JP2020167820A - 交流回転電機の制御装置 - Google Patents

交流回転電機の制御装置 Download PDF

Info

Publication number
JP2020167820A
JP2020167820A JP2019065452A JP2019065452A JP2020167820A JP 2020167820 A JP2020167820 A JP 2020167820A JP 2019065452 A JP2019065452 A JP 2019065452A JP 2019065452 A JP2019065452 A JP 2019065452A JP 2020167820 A JP2020167820 A JP 2020167820A
Authority
JP
Japan
Prior art keywords
axis
value
magnetic flux
deviation
multiplying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019065452A
Other languages
English (en)
Other versions
JP6687228B1 (ja
Inventor
信吾 原田
Shingo Harada
信吾 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2019065452A priority Critical patent/JP6687228B1/ja
Priority to JP2020052104A priority patent/JP6945673B2/ja
Application granted granted Critical
Publication of JP6687228B1 publication Critical patent/JP6687228B1/ja
Publication of JP2020167820A publication Critical patent/JP2020167820A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】dq軸電流に応じて相互に変化するdq軸の鎖交磁束を考慮して制御できる交流回転電機の制御装置を提供する。【解決手段】dq軸の電流検出値に基づいてdq軸の実鎖交磁束を算出し、dq軸の電流指令値に基づいてdq軸の指令鎖交磁束を算出し、d軸磁束偏差にd軸比例ゲインを乗算した値と、q軸磁束偏差に回転角周波数及びd軸積分ゲインを乗算した値の積分値と、を加算してd軸の電圧指令値を算出し、q軸磁束偏差にq軸比例ゲインを乗算した値と、d軸磁束偏差に回転角周波数及びq軸積分ゲインを乗算した値の積分値と、を加算してq軸の電圧指令値を算出する交流回転電機の制御装置。【選択図】図2

Description

本願は、交流回転電機の制御装置に関するものである。
従来から、交流回転電機の制御方法として、dq軸の回転座標系上で電流フィードバック制御を行う方法が知られている。電流フィードバック制御において、d軸インダクタンスLdとq軸インダクタンスLqとを用いて、dq軸の電圧指令値を算出する方法が知られている(例えば、特許文献1の式(2)から式(5))。
国際公開第2017/090109号
しかしながら、リラクタンストルクが生じる回転電機では、非線形の磁気飽和特性を有するロータ鉄心により生じる鎖交磁束成分が存在する。d軸の鎖交磁束はd軸電流だけでなく、q軸電流によっても変化し、q軸の鎖交磁束はq軸電流だけでなく、d軸電流によっても変化する。
そのため、d軸インダクタンスLd、q軸インダクタンスLqを用いる電流フィードバック制御では、d軸電流に応じて変化するd軸の鎖交磁束及びq軸電流に応じて変化するq軸の鎖交磁束を考慮することができるが、q軸電流に応じて変化するd軸の鎖交磁束及びd軸電流に応じて変化するq軸の鎖交磁束を考慮することはできないので、制御精度が低下する問題があった。
そこで、dq軸電流に応じて相互に変化するdq軸の鎖交磁束を考慮して制御できる交流回転電機の制御装置が望まれる。
本願に係る交流回転電機の制御装置は、n相(nは2以上の自然数)の巻線が巻装されたステータとロータとを有する交流回転電機を、インバータを介して制御する交流回転電機の制御装置であって、
前記n相の巻線に流れる巻線電流を検出する電流検出部と、
前記ロータの磁極位置を検出する磁極位置検出部と、
前記n相の前記巻線電流の検出値を、検出した前記磁極位置の方向に定めたd軸及び前記d軸より電気角で90°進んだ方向に定めたq軸からなるdq軸の回転座標系上のd軸の電流検出値及びq軸の電流検出値に変換するdq軸実電流変換部と、
d軸の電流指令値及びq軸の電流指令値を算出するdq軸指令電流算出部と、
前記d軸の電流検出値及び前記q軸の電流検出値に基づいて、d軸の実鎖交磁束及びq軸の実鎖交磁束を算出する実鎖交磁束算出部と、
前記d軸の電流指令値及び前記q軸の電流指令値に基づいて、d軸の指令鎖交磁束及びq軸の指令鎖交磁束を算出する指令鎖交磁束算出部と、
前記d軸の実鎖交磁束と前記d軸の指令鎖交磁束との偏差であるd軸磁束偏差を算出し、前記q軸の実鎖交磁束と前記q軸の指令鎖交磁束との偏差であるq軸磁束偏差を算出し、前記d軸磁束偏差にd軸比例ゲインを乗算した値と、前記q軸磁束偏差に前記磁極位置の回転角周波数及びd軸積分ゲインを乗算した値の積分値と、を加算してd軸の電圧指令値を算出し、前記q軸磁束偏差にq軸比例ゲインを乗算した値と、前記d軸磁束偏差に前記回転角周波数及びq軸積分ゲインを乗算した値の積分値と、を加算してq軸の電圧指令値を算出するdq軸指令電圧算出部と、
前記d軸の電圧指令値及び前記q軸の電圧指令値を、前記n相の巻線に印加する電圧指令値であるn相の電圧指令値に変換する指令電圧変換部と、
前記n相の電圧指令値に基づいて、前記インバータが有する複数のスイッチング素子をオンオフ制御するスイッチング制御部と、を備えたものである。
本願に係る交流回転電機の制御装置によれば、dq軸の電流検出値に基づいて、dq軸の実鎖交磁束を算出し、dq軸の電流指令値に基づいて、dq軸の指令鎖交磁束を算出し、dq軸の鎖交磁束偏差に基づいて、dq軸鎖交磁束をフィードバックする鎖交磁束フィードバック制御系を構成したので、d軸電流及びq軸電流に応じて変化するd軸の鎖交磁束及びq軸の鎖交磁束の非線形の特性を考慮することができ、制御精度を向上することができる。また、q軸鎖交磁束成分に応じてd軸の電圧指令値を変化させ、d軸鎖交磁束成分に応じてq軸の電圧指令値を変化させるdq軸間の非干渉化の項を、積分制御の形で構成したので、積分器の作用等により、高回転時の制御系の安定性を向上させることができる。
実施の形態1に係る交流回転電機及び交流回転電機の制御装置の概略構成図である。 実施の形態1に係る交流回転電機の制御装置の概略ブロック図である。 実施の形態1に係る交流回転電機の制御装置のハードウェア構成図である。 実施の形態1に係る制御系設計を説明するためのブロック図である。 実施の形態1に係る交流回転電機の制御装置のブロック図である。 実施の形態2に係る制御系設計を説明するためのブロック図である。 実施の形態2に係る交流回転電機の制御装置のブロック図である。 実施の形態3に係る交流回転電機の制御装置のブロック図である。
1.実施の形態1
実施の形態1に係る交流回転電機の制御装置1(以下、単に制御装置1と称す)について図面を参照して説明する。図1は、本実施の形態に係る交流回転電機2及び制御装置1の概略構成図である。
1−1.交流回転電機
交流回転電機2は、n相(nは2以上の自然数)の巻線を設けたステータと、ロータと、を有する同期交流回転電機とされている。本実施の形態では、n=3とされており、U相、V相、W相の3相とされている。ステータに、3相の巻線Cu、Cv、Cwが設けられている。3相巻線Cu、Cv、Cwは、スター結線とされている。なお、3相巻線は、デルタ結線とされてもよい。電磁鋼板により構成されたロータ鉄心の内部には、永久磁石が埋め込まれており、埋込磁石型の同期交流回転電機とされている。
交流回転電機2は、ロータの回転角度に応じた電気信号を出力する回転センサ16を備えている。回転センサ16は、ホール素子、エンコーダ、又はレゾルバ等とされる。回転センサ16の出力信号は、制御装置1に入力される。
1−2.インバータ等
インバータ20は、直流電源10と3相巻線との間で電力変換を行い、複数のスイッチング素子を有している。インバータ20は、直流電源10の正極側に接続される正極側のスイッチング素子23H(上アーム)と直流電源10の負極側に接続される負極側のスイッチング素子23L(下アーム)とが直列接続された直列回路(レッグ)を、3相各相の巻線に対応して3セット設けている。インバータ20は、3つの正極側のスイッチング素子23Hと、3つの負極側のスイッチング素子23Lとの、合計6つのスイッチング素子を備えている。そして、正極側のスイッチング素子23Hと負極側のスイッチング素子23Lとが直列接続されている接続点が、対応する相の巻線に接続されている。
具体的には、各相の直列回路において、正極側のスイッチング素子23Hのコレクタ端子は、正極側電線14に接続され、正極側のスイッチング素子23Hのエミッタ端子は、負極側のスイッチング素子23Lのコレクタ端子に接続され、負極側のスイッチング素子23Lのエミッタ端子は、負極側電線15に接続されている。正極側のスイッチング素子23Hと負極側のスイッチング素子23Lとの接続点は、対応する相の巻線に接続されている。スイッチング素子には、ダイオード22が逆並列接続されたIGBT(Insulated Gate Bipolar Transistor)、又は逆並列接続されたダイオードの機能を有するMOSFET(Metal Oxide Semiconductor Field Effect Transistor)等が用いられる。各スイッチング素子のゲート端子は、制御装置1に接続されている。各スイッチング素子は、制御装置1から出力される制御信号によりオン又はオフされる。
平滑コンデンサ12が、正極側電線14と負極側電線15との間に接続される。直流電源10からインバータ20に供給される電源電圧を検出する電源電圧センサ13が備えられている。電源電圧センサ13は、正極側電線14と負極側電線15との間に接続されている。電源電圧センサ13の出力信号は、制御装置1に入力される。
電流センサ17は、各相の巻線に流れる電流に応じた電気信号を出力する。電流センサ17は、スイッチング素子の直列回路と巻線とをつなぐ各相の電線上に備えられている。電流センサ17の出力信号は、制御装置1に入力される。なお、電流センサ17は、各相の直列回路に備えられてもよい。
直流電源10には、充放電可能な蓄電装置(例えば、リチウムイオン電池、ニッケル水素電池、電気二重層キャパシタ)が用いられる。なお、直流電源10には、直流電圧を昇圧したり降圧したりする直流電力変換器であるDC−DCコンバータが設けられてもよい。
1−3.制御装置1
制御装置1は、インバータ20を介して交流回転電機2を制御する。図2に示すように、制御装置1は、後述する電流検出部31、磁極位置検出部32、dq軸実電流変換部33、dq軸指令電流算出部34、実鎖交磁束算出部35、指令鎖交磁束算出部36、dq軸指令電圧算出部37、指令電圧変換部38、スイッチング制御部39、及び電圧検出部40等を備えている。制御装置1の各機能は、制御装置1が備えた処理回路により実現される。具体的には、制御装置1は、図3に示すように、処理回路として、CPU(Central Processing Unit)等の演算処理装置90(コンピュータ)、演算処理装置90とデータのやり取りする記憶装置91、演算処理装置90に外部の信号を入力する入力回路92、及び演算処理装置90から外部に信号を出力する出力回路93等を備えている。
演算処理装置90として、ASIC(Application Specific Integrated Circuit)、IC(Integrated Circuit)、DSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)、各種の論理回路、及び各種の信号処理回路等が備えられてもよい。また、演算処理装置90として、同じ種類のもの又は異なる種類のものが複数備えられ、各処理が分担して実行されてもよい。記憶装置91として、演算処理装置90からデータを読み出し及び書き込みが可能に構成されたRAM(Random Access Memory)、演算処理装置90からデータを読み出し可能に構成されたROM(Read Only Memory)等が備えられている。入力回路92は、電源電圧センサ13、電流センサ17、回転センサ16等の各種のセンサ、スイッチが接続され、これらセンサ、スイッチの出力信号を演算処理装置90に入力するA/D変換器等を備えている。出力回路93は、スイッチング素子をオンオフ駆動するゲート駆動回路等の電気負荷が接続され、これら電気負荷に演算処理装置90から制御信号を出力する駆動回路等を備えている。
そして、制御装置1が備える図2の各制御部31〜40等の各機能は、演算処理装置90が、ROM等の記憶装置91に記憶されたソフトウェア(プログラム)を実行し、記憶装置91、入力回路92、及び出力回路93等の制御装置1の他のハードウェアと協働することにより実現される。なお、各制御部31〜40等が用いる鎖交磁束マップ、各ゲイン、巻線抵抗値等の設定データは、ソフトウェア(プログラム)の一部として、ROM等の記憶装置91に記憶されている。以下、制御装置1の各機能について詳細に説明する。
1−3−1.基本制御
電流検出部31は、3相の巻線に流れる巻線電流Iur、Ivr、Iwrを検出する。本実施の形態では、電流検出部31は、電流センサ17の出力信号に基づいて、インバータ20から各相の巻線Cu、Cv、Cwに流れる巻線電流Iur、Ivr、Iwrを検出する。ここで、Iurが、U相の巻線電流検出値であり、Ivrが、V相の巻線電流検出値であり、Iwrが、W相の巻線電流検出値である。
磁極位置検出部32は、電気角でのロータの磁極位置θ(ロータの回転角度θ)及び回転角速度ω(回転角速度)を検出する。本実施の形態では、磁極位置検出部32は、回転センサ16の出力信号に基づいて、ロータの磁極位置θ(回転角度θ)及び回転角周波数ωを検出する。本実施の形態では、磁極位置は、ロータに設けられた永久磁石のN極の向きに設定される。なお、磁極位置検出部32は、電流指令値に高調波成分を重畳することによって得られる電流情報等に基づいて、回転センサを用いずに、回転角度(磁極位置)を推定するように構成されてもよい(いわゆる、センサレス方式)。
電圧検出部40は、直流電源10からインバータ20に供給される電源電圧VDCを検出する。本実施の形態では、電圧検出部40は、電源電圧センサ13の出力信号に基づいて、電源電圧VDCを検出する。
dq軸実電流変換部33は、3相の巻線電流検出値Iur、Ivr、Iwrを、dq軸の回転座標系上のd軸の電流検出値Idr及びq軸の電流検出値Iqrに変換する。dq軸の回転座標系は、検出した磁極位置θの方向に定めたd軸及びd軸より電気角で90°進んだ方向に定めたq軸からなる2軸の回転座標であり、ロータの磁極位置の回転に同期して回転する。具体的には、dq軸実電流変換部33は、3相の巻線電流検出値Iur、Ivr、Iwrを、磁極位置θに基づいて3相2相変換及び回転座標変換を行って、dq軸の電流検出値Idr、Iqrに変換する。
dq軸指令電流算出部34は、d軸の電流指令値Ido及びq軸の電流指令値Iqoを算出する。本実施の形態では、目標トルク、電源電圧VDC、及び回転角周波数ω等に基づいて、最大トルク電流制御、弱め磁束制御、及びId=0制御などの電流ベクトル制御方法を用いて、dq軸の電流指令値Ido、Iqoを算出する。目標トルクは、外部の装置から伝達されてもよいし、制御装置1内で演算されてもよい。
指令電圧変換部38は、後述するdq軸指令電圧算出部37により算出されたd軸の電圧指令値Vdo及びq軸の電圧指令値Vqoを、3相の巻線に印加する電圧指令である3相の電圧指令値Vuo、Vvo、Vwoに変換する。具体的には、指令電圧変換部38は、dq軸の電圧指令値Vdo、Vqoを、磁極位置θに基づいて、固定座標変換及び2相3相変換を行って、3相の電圧指令値Vuo、Vvo、Vwoに変換する。
スイッチング制御部39は、3相の電圧指令値Vuo、Vvo、Vwoのそれぞれと、キャリア周波数で0を中心に電源電圧VDC/2の振幅で振動するキャリア波(三角波)とを比較し、電圧指令値がキャリア波を上回った場合は、PWM信号をオンし、電圧指令値がキャリア波を下回った場合は、矩形パルス波をオフする。スイッチング制御部39は、3相各相の矩形パルス波に応じた制御信号をインバータ20に出力し、インバータ20の各スイッチング素子をオンオフさせる。
1−3−2.鎖交磁束フィードバック制御
本実施の形態では、dq軸指令電圧算出部37は、dq軸の電流検出値Idr、Iqrに応じたdq軸の実鎖交磁束Ψdo、Ψqoが、dq軸の電流指令値Ido、Iqoに応じたdq軸の指令鎖交磁束Ψdo、Ψqoに近づくように、dq軸の電圧指令値Vdo、Vqoを変化させる鎖交磁束フィードバック制御を行うように構成されている。
1−3−2−1.電流フィードバック制御の課題
<電流ベースの電圧方程式>
従来の電流フィードバック制御では、次式に示すように、dq軸電流Id、Iqについて線形化した電圧方程式に基づいて、フィードバック制御系が設計されている。
Figure 2020167820
ここで、Vdは、d軸電圧であり、Vqは、q軸電圧であり、Idは、d軸電流であり、Iqは、q軸電流であり、ωは、磁極位置の回転角周波数(回転角速度)であり、Rは、巻線の抵抗値であり、Ldは、d軸インダクタンスであり、Lqは、q軸インダクタンスであり、Ψaは、永久磁石による鎖交磁束である。
<従来の電流フィーバック制御器>
式(1)に基づいて設計した、従来の電流フィーバック制御器は、次式のようになる。ここで、式(2)の第1式の右辺において、第1項は、dq軸電流偏差ΔId、ΔIqに応じた積分制御の項であり、第2項は、dq軸電流偏差ΔId、ΔIqに応じた比例制御の項であり、第3項及び第4項は、d軸とq軸との間を非干渉化する、dq軸電流検出値Idr、Iqrに応じたフィードフォワード制御の項である。
Figure 2020167820
ここで、式(2)の制御器は、制御対象が式(1)になる場合に、閉ループ伝達関数W(s)が、次式に示すように、応答角周波数ωccの一次遅れになるように設計されている。1/ωccが、一次遅れの時定数になる。
Figure 2020167820
<鎖交磁束のdq軸電流の相互依存性による問題>
しかしながら、リラクタンストルクが生じる回転電機では、非線形の磁気飽和特性を有するロータ鉄心(電磁鋼板)により生じる鎖交磁束成分が存在する。そのため、鎖交磁束の変化によって生じる誘起起電力は、正確には、式(1)の右辺の第2項のような、各軸のインダクタンスと電流変化とを乗算した線形の式にはならず、モデル化誤差が存在する。具体的には、d軸の鎖交磁束Ψdは、d軸電流Idだけでなく、q軸電流Iqによっても変化し、q軸の鎖交磁束Ψqは、q軸電流Iqだけでなく、d軸電流Idによっても変化する。
そのため、式(2)のように、d軸インダクタンスLd、q軸インダクタンスLqを用いる電流フィードバック型の制御方法では、d軸電流Idに応じて変化するd軸の鎖交磁束Ψd及びq軸電流Iqに応じて変化するq軸の鎖交磁束Ψqを考慮することができるが、q軸電流Iqに応じて変化するd軸の鎖交磁束Ψd及びd軸電流Idに応じて変化するq軸の鎖交磁束Ψqを考慮することはできないので、制御精度が低下する問題があった。
1−3−2−2.鎖交磁束フィードバック制御系の導出
<dq軸鎖交磁束を用いた電圧方程式>
そこで、dq軸電流に応じて相互に変化するdq軸の鎖交磁束を考慮した制御系を導出する。電圧方程式を、直接、d軸鎖交磁束Ψd及びq軸鎖交磁束Ψqを用いて表現すると、次式のようになる。
Figure 2020167820
ここで、上述したように、リラクタンストルクが生じる回転電機では、d軸鎖交磁束Ψdは、d軸電流Id及びq軸電流Iqに応じて変化するため、d軸鎖交磁束Ψdは、Id、Iqの関数となっている(Ψd(Id,Iq))。同様に、q軸鎖交磁束Ψqは、d軸電流Id及びq軸電流Iqに応じて変化するため、q軸鎖交磁束Ψqは、Id、Iqの関数となっている(Ψq(Id,Iq))。式(1)の永久磁石による鎖交磁束Ψaは、d軸鎖交磁束Ψdに含まれている。なお、右辺第1項の巻線抵抗値Rによる電圧降下分は、鎖交磁束では表せないため、式(1)と同様に、dq軸電流Id、Iqを用いている。
<鎖交磁束フィードバック制御系>
ここで、式(4)の右辺第1項の巻線抵抗値Rによる電圧降下の項が他の項に比べて小さいので無視すると、次式となる。
Figure 2020167820
式(5)をラプラス変換し、変形すると、次式となる。ここで、sは、ラプラス演算子であり、dq軸の鎖交磁束Ψd、Ψqをdq軸の実鎖交磁束Ψdr、Ψqrに置き換え、dq軸電圧Vd、Vqを、dq軸の電圧指令値Vdo、Vqoに置き換えている。
Figure 2020167820
dq軸の指令鎖交磁束Ψdo、Ψqoに対するdq軸の実鎖交磁束Ψdr、Ψqrの閉ループ伝達関数W(s)が、次式に示すように、応答角周波数ωccの一次遅れになるように設計する。1/ωccが、一次遅れの時定数になる。
Figure 2020167820
式(7)を実現する、dq軸の指令鎖交磁束Ψdo、Ψqoは、次式に示すように導出される。ここで、第1式及び第2式の右辺第2項は、dq軸間の非干渉化の項である。
Figure 2020167820
<高回転時の安定性を向上させるための、非干渉化項の積分制御化>
式(8)の第1式及び第2式の右辺第2項の非干渉化項について、dq軸の電流検出値Idr、Iqrに基づいて算出されるdq軸の実鎖交磁束Ψdr、Ψqrには、演算周期による演算遅れが生る。高回転域になると、右辺第2項の回転角周波数ωが大きくなり、また、回転周期が演算周期に近づくため、演算遅れの影響が無視できなくなり、制御系の安定性が低下し、例えば、制御系に振動が生じる。
そこで、式(7)に示すように閉ループ伝達関数が一次遅れになることを利用し、次式に示すように、dq軸の鎖交磁束偏差ΔΨd、ΔΨqと、dq軸の実鎖交磁束Ψdr、Ψqrとの関係式を導出する。
Figure 2020167820
式(8)の第1式及び第2式に、式(9)を代入すると次式を得る。次式の制御器を用いれば、図4に示すように、閉ループ伝達関数が、応答角周波数ωccの一次遅れになる制御系が設計される。
Figure 2020167820
このように、dq軸の鎖交磁束偏差ΔΨd、ΔΨqを積分する形に変形すると、演算遅れの影響が、積分器の平滑化の作用等により軽減され、制御系の安定性が向上する。
1−3−2−3.鎖交磁束フィードバック制御の構成
式(10)に基づいて、制御系が設計される。本実施の形態では、図5のブロック図に示すように、鎖交磁束フィードバック制御系が構成されている。
実鎖交磁束算出部35は、d軸の電流検出値Idr及びq軸の電流検出値Iqrに基づいて、d軸の実鎖交磁束Ψdr及びq軸の実鎖交磁束Ψqrを算出する。本実施の形態では、実鎖交磁束算出部35は、d軸電流及びq軸電流とd軸鎖交磁束との関係が予め設定されたd軸鎖交磁束マップを参照し、dq軸の電流検出値Idr、Iqrに対応するd軸の実鎖交磁束Ψdrを算出する。また、実鎖交磁束算出部35は、d軸電流及びq軸電流とq軸鎖交磁束との関係が予め設定されたq軸鎖交磁束マップを参照し、dq軸の電流検出値Idr、Iqrに対応するq軸の実鎖交磁束Ψqrを算出する。
指令鎖交磁束算出部36は、d軸の電流指令値Ido及びq軸の電流指令値Iqoに基づいて、d軸の指令鎖交磁束Ψdo及びq軸の指令鎖交磁束Ψqoを算出する。本実施の形態では、指令鎖交磁束算出部36は、d軸鎖交磁束マップを参照し、dq軸の電流指令値Ido、Iqoに対応するd軸の指令鎖交磁束Ψdoを算出する。また、指令鎖交磁束算出部36は、q軸鎖交磁束マップを参照し、dq軸の電流指令値Ido、Iqoに対応するq軸の指令鎖交磁束Ψqoを算出する。
dq軸指令電圧算出部37は、次式に示すように、d軸の実鎖交磁束Ψdrとd軸の指令鎖交磁束Ψdoとの偏差であるd軸磁束偏差ΔΨdを算出し、q軸の実鎖交磁束Ψqrとq軸の指令鎖交磁束Ψqoとの偏差であるq軸磁束偏差ΔΨqを算出する。
Figure 2020167820
そして、dq軸指令電圧算出部37は、次式の第1式にしめすように、d軸磁束偏差ΔΨdにd軸比例ゲインKpdを乗算した値と、q軸磁束偏差ΔΨqに回転角周波数ω及びd軸積分ゲインKidを乗算した値の積分値と、を加算してd軸の電圧指令値Vdoを算出する。また。dq軸指令電圧算出部37は、次式の第2式にしめすように、q軸磁束偏差ΔΨqにq軸比例ゲインKpqを乗算した値と、d軸磁束偏差ΔΨdに回転角周波数ω及びq軸積分ゲインKiqを乗算した値の積分値と、を加算してq軸の電圧指令値Vqoを算出する。
Figure 2020167820
本実施の形態では、次式に示すように、d軸比例ゲインKpd、d軸積分ゲインKid、q軸比例ゲインKpq、q軸積分ゲインKiqは、フィードバック制御系の応答角周波数ωccに応じた値が設定されている。なお、応答角周波数ωccは運転条件に応じて変化されてもよい。また、各ゲインは、調整のため、応答角周波数ωccから多少変化されてもよい(例えば、応答角周波数ωccの±10%の範囲内)。
Figure 2020167820
このように、dq軸の電流検出値Idr、Iqrに基づいて、dq軸の実鎖交磁束Ψdr、Ψqrを算出し、dq軸の電流指令値Ido、Iqoに基づいて、dq軸の指令鎖交磁束Ψdo、Ψqoを算出し、dq軸の鎖交磁束偏差ΔΨd、ΔΨqに基づいて、dq軸鎖交磁束をフィードバックする鎖交磁束フィードバック制御系を構成したので、d軸電流Id及びq軸電流Iqに応じて変化するd軸の鎖交磁束Ψd及びq軸の鎖交磁束Ψqの非線形の特性を考慮することができ、制御精度を向上することができる。
また、q軸鎖交磁束成分に応じてd軸の電圧指令値Vdoを変化させ、d軸鎖交磁束成分に応じてq軸の電圧指令値Vqoを変化させるdq軸間の非干渉化の項を、積分制御の形に展開したので、積分器の作用等により、高回転時の制御系の安定性を向上させることができる。
2.実施の形態2
次に、実施の形態2に係る制御装置1について説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係る交流回転電機2及び制御装置1の基本的な構成及び処理は実施の形態1と同様である。しかし、本実施の形態では、dq軸指令電圧算出部37の構成が、実施の形態1と異なる。
実施の形態1では、式(4)の右辺第1項の巻線抵抗値Rによる電圧降下の項を無視して、制御系を構成した。本実施の形態では、巻線抵抗値Rの電圧降下の項を無視せずに制御系を設計する。
式(4)を、巻線抵抗値Rの項を無視せずに、式(6)と同様にラプラス変換をすると、次式を得る。
Figure 2020167820
閉ループ伝達関数が式(7)の一次遅れになる、dq軸の指令鎖交磁束Ψdo、Ψqoは、次式に示すように導出される。ここで、実施の形態1の式(10)と同様に、式(9)の関係式を代入している。次式の制御器を用いれば、図8に示すように、巻線抵抗値Rによる電圧降下の項を無視しない場合でも、閉ループ伝達関数が、応答角周波数ωccの一次遅れになる制御系が設計される。
Figure 2020167820
式(15)に基づいて制御系を設計し、図7のブロック図に示すように、鎖交磁束フィードバック制御系が構成されている。
実施の形態1と同様に、実鎖交磁束算出部35は、d軸の電流検出値Idr及びq軸の電流検出値Iqrに基づいて、d軸の実鎖交磁束Ψdr及びq軸の実鎖交磁束Ψqrを算出する。指令鎖交磁束算出部36は、d軸の電流指令値Ido及びq軸の電流指令値Iqoに基づいて、d軸の指令鎖交磁束Ψdo及びq軸の指令鎖交磁束Ψqoを算出する。
実施の形態1と同様に、dq軸指令電圧算出部37は、d軸の実鎖交磁束Ψdrとd軸の指令鎖交磁束Ψdoとの偏差であるd軸磁束偏差ΔΨdを算出し、q軸の実鎖交磁束Ψqrとq軸の指令鎖交磁束Ψqoとの偏差であるq軸磁束偏差ΔΨqを算出する。
そして、dq軸指令電圧算出部37は、次式の第1式にしめすように、d軸磁束偏差ΔΨdにd軸比例ゲインKpdを乗算した値と、q軸磁束偏差ΔΨqに回転角周波数ω及びd軸積分ゲインKidを乗算した値の積分値と、d軸の電流検出値Idrに巻線抵抗値Rを乗算した値と、を加算してd軸の電圧指令値Vdoを算出する。また。dq軸指令電圧算出部37は、次式の第2式にしめすように、q軸磁束偏差ΔΨqにq軸比例ゲインKpqを乗算した値と、d軸磁束偏差ΔΨdに回転角周波数ω及びq軸積分ゲインKiqを乗算した値の積分値と、q軸の電流検出値Iqrに巻線抵抗値Rを乗算した値と、を加算してq軸の電圧指令値Vqoを算出する。
Figure 2020167820
実施の形態1の式(13)と同様に、d軸比例ゲインKpd、d軸積分ゲインKid、q軸比例ゲインKpq、q軸積分ゲインKiqは、フィードバック制御系の応答角周波数ωccに応じた値が設定されている。
本実施の形態によれば、実施の形態1の効果に加えて、巻線抵抗値Rの電圧降下による鎖交磁束フィードバック制御系への外乱成分をフィードフォワード的に補償し、制御精度を更に高めることができる。
3.実施の形態3
次に、実施の形態3に係る制御装置1について説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係る交流回転電機2及び制御装置1の基本的な構成及び処理は実施の形態1と同様である。しかし、本実施の形態では、dq軸指令電圧算出部37の構成が、実施の形態1と異なる。
本実施の形態では、実施の形態2と同様に、巻線抵抗値Rの電圧降下の項を無視せずに制御系を設計する。
実施の形態2では、式(15)の第1式及び第2式の右辺第3項において、dq軸の電流検出値Idr、Iqrをそのまま用いているため、演算周期による演算遅れが生る。式(8)の第1式及び第2式の右辺第2項のように、回転角周波数ωが乗算されていないものの、高回転域になると、回転周期が演算周期に近づくため、制御誤差が生じる。
そこで、dq軸電流もdq軸鎖交磁束と同様に、閉ループ伝達関数が、式(7)のような一次遅れになることを利用し、次式に示すように、dq軸の電流偏差ΔId、ΔIqと、dq軸の電流検出値Idr、Iqrとの関係式を導出する。
Figure 2020167820
式(15)の第1式及び第2式に、式(17)に代入すると、次式を得る。
Figure 2020167820
このように、dq軸の電流偏差ΔId、ΔIqを積分する形に変形すると、演算遅れの影響が、積分器の平滑化の作用等により軽減され、制御誤差の発生を抑制できる。
式(18)に基づいて制御系を設計し、図8のブロック図に示すように、鎖交磁束フィードバック制御系が構成されている。
実施の形態1と同様に、実鎖交磁束算出部35は、d軸の電流検出値Idr及びq軸の電流検出値Iqrに基づいて、d軸の実鎖交磁束Ψdr及びq軸の実鎖交磁束Ψqrを算出する。指令鎖交磁束算出部36は、d軸の電流指令値Ido及びq軸の電流指令値Iqoに基づいて、d軸の指令鎖交磁束Ψdo及びq軸の指令鎖交磁束Ψqoを算出する。
実施の形態1と同様に、dq軸指令電圧算出部37は、d軸の実鎖交磁束Ψdrとd軸の指令鎖交磁束Ψdoとの偏差であるd軸磁束偏差ΔΨdを算出し、q軸の実鎖交磁束Ψqrとq軸の指令鎖交磁束Ψqoとの偏差であるq軸磁束偏差ΔΨqを算出する。
本実施の形態では、dq軸指令電圧算出部37は、式(18)の第5式及び第6式に示すように、d軸の電流検出値Idrとd軸の電流指令値Idoとの偏差であるd軸電流偏差ΔIdを算出し、q軸の電流検出値Iqrとq軸の電流指令値Iqoとの偏差であるq軸電流偏差ΔIqを算出する。
そして、dq軸指令電圧算出部37は、次式の第1式にしめすように、d軸磁束偏差ΔΨdにd軸比例ゲインKpdを乗算した値と、q軸磁束偏差ΔΨqに回転角周波数ω及びd軸積分ゲインKidを乗算した値の積分値と、d軸電流偏差ΔIdに巻線抵抗値R及びd軸電流積分ゲインKIidを乗算した値の積分値と、を加算してd軸の電圧指令値Vdoを算出する。また。dq軸指令電圧算出部37は、次式の第2式にしめすように、q軸磁束偏差ΔΨqにq軸比例ゲインKpqを乗算した値と、d軸磁束偏差ΔΨdに回転角周波数ω及びq軸積分ゲインKiqを乗算した値の積分値と、q軸電流偏差ΔIqに巻線抵抗値R及びq軸電流積分ゲインKIiqを乗算した値の積分値と、を加算してq軸の電圧指令値Vqoを算出する。
Figure 2020167820
本実施の形態では、図8のブロック図に示すように、式(19)の第2項の積分器と第3項の積分器とをまとめて、1つの積分器を用いており、積分器のアンチワインドアップ処理、積分器の初期値の設定を行い易くなり、制御器の処理を簡略化、合理化することができる。なお、積分器を1つにまとめずに、2つの積分器を用いてもよい。
実施の形態1の式(13)と同様に、d軸比例ゲインKpd、d軸積分ゲインKid、q軸比例ゲインKpq、q軸積分ゲインKiqは、フィードバック制御系の応答角周波数ωccに応じた値が設定されている。
また、本実施の形態では、次式に示すように、d軸電流積分ゲインKIid、及びq軸電流積分ゲインKIiqは、フィードバック制御系の応答角周波数ωccに応じた値が設定されている。また、各ゲインは、調整のため、応答角周波数ωccから多少変化されてもよい(例えば、応答角周波数ωccの±10%の範囲内)。
Figure 2020167820
本実施の形態によれば、実施の形態1の効果に加えて、巻線抵抗値Rの電圧降下による鎖交磁束フィードバック制御系への外乱成分を補償し、制御精度を更に高めることができる。この際、巻線抵抗値Rの電圧降下の補償項を、積分制御の形に展開したので、電流検出遅れに対して、積分器の作用等により、高回転時の制御精度を向上させることができる。
4.実施の形態4
次に、実施の形態4に係る制御装置1について説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係る交流回転電機2及び制御装置1の基本的な構成及び処理は実施の形態1と同様である。しかし、本実施の形態では、dq軸指令電圧算出部37の構成が、実施の形態1と異なる。
本実施の形態では、実施の形態2、3と同様に、巻線抵抗値Rの電圧降下の項を無視せずに制御系を設計する。
本実施の形態では、実施の形態3の式(18)のdq軸の電流偏差ΔId、ΔIqを、次式に示すように、dq軸磁束偏差ΔΨd、ΔΨqを用いる式に変換している。
Figure 2020167820
式(21)に基づいて制御系を設計し、鎖交磁束フィードバック制御系が構成されている。
実施の形態1と同様に、実鎖交磁束算出部35は、d軸の電流検出値Idr及びq軸の電流検出値Iqrに基づいて、d軸の実鎖交磁束Ψdr及びq軸の実鎖交磁束Ψqrを算出する。指令鎖交磁束算出部36は、d軸の電流指令値Ido及びq軸の電流指令値Iqoに基づいて、d軸の指令鎖交磁束Ψdo及びq軸の指令鎖交磁束Ψqoを算出する。
実施の形態1と同様に、dq軸指令電圧算出部37は、d軸の実鎖交磁束Ψdrとd軸の指令鎖交磁束Ψdoとの偏差であるd軸磁束偏差ΔΨdを算出し、q軸の実鎖交磁束Ψqrとq軸の指令鎖交磁束Ψqoとの偏差であるq軸磁束偏差ΔΨqを算出する。
本実施の形態では、dq軸指令電圧算出部37は、d軸の電流検出値Idr及びq軸の電流検出値Iqrに基づいて、d軸の実鎖交磁束Ψdrに対するd軸の電流検出値Idrの偏微分値であるdd偏微分値∂Idr/∂Ψdr、q軸の実鎖交磁束Ψqrに対するd軸の電流検出値Idrの偏微分値であるqd偏微分値∂Idr/∂Ψqr、q軸の実鎖交磁束Ψqrに対するq軸の電流検出値Iqrの偏微分値であるqq偏微分値∂Iqr/∂Ψqr、及びd軸の実鎖交磁束Ψdrに対するq軸の電流検出値Iqrの偏微分値であるdq偏微分値∂Iqr/∂Ψdrを算出する。
本実施の形態では、dq軸指令電圧算出部37は、d軸電流及びq軸電流とdd偏微分値との関係が予め設定されたdd偏微分値マップを参照し、dq軸の電流検出値Idr、Iqrに対応するdd偏微分値∂Idr/∂Ψdrを算出する。dq軸指令電圧算出部37は、d軸電流及びq軸電流とqd偏微分値との関係が予め設定されたqd偏微分値マップを参照し、dq軸の電流検出値Idr、Iqrに対応するqd偏微分値∂Idr/∂Ψqrを算出する。dq軸指令電圧算出部37は、d軸電流及びq軸電流とqq偏微分値との関係が予め設定されたqq偏微分値マップを参照し、dq軸の電流検出値Idr、Iqrに対応するqq偏微分値∂Iqr/∂Ψqrを算出する。dq軸指令電圧算出部37は、d軸電流及びq軸電流とdq偏微分値との関係が予め設定されたdq偏微分値マップを参照し、dq軸の電流検出値Idr、Iqrに対応するdq偏微分値∂Iqr/∂Ψdrを算出する。
なお、各偏微分値マップには、各電流値Iに対する各鎖交磁束Ψの偏微分値∂Ψ/∂Iの値が設定されてもよく、dq軸指令電圧算出部37は、マップを参照して算出した偏微分値∂Ψ/∂Iの逆数を算出することによって、各鎖交磁束Ψに対する各電流値Iの偏微分値∂I/∂Ψを算出するように構成されてもよい。
そして、dq軸指令電圧算出部37は、次式の第1式にしめすように、d軸磁束偏差ΔΨdにd軸比例ゲインKpdを乗算した値と、q軸磁束偏差ΔΨqに回転角周波数ω及びd軸積分ゲインKidを乗算した値の積分値と、d軸磁束偏差ΔΨdとdd偏微分値∂Idr/∂Ψdrとの乗算値及びq軸磁束偏差ΔΨqとqd偏微分値∂Idr/∂Ψqrとの乗算値の合計値に巻線抵抗値R及びd軸電流積分ゲインKIidを乗算した値の積分値と、を加算してd軸の電圧指令値Vdoを算出する。dq軸指令電圧算出部37は、次式の第2式にしめすように、q軸磁束偏差ΔΨqにq軸比例ゲインKpqを乗算した値と、d軸磁束偏差ΔΨdに回転角周波数ω及びq軸積分ゲインKiqを乗算した値の積分値と、q軸磁束偏差ΔΨqとqq偏微分値∂Iqr/∂Ψqrとの乗算値及びd軸磁束偏差ΔΨdとdq偏微分値∂Iqr/∂Ψdrとの乗算値の合計値に巻線抵抗値R及びq軸電流積分ゲインKIiqを乗算した値の積分値と、を加算してq軸の電圧指令値Vqoを算出する。
Figure 2020167820
この構成によれば、dq軸鎖交磁束ΔΨd、ΔΨqを用いた制御系に統一することができ、安定性の解析等、制御系の設計を行い易くなり、制御系の性能を担保し易くなる。
また、式(22)の右辺第2項の積分器と第3項の積分器とをまとめて、1つの積分器を用いることで、積分器のアンチワインドアップ処理、初期値の設定を行い易くなり、制御器の処理を簡略化、合理化することができる。なお、積分器を1つにまとめずに、2つの積分器を用いてもよい。
5.実施の形態5
次に、実施の形態5に係る制御装置1について説明する。上記の実施の形態4と同様の構成部分は説明を省略する。本実施の形態に係る交流回転電機2及び制御装置1の基本的な構成及び処理は実施の形態4と同様である。しかし、本実施の形態では、dq軸指令電圧算出部37の構成が、実施の形態4と一部異なる。
本実施の形態では、実施の形態4と同様に、dq軸の電流偏差ΔId、ΔIqの代わりに、dq軸磁束偏差ΔΨd、ΔΨqを用いている。上述したように、巻線抵抗値Rの項は、他の項と比べて小さくなり、巻線抵抗値Rの項の中でも、dq軸間の偏微分の項は、同軸間の偏微分の項よりも小さくなる。よって、本実施の形態では、dq軸間の偏微分の項を省略している。すなわち、式(21)のdq軸間の偏微分の項を省略した次式に基づいて、制御系を設計する。
Figure 2020167820
実施の形態4と同様に、dq軸指令電圧算出部37は、d軸の電流検出値Idr及びq軸の電流検出値Iqrに基づいて、d軸の実鎖交磁束Ψdrに対するd軸の電流検出値Idrの偏微分値であるdd偏微分値∂Idr/∂Ψdr、及びq軸の実鎖交磁束Ψqrに対するq軸の電流検出値Iqrの偏微分値であるqq偏微分値∂Iqr/∂Ψqrを算出する。
そして、dq軸指令電圧算出部37は、次式の第1式にしめすように、d軸磁束偏差ΔΨdにd軸比例ゲインKpdを乗算した値と、q軸磁束偏差ΔΨqに回転角周波数ω及びd軸積分ゲインKidを乗算した値の積分値と、d軸磁束偏差ΔΨdにdd偏微分値∂Idr/∂Ψdr、巻線抵抗値R、及びd軸電流積分ゲインKIidを乗算した値の積分値と、を加算してd軸の電圧指令値Vdoを算出する。dq軸指令電圧算出部37は、次式の第2式にしめすように、q軸磁束偏差ΔΨqにq軸比例ゲインKpqを乗算した値と、d軸磁束偏差ΔΨdに回転角周波数ω及びq軸積分ゲインKiqを乗算した値の積分値と、q軸磁束偏差ΔΨqにqq偏微分値∂Iqr/∂Ψqr、巻線抵抗値R、及びq軸電流積分ゲインKIiqを乗算した値の積分値と、を加算してq軸の電圧指令値Vqoを算出する。
Figure 2020167820
この構成によれば、実施の形態4と同様に、dq軸鎖交磁束ΔΨd、ΔΨqを用いた制御系に統一することができ、制御系の設計を行い易くなり、制御系の性能を担保し易くなる。また、値が小さくなる、dq軸間の偏微分の項を省略することにより、演算処理負荷を低減することができる。
〔その他の実施の形態〕
最後に、本願のその他の実施の形態について説明する。なお、以下に説明する各実施の形態の構成は、それぞれ単独で適用されるものに限られず、矛盾が生じない限り、他の実施の形態の構成と組み合わせて適用することも可能である。
(1)上記の各実施の形態では、n=3の3相である場合を例として説明した。しかし、n=2、4等、nは、2以上の任意の自然数に設定されてもよい。
(2)上記の各実施の形態では、1組の3相巻線及びインバータが設けられる場合を例として説明した。しかし、2組以上の3相巻線及びインバータが設けられ、各組の3相巻線及びインバータに対して、各実施の形態と同様の鎖交磁束フィードバック制御が行われてもよい。この場合は、dq軸の電圧指令値Vdo、Vqoの算出において、組間の干渉を考慮した項が追加されてもよい。
(3)上記の各実施の形態では、埋込磁石型の同期交流回転電機である場合を例として説明した。しかし、リラクタンス型の同期交流回転電機、界磁巻線型の同期交流回転電機であってもよい。或いは、表面磁石型の交流回転電機であってもよい。表面磁石型の場合は、鎖交磁束のdq軸電流の相互依存性は低下するが、0にならない場合もあり、上記の各実施の形態のように、鎖交磁束のdq軸電流の相互依存性を考慮した鎖交磁束フィードバック制御により制御精度を高めることができる。
(4)上記の各実施の形態では、式(12)、式(16)、式(19)、式(22)、式(24)に基づいて、dq軸電圧指令値Vdo、Vqoが算出される場合を例として説明した。しかし、これらの式に示す以外の項(例えば、高調波重畳成分)が追加されて、dq軸電圧指令値Vdo、Vqoされてもよい。
本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
1 交流回転電機の制御装置、2 交流回転電機、10 直流電源、13 電源電圧センサ、20 インバータ、31 電流検出部、32 磁極位置検出部、33 dq軸実電流変換部、34 dq軸指令電流算出部、35 実鎖交磁束算出部、36 指令鎖交磁束算出部、37 dq軸指令電圧算出部、38 指令電圧変換部、39 スイッチング制御部、40 電圧検出部、Ido d軸の電流指令値、Iqo q軸の電流指令値、Idr d軸の電流検出値、Iqr q軸の電流検出値、KIid d軸電流積分ゲイン、KIiq q軸電流積分ゲイン、Kid d軸積分ゲイン、Kiq q軸積分ゲイン、Kpd d軸比例ゲイン、Kpq q軸比例ゲイン、Ld d軸インダクタンス、Lq q軸インダクタンス、R 巻線抵抗値、VDC 電源電圧、Vdo d軸の電圧指令値、Vqo q軸の電圧指令値、ΔΨd d軸磁束偏差、ΔΨq q軸磁束偏差、ΔId d軸電流偏差、ΔIq q軸電流偏差、Ψa 永久磁石による鎖交磁束、Ψd d軸鎖交磁束、Ψq q軸鎖交磁束、Ψdo d軸の指令鎖交磁束、Ψqo q軸の指令鎖交磁束、Ψdr d軸の実鎖交磁束、Ψqr q軸の実鎖交磁束、θ 磁極位置、ω 磁極位置の回転角周波数、ωcc フィードバック制御系の応答角周波数

Claims (7)

  1. n相(nは2以上の自然数)の巻線が巻装されたステータとロータとを有する交流回転電機を、インバータを介して制御する交流回転電機の制御装置であって、
    前記n相の巻線に流れる巻線電流を検出する電流検出部と、
    前記ロータの磁極位置を検出する磁極位置検出部と、
    前記n相の前記巻線電流の検出値を、検出した前記磁極位置の方向に定めたd軸及び前記d軸より電気角で90°進んだ方向に定めたq軸からなるdq軸の回転座標系上のd軸の電流検出値及びq軸の電流検出値に変換するdq軸実電流変換部と、
    d軸の電流指令値及びq軸の電流指令値を算出するdq軸指令電流算出部と、
    前記d軸の電流検出値及び前記q軸の電流検出値に基づいて、d軸の実鎖交磁束及びq軸の実鎖交磁束を算出する実鎖交磁束算出部と、
    前記d軸の電流指令値及び前記q軸の電流指令値に基づいて、d軸の指令鎖交磁束及びq軸の指令鎖交磁束を算出する指令鎖交磁束算出部と、
    前記d軸の実鎖交磁束と前記d軸の指令鎖交磁束との偏差であるd軸磁束偏差を算出し、前記q軸の実鎖交磁束と前記q軸の指令鎖交磁束との偏差であるq軸磁束偏差を算出し、前記d軸磁束偏差にd軸比例ゲインを乗算した値と、前記q軸磁束偏差に前記磁極位置の回転角周波数及びd軸積分ゲインを乗算した値の積分値と、を加算してd軸の電圧指令値を算出し、前記q軸磁束偏差にq軸比例ゲインを乗算した値と、前記d軸磁束偏差に前記回転角周波数及びq軸積分ゲインを乗算した値の積分値と、を加算してq軸の電圧指令値を算出するdq軸指令電圧算出部と、
    前記d軸の電圧指令値及び前記q軸の電圧指令値を、前記n相の巻線に印加する電圧指令値であるn相の電圧指令値に変換する指令電圧変換部と、
    前記n相の電圧指令値に基づいて、前記インバータが有する複数のスイッチング素子をオンオフ制御するスイッチング制御部と、を備えた交流回転電機の制御装置。
  2. 前記dq軸指令電圧算出部は、前記d軸磁束偏差に前記d軸比例ゲインを乗算した値と、前記q軸磁束偏差に前記回転角周波数及び前記d軸積分ゲインを乗算した値の積分値と、前記d軸の電流検出値に巻線抵抗値を乗算した値と、を加算して前記d軸の電圧指令値を算出し、
    前記q軸磁束偏差に前記q軸比例ゲインを乗算した値と、前記d軸磁束偏差に前記回転角周波数及び前記q軸積分ゲインを乗算した値の積分値と、前記q軸の電流検出値に巻線抵抗値を乗算した値と、を加算してq軸の電圧指令値を算出する請求項1に記載の交流回転電機の制御装置。
  3. 前記dq軸指令電圧算出部は、前記d軸の電流検出値と前記d軸の電流指令値との偏差であるd軸電流偏差を算出し、前記q軸の電流検出値と前記q軸の電流指令値との偏差であるq軸電流偏差を算出し、
    前記d軸磁束偏差に前記d軸比例ゲインを乗算した値と、前記q軸磁束偏差に前記回転角周波数及び前記d軸積分ゲインを乗算した値の積分値と、前記d軸電流偏差に巻線抵抗値及びd軸電流積分ゲインを乗算した値の積分値と、を加算して前記d軸の電圧指令値を算出し、
    前記q軸磁束偏差に前記q軸比例ゲインを乗算した値と、前記d軸磁束偏差に前記回転角周波数及び前記q軸積分ゲインを乗算した値の積分値と、前記q軸電流偏差に巻線抵抗値及びq軸電流積分ゲインを乗算した値の積分値と、を加算してq軸の電圧指令値を算出する請求項1に記載の交流回転電機の制御装置。
  4. 前記dq軸指令電圧算出部は、d軸の電流検出値及びq軸の電流検出値に基づいて、前記d軸の実鎖交磁束に対する前記d軸の電流検出値の偏微分値であるdd偏微分値、前記q軸の実鎖交磁束に対する前記d軸の電流検出値の偏微分値であるqd偏微分値、前記q軸の実鎖交磁束に対する前記q軸の電流検出値の偏微分値であるqq偏微分値、及び前記d軸の実鎖交磁束に対する前記q軸の電流検出値の偏微分値であるdq偏微分値を算出し、
    前記d軸磁束偏差に前記d軸比例ゲインを乗算した値と、前記q軸磁束偏差に前記回転角周波数及び前記d軸積分ゲインを乗算した値の積分値と、前記d軸磁束偏差と前記dd偏微分値との乗算値及び前記q軸磁束偏差と前記qd偏微分値との乗算値の合計値に巻線抵抗値及びd軸電流積分ゲインを乗算した値の積分値と、を加算して前記d軸の電圧指令値を算出し、
    前記q軸磁束偏差に前記q軸比例ゲインを乗算した値と、前記d軸磁束偏差に前記回転角周波数及び前記q軸積分ゲインを乗算した値の積分値と、前記q軸磁束偏差と前記qq偏微分値との乗算値及び前記d軸磁束偏差と前記dq偏微分値との乗算値の合計値に巻線抵抗値及びq軸電流積分ゲインを乗算した値の積分値と、を加算してq軸の電圧指令値を算出する請求項1に記載の交流回転電機の制御装置。
  5. 前記dq軸指令電圧算出部は、前記d軸の実鎖交磁束に対する前記d軸の電流検出値の偏微分値であるdd偏微分値、及び前記q軸の実鎖交磁束に対する前記q軸の電流検出値の偏微分値であるqq偏微分値を算出し、
    前記d軸磁束偏差に前記d軸比例ゲインを乗算した値と、前記q軸磁束偏差に前記回転角周波数及び前記d軸積分ゲインを乗算した値の積分値と、前記d軸磁束偏差に前記dd偏微分値、巻線抵抗値、及びd軸電流積分ゲインを乗算した値の積分値と、を加算して前記d軸の電圧指令値を算出し、
    前記q軸磁束偏差に前記q軸比例ゲインを乗算した値と、前記d軸磁束偏差に前記回転角周波数及び前記q軸積分ゲインを乗算した値の積分値と、前記q軸磁束偏差に前記qq偏微分値、巻線抵抗値、及びq軸電流積分ゲインを乗算した値の積分値と、を加算してq軸の電圧指令値を算出する請求項1に記載の交流回転電機の制御装置。
  6. 前記d軸電流積分ゲイン及び前記q軸電流積分ゲインには、フィードバック制御系の応答角周波数に応じた値が設定されている請求項3から5のいずれか一項に記載の交流回転電機の制御装置。
  7. 前記d軸比例ゲイン、前記d軸積分ゲイン、前記q軸比例ゲイン、及び前記q軸積分ゲインには、フィードバック制御系の応答角周波数に応じた値が設定されている請求項1から6のいずれか一項に記載の交流回転電機の制御装置。
JP2019065452A 2019-03-29 2019-03-29 交流回転電機の制御装置 Active JP6687228B1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019065452A JP6687228B1 (ja) 2019-03-29 2019-03-29 交流回転電機の制御装置
JP2020052104A JP6945673B2 (ja) 2019-03-29 2020-03-24 交流回転電機の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019065452A JP6687228B1 (ja) 2019-03-29 2019-03-29 交流回転電機の制御装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020052104A Division JP6945673B2 (ja) 2019-03-29 2020-03-24 交流回転電機の制御装置

Publications (2)

Publication Number Publication Date
JP6687228B1 JP6687228B1 (ja) 2020-04-22
JP2020167820A true JP2020167820A (ja) 2020-10-08

Family

ID=70286807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019065452A Active JP6687228B1 (ja) 2019-03-29 2019-03-29 交流回転電機の制御装置

Country Status (1)

Country Link
JP (1) JP6687228B1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022119237A (ja) * 2021-02-04 2022-08-17 三菱電機株式会社 交流回転電機の制御装置
WO2023175774A1 (ja) * 2022-03-16 2023-09-21 三菱電機株式会社 交流回転機の制御装置および電動パワーステアリング装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6945673B2 (ja) * 2019-03-29 2021-10-06 三菱電機株式会社 交流回転電機の制御装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116481A (ja) * 1990-09-07 1992-04-16 Daikin Ind Ltd 磁場測定方法、およびその装置
JPH08182398A (ja) * 1994-12-27 1996-07-12 Fuji Electric Co Ltd 永久磁石形同期電動機の駆動装置
JPH09308300A (ja) * 1996-05-20 1997-11-28 Hitachi Ltd モータ制御装置及び電気車用制御装置
JP2007006664A (ja) * 2005-06-27 2007-01-11 Mitsubishi Electric Corp 交流回転機の制御装置
JP2012247914A (ja) * 2011-05-26 2012-12-13 Aisin Aw Co Ltd 制御装置
JP2018057170A (ja) * 2016-09-29 2018-04-05 東洋電機製造株式会社 交流電動機の制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116481A (ja) * 1990-09-07 1992-04-16 Daikin Ind Ltd 磁場測定方法、およびその装置
JPH08182398A (ja) * 1994-12-27 1996-07-12 Fuji Electric Co Ltd 永久磁石形同期電動機の駆動装置
JPH09308300A (ja) * 1996-05-20 1997-11-28 Hitachi Ltd モータ制御装置及び電気車用制御装置
JP2007006664A (ja) * 2005-06-27 2007-01-11 Mitsubishi Electric Corp 交流回転機の制御装置
JP2012247914A (ja) * 2011-05-26 2012-12-13 Aisin Aw Co Ltd 制御装置
JP2018057170A (ja) * 2016-09-29 2018-04-05 東洋電機製造株式会社 交流電動機の制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022119237A (ja) * 2021-02-04 2022-08-17 三菱電機株式会社 交流回転電機の制御装置
JP7162685B2 (ja) 2021-02-04 2022-10-28 三菱電機株式会社 交流回転電機の制御装置
WO2023175774A1 (ja) * 2022-03-16 2023-09-21 三菱電機株式会社 交流回転機の制御装置および電動パワーステアリング装置

Also Published As

Publication number Publication date
JP6687228B1 (ja) 2020-04-22

Similar Documents

Publication Publication Date Title
JP5696700B2 (ja) ロータ位置推定装置、電動機制御システムおよびロータ位置推定方法
Tuovinen et al. Adaptive full-order observer with high-frequency signal injection for synchronous reluctance motor drives
JP4754417B2 (ja) 永久磁石型回転電機の制御装置
US9112436B2 (en) System for controlling controlled variable of rotary machine
WO2013021998A1 (ja) 制御装置
JP5803559B2 (ja) 回転電機制御装置
JP6687228B1 (ja) 交流回転電機の制御装置
Awan et al. Optimal torque control of synchronous motor drives: Plug-and-play method
JP5929492B2 (ja) 誘導機の制御装置
JP2014050122A (ja) ロータ位置推定装置、電動機制御システムおよびロータ位置推定方法
US11309817B2 (en) Control device of rotating machine, and control device of electric vehicle
JP6641051B1 (ja) 電動機の制御装置
JP2019033582A (ja) 制御装置及び制御方法
WO2017030055A1 (ja) 回転機の制御装置および制御方法
JP2016059245A (ja) 回転機の制御装置
US11646686B2 (en) Controller for AC rotary electric machine
JP6945673B2 (ja) 交流回転電機の制御装置
Zhang et al. A new scheme to direct torque control of interior permanent magnet synchronous machine drives for constant inverter switching frequency and low torque ripple
JP2014050123A (ja) ロータ位置推定装置、電動機制御システムおよびロータ位置推定方法
JP6910418B2 (ja) 交流回転電機の制御装置
JP7472397B2 (ja) 電力変換装置、推定器及び推定方法
JP6818929B1 (ja) 回転電機の制御装置及び電動パワーステアリング装置
JP7271735B2 (ja) 交流回転電機の制御装置
WO2022215263A1 (ja) 電力変換装置、推定器及び推定方法
JP2010252496A (ja) モータ駆動システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200324

R151 Written notification of patent or utility model registration

Ref document number: 6687228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250