.弹性联轴器主动端;5.弹性联轴器从动端;6.免维护双列支撑轴承;7.曲轴;8.平衡块;9.曲轴箱;10.端盖;11.消声结构;12.免维护脂润滑轴承;13.高压缸活塞连杆组件;14.低压缸活塞连杆组件;15.活塞缸;16.低压导向环;17.低压活塞环;18.低压进气阀片;19.阀板;20.缸盖;21.第二排气阀 门组件;22.高压进气阀片;23.高压密封环;24.高压导向环;25.控制器;26.第一排气阀门组件;27.沉头螺钉;28.内通螺栓;29.调试接口;30.高压电源接口;31.整车交互CAN通讯接口;32.安全阀;33.排气接头;34.进气接头;35.循环水路;36.排水接头;37.进水接头;38.连接水管;39.通水螺栓;40.曲轴箱内型腔水道;41.曲轴箱双层密封槽;42.曲轴箱通水孔;43.活塞缸通水孔;44.活塞缸双层密封槽;45.活塞缸内型腔水道;46.缸盖内侧低压区;47.进出水通道;48.缸盖内侧高压区;49.缸盖内型腔水道;50.限位螺钉;51.定程螺栓;52.环状蝶形阀片;53.环形槽端面有进气口;54.低压活塞;55.配重结构。
具体实施方式
以下结合附图对本发明具体实施方式作进一步详细说明。
本发明提供了一种车用水冷空气压缩机气源系统,采用内支撑双曲柄曲轴7,在曲轴双侧偏心曲柄上各设置有高压连杆活塞组件13和低压连杆活塞组件14;其里侧曲柄上设置有锥孔,并通过固紧螺栓及键结构布置有联轴器从动端5,联轴器主动端4布置于电机3主轴上,此弹性联轴器具有轴向和径向偏差补偿功能,保障主轴传动平稳可靠,电机3布置于曲轴箱9后侧,曲轴7则通过免维护双列支撑轴承6布置在曲轴箱9上;其结构保证了传动结构的强度可靠、运行平稳,同时双曲柄内支撑结构通过减小其连杆与曲轴支承的轴向距离以降低运行时的振动;曲轴箱9前侧布置有端盖10,端盖内置消声结构11,材料为泡沫铝、消音棉等,低压缸活塞连杆组件14和高压缸活塞连杆组件13上分别布置有低压活塞环17、低压导向环16及高压密封环23、高压导向环24,起到气体密封及运动导向作用;同时高、低压活塞通过不同密度的材质进行制造使高、低压缸活塞连杆组件达到相同的重量。进气接头34布置在曲轴箱9侧面,排气接头33及安全阀32则布置在缸盖20上。整机通过安装支架2和曲轴箱9安放在橡胶减震垫1上。曲轴7外侧曲柄上则设置有通孔结构,其平衡块8通过固紧螺栓及平键结构布置在曲轴7,其平衡块与曲柄连杆机构的旋转部分达成平衡,以此来消除活塞式空气压缩机运行时的旋转惯性力及力矩,从而进一步减小了无油活塞式空气压缩的振动。如图12所示,联轴器从动端5设置有配重结构55,其起到传递动力作用的同时可起到平衡块作用,减小整机振动的同时,此结构设计使得传动结构体积大大减小;以保证消除活塞式空气压缩机运行时产生的旋转惯性力和力矩。
本发明压缩工作过程如下:如图1-2所示,电机3主轴带动弹性联轴器主动端4旋转,弹性联轴器从动端5带动曲轴7旋转。曲轴两侧曲柄上设置有免维护脂润滑轴承12,带动其上的低压缸活塞连杆组件14和高压缸活塞连杆组件13做上下往复运动,使得两缸内容积发生周期性变化,其中低压缸活塞上设有低压进气阀片18,阀片的单向导流作用,当低压活塞 从上止点向下运动,缸内变大产生负压,使得自然空气吸入活塞缸15一级缸内。活塞缸上侧设有阀板19,阀板上设置有第一排气阀门组件26;低压活塞从下止点向上运动,缸内容积减小气体被压缩,此时低压进气阀片18关闭,第一排气阀门组件26开启排出气体,此时完成一级缸的气体压缩。随后一级压缩气体经过缸盖20流道在高压进气阀片22的作用下进入活塞缸二级缸内,并在高压缸活塞及第二排气阀门组件21的共同作用下完成二次压缩。
如图11所示,低压进气阀片18布置在低压活塞54的环形槽端面上,环形槽端面上设置有进气口53的同时还布置有限位螺钉50,在阀片最高上扬点处,限位螺钉50对低压进气阀片起到定程限位作用,避免阀片上扬开启角过高,导致阀片根部易断裂问题,并且保证阀片在压缩行程时的及时关闭,提升压缩效率。在其定程螺栓51上设有环状蝶形阀片52或者环状波形阀片,从而控制阀片压紧力和阀片根部自由行程,继而大大减小阀片根部应力集中问题,大大提高阀片使用寿命。环状蝶形阀片或者环状波形阀片结构,配作活塞端面环形沟槽设计,压缩上止点时阀片完全避让于活塞沟槽内,从而避免在活塞上止点时于阀板干涩撞击,而且定程螺栓和限位螺栓螺头完全避让于阀板排气孔中设计,并使得余隙容积最小化,大大提升压缩效率。螺头让位于阀板内孔中,并搭载活塞环形槽设计,此结构大大减小活塞运行上止点时余隙容积,提升了整机压缩效率。本发明的进气活塞设计具有体积小、重量轻、压缩效率高、寿命长等优点。
本发明采用水冷系统,高效的冷却使得控制器、压缩机泵头的内部运行温度大幅度降低,满足供气系统连续工作的要求。特别是空压机能在可控的压缩温度区间工作,使得压缩机更加高效节能;同时极大地降低空压机的排气温度,并且泵头水道的设计能有效的抑制噪音的外扩,使整机的运行噪音降低。
如图3-5所示,循环水路35的冷却水由整车水泵系统供给,由进水接头37进入,经过控制器25内部设置的迷宫型冷却水道后经由连接水管38进入曲轴箱9水槽内,经活塞缸15内水槽后通过布置在缸盖20上的通水螺栓39进入缸盖20,经过缸盖内腔水道后经由通水螺栓重新返回至活塞缸15、曲轴箱9内,最后经由排水接头36排出,汇入整车循环水路。
此水路循环过程连接了控制器及空压机缸头区域,完成了在对控制器25及空压机的缸头区域曲轴箱9、活塞缸15、缸盖20的高效循环冷却降温。
如图7-8所示,曲轴箱9和活塞缸15可采用曲轴箱内型腔水道40和活塞缸内型腔水道45,其结构可靠性更高,曲轴箱9和活塞缸15采用砂芯模铸造成型,零部件表面为封闭式结构,其内腔通过砂模成型;曲轴箱9端面设置有若干个曲轴箱通水孔42,活塞缸15端面设置有若干个活塞缸通水孔43,通水孔也起到工艺孔作用实现砂芯的定位及支撑。并辅以曲轴箱9端面上设计的双层密封槽41和活塞缸15端面上设计的双层密封槽44,可通过O型圈或 橡胶复合垫片实现双道密封,极大地降低了漏水风险。
如图9-10所示,缸盖内侧设置有低压区46及高压区48,同时其表面设计有网格加强筋,可起到排气消音的作用。进出水通道47连接缸盖内型腔水道49,其结构可靠性高且散热面积大,冷却效率高。
本发明的水冷系统具有如下优点:
1.高可靠性的循环水道设计,小体积轻量化结构布局,高效冷却:控制器-曲轴箱-活塞缸-缸盖,流道覆盖发热源,降低排气温度、提升压缩效率。
2.主体部件内型腔结构设计,通过铸造通水型腔结构,达到高效冷却同时,大大减小各部件连接处水道泄露面,
3.辅于曲轴箱、活塞缸密封面环形沟槽设计,形成多道保护,大大降低漏水风险
4.缸盖、活塞缸连接采用内通水螺栓设计,此螺栓既起到流道作用,又起到连接紧固作用,并且此结构设计优点在于螺栓安装端面、阀板两侧缸垫、螺纹处均能起到防水效果,从而形成多道防护,大大提升了可靠性。
本发明控制器25采用轻量化设计,使其直接安装固定在空压机电机3上,其与电机3连接的高压电源线束内置,结构紧凑、安装方便;内部设计有冷却水道,高效节能;并具备智能控制、故障检测、整车信息交互等功能。
如图6所示:控制器25通过沉头螺钉27固定在电机3上,其与电机3连接的高压电源线束通过内通螺栓28内置;其结构紧凑、安全可靠。控制器上则布置有整车交互CAN通讯接口31实时共享供气系统工作状态及反馈故障信息等,以及设置有高压电源接口30和调试接口29。
控制器25智能控制过程为:在整车气制动系统预定安全气压和最高额定气压之间,实现智能启停,通过控制空压机电机的工作转速使空压机在最佳性能负荷率下工作,继而保障空压机的使用寿命,使空压机更加高效节能,并提升整车安全性能。
控制器25具备的功能如下:
功能1:控制器25上的气体温度传感器及电机温度传感器监测到温度过高时,此时控制器系统判断气体系统压力是否高于整车安全气压;若气体系统压力高于整车安全气压,则控制器停止空压机工作,等温度下降或气压低于整车安全气压后再启动空压机工作;若气体系统压力低于整车安全气压,则控制器反馈故障信号给整车控制系统,并检测此时空气压缩是否已启动运行,若此时检测到空气压缩机已在运行,则控制水泵加快流速进行降温防止压缩机出现连续运行温度过高情况,同时判断是否出现运行时间过长的故障。
功能2:控制器25通过监测空压机工作状态,控制其工作负荷率,使空压机运行更加高 效节能。行车时当控制器系统检测空压机长时间停机负荷率较低时,且此时的系统压力在整车安全压力和额定压力之间,则控制器适当调低空压机转速,适当提升空压机的负荷率。反之当控制器系统检测空压机长时间停机负荷率较高时,则控制器适当调高空压机转速,适当降低空压机的负荷率,使其降低工作温度,保护整车气制动系统安全及延长空压机使用寿命。
功能3:控制器25上的水温传感器监测到冷却水温度过低时反馈至整车控制器,并与整车控制系统通讯交互,整车控制器判断水温过低影响电池等部件性能寿命时,空压机控制器控制提升空压机的工作负荷率,加快提升冷却水的温度。
本发明的控制器采用集成压缩机设计,共用水道和壳体结构,结构紧凑体积小,并且能更加高效的控制器压缩机工作。
上述实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。

Claims (10)

  1. 一种车用水冷空气压缩机气源系统,其特征在于,包括双曲柄内支撑传动结构、控制器和水冷系统;
    所述双曲柄内支撑传动结构通过电机驱动,曲轴通过弹性联轴器与电机连接,所述曲轴两侧曲柄带动其上的低压缸活塞组件和高压缸活塞组件做上下往复运动,使得两活塞缸内容积发生周期性变化,完成气体压缩过程。
    所述控制器固定在电机上,与电机连接的高压电源线束通过内通螺栓内置,控制器内部设置有迷宫型冷却水道,控制器上布置有整车交互CAN通讯接口用于实时共享供气系统工作状态及通过传感器监测反馈故障信息;
    所述水冷系统由整车水泵系统供水,经过控制器内部的迷宫型冷却水道后进入曲轴箱水槽内,然后经活塞缸内水槽后通过通水螺栓进入缸盖,经过缸盖内腔水道后通过通水螺栓重新返回至活塞缸和曲轴箱内,最后排出汇入整车循环水路。
  2. 根据权利要求1所述的一种车用水冷空气压缩机气源系统,其特征在于,电机主轴带动弹性联轴器主动端旋转,弹性联轴器从动端带动曲轴7旋转;所述弹性联轴器从动端设置有配重结构,起到传递动力作用的同时可起到平衡块作用,减小整机振动。
  3. 根据权利要求1所述的一种车用水冷空气压缩机气源系统,其特征在于,低压缸活塞组件上设有低压进气阀片,阀片具有单向导流作用,当低压活塞从上止点向下运动,缸内变大产生负压,使得自然空气吸入活塞缸一级缸内,活塞缸上侧设有阀板,阀板上设置有第一排气阀门组件;低压活塞从下止点向上运动,缸内容积减小气体被压缩,低压进气阀片关闭,第一排气阀门组件开启排出气体,完成一级缸的气体压缩,一级压缩气体经过缸盖流道在高压进气阀片的作用下进入活塞缸二级缸内,并在高压缸活塞及第二排气阀门组件的共同作用下完成二次压缩。
  4. 根据权利要求3所述的一种车用水冷空气压缩机气源系统,其特征在于,低压进气阀片布置在低压活塞的环形槽端面上,环形槽端面上设置有进气口以及限位螺钉,限位螺钉对低压进气阀片起到定程限位作用,并采用定程螺栓,其上设有环状波形或蝶形阀片减小阀片根部应力集中,提高阀片使用寿命。
  5. 根据权利要求1所述的一种车用水冷空气压缩机气源系统,其特征在于,曲轴两侧曲柄上各加装一个平衡块,曲轴外侧曲柄上设置有通孔结构,平衡块通过固紧螺栓及平键结构布置在曲轴上,平衡块与曲柄连杆的旋转部分达成平衡,消除活塞式空气压缩机运行时的旋转惯性力及力矩,进一步减小无油活塞式空气压缩的振动。
  6. 根据权利要求1所述的一种车用水冷空气压缩机气源系统,其特征在于,曲轴通过免维护双列支撑轴承布置在曲轴箱上。
  7. 根据权利要求6所述的一种车用水冷空气压缩机气源系统,其特征在于,曲轴箱和活塞缸采用内型腔水道结构,表面为封闭式结构;曲轴箱和活塞缸端面均设置有若干个通水孔,通过O型圈或橡胶复合垫片实现双道密封,降低漏水风险。
  8. 根据权利要求1所述的一种车用水冷空气压缩机气源系统,其特征在于,控制器上具有气体温度传感器和电机温度传感器,控制器通过气体温度传感器和电机温度传感器的监测,判断气体系统压力是否高于整车安全气压;若气体系统压力高于整车安全气压,则控制器停止空压机工作,等温度下降或气压低于整车安全气压后再启动空压机工作;若气体系统压力低于整车安全气压,则控制器反馈故障信号给整车控制系统,并检测此时空气压缩是否已启动运行,若此时检测到空气压缩机已在运行,则控制水泵加快流速进行降温保护压缩机,同时反馈判断是否出现运行时间过长的故障。
  9. 根据权利要求1所述的一种车用水冷空气压缩机气源系统,其特征在于,控制器上具有水温传感器,控制器通过水温传感器监测到冷却水温度,并通过控制空压机的工作负荷率,调节冷却水温度。
  10. 根据权利要求1所述的一种车用水冷空气压缩机气源系统,其特征在于,控制器监测系统压力在整车安全压力和额定压力之间,则调低空压机转速,提升空压机的负荷率。反之则调高空压机转速,降低空压机的负荷率,使其降低工作温度,保护整车气制动系统安全及延长空压机使用寿命。
PCT/CN2020/133580 2020-12-03 2020-12-03 一种车用水冷空气压缩机气源系统 WO2022116082A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/133580 WO2022116082A1 (zh) 2020-12-03 2020-12-03 一种车用水冷空气压缩机气源系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/133580 WO2022116082A1 (zh) 2020-12-03 2020-12-03 一种车用水冷空气压缩机气源系统

Publications (1)

Publication Number Publication Date
WO2022116082A1 true WO2022116082A1 (zh) 2022-06-09

Family

ID=81853779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133580 WO2022116082A1 (zh) 2020-12-03 2020-12-03 一种车用水冷空气压缩机气源系统

Country Status (1)

Country Link
WO (1) WO2022116082A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115263722A (zh) * 2022-08-19 2022-11-01 青岛荣发保温材料有限公司 一种具有降温减压功能的空压机
CN115921764A (zh) * 2023-01-17 2023-04-07 荣成华东锻压机床股份有限公司 精密热模锻压力机曲轴轴瓦智能温控装置及方法
CN115693798B (zh) * 2022-11-07 2023-05-30 广东鑫钻节能科技股份有限公司 空压站余功回收发电系统及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006060659B3 (de) * 2006-12-21 2008-07-03 Neander Motors Ag Kolbenarbeitsmaschine
CN201843749U (zh) * 2010-11-18 2011-05-25 亚新科美联(廊坊)制动系统有限公司 一种车用空压机复合式降噪排气组件
CN103398003A (zh) * 2013-08-15 2013-11-20 四川金星压缩机制造有限公司 活塞式压缩机用气垫阀
CN106194643A (zh) * 2016-08-31 2016-12-07 瑞立集团瑞安汽车零部件有限公司 一种电动无油主空压机空气压缩装置
CN107575359A (zh) * 2017-09-19 2018-01-12 瑞立集团瑞安汽车零部件有限公司 车用卧式活塞式两级空气压缩机
CN109340084A (zh) * 2018-12-06 2019-02-15 瑞立集团瑞安汽车零部件有限公司 一种车载电驱动无油空气压缩机
CN109611311A (zh) * 2018-12-06 2019-04-12 瑞立集团瑞安汽车零部件有限公司 一种车用无油活塞式两级空压机
CN110107473A (zh) * 2019-04-11 2019-08-09 浙江科力车辆控制系统有限公司 新能源车用无油活塞式空压机
CN111396290A (zh) * 2020-04-22 2020-07-10 瑞立集团瑞安汽车零部件有限公司 一种车用空气压缩机及其智能供气系统装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006060659B3 (de) * 2006-12-21 2008-07-03 Neander Motors Ag Kolbenarbeitsmaschine
CN201843749U (zh) * 2010-11-18 2011-05-25 亚新科美联(廊坊)制动系统有限公司 一种车用空压机复合式降噪排气组件
CN103398003A (zh) * 2013-08-15 2013-11-20 四川金星压缩机制造有限公司 活塞式压缩机用气垫阀
CN106194643A (zh) * 2016-08-31 2016-12-07 瑞立集团瑞安汽车零部件有限公司 一种电动无油主空压机空气压缩装置
CN107575359A (zh) * 2017-09-19 2018-01-12 瑞立集团瑞安汽车零部件有限公司 车用卧式活塞式两级空气压缩机
CN109340084A (zh) * 2018-12-06 2019-02-15 瑞立集团瑞安汽车零部件有限公司 一种车载电驱动无油空气压缩机
CN109611311A (zh) * 2018-12-06 2019-04-12 瑞立集团瑞安汽车零部件有限公司 一种车用无油活塞式两级空压机
CN110107473A (zh) * 2019-04-11 2019-08-09 浙江科力车辆控制系统有限公司 新能源车用无油活塞式空压机
CN111396290A (zh) * 2020-04-22 2020-07-10 瑞立集团瑞安汽车零部件有限公司 一种车用空气压缩机及其智能供气系统装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115263722A (zh) * 2022-08-19 2022-11-01 青岛荣发保温材料有限公司 一种具有降温减压功能的空压机
CN115263722B (zh) * 2022-08-19 2023-09-19 青岛荣发保温材料有限公司 一种具有降温减压功能的空压机
CN115693798B (zh) * 2022-11-07 2023-05-30 广东鑫钻节能科技股份有限公司 空压站余功回收发电系统及方法
CN115921764A (zh) * 2023-01-17 2023-04-07 荣成华东锻压机床股份有限公司 精密热模锻压力机曲轴轴瓦智能温控装置及方法
CN115921764B (zh) * 2023-01-17 2024-04-09 荣成华东锻压机床股份有限公司 精密热模锻压力机曲轴轴瓦智能温控装置及方法

Similar Documents

Publication Publication Date Title
WO2022116082A1 (zh) 一种车用水冷空气压缩机气源系统
CN203175778U (zh) 一种新型输送机组
CN112555126B (zh) 一种车用水冷空气压缩机气源系统
WO2020078125A9 (zh) 一种车载电动无油空气压缩机
CN209908692U (zh) 一种新型无油活塞式空气压缩机
CN211900902U (zh) 一种汽车用双缸双作用空气压缩机
CN109340084A (zh) 一种车载电驱动无油空气压缩机
CN209781157U (zh) 一种车载电驱动无油空气压缩机
WO2019128816A1 (zh) 四缸电动空压机用曲轴装配结构及四缸电动空压机
CN205277746U (zh) 一种无油空压机
CN103993958A (zh) 一种节能环保型大功率机车柴油机
CN202117876U (zh) 立式往复式真空增压两用泵
CN111396290A (zh) 一种车用空气压缩机及其智能供气系统装置
CN210623017U (zh) 一种集成排气冷却及稳压功能的无油空气压缩机
CN103835921A (zh) 一种自润滑高效油冷空气压缩机
CN210118235U (zh) 车用无油空气压缩机
CN211900922U (zh) 一种汽车用空气压缩机
CN205744378U (zh) 膜片式汽车用电动真空泵的活塞组件
CN214465977U (zh) 一种发动机及其齿轮室后盖板密封装置
CN209892396U (zh) 一种车用无油活塞式两级空压机
CN212508736U (zh) 一种车用低震动空气压缩机及具有其的汽车
CN212508716U (zh) 一种车用活塞式空气压缩机水冷结构及无油空压机及汽车
CN212508691U (zh) 一种车用智能供气系统装置及具有其的汽车
CN212508705U (zh) 一种无油空压机分体式曲轴传动机构、无油空压机及汽车
CN111120263B (zh) 一种汽车用空气压缩机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20963929

Country of ref document: EP

Kind code of ref document: A1