WO2022113318A1 - 回転電機の制御装置及び電動パワーステアリング装置 - Google Patents

回転電機の制御装置及び電動パワーステアリング装置 Download PDF

Info

Publication number
WO2022113318A1
WO2022113318A1 PCT/JP2020/044420 JP2020044420W WO2022113318A1 WO 2022113318 A1 WO2022113318 A1 WO 2022113318A1 JP 2020044420 W JP2020044420 W JP 2020044420W WO 2022113318 A1 WO2022113318 A1 WO 2022113318A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
command value
value
current command
current
Prior art date
Application number
PCT/JP2020/044420
Other languages
English (en)
French (fr)
Inventor
潤 北川
辰也 森
将彦 折井
建太 久保
健太 澤田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP20963582.0A priority Critical patent/EP4254776A4/en
Priority to JP2022564977A priority patent/JP7317250B2/ja
Priority to CN202080107483.9A priority patent/CN116458053A/zh
Priority to US18/030,596 priority patent/US20230412100A1/en
Priority to PCT/JP2020/044420 priority patent/WO2022113318A1/ja
Publication of WO2022113318A1 publication Critical patent/WO2022113318A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0085Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed
    • H02P21/0089Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed using field weakening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/03Synchronous motors with brushless excitation

Definitions

  • the present application relates to a control device for a rotary electric machine and an electric power steering device.
  • an induced voltage proportional to the rotational angular velocity of the rotor is generated by the interlinkage magnetic flux of the permanent magnet.
  • a desired q-axis current cannot be applied to the winding, and the output torque decreases. Therefore, in general, during high-speed rotation, the d-axis current is increased in the negative direction to generate a magnetic flux in the winding that weakens the interlinkage magnetic flux of the permanent magnet, and the weakening magnetic flux control is performed to reduce the induced voltage.
  • Patent Document 1 is configured to increase or decrease the d-axis current and perform weak magnetic flux control by performing proportional control or integral control based on the deviation between the q-axis current command value and the q-axis current detection value. There is.
  • the d-axis current command value is increased / decreased by proportional control or integral control based on the q-axis current deviation between the q-axis current command value and the q-axis current detection value.
  • the current command values of the d-axis and the q-axis are calculated without using the information of the interlinkage magnetic flux of the rotor.
  • the induced voltage increases due to the increase in the rotational angular velocity and the q-axis current is limited to the voltage limiting ellipse due to the induced voltage and decreases
  • the q-axis current deviation increases, so the d-axis current is negative.
  • the magnetic flux is weakened to some extent by increasing the voltage in the direction.
  • the q-axis current is no longer limited by the voltage limiting ellipse, and the q-axis current deviation disappears, the q-axis current deviation becomes 0, so that the d-axis current
  • the amount of increase in the negative direction cannot be reduced, and an appropriate weakening magnetic flux is not performed.
  • the d-axis current command value may change in an unexpected direction due to the noise component of the q-axis current or the like.
  • the amount of increase in the negative direction of the d-axis current is appropriately increased / decreased regardless of the increase / decrease in the rotational angular velocity, and the magnetic flux is appropriately weakened without using the information of the inductance and the interlinkage magnetic flux of the rotor. It is an object of the present invention to provide a control device for a rotary electric machine and an electric power steering device capable of performing the same.
  • the control device for a rotary electric machine is a control device for a rotary electric machine that controls a rotary electric machine having a stator provided with a plurality of phases of windings and a rotor provided with a permanent magnet via a power converter.
  • a current detector that detects the current flowing through the multi-phase windings, and Rotational coordinates of the dq axis consisting of the d-axis determined in the direction of the magnetic pole position of the rotor and the q-axis determined in the direction 90 degrees ahead of the d-axis by the electric angle, based on the rotation angle of the rotor.
  • a current coordinate conversion unit that converts the current detection value on the d-axis and the current detection value on the q-axis on the system
  • a current command value calculation unit that calculates the current command value on the d-axis and the current command value on the q-axis, The voltage command value of the d-axis and the voltage command of the q-axis so that the current detection value of the d-axis approaches the current command value of the d-axis and the current detection value of the q-axis approaches the current command value of the q-axis.
  • a voltage command value calculation unit that changes the value and converts the d-axis voltage command value and the q-axis voltage command value into a multi-phase voltage command value based on the rotation angle.
  • a switching control unit for turning on / off a plurality of switching elements of the power converter based on the voltage command values of the plurality of phases is provided.
  • the current command value calculation unit has an offset q-axis current command value obtained by subtracting a positive q-axis offset value from the current command value of the q-axis and the q-axis current command value.
  • the current command value of the d-axis is changed based on the deviation from the current detection value of the shaft.
  • the electric power steering device is The control device of the rotary electric machine and With the power converter With the rotary electric machine It is provided with a driving force transmission mechanism for transmitting the driving force of the rotary electric machine to the steering device of the vehicle.
  • the voltage limiting ellipse and the q-axis current command value are more than q.
  • the amount of increase in the negative direction of the current command value of the d-axis is increased or decreased so as to move to the intersection with the straight line lowered by the axis offset value.
  • the voltage command value of the q-axis can be attached to the upper limit limit value, and the voltage of the voltage command value is used.
  • the voltage command value of the q-axis can be attached to the upper limit value even if the noise component occurs. Abnormal noise and noise can be reduced.
  • the inductance and It automatically follows the voltage limiting ellipse that changes depending on the rotation angle speed without using the information of the interlinkage magnetic flux of the rotor, and makes the d-axis current and q-axis current q more than the voltage limiting ellipse and the current command value of the q-axis.
  • the magnetic flux can be appropriately weakened by changing the current toward the intersection with the straight line whose axis offset value is lowered.
  • FIG. 1 It is a schematic block diagram of the rotary electric machine, the power converter, and the control device which concerns on Embodiment 1.
  • FIG. It is a schematic block diagram of the control device which concerns on Embodiment 1.
  • FIG. It is a hardware block diagram of the control device which concerns on Embodiment 1.
  • FIG. It is a figure explaining the weakening magnetic flux control which concerns on Embodiment 1.
  • FIG. 1 It is a schematic block diagram of the rotary electric machine, the power converter, and the control device which concerns on Embodiment 1.
  • FIG. It is a schematic block diagram of the control device which concerns on Embodiment 1.
  • FIG. It is a hardware block diagram of the control device which concerns on Em
  • FIG. It is a figure explaining the control behavior in the case of Iqo> 0 which concerns on Embodiment 1.
  • FIG. It is a figure explaining the control behavior in the case of Iqo> 0 which concerns on Embodiment 1.
  • FIG. It is a figure explaining the control behavior in the case of Iqo> 0 which concerns on Embodiment 1.
  • FIG. It is a figure explaining the control behavior in the case of Iqo ⁇ 0 which concerns on Embodiment 1.
  • FIG. It is a figure explaining the control behavior in the case of Iqo ⁇ 0 which concerns on Embodiment 1.
  • FIG. It is a time chart explaining the control behavior which concerns on Embodiment 1.
  • FIG. It is a block diagram for demonstrating the setting of the proportional gain which concerns on Embodiment 1.
  • FIG. It is a block diagram for demonstrating the setting of the proportional gain which concerns on Embodiment 1.
  • FIG. 3 is a Bode diagram of an open-loop transfer function from the q-axis current offset deviation to the q-axis current detection value according to the first embodiment. It is a Bode diagram of the transfer function of the open loop from the q-axis current offset deviation to the current detection value of the q-axis according to the comparative example. It is a figure explaining the offset value setting data which sets the q-axis offset value which concerns on Embodiment 2. It is a block diagram of the d-axis current command value change part which concerns on Embodiment 3. FIG. It is a block diagram of the current command value calculation part which concerns on Embodiment 4. FIG. It is a block diagram of the q-axis current command value change part which concerns on Embodiment 4. FIG.
  • FIG. 1 is a schematic configuration diagram of a rotary electric machine 1, a power converter 4, and a control device 10 according to the present embodiment.
  • the rotary electric machine 1 is the driving force source of the electric power steering device 100
  • the rotary electric machine 1 the power converter 4, and the control device 10 constitute the electric power steering device 100. ..
  • the rotary electric machine 1 includes a stator and a rotor arranged radially inside the stator.
  • the stator is provided with a plurality of phase windings (in this example, U-phase, V-phase, and W-phase three-phase windings Cu, Cv, and Cw).
  • the rotor is provided with a permanent magnet, and the rotary electric machine 1 is a permanent magnet type synchronous rotary electric machine. It is a surface magnet type with a permanent magnet provided on the outer peripheral surface of the rotor. An embedded magnet type in which a permanent magnet is provided inside the rotor may be used.
  • the three-phase windings may be star-connected or delta-connected.
  • the rotor is equipped with a rotation sensor 2 for detecting the rotation angle of the rotor.
  • a resolver, an encoder, an MR sensor, or the like is used for the rotation sensor 2.
  • the output signal of the rotation sensor 2 is input to the control device 10.
  • the rotation sensor 2 may not be provided, and the configuration may be a sensorless configuration in which the angle is estimated based on the current information.
  • Power converter 4 An inverter is used as the power converter 4.
  • a power converter other than the inverter for example, a matrix converter may be used.
  • the inverter 4 is a series circuit (leg) in which the switching element SP on the positive electrode side connected to the positive electrode side of the DC power supply 3 and the switching element SN on the negative electrode side connected to the negative electrode side of the DC power supply 3 are connected in series. Three sets are provided corresponding to each of the three phases. Then, the connection point of the two switching elements in the series circuit of each phase is connected to the winding of the corresponding phase.
  • the switching element SPu on the positive electrode side of the U phase and the switching element SNu on the negative electrode side of the U phase are connected in series, and the connection point of the two switching elements is the winding of the U phase. It is connected to Cu.
  • the switching element SPv on the positive electrode side of the V phase and the switching element SNv on the negative electrode side of the V phase are connected in series, and the connection points of the two switching elements are connected to the winding Cv of the V phase.
  • the switching element SPw on the positive electrode side of W and the switching element SNw on the negative electrode side of W phase are connected in series, and the connection points of the two switching elements are connected to the winding Cw of W phase. ..
  • the smoothing capacitor 5 is connected between the positive electrode side and the negative electrode side of the DC power supply 3.
  • an IGBT Insulated Gate Bipolar Transistor
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • bipolar transistor in which diodes are connected in antiparallel, etc.
  • the gate terminal of each switching element is connected to the control device 10 via a gate drive circuit or the like.
  • Each switching element is turned on or off by the switching signals GPU to GNw output from the control device 10.
  • the DC power supply 3 outputs a DC voltage Vdc to the inverter 4.
  • the DC voltage Vdc is set to 12V.
  • the DC power supply 3 may be any device as long as it is a device that outputs a DC voltage Vdc, such as a battery, a DC-DC converter, a diode rectifier, and a PWM rectifier.
  • the DC power supply 3 may be provided with a voltage sensor for detecting the DC voltage Vdc, and the output signal of the voltage sensor may be input to the control device 10.
  • the control device 10 may perform control using the detected DC voltage Vdc.
  • a current sensor 6 is provided to detect the current flowing through the windings of each phase.
  • the current sensor 6 is a current sensor such as a shunt resistor or a Hall element.
  • the output signal of the current sensor 6 is input to the control device 10.
  • the current sensor 6 is provided in a series circuit of two switching elements of each phase.
  • the U-phase resistance Ru, the V-phase resistance Rv, and the W-phase resistance Rw are connected in series to the negative electrode side of the switching element SN on the negative electrode side of each phase.
  • the potential difference between the two ends of the resistance of each phase is detected by the amplifiers 21, 22, and 23, and the potential difference between both ends is input to the control device 10.
  • the current sensor 6 may be provided on the electric wire connecting the series circuit of the two switching elements of each phase and the coil of each phase.
  • the current sensor may be provided on an electric wire connected to the inverter 4 and the DC power supply 3, and the current of the winding of each phase may be detected by a known "bus 1 shunt method".
  • the electric power steering device 100 includes a control device 10 for a rotary electric machine, an inverter 4, a rotary electric machine 1, and a driving force transmission mechanism 101 for transmitting the driving force of the rotary electric machine 1 to the steering device 102 of the vehicle. ..
  • the rotating shaft of the rotor of the rotary electric machine 1 is connected to the steering device 102 of the wheel 103 via the driving force transmission mechanism 101.
  • the electric power steering device 100 is attached to a handle 104 in which the driver rotates left and right, a shaft 105 which is connected to the handle 104 and transmits steering torque by the handle 104 to the steering device 102 of the wheel 103, and a shaft 105. It is provided with a torque sensor 106 that detects the steering torque Ts by the handle 104, and a driving force transmission mechanism 101 such as a worm gear mechanism that connects the rotating shaft of the rotary electric machine 1 to the shaft 105.
  • the output signal of the torque sensor 106 is input to the control device 10 (input circuit 92).
  • Control device 10 The control device 10 controls the rotary electric machine 1 via the inverter 4. As shown in FIG. 2, the control device 10 includes a rotation detection unit 31, a current detection unit 32, a current coordinate conversion unit 33, a current command value calculation unit 34, a voltage command value calculation unit 35, a switching control unit 36, and the like. ing. Each function of the control device 10 is realized by a processing circuit provided in the control device 10. Specifically, as shown in FIG. 3, the control device 10 has, as a processing circuit, an arithmetic processing unit 90 (computer) such as a CPU (Central Processing Unit), a storage device 91 for exchanging data with the arithmetic processing unit 90, and the like. The arithmetic processing unit 90 includes an input circuit 92 for inputting an external signal, an output circuit 93 for outputting a signal from the arithmetic processing unit 90 to the outside, and the like.
  • arithmetic processing unit 90 includes an input circuit 92 for inputting an external signal, an output circuit 93 for outputting
  • the arithmetic processing device 90 is provided with an ASIC (Application Specific Integrated Circuit), an IC (Integrated Circuit), a DSP (Digital Signal Processor), an FPGA (Field Programmable Gate Array), various logic circuits, and various signal processing circuits. You may. Further, the arithmetic processing apparatus 90 may be provided with a plurality of the same type or different types, and each processing may be shared and executed.
  • the storage device 91 includes a RAM (Random Access Memory) configured to be able to read and write data from the arithmetic processing device 90, a ROM (Read Only Memory) configured to be able to read data from the arithmetic processing device 90, and the like. Has been done.
  • the input circuit 92 includes an A / D converter and the like to which various sensors and switches such as a rotation sensor 2, a current sensor 6, and a torque sensor 106 are connected, and the output signals of these sensors and switches are input to the arithmetic processing device 90. ing.
  • the output circuit 93 is provided with a drive circuit or the like to which an electric load such as a gate drive circuit for driving the switching element on and off is connected and a control signal is output from the arithmetic processing device 90 to these electric loads.
  • the arithmetic processing device 90 executes software (program) stored in the storage device 91 such as a ROM, and the storage device 91 and the input circuit 92. , And by cooperating with other hardware of the control device 10 such as the output circuit 93.
  • the setting data such as the internal fraction and the control gain used by each of the control units 31 to 36 and the like are stored in a storage device 91 such as a ROM as a part of the software (program).
  • a storage device 91 such as a ROM as a part of the software (program).
  • the rotation detection unit 31 detects the magnetic pole position ⁇ (rotation angle ⁇ of the rotor) and the rotation angular velocity ⁇ of the rotor at the electric angle. In the present embodiment, the rotation detection unit 31 detects the magnetic pole position ⁇ (rotation angle ⁇ ) and the rotation angular velocity ⁇ of the rotor based on the output signal of the rotation sensor 2. In the present embodiment, the magnetic pole position is set to the direction of the north pole of the permanent magnet provided in the rotor. The rotation angular velocity ⁇ is calculated by differentiating the rotation angle ⁇ . The rotation detection unit 31 is configured to estimate the rotation angle (pole position) based on the current information obtained by superimposing the harmonic component on the current command value without using the rotation sensor. It is also good (so-called sensorless method).
  • the current detection unit 32 detects the currents Ius, Ivs, and Iws flowing in the three-phase windings based on the output signal of the current sensor 6.
  • the current detection unit 32 detects the current Ius flowing in the U-phase winding, detects the current Ivs flowing in the V-phase winding, and the current flowing in the W-phase winding, based on the output signal of the current sensor 6.
  • the current sensor 6 may be configured to detect the two-phase winding current, and the remaining one-phase winding current may be calculated based on the detected value of the two-phase winding current.
  • the current coordinate conversion unit 33 converts the current detection values Ius, Ivs, and Iws of the three-phase winding into the current detection value Ids on the d-axis and the current detection value Iqs on the q-axis based on the rotation angle ⁇ .
  • the current coordinate conversion unit 33 converts the current detection values Ius, Ivs, and Iws of the three-phase winding into three-phase two-phase conversion and rotation coordinate conversion based on the rotation angle ⁇ as shown in the following equation. Is performed and converted into current detection values Ids and Iqs on the d-axis and the q-axis.
  • the d-axis is set in the direction of the magnetic pole (N pole) of the magnet, and the q-axis is set in the direction 90 degrees ahead of the d-axis in terms of electrical angle.
  • the voltage command value calculation unit 35 includes a current control unit 351 and a q-axis voltage limiting unit 352, and a voltage coordinate conversion unit 353.
  • the current control unit 351 has a d-axis voltage command value so that the d-axis current detection value Ids approaches the d-axis current command value Ido and the q-axis current detection value Iqs approaches the q-axis current command value Iqo.
  • the voltage command value Vqo of the Vdo and the q-axis is changed.
  • the calculation of the d-axis and q-axis current command values Ido and Iqo by the current command value calculation unit 34 will be described later.
  • the voltage command value calculation unit 35 performs proportional integration control as shown in the following equation.
  • Kd and Kq are proportional gains
  • Td and Tq are integration times
  • s is a Laplace operator.
  • feedforward control may be performed to make the d-axis current and the q-axis current non-interfering. That is, " ⁇ ⁇ Lq ⁇ Iqo" may be added to the voltage command value Vdo on the d-axis, and “ ⁇ ⁇ (Ld ⁇ Ido + ⁇ )” may be added to the voltage command value Vqo on the q-axis.
  • Lq is the inductance of the q-axis
  • Ld is the inductance of the d-axis
  • is the interlinkage magnetic flux in which the magnetomotive force of the magnet is interlinked with the winding.
  • the q-axis voltage limiting unit 352 uses the DC voltage Vdc and d-axis voltage commands so that the three-phase voltage command values Vuo, Vvo, and Vwo do not exceed the range of the maximum applied voltage Vdc / Km corresponding to the DC voltage Vdc.
  • the voltage command value Vqo on the q-axis is limited based on the value Vdo.
  • the q-axis voltage command value Vqo is the upper limit limit value VqlmtH calculated based on the maximum applied voltage Vdc / Km and the d-axis voltage command value Vdo.
  • the upper limit limit and the lower limit limit are applied to the voltage command value Vqo of the q axis so as not to exceed the lower limit limit value VqlmtL, and the value after the upper limit limit and the lower limit limit is set as the final voltage command value Vqo of the q axis. calculate.
  • Km is a coefficient corresponding to the voltage utilization rate, and is set according to the presence or absence of modulation such as third-order harmonic superimposition as shown in the following equation.
  • the voltage command value Vdo on the d-axis is preferentially changed and the voltage command value Vqo on the q-axis is subordinately changed along the voltage limiting circle corresponding to the maximum applied voltage Vdc / Km. Can be done. Therefore, as will be described later, the d-axis voltage command value Vdo is preferentially changed and the d-axis current Id is prioritized in correspondence with the configuration in which the d-axis current command value Ido is preferentially changed in the weakening magnetic flux control. Can be changed.
  • the q-axis voltage limiting unit 352 may perform a low-pass filter process on the d-axis voltage command value Vdo used for the q-axis voltage command value Vqo limiting process.
  • the voltage command value Vdo on the d-axis vibrates, and the voltage command value Vqo on the q-axis vibrates.
  • the vibration of the q-axis voltage command value Vqo can be suppressed, and the vibration and noise of the rotary electric machine can be reduced. ..
  • the voltage coordinate conversion unit 353 converts the d-axis and q-axis voltage command values Vdo and Vqo into three-phase voltage command values Vuo, Vvo and Vwo based on the rotation angle ⁇ .
  • the voltage coordinate conversion unit 353 performs fixed coordinate conversion and two-phase three-phase conversion based on the rotation angle ⁇ for the voltage command values Vdo and Vqo on the d-axis and the q-axis as shown in the following equation. This is performed to convert the voltage command values of the three phases into Vuo, Vvo, and Vwo.
  • the voltage coordinate conversion unit 353 adds known modulation such as two-phase modulation and third-order harmonic superposition to the three-phase voltage command values Vuo, Vvo, and Vwo in order to improve the voltage utilization rate. May be good.
  • the switching control unit 36 turns on and off a plurality of switching elements included in the inverter 4 based on the three-phase voltage command values Vuo, Vvo, and Vwo.
  • the switching control unit 36 uses a known carrier comparison PWM or space vector PWM.
  • the switching control unit 36 compares the carrier wave with each of the three-phase voltage command values Vuo, Vvo, and Vwo, and turns on and off a plurality of switching elements based on the comparison result.
  • the carrier wave is a triangular wave that vibrates with an amplitude of Vdc / 2, which is half the DC voltage, centered on 0 in the PWM period Tc.
  • the switching control unit 36 turns on the switching signal GP of the switching element on the positive electrode side, turns on the switching element on the positive electrode side, and causes the carrier wave CA to voltage.
  • the switching control unit 36 turns off the switching signal GN of the switching element on the negative electrode side, turns off the switching element on the negative electrode side, and turns off the switching element on the negative electrode side.
  • the switching signal GN of the switching element on the negative electrode side is turned on, and the switching element on the negative electrode side is turned on.
  • a short-circuit prevention period in which both the switching element on the positive electrode side and the switching element on the negative electrode side are turned off. May be provided.
  • the switching control unit 36 When the space vector PWM is used, the switching control unit 36 generates a voltage command vector from the three-phase voltage command values Vuo, Vvo, and Vwo, and based on the voltage command vector, of seven basic voltage vectors in the PWM cycle. The output time allocation is determined, and a switching signal for turning each switching element on and off in the PWM cycle is generated based on the output time allocation of the seven fundamental voltage vectors.
  • the current command value calculation unit 34 calculates the current command value Ido on the d-axis and the current command value Iqo on the q-axis.
  • the current command value calculation unit 34 includes a basic current command value calculation unit 341, a d-axis current command value change unit 342, a d-axis current command value limit unit 343, and a q-axis current command value limit unit 344. I have.
  • the basic current command value Idob on the d-axis is set to 0.
  • the d-axis inductance Ld and the q-axis inductance Lq are substantially equal, and the torque changes in proportion to the q-axis current Iq.
  • Ka is a constant, but may be changed according to the steering torque Ts, the traveling speed of the vehicle, and the like. Further, the basic current command value Iqob on the q-axis may be set based on known compensation control according to the steering condition.
  • maximum torque current control the basic current command values Idob and Iqob of the d-axis and the q-axis that maximize the generated torque for the same current are calculated.
  • Vd is the applied voltage on the d-axis
  • Vq is the applied voltage on the q-axis
  • Id is the current on the d-axis
  • Iq is the current on the q-axis
  • s is the Laplace operator.
  • R is the winding resistance
  • is the interlinkage magnetic flux due to the rotor magnet
  • Ld is the d-axis inductance
  • Lq is the q-axis inductance.
  • the term to which the rotation angular velocity ⁇ is multiplied in the equation (7) is the term of the induced voltage generated in the winding as shown in the following equation, and the d-axis induced voltage Vdi and the q-axis induced voltage Vqi are the rotational angular velocities. It increases as ⁇ increases.
  • the induced voltage Vi is as shown in the following equation, and when the induced voltage Vi approaches the maximum applicable voltage Vdc / Km, the amount of winding current that can be energized decreases, so that the torque of the rotary electric machine decreases. ..
  • the winding current is limited to the upper limit by the maximum current value Imax of the winding current that can be passed. It is necessary to control the d-axis current Id and the q-axis current Iq within the range of the current limiting circle represented by the equation (10).
  • the d-axis current Id and the q-axis current Iq are limited so that the induced voltage Vi is within the range of the voltage limiting ellipse corresponding to the maximum applicable voltage Vdc / Km that can be applied. ..
  • the d-axis current Id and the q-axis current Iq that obtain a desired torque at a rotational angular velocity ⁇ having a weakened magnetic flux control region are at the intersection of the voltage limiting ellipse and the q-axis current command value Iqo. Become.
  • the current command value Iqo of the q-axis is limited by the current limiting circle, it becomes the intersection of the voltage limiting ellipse and the current limiting circle.
  • the d-axis and q-axis inductances Ld, Lq, and rotor related to the voltage limiting ellipse are used. Accurate information on the interlinkage magnetic flux ⁇ is required. However, if accurate information on the inductances Ld, Lq, and the interlinkage magnetic flux ⁇ of the rotor cannot be obtained, the optimum d-axis and q-axis current command values cannot be set in a feed-forward manner.
  • the d-axis current command value is increased / decreased by proportional control or integral control based on the q-axis current deviation ⁇ Iq_err between the q-axis current command value and the q-axis current detection value.
  • integral control is performed, as shown in FIG. 5, the d-axis current command value Ido is set to the voltage limiting ellipse along the voltage limiting ellipse until the q-axis current deviation ⁇ Iq_err becomes 0. It is also considered that the value can be changed up to the intersection with the current command value Iqo on the q-axis.
  • the d-axis current command values Ido and q are due to the widening of the voltage limiting ellipse due to the decrease in the rotation angle speed ⁇ or the decrease in the q-axis current command value Iqo due to the decrease in the target torque.
  • the d-axis current and q-axis current are not limited by the voltage limiting ellipse, so the q-axis current deviation ⁇ Iq_err remains 0 and the d-axis current and q-axis current.
  • the q-axis current does not change toward the intersection of the voltage limiting ellipse and the current command value Iqo of the q-axis, but changes in an unexpected direction due to the noise component and error component of the q-axis current.
  • the d-axis current Id and the q-axis current Iq are set to the voltage regardless of the increase / decrease in the rotation angle speed ⁇ and the target torque without using the information of the inductance Ld, Lq, and the interlinkage magnetic flux ⁇ of the rotor.
  • a control device that can control near the intersection of the limiting ellipse and the current command value Iqo on the q-axis, appropriately weaken the magnetic flux, and increase the torque.
  • FIG. 7 shows a block diagram of the d-axis current command value changing unit 342.
  • the d-axis current command value change unit 342 is an offset q-axis current command value obtained by subtracting the positive q-axis offset value ⁇ Iqoff from the q-axis current command value Iqo.
  • the current command value Ido on the d-axis is changed based on the deviation ⁇ Iq_erroff between Iqoff and the current detection value Iqs on the q-axis (hereinafter referred to as q-axis current offset deviation ⁇ Iq_erroff).
  • the current detection value Iqs on the q-axis is lower than the current command value Iqo on the q-axis by the q-axis offset value ⁇ Iqoff. And the voltage utilization rate can be kept at the maximum value. Further, when the q-axis offset value ⁇ Iqoff is larger than the amplitude of the noise component of the current detection value Iqs of the q-axis, the voltage command value Vqo of the q-axis is attached to the upper limit value VqlmtH even if the noise component is generated. It is possible to reduce abnormal noise and noise of the rotary electric machine.
  • the q-axis current is the q-axis current command value Iqo. Therefore, in order to generate the q-axis offset value ⁇ Iqoff, the current command value Ido on the d-axis is increased in the positive direction, and the amount of increase in the negative direction of the current command value Ido on the d-axis becomes 0, weakening the magnetic flux. No control is done.
  • the d-axis current command value change unit 342 indicates that when the q-axis current command value Iqo is a positive value, the q-axis current detection value Iqs is lower than the offset q-axis current command value Iqoff ( ⁇ Iq_erroff> 0). , The d-axis current command value Ido is decreased, and when the q-axis current detection value Iqs exceeds the offset q-axis current command value Iqoffo ( ⁇ Iq_erroff ⁇ 0), the d-axis current command value Ido is increased.
  • the d-axis current command value change unit 342 calculates the d-axis current command value change amount ⁇ Ido based on the q-axis current offset deviation ⁇ Iq_erroff, and sets the d-axis current command value change amount ⁇ Ido to the d-axis basic current command value Idob. Add up to calculate the current command value Ido for the d-axis. For example, the d-axis current command value change unit 342 performs proportional integral control based on the q-axis current offset deviation ⁇ Iq_erroff, and calculates the d-axis current command value change amount ⁇ Ido.
  • Kpid is a proportional gain for calculating the d-axis current command value set to a positive value
  • Tiid is an integration time for calculating the d-axis current command value
  • s is a Laplace operator. The method of setting the proportional gain Kpid and the integration time Tiid for calculating the d-axis current command value will be described later.
  • proportional integral control arbitrary feedback control such as integral control, proportional control, or proportional integral differential control may be used instead of the proportional integral control.
  • the d-axis current command value change unit 342 is an offset q-axis current obtained by adding the positive q-axis offset value ⁇ Iqoff to the current command value Iqo of the q-axis.
  • the current command value Ido on the d-axis is changed based on the deviation ⁇ Iq_erroff (q-axis current offset deviation) between the command value Iqoffo and the current detection value Iqs on the q-axis.
  • the q-axis voltage command value Vqo can be attached to the lower limit limit value VqlmtL by the voltage limit circle, and the voltage.
  • the utilization rate can be kept at the maximum value.
  • the q-axis offset value ⁇ Iqoff is larger than the amplitude of the noise component of the current detection value Iqs of the q-axis, the voltage command value Vqo of the q-axis is attached to the lower limit limit value VqlmtL even if the noise component is generated. It is possible to reduce abnormal noise and noise of the rotary electric machine.
  • the d-axis current command value change unit 342 when the q-axis current command value Iqo is a negative value, the q-axis current detection value Iqs exceeds the offset q-axis current command value Iqoff ( ⁇ Iq_erroff ⁇ 0). , The d-axis current command value Ido is decreased, and when the q-axis current detection value Iqs is lower than the offset q-axis current command value Iqoffo ( ⁇ Iq_erroff> 0), the d-axis current command value Ido is increased.
  • the d-axis current command value change unit 342 performs proportional integral control based on the q-axis current offset deviation ⁇ Iq_erroff, and d.
  • the amount of change in the shaft current command value ⁇ Ido is calculated.
  • the d-axis current command value limiting unit 343 limits the d-axis current command value Ido to the upper limit by the upper limit limit value IdlmtH, and limits the lower limit by the lower limit limit value IdlmtL.
  • the upper limit limit value IdlmtH is set to the basic current command value Idob on the d-axis.
  • the lower limit limit value IdlmtL is set to a negative limit value for preventing the occurrence of irreversible demagnetization of the permanent magnet of the rotor.
  • Ido Ido may be forcibly set.
  • the q-axis current command value limiting unit 344 has a maximum current value Imax and a d-axis so that the current supplied to the three-phase winding does not exceed the range of the maximum current value Imax that can be supplied to the three-phase winding.
  • the current command value Iqo on the q-axis is limited based on the current command value Ido.
  • the q-axis basic current command value Iqob is the upper limit limit value calculated based on the maximum current value Imax and the d-axis current command value Ido.
  • the upper limit limit and the lower limit limit are applied to the basic current command value Iqob of the q axis so as not to exceed IqlmtH and the lower limit limit value IqlmtL, and the value after the upper limit limit and the lower limit limit is calculated as the current command value Iqo of the q axis. do.
  • This limiting process is a process of limiting the current command values Iqo and Ido of the d-axis and the q-axis within the range of the current limiting circle of the maximum current value Imax.
  • the current of the d-axis is along the current limiting circle corresponding to the maximum current value Imax.
  • the command value Ido can be changed preferentially, and the current command value Iqo on the q-axis can be changed subordinately. Therefore, in the weakening magnetic flux control, the current command value Ido of the d-axis can be preferentially changed to optimize the weakening magnetic flux amount.
  • the voltage limiting ellipse is wide because the rotational angular velocity ⁇ is low, the current command values Iqo and Ido on the q-axis and d-axis are inside the voltage limiting ellipse, and the current detection value Iqs on the q-axis is the q-axis. It follows the current command value Iqo of. Therefore, the q-axis current offset deviation ⁇ Iq_erroff becomes a negative value of the q-axis offset value ⁇ Iqoff, the d-axis current command value change amount ⁇ Ido is increased to 0, the d-axis current command value Ido is set to 0, and the weak magnetic flux is weakened. There is no control.
  • the induced voltage gradually increases as the rotational angular velocity ⁇ gradually increases, and the q-axis voltage command value is maintained in order to maintain the q-axis current detection value Iqs at the q-axis current command value Iqo.
  • Vqo is gradually increased by the current feedback control.
  • the induced voltage increases and the voltage limiting ellipse narrows due to the increase in the rotational angular velocity ⁇ , and the current command values Iqo and Ido on the q-axis and d-axis match the voltage limiting ellipse, and the voltage command value on the q-axis.
  • Vqo has reached the voltage limiting circle.
  • the current command values Iqo and Ido on the q-axis and d-axis are outside the voltage limiting ellipse, and the current detection value Iqs on the q-axis is limited to the voltage limiting ellipse and becomes the q-axis.
  • the current command value Iqo is gradually decreasing. However, the amount of decrease in the q-axis current with respect to the command value does not exceed the q-axis offset value ⁇ Iqoff, the q-axis current offset deviation ⁇ Iq_erroff remains a negative value, and the d-axis current command value change amount ⁇ Ido increases to 0. It remains to be done.
  • the voltage limiting ellipse gradually narrows only by performing feedback control with the q-axis offset value ⁇ Iqoff without using the information of the inductance Ld, Lq, and the interlinkage magnetic flux ⁇ of the rotor.
  • the d-axis current Id and the q-axis current Iq are controlled appropriately at the intersection of the voltage limiting ellipse and the straight line whose q-axis offset value ⁇ Iqoff is lower than the q-axis current command value Iqo. It is possible to increase the torque by weakening the magnetic flux.
  • the rotational angular velocity ⁇ gradually decreases, the induced voltage gradually increases, and the voltage limiting ellipse gradually expands.
  • the amount of decrease in the q-axis current with respect to the command value is less than the q-axis offset value ⁇ Iqoff, and the q-axis Since the current offset deviation ⁇ Iq_erroff becomes a negative value, the d-axis current command value change amount ⁇ Ido gradually increases and the d-axis current command value Ido gradually increases in order to keep the q-axis current offset deviation ⁇ Iq_erroff at 0.
  • the torque can be increased by appropriately weakening the magnetic flux.
  • the d-axis current command value change amount ⁇ Ido is increased to 0, the d-axis current command value Ido is set to 0, and the weakening magnetic flux control ends.
  • the induced voltage gradually decreases, the voltage limiting ellipse gradually expands, and the amount of decrease in the q-axis current with respect to the command value gradually decreases as the rotational angular velocity ⁇ increases.
  • the current command values Iqo and Ido on the q-axis and the d-axis coincide with the voltage limiting ellipse, and the voltage command value Vqo on the q-axis reaches the voltage limiting circle.
  • the current command values Iqo and Ido on the q-axis and d-axis are inside the voltage limiting ellipse, and the current detection value Iqs on the q-axis follows the current command value Iqo on the q-axis as the induced voltage drops. , The voltage command value Vqo on the q-axis decreases.
  • the current command value Ido on the d-axis is preferentially changed so that the current detection value Iqs on the q-axis is lower or higher than the current command value Iqo on the q-axis by the q-axis offset value ⁇ Iqoff.
  • the voltage command value Vqo of the q-axis can be attached to the upper limit value VqlmtH or the lower limit limit value VqlmtL by the voltage limit circle, and the voltage utilization rate can be kept at the maximum value.
  • the torque is proportional to the current of the q-axis, and the current detection value Iqs of the q-axis is lower or higher than the current command value Iqo of the q-axis by the q-axis offset value ⁇ Iqoff, so that the absolute value of the torque is the q-axis. It decreases by the offset value ⁇ Iqoff. In order to reduce the decrease in the absolute value of torque, we want to reduce the q-axis offset value ⁇ Iqoff.
  • the voltage command on the q-axis cannot always be attached to the upper limit value VqlmtH or the lower limit limit value VqlmtL by the voltage limit circle, and the voltage utilization rate cannot always be maintained at the maximum value. Therefore, it is desirable that the q-axis offset value ⁇ Iqoff is set larger than the fluctuation or noise component of the current detection value Iqs on the q-axis or the current command value Iqo on the q-axis.
  • the d-axis current command value change unit 342 sets the q-axis offset value ⁇ Iqoff to a value smaller than the absolute value of the q-axis current command value Iqo.
  • the response of the change amount ⁇ Iqs of the current detection value of the q-axis per control cycle caused by the change amount ⁇ Ids of the current detection value of the d-axis per control cycle is as follows. Will be. Therefore, if the change amount ⁇ Iqs of the current detection value on the q-axis becomes smaller than the offset value ⁇ Iqoff on the q-axis, the voltage command value Vqo on the q-axis is always attached to the upper limit value VqlmtH or the lower limit limit value VqlmtL by the voltage limit circle. Can be offset.
  • the control cycle is a control cycle for calculating the current command value Ido on the d-axis.
  • the rotational angular velocity ⁇ the maximum rotational angular velocity ⁇ max of the rotary electric machine may be assumed.
  • the differential inductance term Lq ⁇ s is ignored because it always changes depending on the operating conditions and the influence on the entire equation is small.
  • the change amount ⁇ Ids of the current detection value of the d-axis is set to the current command value of the d-axis per control cycle. It can be replaced with the amount of change ⁇ IdodT. From these, the equation (19) can be changed to the following equation.
  • the amount of change ⁇ IdodT of the current command value of the d-axis per control cycle can be grasped in advance. Therefore, the d-axis current command value change unit 342 may set the q-axis offset value ⁇ Iqoff so as to satisfy the equation (20).
  • the voltage command value Vqo on the q-axis can always be attached to the upper limit limit value VqlmtH or the lower limit limit value VqlmtL by the voltage limit circle.
  • the q-axis current offset deviation ⁇ Iq_erroff fluctuates due to the noise component of the q-axis current detection value Iqs, and the d-axis current command value Ido also fluctuates. In particular, the fluctuation of the proportional control term becomes large, and it is necessary to consider amplification by the proportional gain Kpid. Due to the fluctuation of the current command value Ido on the d-axis, the current command value Iqo on the q-axis fluctuates proportionally via the current limiting circle.
  • the q-axis offset value ⁇ Iqoff is larger than the value obtained by multiplying the amplitude ⁇ Iqns of the noise component superimposed on the q-axis current detection value Iqs by the proportional gain Kpid for calculating the d-axis current command value. It is desirable to set it to a large value.
  • a low-pass filter process for reducing the noise component may be performed on the q-axis current detection value Iqs used for calculating the q-axis current offset deviation ⁇ Iq_erroff.
  • the cutoff frequency of the low-pass filter processing may be set so that the responsiveness of the calculation processing of the current command value Ido on the d-axis does not deteriorate.
  • the d-axis current command value change unit 342 sets the q-axis offset value ⁇ Iqoff set to satisfy any one or more of the equations (20), (21), and (22).
  • the upper limit may be limited by the absolute value of the current command value Iqo on the q-axis.
  • the proportional gain Kpid of the equations (13) and (15) may be set to a positive value, but a suitable setting method in consideration of responsiveness will be described below.
  • the d-axis current command value change unit 342 changes the proportional gain Kpid for calculating the d-axis current command value in inverse proportion to the rotation angular velocity ⁇ .
  • the value obtained by dividing the target response angular frequency ⁇ ido by the rotation angular velocity ⁇ is set in the proportional gain Kpid.
  • the target response angular frequency ⁇ ido is a target response angular frequency of the feedback control system that changes the d-axis current command value Ido according to the q-axis current offset deviation ⁇ Iq_erroff and reduces the absolute value of the q-axis current offset deviation ⁇ Iq_erroff.
  • the target response angular frequency ⁇ ido should be set to a value larger than R / Lq.
  • the time (time constant) at which the q-axis current offset deviation ⁇ Iq_erroff converges becomes shorter than the time constant Lq / R of the circuit.
  • the target response angular frequency ⁇ ido is 250 [rad / s] to 1200 [rad / s]. ], A good steering feel may be obtained.
  • the integration time Tiid of the equations (13) and (15) may be set to, for example, the time constant Lq / R of the circuit.
  • the integrated gain is Kpid / Tiid. Therefore, from the equation (23), the integrated gain is also changed in inverse proportion to the rotational angular velocity ⁇ .
  • the integrated gain is set to a value obtained by multiplying the target response angular frequency ⁇ ido by the winding resistance value R and dividing by the rotational angular velocity ⁇ and the inductance Lq.
  • the voltage command value Vqo on the q-axis is in a state of matching the upper limit value VqlmtH or the lower limit limit value VqlmtL by the voltage limit circle, so that the voltage command value Vqo on the q-axis is operated.
  • the control of the current detection value Iqs on the q-axis consider the control of the current detection value Iqs on the q-axis by manipulating the current detection value Ids on the d-axis. Therefore, ignoring the terms of Vqo and ⁇ in the equation (25), the equation (25) becomes as follows.
  • the transfer function Gc (s) from the q-axis current offset deviation ⁇ Iq_erroff to the d-axis current command value Ido is as follows from the equations (13) and (23). However, the integration time Tiid is set to Lq / R.
  • the transfer function Gd (s) from the current command value Ido on the d-axis to the current detection value Ids on the d-axis can be expressed by the following equation.
  • ⁇ ids is the target response angular frequency of the d-axis current feedback control.
  • the target response angular frequency ⁇ ids of the current feedback control of the d-axis is set sufficiently higher than the target response angular frequency ⁇ ido of the current command value of the d-axis.
  • ⁇ ids becomes Kd / Ld using the proportional gain Kd of the d-axis of the equation (2). Therefore, the proportional gain Kd on the d-axis may be set to a value larger than ⁇ ido ⁇ Ld.
  • the d-axis proportional gain Kd may be set to a value larger than 3 ⁇ ⁇ ido ⁇ Ld, and more preferably, the d-axis proportional gain Kd may be set to a value larger than 5 ⁇ ⁇ ido ⁇ Ld. It may be set to.
  • Gd (s) the proportional gain Kd on the d-axis in this way, it can be regarded as Gd (s) ⁇ 1.
  • the open-loop transfer function Gop (s) from the q-axis current offset deviation ⁇ Iq_erroff to the q-axis current detection value Iqs can be expressed by the following equation.
  • the d-axis inductance Ld and the q-axis inductance Lq are substantially equal and Gd (s) ⁇ 1.
  • Equation (31) is a simple integral characteristic and does not depend on the rotational angular velocity ⁇ .
  • the slope of the gain is a constant value of ⁇ 20 dB / dec
  • the angular frequency ⁇ ido
  • the closed-loop transfer function Gfb (s) of the change in the current detection value Iqs on the q-axis with respect to the change in the basic current command value Iqob on the q-axis is the time constant of the reciprocal of the target response angular frequency ⁇ ido. It becomes the first-order lag with. Therefore, in the weakening magnetic flux control, the proportional gain Kpid for calculating the d-axis current command value is changed in inverse proportion to the rotation angular velocity ⁇ as shown in the equation (23), thereby changing the basic current command value Iqob on the q-axis.
  • the response of the change in the current detection value Iqs on the q-axis to the q-axis can be a first-order lag having a time constant of the inverse of the target response angular velocity ⁇ ido, which does not fluctuate with the rotation angular velocity ⁇ . Therefore, the desired torque response can be obtained by setting the target response angular frequency ⁇ ido. As a result, the steering feeling of the electric power steering device 100 is improved.
  • K is a constant.
  • Embodiment 2 The control device 10 according to the second embodiment will be described. The description of the same components as those in the first embodiment will be omitted.
  • the basic configuration of the rotary electric machine 1, the power converter 4, and the control device 10 according to the present embodiment is the same as that of the first embodiment, but the method of setting the q-axis offset value ⁇ Iqoff is different from that of the first embodiment. ..
  • the d-axis current command value change amount ⁇ Ido remains 0 as shown by the broken line.
  • the q-axis current detection value Ids decreases without limitation, and the q-axis current offset deviation ⁇ Iq_erroff increases without limitation. Therefore, the responsiveness of the d-axis current command value change amount ⁇ Ido calculated based on the q-axis current offset deviation ⁇ Iq_erroff becomes responsive according to the set value of the proportional gain Kpid regardless of the increase in the rotational angular velocity ⁇ . There is no particular problem.
  • the q-axis current when the d-axis current command value change amount ⁇ Ido remains the value at time t03, as shown by the one-point chain line.
  • the detected value Ids increases only up to the current command value Iqo on the q-axis, and the absolute value of the q-axis current offset deviation ⁇ Iq_erroff is limited by the q-axis offset value ⁇ Iqoff.
  • the responsiveness of the d-axis current command value change amount ⁇ Ido calculated based on the q-axis current offset deviation ⁇ Iq_erroff is such that the absolute value of the q-axis current offset deviation ⁇ Iq_erroff is the q-axis when the decrease in the rotational angular velocity ⁇ is large. Since the upper limit is limited by the offset value ⁇ Iqoff, the responsiveness is lower than the responsiveness according to the set value of the proportional gain Kpid.
  • the response frequency of the d-axis current command value change amount ⁇ Ido with respect to the change of the current detection value Iqs of the q-axis is lower than the response frequency of the voltage command value Vqo of the q-axis, the induced voltage due to the decrease of the rotation angular velocity ⁇
  • the increase in the d-axis current command value change amount ⁇ Ido is delayed with respect to the decrease and the increase in the current detection value Iqs on the q-axis, and the current detection value Iqs on the q-axis tends to increase.
  • the response frequency of the d-axis current command value change amount ⁇ Ido is increased too much, the stability of the control system deteriorates, so that there is a limit. That is, when the rotational angular velocity ⁇ is decreasing, if the q-axis offset value ⁇ Iqoff is set too small, the responsiveness of the d-axis current command value change amount ⁇ Ido becomes large when the decreasing amount of the rotational angular velocity ⁇ is large. Getting worse. When the responsiveness of the d-axis current command value change amount ⁇ Ido is lowered, the responsiveness of the q-axis current is deteriorated and the responsiveness of the torque is deteriorated.
  • the d-axis current command value change unit 342 sets the q-axis offset value ⁇ Iqoff to a larger value when the rotation angular velocity ⁇ is decreasing than when the rotation angular velocity ⁇ is increasing. Set.
  • the q-axis offset value ⁇ Iqoff which is the upper limit of the absolute value of the q-axis current offset deviation ⁇ Iq_erroff, is increased, and the amount of decrease in the rotational angular velocity ⁇ is large.
  • the d-axis current command value change unit 342 refers to the current offset value setting data in which the relationship between the change amount ⁇ of the rotational angular velocity per unit time and the q-axis offset value ⁇ Iqoff is preset.
  • the q-axis offset value ⁇ Iqoff corresponding to the amount of change in the rotational angular velocity ⁇ is calculated.
  • the d-axis current command value change unit 342 subtracts the rotation angular velocity ⁇ (t ⁇ t) before the unit time ⁇ t from the current rotation angular velocity ⁇ (t), and the rotation angular velocity per unit time.
  • the amount of change ⁇ of is calculated.
  • the unit time ⁇ t is set to a natural integer multiple of the calculation cycle of the rotation angular velocity ⁇ .
  • the amount of change ⁇ of the rotational angular velocity per unit time corresponds to the rotational angular acceleration.
  • the offset value setting data is set as shown in FIG. 17, for example.
  • the q-axis offset value ⁇ Iqoff is set to the low set value ⁇ IqoffL, and the change amount ⁇ of the rotation angular velocity is larger than the threshold value ⁇ th. If it is small, the q-axis offset value ⁇ Iqoff is set to a high set value ⁇ IqoffH that is larger than the low set value ⁇ IqoffL.
  • the threshold ⁇ th is set to 0 or a negative value.
  • the high set value ⁇ IqoffH and the low set value ⁇ IqoffL are set to constant values, even if the change amount ⁇ of the rotational angular velocity increases or decreases above or below the threshold value ⁇ th, the q-axis current is suppressed from fluctuating and the torque. Can be suppressed from fluctuating.
  • the rotation angular velocity ⁇ is calculated by the differential calculation of the rotation angle ⁇ , it is liable to fluctuate. Therefore, regardless of the constant speed, the amount of change ⁇ of the rotational angular velocity tends to fluctuate near 0.
  • the threshold value ⁇ th is set to a negative value, the q-axis offset value ⁇ Iqoff can be maintained at the low set value ⁇ IqoffL even if the change amount ⁇ of the rotational angular velocity fluctuates near 0, and the d-axis and q-axis currents can be maintained. Can be suppressed from fluctuating.
  • the rotation angular velocity ⁇ subjected to the low-pass filter processing may be used.
  • Embodiment 3 The control device 10 according to the third embodiment will be described. The description of the same components as those in the first embodiment will be omitted.
  • the basic configuration of the rotary electric machine 1, the power converter 4, and the control device 10 according to the present embodiment is the same as that of the first embodiment, but the configuration of the d-axis current command value changing unit 342 is the first embodiment. And some are different.
  • FIG. 18 shows a block diagram of the d-axis current command value changing unit 342 according to the present embodiment.
  • the d-axis current command value Ido is calculated by the equation (37). It may be corrected by the forward correction amount ⁇ Idfo.
  • the proportional gain multiplied by the deviation changes in inverse proportion to the rotational angular velocity ⁇ . Therefore, in the present embodiment, the d-axis current command value change unit 342 is based on the deviation between the q-axis voltage command value Vqo and the upper limit value VqlmtH or the lower limit limit value VqlmtL of the q-axis voltage command value. Correct the current command value Ido on the d-axis. This correction is performed in the execution area of the weakening magnetic flux control. A low-pass filter process for reducing a noise component may be performed on the feed forward correction amount ⁇ Idfo.
  • the current command value Ido on the d-axis can be changed in a feed-forward manner to improve responsiveness.
  • the d-axis current command value change unit 342 adds the d-axis current command value change amount ⁇ Ido and the feed forward correction amount ⁇ Idfo to the d-axis basic current command value Idob, and the d-axis current command value change unit 342 is the d-axis current.
  • the command value Ido is calculated.
  • the d-axis current command value limiting unit 343 limits the current command value Ido of the d-axis calculated by the equation (38) by the upper limit limit value IdlmtH and the lower limit limit value IdlmtL, as in the first embodiment. Limit the lower limit.
  • Embodiment 4 The control device 10 according to the fourth embodiment will be described. The description of the same components as those in the first embodiment will be omitted.
  • the basic configuration of the rotary electric machine 1, the power converter 4, and the control device 10 according to the present embodiment is the same as that of the first embodiment, but the current command value calculation unit 34 is the q-axis current command value change unit 345. Is different from the first embodiment in that the above is provided.
  • FIG. 19 shows a block diagram of the current command value calculation unit 34 according to the present embodiment
  • FIG. 20 shows a block diagram of the q-axis current command value change unit 345.
  • the q-axis current command value change unit 345 calculates the q-axis current command correction value ⁇ Iqo based on the q-axis current deviation obtained by subtracting the q-axis current detection value Iqs from the q-axis current command value Iqo, and q before correction.
  • the q-axis current command value Iqo is calculated by adding the q-axis current command correction value ⁇ Iqo to the shaft current command value Iqobf.
  • the final corrected q-axis current command value Iqo used for current feedback control is used, but the value calculated in the previous calculation cycle. Is used.
  • the q-axis current command value Iqobf before correction the q-axis current command value Iqo after being limited by the current limiting circle shown in the equation (17) is used.
  • the current command value Iqs on the q-axis is increased or decreased by the amount that the current detection value Iqs on the q-axis is smaller or larger than the current command value Iqo on the q-axis. You can prevent the value from dropping.
  • the q-axis current command correction value ⁇ Iqo is calculated based on the q-axis current deviation, it is possible to automatically detect and correct the state in which the q-axis current is limited to the voltage limiting ellipse without making a condition judgment. can.
  • the q-axis current command value change unit 345 calculates the value obtained by low-pass filtering the q-axis current deviation as the q-axis current command correction value ⁇ Iqo.
  • the low-pass filter processing a first-order lag filtering process is used.
  • the low-pass filter processing another processing such as a moving average processing may be used. Since the q-axis current detection value Iqs is a vibration element, the q-axis current detection value Iqs used for the low-pass filter processing is used instead of the low-pass filter processing for the q-axis current deviation. The current deviation may be calculated.
  • the rotary electric machine 1 may be used as a driving force source for various devices other than the electric power steering device 100.
  • the rotary electric machine 1 may be used as a driving force source for wheels.
  • the stator may be provided with windings of a plurality of phases (for example, two phases and four phases) other than the three phases.
  • a plurality of sets (for example, two sets) of three-phase windings may be provided on the stator, and each part of the power converter and the control device may be provided corresponding to each set of three-phase windings.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

インダクタンス及びロータの鎖交磁束の情報を用いずに、回転角速度の増減にかかわらず、d軸電流の負方向の増加量を適切に増減して、適切に弱め磁束を行うことができる回転電機の制御装置及び電動パワーステアリング装置を提供する。q軸の電流指令値(Iqo)が正値である場合は、q軸の電流指令値(Iqo)から正値のq軸オフセット値(ΔIqoff)を減算したオフセットq軸電流指令値(Iqoffo)とq軸の電流検出値(Iqs)との偏差(ΔIq_erroff)に基づいて、d軸の電流指令値(Ido)を変化させる回転電機の制御装置(10)。

Description

回転電機の制御装置及び電動パワーステアリング装置
 本願は、回転電機の制御装置及び電動パワーステアリング装置に関するものである。
 永久磁石式の同期回転電機では、永久磁石の鎖交磁束により、ロータの回転角速度に比例した誘起電圧が発生する。高速回転時、最大印加電圧と誘起電圧との差が減少すると、巻線に所望のq軸電流を通電できなくなり、出力トルクが低下する。そこで、一般的に、高速回転時は、d軸電流を負方向に増加させて、永久磁石の鎖交磁束を弱める磁束を巻線に発生させ、誘起電圧を低減する弱め磁束制御が行われる。
 弱め磁束制御の方法には、各種の方法がある。特許文献1では、q軸電流指令値とq軸電流検出値との偏差に基づいて、比例制御又は積分制御を行うことにより、d軸電流を増減させ、弱め磁束制御を行うように構成されている。
特許第3559258号
 弱め磁束制御において、最適なd軸及びq軸の電流指令値を、フィードフォワード的に設定するためには、誘起電圧の発生に係るインダクタンス、及びロータの鎖交磁束の精度の良い情報が必要である。しかし、インダクタンス、及びロータの鎖交磁束の精度の良い情報が取得できない場合は、最適なd軸及びq軸の電流指令値をフィードフォワード的に設定できない。あるいは、インダクタンス、及びロータの鎖交磁束が、経時変化又は温度特性により変動する場合には、d軸及びq軸の電流指令値の設定精度が悪化する。
 一方、特許文献1の技術では、q軸電流指令値とq軸電流検出値とのq軸電流偏差に基づいて、比例制御又は積分制御により、d軸電流指令値を増減させているので、インダクタンス、及びロータの鎖交磁束の情報を用いずに、d軸及びq軸の電流指令値が算出されている。しかし、回転角速度の増加により誘起電圧が増加しており、q軸電流が誘起電圧による電圧制限楕円に制限され、低下している場合は、q軸電流偏差が増加するので、d軸電流を負方向に増加させ、ある程度良好な弱め磁束が行われると考えられる。一方、回転角速度の減少により誘起電圧が減少しており、q軸電流が電圧制限楕円により制限されなくなり、q軸電流偏差がなくなる場合は、q軸電流偏差が0になるので、d軸電流の負方向の増加量を減少させることができず、適切な弱め磁束が行われない。また、この状態では、q軸電流のノイズ成分などにより、d軸電流指令値が予期しない方向に変化する可能性がある。
 そこで、本願は、インダクタンス及びロータの鎖交磁束の情報を用いずに、回転角速度の増減にかかわらず、d軸電流の負方向の増加量を適切に増減して、適切に弱め磁束を行うことができる回転電機の制御装置及び電動パワーステアリング装置を提供することを目的とする。
 本願に係る回転電機の制御装置は、複数相の巻線を設けたステータと永久磁石を設けたロータとを有する回転電機を、電力変換器を介して制御する回転電機の制御装置であって、
 前記複数相の巻線に流れる電流を検出する電流検出部と、
 電流検出値を、前記ロータの回転角度に基づいて、ロータの磁極位置の方向に定めたd軸及び前記d軸より電気角で90度進んだ方向に定めたq軸からなるdq軸の回転座標系上のd軸の電流検出値及びq軸の電流検出値に変換する電流座標変換部と、
 d軸の電流指令値及びq軸の電流指令値を算出する電流指令値算出部と、
 前記d軸の電流検出値が前記d軸の電流指令値に近づき、前記q軸の電流検出値が前記q軸の電流指令値に近づくように、d軸の電圧指令値及びq軸の電圧指令値を変化させ、前記d軸の電圧指令値及び前記q軸の電圧指令値を、前記回転角度に基づいて複数相の電圧指令値に変換する電圧指令値算出部と、
 前記複数相の電圧指令値に基づいて、前記電力変換器が有する複数のスイッチング素子をオンオフするスイッチング制御部と、を備え、
 前記電流指令値算出部は、前記q軸の電流指令値が正値である場合は、前記q軸の電流指令値から正値のq軸オフセット値を減算したオフセットq軸電流指令値と前記q軸の電流検出値との偏差に基づいて、前記d軸の電流指令値を変化させるものである。
 本願に係る電動パワーステアリング装置は、
 回転電機の制御装置と、
 前記電力変換器と、
 前記回転電機と、
 前記回転電機の駆動力を車両の操舵装置に伝達する駆動力伝達機構と、を備えたものである。
 本願に係る回転電機の制御装置及び電動パワーステアリング装置によれば、q軸電流が誘起電圧による電圧制限楕円により上限制限されている場合に、電圧制限楕円と、q軸の電流指令値よりもq軸オフセット値だけ低下した直線との交点に移動するように、d軸の電流指令値の負方向の増加量が増減される。この時、q軸の電流検出値は、q軸の電流指令値をq軸オフセット値だけ下回るので、q軸の電圧指令値を上限制限値に張り付かせることができ、電圧指令値の電圧利用率を最大に保てる。q軸の電流検出値のノイズ成分の振幅よりもq軸オフセット値が大きい場合は、ノイズ成分が生じても、q軸の電圧指令値を上限制限値に張り付かせることができ、回転電機の異音及び騒音を低減することができる。よって、q軸の電流指令値からq軸オフセット値を減算したオフセットq軸電流指令値とq軸の電流検出値との偏差に基づいて、d軸の電流指令値を変化させることにより、インダクタンス及びロータの鎖交磁束の情報を用いずに、回転角速度により変化する電圧制限楕円に自動的に追従させ、d軸電流及びq軸電流を、電圧制限楕円と、q軸の電流指令値よりもq軸オフセット値だけ低下した直線との交点に向かって変化させ、適切に弱め磁束を行うことができる。
実施の形態1に係る回転電機、電力変換器、及び制御装置の概略構成図である。 実施の形態1に係る制御装置の概略ブロック図である。 実施の形態1に係る制御装置のハードウェア構成図である。 実施の形態1に係る弱め磁束制御を説明する図である。 比較例に係る弱め磁束制御を説明する図である。 比較例に係る弱め磁束制御を説明する図である。 実施の形態1に係るd軸電流指令値変化部のブロック図である。 実施の形態1に係るIqo>0の場合の制御挙動を説明する図である。 実施の形態1に係るIqo>0の場合の制御挙動を説明する図である。 実施の形態1に係るIqo>0の場合の制御挙動を説明する図である。 実施の形態1に係るIqo<0の場合の制御挙動を説明する図である。 実施の形態1に係るIqo<0の場合の制御挙動を説明する図である。 実施の形態1に係る制御挙動を説明するタイムチャートである。 実施の形態1に係る比例ゲインの設定を説明するためのブロック図である。 実施の形態1に係るq軸電流オフセット偏差からq軸の電流検出値までの開ループの伝達関数のボード線図である。 比較例に係るq軸電流オフセット偏差からq軸の電流検出値までの開ループの伝達関数のボード線図である。 実施の形態2に係るq軸オフセット値を設定するオフセット値設定データを説明する図である。 実施の形態3に係るd軸電流指令値変化部のブロック図である。 実施の形態4に係る電流指令値算出部のブロック図である。 実施の形態4に係るq軸電流指令値変化部のブロック図である。
1.実施の形態1
 実施の形態1に係る回転電機の制御装置10(以下、単に制御装置10と称す)について図面を参照して説明する。図1は、本実施の形態に係る回転電機1、電力変換器4、及び制御装置10の概略構成図である。本実施の形態では、回転電機1が、電動パワーステアリング装置100の駆動力源となっており、回転電機1、電力変換器4、及び制御装置10が、電動パワーステアリング装置100を構成している。
1-1.回転電機1
 回転電機1は、ステータと、ステータの径方向内側に配置されたロータと、を備えている。ステータには、複数相の巻線(本例では、U相、V相、W相の3相の巻線Cu、Cv、Cw)が設けられている。ロータには、永久磁石が設けられており、回転電機1は、永久磁石式の同期回転電機とされている。ロータの外周面に永久磁石が設けられた表面磁石型とされている。なお、ロータの内部に永久磁石が設けられた埋込磁石型とされてもよい。3相の巻線は、スター結線されてもよいし、デルタ結線されてもよい。
 ロータには、ロータの回転角度を検出するための回転センサ2が備えられている。回転センサ2には、レゾルバ、エンコーダ、MRセンサ等が用いられる。回転センサ2の出力信号は、制御装置10に入力される。なお、後述するように、回転センサ2が備えられず、電流情報に基づいて角度が推定されるセンサレスの構成とされてもよい。
1-2.電力変換器4
 電力変換器4としてインバータが用いられている。なお、電力変換器4として、インバータ以外の電力変換器、例えば、マトリックスコンバータが用いられてもよい。
 インバータ4は、直流電源3の正極側に接続される正極側のスイッチング素子SPと直流電源3の負極側に接続される負極側のスイッチング素子SNとが直列接続された直列回路(レッグ)を、3相各相に対応して3セット設けている。そして、各相の直列回路における2つのスイッチング素子の接続点が、対応する相の巻線に接続されている。
 具体的には、U相の直列回路では、U相の正極側のスイッチング素子SPuとU相の負極側のスイッチング素子SNuとが直列接続され、2つのスイッチング素子の接続点がU相の巻線Cuに接続されている。V相の直列回路では、V相の正極側のスイッチング素子SPvとV相の負極側のスイッチング素子SNvとが直列接続され、2つのスイッチング素子の接続点がV相の巻線Cvに接続されている。W相の直列回路では、Wの正極側のスイッチング素子SPwとW相の負極側のスイッチング素子SNwとが直列接続され、2つのスイッチング素子の接続点がW相の巻線Cwに接続されている。平滑コンデンサ5が、直流電源3の正極側と負極側との間に接続されている。
 スイッチング素子には、ダイオードが逆並列接続されたIGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)、ダイオードが逆並列接続されたバイポーラトランジスタ等が用いられる。各スイッチング素子のゲート端子は、ゲート駆動回路等を介して、制御装置10に接続されている。各スイッチング素子は、制御装置10から出力されたスイッチング信号GPu~GNwによりオン又はオフされる。
 直流電源3は、インバータ4に直流電圧Vdcを出力する。本実施の形態では、直流電圧Vdcは、12Vとされている。直流電源3として、バッテリー、DC-DCコンバータ、ダイオード整流器、PWM整流器等、直流電圧Vdcを出力する機器であれば、どのような機器であってもよい。直流電源3には、直流電圧Vdcを検出する電圧センサが設けられ、電圧センサの出力信号が制御装置10に入力されてもよい。制御装置10は、検出した直流電圧Vdcを用いて、制御を行ってもよい。
 各相の巻線に流れる電流を検出するための電流センサ6が設けられている。電流センサ6は、シャント抵抗又はホール素子等の電流センサとされる。電流センサ6の出力信号は、制御装置10に入力される。
 本実施の形態では、電流センサ6は、各相の2つのスイッチング素子の直列回路に備えられている。U相の抵抗Ru、V相の抵抗Rv、及びW相の抵抗Rwは、各相の負極側のスイッチング素子SNの負極側に直列接続されている。3相の抵抗Ru、Rv、Rwは、アンプ21、22、23により各相の抵抗の両端電位差が検出され、両端電位差が制御装置10に入力される。
 なお、電流センサ6は、各相の2つのスイッチング素子の直列回路と各相のコイルとを接続する電線上に備えられてもよい。或いは、電流センサは、インバータ4と直流電源3と接続する電線上に設けられ、公知の「母線1シャント方式」により、各相の巻線の電流が検出されてもよい。
1-3.電動パワーステアリング装置100
 電動パワーステアリング装置100は、回転電機の制御装置10と、インバータ4と、回転電機1と、回転電機1の駆動力を車両の操舵装置102に伝達する駆動力伝達機構101と、を備えている。
 回転電機1のロータの回転軸は、駆動力伝達機構101を介して車輪103の操舵装置102に連結される。例えば、電動パワーステアリング装置100は、運転者が左右に回転するハンドル104と、ハンドル104に連結されて、ハンドル104による操舵トルクを車輪103の操舵装置102に伝達するシャフト105と、シャフト105に取り付けられ、ハンドル104による操舵トルクTsを検出するトルクセンサ106と、回転電機1の回転軸をシャフト105に連結するウォームギヤ機構等の駆動力伝達機構101と、を備えている。トルクセンサ106の出力信号は、制御装置10(入力回路92)に入力される。
1-4.制御装置10
 制御装置10は、インバータ4を介して回転電機1を制御する。図2に示すように、制御装置10は、回転検出部31、電流検出部32、電流座標変換部33、電流指令値算出部34、電圧指令値算出部35、及びスイッチング制御部36等を備えている。制御装置10の各機能は、制御装置10が備えた処理回路により実現される。具体的には、制御装置10は、図3に示すように、処理回路として、CPU(Central Processing Unit)等の演算処理装置90(コンピュータ)、演算処理装置90とデータのやり取りする記憶装置91、演算処理装置90に外部の信号を入力する入力回路92、及び演算処理装置90から外部に信号を出力する出力回路93等を備えている。
 演算処理装置90として、ASIC(Application Specific Integrated Circuit)、IC(Integrated Circuit)、DSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)、各種の論理回路、及び各種の信号処理回路等が備えられてもよい。また、演算処理装置90として、同じ種類のもの又は異なる種類のものが複数備えられ、各処理が分担して実行されてもよい。記憶装置91として、演算処理装置90からデータを読み出し及び書き込みが可能に構成されたRAM(Random Access Memory)、演算処理装置90からデータを読み出し可能に構成されたROM(Read Only Memory)等が備えられている。入力回路92は、回転センサ2、電流センサ6、トルクセンサ106等の各種のセンサ、スイッチが接続され、これらセンサ、スイッチの出力信号を演算処理装置90に入力するA/D変換器等を備えている。出力回路93は、スイッチング素子をオンオフ駆動するゲート駆動回路等の電気負荷が接続され、これら電気負荷に演算処理装置90から制御信号を出力する駆動回路等を備えている。
 そして、制御装置10が備える各制御部31~36等の各機能は、演算処理装置90が、ROM等の記憶装置91に記憶されたソフトウェア(プログラム)を実行し、記憶装置91、入力回路92、及び出力回路93等の制御装置10の他のハードウェアと協働することにより実現される。なお、各制御部31~36等が用いる内分率、制御ゲイン等の設定データは、ソフトウェア(プログラム)の一部として、ROM等の記憶装置91に記憶されている。以下、制御装置10の各機能について詳細に説明する。
1-4-1.基本制御
<回転検出部31>
 回転検出部31は、電気角でのロータの磁極位置θ(ロータの回転角度θ)及び回転角速度ωを検出する。本実施の形態では、回転検出部31は、回転センサ2の出力信号に基づいて、ロータの磁極位置θ(回転角度θ)及び回転角速度ωを検出する。本実施の形態では、磁極位置は、ロータに設けられた永久磁石のN極の向きに設定される。回転角速度ωは、回転角度θを微分して算出される。なお、回転検出部31は、電流指令値に高調波成分を重畳することによって得られる電流情報等に基づいて、回転センサを用いずに、回転角度(磁極位置)を推定するように構成されてもよい(いわゆる、センサレス方式)。
<電流検出部32>
 電流検出部32は、電流センサ6の出力信号に基づいて、3相の巻線に流れる電流Ius、Ivs、Iwsを検出する。電流検出部32は、電流センサ6の出力信号に基づいて、U相の巻線に流れる電流Iusを検出し、V相の巻線に流れる電流Ivsを検出し、W相の巻線に流れる電流Iwsを検出する。なお、電流センサ6が2相の巻線電流を検出するように構成され、残りの1相の巻線電流が、2相の巻線電流の検出値に基づいて算出されてもよい。例えば、電流センサ6が、V相及びW相の巻線電流Ivs、Iwsを検出し、U相の巻線電流Iusが、Ius=-Ivs-Iwsにより算出されてもよい。
<電流座標変換部33>
 電流座標変換部33は、3相巻線の電流検出値Ius、Ivs、Iwsを、回転角度θに基づいてd軸の電流検出値Ids及びq軸の電流検出値Iqsに変換する。本実施の形態では、電流座標変換部33は、3相巻線の電流検出値Ius、Ivs、Iwsを、次式に示すように、回転角度θに基づいて3相2相変換及び回転座標変換を行って、d軸及びq軸の電流検出値Ids、Iqsに変換する。
Figure JPOXMLDOC01-appb-M000001
 なお、d軸は、磁石の磁極(N極)の方向に定められ、q軸は、d軸より電気角で90度進んだ方向に定められる。
<電圧指令値算出部35>
 電圧指令値算出部35は、電流制御部351、q軸電圧制限部352、及び電圧座標変換部353を備えている。電流制御部351は、d軸の電流検出値Idsがd軸の電流指令値Idoに近づき、q軸の電流検出値Iqsがq軸の電流指令値Iqoに近づくように、d軸の電圧指令値Vdo及びq軸の電圧指令値Vqoを変化させる。電流指令値算出部34によるd軸及びq軸の電流指令値Ido、Iqoの算出については後述する。例えば、電圧指令値算出部35は、次式に示すように、比例積分制御を行う。
Figure JPOXMLDOC01-appb-M000002
 ここで、Kd、Kqは、比例ゲインであり、Td、Tqは、積分時間であり、sは、ラプラス演算子である。
 なお、d軸電流とq軸電流の非干渉化のためのフィードフォワード制御が行われてもよい。すなわち、d軸の電圧指令値Vdoに、「-ω×Lq×Iqo」が加算され、q軸の電圧指令値Vqoに、「ω×(Ld×Ido+ψ)」が加算されてもよい。Lqは、q軸のインダクタンスであり、Ldは、d軸のインダクタンスであり、ψは、磁石の起磁力が巻線に鎖交する鎖交磁束である。
 q軸電圧制限部352は、3相の電圧指令値Vuo、Vvo、Vwoが、直流電圧Vdcに応じた最大印加電圧Vdc/Kmの範囲を超えないように、直流電圧Vdc及びd軸の電圧指令値Vdoに基づいて、q軸の電圧指令値Vqoを制限する。例えば、q軸電圧制限部352は、次式に示すように、q軸の電圧指令値Vqoが、最大印加電圧Vdc/Km及びd軸の電圧指令値Vdoに基づいて算出された上限制限値VqlmtH及び下限制限値VqlmtLを超えないように、q軸の電圧指令値Vqoに対して上限制限及び下限制限を行い、上限制限及び下限制限後の値を、最終的なq軸の電圧指令値Vqoとして算出する。
Figure JPOXMLDOC01-appb-M000003
 ここで、Kmは、電圧利用率に対応する係数であり、次式に示すように、3次高調波重畳などの変調の有無に応じて設定される。
Figure JPOXMLDOC01-appb-M000004
 この構成によれば、最大印加電圧Vdc/Kmに対応する電圧制限円に沿って、d軸の電圧指令値Vdoを優先的に変化させ、q軸の電圧指令値Vqoを従属的に変化させることができる。よって、後述するように、弱め磁束制御においてd軸の電流指令値Idoを優先的に変化させる構成に対応させて、d軸の電圧指令値Vdoを優先的に変化させ、d軸電流Idを優先的に変化させることができる。
 q軸電圧制限部352は、q軸の電圧指令値Vqoの制限処理に用いるd軸の電圧指令値Vdoにローパスフィルタ処理を行ってもよい。d軸の電圧指令値Vdoが振動し、q軸の電圧指令値Vqoが振動する。上記のように、d軸の電圧指令値Vdoにローパスフィルタ処理を行った値を用いることにより、q軸の電圧指令値Vqoの振動が抑制され、回転電機の振動及び騒音を低減することができる。
 電圧座標変換部353は、d軸及びq軸の電圧指令値Vdo、Vqoを、回転角度θに基づいて3相の電圧指令値Vuo、Vvo、Vwoに変換する。本実施の形態では、電圧座標変換部353は、d軸及びq軸の電圧指令値Vdo、Vqoを、次式に示すように、回転角度θに基づいて固定座標変換及び2相3相変換を行って、3相の電圧指令値Vuo、Vvo、Vwoに変換する。
Figure JPOXMLDOC01-appb-M000005
 なお、電圧座標変換部353は、電圧利用率を向上するために、3相の電圧指令値Vuo、Vvo、Vwoに対して、2相変調、3次高調波重畳等の公知の変調を加えてもよい。
<スイッチング制御部36>
 スイッチング制御部36は、3相の電圧指令値Vuo、Vvo、Vwoに基づいて、インバータ4が有する複数のスイッチング素子をオンオフする。スイッチング制御部36は、公知のキャリア比較PWM又は空間ベクトルPWMを用いる。
 キャリア比較PWMが用いられる場合は、スイッチング制御部36は、キャリア波と3相の電圧指令値Vuo、Vvo、Vwoのそれぞれとを比較し、比較結果に基づいて、複数のスイッチング素子をオンオフする。キャリア波は、PWM周期Tcで0を中心に直流電圧の半分値Vdc/2の振幅で振動する三角波とされている。スイッチング制御部36は、各相について、キャリア波が電圧指令値を下回った場合は、正極側のスイッチング素子のスイッチング信号GPをオンして、正極側のスイッチング素子をオンし、キャリア波CAが電圧指令値を上回った場合は、正極側のスイッチング素子のスイッチング信号GPをオフして、正極側のスイッチング素子をオフする。一方、スイッチング制御部36は、各相について、キャリア波が電圧指令値を下回った場合は、負極側のスイッチング素子のスイッチング信号GNをオフして、負極側のスイッチング素子をオフして、負極側のスイッチング素子をオフし、キャリア波CAが電圧指令値を上回った場合は、負極側のスイッチング素子のスイッチング信号GNをオンして、負極側のスイッチング素子をオンする。なお、各相について、正極側のスイッチング素子のオン期間と負極側のスイッチング素子のオン期間との間には、正極側及び負極側のスイッチング素子の双方をオフにする短絡防止期間(デッドタイム)が設けられてもよい。
 空間ベクトルPWMが用いられる場合は、スイッチング制御部36は、3相の電圧指令値Vuo、Vvo、Vwoから電圧指令ベクトルを生成し、電圧指令ベクトルに基づいて、PWM周期における7つの基本電圧ベクトルの出力時間配分を決定し、7つの基本電圧ベクトルの出力時間配分に基づいて、PWM周期において各スイッチング素子をオンオフするスイッチング信号を生成する。
1-4-2.電流指令値算出部34
 電流指令値算出部34は、d軸の電流指令値Ido、及びq軸の電流指令値Iqoを算出する。本実施の形態では、電流指令値算出部34は、基本電流指令値算出部341、d軸電流指令値変化部342、d軸電流指令値制限部343、及びq軸電流指令値制限部344を備えている。
1-4-2-1.基本電流指令値算出部341
 基本電流指令値算出部341は、d軸の基本電流指令値Idob及びq軸の基本電流指令値Iqobを算出する。本実施の形態では、基本電流指令値算出部341は、トルクセンサ106の出力信号に基づいて、運転者の操舵トルクTsを検出する。そして、基本電流指令値算出部341は、次式に示すように、操舵トルクTsに基づいてq軸の基本電流指令値Iqobを設定し、d軸の基本電流指令値Idobを0に設定する。すなわち、Id=0制御が行われる。Id=0制御では、d軸の基本電流指令値Idobが0に設定される。Id=0制御は、本実施の形態の表面磁石型の回転電機に好適である。表面磁石型の回転電機では、d軸インダクタンスLdとq軸インダクタンスLqとがほぼ等しくなり、q軸電流Iqに比例してトルクが変化する。
Figure JPOXMLDOC01-appb-M000006
 ここで、Kaは、定数であるが、操舵トルクTs及び車両の走行速度等に応じて変化されてもよい。また、q軸の基本電流指令値Iqobは、操舵状況に応じた公知の補償制御に基づいて設定されてもよい。
 埋込磁石型の回転電機の場合は、Id=0制御の代わりに、最大トルク電流制御などの他の制御方法によりd軸及びq軸の基本電流指令値Idob、Iqobが設定されてもよい。最大トルク電流制御では、同一電流に対して発生トルクを最大にするようなd軸及びq軸の基本電流指令値Idob、Iqobが算出される。
1-4-2-2.弱め磁束制御
<インダクタンス及び鎖交磁束の情報を用いない弱め磁束制御の課題>
 回転電機の電圧方程式は、式(1)のようになる。
Figure JPOXMLDOC01-appb-M000007
 ここで、Vdは、d軸の印加電圧であり、Vqは、q軸の印加電圧であり、Idは、d軸の電流であり、Iqは、q軸の電流であり、sはラプラス演算子であり、Rは巻線抵抗であり、ψはロータ磁石による鎖交磁束であり、Ldはd軸インダクタンスであり、Lqはq軸インダクタンスである。
 式(7)の回転角速度ωが乗算される項は、次式に示すように、巻線に生じる誘起電圧の項であり、d軸の誘起電圧Vdi及びq軸の誘起電圧Vqiは、回転角速度ωが増加するに従って増加する。
Figure JPOXMLDOC01-appb-M000008
 誘起電圧Viは、次式に示すようになり、誘起電圧Viが、印加可能な最大印加電圧Vdc/Kmに近づくと、通電可能な巻線電流量が減少するため、回転電機のトルクが減少する。
Figure JPOXMLDOC01-appb-M000009
 そこで、式(9)からわかるように、d軸電流Idを負方向に増加させることにより、ロータの鎖交磁束ψを打ち消す磁束を発生させて、誘起電圧Viを減少させ、巻線電流量を増加させる弱め磁束制御が、一般的に行われる。
 また、次式に示すように、巻線電流は、流すことができる巻線電流の最大電流値Imaxにより上限制限される。式(10)で表される電流制限円の範囲内に、d軸電流Id、q軸電流Iqを制御する必要がある。
Figure JPOXMLDOC01-appb-M000010
 また、次式に示すように、d軸電流Id及びq軸電流Iqは、誘起電圧Viが、印加可能な最大印加電圧Vdc/Kmに一致する電圧制限楕円の範囲内になるように制限される。
Figure JPOXMLDOC01-appb-M000011
 図4に示すように、弱め磁束制御の領域のある回転角速度ωで、所望のトルクを得るd軸電流Id及びq軸電流Iqは、電圧制限楕円とq軸の電流指令値Iqoとの交点になる。電流制限円によりq軸の電流指令値Iqoが制限される場合は、電圧制限楕円と電流制限円との交点になる。
 しかし、従来のように、このような最適なd軸及びq軸の電流指令値を、フィードフォワード的に設定するためには、電圧制限楕円に係るd軸及びq軸インダクタンスLd、Lq、及びロータの鎖交磁束ψの精度の良い情報が必要である。しかし、インダクタンスLd、Lq、及びロータの鎖交磁束ψの精度の良い情報が取得できない場合は、最適なd軸及びq軸の電流指令値をフィードフォワード的に設定できない。あるいは、インダクタンスLd、Lq、及びロータの鎖交磁束ψが、経時変化又は温度特性により変動する場合には、d軸及びq軸の電流指令値の設定精度が悪化する。
 一方、特許文献1の技術では、q軸電流指令値とq軸電流検出値とのq軸電流偏差ΔIq_errに基づいて、比例制御又は積分制御により、d軸電流指令値を増減させている。特許文献1の技術では、積分制御を行えば、図5に示すように、q軸電流偏差ΔIq_errが0になるまで、電圧制限楕円に沿って、d軸電流指令値Idoを、電圧制限楕円とq軸の電流指令値Iqoとの交点まで変化できるとも考えられる。しかし、これは、回転角速度ωの増加により電圧制限楕円が狭まった、又は目標トルクの増加によりq軸の電流指令値Iqoが増加したことなどにより、d軸電流指令値Ido及びq軸電流指令値Iqoが、電圧制限楕円の外側にあり、d軸電流及びq軸電流が、電圧制限楕円により制限されている状態では、うまく働くと考えられる。一方、図6に示すように、回転角速度ωの減少により電圧制限楕円が広がった、又は目標トルクの減少によりq軸の電流指令値Iqoが減少したことなどにより、d軸電流指令値Ido及びq軸電流指令値Idoが、電圧制限楕円の内側にある場合は、d軸電流及びq軸電流は、電圧制限楕円により制限されないので、q軸電流偏差ΔIq_errは0のままになり、d軸電流及びq軸電流は、電圧制限楕円とq軸の電流指令値Iqoとの交点に向かって変化せずに、q軸電流のノイズ成分、誤差成分により予期しない方向に変化する。
 このように、q軸電流偏差ΔIq_errに基づいた積分制御を行って、d軸電流指令値Idoを変化させるだけでは、インダクタンスLd、Lq及び鎖交磁束ψの情報を用いていないので、d軸及びq軸の電流指令値が、電圧制限楕円の外側にあるか内側にあるかを判定できず、回転角速度ωの増減及び目標トルクの増減などの運転状態の変化に対して、トルクを最大にするような弱め磁束制御の最適なd軸及びq軸の電流指令値を設定することができない。
 そこで、弱め磁束制御において、インダクタンスLd、Lq、及びロータの鎖交磁束ψの情報を用いずに、回転角速度ω及び目標トルクの増減にかかわらず、d軸電流Id及びq軸電流Iqを、電圧制限楕円とq軸の電流指令値Iqoとの交点付近に制御し、適切に弱め磁束を行い、トルクを増加させることができる制御装置が求められる。
<d軸電流指令値変化部342>
 図7にd軸電流指令値変化部342のブロック図を示す。d軸電流指令値変化部342は、q軸の電流指令値Iqoが正値である場合は、q軸の電流指令値Iqoから正値のq軸オフセット値ΔIqoffを減算したオフセットq軸電流指令値Iqoffoと、q軸の電流検出値Iqsとの偏差ΔIq_erroff(以下、q軸電流オフセット偏差ΔIq_erroffと称す)に基づいて、d軸の電流指令値Idoを変化させる。
Figure JPOXMLDOC01-appb-M000012
 図7におけるIqо、Iqs、ΔIqоffの加減算の順序は一例を挙げたものであって、加減算の順序を問わず、Iqо>0の場合においては、ΔIq_erroff=Iqо-Iqs―ΔIqоffが成り立ち、後述するIqо<0の場合においては、ΔIq_erroff=Iqо-Iqs+ΔIqоffが成り立つものは、本発明の範囲内であることはいうまでもない。
 この構成によれば、q軸電流が電圧制限楕円により上限制限されている場合に、電圧制限楕円と、q軸の電流指令値Iqoよりもq軸オフセット値ΔIqoffだけ低下した直線との交点に移動するように、d軸の電流指令値Idoの負方向の増加量が増減される。電流制限円によりq軸の電流指令値Iqoが制限される場合は、電圧制限楕円と、電流制限円よりもq軸オフセット値ΔIqoffだけ低下した円の交点に移動する。この時、q軸の電流検出値Iqsは、q軸の電流指令値Iqoをq軸オフセット値ΔIqoffだけ下回るので、q軸の電圧指令値Vqoを電圧制限円による上限制限値VqlmtHに張り付かせることができ、電圧利用率を最大値に保てる。また、q軸の電流検出値Iqsのノイズ成分の振幅よりもq軸オフセット値ΔIqoffが大きい場合は、ノイズ成分が生じても、q軸の電圧指令値Vqoを上限制限値VqlmtHに張り付かせることができ、回転電機の異音及び騒音を低減することができる。
 例えば、図8に示すように、電圧指令値の電圧飽和状態で、回転角速度ωが増加すると、誘起電圧が増加し、q軸電流が減少するので、q軸オフセット値ΔIqoffを維持しようと、d軸の電流指令値Idoが負方向に増加され、回転角速度ωの増加により狭まった電圧制限楕円と、q軸の電流指令値Iqoよりもq軸オフセット値ΔIqoffだけ低下した直線との交点に移動する。一方、図9に示すように、電圧指令値の電圧飽和状態で、回転角速度ωが減少すると、誘起電圧が減少し、q軸電流が増加するので、q軸オフセット値ΔIqoffを維持しようと、d軸の電流指令値Idoが正方向に増加され、回転角速度ωの低下により広がった電圧制限楕円と、q軸の電流指令値Iqoよりもq軸オフセット値ΔIqoffだけ低下した直線との交点に移動する。よって、インダクタンスLd、Lq、及びロータの鎖交磁束ψの情報を用いずに、q軸オフセット値ΔIqoffを設けたフィードバック制御を行うだけで、回転角速度ωにより変化する電圧制限楕円に自動的に追従させ、d軸電流Id及びq軸電流Iqを、電圧制限楕円と、q軸の電流指令値Iqoよりもq軸オフセット値ΔIqoffだけ低下した直線との交点に制御し、適切に弱め磁束を行い、トルクを増加させることができる。
 一方、図10に示すように、q軸の電流指令値Iqoからq軸オフセット値ΔIqoffだけ減算した値が、電圧制限楕円よりも内側にある場合は、q軸電流がq軸の電流指令値Iqoに追従するので、q軸オフセット値ΔIqoffを生じさせようと、d軸の電流指令値Idoが正方向に増加され、d軸の電流指令値Idoの負方向の増加量が0になり、弱め磁束制御が行われない。
 d軸電流指令値変化部342は、q軸の電流指令値Iqoが正値である場合は、q軸の電流検出値Iqsがオフセットq軸電流指令値Iqoffoを下回った場合(ΔIq_erroff>0)は、d軸の電流指令値Idoを減少させ、q軸の電流検出値Iqsがオフセットq軸電流指令値Iqoffoを上回った場合(ΔIq_erroff<0)は、d軸の電流指令値Idoを増加させる。
 d軸電流指令値変化部342は、q軸電流オフセット偏差ΔIq_erroffに基づいて、d軸電流指令値変化量ΔIdoを算出し、d軸電流指令値変化量ΔIdoをd軸の基本電流指令値Idobに加算して、d軸の電流指令値Idoを算出する。例えば、d軸電流指令値変化部342は、q軸電流オフセット偏差ΔIq_erroffに基づいて、比例積分制御を行って、d軸電流指令値変化量ΔIdoを算出する。
Figure JPOXMLDOC01-appb-M000013
 ここで、Kpidは、正値に設定されたd軸電流指令値算出用の比例ゲインであり、Tiidは、d軸電流指令値算出用の積分時間であり、sは、ラプラス演算子である。d軸電流指令値算出用の比例ゲインKpid及び積分時間Tiidの設定方法については後述する。なお、比例積分制御の代わりに、積分制御、比例制御、又は比例積分微分制御などの任意のフィードバック制御が用いられてもよい。
<q軸の電流指令値Iqo<0の場合>
 一方、d軸電流指令値変化部342は、q軸の電流指令値Iqoが負値である場合は、q軸の電流指令値Iqoに正値のq軸オフセット値ΔIqoffを加算したオフセットq軸電流指令値Iqoffoとq軸の電流検出値Iqsとの偏差ΔIq_erroff(q軸電流オフセット偏差)に基づいて、d軸の電流指令値Idoを変化させる。
Figure JPOXMLDOC01-appb-M000014
 この構成によれば、q軸電流が電圧制限楕円により下限制限されている場合に、電圧制限楕円と、q軸の電流指令値Iqoよりもq軸オフセット値ΔIqoffだけ増加した直線との交点に移動するように、d軸の電流指令値Idoの負方向の増加量が増減される。電流制限円によりq軸の電流指令値Iqoが制限される場合は、電圧制限楕円と、電流制限円よりもq軸オフセット値ΔIqoffだけ増加した円の交点に移動する。この時、q軸電流は、q軸の電流指令値Iqoをq軸オフセット値ΔIqoffだけ上回るので、q軸の電圧指令値Vqoを電圧制限円による下限制限値VqlmtLに張り付かせることができ、電圧利用率を最大値に保てる。また、q軸の電流検出値Iqsのノイズ成分の振幅よりもq軸オフセット値ΔIqoffが大きい場合は、ノイズ成分が生じても、q軸の電圧指令値Vqoを下限制限値VqlmtLに張り付かせることができ、回転電機の異音及び騒音を低減することができる。
 例えば、図11に示すように、電圧指令値の電圧飽和状態で、回転角速度ωが増加すると、誘起電圧が増加し、負のq軸電流が増加するので、q軸オフセット値ΔIqoffを維持しようと、d軸の電流指令値Idoが負方向に増加され、回転角速度ωの増加により狭まった電圧制限楕円と、q軸の電流指令値Iqoよりもq軸オフセット値ΔIqoffだけ増加した直線との交点に移動する。一方、図12に示すように、電圧指令値の電圧飽和状態で、回転角速度ωが減少すると、誘起電圧が減少し、負のq軸電流が減少するので、q軸オフセット値ΔIqoffを維持しようと、d軸の電流指令値Idoが正方向に増加され、回転角速度ωの減少により広がった電圧制限楕円と、q軸の電流指令値Iqoよりもq軸オフセット値ΔIqoffだけ増加した直線との交点に移動する。よって、インダクタンスLd、Lq、及びロータの鎖交磁束ψの情報を用いずに、q軸オフセット値ΔIqoffを設けたフィードバック制御を行うだけで、回転角速度ωにより変化する電圧制限楕円に自動的に追従させ、d軸電流Id及びq軸電流Iqを、電圧制限楕円と、q軸の電流指令値Iqoよりもq軸オフセット値ΔIqoffだけ増加した直線との交点に制御し、適切に弱め磁束を行い、負のトルクの絶対値を増加させることができる。
 d軸電流指令値変化部342は、q軸の電流指令値Iqoが負値である場合は、q軸の電流検出値Iqsがオフセットq軸電流指令値Iqoffoを上回った場合(ΔIq_erroff<0)は、d軸の電流指令値Idoを減少させ、q軸の電流検出値Iqsがオフセットq軸電流指令値Iqoffoを下回った場合(ΔIq_erroff>0)は、d軸の電流指令値Idoを増加させる。
 q軸の電流指令値Iqoが負値である場合は、次式に示すように、d軸電流指令値変化部342は、q軸電流オフセット偏差ΔIq_erroffに基づいて、比例積分制御を行って、d軸電流指令値変化量ΔIdoを算出する。
Figure JPOXMLDOC01-appb-M000015
<d軸の電流指令値Idoの上下限制限>
 次式に示すように、d軸電流指令値制限部343は、d軸の電流指令値Idoを、上限制限値IdlmtHにより上限制限し、下限制限値IdlmtLにより下限制限する。上限制限値IdlmtHは、d軸の基本電流指令値Idobに設定される。下限制限値IdlmtLは、ロータの永久磁石の不可逆減磁の発生を防止するための負の制限値に設定される。
Figure JPOXMLDOC01-appb-M000016
 回転角速度ωが基底回転角速度以下である場合など、弱め磁束制御を実行する必要がない領域では、Ido=Idobに強制的に設定されてもよい。
<q軸電流指令値制限部344>
 q軸電流指令値制限部344は、3相の巻線に供給される電流が、3相の巻線に供給できる最大電流値Imaxの範囲を超えないように、最大電流値Imax及びd軸の電流指令値Idoに基づいて、q軸の電流指令値Iqoを制限する。例えば、q軸電流指令値制限部344は、次式に示すように、q軸の基本電流指令値Iqobが、最大電流値Imax及びd軸の電流指令値Idoに基づいて算出された上限制限値IqlmtH及び下限制限値IqlmtLを超えないように、q軸の基本電流指令値Iqobに対して上限制限及び下限制限を行い、上限制限及び下限制限後の値を、q軸の電流指令値Iqoとして算出する。この制限処理は、d軸及びq軸の電流指令値Iqo、Idoを、最大電流値Imaxの電流制限円の範囲内に制限する処理である。
Figure JPOXMLDOC01-appb-M000017
 この構成によれば、q軸の基本電流指令値Iqobが最大電流値Imaxに対応する電流制限円に制限される場合に、最大電流値Imaxに対応する電流制限円に沿って、d軸の電流指令値Idoを優先的に変化させ、q軸の電流指令値Iqoを従属的に変化させることができる。よって、弱め磁束制御においてd軸の電流指令値Idoを優先的に変化させ、弱め磁束量の適正化を行うことができる。
<制御挙動>
 図13のタイムチャートを参照して、制御挙動を説明する。q軸の基本電流指令値Iqobが最大電流値Imaxよりも小さい正の一定値の状態で、時刻t03まで回転角速度ωが次第に増加し、時刻t03以降、回転角速度ωが次第に減少している。
 時刻t01までは、回転角速度ωが低いため電圧制限楕円が広く、q軸及びd軸の電流指令値Iqo、Idoは、電圧制限楕円の内側にあり、q軸の電流検出値Iqsは、q軸の電流指令値Iqoに追従している。そのため、q軸電流オフセット偏差ΔIq_erroffは、q軸オフセット値ΔIqoffの負値になり、d軸電流指令値変化量ΔIdoは0まで増加され、d軸の電流指令値Idoは0に設定され、弱め磁束制御は行われていない。
 一方、時刻t01以前において、回転角速度ωが次第に増加するに従って、誘起電圧が次第に増加し、q軸の電流検出値Iqsをq軸の電流指令値Iqoに維持するために、q軸の電圧指令値Vqoが電流フィードバック制御により次第に増加している。
 時刻t01で、回転角速度ωの増加により、誘起電圧が増加し、電圧制限楕円が狭まり、q軸及びd軸の電流指令値Iqo、Idoが、電圧制限楕円に一致し、q軸の電圧指令値Vqoは、電圧制限円に到達している。そして、時刻t01から時刻t02の間で、q軸及びd軸の電流指令値Iqo、Idoが電圧制限楕円の外側になり、電圧制限楕円に制限されてq軸の電流検出値Iqsが、q軸の電流指令値Iqoから次第に低下している。しかし、指令値に対するq軸電流の低下量が、q軸オフセット値ΔIqoffを上回っておらず、q軸電流オフセット偏差ΔIq_erroffは負値のままであり、d軸電流指令値変化量ΔIdoは0まで増加されたままである。
 時刻t02以降、図13に破線で示すように、d軸電流指令値変化量ΔIdoが0のままであると、指令値に対するq軸電流の低下量が、q軸オフセット値ΔIqoffを上回り、q軸電流オフセット偏差ΔIq_erroffが正値になるので、q軸電流オフセット偏差ΔIq_erroffを0に保つために、d軸電流指令値変化量ΔIdoは、0から次第に減少していき、d軸の電流指令値Idoは0から次第に減少していく。この時、q軸の電流検出値Iqsは、q軸の電流指令値Iqoをq軸オフセット値ΔIqoffだけ下回るので、q軸の電圧指令値Vqoが電圧制限円による上限制限値VqlmtHに張り付いており、電圧利用率を最大値に保てている。このように、d軸の電流指令値Idoを負方向に増加させることにより、弱め磁束制御により、図13に破線で示したΔIdo=0の場合よりも、q軸電流を増加させることができ、トルクを増加させることができている。したがって、回転角速度ωが増加する場合に、インダクタンスLd、Lq、及びロータの鎖交磁束ψの情報を用いずに、q軸オフセット値ΔIqoffを設けたフィードバック制御を行うだけで、次第に狭まる電圧制限楕円に自動的に追従させ、d軸電流Id及びq軸電流Iqを、電圧制限楕円と、q軸の電流指令値Iqoよりもq軸オフセット値ΔIqoffだけ低下した直線との交点に制御し、適切に弱め磁束を行い、トルクを増加させることができる。
 時刻t03以降、回転角速度ωが次第に減少され、誘起電圧が次第に増加し、電圧制限楕円が次第に広がる。図13に一点鎖線で示すように、d軸電流指令値変化量ΔIdoが時刻t03の値のままであると、指令値に対するq軸電流の低下量が、q軸オフセット値ΔIqoffを下回り、q軸電流オフセット偏差ΔIq_erroffが負値になるので、q軸電流オフセット偏差ΔIq_erroffを0に保つために、d軸電流指令値変化量ΔIdoは、次第に増加していき、d軸の電流指令値Idoは次第に増加していく。この時、q軸の電流検出値Iqsは、q軸の電流指令値Iqoをq軸オフセット値ΔIqoffだけ下回るので、q軸の電圧指令値Vqoが電圧制限円による上限制限値VqlmtHに張り付いており、電圧利用率を最大値に保てている。このように、回転角速度ωが減少する場合も、インダクタンスLd、Lq、及びロータの鎖交磁束ψの情報を用いずに、q軸オフセット値ΔIqoffを設けたフィードバック制御を行うだけで、次第に広がる電圧制限楕円に自動的に追従させ、d軸電流Id及びq軸電流Iqを、電圧制限楕円と、q軸の電流指令値Iqoよりもq軸オフセット値ΔIqoffだけ低下した直線との交点に制御し、適切に弱め磁束を行い、トルクを増加させることができる。
 時刻t04で、d軸電流指令値変化量ΔIdoは0まで増加され、d軸の電流指令値Idoは0に設定され、弱め磁束制御が終了する。そして、時刻t04から時刻t05の間で、回転角速度ωの増加に従って、誘起電圧が次第に減少し、電圧制限楕円が次第に広がり、指令値に対するq軸電流の低下量が次第に減少していく。そして、時刻t05で、q軸及びd軸の電流指令値Iqo、Idoが、電圧制限楕円に一致し、q軸の電圧指令値Vqoは、電圧制限円に到達している。時刻t05以降、q軸及びd軸の電流指令値Iqo、Idoが電圧制限楕円の内側になり、q軸の電流検出値Iqsは、q軸の電流指令値Iqoに追従し、誘起電圧の低下とともに、q軸の電圧指令値Vqoが低下していく。
<q軸オフセット値ΔIqoffの設定>
 上述したように、q軸の電流検出値Iqsが、q軸の電流指令値Iqoよりもq軸オフセット値ΔIqoffだけ下回る又は上回るように、d軸の電流指令値Idoが優先的に変化されるので、q軸電流のフィードバック制御により、q軸の電圧指令値Vqoを電圧制限円による上限制限値VqlmtH又は下限制限値VqlmtLに張り付かせることができ、電圧利用率を最大値に保てる。一方、トルクは、q軸の電流に比例し、q軸の電流検出値Iqsが、q軸の電流指令値Iqoよりもq軸オフセット値ΔIqoffだけ下回る又は上回るので、トルクの絶対値が、q軸オフセット値ΔIqoffだけ低下する。トルクの絶対値の低下を小さくするために、q軸オフセット値ΔIqoffを小さくしたい。しかし、q軸の電流検出値Iqs又はq軸の電流指令値Iqoの変動又はノイズ成分により、q軸の電流検出値Iqsがq軸の電流指令値Iqoを上回る又は下回ると、q軸の電圧指令値Vqoを電圧制限円による上限制限値VqlmtH又は下限制限値VqlmtLに常に張り付かせることができなくなり、電圧利用率を常に最大値に保てなくなる。よって、q軸オフセット値ΔIqoffは、q軸の電流検出値Iqs又はq軸の電流指令値Iqoの変動又はノイズ成分よりも大きく設定されることが望ましい。
 q軸の電流指令値Iqoの絶対値が小さい場合に、q軸オフセット値ΔIqoffを大きくすると、q軸の電流検出値Iqsの正負が、q軸の電流指令値Iqoの正負と異なり、トルクの正負が反転する。これを防止するために、次式に示すように、d軸電流指令値変化部342は、q軸オフセット値ΔIqoffを、q軸の電流指令値Iqoの絶対値よりも小さい値に設定する。
Figure JPOXMLDOC01-appb-M000018
 式(26)を用いて後述するように、制御周期当たりのd軸の電流検出値の変化量ΔIdsにより生じる、制御周期当たりのq軸の電流検出値の変化量ΔIqsの応答は、次式のようになる。よって、q軸の電流検出値の変化量ΔIqsが、q軸オフセット値ΔIqoffよりも小さくなれば、q軸の電圧指令値Vqoを電圧制限円による上限制限値VqlmtH又は下限制限値VqlmtLに常に張り付かせることができる。
Figure JPOXMLDOC01-appb-M000019
 ここで、制御周期は、d軸の電流指令値Idoを演算する制御周期である。回転角速度ωは、回転電機の最大回転角速度ωmaxが想定されればよい。微分インダクタンス項Lq×sは、動作条件により常に変化することと、式全体への影響が微小であることから無視する。また、d軸の電流指令値を変化させる応答に対して、電流フィードバック制御の応答が十分に速いので、d軸の電流検出値の変化量ΔIdsを、制御周期当たりのd軸の電流指令値の変化量ΔIdodTに置き換えることができる。これらから、式(19)を次式に変更することができる。
Figure JPOXMLDOC01-appb-M000020
 制御周期当たりのd軸の電流指令値の変化量ΔIdodTは、予め把握できる。よって、d軸電流指令値変化部342は、式(20)を満たすように、q軸オフセット値ΔIqoffを設定すればよい。
 また、次式に示すように、q軸オフセット値ΔIqoffを、q軸の電流検出値Iqsに重畳するノイズ成分の振幅ΔIqnsよりも大きい値に設定することが望ましい。q軸電流にノイズ成分が重畳しても、q軸の電圧指令値Vqoを電圧制限円による上限制限値VqlmtH又は下限制限値VqlmtLに常に張り付かせることができる。
Figure JPOXMLDOC01-appb-M000021
 q軸の電流検出値Iqsのノイズ成分により、q軸電流オフセット偏差ΔIq_erroffが変動し、d軸の電流指令値Idoも変動する。特に、比例制御の項の変動が大きくなり、比例ゲインKpidによる増幅を考慮する必要がある。d軸の電流指令値Idoの変動により、電流制限円を介して、q軸の電流指令値Iqoが比例的に変動する。
 よって、次式に示すように、q軸オフセット値ΔIqoffを、q軸の電流検出値Iqsに重畳するノイズ成分の振幅ΔIqnsに、d軸電流指令値算出用の比例ゲインKpidを乗算した値よりも大きい値に設定することが望ましい。
Figure JPOXMLDOC01-appb-M000022
 q軸電流のノイズの影響を低減するため、q軸電流オフセット偏差ΔIq_erroffの算出に用いられるq軸の電流検出値Iqsに対して、ノイズ成分を低減するローパスフィルタ処理が行われてもよい。ローパスフィルタ処理のカットオフ周波数は、d軸の電流指令値Idoの算出処理の応答性が悪化しないように設定されればよい。
 以上から、例えば、d軸電流指令値変化部342は、式(20)、式(21)及び式(22)のいずれか1つ以上を満たすように設定されたq軸オフセット値ΔIqoffを、式(19)のように、q軸の電流指令値Iqoの絶対値により上限制限すればよい。
<d軸電流指令値算出用の比例ゲインKpidの設定>
 式(13)及び式(15)の比例ゲインKpidは、正値に設定されればよいが、以下で、応答性を考慮した好適な設定方法について説明する。d軸電流指令値変化部342は、d軸電流指令値算出用の比例ゲインKpidを、回転角速度ωに反比例させて変化させる。本実施の形態では、次式に示すように、目標応答角周波数ωidoを回転角速度ωで除算した値が、比例ゲインKpidに設定される。目標応答角周波数ωidoは、q軸電流オフセット偏差ΔIq_erroffに応じてd軸の電流指令値Idoを変化させ、q軸電流オフセット偏差ΔIq_erroffの絶対値を減少させるフィードバック制御系の目標応答角周波数である。
Figure JPOXMLDOC01-appb-M000023
 目標応答角周波数ωidoは、R/Lqよりも大きい値に設定されるとよい。このように設定すれば、q軸電流オフセット偏差ΔIq_erroffが収束する時間(時定数)が、回路の時定数Lq/Rよりも短くなる。これにより、弱め磁束制御の領域において、回転角速度及び要求トルクの変化に対して、比較的速く、d軸及びq軸の電流指令値Ido、Iqoを変化させ、出力トルクを変化させることができる。本実施の形態のように、回転電機が、電動パワーステアリング装置100のアシスト用駆動力源として用いられる場合は、例えば、目標応答角周波数ωidoは、250[rad/s]から1200[rad/s]の間の値に設定されると、良好な操舵感になる場合がある。
 式(13)及び式(15)の積分時間Tiidは、例えば、回路の時定数Lq/Rに設定されるとよい。なお、積分ゲインは、Kpid/Tiidになる。よって、式(23)から、積分ゲインも、回転角速度ωに反比例させて変化される。例えば、積分ゲインは、目標応答角周波数ωidoに巻線の抵抗値Rを乗算した値を、回転角速度ω及びインダクタンスLqで除算した値に設定される。
 式(7)の電圧方程式からq軸電圧Vqの式を取り出し、VqをVqoに置き換え、Id、IqをIds、Iqsに置き換えると、次式となる。
Figure JPOXMLDOC01-appb-M000024
 式(24)を、q軸の電流検出値Iqsについて解くと、次式を得る。
Figure JPOXMLDOC01-appb-M000025
 弱め磁束制御の実行時は、q軸の電圧指令値Vqoが、電圧制限円による上限制限値VqlmtH又は下限制限値VqlmtLに一致している状態になるので、q軸の電圧指令値Vqoの操作によるq軸の電流検出値Iqsの制御を考えず、d軸の電流検出値Idsの操作によるq軸の電流検出値Iqsの制御を考える。よって、式(25)のVqo及びωψの項を無視すると、式(25)は、次式のようになる。
Figure JPOXMLDOC01-appb-M000026
 式(26)から、d軸の電流検出値Idsからq軸の電流検出値Iqsまでの伝達関数Gp(s)は、次式のようになる。
Figure JPOXMLDOC01-appb-M000027
 よって、d軸の電流検出値Idsの操作によるq軸の電流検出値Iqsの変化量は、回転角速度ωに比例して増大することがわかる。
 この伝達関数Gp(s)を用いると、制御系は、図14のブロック図のように表せられる。q軸電流オフセット偏差ΔIq_erroffからd軸の電流指令値Idoまでの伝達関数Gc(s)は、式(13)、式(23)より、次式のようになる。ただし、積分時間Tiidを、Lq/Rに設定している。
Figure JPOXMLDOC01-appb-M000028
 d軸の電流指令値Idoからd軸の電流検出値Idsまでの伝達関数Gd(s)は、次式で表せられる。ここで、ωidsは、d軸の電流フィードバック制御の目標応答角周波数である。
Figure JPOXMLDOC01-appb-M000029
 d軸の電流フィードバック制御の目標応答角周波数ωidsは、d軸の電流指令値の目標応答角周波数ωidoよりも十分に高く設定されることが望ましい。ωidsは、式(2)のd軸の比例ゲインKdを用いて、Kd/Ldになる。よって、d軸の比例ゲインKdは、ωido×Ldよりも、大きい値に設定されればよい。例えば、好ましくは、d軸の比例ゲインKdは、3×ωido×Ldよりも大きい値に設定されればよく、更に好ましくは、d軸の比例ゲインKdは、5×ωido×Ldよりも大きい値に設定されればよい。d軸の比例ゲインKdをこのように設定することで、Gd(s)≒1とみなすことができる。
Figure JPOXMLDOC01-appb-M000030
 以上から、q軸電流オフセット偏差ΔIq_erroffからq軸の電流検出値Iqsまでの開ループの伝達関数Gop(s)は、次式で表せられる。ここで、d軸インダクタンスLdとq軸インダクタンスLqとがほぼ等しく、Gd(s)≒1であるとして、整理している。
Figure JPOXMLDOC01-appb-M000031
 式(31)は、単純な積分特性であり、回転角速度ωに依存しない。ボード線図を描くと、図15のようになり、ゲインの傾きが-20dB/decの一定値であり、角周波数=ωidoで、0dBになる。
 よって、次式に示すように、q軸の基本電流指令値Iqobの変化に対するq軸の電流検出値Iqsの変化の閉ループの伝達関数Gfb(s)は、目標応答角周波数ωidoの逆数の時定数を有する一次遅れとなる。よって、弱め磁束制御において、式(23)に示すようにd軸電流指令値算出用の比例ゲインKpidを、回転角速度ωに反比例させて変化させることにより、q軸の基本電流指令値Iqobの変化に対するq軸の電流検出値Iqsの変化の応答を、回転角速度ωにより変動しない、目標応答角周波数ωidoの逆数の時定数を有する一次遅れとすることができる。よって、目標応答角周波数ωidoの設定により、所望のトルクの応答性を得ることができる。これにより、電動パワーステアリング装置100の操舵感が向上する。
Figure JPOXMLDOC01-appb-M000032
 式(23)とは異なり、d軸電流指令値算出用の比例ゲインKpidを、回転角速度ωに応じて変化させることなく、固定値に設定する場合について説明する。この場合、式(31)において、Gp(s)に存在するωの項を、比例ゲインKpidによりGc(s)に存在する1/ωの項で相殺しなくなるので、次式に示すように、開ループの伝達関数Gop(s)は、ωに比例した特性になる。
Figure JPOXMLDOC01-appb-M000033
 ここで、Kは定数である。ω=ωmdで、式(31)と同じ特性を得ようとすると、K=1/ωmdに設定される。図16に、ω=0.5×ωmd、ω=1×ωmd、ω=2×ωmdの場合のボード線図を示すように、回転角速度ωがωmdから変動すると、応答が、ω/ωmd倍だけ変動する。ω=1×ωmdの場合は、開ループの伝達関数Gop(s)の応答が、ωidoになるので、所望の応答が得られるが、ω=2×ωmdの場合は、Gop(s)の応答が2倍になり、応答性が良くなる利点があるが、q軸の電流検出値Iqsに含まれるノイズ成分のフィードバック量が2倍になり、回転電機の異音が増加する可能性がある。一方、ω=0.5×ωmdの場合は、Gop(s)の応答が0.5倍になり、q軸電流の応答性が悪化し、トルクの応答性が悪化する。よって、回転角速度ωに応じて、トルクの応答性が変動し、電動パワーステアリング装置100の操舵感が悪化する可能性がある。
2.実施の形態2
 実施の形態2に係る制御装置10について説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係る回転電機1、電力変換器4、及び制御装置10の基本的な構成は実施の形態1と同様であるが、q軸オフセット値ΔIqoffの設定方法が実施の形態1と異なる。
 実施の形態1の図13に示したように、時刻t02から時刻t03までの回転角速度ωが増加している場合では、破線で示すように、d軸電流指令値変化量ΔIdoが0のままである場合のq軸の電流検出値Idsは、制限なく低下していき、q軸電流オフセット偏差ΔIq_erroffが制限なく増加する。よって、q軸電流オフセット偏差ΔIq_erroffに基づいて算出されるd軸電流指令値変化量ΔIdoの応答性は、回転角速度ωの増量にかかわらず、比例ゲインKpidの設定値に応じた応答性になり、特に問題ない。
 一方、時刻t03から時刻t04までの回転角速度ωが減少している場合では、一点鎖線で示すように、d軸電流指令値変化量ΔIdoが時刻t03の値のままである場合のq軸の電流検出値Idsは、q軸の電流指令値Iqoまでしか増加せず、q軸電流オフセット偏差ΔIq_erroffの絶対値がq軸オフセット値ΔIqoffで上限制限される。よって、q軸電流オフセット偏差ΔIq_erroffに基づいて算出されるd軸電流指令値変化量ΔIdoの応答性は、回転角速度ωの減少量が大きい場合は、q軸電流オフセット偏差ΔIq_erroffの絶対値がq軸オフセット値ΔIqoffにより上限制限されるので、比例ゲインKpidの設定値に応じた応答性よりも低下する。また、q軸の電流検出値Iqsの変化に対する、d軸電流指令値変化量ΔIdoの応答周波数は、q軸の電圧指令値Vqoの応答周波数よりも低いので、回転角速度ωの減少による誘起電圧の低下及びq軸の電流検出値Iqsの増加に対して、d軸電流指令値変化量ΔIdoの増加が遅れ、q軸の電流検出値Iqsが上昇し易い。一方、d軸電流指令値変化量ΔIdoの応答周波数を上げ過ぎると、制御系の安定性が悪化するため限界がある。すなわち、回転角速度ωが減少している場合は、q軸オフセット値ΔIqoffを小さい値に設定し過ぎると、回転角速度ωの減少量が大きい場合に、d軸電流指令値変化量ΔIdoの応答性が悪化する。d軸電流指令値変化量ΔIdoの応答性が低下すると、q軸電流の応答性が悪化し、トルクの応答性が悪化する。
 そこで、本実施の形態では、d軸電流指令値変化部342は、回転角速度ωが減少している場合は、回転角速度ωが増加している場合よりも、q軸オフセット値ΔIqoffを大きい値に設定する。
 この構成によれば、回転角速度ωが減少している場合に、q軸電流オフセット偏差ΔIq_erroffの絶対値の上限制限値になるq軸オフセット値ΔIqoffを増加させ、回転角速度ωの減少量が大きい場合に、d軸電流指令値変化量ΔIdoの応答性が悪化することを抑制でき、q軸電流の応答性及びトルクの応答性が悪化することを防止できる。
 本実施の形態では、d軸電流指令値変化部342は、単位時間当たりの回転角速度の変化量Δωとq軸オフセット値ΔIqoffとの関係が予め設定されたオフセット値設定データを参照し、現在の回転角速度の変化量Δωに対応するq軸オフセット値ΔIqoffを算出する。次式に示すように、d軸電流指令値変化部342は、現在の回転角速度ω(t)から単位時間Δt前の回転角速度ω(t-Δt)を減算して、単位時間当たりの回転角速度の変化量Δωを算出する。例えば、単位時間Δtは、回転角速度ωの演算周期の自然整数倍に設定される。単位時間当たりの回転角速度の変化量Δωは、回転角加速度に相当する。
Figure JPOXMLDOC01-appb-M000034
 オフセット値設定データは、例えば、図17に示すように設定される。図17に示す例では、回転角速度の変化量Δωが、閾値ωthよりも大きい場合は、q軸オフセット値ΔIqoffは、低設定値ΔIqoffLに設定され、回転角速度の変化量Δωが、閾値ωthよりも小さい場合は、q軸オフセット値ΔIqoffは、低設定値ΔIqoffLよりも大きい高設定値ΔIqoffHに設定される。閾値ωthは、0又は負値に設定される。高設定値ΔIqoffH及び低設定値ΔIqoffLが一定値に設定されるので、回転角速度の変化量Δωが閾値ωthの上側又は下側で増減しても、q軸電流が変動することを抑制し、トルクが変動することを抑制できる。
 回転角速度ωは、回転角度θの微分演算により算出されるため、変動し易い。そのため、一定速にかかわらず、回転角速度の変化量Δωは0付近で変動し易い。閾値ωthを負値に設定すると、回転角速度の変化量Δωが0付近で変動しても、q軸オフセット値ΔIqoffが、低設定値ΔIqoffLに設定されたままに維持でき、d軸及びq軸電流が変動することを抑制できる。なお、ローパスフィルタ処理が行われた回転角速度ωが用いられてもよい。
3.実施の形態3
 実施の形態3に係る制御装置10について説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係る回転電機1、電力変換器4、及び制御装置10の基本的な構成は実施の形態1と同様であるが、d軸電流指令値変化部342の構成が実施の形態1と一部異なる。図18に、本実施の形態に係るd軸電流指令値変化部342のブロック図を示す。
 まず、制御設計の考え方を説明する。式(7)の電圧方程式からq軸電圧Vqの式を取り出し、現在の状態を次式にしめす。
Figure JPOXMLDOC01-appb-M000035
 弱め磁束制御の実行状態では、q軸の電流指令値Iqoが正値である場合は、q軸の電圧指令値Vqoが電圧制限円による上限制限値VqlmtHにより上限制限されるので、d軸電流がΔIdだけ操作され、q軸の電圧指令値Vqoが電圧制限円による上限制限値VqlmtHに到達した状態を次式に示す。
Figure JPOXMLDOC01-appb-M000036
 式(36)から式(35)を減算して、変形すると、VqとVqlmtHとの偏差を0にするためのd軸電流の操作量ΔIdffoは、次式になる。q軸の電流指令値Iqoが負値である場合は、下限制限値VqlmtLを用いて同様に導出される。
Figure JPOXMLDOC01-appb-M000037
 よって、q軸の電圧指令値Vqoを、q軸電圧指令値の上限制限値VqlmtH又は下限制限値VqlmtLに一致させるためには、d軸の電流指令値Idoを、式(37)により算出したフィードフォワード補正量ΔIdffoにより補正すればよい。偏差に乗算される比例ゲインは、回転角速度ωに反比例して変化される。よって、本実施の形態では、d軸電流指令値変化部342は、q軸の電圧指令値Vqoと、q軸の電圧指令値の上限制限値VqlmtH又は下限制限値VqlmtLとの偏差に基づいて、d軸の電流指令値Idoを補正する。この補正は、弱め磁束制御の実行領域に置いて実行される。フィードフォワード補正量ΔIdffoに対してノイズ成分を低減するためのローパスフィルタ処理が行われてもよい。
 q軸の電圧指令値Vqoを、上限制限値VqlmtH又は下限制限値VqlmtLに変化させるために、d軸の電流指令値Idoをフィードフォワード的に変化させ、応答性を向上させることができる。
 d軸電流指令値変化部342は、次式に示すように、d軸の基本電流指令値Idobに、d軸電流指令値変化量ΔIdo及びフィードフォワード補正量ΔIdffoを加算して、d軸の電流指令値Idoを算出する。
Figure JPOXMLDOC01-appb-M000038
 d軸電流指令値制限部343は、式(38)により算出されたd軸の電流指令値Idoに対して、実施の形態1と同様に、上限制限値IdlmtH及び下限制限値IdlmtLにより上限制限及び下限制限する。
4.実施の形態4
 実施の形態4に係る制御装置10について説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係る回転電機1、電力変換器4、及び制御装置10の基本的な構成は実施の形態1と同様であるが、電流指令値算出部34がq軸電流指令値変化部345を備えている点が実施の形態1と異なる。図19に本実施の形態に係る電流指令値算出部34のブロック図を示し、図20にq軸電流指令値変化部345のブロック図を示す。
 q軸電流指令値変化部345は、q軸の電流指令値Iqoからq軸の電流検出値Iqsを減算したq軸電流偏差に基づいてq軸電流指令補正値ΔIqoを算出し、補正前のq軸の電流指令値Iqobfにq軸電流指令補正値ΔIqoを加算してq軸の電流指令値Iqoを算出する。q軸電流偏差を算出するq軸の電流指令値Iqoには、電流フィードバック制御に用いられる補正後の最終的なq軸の電流指令値Iqoが用いられるが、前回の演算周期で算出された値が用いられる。補正前のq軸の電流指令値Iqobfには、式(17)に示した電流制限円による制限後のq軸の電流指令値Iqoが用いられる。
 q軸の電流検出値Iqsが、q軸の電流指令値Iqoよりもq軸オフセット値ΔIqoffだけ減少又は増加されるので、出力トルクの絶対値が、q軸オフセット値ΔIqoffに相当するトルク分だけ低下する。そこで、上記のように、q軸の電流検出値Iqsが、q軸の電流指令値Iqoよりも減少又は増加した分だけ、q軸の電流指令値Iqoを増加又は減少させるので、出力トルクの絶対値が低下しないようにできる。q軸電流偏差に基づいてq軸電流指令補正値ΔIqoを算出するので、条件判定を行うことなく、q軸電流が電圧制限楕円に制限されている状態を自動的に検出し、補正することができる。
 q軸電流指令値変化部345は、q軸電流偏差にローパスフィルタ処理を行った値を、q軸電流指令補正値ΔIqoとして算出する。例えば、ローパスフィルタ処理として、一次遅れフィルタ処理が用いられる。ローパスフィルタ処理として、移動平均処理などの他の処理が用いられてもよい。なお、q軸の電流検出値Iqsが振動要素であることから、q軸電流偏差にローパスフィルタ処理を行う代わりに、ローパスフィルタ処理が行われたq軸の電流検出値Iqsを用いて、q軸電流偏差が算出されてもよい。
Figure JPOXMLDOC01-appb-M000039
<転用例>
 回転電機1は、電動パワーステアリング装置100以外の各種の装置の駆動力源とされてもよい。例えば、回転電機1は、車輪の駆動力源とされてもよい。
 ステータに3相以外の複数相(例えば、2相、4相)の巻線が設けられてもよい。
 ステータに複数組(例えば2組)の3相の巻線が設けられ、各組の3相の巻線に対応して電力変換器及び制御装置の各部が設けられてもよい。
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
1 回転電機、4 電力変換器、10 回転電機の制御装置、31 回転検出部、32 電流検出部、33 電流座標変換部、34 電流指令値算出部、35 電圧指令値算出部、36 スイッチング制御部、100 電動パワーステアリング装置、101 駆動力伝達機構、Ido d軸の電流指令値、Idob d軸の基本電流指令値、Ids d軸の電流検出値、Imax 最大電流値、Iqo q軸の電流指令値、Iqob q軸の基本電流指令値、Iqoffo オフセットq軸電流指令値、Iqs q軸の電流検出値、Vdc 直流電圧、Vdo d軸の電圧指令値、Vqo q軸の電圧指令値、ΔIdo d軸電流指令値変化量、ωido 目標応答角周波数

Claims (17)

  1.  複数相の巻線を設けたステータと磁石を設けたロータとを有する回転電機を、電力変換器を介して制御する回転電機の制御装置であって、
     前記複数相の巻線に流れる電流を検出する電流検出部と、
     電流検出値を、前記ロータの回転角度に基づいて、前記ロータの磁極位置の方向に定めたd軸及び前記d軸より電気角で90度進んだ方向に定めたq軸からなるdq軸の回転座標系上のd軸の電流検出値及びq軸の電流検出値に変換する電流座標変換部と、
     d軸の電流指令値及びq軸の電流指令値を算出する電流指令値算出部と、
     前記d軸の電流検出値が前記d軸の電流指令値に近づき、前記q軸の電流検出値が前記q軸の電流指令値に近づくように、d軸の電圧指令値及びq軸の電圧指令値を変化させ、前記d軸の電圧指令値及び前記q軸の電圧指令値を、前記回転角度に基づいて複数相の電圧指令値に変換する電圧指令値算出部と、
     前記複数相の電圧指令値に基づいて、前記電力変換器が有する複数のスイッチング素子をオンオフするスイッチング制御部と、を備え、
     前記電流指令値算出部は、前記q軸の電流指令値が正値である場合は、前記q軸の電流指令値から正値のq軸オフセット値を減算したオフセットq軸電流指令値と前記q軸の電流検出値との偏差に基づいて、前記d軸の電流指令値を変化させる回転電機の制御装置。
  2.  前記電流指令値算出部は、前記q軸の電流指令値が正値である場合は、前記q軸の電流検出値が前記オフセットq軸電流指令値を下回った場合は、前記d軸の電流指令値を減少させ、前記q軸の電流検出値が前記オフセットq軸電流指令値を上回った場合は、前記d軸の電流指令値を増加させる請求項1に記載の回転電機の制御装置。
  3.  前記電流指令値算出部は、前記複数相の巻線に供給される電流が、前記複数相の巻線に供給できる最大電流値の範囲を超えないように、前記最大電流値及び前記d軸の電流指令値に基づいて、前記q軸の電流指令値を制限する請求項1又は2に記載の回転電機の制御装置。
  4.  前記電圧指令値算出部は、前記巻線に印加する電圧指令値が、前記電力変換器に供給される直流電圧に応じた最大印加電圧の範囲を超えないように、前記直流電圧及び前記d軸の電圧指令値に基づいて、前記q軸の電圧指令値を制限する請求項1から3のいずれか一項に記載の回転電機の制御装置。
  5.  前記電圧指令値算出部は、前記q軸の電圧指令値の制限処理に用いる前記d軸の電圧指令値にローパスフィルタ処理を行う請求項4に記載の回転電機の制御装置。
  6.  前記電流指令値算出部は、前記q軸の電流指令値が負値である場合は、前記q軸の電流指令値に正値の前記q軸オフセット値を加算したオフセットq軸電流指令値と、前記q軸の電流検出値との偏差に基づいて、前記d軸の電流指令値を変化させる請求項1から5のいずれか一項に記載の回転電機の制御装置。
  7.  前記電流指令値算出部は、前記q軸の電流指令値が負値である場合は、前記q軸の電流検出値が前記オフセットq軸電流指令値を上回った場合は、前記d軸の電流指令値を減少させ、前記q軸の電流検出値が前記オフセットq軸電流指令値を下回った場合は、前記d軸の電流指令値を増加させる請求項6に記載の回転電機の制御装置。
  8.  前記電流指令値算出部は、前記q軸オフセット値を、前記q軸の電流指令値の絶対値よりも小さい値に設定する請求項1から7のいずれか一項に記載の回転電機の制御装置。
  9.  前記電流指令値算出部は、前記ロータの回転角速度が減少している場合は、前記ロータの回転角速度が増加している場合よりも、前記q軸オフセット値を大きい値に設定する請求項1から8のいずれか一項に記載の回転電機の制御装置。
  10.  前記電流指令値算出部は、前記回転電機の電気角での最大の回転角速度をωmaxとし、前記回転電機のインダクタンスをLとし、巻線抵抗をRとし、制御周期当たりの前記d軸の電流検出値の変化量をΔIdodTとし、前記q軸オフセット値をΔIqoffとすると、
     ΔIqoff>ωmax・L/R・ΔIdodT
     を満たすように、前記q軸オフセット値を設定する請求項1から9のいずれか一項に記載の回転電機の制御装置。
  11.  前記電流指令値算出部は、前記q軸オフセット値を、前記q軸の電流検出値に重畳するノイズ成分の振幅よりも大きい値に設定する請求項1から10のいずれか一項に記載の回転電機の制御装置。
  12.  前記電流指令値算出部は、前記オフセットq軸電流指令値と前記q軸の電流検出値との偏差に比例ゲインを乗算して、前記d軸の電流指令値を算出し、
     前記q軸オフセット値を、前記q軸の電流検出値に重畳するノイズ成分の振幅に、前記比例ゲインを乗算した値よりも大きい値に設定する請求項1から11のいずれか一項に記載の回転電機の制御装置。
  13.  前記電流指令値算出部は、前記d軸の電流指令値の算出に用いる前記q軸の電流検出値にローパスフィルタ処理を行う請求項1から12のいずれか一項に記載の回転電機の制御装置。
  14.  前記電流指令値算出部は、前記q軸の電圧指令値と前記q軸の電圧指令値の制限値との偏差に基づいて、前記d軸の電流指令値を補正する請求項1から13のいずれか一項に記載の回転電機の制御装置。
  15.  前記電流指令値算出部は、前記q軸の電流指令値から前記q軸の電流検出値を減算した偏差に基づいて補正値を算出し、補正前のq軸の電流指令値に前記補正値を加算して前記q軸の電流指令値を算出する請求項1から14のいずれか一項に記載の回転電機の制御装置。
  16.  前記電流指令値算出部は、前記q軸の電流指令値から前記q軸の電流検出値を減算した前記偏差にローパスフィルタ処理を行った値を、前記補正値として算出する請求項15に記載の回転電機の制御装置。
  17.  請求項1から16のいずれか一項に記載の回転電機の制御装置と、
     前記電力変換器と、
     前記回転電機と、
     前記回転電機の駆動力を車両の操舵装置に伝達する駆動力伝達機構と、を備えた電動パワーステアリング装置。
PCT/JP2020/044420 2020-11-30 2020-11-30 回転電機の制御装置及び電動パワーステアリング装置 WO2022113318A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20963582.0A EP4254776A4 (en) 2020-11-30 2020-11-30 CONTROL DEVICE FOR ROTARY ELECTRIC MACHINE AND ELECTRIC SERVO STEERING DEVICE
JP2022564977A JP7317250B2 (ja) 2020-11-30 2020-11-30 回転電機の制御装置及び電動パワーステアリング装置
CN202080107483.9A CN116458053A (zh) 2020-11-30 2020-11-30 旋转电机的控制装置及电动助力转向装置
US18/030,596 US20230412100A1 (en) 2020-11-30 2020-11-30 Controller for rotary electric machine and electric power steering apparatus
PCT/JP2020/044420 WO2022113318A1 (ja) 2020-11-30 2020-11-30 回転電機の制御装置及び電動パワーステアリング装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/044420 WO2022113318A1 (ja) 2020-11-30 2020-11-30 回転電機の制御装置及び電動パワーステアリング装置

Publications (1)

Publication Number Publication Date
WO2022113318A1 true WO2022113318A1 (ja) 2022-06-02

Family

ID=81755463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044420 WO2022113318A1 (ja) 2020-11-30 2020-11-30 回転電機の制御装置及び電動パワーステアリング装置

Country Status (5)

Country Link
US (1) US20230412100A1 (ja)
EP (1) EP4254776A4 (ja)
JP (1) JP7317250B2 (ja)
CN (1) CN116458053A (ja)
WO (1) WO2022113318A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS559258B2 (ja) 1977-11-10 1980-03-08
JP3559258B2 (ja) * 2001-07-30 2004-08-25 三菱電機株式会社 ステアリング制御装置
JP2020069860A (ja) * 2018-10-30 2020-05-07 株式会社ジェイテクト 操舵制御装置
WO2020090115A1 (ja) * 2018-11-02 2020-05-07 三菱電機株式会社 電動機制御装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3849979B2 (ja) * 2002-07-02 2006-11-22 本田技研工業株式会社 電動パワーステアリング装置
JP2007089287A (ja) * 2005-09-21 2007-04-05 Jtekt Corp モータ制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS559258B2 (ja) 1977-11-10 1980-03-08
JP3559258B2 (ja) * 2001-07-30 2004-08-25 三菱電機株式会社 ステアリング制御装置
JP2020069860A (ja) * 2018-10-30 2020-05-07 株式会社ジェイテクト 操舵制御装置
WO2020090115A1 (ja) * 2018-11-02 2020-05-07 三菱電機株式会社 電動機制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4254776A4

Also Published As

Publication number Publication date
CN116458053A (zh) 2023-07-18
EP4254776A1 (en) 2023-10-04
JPWO2022113318A1 (ja) 2022-06-02
US20230412100A1 (en) 2023-12-21
EP4254776A4 (en) 2024-01-24
JP7317250B2 (ja) 2023-07-28

Similar Documents

Publication Publication Date Title
US10333440B2 (en) Motor control apparatus and electric power steering system
JP2009247147A (ja) モータ制御装置および電動パワーステアリング装置
JPWO2011121792A1 (ja) 電動パワーステアリング装置
JP2017017909A (ja) モータ制御装置及びそれを搭載した電動パワーステアリング装置
JP2016111788A (ja) 回転電機の制御装置
JP5900656B2 (ja) モータ制御装置およびモータ制御方法
JP2020167820A (ja) 交流回転電機の制御装置
JP4053511B2 (ja) 巻線界磁式同期機のベクトル制御装置
JP7090812B2 (ja) 交流回転電機の制御装置及び電動パワーステアリング装置
JP6394885B2 (ja) 電動パワーステアリング装置
WO2017109884A1 (ja) 回転電機の制御装置
WO2022113318A1 (ja) 回転電機の制御装置及び電動パワーステアリング装置
JP6241331B2 (ja) 電動機の制御装置
WO2022113317A1 (ja) 回転電機の制御装置及び電動パワーステアリング装置
JP2019050684A (ja) パワーステアリング装置の制御装置
JP3751991B2 (ja) Acサーボモータの電流制御方法
WO2022044347A1 (ja) 回転電機の制御装置及び電動パワーステアリング装置
JP6945673B2 (ja) 交流回転電機の制御装置
JP7046121B2 (ja) 回転機の制御装置
WO2022071390A1 (ja) 電気モータ制御装置
JP5949349B2 (ja) モータ制御装置及び電動パワーステアリング装置
WO2023228404A1 (ja) 回転電機制御装置
JP2009081915A (ja) モータ制御装置
JP6751495B2 (ja) 自動車
JP2023146676A (ja) モータ制御方法及びモータ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963582

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022564977

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18030596

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202080107483.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020963582

Country of ref document: EP

Effective date: 20230630