WO2022111555A1 - 用于换电电池的容量均衡方法、装置、设备及存储介质 - Google Patents

用于换电电池的容量均衡方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2022111555A1
WO2022111555A1 PCT/CN2021/132987 CN2021132987W WO2022111555A1 WO 2022111555 A1 WO2022111555 A1 WO 2022111555A1 CN 2021132987 W CN2021132987 W CN 2021132987W WO 2022111555 A1 WO2022111555 A1 WO 2022111555A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
capacity
battery
cell
equalized
Prior art date
Application number
PCT/CN2021/132987
Other languages
English (en)
French (fr)
Inventor
刘永山
刘轶鑫
荣常如
张頔
张伟杰
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2022111555A1 publication Critical patent/WO2022111555A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the embodiments of the present application relate to the technical field of electric vehicles, for example, to a capacity equalization method, apparatus, device, and storage medium for battery swapping.
  • battery balancing methods can be divided into active balancing and passive balancing.
  • the balancing that uses resistance to dissipate the energy of cells with higher residual capacity is called passive balancing.
  • active balancing By transferring the energy of cells with higher remaining capacity to Balancing of cells with lower remaining capacity is called active balancing. Due to the poor reliability of active balancing, high cost and high factory consistency of current cell products, almost all electric vehicles on the market currently use passive balancing solutions, but passive balancing also has the disadvantage of small balancing current.
  • the passive balancing system of the battery is mainly based on the minimum battery power of the single battery in the battery pack to consume the power of the higher remaining battery cells to ensure the consistency between the single cells. Since the sampling error of the battery management system for the voltage of the single cell is generally ⁇ 3mV, this error will cause the to-be-balanced battery capacity to be equalized to be larger than the actual value, resulting in excessive equalization.
  • the cells to be equalized are discharged and equalized according to the capacity to be equalized, until the discharge capacity reaches the capacity to be equalized.
  • the battery charging time per battery charge-discharge cycle is less than 1 hour, and the time for balancing the battery to be balanced is less than 1 hour.
  • the effect of balancing is not obvious.
  • the capacity equalization is arbitrary, and the corresponding adjustment cannot be made according to the capacity equalization amount required by each battery, resulting in the inconsistency between the actual results of the capacity equalization and the required results, resulting in excessive battery equalization. Or the purpose of balance is not achieved and the service life of the battery is affected.
  • Embodiments of the present application provide a capacity equalization method, apparatus, device, and storage medium for a battery replacement.
  • the embodiments of the present application provide a capacity equalization method for battery swapping, the method comprising:
  • the capacity equalization adjustment is performed on the at least one target single cell corresponding to the capacity information to be equalized.
  • an embodiment of the present application further provides a capacity equalization device for a battery swap, the device comprising:
  • the current state determination module is set to determine the current state of the target swap battery according to the received associated data information
  • a capacity information determination module to be equalized configured to determine at least one target unit cell in the target battery replacement battery, and to determine the capacity information to be equalized of the at least one target unit cell respectively;
  • the equalization adjustment module is configured to perform capacity equalization adjustment on the at least one target single cell corresponding to the to-be-equalized capacity information according to the current state and the to-be-equalized capacity information.
  • an embodiment of the present application further provides an electronic device, the electronic device comprising:
  • storage means arranged to store at least one program
  • the at least one processor is configured to execute the at least one program to implement the capacity equalization method for a battery swap according to any one of the embodiments of the present application.
  • an embodiment of the present application further provides a storage medium containing computer-executable instructions, when the computer-executable instructions are executed by a computer processor, the The capacity equalization method of battery replacement.
  • FIG. 1 is a schematic flowchart of a capacity equalization method for swapping batteries according to Embodiment 1 of the present application;
  • FIG. 2 is a schematic flowchart of a capacity equalization method for swapping batteries according to Embodiment 2 of the present application;
  • Fig. 3 is a kind of schematic flow chart of the capacity equalization method for battery swap provided by the third embodiment of the present application;
  • FIG. 4 is a schematic structural diagram of a capacity equalization device for a battery swap provided in Embodiment 4 of the present application;
  • FIG. 5 is a schematic structural diagram of an electronic device according to Embodiment 5 of the present application.
  • FIG. 1 is a schematic flowchart of a capacity equalization method for swapping batteries according to Embodiment 1 of the present application.
  • the battery capacity is balanced and adjusted when the swapping batteries are in different states.
  • the capacity equalization device of the electric battery is implemented, and the device can be implemented in the form of software and/or hardware.
  • the method of this embodiment includes the following steps:
  • the target swap battery is a swap battery that needs to be balanced in capacity, and the target swap battery is composed of a plurality of single cells.
  • the associated data information is the information used to determine the current state of the target battery, which can be the communication information between the target battery and the vehicle. For example, if the target battery and the vehicle are in communication connection, the target battery The current state of the battery is in the vehicle; if the communication between the target swap battery and the vehicle is disconnected, the current state of the target swap battery is in the swap station, or a GPS (Global Positioning System) is installed in the vehicle.
  • GPS Global Positioning System
  • S120 Determine at least one target single cell in the target swapped battery, and determine the capacity information to be equalized of the at least one target single cell respectively.
  • the battery with the lowest voltage can be used as the A benchmark to determine the to-be-balanced capacity of multiple single cells.
  • the battery with the lowest voltage can be used as the reference single battery, correspondingly, the battery voltage corresponding to the reference single battery is the reference voltage, and the battery capacity corresponding to the reference single battery is the reference capacity.
  • the advantage of setting the battery with the lowest voltage as the reference single battery is that the capacity can be adjusted according to the reference capacity, so as to avoid the potential safety hazard caused by the excessively large capacity difference of the single battery.
  • the battery whose voltage is higher than the reference voltage can also be used as the target single battery.
  • the battery is used as the single battery to be balanced, that is, the target single battery.
  • the number of the determined target battery can be one or more.
  • the target battery contains 5 single batteries, and the voltage of the single battery with the lowest voltage is 3.2V , the voltages of the remaining 4 single cells are all higher than 3.2V, so the remaining 4 single cells are used as the target single cells.
  • the target single battery is the single battery in the target battery that needs to be equalized in capacity
  • the capacity to be equalized is the capacity that the target single battery needs to release.
  • it can be based on the battery capacity of the target single battery and the target battery.
  • the single battery with the lowest medium voltage is determined by the battery capacity of the reference single battery.
  • the state of charge of a single battery is the ratio of the remaining power after the battery is used for a period of time to the capacity in a fully charged state
  • the state of health of a battery is the ratio of the capacity in a fully charged state to the rated capacity
  • Each target single cell has a corresponding capacity to be equalized, and the capacity to be equalized may be the same or different.
  • the voltage information of multiple single cells in the target swap battery is obtained, and the single cell corresponding to the minimum voltage value is determined from all the voltage information, that is, the reference single cell.
  • the voltage difference between the voltage of each single cell and the reference voltage is determined.
  • the battery of the non-reference single cell corresponding to the voltage difference can be used as the target. single battery.
  • the above formula can be used to calculate the current battery capacity of each target unit cell and the reference capacity of the reference battery. According to the difference between the current battery capacity and the reference capacity, the to-be-balanced capacity information of the target single cell corresponding to the current battery capacity can be determined.
  • the current state includes that the target swap battery is located in the vehicle, or the target swap battery is located in the swap station. If the current state is different, there is a certain difference in the equalization method corresponding to each target single cell, so it is necessary to adjust the capacity equalization of each target single cell in combination with the current state. In addition, there is a certain difference in the capacity information to be equalized corresponding to each target single cell. When the capacity information to be equalized is different, there may be a certain difference in the corresponding capacity equalization adjustment strategy. Therefore, the current state and the information of each capacity to be equalized can be comprehensively considered to perform capacity equalization adjustment for each target single cell.
  • the current state is: the target battery is in the vehicle, and when the capacity information to be equalized of a certain target single battery is relatively large, the target battery can be charged, stationary and discharged when the vehicle is charging, stationary and discharging. Perform equalization processing on the bulk cells until the capacity equalization adjustment is completed, for example, discharge the target single cell battery; when the capacity information to be equalized is small, that is, the capacity difference between the target single cell and the reference battery is not large, In this case, additional discharge processing may be performed on the target single cell during the charging process until the capacity equalization adjustment is completed.
  • the advantage of this balancing method is that a corresponding balancing adjustment strategy can be selected according to the current state and the information of the capacity to be balanced, so as to avoid the occurrence of insufficient or excessive balancing.
  • the target swap battery is in a charging state during operation.
  • a resistor can be used to consume the power in the target single battery, so that the target single battery can be charged.
  • the charging speed is slower than that of the non-target single battery, avoiding the occurrence of overcharge state, and the remaining capacity to be equalized of each target single battery can be calculated periodically or in real time until the capacity equalization process of the target single battery. End, stop using additional resistors to drain power to avoid an over-equalization situation.
  • the current capacity adjustment can be handled arbitrarily and cannot be Targeted capacity balancing of batteries results in inconsistent results between actual battery capacity balancing and desired results, resulting in excessive battery balancing or failure to achieve balancing purposes and affecting battery life.
  • the corresponding capacity equalization adjustment strategy is executed. When the battery is balanced according to the corresponding equalization adjustment strategy, the consistency of the capacity of multiple single batteries is ensured, thereby improving the battery life. save resources.
  • FIG. 2 is a schematic flowchart of a capacity equalization method for a battery swap provided in Embodiment 2 of the present application.
  • the current state includes that the target swap battery is located in the vehicle or in the swap station.
  • this embodiment takes the target swap battery in the vehicle as an example. to introduce. The explanations of the terms that are the same as or corresponding to the above-mentioned embodiments are not repeated here.
  • the method of this embodiment includes the following steps:
  • the current state is that the target swap battery is in the vehicle.
  • the vehicle may be determined that the current state of the target battery is that the target battery is located in the vehicle according to the received associated data information, such as motor related information. It can be based on the BMS (Battery Management System, battery management system) to read the power exchange status of the target power exchange battery accessed in the memory and carry out the power exchange with other controllers (such as gateways, vehicle controllers, power exchange controllers, etc.). The communication confirms the scene in which the target battery is located, and when a control signal between the battery and the vehicle is received, it is determined that the current state of the target battery is that the target battery is in the vehicle.
  • BMS Battery Management System
  • controllers such as gateways, vehicle controllers, power exchange controllers, etc.
  • the next step can be determined, for example, the standing time of the target battery is obtained through the time difference between the current power-on time and the last power-off time stored in the memory.
  • the power-on time is the starting time of the vehicle to which the target swapped battery belongs
  • the power-off time is the power-off time of the vehicle to which the target swapped battery belongs
  • the resting time is the current power-on time and the last power-off time accessed in the memory The time difference, that is, when the flameout state is switched to the start state, the flameout time in the flameout state.
  • the flame-off time duration in the flame-off state is determined.
  • the BMS can store the vehicle start-up time and the ignition-off time. Therefore, according to the current start-up time and the last ignition-off time stored in the BMS system, the difference can be obtained to obtain the ignition-off time when the vehicle is in the ignition-off state.
  • the standing period After the standing period is determined, it can be determined whether the capacity information to be equalized needs to be re-determined according to the standing period, that is, it is determined whether the standing period of the target replacement battery is greater than or equal to the preset flame-off period.
  • the reason for determining the capacity information to be equalized according to the standing time is that: when the standing time is long, the electrolyte distribution of at least one single cell constituting the target battery is uniform, and when the electrolyte distribution is uniform, at least one single cell needs to be re-determined.
  • the target single battery in the bulk battery is determined, and then the corresponding capacity information to be equalized is determined.
  • the standing time is short, the electrolyte distribution of the battery is uneven.
  • the stored capacity information to be balanced can be used as the balance to be balanced.
  • capacity information For example, if the battery resting time is less than the preset time, read the remaining capacity to be equalized stored when the BMS was powered off last time, that is, when the flame-off time is less than the preset flame-off time, in order to obtain the target single battery capacity to be equalized Information, read the remaining capacity to be equalized stored when the BMS was powered off last time as the capacity to be equalized information, where the remaining capacity to be equalized is the part remaining after the last capacity equalization, that is, the difference between the capacity to be equalized and the capacity that has been equalized .
  • the open circuit voltage of the single battery can be determined, and the difference between the voltage of each single battery and the single battery with the lowest voltage can be calculated, that is, the first embodiment is repeated. A step of.
  • determining the target single battery in the target swapping battery may be: when the flame-off duration is greater than or equal to the preset flame-off duration, obtain the target swapped battery that constitutes the target battery. voltage information of the at least one single cell, so as to determine at least one target single cell from the at least one single cell according to the voltage information.
  • the voltage information of the single cell may be the real-time voltage value collected in the BMS, and the single cell with the lowest voltage value among all the single cells is determined as the reference single cell.
  • the voltage value of the reference single cell is The reference voltage is to determine the voltage difference between the voltage information of each single cell and the reference voltage, respectively.
  • Corresponding capacity information to be equalized may be determined based on the relationship between the voltage difference and the preset voltage difference threshold, for example, judging whether the difference between the voltages of all single cells and the reference voltage is greater than the preset voltage difference threshold. If the voltage difference is not greater than the preset voltage difference threshold, it means that the capacity difference between the single battery and the reference battery is not large and does not affect safe use, and the single battery does not need to be balanced; if the voltage difference is greater than the preset voltage difference The voltage difference threshold value indicates that the capacity difference between the single battery and the reference battery is large. Continuing to use it in this state will cause safety hazards. Then the single battery is used as the single battery to be balanced, that is, the target single battery. Subsequent capacity balancing.
  • the minimum voltage of the single cell is the minimum voltage information, which is the voltage value of the reference battery, that is, the reference voltage
  • the preset voltage difference threshold is the preset voltage difference threshold value, which is used to judge whether the single battery needs to be balanced. The charge-discharge characteristics of the single cell are determined.
  • the single cell whose voltage difference is greater than or equal to the preset voltage difference threshold is used as the The target single cell; the single cell whose voltage difference is less than the preset voltage difference threshold does not need to be balanced.
  • the target replacement battery includes 5 single cells, wherein the voltage of the No. 1 cell is 3.984V, the voltage of the No. 2 cell is 3.962V, the voltage of the No. 3 cell is 3.986V, and the voltage of the No. 4 cell is 3.986V.
  • the voltage of the single battery is 3.979V
  • the voltage of the AA battery is 3.965V
  • the preset voltage difference threshold is 15mV. From this, it can be seen that the minimum voltage information is the voltage of the second single cell, 3.962V, and the voltage differences between the voltage information of each single cell and the minimum voltage information are 22mV, 0mV, 24mV, 17mV and 3mV, respectively. From this, the No. 1 unit cell, the No. 3 unit cell, and the No. 4 unit cell can be determined as the target unit cells.
  • the capacity of the target single battery and the single battery corresponding to the minimum voltage information can be calculated .
  • the state of charge of a single battery is the ratio of the remaining power after the battery is used for a period of time or left unused for a long time to the capacity in the fully charged state
  • the state of health of the battery is the ratio of the capacity in the fully charged state to the rated capacity.
  • the to-be-balanced capacity of the target single cell can be calculated.
  • capacity is the battery capacity of the target single battery obtained by calculation
  • the minimum voltage battery capacity is the capacity of the single battery corresponding to the minimum voltage information
  • the capacity error caused by the voltage sampling error is the voltage sampling error capacity.
  • the minimum battery capacity corresponding to the target single battery when the voltage information is the smallest obtains the minimum battery capacity corresponding to the target single battery when the voltage information is the smallest, and determine the current target single battery according to the current target battery capacity, the minimum battery capacity and the voltage sampling error capacity. Information about the to-be-balanced capacity of the target single cell.
  • a floating interval of the to-be-balanced capacity of each target single cell can be determined, so as to perform a corresponding balancing operation according to the balancing strategy corresponding to the floating interval.
  • the floating interval is used to represent the deviation between the battery capacity of the target single cell and the minimum battery capacity corresponding to the minimum voltage information of the target single cell, that is, the size of the capacity to be equalized.
  • different floating intervals and capacity equalization target adjustment strategies corresponding to different floating intervals need to be set, so that the target single battery can perform the corresponding capacity equalization adjustment.
  • a target floating interval in which the capacity information to be equalized of the current target single battery is located can be determined, and then a capacity equalization target adjustment strategy corresponding to the target floating interval can be determined, and The capacity balance adjustment is performed on the current target single cell based on the target adjustment strategy.
  • the floating interval can be divided into at least three, for example, three floating intervals, and the balancing strategy corresponding to each floating interval can be as follows:
  • the floating strategy corresponding to the first floating interval may be: if the to-be-balanced capacity of the target single battery is within the first preset floating interval, the battery needs to perform balanced discharge on the target single battery under all operating conditions until the discharge is performed. The capacity reaches the capacity to be equalized.
  • the first preset floating interval indicates that the deviation between the battery capacity of the target single cell and the minimum battery capacity corresponding to the minimum voltage information of the target single cell is too large, indicating that the target single cell has a large balancing requirement.
  • the current target single cell if the capacity information to be equalized corresponding to the current target single cell is in the first preset floating interval, the current target single cell is discharged under any operating conditions until the discharge capacity reaches the capacity information to be equalized.
  • the working conditions include charging conditions, discharge conditions and static conditions.
  • the vehicle to which the target replacement battery belongs is a gasoline-electric hybrid vehicle. If the current target unit cell corresponds to the capacity information to be equalized in the first preset floating interval, the battery is powered by fuel during use.
  • the current target single battery uses resistance to consume additional power, so that the charging speed of the target single battery is slower than that of the non-target single battery until the discharge capacity reaches the capacity information to be balanced;
  • the resistance in the target single battery is used to consume additional power in the target single battery, so that the target single battery discharges faster than the non-target single battery until the discharge capacity reaches the capacity information to be equalized; in the vehicle
  • the resistance in the target single battery is automatically used to additionally consume the power in the target single battery until the discharge capacity reaches the capacity information to be equalized.
  • the discharge capacity reaches the information about the capacity to be equalized, it indicates that the equalization adjustment of the current target single cell has been completed.
  • the floating strategy corresponding to the second floating interval may be: if the to-be-balanced capacity of the target single battery is within the second preset floating interval, the battery needs to perform balanced discharge on the target single battery under charging conditions until the discharge capacity is reached. The capacity to be balanced is reached.
  • the second preset floating interval indicates that the deviation between the battery capacity of the target single cell and the minimum battery capacity corresponding to the minimum voltage information of the target single cell is small, indicating that the balance requirement of the target single cell is small.
  • the current target cell is discharged under charging conditions until the discharge capacity reaches the to-be-balanced capacity information. Since the equalization requirement of the target single cell is small, it is only necessary to perform equalization discharge under the discharge condition. Under the discharge condition, the resistance in the target single cell is used to additionally consume the power in the target single cell, so that the target single cell discharges faster than the non-target single cell until the discharge capacity reaches the capacity information to be equalized. When the discharge capacity reaches the information about the capacity to be equalized, it indicates that the equalization adjustment of the current target single cell has been completed.
  • the floating strategy corresponding to the third floating interval may be: if the to-be-balanced capacity of the target single battery is within the third preset floating interval, the target single battery performs balanced discharge under the charging condition, or under the discharging condition, Balanced discharge is performed on the target single cell until the discharge capacity reaches the to-be-released balanced capacity corresponding to the preset number of cycles.
  • the third preset floating interval indicates that the deviation between the battery capacity of the target single battery and the minimum battery capacity corresponding to the minimum voltage information is between the first preset floating interval and the second preset floating interval, indicating that the target battery The equalization needs of the battery are average.
  • the current target single cell uses resistance to consume additional power, so that the target single cell is higher than the non-target single cell.
  • the charging speed of the single battery is slow until the discharge capacity reaches the information of the capacity to be equalized, indicating that the equalization adjustment of the current target single battery has been completed;
  • the single battery discharges faster than the non-target single battery until the discharge capacity reaches the equilibrium capacity to be released corresponding to the preset number of cycles. That is, under the discharge condition, the battery to be balanced is discharged until the discharge capacity reaches the product of the capacity to be balanced and the proportion of the time of discharge conditions in the last five charge-discharge cycles. When the discharged capacity reaches the above value, it can be The discharge is considered to be over.
  • discharge capacity capacity to be equalized * 70%.
  • the three preset floating interval ranges are that the first preset floating interval is [20,+ ⁇ )mV, the second preset floating interval is (0,10]mV, and the third preset floating interval is ( 10,20) mV.
  • the remaining capacity information of the swapped battery to be equalized needs to be stored.
  • the remaining capacity information to be equalized is determined by the information of the capacity to be equalized and the information of the already equalized capacity, which is the part that has not yet been equalized.
  • the remaining capacity information of the target single battery to be equalized is obtained and stored in the battery management system, so as to obtain the target single battery capacity from the battery management system. Information about the remaining capacity to be equalized.
  • the current capacity adjustment is relatively random and cannot be targeted. Therefore, the actual results of battery capacity balancing are inconsistent with the required results, resulting in excessive battery balancing or failure to achieve the purpose of balancing and affecting battery life.
  • the corresponding capacity equalization adjustment strategy is executed. When the capacity of the battery is balanced according to the corresponding equalization adjustment strategy, the consistency of the capacity of multiple single cells is ensured, thereby improving the battery life and saving resources. .
  • FIG. 3 is a schematic flowchart of a capacity equalization method for a battery swap provided in Embodiment 3 of the present application.
  • the current state includes that the target swap battery is located in the vehicle or in the swap station.
  • the target swap battery is located in the swap station. Introduce as an example. The explanations of the terms that are the same as or corresponding to the above-mentioned embodiments are not repeated here.
  • the current state is that the target swap battery is in the swap station.
  • the swapping battery is replaced from the electric vehicle and connected to the charging monitoring system of the swapping station for charging and storage of related information. It is detected whether the target swapped battery is in the swapping station. At this time, it can be determined according to the received associated data information that the current state of the target swapped battery is that the target swapped battery is in the swapping station. It can be based on the BMS reading the power exchange status of the target power exchange battery accessed in the memory and confirming the location of the target power exchange battery by communicating with other controllers (such as gateways, vehicle controllers, power exchange controllers, etc.). In the scenario, when the communication signal between the swap battery and the vehicle cannot be received, it is determined that the current state of the target swap battery is that the target swap battery is in the swap station.
  • controllers such as gateways, vehicle controllers, power exchange controllers, etc.
  • the information about the remaining capacity to be equalized stored when the BMS was powered off the last time can be read.
  • the stored remaining capacity information to be equalized is acquired from the battery management system, and the remaining capacity to be equalized is used as the information of the capacity to be equalized.
  • equalization discharge can be performed on the target single cell until the discharge capacity reaches the to-be-equalized capacity.
  • the target swapped battery when the target swapped battery is in the swapping station, the target swapped battery is in a non-discharge condition, that is, a charging condition and a static condition. If the target replacement battery is in the charging condition, the current target single battery uses resistance to consume additional power, so that the charging speed of the target single battery is slower than that of the non-target single battery until the discharge capacity reaches the capacity information to be equalized; when the target battery is replaced When the battery is in a static condition, the resistance in the target single cell is automatically used to consume additional power in the target single cell until the discharge capacity reaches the capacity information to be equalized. When the discharge capacity reaches the information about the capacity to be equalized, it indicates that the equalization adjustment of the current target single cell has been completed.
  • a non-discharge condition that is, a charging condition and a static condition.
  • the preset charging threshold is a preset charging duration that can achieve capacity balancing.
  • the preset charging threshold and the preset charging duration threshold should be determined with reference to the condition of uniform distribution of electrolytes in the target battery for battery replacement. In one example, the voltage difference between the target cell voltage and the lowest cell voltage of each target cell is determined, and the correlation between the voltage difference and the cell voltage sampling error is determined.
  • the capacity equalization adjustment is performed on the target single cells corresponding to each capacity information to be equalized.
  • the cell voltage sampling error is the difference between the measured voltage value and the actual voltage value of the cell. If the charging current of the target swap battery is greater than the preset charging threshold and/or the charging duration does not reach the preset charging duration threshold, it indicates that capacity balancing still needs to be performed.
  • the charging current of the target single cell is less than or equal to the preset charging threshold, and the charging duration reaches the preset charging duration threshold, it is judged whether the difference between the target single cell voltage and the single cell voltage with the current lowest voltage is less than the cell voltage sampling error.
  • the capacity equalization is cleared, and the execution of capacity equalization is stopped; if the above-mentioned pressure difference is greater than or equal to the sampling error, the capacity equalization continues to be executed.
  • the current target cell is stopped.
  • the capacity of the single cells is equalized; if the voltage difference between the target cell voltage and the lowest cell voltage of the current target cell is greater than the cell voltage sampling error, the capacity equalization adjustment of the current target cell will continue until The voltage difference between the target cell voltage and the lowest cell voltage is less than or equal to the cell voltage sampling error.
  • the remaining capacity information to be equalized is determined by the information of the capacity to be equalized and the information of the already equalized capacity, which is the part that has not yet been equalized.
  • the remaining capacity information to be equalized of each target single battery is acquired and stored in the battery management system, so as to obtain the remaining capacity information to be equalized of each target single battery from the battery management system.
  • the solution is to solve the problem. It solves the problem of excessive balance that is easily caused when the capacity of the target battery is balanced during the charging process, and realizes that when the target battery is in the battery swap station, the current state of the target battery and the capacity information to be balanced can be executed.
  • the corresponding capacity balance adjustment strategy when the battery is balanced according to the corresponding balance adjustment strategy, avoids the excessive balance of the target replacement battery, ensures the consistency of the capacity of each single battery, thereby improving the battery life and save resources.
  • a battery management system is a type of controller on a vehicle that manages battery packs.
  • a battery management system can be installed within the target swap battery.
  • the target swap battery can be installed on the vehicle, and as the energy source of the vehicle, it can be replaced from the car into the swap station for charging.
  • FIG. 4 is a schematic structural diagram of a capacity equalization device for swapping batteries according to Embodiment 4 of the present application.
  • the device includes: a current state determination module 410 , a to-be-equalized capacity information determination module 420 and an equalization adjustment module 430 .
  • the current state determination module 410 is configured to determine the current state of the target swapped battery according to the received associated data information; the to-be-balanced capacity information determination module 420 is configured to determine at least one target single cell in the target swapped battery , and respectively determine the capacity information to be equalized of at least one target single battery; the equalization adjustment module 430 is set to perform capacity equalization adjustment on the target single battery corresponding to each capacity information to be equalized according to the current state and each capacity information to be equalized .
  • the current state includes that the target battery is in a vehicle
  • the apparatus further includes:
  • the flame-off duration determination module is set to determine the flame-off duration in the flame-off state when it is detected that the vehicle to which the target battery belongs is switched from the flame-off state to the start-up state;
  • the target single battery determination module is configured to obtain the voltage information of each single battery constituting the target battery when the flameout duration is greater than or equal to the preset flameout duration, so as to determine at least one target from each single cell according to the voltage information single battery.
  • the target single cell determination module is further configured to determine the voltage difference between the voltage information of each single cell and the minimum voltage information respectively; determine that the voltage difference is greater than or equal to a preset voltage difference threshold The single cell, and as the target single cell.
  • the current state includes that the target swapped battery is in the vehicle
  • the capacity information determination module 420 to be equalized is further configured to obtain, for each target single battery, the corresponding target single battery with the smallest voltage information.
  • the minimum battery capacity according to the battery capacity of the current target single battery, the minimum battery capacity and the voltage sampling error capacity, to determine the to-be-balanced capacity information of the current target single battery.
  • the current state includes that the target battery is in the vehicle
  • the balance adjustment module 430 is further configured to, for each target single cell, determine the target where the capacity information to be balanced of the current target single cell is located.
  • a capacity equalization target adjustment strategy corresponding to the target floating interval is determined, so as to perform a capacity equalization adjustment on the current target single cell based on the target adjustment strategy.
  • the current state includes that the target battery is in the vehicle, and the balance adjustment module 430 is further configured to, for each target single battery, if the capacity information to be balanced corresponding to the current target single battery is in the first preset If the floating interval is set, the current target single cell is discharged under any working condition until the discharge capacity reaches the capacity information to be balanced; the working conditions include charging working condition, discharging working condition and static working condition; if the current target single battery If the capacity information to be equalized corresponding to the bulk battery is in the second floating interval, the current target cell will be balanced and discharged under charging conditions until the discharge capacity reaches the capacity information to be equalized; If the capacity information is in the third floating interval, the current target single cell is discharged under the charging condition, or the current target single cell is discharged under the discharging condition until the discharge capacity reaches the preset number of cycles. The corresponding equalization capacity to be released.
  • the current state includes that the target battery is in the vehicle, and the apparatus further includes:
  • the remaining capacity information storage module to be equalized is set to obtain the remaining capacity information to be equalized of each target single battery and store the remaining capacity information to be equalized to the battery management system when it is detected that the vehicle is switched from the start state to the flameout state, so as to obtain the information of the remaining capacity to be equalized in the battery management system.
  • the remaining capacity information to be equalized of each target single battery is obtained; the remaining capacity information to be equalized is determined by the information of the capacity to be equalized and the information of the equalized capacity.
  • the current state includes that the target swap battery is in the swap station
  • the capacity information determination module 420 to be equalized is further configured to obtain the stored information of the remaining capacity to be equalized from the battery management system, and to determine the remaining capacity to be equalized. The capacity is used as the capacity information to be equalized.
  • the current state includes that the target swapped battery is in the swapping station, and the balance adjustment module 430 is further set to if the charging current of the target swapped battery is less than or equal to a preset charging threshold, and the charging duration reaches a preset value.
  • the charging duration threshold is set, the voltage difference between the target cell voltage and the lowest cell voltage of each target cell is determined respectively, and the correlation between the voltage difference and the cell voltage sampling error is determined; based on the correlation relationship, the capacity equalization adjustment is performed on the target single battery corresponding to each capacity information to be equalized.
  • the current state includes that the target battery is in a battery swap station
  • the balance adjustment module 430 is further configured to, for each target battery, if the target battery voltage of the current target battery is the same as the lowest battery If the voltage difference between the cell voltages is less than or equal to the cell voltage sampling error, the capacity equalization of the current target cell is stopped; if the difference between the target cell voltage of the current target cell and the lowest cell voltage If the voltage difference is greater than the cell voltage sampling error, continue to perform capacity equalization adjustment on the current target cell until the voltage difference between the target cell voltage and the lowest cell voltage of the current target cell is less than or equal to Single-cell voltage sampling error.
  • the solution is that the current capacity adjustment is relatively arbitrary and cannot be Targeted capacity balancing of batteries leads to inconsistencies between the actual results of battery capacity balancing and the desired results, resulting in problems of excessive battery balancing or failure to achieve the purpose of balancing and problems affecting battery service life.
  • the current state of the battery and the information on the capacity to be equalized, and the corresponding capacity equalization adjustment strategy is executed. When the capacity of the battery is equalized according to the corresponding equalization adjustment strategy, the consistency of the capacity of each single battery is ensured, thereby improving the battery usage. life and save resources.
  • the capacity equalization device for a battery swap provided by the embodiment of the present application can execute the capacity equalization method for a battery swap provided by any embodiment of the present application, and has functional modules and beneficial effects corresponding to the execution method.
  • FIG. 5 is a schematic structural diagram of an electronic device according to Embodiment 5 of the present application.
  • FIG. 5 shows a block diagram of an exemplary electronic device 50 suitable for implementing embodiments of embodiments of the present application.
  • the electronic device 50 shown in FIG. 5 is only an example, and should not impose any limitations on the functions and scope of use of the embodiments of the present application.
  • electronic device 50 takes the form of a general-purpose computing device.
  • Components of electronic device 50 may include, but are not limited to, one or more processors or processing units 501, system memory (memory) 502, and a bus 503 connecting different system components (including system memory 502 and processing unit 501).
  • Bus 503 represents one or more of several types of bus structures, including a memory bus or memory controller, a peripheral bus, a graphics acceleration port, a processor, or a local bus using any of a variety of bus structures.
  • these architectures include, but are not limited to, Industry Standard Architecture (ISA, Industry Standard Architecture) bus, Micro Channel Architecture (MCA, Micro Channel Architecture) bus, Enhanced ISA (Industry Standard Architecture, Industry Standard Architecture) Bus, Video Electronics Standards Association (VESA, Video Electronics Standards Association) local bus and Peripheral Component Interconnect (PCI, Peripheral Component Interconnect) bus.
  • ISA Industry Standard Architecture
  • MCA Micro Channel Architecture
  • Enhanced ISA Industry Standard Architecture
  • VESA Video Electronics Standards Association
  • PCI Peripheral Component Interconnect
  • Electronic device 50 typically includes a variety of computer system readable media. These media can be any available media that can be accessed by electronic device 50, including volatile and non-volatile media, removable and non-removable media.
  • System memory 502 may include computer system readable media in the form of volatile memory, such as random access memory (RAM) 504 and/or cache memory 505 .
  • Electronic device 50 may further include other removable/non-removable, volatile/non-volatile computer system storage media.
  • storage system 506 may be used to read and write to non-removable, non-volatile magnetic media (not shown in FIG. 5, commonly referred to as a "hard drive").
  • a disk drive may be provided for reading and writing to removable non-volatile magnetic disks (eg "floppy disks"), as well as removable non-volatile optical disks (eg CD-ROM, DVD-ROM) or other optical media) to read and write optical drives.
  • each drive may be connected to bus 503 through one or more data media interfaces.
  • Memory 502 may include at least one program product having a set (eg, at least one) of program modules configured to perform the functions of various embodiments of the present application.
  • Program modules 507 generally perform the functions and/or methods of the embodiments described herein.
  • the electronic device 50 may also communicate with one or more external devices 509 (eg, keyboards, pointing devices, display 510, etc.), with one or more devices that enable a user to interact with the electronic device 50, and/or with Any device (eg, network card, modem, etc.) that enables the electronic device 50 to communicate with one or more other computing devices. Such communication may take place through input/output (I/O) interface 511 . Also, the electronic device 50 may communicate with one or more networks (e.g., a local area network (LAN, Local Area Network), a wide area network (WAN, Wide Area Network), and/or a public network, such as the Internet, through the network adapter 512. As shown in FIG.
  • LAN local area network
  • WAN Wide Area Network
  • public network such as the Internet
  • the network adapter 512 communicates with other modules of the electronic device 50 through the bus 503 .
  • other hardware and/or software modules may be used in conjunction with electronic device 50, including but not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, RAID (Redundant Arrays) of Independent Disks, disk arrays) systems, tape drives, and data backup storage systems.
  • the processing unit 501 executes various functional applications and data processing by running the program stored in the system memory 502 , for example, to implement the capacity equalization method for battery replacement provided by the embodiments of the present application.
  • Embodiment 6 of the present application further provides a storage medium containing computer-executable instructions, when the computer-executable instructions are executed by a computer processor for executing a capacity equalization method for battery swapping, the method includes:
  • the capacity equalization adjustment is performed on the at least one target single cell corresponding to the information of the capacity to be equalized.
  • the computer storage medium of the embodiments of the present application may adopt any combination of one or more computer-readable media.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium can be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or a combination of any of the above.
  • a computer-readable storage medium can be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
  • the storage medium may be a non-transitory storage medium.
  • a computer-readable signal medium may include a propagated data signal in baseband or as part of a carrier wave, with computer-readable program code embodied thereon. Such propagated data signals may take a variety of forms including, but not limited to, electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium can also be any computer-readable medium other than a computer-readable storage medium that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device .
  • Program code embodied on a computer readable medium may be transmitted using any suitable medium, including - but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
  • Computer program code for carrying out the operations of the embodiments of the present application may be written in one or more programming languages, or combinations thereof, including object-oriented programming languages—such as Java, Smalltalk, C++, and also A conventional procedural programming language - such as the "C" language or similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (eg, using an Internet service provider through Internet connection).
  • LAN local area network
  • WAN wide area network

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种用于换电电池的容量均衡方法、装置、设备及存储介质,容量均衡方法包括:S110、根据接收到的关联数据信息,确定目标换电电池的当前状态;S120、确定目标换电电池中的至少一个目标单体电池,并分别确定至少一个目标单体电池的待均衡容量信息;S130、根据当前状态以及各待均衡容量信息,对各待均衡容量信息所对应的目标单体电池进行容量均衡调整。实现了结合目标换电电池的当前状态,执行相应的容量均衡调整,实现了各种状态下都能进行电池容量均衡,以保持电池一致性。

Description

用于换电电池的容量均衡方法、装置、设备及存储介质
本申请要求在2020年11月25日提交中国专利局、申请号为202011342208.3的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及电动汽车技术领域,例如涉及一种用于换电电池的容量均衡方法、装置、设备及存储介质。
背景技术
根据能量的转移方式的不同,电池均衡方法可分为主动均衡和被动均衡,其中使用电阻耗散较高剩余电量电芯能量的均衡称为被动均衡,通过将较高剩余电量电芯能量转移到较低剩余电量电芯的均衡称为主动均衡。由于主动均衡可靠性差,成本高且当前电芯产品的出厂一致性高等因素,当前市面上电动汽车几乎都选用被动均衡方案,但被动均衡也存在着均衡电流小的缺点。
电池的被动均衡系统,主要是以电池包中的单体电池的最低单体电量为基准来将较高剩余电量电芯电量消耗来保证单体电池之间的一致性。由于电池管理系统对单体电池电压采样误差一般为±3mV,该误差会导致待均衡电池待均衡容量会比实际值偏大,造成均衡过度。
电动汽车充电过程中根据待均衡容量对待均衡单体电池进行放电均衡,直至放电容量达到待均衡容量。但是对于经常使用快充方式进行充电的电动汽车来说,每个电池充放电循环电池充电时间只有不到1小时,那么待均衡电池可用于均衡的时间也只有不到1个小时,对于当前市面上的大容量单体电池,均衡的效果不明显。
但是,在采用上述方式进行容量均衡时,存在容量均衡随意,无法根据每个电池所需的容量均衡量进行相应的调整,造成容量均衡时的实际结果与所需结果不一致,从而造成电池均衡过度或者未达到均衡目的以及影响电池使用寿命。
发明内容
本申请实施例提供一种用于换电电池的容量均衡方法、装置、设备及存储介质。
第一方面,本申请实施例提供了一种用于换电电池的容量均衡方法,该方 法,包括:
根据接收到的关联数据信息,确定目标换电电池的当前状态;
确定目标换电电池中的至少一个目标单体电池,并分别确定所述至少一个目标单体电池的待均衡容量信息;
根据所述当前状态以及所述待均衡容量信息,对所述待均衡容量信息所对应的所述至少一个目标单体电池进行容量均衡调整。
第二方面,本申请实施例还提供了一种用于换电电池的容量均衡装置,该装置包括:
当前状态确定模块,设置为根据接收到的关联数据信息,确定目标换电电池的当前状态;
待均衡容量信息确定模块,设置为确定目标换电电池中的至少一个目标单体电池,并分别确定所述至少一个目标单体电池的待均衡容量信息;
均衡调整模块,设置为根据所述当前状态以及所述待均衡容量信息,对所述待均衡容量信息所对应的所述至少一个目标单体电池进行容量均衡调整。
第三方面,本申请实施例还提供了一种电子设备,所述电子设备包括:
至少一个处理器;
存储装置,设置为存储至少一个程序,
所述至少一个处理器,设置为执行所述至少一个程序以实现如本申请实施例任一所述的用于换电电池的容量均衡方法。
第四方面,本申请实施例还提供了一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行如本申请实施例任一所述的用于换电电池的容量均衡方法。
附图说明
为了说明本申请示例性实施例,下面对描述实施例中所需要用到的附图做一简单介绍。对于本领域普通技术人员,在不付出创造性劳动的前提下,还可以根据这些附图得到其他的附图。
图1为本申请实施例一所提供的一种用于换电电池的容量均衡方法流程示意图;
图2为本申请实施例二所提供的一种用于换电电池的容量均衡方法流程示意图;
图3为本申请实施例三所提供的一种用于换电电池的容量均衡方法流程示 意图;
图4为本申请实施例四所提供的一种用于换电电池的容量均衡装置的结构示意图;
图5为本申请实施例五所提供的一种电子设备的结构示意图。
具体实施方式
下面结合附图和实施例对本申请进行说明。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
实施例一
图1为本申请实施例一所提供的一种用于换电电池的容量均衡方法流程示意图,本实施例在换电电池处于不同状态时对电池容量进行均衡调整,该方法可以由用于换电电池的容量均衡装置来执行,该装置可以通过软件和/或硬件的形式实现。
如图1所述,本实施例的方法,包括如下步骤:
S110、根据接收到的关联数据信息,确定目标换电电池的当前状态。
其中,目标换电电池是需要进行容量均衡的换电电池,目标换电电池由多个单体电池构成。关联数据信息是用于确定目标换电电池当前状态的信息,可以是目标换电电池与车辆之间的通信信息,例如:若目标换电电池与车辆之间是通信连接的,则目标换电电池的当前状态为处于车辆中;若目标换电电池与车辆之间是通信断开的,则目标换电电池的当前状态为处于换电站内,也可以是车辆中安装有GPS(Global Positioning System,全球定位系统),若定位显示车辆位置位于换电站外,则目标换电电池的当前状态为处于车辆中;若定位显示车辆位置位于换电站内,则目标换电电池的当前状态为处于换电站内。
S120、确定目标换电电池中的至少一个目标单体电池,并分别确定至少一个目标单体电池的待均衡容量信息。
由于目标换电电池中多个单体电池的性能不一致,会导致电池使用一段时间后,多个单体电池的容量存在一定的差异。当单体电池的容量不一致时会存在充电工况下过充以及放电工况下过放等汽车安全性问题,因此为了使多个单体电池之间的容量均衡,可以以电压最低的电池为基准,来确定多个单体电池的待均衡容量。可以将电压最低的电池作为基准单体电池,相应的,基准单体电池所对应的电池电压为基准电压,基准单体电池所对应的电池容量为基准容量。将电压最低的电池设置为基准单体电池的好处在于:可以根据基准容量进 行容量调整,避免单体电池的容量差值过大而产生的安全隐患。分别确定每个单体电池与基准电池之间的电压差值,并可以将电压差值大于预设差值阈值的电池作为目标单体电池,当然,也可以将电压高于基准电压的单体电池作为待均衡单体电池,即目标单体电池。采用上述方式确定目标单体电池时,确定出的目标电池数量可以是一个也可以是多个,例如:目标换电电池中包含5个单体电池,电压最低的单体电池的电压为3.2V,其余4个单体电池的电压都高于3.2V,因此将其余4个单体电池都作为目标单体电池。
其中,目标单体电池是目标换电电池中需要进行容量均衡的单体电池,待均衡容量是目标单体电池需要释放的容量,例如,可以基于目标单体电池的电池容量与目标换电电池中电压最低的单体电池,即基准单体电池的电池容量来确定的。计算单体电池的电池容量可以是基于下述公式来确定的,如,单体电池容量=单体电池荷电状态×电池健康状态×电池额定容量。其中,单体电池的荷电状态是电池使用一段时间后剩余电量与满充状态下的容量的比值,电池的健康状态是满充状态下的容量与额定容量的比值。
每个目标单体电池均存在一个与其相对应的待均衡容量,且待均衡容量可以相同也可以不同。
例如,获取目标换电电池中多个单体电池的电压信息,从所有电压信息中确定最小电压值所对应的单体电池,即为基准单体电池。同时,确定每个单体电池的电压与基准电压之间的电压差值,当电压差值大于预设电压差值阈值,则可以将该电压差值所对应非基准单体电池的电池作为目标单体电池。采用上述方式可以依次确定目标换电电池中的至少一个目标单体电池。在确定目标单体电池之后,可以采用上述公式计算每个目标单体电池的当前电池容量,以及基准电池的基准容量。根据当前电池容量与基准容量之间的差值,可以确定当前电池容量所对应的目标单体电池的待均衡容量信息。
S130、根据当前状态以及所述待均衡容量信息,对所述待均衡容量信息所对应的所述至少一个目标单体电池进行容量均衡调整。
其中,当前状态包括目标换电电池位于车辆中,或者目标换电电池位于换电站内。若当前状态不同时,与每个目标单体电池所对应的均衡方式存在一定的差异,因此需要结合当前状态对每个目标单体电池进行容量均衡调整。此外,每个目标单体电池所对应的待均衡容量信息存在一定的差异,当待均衡容量信息不同时,可能与其相对应的容量均衡调整策略也存在一定的差异。因此,可以综合考量当前状态以及每个待均衡容量信息,来对每个目标单体电池进行容 量均衡调整。
示例性的,当前状态是:目标换电电池处于车辆中,当其中某个目标单体电池的待均衡容量信息较大时,则可以是在车辆充电,静止和放电的状态下均对目标单体电池进行均衡处理,直至容量均衡调整结束,如,对目标单体电池电池进行放电处理;当待均衡容量信息较小时,即该目标单体电池与基准电池之间的容量差值不大,此种情况可以是在充电过程中对目标单体电池进行额外的放电处理,直至容量均衡调整结束。这种均衡方式的好处在于能够根据当前状态以及待均衡容量信息选择相对应的均衡调整策略,以避免均衡不足或均衡过度的情况发生。
例如,若当前状态为目标换电电池处于换电站内,则目标换电电池在工作时处于充电状态,在充电过程中,可以使用电阻来消耗目标单体电池中的电量,使目标单体电池比非目标单体电池的充电速度慢,避免过充状态的产生,并且可以周期性的或实时的计算得出每个目标单体电池的剩余待均衡容量信息直至目标单体电池的容量均衡过程结束,停止额外使用电阻消耗电量,以避免过度均衡的情况。
例如,根据所述当前状态以及所述至少一个目标单体电池的待均衡容量信息中的每个待均衡容量信息,对所述每个待均衡容量信息所对应的目标单体电池进行容量均衡调整。
本实施例,通过确定目标换电电池的当前状态以及目标单体电池的待均衡容量信息,并根据当前状态以及待均衡容量信息进行相应的容量均衡调整,可应对目前容量调整比较随意,无法有针对性的对电池进行容量均衡,导致对电池进行容量均衡的实际结果与所需结果不一致,从而造成电池均衡过度或者未达到均衡目的以及影响电池使用寿命的状况,实现了结合目标换电电池的当前状态以及待均衡容量信息,执行相应的容量均衡调整策略,在根据相应的均衡调整策略来对电池进行容量均衡时,保证了多个单体电池容量的一致性,从而提高了电池使用寿命,节省资源。
实施例二
图2为本申请实施例二所提供的一种用于换电电池的容量均衡方法流程示意图。在前述实施例的基础上可知,当前状态包括目标换电电池位于车辆中或者位于换电站中,为了介绍不同状态下所对应的均衡调整策略,本实施例以目标换电电池处于车辆中为例来介绍。其中与上述实施例相同或相应的术语的解释在此不再赘述。
如图2所述,本实施例的方法,包括如下步骤:
示例性说明,当前状态是目标换电电池处于车辆中。
例如,检测目标换电电池是否位于车辆中,可以是根据接收到的关联数据信息,如,电机的相关信息,确定目标换电电池的当前状态是目标换电电池处于车辆中。可以是根据BMS(Battery Management System,电池管理系统)读取内存中存取的目标换电电池的换电状态并通过与其他控制器(如网关,整车控制器、换电控制器等)进行通信确认目标换电电池所处的场景,当接收到换电电池与车辆之间的控制信号时,确定目标换电电池的当前状态是目标换电电池处于车辆中。
在确定当前状态后,可以进行下一步判断,如,通过本次上电时刻与内存中存储的上次下电时刻的时间差获得目标换电电池的静置时长。
其中,上电时刻是目标换电电池所属车辆的启动时刻,下电时刻是目标换电电池所属车辆的熄火时刻,静置时长是本次上电时刻与内存中存取的上次下电时刻的时间差,即由熄火状态转换为启动状态时,处于熄火状态的熄火时长。
在一实施例中,当检测到目标换电电池所属车辆由熄火状态转换为启动状态时,确定处于熄火状态的熄火时长。BMS中能够存储车辆启动时刻以及熄火时刻,因此可以根据BMS系统中存储的本次启动时刻以及上次熄火时刻,进行求差得到车辆处于熄火状态的熄火时长。
在确定静置时长后,可以根据静置时长来判断是否需要重新确定待均衡容量信息,即判断目标换电电池静置时长是否大于或等于预设熄火时长。根据静置时长来确定待均衡容量信息的原因在于:当静置时长较长时,存在构成目标换电电池的至少一个单体电池的电解质分布均匀,当电解质分布均匀时需要重新确定至少一个单体电池中的目标单体电池,进而确定相应的待均衡容量信息。当静置时长较短时,存在电池电解质分布不均匀的情况,此时电动势不稳定,即电压不稳,因此即使测量得到的结果也不准确,因此可以以存储的待均衡容量信息作为将要均衡的容量信息。如,若电池静置时长小于预设时间,则读取BMS上次下电时存储的剩余待均衡容量,即,当熄火时长小于预设熄火时长时,为了获取目标单体电池的待均衡容量信息,读取BMS上次熄火时存储的剩余待均衡容量作为待均衡容量信息,其中,剩余待均衡容量是在上一次进行容量均衡后剩余的部分,即待均衡容量与已均衡容量的差值。
若单体电池的电解质分布均匀,即静置时长较长,则可以确定单体电池开路电压,并计算每个单体电池电压与电压最低的单体电池电压差值,即重复执 行实施例一的步骤。
也就是说,在无法基于静置时长来确定待均衡容量信息时,确定目标换电电池中的目标单体电池可以是:当熄火时长大于或等于预设熄火时长时,获取构成目标换电电池的至少一个单体电池的电压信息,以根据电压信息从至少一个单体电池中确定至少一个目标单体电池。
其中,单体电池的电压信息可以是在BMS采集的实时的电压值,并确定全部单体电池中电压值最低的单体电池为基准单体电池,相应的,基准单体电池的电压值为基准电压,分别确定每个单体电池的电压信息与基准电压之间的电压差值。
可以基于电压差值与预设压差阈值之间的关系来确定相应的待均衡容量信息,如:判断所有单体电池电压与基准电压的差值是否大于预设压差阈值。若电压差值不大于该预设压差阈值,说明该单体电池与基准电池的容量差值不大,不影响安全使用,则该单体电池不需要均衡;若电压差值大于该预设压差阈值,说明该单体电池与基准电池的容量差值较大,继续以该状态使用会造成安全隐患,则将该单体电池作为待均衡单体电池,即目标单体电池,以进行后续的容量均衡。
其中,单体最低电压是最小电压信息,是基准电池的电压值,也就是基准电压,预设压差阈值是预设电压差值阈值,用来判断单体电池是否需要进行均衡,具体是根据单体电池的充放电特性确定。
例如,判断每个单体电池的电压信息与最小电压信息之间的电压差值是否大于或等于预设电压差值阈值,将电压差值大于或等于预设电压差值阈值的单体电池作为目标单体电池;电压差值小于预设电压差值阈值的单体电池则不需要均衡。
示例性的,目标换电电池中包括5个单体电池,其中,1号单体电池电压为3.984V,2号单体电池电压为3.962V,3号单体电池电压为3.986V,4号单体电池电压为3.979V,5号单体电池电压为3.965V,预设电压差值阈值是15mV。由此可知,最小电压信息是2号单体电池的电压3.962V,每个单体电池的电压信息与最小电压信息之间的电压差值分别为22mV,0mV,24mV,17mV以及3mV。由此可以确定1号单体电池,3号单体电池以及4号单体电池为目标单体电池。
在确定目标单体电池之后,需要计算目标单体电池和最小电压信息对应的单体电池的容量,并计算目标单体电池待均衡容量。
例如,根据单体电池的容量计算公式(单体电池容量=单体电池荷电状态×电池健康状态×电池额定容量),可以计算出目标单体电池和最小电压信息对应的单体电池的容量。其中,单体电池荷电状态是电池使用一段时间或长期搁置不用后剩余电量与满充状态下的容量的比值,电池的健康状态是满充状态下的容量与额定容量的比值。进一步的,根据目标单体电池的待均衡容量计算公式(待均衡容量=目标单体电池容量-电压最低电池容量-电压采样误差导致的容量误差),可以计算得出目标单体电池的待均衡容量。其中,目标单体电池容量是通过计算得出的目标单体电池的电池容量,电压最低电池容量是最小电压信息对应的单体电池的容量,电压采样误差导致的容量误差,即电压采样误差容量,是客观存在的测量值与真实值之间的差值,根据单体电池的充放电特性确定。
简言之,针对每个目标单体电池,获取电压信息最小时的目标单体电池所对应的最低电池容量,根据当前目标单体电池的电池容量、最低电池容量以及电压采样误差容量,确定当前目标单体电池的待均衡容量信息。
在得到至少一个目标单体电池的待均衡容量信息后,可以判断有无禁止均衡的故障,若存在禁止均衡的故障,则退出均衡执行状态;若不存在禁止均衡的故障,则进入均衡执行状态。
在进入均衡执行状态时,可以确定每个目标单体电池待均衡容量所处浮动区间,以便根据与浮动区间相对应的均衡策略执行相应的均衡操作。
其中,浮动区间用来表征目标单体电池的电池容量与目标单体电池的电压信息最小时所对应的最低电池容量的偏差大小,即待均衡容量的大小。在此之前,需要设置不同的浮动区间以及与不同浮动区间对应的容量均衡目标调整策略,以使目标单体电池能够执行相应的容量均衡调整。
在一实施例中,针对每个目标单体电池,可以确定当前目标单体电池的待均衡容量信息所处的目标浮动区间,进而能够确定与目标浮动区间相对应的容量均衡目标调整策略,并以基于目标调整策略对当前目标单体电池进行容量均衡调整。在本实施例中,可以将浮动区间划分为至少三个,例如,三个浮动区间,与每个浮动区间相对应的均衡策略可以如下所述:
第一浮动区间所对对应的浮动策略可以是:若目标单体电池的待均衡容量在第一预设浮动区间,则需要电池在所有工况下都对目标单体电池进行均衡放电,直至放电容量达到待均衡容量。
其中,第一预设浮动区间表示目标单体电池的电池容量与目标单体电池的 电压信息最小时所对应的最低电池容量的偏差偏大,表示目标单体电池的均衡需求大。
在一实施例中,若当前目标单体电池所对应的待均衡容量信息在第一预设浮动区间,在任何工况下对当前目标单体电池进行均衡放电,直至放电容量达到待均衡容量信息,其中,工况包括充电工况、放电工况以及静止工况。示例性的,目标换电电池所属的车辆为油电混合动力汽车,若当前目标单体电池所对应的待均衡容量信息在第一预设浮动区间,在使用过程中,用燃料为电池进行供电,即处于充电工况下,当前目标单体电池使用电阻额外消耗电量,使目标单体电池比非目标单体电池的充电速度慢,直至放电容量达到待均衡容量信息;在使用过程中,处于放电工况下,使用目标单体电池中的电阻额外消耗目标单体电池中的电量,使目标单体电池比非目标单体电池的放电速度快,直至放电容量达到待均衡容量信息;在车辆静止时,处于静止工况下,自动使用目标单体电池中的电阻额外消耗目标单体电池中的电量,直至放电容量达到待均衡容量信息。当放电容量达到待均衡容量信息时,表明已完成当前目标单体电池的均衡调整。
第二浮动区间所对对应的浮动策略可以是:若目标单体电池的待均衡容量在第二预设浮动区间,则需要电池在充电工况下对目标单体电池进行均衡放电,直至放电容量达到待均衡容量。
其中,第二预设浮动区间表示目标单体电池的电池容量与目标单体电池的电压信息最小时所对应的最低电池容量的偏差偏小,表示目标单体电池的均衡需求小。
例如,若当前目标单体电池所对应的待均衡容量信息在第二浮动区间,则在充电工况下对当前目标单体进行均衡放电,直至放电容量达到所述待均衡容量信息。由于目标单体电池的均衡需求小,则只需要在放电工况下进行均衡放电。在放电工况下,使用目标单体电池中的电阻额外消耗目标单体电池中的电量,使目标单体电池比非目标单体电池的放电速度快,直至放电容量达到待均衡容量信息。当放电容量达到待均衡容量信息时,表明已完成当前目标单体电池的均衡调整。
第三浮动区间所对应的浮动策略可以是:若目标单体电池的待均衡容量在第三预设浮动区间,则在充电工况下目标单体电池进行均衡放电,或在放电工况下,对目标单体电池进行均衡放电,直至放电容量达到预设循环次数所对应的待释放均衡容量。
其中,第三预设浮动区间表示目标单体电池的电池容量与电压信息最小时所对应的最低电池容量的偏差处于第一预设浮动区间与第二预设浮动区间之间,表示目标单体电池的均衡需求一般。
在一实施例中,若当前目标单体电池所对应的待均衡容量信息在第三浮动区间,在充电工况下,当前目标单体电池使用电阻额外消耗电量,使目标单体电池比非目标单体电池的充电速度慢,直至放电容量达到待均衡容量信息,表明已完成当前目标单体电池的均衡调整;或者,当放电工况下,当前目标单体电池使用电阻额外消耗电量,使目标单体电池比非目标单体电池的放电速度快,直至放电容量达到预设循环次数所对应的待释放均衡容量。即,放电工况下,对待均衡电池进行均衡放电,直至放电容量达到待均衡容量与最近五个充放电循环中放电工况的时间所占比例的乘积,当放电的容量达到上述值时,可以认为放电结束。
例如,假设BMS记录最近5个充放电循环共耗时50个小时,其中放电工况为35个小时,充电工况为15个小时,则放电工况所占比例为35/50=70%,则放电容量=待均衡容量*70%。
示例性的,三个预设浮动区间范围分别是第一预设浮动区间为[20,+∞)mV,第二预设浮动区间为(0,10]mV,第三预设浮动区间为(10,20)mV。
当目标换电电池处于车辆中且目标换电电池下电时,需要存储换电电池的剩余待均衡容量信息。
其中,剩余待均衡容量信息由待均衡容量信息和已均衡容量信息来确定,是还未进行均衡的部分,例如,剩余待均衡容量信息的计算公式为:剩余待均衡容量信息=待均衡容量信息-已均衡容量信息。
在一实施例中,当检测到车辆由启动状态转换为熄火状态时,获取目标单体电池的剩余待均衡容量信息并存储至电池管理系统中,以从电池管理系统中获取目标单体电池的剩余待均衡容量信息。
本实施例,通过确定目标换电电池的当前状态是处于车辆中,根据目标单体电池的待均衡容量信息确定相对应的容量均衡目标调整策略,可应对目前容量调整比较随意,无法有针对性的对电池进行容量均衡,导致对电池进行容量均衡的实际结果与所需结果不一致,从而造成电池均衡过度或者未达到均衡目的以及影响电池使用寿命的状况,实现了结合目标换电电池的当前状态以及待均衡容量信息,执行相应的容量均衡调整策略,在根据相应的均衡调整策略来对电池进行容量均衡时,保证了多个单体电池容量的一致性,从而提高了电池 使用寿命以及节省资源。
实施例三
图3为本申请实施例三所提供的一种用于换电电池的容量均衡方法流程示意图。在前述实施例的基础上可知,当前状态包括目标换电电池位于车辆中或者位于换电站中,为了介绍不同状态下所对应的容量均衡调整策略,本实施例以目标换电电池处于换电站内为例来介绍。其中与上述实施例相同或相应的术语的解释在此不再赘述。
如图3所述,本实施例的方法:
示例性说明,当前状态是目标换电电池处于换电站内。
例如,当换电电池电量不足时,在换电站内,换电电池被从电动汽车上替换下并接入换电站的充电监控系统以进行充电及相关信息的存储。检测目标换电电池是否处于换电站内,此时,可以根据接收到的关联数据信息,确定目标换电电池的当前状态是目标换电电池处于换电站内。可以是根据BMS读取内存中存取的目标换电电池的换电状态并通过与其他控制器(如网关,整车控制器、换电控制器等)进行通信确认目标换电电池所处的场景,当无法接收到换电电池与车辆之间的通信信号时,确定目标换电电池的当前状态是目标换电电池处于换电站内。
在确定当前状态后,可以读取BMS上次下电时存储的剩余待均衡容量信息。
在一实施例中,从电池管理系统中获取存储的剩余待均衡容量信息,并将剩余待均衡容量作为待均衡容量信息。
在得到多个目标单体电池的待均衡容量信息后,可以判断有无禁止均衡的故障,若存在禁止均衡的故障,则退出均衡执行状态;若不存在禁止均衡的故障,则进入均衡执行状态。
在进入均衡执行状态时,可以对目标单体电池进行均衡放电,直至放电容量达到待均衡容量。
例如,当目标换电电池处于换电站内时,目标换电电池处于非放电工况,即充电工况和静止工况。若目标换电电池处于充电工况下,当前目标单体电池使用电阻额外消耗电量,使目标单体电池比非目标单体电池的充电速度慢,直至放电容量达到待均衡容量信息;当目标换电电池处于静止工况下,自动使用目标单体电池中的电阻额外消耗目标单体电池中的电量,直至放电容量达到待均衡容量信息。当放电容量达到待均衡容量信息时,表明已完成当前目标单体电池的均衡调整。
为了确定目标单体电池是否完成容量均衡,则需要判断是否满足目标单体电池的充电电流小于等于预设充电阈值,且充电时长达到预设充电时长阈值。
若满足上述条件,则需要进一步判断目标单体电池电压与电压最低的单体电池电压差值是否小于单体电压采样误差。若不满足上述条件,说明目标单体电池未完成容量均衡,则继续进行容量均衡。
例如,若目标单体电池的充电电流小于或等于预设充电阈值,且充电时长达到预设充电时长阈值时,则表明目标单体电池有可能已与电压最低的单体电池的容量状态一致,因此需要进一步的判断目标单体电池是否完成容量均衡。其中,预设充电阈值是预先设置的可以完成容量均衡的充电时长,预设充电阈值和预设充电时长阈值需参考目标换电电池中单体电池电解质分布均匀的条件而定。在一示例中,确定每个目标单体电池的目标单体电压与最低单体电压之间的电压压差,并确定电压压差与单体电压采样误差之间的关联关系。基于关联关系,对各待均衡容量信息所对应的目标单体电池进行容量均衡调整。其中,单体电压采样误差是单体电池的测量电压值与实际电压值之间的差值。若目标换电电池的充电电流大于预设充电阈值和/或充电时长未达到预设充电时长阈值时,则表明仍需要继续进行容量均衡。
若目标单体电池的充电电流小于或等于预设充电阈值,且充电时长达到预设充电时长阈值时,判断目标单体电池电压与当前电压最低的单体电池电压差值是否小于单体电压采样误差。
若上述压差小于采样误差,表示该目标单体电池已与当前电压最低的单体电池状态一致,即完成了容量均衡,若继续均衡可能会导致均衡过度,故需将相应目标单体电池的待均衡容量清零,并停止其容量均衡执行;若上述压差大于或等于采样误差,则继续按照执行容量均衡。
在一实施例中,针对每个目标单体电池,若当前目标单体电池的目标单体电压与最低单体电压之间的电压压差小于或等于单体电压采样误差,则停止对当前目标单体电池进行容量均衡;若当前目标单体电池的目标单体电压与最低单体电压之间的电压压差大于单体电压采样误差,则继续对当前目标单体电池进行容量均衡调整,直至目标单体电压与最低单体电压之间的电压压差小于或等于单体电压采样误差。
当目标换电电池处于换电站内且目标换电电池下电时,需要存储换电电池剩余待均衡容量信息。
其中,剩余待均衡容量信息由待均衡容量信息和已均衡容量信息来确定, 是还未进行均衡的部分,例如,剩余待均衡容量信息的计算公式为:剩余待均衡容量信息=待均衡容量信息-已均衡容量信息。
在一实施例中,获取各目标单体电池的剩余待均衡容量信息并存储至电池管理系统中,以从电池管理系统中获取各目标单体电池的剩余待均衡容量信息。
本实施例,通过确定目标换电电池的当前状态是处于换电站内,根据目标单体电池的待均衡容量信息进行容量均衡,通过多层判断对目标单体电池是否完成容量均衡进行确定,解决了在充电过程中进行目标换电电池的容量均衡时容易造成的均衡过度的问题,实现了当目标换电电池处于换电站内时,结合目标换电电池的当前状态以及待均衡容量信息,执行相应的容量均衡调整策略,在根据相应的均衡调整策略来对电池进行容量均衡时,避免了目标换电电池的过度均衡,保证了各单体电池容量的一致性,从而提高了电池使用寿命以及节省资源。
例如,上述实施例可由电池管理系统实施。电池管理系统为车辆上的一类控制器,用于管理电池包。
例如,电池管理系统可安装在目标换电电池内。
例如,目标换电电池可安装于车辆上,作为车辆的能量来源,其可从车上换下进入换电站充电。
实施例四
图4为本申请实施例四所提供的一种用于换电电池的容量均衡装置的结构示意图,该装置包括:当前状态确定模块410,待均衡容量信息确定模块420和均衡调整模块430。
其中,当前状态确定模块410,设置为根据接收到的关联数据信息,确定目标换电电池的当前状态;待均衡容量信息确定模块420,设置为确定目标换电电池中的至少一个目标单体电池,并分别确定至少一个目标单体电池的待均衡容量信息;均衡调整模块430,设置为根据当前状态以及各待均衡容量信息,对各待均衡容量信息所对应的目标单体电池进行容量均衡调整。
在一实施例中,当前状态包括所述目标换电电池处于车辆中,所述装置还包括:
熄火时长确定模块,设置为当检测到目标换电电池所属车辆由熄火状态转换为启动状态时,确定处于熄火状态的熄火时长;
目标单体电池确定模块,设置为当熄火时长大于或等于预设熄火时长时,获取构成目标换电电池的各单体电池的电压信息,以根据电压信息从各单体电 池中确定至少一个目标单体电池。
在一实施例中,目标单体电池确定模块,还设置为分别确定每个单体电池的电压信息与最小电压信息之间的电压差值;确定电压差值大于或等于预设电压差值阈值的单体电池,并作为目标单体电池。
在一实施例中,当前状态包括所述目标换电电池处于车辆中,待均衡容量信息确定模块420,还设置为针对每个目标单体电池,获取电压信息最小的目标单体电池所对应的最低电池容量,根据当前目标单体电池的电池容量、最低电池容量以及电压采样误差容量,确定当前目标单体电池的待均衡容量信息。
在一实施例中,当前状态包括所述目标换电电池处于车辆中,均衡调整模块430,还设置为针对每个目标单体电池,确定当前目标单体电池的待均衡容量信息所处的目标浮动区间,确定与目标浮动区间相对应的容量均衡目标调整策略,以基于目标调整策略对当前目标单体电池进行容量均衡调整。
在一实施例中,当前状态包括目标换电电池处于车辆中,均衡调整模块430,还设置为针对每个目标单体电池,若当前目标单体电池所对应的待均衡容量信息在第一预设浮动区间,则在任何工况下对当前目标单体电池进行均衡放电,直至放电容量达到待均衡容量信息;所述工况包括充电工况、放电工况以及静止工况;若当前目标单体电池所对应的待均衡容量信息在第二浮动区间,则在充电工况下对当前目标单体进行均衡放电,直至放电容量达到待均衡容量信息;若当前目标单体电池所对应的待均衡容量信息在第三浮动区间,则在充电工况下对当前目标单体电池进行均衡放电,或在放电工况下对所述当前目标单体电池进行均衡放电,直至放电容量达到预设循环次数所对应的待释放均衡容量。
在一实施例中,当前状态包括目标换电电池处于车辆中,所述装置还包括:
剩余待均衡容量信息存储模块,设置为当检测到车辆由启动状态转换为熄火状态时,获取各目标单体电池的剩余待均衡容量信息并存储剩余待均衡容量信息至电池管理系统中,以从电池管理系统中获取各目标单体电池的剩余待均衡容量信息;剩余待均衡容量信息由待均衡容量信息和已均衡容量信息来确定。
在一实施例中,当前状态包括所述目标换电电池处于换电站内,待均衡容量信息确定模块420,还设置为从电池管理系统中获取存储的剩余待均衡容量信息,并将剩余待均衡容量作为待均衡容量信息。
在一实施例中,当前状态包括所述目标换电电池处于换电站内,均衡调整模块430,还设置为若目标换电电池的充电电流小于或等于预设充电阈值,且充电时长达到预设充电时长阈值时,则分别确定每个目标单体电池的目标单体电 压与最低单体电压之间的电压压差,并确定电压压差与单体电压采样误差之间的关联关系;基于关联关系,对各待均衡容量信息所对应的目标单体电池进行容量均衡调整。
在一实施例中,当前状态包括所述目标换电电池处于换电站内,均衡调整模块430,还设置为针对每个目标单体电池,若当前目标单体电池的目标单体电压与最低单体电压之间的电压压差小于或等于所述单体电压采样误差,则停止对当前目标单体电池进行容量均衡;若当前目标单体电池的目标单体电压与最低单体电压之间的电压压差大于所述单体电压采样误差,则继续对当前目标单体电池进行容量均衡调整,直至当前目标单体电池的目标单体电压与最低单体电压之间的电压压差小于或等于单体电压采样误差。
本实施例,通过确定目标换电电池的当前状态以及目标单体电池的待均衡容量信息,并根据当前状态以及待均衡容量信息进行相应的容量均衡调整时,解决了目前容量调整比较随意,无法有针对性的对电池进行容量均衡,导致对电池进行容量均衡的实际结果与所需结果不一致,从而造成电池均衡过度或者未达到均衡目的的问题以及影响电池使用寿命的问题,实现了结合目标换电电池的当前状态以及待均衡容量信息,执行相应的容量均衡调整策略,在根据相应的均衡调整策略来对电池进行容量均衡时,保证了各单体电池容量的一致性,从而提高了电池使用寿命以及节省资源。
本申请实施例所提供的用于换电电池的容量均衡装置可执行本申请任意实施例所提供的用于换电电池的容量均衡方法,具备执行方法相应的功能模块和有益效果。
上述系统所包括的各个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本申请实施例的保护范围。
实施例五
图5为本申请实施例五所提供的一种电子设备的结构示意图。图5示出了适于用来实现本申请实施例实施方式的示例性电子设备50的框图。图5显示的电子设备50仅仅是一个示例,不应对本申请实施例的功能和使用范围带来任何限制。
如图5所示,电子设备50以通用计算设备的形式表现。电子设备50的组件可以包括但不限于:一个或者多个处理器或者处理单元501,系统存储器(内存)502,连接不同系统组件(包括系统存储器502和处理单元501)的总线503。
总线503表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器,外围总线,图形加速端口,处理器或者使用多种总线结构中的任意总线结构的局域总线。举例来说,这些体系结构包括但不限于工业标准体系结构(ISA,Industry Standard Architecture)总线,微通道体系结构(MCA,Micro Channel Architecture)总线,增强型ISA(Industry Standard Architecture,工业标准体系结构)总线、视频电子标准协会(VESA,Video Electronics Standards Association)局域总线以及外围组件互连(PCI,Peripheral Component Interconnect)总线。
电子设备50典型地包括多种计算机系统可读介质。这些介质可以是任何能够被电子设备50访问的可用介质,包括易失性和非易失性介质,可移动的和不可移动的介质。
系统存储器502可以包括易失性存储器形式的计算机系统可读介质,例如随机存取存储器(RAM,Random Access Memory)504和/或高速缓存存储器505。电子设备50可以进一步包括其它可移动/不可移动的、易失性/非易失性计算机系统存储介质。仅作为举例,存储系统506可以用于读写不可移动的、非易失性磁介质(图5未显示,通常称为“硬盘驱动器”)。尽管图5中未示出,可以提供用于对可移动非易失性磁盘(例如“软盘”)读写的磁盘驱动器,以及对可移动非易失性光盘(例如CD-ROM,DVD-ROM或者其它光介质)读写的光盘驱动器。在这些情况下,每个驱动器可以通过一个或者多个数据介质接口与总线503相连。存储器502可以包括至少一个程序产品,该程序产品具有一组(例如至少一个)程序模块,这些程序模块被配置以执行本申请各实施例的功能。
具有一组(至少一个)程序模块507的程序/实用工具508,可以存储在例如存储器502中,这样的程序模块507包括但不限于操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。程序模块507通常执行本申请所描述的实施例中的功能和/或方法。
电子设备50也可以与一个或多个外部设备509(例如键盘、指向设备、显示器510等)通信,还可与一个或者多个使得用户能与该电子设备50交互的设备通信,和/或与使得该电子设备50能与一个或多个其它计算设备进行通信的任何设备(例如网卡,调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口511进行。并且,电子设备50还可以通过网络适配器512与一个或者多个 网络(例如局域网(LAN,Local Area Network),广域网(WAN,Wide Area Network)和/或公共网络,例如因特网)通信。如图5所示,网络适配器512通过总线503与电子设备50的其它模块通信。应当明白,尽管图5中未示出,可以结合电子设备50使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID(Redundant Arrays of Independent Disks,磁盘阵列)系统、磁带驱动器以及数据备份存储系统等。
处理单元501通过运行存储在系统存储器502中的程序,从而执行各种功能应用以及数据处理,例如实现本申请实施例所提供的用于换电电池的容量均衡方法。
实施例六
本申请实施例六还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种用于换电电池的容量均衡方法,该方法包括:
根据接收到的关联数据信息,确定目标换电电池的当前状态;
确定目标换电电池中的至少一个目标单体电池,并分别确定至少一个目标单体电池的待均衡容量信息;
根据当前状态以及所述待均衡容量信息,对所述待均衡容量信息所对应的所述至少一个目标单体电池进行容量均衡调整。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM,Read-Only Memory)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
存储介质可以是非暂态(non-transitory)存储介质。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种 形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括——但不限于无线、电线、光缆、RF等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请实施例操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言——诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
本领域技术人员会理解,本申请不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本申请的保护范围。因此,虽然通过以上实施例对本申请进行了较为详细的说明,但是本申请不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本申请的范围由所附的权利要求范围决定。

Claims (13)

  1. 一种用于换电电池的容量均衡方法,包括:
    根据接收到的关联数据信息,确定目标换电电池的当前状态;
    确定目标换电电池中的至少一个目标单体电池,并分别确定所述至少一个目标单体电池的待均衡容量信息;
    根据所述当前状态以及所述待均衡容量信息,对所述待均衡容量信息所对应的所述至少一个目标单体电池进行容量均衡调整。
  2. 根据权利要求1所述的方法,所述当前状态包括所述目标换电电池处于车辆中,在所述确定目标换电电池中的至少一个目标单体电池之前,还包括:
    响应于检测到所述目标换电电池所属车辆由熄火状态转换为启动状态,确定处于熄火状态的熄火时长;
    响应于所述熄火时长大于或等于预设熄火时长,获取构成所述目标换电电池的至少一个单体电池的电压信息,以根据电压信息从所述至少一个单体电池中确定所述至少一个目标单体电池。
  3. 根据权利要求2所述的方法,其中,所述确定目标换电电池中的至少一个目标单体电池,包括:
    分别确定每个单体电池的电压信息与最小电压信息之间的电压差值;
    确定电压差值大于或等于预设电压差值阈值的单体电池,并作为所述目标单体电池。
  4. 根据权利要求3所述的方法,其中,所述分别确定所述至少一个目标单体电池的待均衡容量信息,包括:
    针对所述至少一个目标单体电池中的每个目标单体电池,获取电压信息最小的目标单体电池所对应的最低电池容量,根据当前目标单体电池的电池容量、所述最低电池容量以及电压采样误差容量,确定当前目标单体电池的待均衡容量信息。
  5. 根据权利要求4所述的方法,其中,所述根据所述当前状态以及所述待均衡容量信息,对所述待均衡容量信息所对应的所述至少一个目标单体电池进行容量均衡调整,包括:
    针对所述至少一个目标单体电池中的每个目标单体电池,确定当前目标单体电池的待均衡容量信息所处的目标浮动区间,确定与所述目标浮动区间相对应的容量均衡目标调整策略,以基于所述目标调整策略对当前目标单体电池进行容量均衡调整。
  6. 根据权利要求5所述的方法,其中,所述针对所述至少一个目标单体电 池中的每个目标单体电池,确定当前目标单体电池的待均衡容量信息所处的目标浮动区间,确定与所述目标浮动区间相对应的容量均衡目标调整策略,以基于所述目标调整策略对当前目标单体电池进行容量均衡调整,包括:
    针对所述至少一个目标单体电池中的每个目标单体电池,响应于当前目标单体电池所对应的待均衡容量信息在第一预设浮动区间,在任何工况下对所述当前目标单体电池进行均衡放电,直至放电容量达到所述待均衡容量信息;所述工况包括充电工况、放电工况以及静止工况;
    响应于所述当前目标单体电池所对应的待均衡容量信息在第二浮动区间,在充电工况下对所述当前目标单体进行均衡放电,直至放电容量达到所述待均衡容量信息;
    响应于所述当前目标单体电池所对应的待均衡容量信息在第三浮动区间,在充电工况下对所述当前目标单体电池进行均衡放电,或在放电工况下对所述当前目标单体电池进行均衡放电,直至放电容量达到预设循环次数所对应的待释放均衡容量。
  7. 根据权利要求6所述的方法,还包括:
    响应于检测到车辆由启动状态转换为熄火状态,获取至少一个目标单体电池的剩余待均衡容量信息并存储剩余待均衡容量信息至电池管理系统中,以从所述电池管理系统中获取所述至少一个目标单体电池的剩余待均衡容量信息;所述剩余待均衡容量信息由待均衡容量信息和已均衡容量信息来确定。
  8. 根据权利要求1所述的方法,其中,所述当前状态包括所述目标换电电池处于换电站内,所述确定目标换电电池中的至少一个目标单体电池,并分别确定所述至少一个目标单体电池的待均衡容量信息,包括:
    从电池管理系统中获取存储的剩余待均衡容量信息,并将所述剩余待均衡容量作为待均衡容量信息。
  9. 根据权利要求8所述的方法,其中,所述根据所述当前状态以及所述待均衡容量信息,对所述待均衡容量信息所对应的所述至少一个目标单体电池进行容量均衡调整,包括:
    响应于所述目标换电电池的充电电流小于或等于预设充电阈值,且充电时长达到预设充电时长阈值,分别确定每个目标单体电池的目标单体电压与最低单体电压之间的电压压差,并确定所述电压压差与单体电压采样误差之间的关联关系;
    基于所述关联关系,对所述待均衡容量信息所对应的所述至少一个目标单 体电池进行容量均衡调整。
  10. 根据权利要求9所述的方法,其中,所述基于所述关联关系,对所述待均衡容量信息所对应的所述至少一个目标单体电池进行容量均衡调整,包括:
    针对所述至少一个目标单体电池中的每个目标单体电池,响应于当前目标单体电池的目标单体电压与最低单体电压之间的电压压差小于或等于所述单体电压采样误差,停止对所述当前目标单体电池进行容量均衡;
    响应于当前目标单体电池的目标单体电压与最低单体电压之间的电压压差大于所述单体电压采样误差,继续对所述当前目标单体电池进行容量均衡调整,直至所述当前目标单体电池的目标单体电压与最低单体电压之间的电压压差小于或等于所述单体电压采样误差。
  11. 一种用于换电电池的容量均衡装置,包括:
    当前状态确定模块,设置为根据接收到的关联数据信息,确定目标换电电池的当前状态;
    待均衡容量信息确定模块,设置为确定目标换电电池中的至少一个目标单体电池,并分别确定至少一个目标单体电池的待均衡容量信息;
    均衡调整模块,设置为根据所述当前状态以及所述待均衡容量信息,对所述待均衡容量信息所对应的所述至少一个目标单体电池进行容量均衡调整。
  12. 一种电子设备,包括:
    至少一个处理器;
    存储器,设置为存储至少一个程序,
    所述至少一个处理器,设置为执行所述至少一个程序以实现如权利要求1-10中任一项所述的用于换电电池的容量均衡方法。
  13. 一种包含计算机可执行指令的存储介质,所述计算机可执行指令由计算机处理器执行以实现如权利要求1-10中任一项所述的用于换电电池的容量均衡方法。
PCT/CN2021/132987 2020-11-25 2021-11-25 用于换电电池的容量均衡方法、装置、设备及存储介质 WO2022111555A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011342208.3A CN112477697B (zh) 2020-11-25 2020-11-25 用于换电电池的容量均衡方法
CN202011342208.3 2020-11-25

Publications (1)

Publication Number Publication Date
WO2022111555A1 true WO2022111555A1 (zh) 2022-06-02

Family

ID=74934548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132987 WO2022111555A1 (zh) 2020-11-25 2021-11-25 用于换电电池的容量均衡方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN112477697B (zh)
WO (1) WO2022111555A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115469239A (zh) * 2022-06-29 2022-12-13 四川新能源汽车创新中心有限公司 电池系统的电荷状态一致性评价方法、装置及电子设备
CN115946572A (zh) * 2022-11-21 2023-04-11 上海玫克生储能科技有限公司 电池模组的容量计算及补电控制方法、系统、设备和介质
CN116862192A (zh) * 2023-07-26 2023-10-10 中国铁塔股份有限公司 策略信息生成方法、装置及相关设备
CN117375135A (zh) * 2023-08-07 2024-01-09 中能建储能科技(武汉)有限公司 一种船用集装箱式电源的均衡控制系统及其方法和介质
WO2024087386A1 (zh) * 2022-10-26 2024-05-02 湖北亿纬动力有限公司 电池组的电量均衡方法及系统、电池管理系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112477697B (zh) * 2020-11-25 2022-05-13 中国第一汽车股份有限公司 用于换电电池的容量均衡方法
CN113879177B (zh) * 2021-09-30 2023-05-23 重庆长安新能源汽车科技有限公司 一种动力电池均衡控制方法
CN115284965B (zh) * 2022-09-29 2022-12-13 西华大学 基于组合优化法的换电式商用车的换电站预选方法
CN117319126B (zh) * 2023-11-29 2024-04-02 宁德时代新能源科技股份有限公司 芯片功耗控制方法、装置、计算机设备和存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1949559A (zh) * 2005-10-11 2007-04-18 戴尔维动力系统有限公司 通用电池模块及与之配合使用的控制模块
US20120062034A1 (en) * 2008-08-29 2012-03-15 All New Energy Technology Corp. Battery System
CN108206560A (zh) * 2016-12-20 2018-06-26 宁德时代新能源科技股份有限公司 电池均衡方法
US20190176803A1 (en) * 2017-12-08 2019-06-13 Ford Global Technologies, Llc Vehicles with modular parallel high voltage batteries
CN110509817A (zh) * 2019-09-02 2019-11-29 广州小鹏汽车科技有限公司 车辆及电池均衡的控制方法、装置
CN111137170A (zh) * 2018-11-05 2020-05-12 重庆峘能电动车科技有限公司 一种动力电池组均衡系统、换电系统及电池包
CN111319513A (zh) * 2018-12-17 2020-06-23 丰田自动车株式会社 电池系统、电动车辆及电动车辆的控制方法
CN111469712A (zh) * 2020-05-08 2020-07-31 广州小鹏汽车制造有限公司 一种电池均衡方法、装置和车辆
CN112477697A (zh) * 2020-11-25 2021-03-12 中国第一汽车股份有限公司 用于换电电池的容量均衡方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5483165A (en) * 1994-01-14 1996-01-09 Heartstream, Inc. Battery system and method for determining a battery condition
US6445162B1 (en) * 2001-02-06 2002-09-03 Quallion Llc Detecting a remaining battery capacity and a battery remaining capacity circuit
CN102868000B (zh) * 2012-09-05 2015-06-17 浙江众泰新能源汽车科技有限公司 一种电动汽车动力源均衡方法
US9550429B2 (en) * 2014-08-07 2017-01-24 Cummins, Inc. Systems and methods for management of fleet batteries
CN106329592B (zh) * 2015-06-30 2019-05-28 华为技术有限公司 一种能量均衡的方法及装置
CN111509806A (zh) * 2020-04-29 2020-08-07 广东电网有限责任公司东莞供电局 电池均衡管理方法、装置、设备及存储介质

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1949559A (zh) * 2005-10-11 2007-04-18 戴尔维动力系统有限公司 通用电池模块及与之配合使用的控制模块
US20120062034A1 (en) * 2008-08-29 2012-03-15 All New Energy Technology Corp. Battery System
CN108206560A (zh) * 2016-12-20 2018-06-26 宁德时代新能源科技股份有限公司 电池均衡方法
US20190176803A1 (en) * 2017-12-08 2019-06-13 Ford Global Technologies, Llc Vehicles with modular parallel high voltage batteries
CN111137170A (zh) * 2018-11-05 2020-05-12 重庆峘能电动车科技有限公司 一种动力电池组均衡系统、换电系统及电池包
CN111319513A (zh) * 2018-12-17 2020-06-23 丰田自动车株式会社 电池系统、电动车辆及电动车辆的控制方法
CN110509817A (zh) * 2019-09-02 2019-11-29 广州小鹏汽车科技有限公司 车辆及电池均衡的控制方法、装置
CN111469712A (zh) * 2020-05-08 2020-07-31 广州小鹏汽车制造有限公司 一种电池均衡方法、装置和车辆
CN112477697A (zh) * 2020-11-25 2021-03-12 中国第一汽车股份有限公司 用于换电电池的容量均衡方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115469239A (zh) * 2022-06-29 2022-12-13 四川新能源汽车创新中心有限公司 电池系统的电荷状态一致性评价方法、装置及电子设备
CN115469239B (zh) * 2022-06-29 2023-09-08 四川新能源汽车创新中心有限公司 电池系统的电荷状态一致性评价方法、装置及电子设备
WO2024087386A1 (zh) * 2022-10-26 2024-05-02 湖北亿纬动力有限公司 电池组的电量均衡方法及系统、电池管理系统
CN115946572A (zh) * 2022-11-21 2023-04-11 上海玫克生储能科技有限公司 电池模组的容量计算及补电控制方法、系统、设备和介质
CN115946572B (zh) * 2022-11-21 2023-06-30 上海玫克生储能科技有限公司 电池模组的容量计算及补电控制方法、系统、设备和介质
CN116862192A (zh) * 2023-07-26 2023-10-10 中国铁塔股份有限公司 策略信息生成方法、装置及相关设备
CN116862192B (zh) * 2023-07-26 2024-06-07 中国铁塔股份有限公司 策略信息生成方法、装置及相关设备
CN117375135A (zh) * 2023-08-07 2024-01-09 中能建储能科技(武汉)有限公司 一种船用集装箱式电源的均衡控制系统及其方法和介质

Also Published As

Publication number Publication date
CN112477697B (zh) 2022-05-13
CN112477697A (zh) 2021-03-12

Similar Documents

Publication Publication Date Title
WO2022111555A1 (zh) 用于换电电池的容量均衡方法、装置、设备及存储介质
EP3444921B1 (en) Charging control apparatus and method capable of energy saving and quick cell balancing
WO2023216483A1 (zh) 储能系统的控制方法、装置、设备、存储介质和程序产品
WO2022193899A1 (zh) 动力电池的均衡监控控制系统、方法、服务器及存储介质
TWI573363B (zh) 電源故障預測的方法、設備及系統
EP3757594B1 (en) Current sensor diagnosing apparatus and method
CN105162215A (zh) 一种用于铅酸蓄电池组均衡的分布式电池管理系统及方法
CN104600792A (zh) 一种储能电池管理系统的地址分配方法
WO2019091163A1 (zh) 一种电池均衡装置、方法及无人机
KR20210031336A (ko) 배터리 진단 장치 및 방법
CN105379058A (zh) 用于蓄电池的快速充电方法、快速充电系统和程序
WO2024016104A1 (zh) 电池均衡检测方法、装置、电子设备及存储介质
CN114801883A (zh) 电池均衡控制方法、系统、存储介质、电子设备和车辆
KR20210047744A (ko) 병렬 멀티 배터리 팩에 포함된 스위치부의 턴온 동작 제어 장치 및 방법
US11557903B2 (en) Method for equalizing battery module, apparatus, battery module and power management controller
WO2023035160A1 (zh) 动力电池充电的方法和电池管理系统
CN106877440B (zh) 一种电池均衡系统
WO2008092343A1 (en) Battery charging method and device
WO2023035161A1 (zh) 动力电池充电的方法和电池管理系统
CN115882530A (zh) 储能电池组的均衡控制方法、装置、设备和存储介质
WO2023206507A1 (zh) 电池管理设备的无线连接控制方法、装置和电池管理设备
WO2023225974A1 (zh) 热失控检测的方法和装置
WO2023206492A1 (zh) 电池管理设备的无线连接方法、装置和电池管理设备
WO2023245574A1 (zh) 充电控制方法、充电控制装置、电子设备及存储介质
CN110967649B (zh) 一种在线式电池组单体加载巡检系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21897055

Country of ref document: EP

Kind code of ref document: A1