WO2022114040A1 - ガス拡散電極基材製品および固体高分子型燃料電池 - Google Patents

ガス拡散電極基材製品および固体高分子型燃料電池 Download PDF

Info

Publication number
WO2022114040A1
WO2022114040A1 PCT/JP2021/043124 JP2021043124W WO2022114040A1 WO 2022114040 A1 WO2022114040 A1 WO 2022114040A1 JP 2021043124 W JP2021043124 W JP 2021043124W WO 2022114040 A1 WO2022114040 A1 WO 2022114040A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas diffusion
base material
diffusion electrode
electrode base
material product
Prior art date
Application number
PCT/JP2021/043124
Other languages
English (en)
French (fr)
Inventor
大竹宏明
宇都宮将道
渡邉史宜
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020237011203A priority Critical patent/KR20230110717A/ko
Priority to JP2021571310A priority patent/JPWO2022114040A1/ja
Priority to US18/037,616 priority patent/US20240030461A1/en
Priority to EP21898012.6A priority patent/EP4254568A1/en
Priority to CN202180077835.5A priority patent/CN116438687A/zh
Publication of WO2022114040A1 publication Critical patent/WO2022114040A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8673Electrically conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0239Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0243Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a gas diffusion electrode base material product suitably used for an electrode of a polymer electrolyte fuel cell.
  • the electrodes of a solid polymer fuel cell are generally composed of a catalyst layer formed in contact with an electrolyte membrane and a gas diffusion electrode base material laminated on the surface of the catalyst layer. Become.
  • the fuel cell has a structure in which it is sandwiched between separators.
  • the fuel cell can be actually used through a process called aging for the purpose of activating the catalyst and confirming that there are no defects after assembling the above-mentioned various members to form the cell.
  • aging it is necessary to generate power for a certain period of time by combining specific power generation conditions. Therefore, in order to improve the production efficiency of the fuel cell, it is an issue to shorten the time required for aging.
  • Patent Document 1 discloses a technique for shortening the aging time by periodically changing the flow rate of the inert gas mixed with the oxidant gas during aging.
  • Patent Document 2 discloses a technique for shortening the aging time by coating the electrolyte membrane layer, which is the main component, with another type of polymer layer to improve the contact with the electrode, as a device for the electrolyte membrane.
  • Patent Document 3 discloses a technique of efficiently forming a proton conduction path by impregnating a porous carbon serving as a catalyst carrier with an acid and shortening the aging time.
  • Another purpose of aging the fuel cell is to remove impurities on the surface of the catalyst and to elute the acid contained in each member in the cell by the water generated by power generation. Therefore, the end time of aging may be determined by using the acid concentration and pH in the discharged water as an index. That is, if the various members in the cell contain a large amount of a component that is a source of acid, the time required for aging becomes long, and the production efficiency of the fuel cell decreases.
  • An object of the present invention is to shorten the aging time of a fuel cell.
  • the present invention which the present inventors have made to solve the above problems, is a gas diffusion electrode base material having a sulfuric acid content of 1.1 ⁇ g / cm 2 or less, and a solid incorporating the same. It is a polymer electrolyte fuel cell.
  • the aging time can be shortened.
  • the "gas diffusion electrode base material product” means a new gas diffusion electrode base material after production, and the gas diffusion electrode after being incorporated in a fuel cell and starting power generation is excluded. It shall be.
  • the gas diffusion electrode base material product in the present specification is a gas diffusion electrode base material in a state of being wound into a roll after production, or a fuel cell cut out from the roll-shaped gas diffusion electrode base material. It is a new gas diffusion electrode base material in a state before being incorporated into a cell.
  • the term “gas diffusion electrode base material product” may be simply referred to as "electrode base material”.
  • the gas diffusion electrode base material product is essentially made of a conductive porous body.
  • the conductive porous body is typically a porous body having a porous structure having an average pore diameter of 10 ⁇ m or more as measured by a mercury intrusion method.
  • the upper limit of the average pore diameter is not particularly limited, but is usually about 100 ⁇ m.
  • a conductive porous body containing carbon fibers such as carbon fiber woven fabric, carbon fiber papermaking body, carbon felt, and carbon paper is preferably used, and a conductive porous body made of carbon fibers is more suitable. It is preferably used.
  • the conductive porous body has a spring-like property (spring) for absorbing a change in the thickness of the electrolyte membrane during power generation and for giving a good fastening force to compression when each electrode member is laminated and incorporated into a cell. It is preferable to have sex).
  • the conductive porous body is preferably a porous body formed by binding carbon fibers with a resin carbide, and in particular, a porous body formed by binding a carbon fiber papermaking body with a resin carbide, that is, carbon paper or carbon felt. Is particularly suitable.
  • the conductive porous body has a role of diffusing gases such as oxygen and hydrogen, which are fuels for fuel cells, and generated water (water vapor). Therefore, the thickness of the conductive porous body is preferably 220 ⁇ m or less. In order to further enhance the gas diffusivity, the thickness of the conductive porous body is preferably 150 ⁇ m or less, more preferably 100 ⁇ m or less. On the other hand, the thinner the conductive porous body is, the better the gas diffusivity is, but if it is too thin, the handleability is deteriorated. Therefore, in reality, 70 ⁇ m is the lower limit.
  • Examples of the carbon fiber used for the conductive porous body include polyacrylonitrile (PAN) -based, pitch-based and rayon-based carbon fibers, and among them, PAN-based carbon fiber having excellent mechanical strength and processability is preferably used. ..
  • the carbon fibers constituting the carbon paper preferably have an average length of single fibers (hereinafter referred to as “carbon fiber length”) in the range of 3 to 20 mm, more preferably in the range of 5 to 15 mm. .. When the carbon fiber length is 3 mm or more, more preferably 5 mm or more, the carbon fiber sheet tends to have excellent mechanical strength, conductivity and thermal conductivity.
  • the carbon fiber length is 20 mm or less, more preferably 15 mm or less, the dispersibility of the carbon fibers in the production of the carbon fiber papermaking body is excellent, and a uniform carbon fiber sheet can be easily obtained.
  • the carbon fiber having such a carbon fiber length can be obtained by a method of cutting continuous carbon fibers to a desired length or the like.
  • the carbon felt base material is a non-woven fabric base in which carbon fiber precursor fibers are cut to about several tens of mm (generally 40 mm to 100 mm), processed on a web, and the fibers are entangled with each other by a needle punch or the like. It can be obtained by carbonizing the material.
  • thermosetting resin such as a phenol resin, an epoxy resin, a melamine resin and a furan resin is particularly preferable.
  • carbon particles may be contained in the resin carbide. Examples of the carbon particles contained in the resin carbide include graphite such as scaly graphite, scaly graphite, earthy graphite, artificial graphite, expanded graphite and flake graphite, carbon nanotubes, carbon nanofibers, and milled fibers of carbon fibers.
  • the conductive porous body in the present invention is preferably water-repellent treated with a water-repellent resin in order to quickly discharge the water generated when the fuel cell generates electricity to the outside of the system. That is, the conductive porous body preferably contains a water-repellent resin, and when a porous body formed by binding carbon fibers with a resin carbide is used as the conductive porous body, the water-repellent resin is attached to the carbon fibers. Is preferable. In the present specification, when the conductive porous body contains a water-repellent resin, it is also referred to as a "conductive porous body" including the water-repellent resin.
  • Fluororesin is preferably used as such a water-repellent resin.
  • the fluororesin include PTFE (polytetrafluoroethylene), FEP (fluorinated ethylene hexafluoride propylene copolymer), PFA (perfluoroalkoxyfluororesin), ETFA (ethylene tetrafluoroethylene copolymer), and PVDF. (Polyfluorinated vinylidene), PVF (polyvinyl fluoride) and the like can be mentioned.
  • the content of the fluororesin in the conductive porous body is preferably 0.1% by weight or more and 20% by weight or less when the weight of the conductive porous body containing no fluororesin is 100% by weight.
  • the fluororesin may contain sulfur, but in the present invention, it is preferable to use a fluororesin having a sulfur content of 50 ppm or less, and it is preferable to use a fluororesin having a sulfur content of 30 ppm or less as the water-repellent resin. More preferred. That is, the first preferred embodiment of the gas diffusion electrode base material product of the present invention preferably contains a conductive porous body made of carbon fibers, and a fluorine resin having a sulfur content of 50 ppm or less is preferably attached to the carbon fibers. It is more preferable that a fluororesin of 30 ppm or less is adhered.
  • a second preferred embodiment of the gas diffusion electrode base material product of the present invention is a conductive porous body made of carbon fibers and a microporous layer containing carbon powder provided on at least one surface of the conductive porous body. It is preferable to have.
  • the conductive porous body is the same as the conductive porous body in the description of the first preferred embodiment of the gas diffusion electrode base material product of the present invention described above.
  • the microporous layer is usually a porous layer having an average pore diameter of 0.01 ⁇ m to 1 ⁇ m measured by a mercury intrusion method.
  • the microporous layer contains carbon powder.
  • carbon powder When the microporous layer contains carbon powder, it is possible to form fine porosity and impart conductivity.
  • Examples of carbon powder include carbon black, graphite, expanded graphite, and flaky graphite, carbon nanotubes, carbon nanofibers, and the like. Of these, carbon black is preferable from the viewpoint of cost and handleability.
  • carbon powder such as carbon black may contain sulfur, but in the present invention, it is preferable that the carbon powder has a low sulfur content.
  • the sulfur content of the carbon powder is preferably 3000 ppm or less, and more preferably 2500 ppm or less.
  • the lower limit of the sulfur content is not particularly limited, but is usually about 1 ppm.
  • the second preferred embodiment of the gas diffusion electrode base material product of the present invention preferably contains carbon black that has been heat-treated at 2000 ° C. or higher for 10 minutes or longer in an inert atmosphere.
  • carbon black having a sulfur content of more than 3000 ppm
  • the upper limit of the heat treatment temperature is not particularly limited, but is usually about 3000 ° C.
  • the microporous layer has water repellency like the above-mentioned conductive porous body. Therefore, the microporous layer preferably contains a water-repellent resin in addition to the carbon powder.
  • a water-repellent resin contained in the microporous layer a fluororesin similar to the above-mentioned conductive porous body is preferably used, and a resin having a low sulfur content is also preferable. Omit.
  • a second preferred embodiment of the gas diffusion electrode base material product of the present invention is a conductive porous body made of carbon fibers, in which a fluororesin having a sulfur content of 50 ppm or less is preferably attached to the carbon fibers, preferably 30 ppm or less. It is more preferable that the fluororesin of the above is adhered.
  • the gas diffusion electrode base material product of the present invention has a sulfuric acid content of 1.1 ⁇ g / cm 2 or less.
  • the sulfuric acid content of the gas diffusion electrode base material product is preferably 0.5 ⁇ g / cm 2 or less, more preferably 0.2 ⁇ g / cm 2 or less. If the sulfuric acid content exceeds 1.1 ⁇ g / cm 2 , the time required for aging becomes long.
  • Examples of the method in which the sulfuric acid content is within the above range include a method of adjusting the sulfuric acid content of the above-mentioned members constituting the gas diffusion electrode base material product to 1.1 ⁇ g / cm 2 or less as a whole. The lower the sulfuric acid content, the better.
  • the lower limit of the sulfuric acid content is not particularly limited, but is usually about 0.01 ⁇ g / cm 2 .
  • the polymer electrolyte fuel cell of the present invention incorporates the gas diffusion electrode base material product of the present invention.
  • the polymer electrolyte fuel cell may incorporate a solid polymer electrolyte membrane, a catalyst layer, a separator, and the like together.
  • the gas diffusion electrode base material product of the present invention can be produced by treating a conductive porous body with water repellent treatment, applying a microporous layer coating liquid to at least one surface thereof, and then sintering the mixture. can.
  • a sulfur component sulfur oxide or sulfuric acid
  • the sulfur component is oxidized in the sintering step. It was found that sulfuric acid was released. In such a case, the sulfur component can be volatilized and removed by sintering at 400 ° C. or higher and 500 ° C. or lower.
  • the sintering temperature is less than 400 ° C, the sulfur component may not be sufficiently removed. Further, when the sintering temperature exceeds 500 ° C., the fluororesin binding the carbon powder in the microporous layer is decomposed, the carbon powder becomes excessive, and the microporous layer cannot maintain the layered form. In some cases. From this point of view, the sintering temperature is more preferably 410 ° C. or higher and 480 ° C. or lower, and even more preferably 420 ° C. or higher and 450 ° C. or lower. Further, the sintering may be performed once at a temperature of 250 ° C. or higher and lower than 400 ° C., which is a general sintering temperature, and then further sintered at 400 ° C. or higher and 500 ° C. or lower.
  • gas diffusion electrode base material product of the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.
  • the materials used in the examples, the method and evaluation method for producing the gas diffusion electrode base material, and the evaluation method as a fuel cell are shown below.
  • [Aging test] 1.00 g of platinum-supported carbon (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., platinum-supported amount: 50% by mass), 1.00 g of purified water, and a "Nafion" (registered trademark) solution ("Nafion” (registered trademark) manufactured by Aldrich).
  • a catalyst solution was prepared by adding 8.00 g (5.0% by mass) and 18.00 g of isopropyl alcohol (manufactured by Nakaraitesk Co., Ltd.) in this order.
  • the solid polymer electrolyte membrane with a catalyst layer is sandwiched between two gas diffusion electrode base materials cut into 5 cm ⁇ 5 cm, and pressed at a temperature of 130 ° C. for 5 minutes while pressurizing to 3 MPa with a flat plate press to form a membrane electrode.
  • a assembly was made.
  • the obtained membrane electrode assembly was sandwiched between separators and incorporated into a fuel cell evaluation single cell.
  • separator a single flow path serpentine type separator having a groove width, a groove depth, and a rib width of 1.0 mm was used.
  • unpressurized hydrogen was supplied to the anode side and unpressurized air was supplied to the cathode side to generate electricity.
  • Both hydrogen and air were humidified with a humidification pot set to a temperature of 70 ° C. The humidity at this time was 100%.
  • the utilization rates of hydrogen and oxygen in the air were 70 mol% and 40 mol%, respectively, and the cell temperature was 70 ° C.
  • power generation at a current density of 1.2 A / cm 2 is held for 30 minutes, and then power generation at 0.4 A / cm 2 and power generation at 1.2 A / cm 2 are repeated 5 times alternately for 5 minutes each. Power was generated. Then, the generated water discharged from the cell at the initial stage of aging (the stage where power generation at a current density of 1.2 A / cm 2 was maintained for 30 minutes) and after the end of aging was collected, and the pH of the produced water was measured.
  • Carbon black A having a sulfur content of 5000 ppm was heat-treated at 2400 ° C. for 10 minutes under an argon air stream to remove the sulfur content.
  • the sulfur content of carbon black A (referred to as carbon black AH) after the heat treatment was 50 ppm.
  • Carbon Black A-H 15 parts by weight, as a fluororesin, 5 parts by weight of PTFE dispersion having a sulfur content of 20 ppm and a fluororesin concentration of 50% by weight, 15 parts by weight of a surfactant (TRITON (registered trademark) X-100) , 65 parts by weight of ion-exchanged water was kneaded with a planetary mixer to prepare a microporous layer coating liquid.
  • a surfactant TRITON (registered trademark) X-100
  • the microporous layer coating liquid is applied to a carbon paper (TGP-H-060: manufactured by Toray Industries, Inc.) that has been water-repellent treated with the above-mentioned PTFE dispersion, then sintered at 350 ° C. for 20 minutes to diffuse gas.
  • An electrode base material product was produced.
  • the sulfuric acid content of the obtained gas diffusion electrode base material product was 1.0 ⁇ g / cm 2
  • the pH of the produced water at the initial stage of aging was 3.7
  • the pH of the produced water at the end of aging was 5.0. rice field.
  • Carbon black A was used as it was as the carbon black of the microporous layer without heat treatment. Other operations were the same as in Example 1 to produce a gas diffusion electrode base material product.
  • the sulfuric acid content of the obtained gas diffusion electrode base material product was as high as 1.8 ⁇ g / cm 2 , and the pH of the produced water at the initial stage of aging reached 3.5 and the pH of the produced water at the end of aging reached 5.0. I wasn't.
  • Example 2 Instead of the carbon black AH of the microporous layer of Example 1, carbon black B having a sulfur content of 20 ppm was used, and a fluorine resin dispersion having a sulfur content of 20 ppm was used as the fluorine resin, and sintering was performed at 420 ° C. The same operation as in Example 1 was carried out except that the operation was carried out for 20 minutes in order to obtain a gas diffusion electrode base material product.
  • the sulfuric acid content of the obtained gas diffusion electrode base material product was 0.7 ⁇ g / cm 2 , the pH of the produced water at the initial stage of aging was 3.9, and the pH of the produced water at the end of aging was 5.2. rice field.
  • Example 2 The same operation as in Example 2 was carried out except that sintering was carried out at 350 ° C. for 20 minutes to obtain a gas diffusion electrode base material product.
  • the sulfuric acid content of the obtained gas diffusion electrode base material product is 1.7 ⁇ g / cm 2 , and the pH of the produced water at the initial stage of aging reaches 3.5 and the pH of the produced water at the end of aging reaches 5.0. I didn't.
  • Example 3 The same operation as in Example 1 was performed except that the FEP dispersion having a sulfur content of 3 ppm was used as the fluororesin used for the water repellent treatment of the carbon paper and the microporous layer coating liquid, and the gas diffusion electrode base material product was prepared. Obtained.
  • the sulfuric acid content of the obtained gas diffusion electrode base material product was 0.4 ⁇ g / cm 2 , the pH of the produced water at the initial stage of aging was 4.1, and the pH of the produced water at the end of aging was 5.5. rice field.
  • Example 4 The same operation as in Example 3 was carried out except that carbon black B was used as the carbon powder used for the microporous layer to obtain a gas diffusion electrode base material product.
  • the sulfuric acid content of the obtained gas diffusion electrode was 0.1 ⁇ g / cm 2
  • the pH of the produced water at the initial stage of aging was 4.7
  • the pH of the produced water at the end of aging was 6.0.
  • Carbon paper was obtained by the method described in Example 1 of International Publication No. 2015/125750.
  • PTFE 5 parts by mass of PTFE was added to 95 parts by mass of carbon paper, and the mixture was heated at 100 ° C. for 5 minutes to dry to obtain a thickness of 100 ⁇ m and a basis weight of 24 g / m 2 .
  • a microporous layer was formed using a slit die coater.
  • acetylene black (“Denka Black” (registered trademark) manufactured by Denka Kagaku Kogyo Co., Ltd.), which is a type of carbon black, is used, and as a fluororesin, PTFE (manufactured by Daikin Kogyo Co., Ltd.) 7.
  • PTFE manufactured by Daikin Kogyo Co., Ltd.
  • PTFE manufactured by Daikin Kogyo Co., Ltd.
  • PTFE manufactured by Daikin Kogyo Co., Ltd.
  • the microporous layer coating was adjusted so that the amount of PTFE was 4, the amount of surfactant was 14, and the amount of purified water was 74.3 parts by mass. After applying the microporous layer coating liquid using a die coater, it was held horizontally for 60 seconds and then heated (sintered) at 120 ° C. for 10 minutes and 380 ° C. for 10 minutes to obtain a gas diffusion electrode base material product. ..
  • the sulfuric acid content of the obtained gas diffusion electrode base material product is 2.0 ⁇ g / cm 2 , the pH of the produced water at the initial stage of aging reaches 3.4, and the pH of the produced water at the end of aging reaches 5.0. I didn't.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

本発明は、燃料電池セルのエージング時間を短縮することを課題とする。 上記課題を解決するため、本発明のガス拡散電極基材製品は、硫酸含有量が1.1μg/cm以下である。また、本発明の固体高分子型燃料電池は、本発明のガス拡散電極基材製品を組み込んでなる。

Description

ガス拡散電極基材製品および固体高分子型燃料電池
 本発明は、固体高分子型燃料電池の電極に好適に用いられるガス拡散電極基材製品に関する。
 固体高分子型燃料電池(以下、単に「燃料電池」という)の電極は、一般的に、電解質膜と接するよう形成される触媒層と、触媒層表面に積層されるガス拡散電極基材とからなる。燃料電池セルは、これをセパレーターで挟み込んだ構造となっている。
 燃料電池セルは、前述の各種部材を組み立ててセルを構成した後に、触媒を活性化させたり不具合がないことを確認したりすることを目的としたエージングと呼ばれる工程を経て、実際に使用可能な状態になる。ここで、エージングにおいては、特定の発電条件を組み合わせて一定時間発電を行う必要があるため、燃料電池セルの生産効率を高めるためには、エージングに要する時間の短縮が課題となっている。例えば、特許文献1には、エージングの際に酸化剤ガスに混合される不活性ガスの流量を周期的に変化させることによって、エージング時間を短縮する技術が開示されている。また、特許文献2には、電解質膜に対する工夫として、主成分となる電解質膜層に別種のポリマー層をコーティングし、電極との接触性を改善することでエージング時間を短縮する技術が開示されている。さらに、特許文献3には、触媒担体となる多孔質炭素に酸を含浸することでプロトン伝導パスを効率的に形成し、エージング時間を短縮する技術が開示されている。
特開2019-128976号公報 特開2009-295572号公報 特開2011-238485号公報 国際公開第2015/125750号
 燃料電池セルのエージングの別の目的は、触媒表面の不純物の除去や、発電により生成する水よってセル中の各部材に含まれる酸を溶出させることである。そのため、排出水中の酸の濃度やpHを指標にしてエージングの終了時期を判断することがある。つまり、セル中の各種部材中に酸の元となる成分が多量に含まれていると、エージングに必要な時間が長くなり、燃料電池セルの生産効率が低下する。本発明は、燃料電池セルのエージング時間を短縮することを課題とする。
 本発明者らがエージング中に発生する酸の由来について検討した結果、特許文献4のようにカーボンペーパーを撥水樹脂に浸漬し、カーボンブラックを含む微多孔層を有するガス拡散電極からの硫酸溶出が一定の割合を占めていることを見出した。この知見に基づき、本発明者らが上記課題を解決するためになした本発明は、硫酸含有量が1.1μg/cm以下であるガス拡散電極基材製品、及びそれを組み込んでなる固体高分子型燃料電池である。
 本発明のガス拡散電極基材製品を用いることで、エージング時間を短縮することができる。
 <ガス拡散電極基材製品>
 本明細書において「ガス拡散電極基材製品」とは、製造後の新品のガス拡散電極基材を意味するものとし、燃料電池セルに組み込まれて発電を開始した後のガス拡散電極は除かれるものとする。典型的には、本明細書におけるガス拡散電極基材製品とは、製造後ロール状に巻回された状態のガス拡散電極基材、または当該ロール状のガス拡散電極基材から切り出し、燃料電池セルに組み込まれる前の状態の新品のガス拡散電極基材である。ただし、本明細書においては、以降「ガス拡散電極基材製品」を指して単に「電極基材」という場合がある。
 本発明のガス拡散電極基材製品の第一の好適な態様において、ガス拡散電極基材製品は、導電性多孔体から本質的になるものであることが好ましい。導電性多孔体は、典型的には、水銀圧入法により測定される平均細孔径が10μm以上の多孔構造を有する多孔体である。平均細孔径の上限は特に限定されないが、通常、100μm程度である。このような導電性多孔体としては、炭素繊維織物、炭素繊維抄紙体、カーボンフェルト、カーボンペーパーなどの炭素繊維を含む導電性多孔体が好適に用いられ、炭素繊維からなる導電性多孔体がより好適に用いられる。導電性多孔体は、発電の際の電解質膜の厚み変化の吸収や、各電極部材を積層してセルに組み込む際の圧縮に対して、良好な締結力を持たせるためのばね的性質(ばね性)を有していることが好ましい。この観点から、導電性多孔体としては、炭素繊維を樹脂炭化物で結着してなる多孔体が好ましく、特に、炭素繊維抄紙体を樹脂炭化物で結着した多孔体、すなわちカーボンペーパーや、カーボンフェルトが特に好適である。
 導電性多孔体は、燃料電池の燃料である酸素、水素、また、生成する水(水蒸気)などのガスを拡散させる役割を有する。そのため、導電性多孔体の厚みは220μm以下が好ましい。よりガス拡散性を高めるためには、導電性多孔体の厚みは150μm以下が好ましく、さらに好ましくは100μm以下である。一方、導電性多孔体が薄いほどガス拡散性に優れるが、薄すぎるとハンドリング性が低下するため、現実的には70μmが下限である。
 導電性多孔体に用いる炭素繊維としては、ポリアクリロニトリル(PAN)系、ピッチ系およびレーヨン系などの炭素繊維が挙げられ、中でも、機械強度や加工性に優れているPAN系炭素繊維が好ましく用いられる。カーボンペーパーを構成する炭素繊維は、単繊維の平均長さ(以下、「炭素繊維長」という)が3~20mmの範囲内であることが好ましく、5~15mmの範囲内であることがより好ましい。炭素繊維長が3mm以上、より好ましくは5mm以上であると、炭素繊維シートが機械強度、導電性および熱伝導性が優れたものとなりやすい。一方、炭素繊維長が20mm以下、より好ましくは15mm以下であると、炭素繊維抄紙体を製造する際の炭素繊維の分散性に優れ、均質な炭素繊維シートが得られやすくなる。このような炭素繊維長を有する炭素繊維は、連続した炭素繊維を所望の長さにカットする方法などにより得られる。また、カーボンフェルト基材は、炭素繊維前駆体繊維を数十mm程度(一般的には40mm~100mm)にカットした後、ウェブ上に加工し、ニードルパンチなどで繊維同士を交絡させた不織布基材を、炭化処理することで得ることができる。
 炭素繊維を結着する樹脂炭化物の生成に用いられる樹脂としては、フェノール樹脂、エポキシ樹脂、メラミン樹脂およびフラン樹脂などの熱硬化性樹脂が特に好ましい。また、さらに高い導電性や熱伝導性を得るため、樹脂炭化物に炭素粒子を含ませてもよい。樹脂炭化物に含ませる炭素粒子としては、鱗片状黒鉛、鱗状黒鉛、土状黒鉛、人造黒鉛、膨張黒鉛および薄片グラファイトなどのグラファイト、カーボンナノチューブ、カーボンナノファイバー、炭素繊維のミルドファイバーが挙げられる。
 本発明における導電性多孔体は、燃料電池が発電する際に生成する水を系外に速やかに排出させるため、撥水性樹脂により撥水処理が施されていることが好ましい。すなわち、導電性多孔体は撥水性樹脂を含むことが好ましく、導電性多孔体として炭素繊維を樹脂炭化物で結着してなる多孔体を用いる場合は、炭素繊維に撥水性樹脂が付着していることが好ましい。なお、本明細書においては、導電性多孔体が撥水性樹脂を含む場合、撥水性樹脂も含めて「導電性多孔体」と呼ぶ。
 このような撥水性樹脂としてはフッ素樹脂が好適に用いられる。フッ素樹脂としては、PTFE(ポリテトラフルオロエチレン)、FEP(四フッ化エチレン六フッ化プロピレン共重合体)、PFA(ペルフルオロアルコキシフッ化樹脂)、ETFA(エチレン四フッ化エチレン共重合体)、PVDF(ポリフッ化ビニリデン)、PVF(ポリフッ化ビニル)等が挙げられる。導電性多孔体のフッ素樹脂の含有量は、フッ素樹脂を含まない導電性多孔体の重量を100重量%としたときに、0.1重量%以上20重量%以下であることが好ましい。0.1重量%未満では撥水性が不十分となる場合があり、20重量%を超えると電気抵抗が悪化する場合がある。ここで、フッ素樹脂には硫黄が含まれる場合があるが、本発明においては、撥水性樹脂として、硫黄含有量が50ppm以下のフッ素樹脂を用いることが好ましく、30ppm以下のフッ素樹脂を用いることがさらに好ましい。すなわち、本発明のガス拡散電極基材製品の第一の好適な態様は、炭素繊維からなる導電性多孔体を含み、炭素繊維に硫黄含有量50ppm以下のフッ素樹脂が付着してなることが好ましく、30ppm以下のフッ素樹脂が付着してなることがより好ましい。
 本発明のガス拡散電極基材製品の第二の好適な態様は、炭素繊維からなる導電性多孔体と、該導電性多孔体の少なくとも一方の面に設けられた炭素粉末を含む微多孔層とを有することが好ましい。導電性多孔体は、上述の本発明のガス拡散電極基材製品の第一の好適な態様の説明における導電性多孔体と同様である。微多孔層は、通常、水銀圧入法により測定される平均細孔径が0.01μm~1μmである多孔質層である。
 微多孔層は、炭素粉末を含む。微多孔層が炭素粉末を含むことにより、微細な多孔質を形成するとともに導電性を付与することができる。炭素粉末としては、カーボンブラック、黒鉛、膨張黒鉛、および薄片グラファイト、カーボンナノチューブ、カーボンナノファイバーなどが挙げられる。中でもコストや取り扱い性の観点からカーボンブラックが好ましい。ここで、カーボンブラック等の炭素粉末には硫黄が含まれる場合があるが、本発明においては、炭素粉末の硫黄含有量が少ないことが好ましい。具体的には、本発明のガス拡散電極基材製品の第二の好適な態様において、炭素粉末の硫黄含有量が3000ppm以下であることが好ましく、2500ppm以下であることがより好ましい。硫黄含有量の下限は特に限定されないが、通常、1ppm程度である。
 本発明のガス拡散電極基材製品の第二の好適な態様は、不活性雰囲気下で2000℃以上、10分間以上熱処理したカーボンブラックを含むことが好ましい。かかる熱処理を行うことにより、硫黄含有量が3000ppmより多いカーボンブラックを用いる場合でも、カーボンブラックの硫黄分を除去して硫黄含有量を3000ppm以下としてから微多孔層に含むことができる。熱処理の温度の上限は特に限定されないが、通常、3000℃程度である。
 微多孔層は、前述の導電性多孔体同様に、撥水性を有していることが好ましい。そのため、微多孔層は、炭素粉末に加えて、撥水性樹脂を含むことが好ましい。微多孔層に含まれる撥水性樹脂としては、前述の導電性多孔体と同様のフッ素樹脂が好適に用いられ、硫黄含有量が少ないものが好ましい点も同様であるため、ここでは改めての説明を省略する。
 本発明のガス拡散電極基材製品の第二の好適な態様は、炭素繊維からなる導電性多孔体において、炭素繊維に硫黄含有量50ppm以下のフッ素樹脂が付着してなることが好ましく、30ppm以下のフッ素樹脂が付着してなることがより好ましい。
 本発明のガス拡散電極基材製品は、硫酸含有量が1.1μg/cm以下である。ガス拡散電極基材製品の硫酸含有量は、好ましくは0.5μg/cm以下、さらに好ましくは0.2μg/cm以下である。硫酸含有量が1.1μg/cmを超えると、エージングに必要な時間が長くなってしまう。硫酸含有量を上述の範囲とする方法としては、例えば、ガス拡散電極基材製品を構成する上記の部材の硫酸含有量を、全体として1.1μg/cm以下に調整する方法が挙げられる。硫酸含有量は少ないほど好ましい。硫酸含有量の下限は特に限定されないが、通常、0.01μg/cm程度である。
 本発明の固体高分子型燃料電池は、本発明のガス拡散電極基材製品を組み込んでなる。固体高分子型燃料電池には、上記のガス拡散電極基材製品の他に、固体高分子電解質膜、触媒層、セパレーター等を共に組み込んでもよい。
 <ガス拡散電極基材製品の製造方法>
 本発明のガス拡散電極基材製品は、一例として、導電性多孔体を撥水処理し、その少なくとも一方の表面に微多孔層塗液を塗工した後に、焼結することで製造することができる。本発明者らの検討によれば、ガス拡散電極基材を構成する各種材料に一定量以上の硫黄成分(硫黄酸化物または硫酸)が含まれている場合、焼結する工程で硫黄成分が酸化され、硫酸が遊離してくることが分かった。このような場合は、400℃以上500℃以下で焼結することで、硫黄成分を揮発させて除去することができる。焼結温度が400℃未満では硫黄成分が十分に除去できない場合がある。また、焼結温度が500℃を超えると、微多孔層において炭素粉末を結着させているフッ素樹脂が分解し、炭素粉末が過多となって微多孔層が層状の形態を維持することができない場合がある。このような観点から、焼結温度は410℃以上480℃以下がより好ましく、さらに好ましくは420℃以上450℃以下である。また、一般的な焼結温度である250℃以上400℃未満の温度で一旦焼結を行った後に、さらに400℃以上500℃以下での焼結を実施してもよい。
 次に、実施例によって、本発明のガス拡散電極基材製品について具体的に説明するが、本発明はこれらの実施例に限定されない。実施例で用いた材料、ガス拡散電極基材製品の作製方法と評価法、燃料電池セルとしての評価方法を、次に示した。
 [電極基材中の硫酸含有量]
 ガス拡散電極基材製品約9cmを切断し、秤量したのちに超純水100mLで目的成分を抽出した。この抽出液をイオンクロマトグラフィー(Thermo Fisher Scientific製INTEGRION)で分析し、電極基材中の硫酸量を定量した。この定量値をガス拡散電極基材製品の面積で除することで硫酸含有量(μg/cm)を求めた。
 [硫黄含有量]
 1000℃の電気炉で対象物質を燃焼させ、発生したガスを吸収液に吸収後、吸収液100μLをイオンクロマトグラフィー(Dionex製ICS1600)により分析し、硫黄を定量した。分析に用いた対象物質の重量で除することで硫黄含有量(ppm)を求めた。
 [エージング試験]
 白金担持炭素(田中貴金属工業(株)製、白金担持量:50質量%)1.00gと、精製水1.00g、“Nafion”(登録商標)溶液(Aldrich社製“Nafion”(登録商標)5.0質量%)8.00gと、イソプロピルアルコール(ナカライテスク社製)18.00gとを順に加えることにより、触媒液を作製した。
 次に、5cm×5cmにカットした“ナフロン”(登録商標)PTFEテープ“TOMBO”(登録商標)No.9001(ニチアス(株)製)に、触媒液をスプレーで塗布し、常温で乾燥させ、白金量が0.3mg/cmの触媒層付きPTFEシートを作製した。続いて、8cm×8cmにカットした固体高分子電解質膜“Nafion”(登録商標)NRE-211CS(DuPont社製)を、2枚の触媒層付きPTFEシートで挟み、平板プレスで5MPaに加圧しながら130℃の温度で5分間プレスし、固体高分子電解質膜に触媒層を転写した。プレス後、PTFEシートを剥がし、触媒層付き固体高分子電解質膜を作製した。
 次に、触媒層付き固体高分子電解質膜を、5cm×5cmにカットした2枚のガス拡散電極基材で挟み、平板プレスで3MPaに加圧しながら130℃の温度で5分間プレスし、膜電極接合体を作製した。そして、得られた膜電極接合体をセパレーターで挟んで燃料電池評価用単セルに組み込んだ。セパレーターとしては、溝幅、溝深さ、リブ幅がいずれも1.0mmの一本流路のサーペンタイン型セパレーターを用いた。
 このようにして得た燃料電池セルを用い、アノード側には無加圧の水素を、カソード側には無加圧の空気を供給し、発電を行った。水素と空気はともに70℃の温度に設定した加湿ポットにより加湿を行った。このときの湿度は、100%であった。また、水素と空気中の酸素の利用率は、それぞれ70mol%、40mol%とし、セルの温度を70℃とした。エージングとして、電流密度1.2A/cmでの発電を30分間保持し、その後0.4A/cmでの発電と1.2A/cmでの発電を5分間ずつ交互に5回繰り返して発電を行った。そして、エージング初期(電流密度1.2A/cmでの発電を30分間保持した段階)およびエージング終了後にセルから排出される生成水を回収し、生成水中のpHを測定した。
 [実施例1]
 硫黄含有量が5000ppmのカーボンブラックAを、アルゴン気流下、2400℃で10分間熱処理をして、硫黄分の除去を行った。熱処理の後のカーボンブラックA(カーボンブラックA-Hとする)の硫黄含有量は50ppmになった。
 カーボンブラックA-H15重量部、フッ素樹脂として、硫黄含有量が20ppmの、フッ素樹脂濃度50質量%のPTFEディスパージョンを5重量部、界面活性剤(TRITON(登録商標)X-100)15重量部、イオン交換水65重量部をプラネタリーミキサーで混錬して、微多孔層塗液を調製した。
 該微多孔層塗液を、前述のPTFEディスパージョンで撥水処理したカーボンペーパー(TGP-H-060:東レ(株)製)に塗工した後、350℃で20分間焼結し、ガス拡散電極基材製品を作製した。得られたガス拡散電極基材製品の硫酸含有量は1.0μg/cmであり、エージング初期の生成水のpHは3.7、エージングが終了時の生成水のpHは5.0であった。
 [比較例1]
 微多孔層のカーボンブラックとしてカーボンブラックAを熱処理せずそのまま用いた。それ以外の操作は実施例1と同様にしてガス拡散電極基材製品を作製した。得られたガス拡散電極基材製品の硫酸含有量は1.8μg/cmと多く、エージング初期の生成水のpHは3.5、エージング終了時の生成水のpHは5.0に到達していなかった。
 [実施例2]
 実施例1の微多孔層のカーボンブラックA-Hの替わりに、硫黄含有量が20ppmのカーボンブラックBを用い、フッ素樹脂として硫黄含有量が20ppmのフッ素樹脂ディスパージョンを用い、焼結を420℃で20分間実施した以外は、実施例1と同様の操作を行い、ガス拡散電極基材製品を得た。得られたガス拡散電極基材製品の硫酸含有量は0.7μg/cmであり、エージング初期の生成水のpHは3.9、エージングが終了時点の生成水のpHは5.2であった。
 [比較例2]
 焼結を350℃で20分間実施した以外は、実施例2と同様の操作を行い、ガス拡散電極基材製品を得た。得られたガス拡散電極基材製品の硫酸含有量は1.7μg/cmであり、エージング初期の生成水のpHは3.5、エージングが終了時の生成水のpHは5.0に到達していなかった。
 [実施例3]
 カーボンペーパーの撥水処理、微多孔層塗液に用いるフッ素樹脂として、硫黄含有量が3ppmであるFEPディスパージョンを使用した以外は実施例1と同様の操作を行い、ガス拡散電極基材製品を得た。得られたガス拡散電極基材製品の硫酸含有量は0.4μg/cmであり、エージング初期の生成水のpHは4.1、エージングが終了時の生成水のpHは5.5であった。
 [実施例4]
 微多孔層に用いる炭素粉末としてカーボンブラックBを使用した以外は、実施例3と同様に操作を行い、ガス拡散電極基材製品を得た。得られたガス拡散電極の硫酸含有量は0.1μg/cmであり、エージング初期の生成水のpHは4.7、エージング終了時点の生成水のpHは6.0であった。
 [比較例3]
 国際公開第2015/125750号の実施例1に記載の方法でカーボンペーパーを得た。
 カーボンペーパー95質量部に対し、5質量部のPTFEを付与し、100℃で5分間加熱して乾燥させ、厚さ100μm、目付24g/mとした。
 スリットダイコーターを用いて微多孔層を形成した。ここで用いた微多孔層塗液には、カーボンブラックの一種であるアセチレンブラック(電気化学工業株式会社製“デンカブラック”(登録商標))を用い、フッ素樹脂として、PTFE(ダイキン工業株式会社製“ポリフロン”(登録商標)D-1E)を用い、界面活性剤としてナカライテスク株式会社製“TRITON”(登録商標)X-100を用い、分散媒として精製水を用いて、アセチレンブラックが7.7、PTFEが4、界面活性剤が14、精製水が74.3質量部となるよう微多孔層塗液を調整した。ダイコーターを用いて微多孔層塗液を塗工後、60秒間水平に保持した後、120℃で10分間、380℃で10分間加熱(焼結)し、ガス拡散電極基材製品を得た。得られたガス拡散電極基材製品の硫酸含有量は2.0μg/cmであり、エージング初期の生成水のpHは3.4、エージングが終了時の生成水のpHは5.0に到達していなかった。

Claims (9)

  1.  硫酸含有量が1.1μg/cm以下であるガス拡散電極基材製品。
  2.  硫酸含有量が0.5μg/cm以下である、請求項1に記載のガス拡散電極基材製品。
  3.  硫酸含有量が0.2μg/cm以下である、請求項2に記載のガス拡散電極基材製品。
  4.  炭素繊維からなる導電性多孔体を含み、前記炭素繊維に硫黄含有量50ppm以下のフッ素樹脂が付着してなる、請求項1~3のいずれかに記載のガス拡散電極基材製品。
  5.  炭素繊維からなる導電性多孔体と、該導電性多孔体の少なくとも一方の面に設けられた炭素粉末を含む微多孔層とを有する、請求項1~3のいずれかに記載のガス拡散電極基材製品。
  6.  前記炭素粉末の硫黄含有量が3000ppm以下である、請求項5に記載のガス拡散電極基材製品。
  7.  前記微多孔層が硫黄含有量50ppm以下のフッ素樹脂を含む、請求項5または6に記載のガス拡散電極基材製品。
  8.  不活性雰囲気下で2000℃以上、10分間以上熱処理したカーボンブラックを含む、請求項5~7のいずれかに記載のガス拡散電極基材製品。
  9. 請求項1~8のいずれかに記載のガス拡散電極基材製品を組み込んでなる固体高分子型燃料電池。
PCT/JP2021/043124 2020-11-26 2021-11-25 ガス拡散電極基材製品および固体高分子型燃料電池 WO2022114040A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237011203A KR20230110717A (ko) 2020-11-26 2021-11-25 가스 확산 전극 기재 제품 및 고체 고분자형 연료전지
JP2021571310A JPWO2022114040A1 (ja) 2020-11-26 2021-11-25
US18/037,616 US20240030461A1 (en) 2020-11-26 2021-11-25 Gas diffusion electrode base material product and polymer electrolyte fuel cell
EP21898012.6A EP4254568A1 (en) 2020-11-26 2021-11-25 Gas diffusion electrode base material product and polymer electrolyte fuel cell
CN202180077835.5A CN116438687A (zh) 2020-11-26 2021-11-25 气体扩散电极基材制品和固体高分子型燃料电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-195646 2020-11-26
JP2020195646 2020-11-26

Publications (1)

Publication Number Publication Date
WO2022114040A1 true WO2022114040A1 (ja) 2022-06-02

Family

ID=81755608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043124 WO2022114040A1 (ja) 2020-11-26 2021-11-25 ガス拡散電極基材製品および固体高分子型燃料電池

Country Status (6)

Country Link
US (1) US20240030461A1 (ja)
EP (1) EP4254568A1 (ja)
JP (1) JPWO2022114040A1 (ja)
KR (1) KR20230110717A (ja)
CN (1) CN116438687A (ja)
WO (1) WO2022114040A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283874A (ja) * 2000-03-30 2001-10-12 Nisshin Steel Co Ltd 固体高分子型燃料電池構成部材の前処理方法及び金属製セパレータを用いた燃料電池の製造方法
JP2009532848A (ja) * 2006-04-03 2009-09-10 ユニバーシティー、オブ、デラウェア ナノベースのガス拡散媒体
JP2009295572A (ja) 2008-05-08 2009-12-17 Nitto Denko Corp 固体高分子型燃料電池用の電解質膜およびその製造方法
JP2011238485A (ja) 2010-05-11 2011-11-24 Samsung Electronics Co Ltd 燃料電池用電極、燃料電池用電極の製造方法及び燃料電池
JP2013080590A (ja) * 2011-10-03 2013-05-02 Toho Tenax Co Ltd 導電シート及びその製造方法
WO2015125750A1 (ja) 2014-02-24 2015-08-27 東レ株式会社 ガス拡散電極基材
JP2016091874A (ja) * 2014-11-07 2016-05-23 トヨタ自動車株式会社 膜電極接合体の製造方法
JP2018152270A (ja) * 2017-03-14 2018-09-27 アイシン化工株式会社 燃料電池用ガス拡散層及びその製造方法
JP2019128976A (ja) 2018-01-19 2019-08-01 トヨタ自動車株式会社 燃料電池のエージング方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283874A (ja) * 2000-03-30 2001-10-12 Nisshin Steel Co Ltd 固体高分子型燃料電池構成部材の前処理方法及び金属製セパレータを用いた燃料電池の製造方法
JP2009532848A (ja) * 2006-04-03 2009-09-10 ユニバーシティー、オブ、デラウェア ナノベースのガス拡散媒体
JP2009295572A (ja) 2008-05-08 2009-12-17 Nitto Denko Corp 固体高分子型燃料電池用の電解質膜およびその製造方法
JP2011238485A (ja) 2010-05-11 2011-11-24 Samsung Electronics Co Ltd 燃料電池用電極、燃料電池用電極の製造方法及び燃料電池
JP2013080590A (ja) * 2011-10-03 2013-05-02 Toho Tenax Co Ltd 導電シート及びその製造方法
WO2015125750A1 (ja) 2014-02-24 2015-08-27 東レ株式会社 ガス拡散電極基材
JP2016091874A (ja) * 2014-11-07 2016-05-23 トヨタ自動車株式会社 膜電極接合体の製造方法
JP2018152270A (ja) * 2017-03-14 2018-09-27 アイシン化工株式会社 燃料電池用ガス拡散層及びその製造方法
JP2019128976A (ja) 2018-01-19 2019-08-01 トヨタ自動車株式会社 燃料電池のエージング方法

Also Published As

Publication number Publication date
EP4254568A1 (en) 2023-10-04
US20240030461A1 (en) 2024-01-25
KR20230110717A (ko) 2023-07-25
JPWO2022114040A1 (ja) 2022-06-02
CN116438687A (zh) 2023-07-14

Similar Documents

Publication Publication Date Title
KR101931890B1 (ko) 멤브레인 전극 어셈블리
JP2008204945A (ja) ガス拡散電極用基材、ガス拡散電極及びその製造方法、並びに燃料電池
JP2005514747A (ja) 燃料電池用のガス拡散支持体
JP5034172B2 (ja) 燃料電池用ガス拡散層、および、これを用いた燃料電池
TWI644477B (zh) 氣體擴散電極基材以及具備其之膜電極接合體及燃料電池
JP2007005017A (ja) 固体高分子型燃料電池およびその製造方法
JP2006324104A (ja) 燃料電池用ガス拡散層、および、これを用いた燃料電池
JP2004296176A (ja) 固体高分子型燃料電池
JP2002358981A (ja) 燃料電池用集電体及びその製造方法
JP5328407B2 (ja) 水分管理シート、ガス拡散シート、膜−電極接合体及び固体高分子形燃料電池
JP4177697B2 (ja) 高分子膜電極接合体および高分子電解質型燃料電池
EP4131519A1 (en) Method for producing gas diffusion electrode substrate
JP2001102059A (ja) 固体高分子型燃料電池システム
JP2001057217A (ja) 高分子電解質型燃料電池
WO2022210069A1 (ja) 電極基材およびその製造方法
WO2022114040A1 (ja) ガス拡散電極基材製品および固体高分子型燃料電池
JP2006079938A (ja) ガス拡散層、およびこれを用いた燃料電池
JP2007323939A (ja) 燃料電池
JP2005116338A (ja) 高分子電解質型燃料電池及びそのガス拡散電極の製造方法
JP2001345108A (ja) ガス拡散層、その製造方法、燃料電池用電極及び燃料電池
JP5410944B2 (ja) ガス拡散層、膜−電極接合体及び燃料電池
JP4423063B2 (ja) 膜・電極接合体およびそれを用いた高分子電解質型燃料電池
KR102587488B1 (ko) 가스 확산 전극 기재 및 그의 제조 방법
JP5563279B2 (ja) ガス拡散層、膜−電極接合体及び燃料電池
JP2011023170A (ja) 燃料電池用電極の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021571310

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21898012

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18037616

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021898012

Country of ref document: EP

Effective date: 20230626