CN115693798B - 空压站余功回收发电系统及方法 - Google Patents

空压站余功回收发电系统及方法 Download PDF

Info

Publication number
CN115693798B
CN115693798B CN202211385559.1A CN202211385559A CN115693798B CN 115693798 B CN115693798 B CN 115693798B CN 202211385559 A CN202211385559 A CN 202211385559A CN 115693798 B CN115693798 B CN 115693798B
Authority
CN
China
Prior art keywords
compression station
residual
air compression
power generation
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211385559.1A
Other languages
English (en)
Other versions
CN115693798A (zh
Inventor
胡培生
孙小琴
魏运贵
胡明辛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Xinzuan Energy Saving Technology Co ltd
Original Assignee
Guangdong Xinzuan Energy Saving Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Xinzuan Energy Saving Technology Co ltd filed Critical Guangdong Xinzuan Energy Saving Technology Co ltd
Priority to CN202211385559.1A priority Critical patent/CN115693798B/zh
Publication of CN115693798A publication Critical patent/CN115693798A/zh
Application granted granted Critical
Publication of CN115693798B publication Critical patent/CN115693798B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Abstract

本发明公开了空压站余功回收发电系统,包括数据采集模块、数据分析模块、故障分析模块和服务器;所述数据采集模块用于采集空压站余功的周期功率值和空压站余功的传输损耗值,数据采集模块将周期功率值和传输损耗值传送至数据分析模块;所述数据分析模块对周期功率值和传输损耗值计算处理,得到空压站余功回收发电效果信号,并将空压站余功回收发电效果信号传送至服务器;所述故障分析模块接收服务器传送的空压站余功回收发电效果信号,对空压站余功回收发电效果信号差的空压站进行故障处理,本发明对空压站余功发电过程中异常的空压站或空压站余功传输管道进行有效的处理,提高空压站余功发电过程中运行平稳性和故障处理的有效性。

Description

空压站余功回收发电系统及方法
技术领域
本发明涉及空压站技术领域,具体涉及空压站余功回收发电系统及方法。
背景技术
空压站就是压缩空气站,由空气压缩机、储气罐(分为一级、二级储气罐)、空气处理净化设备、冷干机组成;空气压缩机是指将电能转化为空气动能的一种装置,用于各种需要提供加压空气的场景;
部分场景中空压站用电状况比较恶劣,供电不足,电压波动很大,功率因数尤其低,加装回收补偿设备是改善供电状况、提高电能利用率的有效措施;
然而现有技术中,由于管路传输损耗及空压站运行状态监控不到位,导致空压站余功回收发电系统存在发电效率差而不能有效找到故障源的弊端,从而导致空压站余功不能有效利用,造成了资源浪费的问题,为此,我们提出空压站余功回收发电系统及方法。
发明内容
本发明的目的在于提供空压站余功回收发电系统,通过数据采集模块对空压站的周期功率值和空压站余功的传输损耗值进行获取处理,从而得到空压站余功发电功率值,并根据空压站余功发电功率值得到空压站余功发电状态,并根据空压站余功发电状态对空压站及空压站余功传输管道的状态进行识别,对空压站余功发电过程中异常的空压站或空压站余功传输管道进行有效的处理,提高空压站余功发电过程中运行平稳性和故障处理的有效性。
本发明的目的可以通过以下技术方案实现:
空压站余功回收发电系统,包括数据采集模块、数据分析模块、故障分析模块和服务器;
所述数据采集模块用于采集空压站余功的周期功率值和空压站余功的传输损耗值,数据采集模块将周期功率值和传输损耗值传送至数据分析模块;
所述数据分析模块对周期功率值和传输损耗值计算处理,得到空压站余功回收发电效果信号,并将空压站余功回收发电效果信号传送至服务器;
所述故障分析模块接收服务器传送的空压站余功回收发电效果信号,对空压站余功回收发电效果信号差的空压站进行故障处理。
作为本发明进一步的方案:所述周期功率值为空压站连续多个采集电压信号和电流信号的功率进行累加并求平均所得到的值。
作为本发明进一步的方案:所述传输损耗值为空压站所产生的气体在余功回收管道内传输的损耗值。
作为本发明进一步的方案:将所述周期功率值与所述传输损耗值作差值处理,得到空压站余功发电功率值;
预设空压站余功发电的极限值为C1和C2,其中C1<C2;
当Ci<空压站余功发电功率值时,表示空压站余功回收发电效果差;
当C1≤空压站余功发电功率值<C2时,表示空压站余功回收发电效果良;
当空压站余功发电功率值≥C2时,表示空压站余功回收发电效果优;
其中,空压站余功回收发电效果信号包括上述空压站余功回收发电效果差、空压站余功回收发电效果良和空压站余功回收发电效果优三种信号。
作为本发明进一步的方案:所述故障分析模块包括两个压力监测单元;
第一压力监测单元设置在空压站余功回收的输出端,第二压力监测单元设置在余功回收管道的末端,将第一压力监测单元的压力值与第二压力监测单元的压力值作差值处理,得到余功回收管道的气压差值。
作为本发明进一步的方案:将余功回收管道的气压差值与预设的余功回收管道的气压差值阈值进行比较:
当余功回收管道的气压差值≥余功回收管道的气压差值阈值时,则说明空压站余功的传输损耗值异常,余功回收管道生产故障信号,并将故障信号所对应的余功回收管道进行标记,得到数据标签0;
当余功回收管道的气压差值<余功回收管道的气压差值阈值时,则说明空压站余功的传输损耗值正常,空压站生产故障信号,并将故障信号所对用的空压站进行标记,得到数据标签1。
作为本发明进一步的方案:服务器接收故障分析模块传送的数据标签0,匹配余功回收管道维修进入进行检修。
作为本发明进一步的方案:服务器接收故障分析模块传送的数据标签1,匹配空压站维修进入进行检修。
作为本发明进一步的方案:所述服务器针对余功回收管道维修或空压站维修的检修员匹配基于检修员与故障点的位置、检修员的工龄、检修员待维修数据即检修员的维修总次数计算得到。
作为本发明进一步的方案:还包括发电预警模块,所述发电预警模块用于对空压站运行状态进行监测。
本发明的有益效果:
(1)本发明通过数据采集模块对空压站的周期功率值和空压站余功的传输损耗值进行获取处理,从而得到空压站余功发电功率值,并根据空压站余功发电功率值得到空压站余功发电状态,并根据空压站余功发电状态对空压站及空压站余功传输管道的状态进行识别,对空压站余功发电过程中异常的空压站或空压站余功传输管道进行有效的处理,提高空压站余功发电过程中运行平稳性和故障处理的有效性;
(2)本发明通过设置发电预警模块,通过发电预警模块对用于产生空压站余功的空压站的运行状态进行有效监测,从而实现对空压站进行智能管理,有效提高空压站运行过程中的安全性和稳定性。
附图说明
下面结合附图对本发明作进一步的说明。
图1是本发明的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
请参阅图1所示,本发明为空压站余功回收发电系统,包括数据采集模块、数据分析模块、发电预警模块、故障分析模块和服务器;
所述数据采集模块、数据分析模块、发电预警模块、故障分析模块与服务器电性连接;
数据采集模块用于采集空压站余功的周期功率值,数据采集模块将采集的周期功率值传输至数据分析模块;
数据采集模块还用于采集空压站余功的传输损耗值,数据采集模块将采集的传输损耗值传输至数据分析模块;
数据采集模块还用于采集空压站的使用时长,数据采集模块将采集的使用时长传输至发电预警模块;
数据采集模块还用于采集空压站的故障次数,数据采集模块将采集的故障次数传输至发电预警模块;
数据采集模块还用于采集空压站的保养次数,数据采集模块将采集的维护次数传输至发电预警模块。
其中,数据采集模块包括多个电压电流互感器、多个放大器、多个耦合器、多路模拟开关、采样保持单元、A/D转换器和预处理单元;
电压电流互感器用于采集空压站通电后的电压信号和电流信号;每个电压电流互感器分别与对应的放大器连接,其中采用放大器对电压电流互感器采集的信号进行放大,提高分辨率;
由于数据采集模块与信号地之间有电位差,如果不进行隔离处理,就有可能形成接地回路,造成测量误差;放大器连接耦合器,通过设置耦合器,避免数据采集模块和信号地直接电连接,使系统更加安全,避免电压信号和电流信号受地电位和输入模式的影响,提高测量精度;
耦合器连接多路模拟开关,多路模拟开关连接采样保持单元,采样保持单元连接A/D转换器,保证了经过A/D转换后的数字信号能够正确的反应原先的模拟信号,提高测量精度;A/D转换器连接预处理单元,预处理单元用于根据电压信号和电流信号计算得到空压站的周期功率值,其中周期功率值是指对采集到的连续多个电压信号和电流信号的功率进行累加并求平均所得到的值。
传输损耗值
Figure BDA0003929579310000051
其中λ为余功回收管道的管壁摩擦系数,L为余功回收管道的长度,ρ为余功回收管道内传送气压的流体密度,V为余功回收管道内的空气流速。
数据分析模块接收数据采集模块传送的周期功率值和传输损耗值,处理步骤如下:
S1:获取空压站余功的周期功率值,标记为Pi;
获取空压站余功的传输损耗值,标记为Si;
将周期功率值与传输损耗值作差,即Ci=Pi-Si得到空压站余功发电功率值;
S2:获取空压站余功发电的极限值为C1和C2,其中C1<C2;
当Ci<C1时,说明空压站余功发电功率值处于低水平,表示空压站余功回收发电效果差;
当C1≤Ci<C2时,说明空压站余功发电功率值处于中等水平,表示空压站余功回收发电效果良;
当Ci≥C2时,说明空压站余功发电功率值处于高水平,表示空压站余功回收发电效果优;
S3:数据分析模块将压站余功回收发电效果信号(压站余功回收发电效果差、压站余功回收发电效果良、压站余功回收发电效果优)发送至服务器,服务器将接收的压站余功回收发电效果差的信号和对应的空压站位置发送至故障分析模块。
故障分析模块包括两个压力监测单元,其中第一压力监测单元设置在空压站余功回收的输出端,第二压力监测单元设置在余功回收管道的末端;
故障分析模块接收服务器发送的压站余功回收发电效果差的信号及对应的空压站,故障分析模块的处理过程如下:
获取第一压力监测单元的压力值,标记为K1;获取第二压力监测单元的压力值,标记为K2;
将第一压力监测单元的压力值减去第二压力监测单元的压力值得到气压差值Ki,即Ki=K1-K2;
预设余功回收管道的气压差值阈值为Ky,将余功回收管道的气压差值Ki与余功回收管道的气压差值阈值Ky进行比较:
当Ki≥Ky时,则说明空压站余功的传输损耗值异常,余功回收管道生产故障信号,并将故障信号所对应的余功回收管道进行标记,得到数据标签0;
当Ki<Ky时,则说明空压站余功的传输损耗值正常,空压站生产故障信号,并将故障信号所对用的空压站进行标记,得到数据标签1;
其中,数据标签0对应服务器内可调用的管道故障维修人员,数据标签1对应服务器内可调用的空压站故障维修人员;
服务器根据数据标签对维修人员的调配过程为:
步骤一:获取故障类型(余功回收管道故障或空压站故障)及故障点所对应的位置;
步骤二:将检修员的实时位置与故障点位置进行距离计算,得到间距M1;
步骤三:设定检修员对应的待维修数量记为M2;检修员的维修总次数记为M3;设定检修员的工龄为M4;
步骤四:利用公式
Figure BDA0003929579310000071
获取检修员的调配值TP,其中,其中,f1、f2、f3、f4均为预设比例系数;
通过上述公式可知,检修员的工龄约接近10年,检修员的调配值越大;检修员的实时位置与故障点位置距离约接近3公里,检修员的调配值越大;检修员的待维修数量越小,提醒值越大;检修员的维修总次数越多,提醒值越大;
其中,选取调配值最大的检修员为选中检修员;故障分析模块向选中检修员的手机终端上发送维修提醒指令;当选中检修员在预设时间范围内发送确认指令至故障分析模块,则选中检修员的待维修数量增加一,同时故障分析模块向选中检修员的手机终端发送需要维修的故障点位置;当选中检修员在预设时间范围内,未发送确认指令,则选中检修员的未确定次数增加一次,同时将调配值次之的检修员标记为选中检修员,并向选中检修员的手机终端上发送维修提醒指令;依次类推。
发电预警模块用于对空压站运行状态进行监测,并对空压站的运行状态进行预警;
发电预警模块将接收数据采集模块传送的空压站的使用时长,标记为Ti;将接收数据采集模块传送的空压站的故障次数,标记为Gi,将接收数据采集模块传送的空压站的保养次数,标记为Bi;
通过公式
Figure BDA0003929579310000081
得到空压站的预警系数,其中,β修正系数,d1、d2为预设比例系数;
预设空压站的预警阈值为R1和R2;
当Ri<R1时,表示空压站运行状态优,对空压站采取月检的维护方式进行维护;
当R1≤Ri<R2时,表示空压站运行状态良,对空压站采取周检的维护方式进行维护;
当Ri≥R2时,表示空压站运行状态差,对空压站采取日检的维护方式进行维护。
通过上述公式可知,当空压站的使用周期越长,故障次数越多,则表明空压站的运行状态越差;
反之,当空压站的保养次数越多,则说明空压站的运行状态越好。
实施例2
空压站余功回收发电的方法,包括以下步骤:
W1:数据采集模块获取空压站余功的周期功率值和空压站余功的传输损耗值,数据采集模块将周期功率值和传输损耗值传送至数据分析模块;
W2:数据分析模块对周期功率值和传输损耗值计算处理,得到空压站余功回收发电效果信号,并将空压站余功回收发电效果信号传送至服务器;
其中,空压站余功回收发电效果信号包括压站余功回收发电效果差信号、压站余功回收发电效果良信号和压站余功回收发电效果优信号;
W3:故障分析模块接收服务器传送的空压站余功回收发电效果信号,对空压站余功回收发电效果信号差的空压站进行故障处理,并对故障点进行调配检修员进行检修
以上对本发明的一个实施例进行了详细说明,但所述内容仅为本发明的较佳实施例,不能被认为用于限定本发明的实施范围。凡依本发明申请范围所作的均等变化与改进等,均应仍归属于本发明的专利涵盖范围之内。

Claims (8)

1.空压站余功回收发电系统,其特征在于,包括数据采集模块、数据分析模块、故障分析模块和服务器;
所述数据采集模块用于采集空压站余功的周期功率值和空压站余功的传输损耗值,数据采集模块将周期功率值和传输损耗值传送至数据分析模块;
所述数据分析模块对周期功率值和传输损耗值计算处理,得到空压站余功回收发电效果信号,并将空压站余功回收发电效果信号传送至服务器;
其中,所述传输损耗值为空压站所产生的气体在余功回收管道内传输的损耗值,传输损耗值
Figure FDA0004164091220000011
λ为余功回收管道的管壁摩擦系数,L为余功回收管道的长度,ρ为余功回收管道内传送气压的流体密度,V为余功回收管道内的空气流速;
数据分析模块对周期功率值和传输损耗值的处理步骤如下:
S1:获取空压站余功的周期功率值,标记为Pi;
获取空压站余功的传输损耗值,标记为Si;
将周期功率值与传输损耗值作差,即Ci=Pi-Si得到空压站余功发电功率值;
S2:获取空压站余功发电的极限值为C1和C2,其中C1<C2;
当Ci<C1时,说明空压站余功发电功率值处于低水平,表示空压站余功回收发电效果差;
当C1≤Ci<C2时,说明空压站余功发电功率值处于中等水平,表示空压站余功回收发电效果良;
当Ci≥C2时,说明空压站余功发电功率值处于高水平,表示空压站余功回收发电效果优;
所述故障分析模块接收服务器发送的压站余功回收发电效果差的信号及对应的空压站,对空压站余功回收发电效果信号差的空压站进行故障处理。
2.根据权利要求1所述的空压站余功回收发电系统,其特征在于,所述周期功率值为空压站连续多个采集电压信号和电流信号的功率进行累加并求平均所得到的值。
3.根据权利要求1所述的空压站余功回收发电系统,其特征在于,所述故障分析模块包括两个压力监测单元;
第一压力监测单元设置在空压站余功回收的输出端,第二压力监测单元设置在余功回收管道的末端,将第一压力监测单元的压力值与第二压力监测单元的压力值作差值处理,得到余功回收管道的气压差值。
4.根据权利要求3所述的空压站余功回收发电系统,其特征在于,将余功回收管道的气压差值与预设的余功回收管道的气压差值阈值进行比较:
当余功回收管道的气压差值≥余功回收管道的气压差值阈值时,则说明空压站余功的传输损耗值异常,余功回收管道生产故障信号,并将故障信号所对应的余功回收管道进行标记,得到数据标签0;
当余功回收管道的气压差值<余功回收管道的气压差值阈值时,则说明空压站余功的传输损耗值正常,空压站生产故障信号,并将故障信号所对用的空压站进行标记,得到数据标签1。
5.根据权利要求4所述的空压站余功回收发电系统,其特征在于,服务器接收故障分析模块传送的数据标签0,匹配余功回收管道维修进入进行检修。
6.根据权利要求4所述的空压站余功回收发电系统,其特征在于,服务器接收故障分析模块传送的数据标签1,匹配空压站维修进入进行检修。
7.根据权利要求5或6所述的空压站余功回收发电系统,其特征在于,所述服务器针对余功回收管道维修或空压站维修的检修员匹配基于检修员与故障点的位置、检修员的工龄、检修员待维修数据即检修员的维修总次数计算得到。
8.根据权利要求1所述的空压站余功回收发电系统,其特征在于,还包括发电预警模块,所述发电预警模块用于对空压站运行状态进行监测。
CN202211385559.1A 2022-11-07 2022-11-07 空压站余功回收发电系统及方法 Active CN115693798B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211385559.1A CN115693798B (zh) 2022-11-07 2022-11-07 空压站余功回收发电系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211385559.1A CN115693798B (zh) 2022-11-07 2022-11-07 空压站余功回收发电系统及方法

Publications (2)

Publication Number Publication Date
CN115693798A CN115693798A (zh) 2023-02-03
CN115693798B true CN115693798B (zh) 2023-05-30

Family

ID=85050731

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211385559.1A Active CN115693798B (zh) 2022-11-07 2022-11-07 空压站余功回收发电系统及方法

Country Status (1)

Country Link
CN (1) CN115693798B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113464414A (zh) * 2021-08-23 2021-10-01 广东鑫钻节能科技股份有限公司 一种空压站的节能运行方法
CN113687138A (zh) * 2021-09-03 2021-11-23 广东鑫钻节能科技股份有限公司 一种空压站能效在线监测系统
CN113702746A (zh) * 2021-09-03 2021-11-26 广东鑫钻节能科技股份有限公司 一种基于空压站的安全节能型用电系统
CN114165474A (zh) * 2022-02-11 2022-03-11 蘑菇物联技术(深圳)有限公司 用于检测空压机故障状态的方法、设备和计算机存储介质
WO2022116082A1 (zh) * 2020-12-03 2022-06-09 浙江瑞立空压装备有限公司 一种车用水冷空气压缩机气源系统
CN115237081A (zh) * 2022-09-22 2022-10-25 蘑菇物联技术(深圳)有限公司 确定具有异常的后处理设备的方法、设备和介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022116082A1 (zh) * 2020-12-03 2022-06-09 浙江瑞立空压装备有限公司 一种车用水冷空气压缩机气源系统
CN113464414A (zh) * 2021-08-23 2021-10-01 广东鑫钻节能科技股份有限公司 一种空压站的节能运行方法
CN113687138A (zh) * 2021-09-03 2021-11-23 广东鑫钻节能科技股份有限公司 一种空压站能效在线监测系统
CN113702746A (zh) * 2021-09-03 2021-11-26 广东鑫钻节能科技股份有限公司 一种基于空压站的安全节能型用电系统
CN114165474A (zh) * 2022-02-11 2022-03-11 蘑菇物联技术(深圳)有限公司 用于检测空压机故障状态的方法、设备和计算机存储介质
CN115237081A (zh) * 2022-09-22 2022-10-25 蘑菇物联技术(深圳)有限公司 确定具有异常的后处理设备的方法、设备和介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
唐义锋等.变频技术在空气压缩站中的应用与抗干扰.机床电器.2007,(第1期),47-48. *

Also Published As

Publication number Publication date
CN115693798A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
CN108072806B (zh) 一种轨道电路故障诊断系统及诊断方法
CN112356881A (zh) 一种列车定位方法
CN102281457B (zh) 一种数字电视信号质量远程监测装置及其实现方法
CN115693798B (zh) 空压站余功回收发电系统及方法
CN106841933B (zh) 一种输电线路故障综合定位方法及系统
CN113783203B (zh) 一种用于空压站的余功回收与无功补偿系统
CN108599377B (zh) 一种230m电力负控通信基站的监测方法
CN104049185B (zh) 一种便携式局部放电检测系统及方法
CN116070962B (zh) 一种基于大数据的老化试验箱运行可行性评估系统
CN106597090B (zh) 一种基于无线网络传输的电能数据采集系统及其工作方法
CN112350869A (zh) 一种变电站自动化系统对点时间响应性能检测方法及系统
CN110048413B (zh) 一种地区新能源发电的碳减排计算方法及系统
CN217424710U (zh) 一种电力光传输网络末端的光缆远程监测装置
CN107342627B (zh) 配电站在线设备监控装置及使用方法
CN206657474U (zh) 一种基于物联网的远程抄表系统
CN111478340B (zh) 一种配网线路无功补偿情况分析方法
CN110146863B (zh) 一种驼峰雷达设备在线监测系统及方法
CN111092875B (zh) 一种输变电运检平台物联网边缘信息传输压缩方法及系统
CN112766636A (zh) 基于用电信息采集终端采集电气量信息的配变停电判断方法
CN218847562U (zh) 微泄漏监测报警电路
CN114325079B (zh) 固态去耦合器用智能电位采集装置及其采集系统
CN104362743A (zh) 基于rfid技术的变电站设备监测系统
CN116164686B (zh) 一种在线测量分析数据采集系统
CN116131755B (zh) 一种太阳能发电设备智能控制系统及方法
CN213068105U (zh) 一种sf6充气设备压力示数自动远传装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant