WO2023206507A1 - 电池管理设备的无线连接控制方法、装置和电池管理设备 - Google Patents

电池管理设备的无线连接控制方法、装置和电池管理设备 Download PDF

Info

Publication number
WO2023206507A1
WO2023206507A1 PCT/CN2022/090618 CN2022090618W WO2023206507A1 WO 2023206507 A1 WO2023206507 A1 WO 2023206507A1 CN 2022090618 W CN2022090618 W CN 2022090618W WO 2023206507 A1 WO2023206507 A1 WO 2023206507A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection
wireless connection
battery management
connection request
wireless
Prior art date
Application number
PCT/CN2022/090618
Other languages
English (en)
French (fr)
Inventor
程康
翟江浪
Original Assignee
时代电服科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 时代电服科技有限公司 filed Critical 时代电服科技有限公司
Priority to PCT/CN2022/090618 priority Critical patent/WO2023206507A1/zh
Priority to CN202280032998.6A priority patent/CN117280564A/zh
Publication of WO2023206507A1 publication Critical patent/WO2023206507A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • Embodiments of the present application relate to the field of batteries, and more specifically, to a wireless connection control method and device for a battery management device, and a battery management device.
  • batteries, electric vehicles, battery swap stations and other institutions can be equipped with battery management equipment, such as a battery management unit (Battery Manager Unit, BMU).
  • BMU Battery Manager Unit
  • the battery management equipment and other equipment can be connected to each other and exchange information.
  • different institutions The battery management devices between them can be connected to each other and exchange information to facilitate battery monitoring and management.
  • the connection performance between the battery management device and other devices is poor, the battery management effect of the battery management device will be affected, resulting in potential safety hazards for the battery.
  • how to improve the connection performance of battery management equipment is an urgent technical issue that needs to be solved.
  • Embodiments of the present application provide a wireless connection control method and device for a battery management device, and a battery management device, which can improve the connection performance of the battery management device.
  • a wireless connection control method of a battery management device is provided.
  • the wireless connection control method is applied to a control device in the battery management device.
  • the control device is connected to a wireless connection device in the battery management device.
  • the wireless connection control method includes: obtaining a connection request command, which is used to instruct wireless connection or disconnection between the battery management device and the first device; and controlling the wireless connection device to wirelessly connect or disconnect the first device according to the connection request command. ; Detect the connection status data of the wireless connection device; determine whether the wireless connection or disconnection between the battery management device and the first device is normal according to the connection status data.
  • a wireless connection device is added to the battery management equipment, and the wireless connection device is controlled by the control device to realize the integration of the battery management equipment and the battery management equipment.
  • the wireless connection between the first devices is relatively simple to implement and can be compatible with existing products.
  • the control device of the battery management device can detect the connection and disconnection status data of the wireless connection device, and determine whether the wireless connection or disconnection between the battery management device and the first device is normal based on the connection status data, which is beneficial to implementation Effectively monitor the wireless connection between the battery management device and the first device, thereby improving the connection performance between the battery management device and the first device.
  • controlling the wireless connection device to wirelessly connect or disconnect the first device according to the connection request command includes: converting the connection request command based on the first communication protocol into a connection request based on the second communication protocol. Connection request data, wherein the first communication protocol is different from the second communication protocol; sending the connection request data to the wireless connection device, so that the wireless connection device wirelessly connects or disconnects with the first device according to the connection request data.
  • the control device can receive the connection request command based on the first communication protocol, and send the connection request data based on the second communication protocol to the wireless connection device.
  • the control device and the external device can communicate with each other based on the first communication protocol, and the control device and the wireless connection device can communicate with each other based on the second communication protocol. Therefore, the control device can use different communication protocols for different devices or equipment, optimizing the communication performance between the control device and other devices, and improving the overall communication performance of the battery management device.
  • connection request command is a request command based on the Controller Area Network CAN protocol
  • connection request data is request data based on the Serial Peripheral Interface SPI protocol.
  • the control device in the battery management equipment can be connected to the external device through the CAN bus and receive the connection request command through the CAN protocol. Therefore, the control device and the battery management equipment where it is located can be well compatible with existing batteries. management system.
  • the control device is connected to the wireless connection device through a high-speed, easy-to-operate SPI bus, and sends connection request data to the wireless connection device through the SPI protocol, which can improve the communication performance between the control device and the wireless connection device.
  • determining whether the wireless connection or disconnection between the battery management device and the first device is normal based on the connection status data includes: determining the battery management status based on the connection status data and the connection request data. Whether the wireless connection or disconnection between the device and the first device is normal.
  • connection status data and connection status data are integrated.
  • the two types of data, disconnection request data are used to determine whether the wireless connection or disconnection between the wireless connection device and the battery management device where it is located and the first device is normal, which can further improve the accuracy of the judgment. Therefore, through the technical solution of this embodiment, the wireless connection monitoring between the battery management device and the first device can be more effectively implemented, thereby improving the connection performance between the battery management device and the first device.
  • the above-described method of determining whether the wireless connection or disconnection between the battery management device and the first device is normal based on the connection status data and the connection request data includes: determining whether the connection or disconnection indicated by the connection status data is normal. Whether the status is consistent with the connection request indicated by the connection request data; when the connection status indicated by the connection status data is consistent with the connection request indicated by the connection request data, determine the connection between the battery management device and the first device The wireless connection or disconnection is normal; when the connection status indicated by the connection status data is inconsistent with the connection request indicated by the connection request data, it is determined that the wireless connection or disconnection between the battery management device and the first device is abnormal.
  • the wireless connection or connection between the battery management device and the first device can be accurately determined. Is the disconnection normal? This technical solution is easy to implement and has high accuracy. It can not only accurately and effectively monitor the wireless connection between the battery management device and the first device, but can also be easily implemented in the control device through hardware and/or software.
  • the wireless connection control method when it is determined that the wireless connection or disconnection between the battery management device and the first device is abnormal, the wireless connection control method further includes: controlling the wireless connection device to at least Wirelessly connect or disconnect with the first device once; detect the connection status data of the wireless connection device at least once until it is determined that the wireless connection or disconnection between the battery management device and the first device is normal.
  • the control device when there is an abnormality in the wireless connection between the battery management device and the first device, the control device can repair the abnormality, so that the wireless connection between the battery management device and the first device The connection is restored to a normal state, thereby further improving the connection performance between the battery management device and the first device.
  • the above-mentioned control of the wireless connection device to wirelessly connect or disconnect with the first device at least once according to the connection request command includes: sending the connection connection converted according to the connection request command to the wireless connection device at least once.
  • Request data so that the wireless connection device wirelessly connects or disconnects with the first device according to the connection request data at least once; detects the connection status data of the wireless connection device at least once until the wireless connection between the battery management device and the first device is determined.
  • the connection or disconnection is normal, including: detecting the connection status data of the wireless connection device at least once until the connection status indicated by the connection status data is consistent with the connection request indicated by the connection request data.
  • the control device can effectively control the wireless connection between the wireless connection device and the first device, and the control device can detect abnormal wireless connection between the wireless connection device and its battery management device and the first device.
  • the judgment accuracy is also high, and the abnormality can be repaired effectively and quickly, so that the wireless connection between the battery management device and the first device can be restored to a normal state quickly and reliably.
  • control device includes a non-volatile storage module. After converting the connection request command into connection request data, the wireless connection control method further includes: storing the connection request data in a non-volatile storage module. sexual storage module.
  • connection request data in the non-volatile storage module can also be used to ensure the subsequent repair of abnormal wireless connection between the battery management device and the first device, so as to further improve the connection between the battery management device and the first device. connection performance.
  • the above-mentioned detection of the connection status data of the wireless connection device includes: detecting the connection status data of the wireless connection device within a first preset time period after sending the connection request data.
  • the first preset time period is: The time period is greater than or equal to the transmission time of the connection request data between the control device and the wireless connection device.
  • the control device can effectively detect the latest connection status data of the wireless connection device to ensure the validity and reliability of the data. Based on the valid and reliable connection status data, the effectiveness and reliability of the control device's determination of abnormal wireless connection between the wireless connection device and the first device can be improved.
  • detecting the connection status data of the wireless connection device includes: detecting the connection status data of the wireless connection device every second preset time period, and the second preset time period is less than or equal to 100 ms.
  • control device can detect the current connection status data of the wireless connection device every second preset time period, so as to realize continuous monitoring of the wireless connection between the wireless connection device and the first device, ensuring The reliability of long-term wireless connection between the wireless connection device and the first device.
  • the above-mentioned connection request command is a Bluetooth connection command
  • the above-mentioned wireless connection device is a Bluetooth chip.
  • the wireless connection device is designed as a Bluetooth chip, and the wireless connection device can communicate with the first device through the Bluetooth protocol.
  • the wireless connection device can have the characteristics of low power consumption, low delay, and low cost of the Bluetooth chip, so it is more suitable to be installed in electrical equipment and/or power exchange equipment to achieve short-distance, low-cost and reliable communication.
  • the battery management device is the master battery management unit MBMU in the powered device, and the first device is the slave battery management unit SBMU in the powered device; or, the battery management device is the charger in the power replacement device.
  • the battery management unit CBMU, the first device is the slave battery management unit SBMU in the power replacement device; or the battery management device is the power replacement battery management unit TBMU in the power replacement device, and the first device is the master battery management unit in the power consumption device.
  • Unit MBMU is the master battery management unit MBMU.
  • battery management devices can be of various types and applied in different scenarios.
  • a relatively stable wireless connection between TBMU and MBMU can be achieved, or a relatively stable wireless connection between CBMU/MBMU and SBMU can be achieved, thus simplifying various battery management devices in power replacement equipment or power consumption equipment.
  • the connection method between them improves the connection stability and robustness of the entire system.
  • a wireless connection control device of a battery management device is provided.
  • the wireless connection control device is connected to a wireless connection device in the battery management device.
  • the wireless connection control device includes: an acquisition module for acquiring a connection request command, The connection request command is used to instruct the wireless connection or disconnection between the battery management device and the first device; the control module is used to control the wireless connection device to wirelessly connect or disconnect the first device according to the connection request command; detect wireless The connection status data of the connection device; based on the connection status data, it is determined whether the wireless connection or disconnection between the battery management device and the first device is normal.
  • the wireless connection control device further includes: a sending module; and the control module is configured to: convert a connection request command based on the first communication protocol into connection request data based on the second communication protocol, wherein: The first communication protocol is different from the second communication protocol; the sending module is configured to: send connection request data to the wireless connection device, so that the wireless connection device wirelessly connects or disconnects with the first device according to the connection request data.
  • connection request command is a request command based on a Controller Area Network (CAN) protocol
  • connection request data is a request data based on a Serial Peripheral Interface (SPI) protocol.
  • CAN Controller Area Network
  • SPI Serial Peripheral Interface
  • control module is configured to determine whether the wireless connection or disconnection between the battery management device and the first device is normal based on the connection status data and the connection request data.
  • control module is used to: determine whether the connection status indicated by the connection status data is consistent with the connection request indicated by the connection request data; when the connection status indicated by the connection status data is consistent with the connection request When the connection request indicated by the data is consistent, it is determined that the wireless connection or disconnection between the battery management device and the first device is normal; when the connection status indicated by the connection status data is consistent with the connection request indicated by the connection request data In the case of inconsistency, it is determined that the wireless connection or disconnection between the battery management device and the first device is abnormal.
  • control module when it is determined that the wireless connection or disconnection between the battery management device and the first device is abnormal, the control module is also configured to: control the wireless connection device to communicate with the device at least once according to the connection request command.
  • the first device is wirelessly connected or disconnected; and the connection status data of the wireless connection device is detected at least once until it is determined that the wireless connection or disconnection between the battery management device and the first device is normal.
  • control module is configured to: send the connection request data converted according to the connection request command to the wireless connection device at least once through the sending module, so that the wireless connection device communicates with the first connection request data according to the connection request data at least once.
  • a device is connected or disconnected wirelessly; the connection status data of the wireless connection device is detected at least once until the connection status indicated by the connection status data is consistent with the connection request indicated by the connection request data.
  • the wireless connection control device further includes a non-volatile storage module, and the control module is further configured to: store the connection request data in the non-volatile storage module.
  • control module is configured to: detect the connection status data of the wireless connection device within a first preset time period after sending the connection request data, and the first preset time period is greater than or equal to the connection request. The time it takes for data to be transferred between the control device and the wirelessly connected device.
  • control module is configured to: detect the connection status data of the wireless connection device every second preset time period, and the second preset time period is less than or equal to 100 ms.
  • connection request command is a Bluetooth connection command
  • wireless connection device is a Bluetooth chip
  • the battery management device is a master battery management unit (MBMU) in the powered device, and the first device is a slave battery management unit (SBMU) in the powered device; or, the battery management device is a battery replacement unit.
  • the rechargeable battery management unit (CBMU) in the device, the first device is the slave battery management unit (SBMU) in the power replacement device; or the battery management device is the power replacement battery management unit (TBMU) in the power replacement device, the first The device is the main battery management unit (MBMU) in the powered device.
  • MBMU master battery management unit
  • SBMU slave battery management unit
  • TBMU power replacement battery management unit
  • a wireless connection control device for a battery management device including: a processor and a memory, the memory is used to store a program, and the processor is used to call and run the program from the memory to perform the above first aspect or the first aspect.
  • Wireless connection control method in any possible implementation.
  • a fourth aspect provides a battery management device, including: a wireless connection device and the above second aspect, any possible implementation of the second aspect, or the wireless connection control device in the third aspect, wherein the wireless connection device is connected to The wireless connection control device is used to control the wireless connection or disconnection between the wireless connection device and the first device to realize the wireless connection or disconnection between the battery management device and the first device.
  • a fifth aspect provides an electronic device, including: the battery management device in the above fourth aspect.
  • the electronic device is a power consumption device or a power exchange device.
  • a wireless connection device is added to the battery management equipment, and the wireless connection device is controlled by the control device to realize the integration of the battery management equipment and the battery management equipment.
  • the wireless connection between the first devices is relatively simple to implement and can be compatible with existing products.
  • the control device of the battery management device can detect the connection and disconnection status data of the wireless connection device, and determine whether the wireless connection or disconnection between the battery management device and the first device is normal based on the connection status data, which is beneficial to implementation Effectively monitor the wireless connection between the battery management device and the first device, thereby improving the connection performance between the battery management device and the first device.
  • Figure 1 is a schematic structural block diagram of a vehicle applicable to an embodiment of the present application
  • Figure 2 is a schematic structural block diagram of a power swap station applicable to an embodiment of the present application
  • FIG. 3 is a schematic structural block diagram of a battery management device provided by an embodiment of the present application.
  • Figure 4 is a schematic flow diagram of a wireless connection control method for a battery management device provided by an embodiment of the present application
  • Figure 5 is a schematic flow diagram of a wireless connection control method for a battery management device provided by another embodiment of the present application.
  • Figure 6 is a schematic flow diagram of a wireless connection control method for a battery management device provided by another embodiment of the present application.
  • Figure 7 is a schematic flow diagram of a wireless connection control method for a battery management device provided by another embodiment of the present application.
  • Figure 8 is a schematic flow diagram of a wireless connection control method for a battery management device provided by another embodiment of the present application.
  • Figure 9 is a schematic flow diagram of a wireless connection control method for a battery management device provided by another embodiment of the present application.
  • Figure 10 is a schematic flow diagram of a wireless connection control method for a battery management device provided by another embodiment of the present application.
  • Figure 11 is a schematic flow diagram of a wireless connection control method for a battery management device provided by another embodiment of the present application.
  • Figure 12 is a schematic structural block diagram of a wireless connection control device of a battery management device provided by an embodiment of the present application.
  • Figure 13 is a schematic structural block diagram of a wireless connection control device of a battery management device provided by another embodiment of the present application.
  • Figure 14 is a schematic structural block diagram of a battery management device provided by an embodiment of the present application.
  • Figure 15 is a schematic structural block diagram of an electronic device provided by an embodiment of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. It will be explicitly and implicitly understood by those skilled in the art that the embodiments described herein may be combined with other embodiments.
  • a battery refers to a single physical module that includes one or more battery cells to provide higher voltage and capacity.
  • the battery generally includes a case for enclosing one or more battery cells.
  • the battery mentioned in this application may be called a battery pack.
  • the battery can be any type of battery, such as: lithium ion battery, lithium metal battery, lithium sulfur battery, sodium ion battery, lead-acid battery, nickel separator battery, nickel hydrogen battery, or lithium air battery, etc.
  • battery management equipment such as a battery management unit (BMU)
  • BMU battery management unit
  • BMUs are configured inside both electric vehicles and batteries.
  • the BMU in the electric vehicle can be called the Master Battery Manager Unit (MBMU), and the BMU configured inside the battery can be called the Master Battery Manager Unit (MBMU).
  • MBMU Master Battery Manager Unit
  • MBMU Master Battery Manager Unit
  • SBMU slave Battery Manager Unit
  • the MBMU and the SBMU can be connected to each other and exchange information to jointly monitor and manage the operating status of the battery.
  • the MBMU and SBMU are connected to each other through physical wiring (for example: Controller Area Network (Controller Area Network, CAN) wiring).
  • the installation method of this physical wiring on the two BMUs is relatively complex and affects manufacturing. and maintenance efficiency.
  • the MBMU and the SBMU are connected through a wireless connection. In this wireless connection mode, the communication between the MBMU and the SBMU is easily affected by various factors such as the environment, so connection failures are prone to occur.
  • one or more BMUs will also be configured in the battery swap station.
  • Various BMUs in the power swap station are also connected to each other, and/or the BMUs in the power swap station and the BMUs in the vehicle are also connected to each other. Therefore, in the wireless connection mode, in addition to the above-mentioned MBMU and SBMU being prone to connection failures, the battery swap station is also connected to each other. Connection failures are also more likely to occur between various BMUs in the power station, and/or between the BMUs in the battery swap station and the BMUs in the vehicle.
  • the present application provides a wireless connection control method for a battery management device, wherein the battery management device includes but is not limited to a BMU.
  • the wireless connection control method is applied to a control device in the battery management device, and the control device is connected to Wireless connection device in battery management equipment.
  • the wireless connection control method includes: receiving a connection request command, the connection request command being used to instruct wireless connection or disconnection between the battery management device and the first device, and controlling the wireless connection device and the third device according to the connection request command.
  • the connection status data of the wireless connection device is detected, and based on the connection status data, it is determined whether the wireless connection or disconnection between the battery management device and the first device is normal.
  • a wireless connection device is added to the battery management device, and the wireless connection device is controlled by the control device to realize the connection between the battery management device and the first device.
  • Wireless connection or disconnection between devices is simple and compatible with existing products.
  • the control device of the battery management device can detect the connection and disconnection status data of the wireless connection device, and determine whether the wireless connection or disconnection between the battery management device and the first device is normal based on the connection status data, which is beneficial to implementation Effectively monitor the wireless connection between the battery management device and the first device, thereby improving the connection performance between the battery management device and the first device.
  • FIG. 1 shows a schematic structural block diagram of a vehicle 1 to which the embodiment of the present application is applicable.
  • vehicle 1 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • a battery 10 is provided in the vehicle 1.
  • the battery 10 can be used to power the vehicle 1.
  • the battery 10 can be used as an operating power supply for the vehicle 1 and for the circuit of the vehicle 1.
  • the system is, for example, used for starting, navigation and operating power requirements of the vehicle 1 .
  • the battery 10 can not only be used as an operating power source of the vehicle 1 , but also can be used as a driving power source of the vehicle 1 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1 .
  • the battery 10 is provided with a slave battery management unit (SBMU) 110 .
  • SBMU slave battery management unit
  • MBMU main battery management unit
  • the battery 10 may include at least one battery cell (or battery cell) 11 , and the at least one battery cell 11 is packaged in the same box to form a battery pack.
  • the box can also be provided with an SBMU 110 and other related components.
  • the SBMU 110 is used to detect relevant status parameters of each battery cell 11 in the battery 10, such as voltage, current , temperature, state of charge (State of Charge, SOC), health state (State of Health, SOH), etc.
  • the vehicle 1 is provided with an MBMU 120 capable of communicating with the SBMU 110.
  • the SBMU 110 can transmit the detected relevant parameters of the battery 10 to the MBMU 120, and the MBMU 120 can perform calculations and analysis on the data it receives, and transmit signals to the SBMU 110 to control and manage the SBMU 110.
  • the vehicle 1 is also provided with a vehicle controller 130, such as a vehicle controller (Vehicle Control Unit, VCU) or a domain controller (Domain Control Unit, DCU), etc.
  • VCU vehicle Control Unit
  • DCU Domain Control Unit
  • the MBMU 120 In addition to being able to communicate with the SBMU 110, it can also communicate with the vehicle controller 130. Specifically, the MBMU 120 can transmit relevant data of the battery 10 in the vehicle 1 to the vehicle controller 130.
  • the vehicle 1 may be provided with multiple batteries 10, and each battery 10 may be provided with a corresponding SBMU 110.
  • the vehicle 1 may be provided with multiple batteries 110.
  • Each SBMU 110 and MBMU 120 can establish communication connections with multiple SBMUs 110 at the same time to achieve control and management of multiple SBMUs 110.
  • FIG. 1 is only an example, illustrating that the vehicle 1 may be provided with a communication system formed by a vehicle controller 130, an MBMU 120 and a plurality of batteries 10.
  • the vehicle 1 may be provided with a communication system formed only by the vehicle controller 130 and a plurality of batteries 10 .
  • each battery 10 in the plurality of batteries 10 may be provided with a monitoring unit that monitors the battery cells 11 .
  • the monitoring unit may establish a communication connection with the vehicle controller 130 so that the vehicle controller 130 can monitor the multiple batteries. 10. Control management.
  • the battery 10 in the embodiment of the present application can also adopt the Cell To Chassis (CTC) architecture.
  • CTC Cell To Chassis
  • At least one cell in the battery 10 is integrated into the chassis of the vehicle.
  • the vehicle controller 130 in the vehicle 1 may be a domain controller that directly manages the battery 10 and even at least one cell in the battery 10 .
  • FIG. 2 shows a schematic structural block diagram of a power swap station 2 applicable to the embodiment of the present application.
  • the power swap station 2 can provide rapid battery replacement services for various types of vehicles such as passenger cars or heavy trucks, and the power swap station 2 can also include a charging bin 20 to charge the replaced batteries in the vehicle.
  • a plurality of batteries 10 can be provided in the charging compartment 20 of the battery swap station 2, wherein an SBMU 110 is provided in each battery 10.
  • the charging compartment 20 is also provided with at least one charging battery management unit (Charger Battery Manager Unit, CBMU) 210.
  • CBMU Charger Battery Manager Unit
  • each CBMU 210 in the charging compartment 20 can establish communication connections with a preset number of SBMUs 110, and control and manage the SBMUs 110.
  • each CBMU 210 can be installed in the charging compartment 20, and each CBMU 210 establishes communication with a preset number of SBMUs 110 to ensure that each SBMU 110 and its location are The battery 10 is effectively monitored and managed.
  • a station control system 21 in addition to providing a charging compartment 20 to charge multiple batteries 10 , a station control system 21 is also provided.
  • the station control system 21 can control multiple functional devices in the power swap station 2 to Execute the corresponding function.
  • the power swap station 2 includes a battery loading and unloading device (not shown in FIG. 2 ), and the station control system 21 can control the battery loading and unloading device to remove the battery 10 in a depleted state from the vehicle entering the power swap station 2 . , and install the battery 10 with sufficient power in the battery swap station to the vehicle.
  • the station control system 21 can establish a communication connection with at least one CBMU 210 in the charging compartment 20, thereby facilitating the station control system 21 to control multiple batteries 10 in the charging compartment 20 through the CBMU 210. Carry out control management.
  • a battery swap battery management unit (Transmission Battery Manager Unit, TBMU) 220 is also provided.
  • the TBMU 220 can establish a communication connection with the MBMU 120 in the vehicle 1, thereby facilitating information exchange between the TBMU 220 and the MBMU 120, and also facilitating the TBMU 220 to communicate with each other through the MBMU 120.
  • the battery 10 on the vehicle 1 implements monitoring and management.
  • the TBMU 220 also establishes a communication connection with the station control system 21. Therefore, the station control system 21 can monitor and manage the battery 10 on the vehicle 1 through the TBMU 220 and the MBMU 120.
  • different types of BMUs can establish communication connections wirelessly to reduce the complexity of connection installation between different types of BMUs.
  • the station control system 21 in order to ensure the reliability of communication between the station control system 21 and other components, can establish a communication connection with the CBMU 210 and/or TBMU 220 through a wired method.
  • FIG. 3 shows a schematic structural block diagram of a battery management device 300 provided by an embodiment of the present application.
  • the battery management device 300 may be the MBMU 120, CBMU 210, TBMU 220 or vehicle controller 130 shown in Figures 1 and 2 above.
  • the battery management device 300 includes: a control device 310 and a wireless connection device 320 that are connected to each other.
  • the control device 310 can send a command to the wireless connection device 320 to control the wireless connection device 320 to perform corresponding actions according to the command.
  • the control device 310 may be a control chip in the battery management device 300
  • the wireless connection device 320 may be a wireless communication chip in the battery management device 300, and the two may be connected to each other through a communication bus.
  • FIG. 4 shows a schematic flow diagram of a wireless connection control method 400 for a battery management device 300 provided by an embodiment of the present application.
  • This wireless connection control method 400 is applied to the control device 310 in the battery management device 300 shown in Figure 3 above.
  • the execution subject of the wireless connection control method 400 in the embodiment of the present application is the above-mentioned control device 310.
  • the device 310 is connected to the wireless connection device 320 in the battery management device 300 .
  • the wireless connection control method 400 of the battery management device 300 includes the following steps.
  • S420 Control the wireless connection device to wirelessly connect or disconnect from the first device according to the connection request command.
  • S440 Based on the connection status data, determine whether the wireless connection or disconnection between the battery management device and the first device is normal.
  • the execution subject of the above steps S410 to S440 may be the control device 310 in the battery management device 300 shown in FIG. 3 above.
  • the control device 310 receives a connection request command for instructing the battery management device 300 to wirelessly connect or disconnect from the first device.
  • the control device 310 controls the wireless connection device 320 to implement wireless connection or disconnection with the first device, thereby achieving wireless connection or disconnection between the battery management device 300 and the first device.
  • the first device may be any device configured to wirelessly connect with the battery management device 300 .
  • the first device and the battery management device 300 are two different types of battery management devices.
  • the first device includes: It is not limited to the SBMU 110 in electrical equipment (such as the above-mentioned vehicle 1).
  • the first device includes, but is not limited to, the first device in the power exchange equipment (such as the above-mentioned power swap station 2). SBMU 110.
  • the first device includes but is not limited to a TBMU in a power-consuming device (such as the above-mentioned vehicle 1).
  • MBMU 120 is not limited to a TBMU in a power-consuming device (such as the above-mentioned vehicle 1).
  • the battery management device 300 can be of various types and applied in different scenarios.
  • a relatively stable wireless connection between TBMU 220 and MBMU 120 can be achieved, and/or a relatively stable wireless connection between CBMU 210/MBMU 120 and SBMU 110 can be achieved, thereby simplifying electrical equipment and/or
  • the connection methods between various battery management devices 300 in the power swap equipment improve the connection stability and robustness of the entire system.
  • control device 310 in the battery management device 300 may receive a connection request command from an external device of the battery management device 300 to control the wireless connection between the wireless connection device 320 and the first device or disconnect.
  • the battery management device 300 is the TBMU 220 and the first device is the MBMU 120
  • the TBMU 220 receives the first connection request command sent by the station control system 21.
  • the TBMU 220 can achieve wireless connection or disconnection with the MBMU 120 in the vehicle 1 based on the first connection request command.
  • the battery management device 300 is the MBMU 120 and the first device is the SBMU 110
  • the TBMU 220 receives the second connection request command sent by the station control system 21, and then The second connection request command is then sent to the MBMU 120 in the vehicle 1, and the MBMU 120 can achieve wireless connection or disconnection with the SBMU 110 in the battery 10 based on the second connection request command.
  • the CBMU 210 in the battery swap bin 20 receives the third connection request command sent by the station control system 21, The CBMU 210 can achieve wireless connection or disconnection with the SBMU 110 in the battery 10 based on the third connection request command.
  • control device 310 in the battery management device 300 can also generate the connection request command based on the relevant information it has obtained, or the control device 310 can also obtain the connection request command from other devices in the battery management device 300 .
  • the device obtains the connection request command.
  • the embodiment of the present application does not limit the specific manner in which the control device 310 obtains the connection request command.
  • the control device 310 may further detect the connection status data of the wireless connection device 320.
  • the connection status data can be used to characterize the wireless connection status between the wireless connection device 320 and the first device. Therefore, the control device 310 can determine whether the wireless connection or disconnection between the wireless connection device 320 and the first device is normal based on the connection status data, thereby determining whether the wireless connection or disconnection between the battery management device 300 and the first device is normal. Is it normal to open?
  • the control device 310 of the battery management device 300 can detect the connection status data of the wireless connection device 320, and determine whether the wireless connection or disconnection between the battery management device 300 and the first device is normal based on the connection status data. , which is conducive to effective monitoring of the wireless connection between the battery management device 300 and the first device, thereby improving the connection performance between the battery management device 300 and the first device.
  • FIG. 5 shows a schematic flow diagram of a wireless connection control method 500 for a battery management device 300 provided by an embodiment of the present application.
  • the wireless connection control method 500 can also be applied to the control device 310 in the battery management device 300 shown in FIG. 3 above.
  • the wireless connection control method 500 of the battery management device includes the following steps.
  • S510 Obtain a connection request command, which is used to instruct wireless connection or disconnection between the battery management device and the first device.
  • connection request command based on the first communication protocol into connection request data based on the second communication protocol.
  • S522 Send the connection request data to the wireless connection device, so that the wireless connection device wirelessly connects or disconnects with the first device according to the connection request data.
  • S540 Determine whether the wireless connection or disconnection between the battery management device and the first device is normal based on the connection status data and the connection request data.
  • the execution subject of the above steps S510 to S540 may be the control device 310 in the battery management device 300 shown in FIG. 3 above.
  • step S510 and step S530 for the specific implementation of step S510 and step S530, please refer to the relevant description of step S410 and step S430 in Figure 4 above.
  • Step S521 and step S522 may be an implementation manner of step S420 in Figure 4 above.
  • Step S540 may be an implementation of step S440 in Figure 4 above.
  • the control device 310 may be connected to the external device of the battery management device 300 based on the first communication protocol, and connected to the wireless connection device 320 through the second communication protocol, wherein the first communication
  • the protocol and the second communication protocol are two different types of communication protocols.
  • the control device 310 may receive a connection request command of the first data type sent by the external device based on the first communication protocol, and convert the connection request command of the first data type into a third connection request command based on the second communication protocol.
  • the connection request data of the second data type is conveniently transmitted to the wireless connection device 320 smoothly.
  • the control device 310 can receive the connection request command based on the first communication protocol, and send the connection request data based on the second communication protocol to the wireless connection device 320 .
  • the control device 310 and the external device can communicate with each other based on the first communication protocol, and the control device 310 and the wireless connection device 320 can communicate with each other based on the second communication protocol. Therefore, the control device 310 can use different communication protocols for different devices or equipment, optimizing the communication performance between the control device 310 and other devices, and improving the overall communication performance of the battery management device 300.
  • the connection request data may include: a request type used to indicate connection or disconnection with the first device.
  • request data and information data indicating the first device.
  • the information data used to indicate the first device includes but is not limited to: the location of the first device, the Media Access Control Address (MAC) of the first device, and so on.
  • MAC Media Access Control Address
  • connection request command is a request command based on the Controller Area Network (Controller Area Network, CAN) protocol
  • connection request data is based on the Serial Peripheral Interface (Serial Peripheral Interface). SPI) protocol request data.
  • control device 310 in the battery management device 300 can be connected to the external device through the CAN bus and receive the connection request command through the CAN protocol. Therefore, the control device 310 and the battery management device 300 in which it is located can be well compatible with existing Battery management system.
  • control device 310 is connected to the wireless connection device 320 through a high-speed, easy-to-operate SPI bus, and sends connection request data to the wireless connection device 320 through the SPI protocol, thereby improving communication between the control device 310 and the wireless connection device 320 performance.
  • control device 310 may determine battery management based on the detected connection status data of the wireless connection device 320 and the connection request data converted according to the connection request command. Whether the wireless connection or disconnection between the device and the first device is normal.
  • connection status data can be used to indicate the connection status between the wireless connection device 320 and the first device
  • connection request data can be used to indicate the connection status between the wireless connection device 320 and the first device. connection request.
  • connection status data and the connection request data it can be determined whether the wireless connection or disconnection between the wireless connection device 320 and the first device is normal, that is, it can be determined whether the wireless connection device 320 is located between the battery management device 300 and the first device. Whether the wireless connection or disconnection between the two devices is normal.
  • the connection status data is integrated and connection request data to determine whether the wireless connection or disconnection between the wireless connection device 320 and the battery management device 300 where it is located and the first device is normal, which can further improve the accuracy of the determination. Therefore, through the technical solution of this embodiment, the wireless connection monitoring between the battery management device 300 and the first device can be more effectively implemented, thereby improving the connection performance between the battery management device 300 and the first device.
  • FIG. 6 shows a schematic flow diagram of a wireless connection control method 600 for the battery management device 300 provided by the embodiment of the present application.
  • the wireless connection control method 600 can also be applied to the control device 310 in the battery management device 300 shown in FIG. 3 above.
  • the wireless connection control method 600 of the battery management device includes the following steps.
  • S610 Obtain a connection request command, which is used to instruct wireless connection or disconnection between the battery management device and the first device.
  • connection request command based on the first communication protocol into connection request data based on the second communication protocol.
  • S622 Send connection request data to the wireless connection device, so that the wireless connection device wirelessly connects or disconnects with the first device according to the connection request data.
  • S641 Determine whether the connection status indicated by the connection status data is consistent with the connection request indicated by the connection request data.
  • connection status indicated by the connection status data is consistent with the connection request indicated by the connection request data, determine that the wireless connection or disconnection between the battery management device and the first device is normal.
  • connection status indicated by the connection status data is inconsistent with the connection request indicated by the connection request data, determine that the wireless connection or disconnection between the battery management device and the first device is abnormal.
  • the execution subject of the above-mentioned steps S610 to step S643 may be the control device 310 in the battery management device 300 shown in FIG. 3 above.
  • step S610 to step S630 for the specific technical solution from step S610 to step S630, please refer to the relevant description of step S510 to step S530 in the embodiment shown in FIG. 5 above.
  • steps S641 to S643 in the embodiment of the present application may be an implementation manner of the above-mentioned step S540.
  • the connection status data can be used to indicate the connection status between the wireless connection device 320 and the first device, that is, to indicate that the connection status between the wireless connection device 320 and the first device is mutually connected. Or disconnect from each other.
  • the connection request data may include a connection request type between the wireless connection device 320 and the first device, that is, the external device requests the wireless connection device 320 and the first device to connect or disconnect from each other.
  • step S642 when the connection status indicated by the connection status data is consistent with the connection request indicated by the connection request data, the control device 310 may determine that the wireless connection between the wireless connection device 320 and the first device is Normal, that is, the wireless connection between the battery management device 300 where the wireless connection device 320 is located and the first device is normal. For example, when the connection status indicated by the connection status data is mutually connected, and the connection request indicated by the connection request data is also mutually connected, it can be determined that the wireless connection device 320 and the battery management device 300 where it is located are connected to the third The wireless connection between one device is normal.
  • the control device 310 may determine the wireless connection between the wireless connection device 320 and the first device.
  • the connection is abnormal, that is, the wireless connection between the battery management device 300 where the wireless connection device 320 is located and the first device is abnormal.
  • the connection status indicated by the connection status data is mutual disconnection, but the connection request indicated by the connection request data is mutual connection, it can be determined that the wireless connection device 320 and the battery management device 300 where it is located are connected to the third The wireless connection between one device is abnormal.
  • the wireless connection between the battery management device and the first device can be accurately determined. Or whether the disconnection is normal.
  • This technical solution is easy to implement and has high accuracy. It can not only accurately and effectively monitor the wireless connection between the battery management device 300 and the first device, but can also be more conveniently implemented in the control device 310 through hardware and/or software. middle.
  • the above-mentioned connection status data is configured to: use a first value to indicate that the connection status between the wireless connection device 320 and the first device is connected, and use a second value to indicate that the wireless connection device 320 The connection state with the first device is disconnected.
  • the above-mentioned connection request data is configured to: use a first value to indicate that the connection request between the wireless connection device 320 and the first device is a connection, and use a second value to indicate a connection request between the wireless connection device 320 and the first device. for disconnection.
  • step S641 in FIG. 6 may include: determining whether the connection status data is consistent with the connection request data. Further, the above-mentioned step S642 may include: when the connection status data is consistent with the connection request data, determining that the wireless connection between the battery management device and the first device is normal. The above-mentioned step S643 may include: when the connection status data and the connection request data are inconsistent, determining that the wireless connection between the battery management device and the first device is abnormal.
  • the first value and the second value can be 0 and 1 respectively, which only need to occupy a small storage space and can effectively identify different connection states and connection requests.
  • the first numerical value and the second numerical value may also be other numerical values, which are not specifically limited in the embodiments of the present application.
  • connection status data and the connection request data use different values to represent different states and different requests. Therefore, the battery can be accurately judged directly by judging whether the connection status data and the connection request data are consistent. Whether the wireless connection or disconnection between the management device and the first device is normal.
  • This implementation is the most convenient, and can reduce the storage space occupied by the connection status data and connection request data in the control device 310, and improve the processing efficiency of the connection status data and connection request data by the control device 310.
  • FIG. 7 shows a schematic flow chart of a wireless connection control method 700 of the battery management device 300 provided by the embodiment of the present application.
  • the wireless connection control method 700 can also be applied to the control device 310 in the battery management device 300 shown in FIG. 3 above.
  • the wireless connection control method 700 of the battery management device includes steps S410 to S440 in the embodiment shown in Figure 4 above. On this basis, after determining that the battery management device and When the wireless connection or disconnection between the first devices is abnormal, the wireless connection control method 700 may further include the following steps.
  • connection request command control the wireless connection device to wirelessly connect or disconnect with the first device at least once.
  • S760 Detect the connection status data of the wireless connection device at least once until it is determined that the wireless connection or disconnection between the battery management device and the first device is normal.
  • the execution subject of the above steps S750 to S760 may be the control device 310 in the battery management device 300 shown in FIG. 3 above.
  • the control device 310 detects that the wireless connection between the wireless connection device 320 and the first device is abnormal, that is, it is determined that the wireless connection between the battery management device 300 and the first device is abnormal. In an abnormal situation, the control device 310 may continue to control the wireless connection device 320 to reconnect or disconnect wirelessly with the first device at least once according to the connection request command to repair the wireless connection between the battery management device 300 and the first device. Break exception.
  • the control device 310 may re-detect the connection status data of the wireless connection device 320, and based on the newly detected connection status data Determine whether the wireless connection between the wireless connection device 320 and the battery management device 300 where it is located and the first device is normal.
  • the wireless connection device 320 By controlling the wireless connection device 320 to reconnect or disconnect wirelessly with the first device at least once, and detecting the connection status data of the wireless connection device 320 at least once, until it is determined that the wireless connection device 320 and the battery management device 300 where it is located are connected to the first device.
  • the wireless connection between the devices is normal, that is, the abnormal wireless connection between the battery management device 300 and the first device is repaired, and the control device 310 stops controlling the wireless connection device 320 to continue to wirelessly connect or disconnect with the first device.
  • the control device 310 can repair the abnormality, so that the battery management device 300 and the first device The wireless connection between them is restored to the normal state, thereby further improving the connection reliability between the battery management device 300 and the first device.
  • FIG. 8 shows a schematic flow diagram of a wireless connection control method 800 for the battery management device 300 provided by the embodiment of the present application.
  • the wireless connection control method 800 can also be applied to the control device 310 in the battery management device 300 shown in FIG. 3 above.
  • the wireless connection control method 800 of the battery management device includes steps S610 to S643 in the embodiment shown in Figure 6 above. On this basis, after step S643, that is In the case where it is determined that the wireless connection or disconnection between the battery management device 300 and the first device is abnormal, the wireless connection control method 800 may further include the following steps.
  • S850 Send connection request data to the wireless connection device at least once, so that the wireless connection device wirelessly connects or disconnects with the first device according to the connection request data at least once.
  • connection status data of the wireless connection device at least once until the connection status indicated by the connection status data is consistent with the connection request indicated by the connection request data.
  • the execution subject of the above-mentioned steps S850 to step S860 may be the control device 310 in the battery management device 300 shown in FIG. 3 above.
  • step S850 may be an implementation of step S750 in Figure 7 above.
  • step S860 may be an implementation of step S860 in Figure 7 above.
  • control device 310 may convert the connection request command to obtain the connection request data and send it to the wireless connection device 320 at least once, so as to control the wireless connection device 320 at least once according to the connection request.
  • Data is wirelessly connected or disconnected from the first device.
  • control device 310 can re-detect the connection status data of the wireless connection device 320, and determine the connection status and connection indicated by the connection status data. Whether the connection requests indicated by the disconnection request data are consistent, thereby determining whether the wireless connection or disconnection between the wireless connection device 320 and the battery management device 300 where it is located and the first device is normal.
  • control device 310 After the control device 310 sends the connection request data to the wireless connection device 320 at least once, and detects the connection status data of the wireless connection device 320 at least once, until it is determined that the connection status indicated by the connection status data and the connection status indicated by the connection request data are determined If the connection requests are consistent, it can be determined that the wireless connection between the wireless connection device 320 and the battery management device 300 where it is located and the first device is normal, that is, the abnormal wireless connection between the battery management device 300 and the first device has been repaired. The control device 310 stops sending the connection request data to the wireless connection device 320.
  • the control device 310 can effectively control the wireless connection between the wireless connection device 320 and the first device, and the control device 310 is responsible for the connection between the wireless connection device 320 and its battery management device 300 and the first device.
  • the wireless connection abnormality judgment accuracy is also high, and the abnormality can be effectively and quickly repaired, so that the wireless connection between the battery management device 300 and the first device can be quickly and reliably restored to a normal state.
  • FIG. 9 shows a schematic flow chart of a wireless connection control method 900 for the battery management device 300 provided by the embodiment of the present application.
  • the wireless connection control method 900 can also be applied to the control device 310 in the battery management device 300 shown in FIG. 3 above.
  • the control device 310 may include a non-volatile memory (Non-Volatile Memory, NVM) module.
  • NVM Non-Volatile Memory
  • the wireless connection control method 900 of the battery management device may include steps S610 to S643 and steps S850 to S860 in the embodiment shown in Figure 8. On this basis, After step S621, the wireless connection control method 900 may further include the following steps.
  • S910 Store the connection request data in the non-volatile memory (Non-Volatile Memory, NVM) module.
  • NVM Non-Volatile Memory
  • the execution subject of the above-mentioned step S910 may be the control device 310 in the battery management device 300 shown in FIG. 3 above.
  • the NVM module is a storage module in which the data stored therein will not be lost after power failure.
  • the NVM module may be located inside the control device 310 to facilitate the control device 310 to read and write data in the NVM module.
  • the NVM module can also be located outside the control device 310 and be electrically connected to the control device 310 .
  • connection request data In order to facilitate subsequent wireless connection abnormality determination between the battery management device 300 and the first device based on the connection request data, after the control device 310 receives the connection request command and converts the connection request command into connection request data, The control device 310 is used to synchronously store the connection request data in the NVM module.
  • the wireless connection control method 900 may further include the following steps.
  • the execution subject of the above step S920 may be the control device 310 in the battery management device 300 shown in FIG. 3 above.
  • step S920 the control device 310 then executes steps S850 to S860.
  • connection request data in the NVM module can also be used to ensure the subsequent repair of abnormal wireless connection between the battery management device 300 and the first device, so as to further improve the connection between the battery management device 300 and the first device. Connection performance between devices.
  • FIG. 10 shows a schematic flow chart of a wireless connection control method 1000 for a battery management device 300 provided by an embodiment of the present application.
  • the wireless connection control method 900 can also be applied to the control device 310 in the battery management device 300 shown in FIG. 3 above.
  • the wireless connection control method 1000 of the battery management device may include the following steps.
  • S1010 Obtain a connection request command, which is used to instruct wireless connection or disconnection between the battery management device and the first device.
  • connection request command based on the first communication protocol into connection request data based on the second communication protocol.
  • S1022 Send connection request data to the wireless connection device, so that the wireless connection device wirelessly connects or disconnects with the first device according to the connection request data.
  • S1031 Detect the connection status data of the wireless connection device within the first preset time period after sending the connection request data.
  • S1040 Determine whether the wireless connection or disconnection between the battery management device and the first device is normal based on the connection status data and the connection request data.
  • the execution subject of the above steps S1010 to S1040 may be the control device 310 in the battery management device 300 shown in FIG. 3 above.
  • steps S1010, S1021, S1022 and step S1040 please refer to the relevant description of steps S510, S521, S522 and step S540 in Figure 5 above.
  • Step S1031 and step S1032 may be an implementation manner of step S530 in Figure 5 above.
  • the first preset time period is greater than or equal to the transmission time of the connection request data between the control device 310 and the wireless connection device 320.
  • the transmission time is controlled by the connection mode between the control device 310 and the wireless connection device 320.
  • the data transmission time between the two is about 5 ms.
  • the first preset time period may be 5 ms, and the control device 310 detects the connection status data of the wireless connection device 320 within 5 ms after sending the connection request data to the wireless connection device 320 .
  • control device 310 can effectively detect the latest connection status data of the wireless connection device 320 to ensure the validity and reliability of the data. Based on the valid and reliable connection status data, the effectiveness and reliability of the control device 310's determination of abnormal wireless connection between the wireless connection device 320 and the first device can be improved.
  • control device 310 may also detect the current connection status data of the wireless connection device 320 every second preset time period, so as to realize the wireless connection between the wireless connection device 320 and the first device. Continuous monitoring ensures the reliability of the long-term wireless connection between the wireless connection device 320 and the first device.
  • the second preset time period may be less than or equal to 100 ms. In other examples, the second preset time period can also be adjusted according to actual conditions. The embodiment of the present application does not limit the specific value of the second preset time period.
  • connection request command received by the control device 310 may be a Bluetooth connection command
  • the wireless connection device 320 may be a Bluetooth chip.
  • the wireless connection device 320 is designed as a Bluetooth chip, and the wireless connection device 320 can communicate with the first device through the Bluetooth protocol.
  • the wireless connection device 320 can have the characteristics of low power consumption, low delay, and low cost of the Bluetooth chip, so it is more suitable to be installed in the vehicle 1 and/or the battery swap station 2 to achieve short-distance, low-cost and reliable communication.
  • FIG. 11 shows a schematic flow chart of a wireless connection control method 1100 for a battery management device 300 provided by an embodiment of the present application.
  • This wireless connection control method 1100 can also be applied to the control device 310 in the battery management device 300 shown in Figure 3 above.
  • the control device 310 can be a control chip, or it can also be called a main chip.
  • the control chip (main chip) is connected to the wireless communication chip in the battery management device 300, such as a Bluetooth chip.
  • the wireless connection control method 1100 may include the following steps.
  • S1110 Receive the Bluetooth connection request command transmitted by CAN.
  • connection request data includes: Bluetooth MAC, location, and connection request of the device to be connected.
  • S1130 Call the connection command processing function, copy the connection request data to the SPI accessible structure and NVM, and perform data calibration.
  • S1140 Call the SPI transmission data state machine and copy the connection request data to the array to be transmitted by SPI.
  • S1150 Call the SPI protocol to transmit connection request data to the Bluetooth chip.
  • S1160 Read back the Bluetooth connection status of the Bluetooth chip through SPI after 5ms.
  • S1170 Determine whether the connection status and connection request data are the same.
  • the execution subject of the above steps S1110 to S1180 may be the control device 310 in the battery management device 300 shown in FIG. 3 above.
  • the main chip in the battery management device 300 can be connected to the external device through the CAN bus, and the main chip can receive data from the external device through the CAN bus.
  • the transmitted Bluetooth connection request command can be used to instruct the battery management device 300 to disconnect the Bluetooth connection with the device to be connected (such as the first device above).
  • the main chip converts the Bluetooth connection command message into connection request data.
  • the connection request data includes: Bluetooth MAC, the location of the device to be connected, and the connection request.
  • the Bluetooth connection command transmitted through the CAN bus can be message data, and the main chip can convert the message data into connection request data, and the connection request data can satisfy the SPI protocol.
  • the connection request data may include the Bluetooth Mac address, location, connection request and other information of the device to be connected, so that after the main chip transmits the connection request data to the Bluetooth chip, the Bluetooth chip can be based on the Bluetooth Mac Information such as address and location determines the device to be connected, and establishes a Bluetooth connection with the device to be connected based on the connection request.
  • the main chip may include a main program, and the main program may call a connection command processing function.
  • the connection command processing function may be used to synchronously copy the connection request data to the SPI accessible structure and NVM.
  • the connection request data can be calibrated, that is, every time a piece of data is copied, the flag bit corresponding to the data is updated to ensure that all the connection request data is copied.
  • the main chip may also include an SPI transmission data state machine.
  • the main program may call the SPI transmission data state machine.
  • the SPI transmission data state machine is used to copy the connection request data in the SPI accessible structure to the SPI. in the array to be transferred.
  • the main chip may also include: an SPI protocol layer.
  • the main program in the main chip may call the SPI protocol layer to transmit the connection request data in the array to be transmitted by SPI to the Bluetooth chip through SPI.
  • step S1160 it takes 5ms to transmit data once through the SPI protocol.
  • the main chip After transmitting data through the SPI protocol, the main chip immediately reads back the status of the Bluetooth chip. For example, the main chip sends connection status request information to the Bluetooth chip, and the Bluetooth chip sends the connection status with the device to be connected back to the main chip, so that the main chip reads back the current connection status between the Bluetooth chip and the device to be connected. state.
  • the main chip determines whether the connection status and the connection request data are the same. If yes, it means that the current Bluetooth chip and the device to be connected are connected normally and no abnormality occurs.
  • step S1180 is executed.
  • the main chip reads the connection request data from NVM, calls the connection command processing function again, and copies the connection request data to the SPI accessible structure and NVM again. Then, the above-mentioned steps S1130 to S1170 are repeatedly executed to re-transmit the connection request data to the Bluetooth chip, and read back the Bluetooth connection status of the Bluetooth chip until it is determined that the connection status and the connection request data are the same to determine the current Bluetooth chip.
  • the connection to the device to be connected is normal and no abnormality occurs.
  • FIG. 12 shows a schematic structural block diagram of a wireless connection control device 1200 of a battery management device provided by an embodiment of the present application.
  • the wireless connection control device 1200 may be connected to a wireless connection device in the battery management device.
  • the wireless connection control device 1200 may be the control device 310 shown in FIG. 3 , which may be connected to the wireless connection device 320 .
  • the wireless connection control device 1200 includes: an acquisition module 1210 and a control module 1220.
  • the obtaining module 1210 is used to obtain a connection request command, which is used to indicate wireless connection or disconnection between the battery management device and the first device.
  • the control module 1220 is configured to control the wireless connection or disconnection of the wireless connection device and the first device according to the connection request command, detect the connection status data of the wireless connection device, and determine the connection between the battery management device and the first device based on the connection status data. Whether the wireless connection or disconnection between them is normal.
  • the wireless connection control device 1200 may further include: a sending module 1230 .
  • the control module 1220 is configured to: convert the connection request command based on the first communication protocol into the connection request data based on the second communication protocol, where the first communication protocol and the second communication protocol are of different types. two communication protocols.
  • the sending module 1230 is configured to: send connection request data to the wireless connection device, so that the wireless connection device wirelessly connects or disconnects with the first device according to the connection request data.
  • connection request command is a request command based on a Controller Area Network (CAN) protocol
  • connection request data is a request data based on a Serial Peripheral Interface (SPI) protocol.
  • CAN Controller Area Network
  • SPI Serial Peripheral Interface
  • control module 1220 is configured to determine whether the wireless connection or disconnection between the battery management device and the first device is normal based on the connection status data and the connection request data.
  • control module 1220 is configured to: determine whether the connection status indicated by the connection status data is consistent with the connection request indicated by the connection request data; when the connection status indicated by the connection status data is consistent with the connection request, When the connection request indicated by the request data is consistent, it is determined that the wireless connection or disconnection between the battery management device and the first device is normal; when the connection state indicated by the connection status data is consistent with the connection indicated by the connection request data, If the requests are inconsistent, it is determined that the wireless connection or disconnection between the battery management device and the first device is abnormal.
  • control module 1220 when it is determined that the wireless connection or disconnection between the battery management device and the first device is abnormal, the control module 1220 is also configured to: control the wireless connection device at least once according to the connection request command. Wirelessly connect or disconnect with the first device; detect the connection status data of the wireless connection device at least once until it is determined that the wireless connection or disconnection between the battery management device and the first device is normal.
  • control module 1220 is configured to: send the connection request data converted according to the connection request command to the wireless connection device at least once through the sending module 1230, so that the wireless connection device responds to the connection request data at least once. Wirelessly connect or disconnect with the first device; detect the connection status data of the wireless connection device at least once until the connection status indicated by the connection status data is consistent with the connection request indicated by the connection request data.
  • the wireless connection control device 1200 further includes a non-volatile memory (NVM) module, and the control module 1220 is further configured to store the connection request data in the NVM module.
  • NVM non-volatile memory
  • control module 1220 is configured to: detect the connection status data of the wireless connection device within a first preset time period after sending the connection request data, and the first preset time period is greater than or equal to the connection status. The transmission time of the requested data between the control device and the wireless connection device.
  • control module 1220 is configured to detect the connection status data of the wireless connection device every second preset time period, and the second preset time period is less than or equal to 100 ms.
  • connection request command is a Bluetooth connection command
  • wireless connection device is a Bluetooth chip
  • the battery management device is the master battery management device MBMU in the vehicle, and the first device is the slave battery management device (SBMU) in the vehicle; or the battery management device is the rechargeable battery management device in the battery swap station.
  • CBMU the first device is the slave battery management device (SBMU) in the battery swap station; or the battery management device is the battery swap battery management device (TBMU) in the battery swap station, and the first device is the master battery management device in the vehicle (MBMU).
  • Figure 13 shows a schematic structural block diagram of a wireless connection control device 1300 of a battery management device provided by an embodiment of the present application.
  • the wireless connection control device 1300 includes: a processor 1310 and a memory 1320, where the memory 1320 is used to store programs, and the processor 1310 is used to call and run the program from the memory to execute any of the above embodiments. Wireless connection control method.
  • Figure 14 shows a schematic structural block diagram of a battery management device 1400 provided by an embodiment of the present application.
  • the battery management device 1400 includes: a wireless connection device 1410 and the above-mentioned wireless connection control device 1200 or wireless connection control device 1300 or control device 310 .
  • the wireless connection control device 1200/1300 is connected to the wireless connection device 1410, and the wireless connection control device 1200/1300/310 is used to control the wireless connection device 1410 to wirelessly connect or disconnect the first device to realize the wireless connection between the battery management device and the first device. Wireless connection or disconnection between devices.
  • the wireless connection device 1410 may be the wireless connection device 320 in the above embodiment.
  • Figure 15 shows a schematic structural block diagram of an electronic device 1500 provided by an embodiment of the present application.
  • the electronic device 1500 includes the above-mentioned battery management device 1400.
  • the electronic device 1500 may be an electrical device, for example, the electrical device may be the vehicle 1 shown in Figure 1 above.
  • the electronic device 1500 may also be a power swapping device.
  • the power swapping device may be the power swapping station 2 shown in FIG. 2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请实施例提供一种电池管理设备的无线连接控制方法、装置和电池管理设备,能够提高电池管理设备的连接性能。该电池管理设备的无线连接控制方法应用于电池管理设备中的控制装置,该控制装置连接于电池管理设备中的无线连接装置,该无线连接控制方法包括:获取连断请求命令;根据连断请求命令,控制无线连接装置与第一设备无线连接或断开;检测无线连接装置的连断状态数据;根据连断状态数据,判断电池管理设备与第一设备之间的无线连接或断开是否正常。通过该技术方案,有利于实现对电池管理设备与第一设备之间无线连断的有效监控,从而提高电池管理设备与第一设备之间的连接性能。

Description

电池管理设备的无线连接控制方法、装置和电池管理设备 技术领域
本申请实施例涉及电池领域,并且更具体地,涉及一种电池管理设备的无线连接控制方法、装置和电池管理设备。
背景技术
随着时代的发展,电动汽车由于其高环保性、低噪音、使用成本低等优点,具有巨大的市场前景且能够有效促进节能减排,有利社会的发展和进步。对于电动汽车而言,电池技术是关乎其发展的一项重要因素。
目前,电池、电动车辆以及换电站等机构可配置有电池管理设备,例如:电池管理单元(Battery Manager Unit,BMU),该电池管理设备与其它设备可相互连接并进行信息交互,例如,不同机构之间的电池管理设备可相互连接并进行信息交互,以便于对电池进行监控管理。在电池管理设备与其它设备的连接性能不佳的情况下,会影响该电池管理设备对电池的管理效果,产生电池的安全隐患。鉴于此,如何提高电池管理设备的连接性能,是一项亟待解决的技术问题。
发明内容
本申请实施例提供一种电池管理设备的无线连接控制方法、装置和电池管理设备,能够提高电池管理设备的连接性能。
第一方面,提供一种电池管理设备的无线连接控制方法,该无线连接控制方法应用于电池管理设备中的控制装置,该控制装置连接于电池管理设备中的无线连接装置,该无线连接控制方法包括:获取连断请求命令,连断请求命令用于指示电池管理设备与第一设备之间的无线连接或断开;根据连断请求命令,控制无线连接装置与第一设备无线连接或断开;检测无线连接装置的连断状态数据;根据连断状态数据,判断电池管理设备与第一设备之间的无线连接或断开是否正常。
通过本申请实施例的技术方案,不需要对电池管理设备的现有硬件进行改动,在电池管理设备中增加无线连接装置,且通过控制装置对该无线连接装置进行控制即可实现电池管理设备与第一设备之间的无线连接,该无线连接方式的实现较为简单,能够兼容现有产品。另外,电池管理设备的控制装置能够对无线连接装置的连断状态数据进行检测,并根据该连断状态数据判断电池管理设备与第一设备之间的无线连接或断开是否正常,有利于实现对电池管理设备与第一设备之间无线连断的有效监控,从而提高电池管理设备与第一设备之间的连接性能。
在一些可能的实施方式中,上述根据连断请求命令,控制无线连接装置与第一设备无线连接或断开,包括:将基于第一通信协议的连断请求命令转换为基于第二通信协议的连断请求数据,其中,第一通信协议与第二通信协议不同;向无线连接装置发送连断请求数据,以使得无线连接装置根据连断请求数据与第一设备无线连接或断开。
通过该实施方式的技术方案,控制装置可以接收基于第一通信协议的连断请求命令,且向无线连接装置发送基于第二通信协议的连断请求数据。该控制装置与外部设备可以基于第一通信协议相互通信,而控制装置与无线连接装置之间可以基于第二通信协议相互通信。因此,该控制装置可以针对不同的装置或设备使用不同的通信协议,优化控制装置与其它设备之间的通信性能,提升电池管理设备整体的通信性能。
在一些可能的实施方式中,上述连断请求命令为基于控制器局域网络CAN协议的请求命令,和/或,连断请求数据为基于串行外设接口SPI协议的请求数据。
通过该实施方式的技术方案,电池管理设备中的控制装置可通过CAN总线连接于外部设备且通过CAN协议接收连断请求命令,因而该控制装置及其所在的电池管理设备能够良好兼容现有电池管理体系。另外,控制装置通过高速、操作简单的SPI总线连接于无线连接装置,且通过SPI协议向无线连接装置发送连断请求数据,能够提高控制装置与无线连接装置之间的通信性能。
在一些可能的实施方式中,上述根据连断状态数据,判断电池管理设备与第一设备之间的无线连接或断开是否正常,包括:根据连断状态数据和连断请求数据,判断电池管理设备与第一设备之间的无线连接或断开是否正常。
相比于仅根据无线连接装置的连断状态数据判断电池管理设备与第一设备之间的无线连接或断开是否正常的技术方案,通过本实施方式的技术方案,综合连断状态数据和连断请求数据两种数据,判断无线连接装置及其所在的电池管理设备与第一设备之间的无线连接或断开是否正常,能够进一步提高判断的准确性。因此,通过本实施方式的技术方案,能够更为有效的实现对电池管理设备与第一设备之间的无线连断的监控,从而提高电池管理设备与第一设备之间的连接性能。
在一些可能的实施方式中,上述根据连断状态数据和连断请求数据,判断电池管理设备与第一设备之间的无线连接或断开是否正常,包括:判断连断状态数据指示的连断状态与连断请求数据指示的连断请求是否一致;在连断状态数据指示的连断状态与连断请求数据指示的连断请求一致的情况下,确定电池管理设备与第一设备之间的无线连接或断开为正常;在连断状态数据指示的连断状态与连断请求数据指示的连断请求不一致的情况下,确定电池管理设备与第一设备之间的无线连接或断开为异常。
在该实施方式的技术方案中,通过判断连断状态数据指示的连断状态与连断请求数据指示的连断请求是否一致,从而可准确判断电池管理设备与第一设备之间的无线连接或断开是否为正常。该技术方案实施方便且准确度高,不仅能对电池管理设备与第一设备之间的无线连断实现准确且有效的监控,还能较为方便的通过硬件和/或软件实现于控制装置中。
在一些可能的实施方式中,在确定电池管理设备与第一设备之间的无线连接或 断开为异常的情况下,该无线连接控制方法还包括:根据连断请求命令,控制无线连接装置至少一次与第一设备无线连接或断开;至少一次检测无线连接装置的连断状态数据,直至确定电池管理设备与第一设备之间的无线连接或断开正常。
通过该实施方式的技术方案,在电池管理设备与第一设备之间的无线连断存在异常的情况下,控制装置能够对该异常进行修复,以使得电池管理设备与第一设备之间的无线连断恢复到正常状态,从而进一步提高电池管理设备与第一设备之间的连接性能。
在一些可能的实施方式中,上述根据连断请求命令,控制无线连接装置至少一次与第一设备无线连接或断开,包括:向无线连接装置至少一次发送根据连断请求命令转换得到的连断请求数据,以使得无线连接装置至少一次根据连断请求数据与第一设备无线连接或断开;至少一次检测无线连接装置的连断状态数据,直至确定电池管理设备与第一设备之间的无线连接或断开正常,包括:至少一次检测无线连接装置的连断状态数据,直至连断状态数据指示的连断状态与连断请求数据指示的连断请求一致。
通过该实施方式的技术方案,控制装置能够有效控制无线连接装置与第一设备的无线连断,且控制装置对于无线连接装置及其所在电池管理设备与第一设备之间的无线连断异常的判断准确度也较高,能够有效且快速的对该异常进行修复,以使得电池管理设备与第一设备之间的无线连断快速且可靠的恢复到正常状态。
在一些可能的实施方式中,控制装置包括非易失性存储模块,在将连断请求命令转换为连断请求数据之后,该无线连接控制方法还包括:将连断请求数据存储于非易失性存储模块。
通过该实施方式的技术方案,可以防止掉电等外部原因造成非易失性存储模块中连断请求数据丢失,保障后续对电池管理设备与第一设备的无线连断异常判断的进行,从而进一步提升电池管理设备与第一设备之间的连接性能。另外,该非易失性存储模块中的连断请求数据还可以用于保障后续对电池管理设备与第一设备的无线连断异常的修复,以更进一步提升电池管理设备与第一设备之间的连接性能。
在一些可能的实施方式中,上述检测无线连接装置的连断状态数据,包括:在发送连断请求数据之后的第一预设时间段内检测无线连接装置的连断状态数据,第一预设时间段大于或等于连断请求数据在控制装置与无线连接装置之间的传输时间。
通过该实施方式的技术方案,控制装置能够有效检测无线连接装置最新的连断状态数据,保证数据的有效性和可靠性。根据该有效且可靠的连断状态数据,可以提升控制装置对于无线连接装置与第一设备之间的无线连断异常的判断的有效性及可靠性。
在一些可能的实施方式中,上述检测无线连接装置的连断状态数据,包括:每间隔第二预设时间段检测无线连接装置的连断状态数据,第二预设时间段小于或等于100ms。
通过该实施方式的技术方案,控制装置可以每间隔第二预设时间段检测无线连接装置当前的连断状态数据,以实现对无线连接装置与第一设备之间无线连断的持续 监控,保障该无线连接装置与第一设备之间长期的无线连断的可靠性。
在一些可能的实施方式中,上述连断请求命令为蓝牙连断命令,上述无线连接装置为蓝牙芯片。
通过该实施方式的技术方案,将无线连接装置设计为蓝牙芯片,该无线连接装置可以通过蓝牙协议与第一设备进行相互通信。该无线连接装置可以具有蓝牙芯片的低功耗、低延时、低成本的特点,因而较为适宜的设置于用电设备和/或换电设备中,实现短距离、低成本的可靠通信。
在一些可能的实施方式中,电池管理设备为用电设备中的主电池管理单元MBMU,第一设备为用电设备中的从电池管理单元SBMU;或,电池管理设备为换电设备中的充电电池管理单元CBMU,第一设备为换电设备中的从电池管理单元SBMU;或,电池管理设备为换电设备中的换电电池管理单元TBMU,第一设备为用电设备中的主电池管理单元MBMU。
通过该实施方式的技术方案,电池管理设备可以为多种类型,且应用于不同场景下。通过该方案,可以实现TBMU与MBMU之间较为稳定的无线连断,或,实现CBMU/MBMU与SBMU之间较为稳定的无线连断,从而简化换电设备或用电设备中多种电池管理设备之间的连接方式,提高整个系统的连接稳定性以及鲁棒性。
第二方面,提供一种电池管理设备的无线连接控制装置,该无线连接控制装置连接于电池管理设备中的无线连接装置,该无线连接控制装置包括:获取模块,用于获取连断请求命令,连断请求命令用于指示电池管理设备与第一设备之间的无线连接或断开;控制模块,用于根据连断请求命令,控制无线连接装置与第一设备无线连接或断开;检测无线连接装置的连断状态数据;根据连断状态数据,判断电池管理设备与第一设备之间的无线连接或断开是否正常。
在一些可能的实施方式中,无线连接控制装置还包括:发送模块;控制模块用于:将基于第一通信协议的连断请求命令转换为基于第二通信协议的连断请求数据,其中,第一通信协议与第二通信协议不同;发送模块用于:向无线连接装置发送连断请求数据,以使得无线连接装置根据连断请求数据与第一设备无线连接或断开。
在一些可能的实施方式中,连断请求命令为基于控制器局域网络(CAN)协议的请求命令,和/或,连断请求数据为基于串行外设接口(SPI)协议的请求数据。
在一些可能的实施方式中,控制模块用于:根据连断状态数据和连断请求数据,判断电池管理设备与第一设备之间的无线连接或断开是否正常。
在一些可能的实施方式中,控制模块用于:判断连断状态数据指示的连断状态与连断请求数据指示的连断请求是否一致;在连断状态数据指示的连断状态与连断请求数据指示的连断请求一致的情况下,确定电池管理设备与第一设备之间的无线连接或断开为正常;在连断状态数据指示的连断状态与连断请求数据指示的连断请求不一致的情况下,确定电池管理设备与第一设备之间的无线连接或断开为异常。
在一些可能的实施方式中,在确定电池管理设备与第一设备之间的无线连接或断开为异常的情况下,控制模块还用于:根据连断请求命令,控制无线连接装置至少一次与第一设备无线连接或断开;至少一次检测无线连接装置的连断状态数据,直至 确定电池管理设备与第一设备之间的无线连接或断开正常。
在一些可能的实施方式中,控制模块用于:通过发送模块向无线连接装置至少一次发送根据连断请求命令转换得到的连断请求数据,以使得无线连接装置至少一次根据连断请求数据与第一设备无线连接或断开;至少一次检测无线连接装置的连断状态数据,直至连断状态数据指示的连断状态与连断请求数据指示的连断请求一致。
在一些可能的实施方式中,无线连接控制装置还包括非易失性存储模块,控制模块还用于:将连断请求数据存储于非易失性存储模块。
在一些可能的实施方式中,控制模块用于:在发送连断请求数据之后的第一预设时间段内检测无线连接装置的连断状态数据,第一预设时间段大于或等于连断请求数据在控制装置与无线连接装置之间的传输时间。
在一些可能的实施方式中,控制模块用于:每间隔第二预设时间段检测无线连接装置的连断状态数据,第二预设时间段小于或等于100ms。
在一些可能的实施方式中,连断请求命令为蓝牙连断命令,无线连接装置为蓝牙芯片。
在一些可能的实施方式中,电池管理设备为用电设备中的主电池管理单元(MBMU),第一设备为用电设备中的从电池管理单元(SBMU);或,电池管理设备为换电设备中的充电电池管理单元(CBMU),第一设备为换电设备中的从电池管理单元(SBMU);或,电池管理设备为换电设备中的换电电池管理单元(TBMU),第一设备为用电设备中的主电池管理单元(MBMU)。
第三方面,提供一种电池管理设备的无线连接控制装置,包括:处理器和存储器,存储器用于存储程序,处理器用于从存储器中调用并运行程序以执行上述第一方面或第一方面中任一可能的实施方式中的无线连接控制方法。
第四方面,提供一种电池管理设备,包括:无线连接装置以及上述第二方面、第二方面中任一可能的实施方式或第三方面中的无线连接控制装置,其中,无线连接装置连接于无线连接控制装置,无线连接控制装置用于控制无线连接装置与第一设备无线连接或断开,以实现电池管理设备与第一设备之间的无线连接或断开。
第五方面,提供一种电子设备,包括:上述第四方面中的电池管理设备。
在一些可能的实施方式中,电子设备为用电设备或换电设备。
通过本申请实施例的技术方案,不需要对电池管理设备的现有硬件进行改动,在电池管理设备中增加无线连接装置,且通过控制装置对该无线连接装置进行控制即可实现电池管理设备与第一设备之间的无线连接,该无线连接方式的实现较为简单,能够兼容现有产品。另外,电池管理设备的控制装置能够对无线连接装置的连断状态数据进行检测,并根据该连断状态数据判断电池管理设备与第一设备之间的无线连接或断开是否正常,有利于实现对电池管理设备与第一设备之间无线连断的有效监控,从而提高电池管理设备与第一设备之间的连接性能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一实施例适用的一种车辆的示意性结构框图;
图2是本申请一实施例适用的一种换电站的示意性结构框图;
图3是本申请一实施例提供的一种电池管理设备的示意性结构框图;
图4是本申请一实施例提供的一种电池管理设备的无线连接控制方法的示意性流程框图;
图5是本申请另一实施例提供的一种电池管理设备的无线连接控制方法的示意性流程框图;
图6是本申请另一实施例提供的一种电池管理设备的无线连接控制方法的示意性流程框图;
图7是本申请另一实施例提供的一种电池管理设备的无线连接控制方法的示意性流程框图;
图8是本申请另一实施例提供的一种电池管理设备的无线连接控制方法的示意性流程框图;
图9是本申请另一实施例提供的一种电池管理设备的无线连接控制方法的示意性流程框图;
图10是本申请另一实施例提供的一种电池管理设备的无线连接控制方法的示意性流程框图;
图11是本申请另一实施例提供的一种电池管理设备的无线连接控制方法的示意性流程框图;
图12是本申请一实施例提供的一种电池管理设备的无线连接控制装置的示意性结构框图;
图13是本申请另一实施例提供的一种电池管理设备的无线连接控制装置的示意性结构框图;
图14是本申请一实施例提供的一种电池管理设备的示意性结构框图;
图15是本申请一实施例提供的一种电子设备的示意性结构框图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述 本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:存在A,同时存在A和B,存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书、权利要求书或附图中的术语“第一”、“第二”、“第三”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
在新能源领域中,电池作为用电设备,例如电动车辆、船舶或航天器等的主要动力源,其重要性不言而喻。在本申请中,电池是指包括一个或多个电池单体(battery cell)以提供更高的电压和容量的单一的物理模块。该电池一般包括用于封装一个或多个电池单体的箱体。可选地,本申请中所提到的电池可以称之为电池包(battery pack)。可选地,该电池可以是任意类型的电池,例如:锂离子电池、锂金属电池、锂硫电池、钠离子电池、铅酸电池、镍隔电池、镍氢电池、或者锂空气电池等等。
在电池的运行、充电、换电过程中,均需要对电池的实时状态进行监控,以提高电池在上述各过程中的安全性。因此,根据实际情况的需要,在电池的内部、用电设备、换电设备等位置可配置有电池管理设备,例如:电池管理单元(BMU)等,对电池的运行状态进行监控和管理。
作为一种示例,在电动车辆以及电池的内部均配置有BMU,其中,电动车辆中的BMU可称之为主电池管理单元(Master Battery Manager Unit,MBMU),电池的内部配置的BMU可称之为从电池管理单元(Slaver Battery Manager Unit,SBMU)。在该示例中,MBMU可以与SBMU相互连接并进行信息交互,以共同实现对电池的运行状态的监控和管理。
在一些实施方式中,MBMU与SBMU通过实体走线(例如:控制器局域网络(Controller Area Network,CAN)走线)相互连接,该实体走线在两个BMU上的安装方式较为复杂,影响制造和维修效率。在另一些实施方式中,MBMU与SBMU通过无线方式进行连接,在该无线连接方式下,MBMU与SBMU之间的通信易受到环境等多种因素的影响,因而容易出现连接故障。
可以理解的是,除了上述MBMU与SBMU以外,换电站中也会配置一种或多种BMU。该换电站中多种BMU之间,和/或,换电站中的BMU与车辆中的BMU之间也相互连接,因而,在无线连接方式下,除了上述MBMU与SBMU容易出现连接故障 以外,换电站中多种BMU之间,和/或,换电站中的BMU与车辆中的BMU之间也较为容易出现连接故障。
鉴于此,本申请提供一种电池管理设备的无线连接控制方法,其中,该电池管理设备包括但不限于是BMU,该无线连接控制方法应用于电池管理设备中的控制装置,且该控制装置连接于电池管理设备中的无线连接装置。该无线连接控制方法包括:接收连断请求命令,该连断请求命令用于指示电池管理设备与第一设备之间的无线连接或断开,根据该连断请求命令,控制无线连接装置与第一设备无线连接或断开,检测该无线连接装置的连断状态数据,根据该连断状态数据,判断电池管理设备与第一设备之间的无线连接或断开是否正常。通过该技术方案,不需要对电池管理设备的现有硬件进行改动,在电池管理设备中增加无线连接装置,且通过控制装置对该无线连接装置进行控制即可实现电池管理设备与第一设备之间的无线连接或断开,其实现方式较为简单且能够兼容现有产品。另外,电池管理设备的控制装置能够对无线连接装置的连断状态数据进行检测,并根据该连断状态数据判断电池管理设备与第一设备之间的无线连接或断开是否正常,有利于实现对电池管理设备与第一设备之间无线连断的有效监控,从而提高电池管理设备与第一设备之间的连接性能。
图1示出了本申请实施例适用的一种车辆1的示意性结构框图。该车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。
如图1所示,在本申请实施例中,车辆1中设置有电池10,该电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源,用于车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
为了便于监测该电池10在车辆1中的运行状态,该电池10中设置有从电池管理单元(SBMU)110。对应于该电池10内部的SBMU 110,车辆1中还设置有主电池管理单元(MBMU)120。
具体地,电池10中可包括至少一个电池单体(或者也可称之为电芯)11,该至少一个电池单体11被封装在同一个箱体中,以形成一个电池包。除了该至少一个电池单体11以外,该箱体中还可设置有SBMU 110以及其它相关部件,该SBMU 110用于检测电池10中每个电池单体11的相关状态参数,例如,电压、电流、温度、荷电状态(State of Charge,SOC),健康状态(State of Health,SOH)等等。
在电池10以外,车辆1中设置有与SBMU 110能够相互通信的MBMU 120。SBMU 110能够将检测到的电池10的相关参数传输至MBMU 120,MBMU 120能够对其接收到的数据进行计算分析,且向SBMU 110传输信号以控制和管理该SBMU 110。
另外,除了电池10以及MBMU以外,该车辆1中还设置有车辆控制器130,例如:整车控制器(Vehicle Control Unit,VCU)或者域控制器(Domain Control Unit,DCU)等,该MBMU 120除了能够与SBMU 110相互通信以外,还能够与车辆控制器130相互通信,具体地,该MBMU 120能够将车辆1中电池10的相关数据传输至车辆 控制器130。
可选地,如图1所示,在一些实施方式中,车辆1中可设置有多个电池10,且该每个电池10中均对应设置有SBMU 110,换言之,车辆1中可设置有多个SBMU 110,MBMU 120可同时与多个SBMU 110建立通信连接,以实现对多个SBMU 110的控制管理。
需要说明的是,上文图1仅作为示例,说明车辆1可设置有由车辆控制器130、MBMU 120以及多个电池10形成的通信系统。在另一些实施方式中,车辆1可以设置有仅由车辆控制器130以及多个电池10形成的通信系统。例如,多个电池10中每个电池10内部可设置有对电池单体11进行监测的监测单元,该监测单元可与车辆控制器130建立通信连接,以使得车辆控制器130实现对多个电池10的控制管理。
可选地,本申请实施例中的电池10除了可采用传统的电芯至电池包(Cell To Pack,CTP)的架构以外,还可以采用电芯至底盘(Cell To Chassis,CTC)架构,将电池10中的至少一个电芯集成到车辆的底盘中。在该情况下,车辆1中的车辆控制器130可为域控制器,直接对电池10乃至电池10中的至少一个电芯进行管理。
图2示出了本申请实施例适用的一种换电站2的示意性结构框图。该换电站2可以为乘用车或者重型卡车等多种不同类型的车辆提供快速更换电池的服务,且该换电站2也可以包括充电仓20,以对车辆中更换下来的电池进行充电。
如图2所示,换电站2的充电仓20内可设置有多个电池10,其中,每个电池10中设置有SBMU 110。为了便于对该多个SBMU 110进行控制管理,充电仓20内还设置有至少一个充电电池管理单元(Charger Battery Manager Unit,CBMU)210。作为示例,充电仓20中的每个CBMU 210能够与预设数量的SBMU 110建立通信连接,且对该SBMU 110进行控制管理。在充电仓20内可容纳的电池10数量较多时,该充电仓20内可设置多个CBMU 210,每个CBMU 210与预设数量的SBMU 110建立通信,以保证对每个SBMU 110及其所在的电池10进行有效监控和管理。
继续参见图2,在换电站2中,除了设置充电仓20对多个电池10进行充电以外,还设置有站控系统21,该站控系统21可以控制换电站2中的多个功能装置以执行对应的功能。例如,换电站2中包括电池装取设备(图2中未示出),该站控系统21可以控制该电池装取设备从进入换电站2中的车辆上拆取处于亏电状态的电池10,并将换电站内电量充足的电池10安装至车辆上。
具体地,在本申请实施例中,该站控系统21可以与充电仓20中的至少一个CBMU 210建立通信连接,从而便于站控系统21通过该CBMU 210对充电仓20中的多个电池10进行控制管理。
如图2所示,在换电站2中,除了CBMU 210以外,还设置有换电电池管理单元(Transmission Battery Manager Unit,TBMU)220。当图1中所示的车辆1进入换电站2之后,该TBMU 220能够与车辆1中的MBMU 120建立通信连接,从而便于TBMU 220与MBMU 120实现信息交互,也便于该TBMU 220通过MBMU 120对车辆1上的电池10实现监控管理。
进一步地,为了便于站控系统21监控管理车辆上的电池10,该TBMU 220还 与站控系统21建立通信连接。因此,站控系统21可以通过该TBMU 220以及MBMU 120对车辆1上的电池10实现监控管理。
可选地,在上述图1和图2所示的车辆1以及换电站2中,不同类型的BMU可以通过无线方式建立通信连接,以降低不同类型的BMU之间连接安装的复杂度。另外,在换电站2中,为了保障站控系统21与其它部件的通信可靠性,该站控系统可以通过有线方式与CBMU 210和/或TBMU 220建立通信连接。
图3示出了本申请实施例提供的一种电池管理设备300的示意性结构框图。可选地,该电池管理设备300可以为上文图1和图2中所示的MBMU 120,CBMU 210、TBMU 220或者车辆控制器130。
如图3所示,该电池管理设备300包括:相互连接的控制装置310和无线连接装置320。具体地,该控制装置310可以向无线连接装置320发送命令,以控制无线连接装置320根据该命令执行相应的动作。作为示例而非限定,该控制装置310可以为电池管理设备300中的控制芯片,该无线连接装置320可以为电池管理设备300中的无线通信芯片,二者可通过通信总线相互连接。
图4示出了本申请实施例提供的一种电池管理设备300的无线连接控制方法400的示意性流程框图。该无线连接控制方法400应用于上文图3中所示的电池管理设备300中的控制装置310,换言之,本申请实施例中的无线连接控制方法400的执行主体为上述控制装置310,该控制装置310连接于电池管理设备300中的无线连接装置320。
如图4所示,在本申请实施例中,该电池管理设备300的无线连接控制方法400包括以下步骤。
S410:获取连断请求命令,该连断请求命令用于指示电池管理设备与第一设备之间的无线连接或断开。
S420:根据该连断请求命令,控制无线连接装置与第一设备无线连接或断开。
S430:检测无线连接装置的连断状态数据。
S440:根据该连断状态数据,判断电池管理设备与第一设备之间的无线连接或断开是否正常。
具体地,上述步骤S410至步骤S440的执行主体可为上文图3中所示的电池管理设备300中的控制装置310。
具体地,在步骤S410和步骤S420中,控制装置310接收用于指示电池管理设备300与第一设备无线连接或断开的连断请求命令。根据该连断请求命令,控制装置310控制无线连接装置320实现与第一设备的无线连接或断开,从而实现电池管理设备300与第一设备的无线连接或断开。
可选地,该第一设备可以为被配置为与电池管理设备300进行无线连断的任意设备。在一些实施方式中,该第一设备与电池管理设备300为两种不同类型的电池管理设备。
作为一种示例,在电池管理设备300为用电设备(例如上述车辆1)中的MBMU 120或主控制器(例如上述车辆1中的车辆控制器130)的情况下,该第一设备包括但不限于是用电设备(例如上述车辆1)中的SBMU 110。
作为另一种示例,在电池管理设备300为换电设备(例如上述换电站2)中的CBMU 210的情况下,该第一设备包括但不限于是换电设备(例如上述换电站2)中的SBMU 110。
作为第三种示例,在电池管理设备300为换电设备(例如上述换电站2)中的TBMU 220的情况下,该第一设备包括但不限于是用电设备(例如上述车辆1)中的MBMU 120。
通过该几种示例的实施方式,电池管理设备300可以为多种类型,且应用于不同场景下。通过该方案,可以实现TBMU 220与MBMU 120之间较为稳定的无线连断,和/或,实现CBMU 210/MBMU 120与SBMU 110之间较为稳定的无线连断,从而简化用电设备和/或换电设备中多种电池管理设备300之间的连接方式,提高整个系统的连接稳定性以及鲁棒性。
可选地,在一些实施方式中,电池管理设备300中的控制装置310可以从电池管理设备300的外部设备接收连断请求命令,以控制无线连接装置320与第一设备之间的无线连接或断开。
例如,在电池管理设备300为TBMU 220且第一设备为MBMU 120的情况下,当车辆1在换电站2的站外时,TBMU 220接收站控系统21发送的第一连断请求命令,该TBMU 220能够基于该第一连断请求命令实现与车辆1中的MBMU 120的无线连接或断开。
又例如,在电池管理设备300为MBMU 120且第一设备为SBMU 110的情况下,当车辆1驶入换电站2后,TBMU 220接收站控系统21发送的第二连断请求命令后,将该第二连断请求命令再发送至车辆1中的MBMU 120,该MBMU 120能够基于该第二连断请求命令实现与电池10中的SBMU 110的无线连接或断开。
再例如,在电池管理设备300为CBMU 210且第一设备为SBMU 110的情况下,在换电站2中,换电仓20中的CBMU 210接收站控系统21发送的第三连断请求命令,该CBMU 210能够基于该第三连断请求命令实现与电池10中的SBMU 110的无线连接或断开。
或者,在另一些实施方式中,电池管理设备300中的控制装置310也可以基于其获取到的相关信息生成该连断请求命令,或者,该控制装置310还可以从电池管理设备300中的其它装置获取该连断请求命令,本申请实施例对该控制装置310获取连断请求命令的具体方式不做限定。
在步骤S430和步骤S440中,在控制装置310根据连断请求命令,控制无线连接装置320与第一设备无线连接或断开之后,控制装置310还可进一步检测无线连接装置320的连断状态数据,该连断状态数据能够用于表征无线连接装置320与第一设备之间的无线连断状态。因此,控制装置310能够根据该连断状态数据,判断无线连接装置320与第一设备之间的无线连接或断开是否正常,从而判断电池管理设备300与第一设备之间的无线连接或断开是否正常。
通过本申请实施例的技术方案,不需要对电池管理设备300的现有硬件进行改动,在电池管理设备300中增加无线连接装置320,且通过控制装置310对该无线连接 装置320进行控制即可实现电池管理设备300与第一设备之间的无线连接,该无线连接方式的实现较为简单,能够兼容现有产品。另外,电池管理设备300的控制装置310能够对无线连接装置320的连断状态数据进行检测,并根据该连断状态数据判断电池管理设备300与第一设备之间的无线连接或断开是否正常,有利于实现对电池管理设备300与第一设备之间无线连断的有效监控,从而提高电池管理设备300与第一设备之间的连接性能。
图5示出了本申请实施例提供的一种电池管理设备300的无线连接控制方法500的示意性流程框图。该无线连接控制方法500可同样应用于上文图3中所示的电池管理设备300中的控制装置310。
如图5所示,在本申请实施例中,该电池管理设备的无线连接控制方法500包括以下步骤。
S510:获取连断请求命令,该连断请求命令用于指示电池管理设备与第一设备之间的无线连接或断开。
S521:将基于第一通信协议的连断请求命令转换为基于第二通信协议的连断请求数据。
S522:向无线连接装置发送该连断请求数据,以使得无线连接装置根据该连断请求数据与第一设备无线连接或断开。
S530:检测无线连接装置的连断状态数据。
S540:根据连断状态数据和连断请求数据,判断电池管理设备与第一设备之间的无线连接或断开是否正常。
具体地,上述步骤S510至步骤S540的执行主体可为上文图3中所示的电池管理设备300中的控制装置310。
在本申请实施例中,步骤S510和步骤S530的具体实施方案可以参见上文图4中步骤S410和步骤S430的相关描述。
步骤S521和步骤S522可以为上文图4中步骤S420的一种实现方式。步骤S540可以为上文图4中步骤S440的一种实现方式。
具体地,在该步骤S521和步骤S522中,控制装置310可基于第一通信协议连接于电池管理设备300的外部设备,且通过第二通信协议连接于无线连接装置320,其中,该第一通信协议与第二通信协议为不同类型的两种通信协议。在该情况下,控制装置310可接收外部设备基于第一通信协议发送的第一数据类型的连断请求命令,且将该第一数据类型的连断请求命令转换为基于第二通信协议的第二数据类型的连断请求数据,从而便于该第二数据类型的连断请求数据能够顺利传输至无线连接装置320。
通过该实施方式的技术方案,控制装置310可以接收基于第一通信协议的连断请求命令,且向无线连接装置320发送基于第二通信协议的连断请求数据。该控制装置310与外部设备可以基于第一通信协议相互通信,而控制装置310与无线连接装置320之间可以基于第二通信协议相互通信。因此,该控制装置310可以针对不同的装置或设备使用不同的通信协议,优化控制装置310与其它设备之间的通信性能,提升电池管理设备300整体的通信性能。
具体地,为了使得无线连接装置320能够根据该连断请求数据实现与第一设备的无线连接或断开,该连断请求数据可包括:用于指示与第一设备连接或断开的请求类型的请求数据以及用于指示该第一设备的信息数据。其中,该用于指示该第一设备的信息数据包括但不限于是:第一设备的位置、第一设备的媒体存取控制位址(Media Access Control Address,MAC)等等。
作为示例而非限定,上述连断请求命令为基于控制器局域网络(Controller Area Network,CAN)协议的请求命令,和/或,上述连断请求数据为基于串行外设接口(Serial Peripheral Interface,SPI)协议的请求数据。
在该示例中,电池管理设备300中的控制装置310可通过CAN总线连接于外部设备且通过CAN协议接收连断请求命令,因而该控制装置310及其所在的电池管理设备300能够良好兼容现有电池管理体系。另外,控制装置310通过高速、操作简单的SPI总线连接于无线连接装置320,且通过SPI协议向无线连接装置320发送连断请求数据,从而能够提高控制装置310与无线连接装置320之间的通信性能。
继续参见图5所示,可选地,在步骤S540中,控制装置310可以根据检测到的无线连接装置320的连断状态数据和根据连断请求命令转换得到的连断请求数据,判断电池管理设备与第一设备之间的无线连接或断开是否正常。
具体地,在该实施方式中,连断状态数据能够用于指示无线连接装置320与第一设备之间的连断状态,连断请求数据能够用于指示无线连接装置320与第一设备之间的连断请求。根据该连断状态数据和连断请求数据可以判断无线连接装置320与第一设备之间的无线连接或断开是否正常,即可以判断无线连接装置320所在的电池管理设备300与第一设备之间的无线连接或断开是否正常。
相比于仅根据无线连接装置320的连断状态数据判断电池管理设备300与第一设备之间的无线连接或断开是否正常的技术方案,通过本实施方式的技术方案,综合连断状态数据和连断请求数据两种数据,判断无线连接装置320及其所在的电池管理设备300与第一设备之间的无线连接或断开是否正常,能够进一步提高判断的准确性。因此,通过本实施方式的技术方案,能够更为有效的实现对电池管理设备300与第一设备之间的无线连断的监控,从而提高电池管理设备300与第一设备之间的连接性能。
图6示出了本申请实施例提供的一种电池管理设备300的无线连接控制方法600的示意性流程框图。该无线连接控制方法600可同样应用于上文图3中所示的电池管理设备300中的控制装置310。
如图6所示,在本申请实施例中,该电池管理设备的无线连接控制方法600包括以下步骤。
S610:获取连断请求命令,该连断请求命令用于指示电池管理设备与第一设备之间的无线连接或断开。
S621:将基于第一通信协议的连断请求命令转换为基于第二通信协议的连断请求数据。
S622:向无线连接装置发送连断请求数据,以使得无线连接装置根据该连断请求数据与第一设备无线连接或断开。
S630:检测无线连接装置的连断状态数据。
S641:判断连断状态数据指示的连断状态与连断请求数据指示的连断请求是否一致。
S642:在连断状态数据指示的连断状态与连断请求数据指示的连断请求一致的情况下,确定电池管理设备与第一设备之间的无线连接或断开为正常。
S643:在连断状态数据指示的连断状态与连断请求数据指示的连断请求不一致的情况下,确定电池管理设备与第一设备之间的无线连接或断开为异常。
具体地,上述步骤S610至步骤S643的执行主体可为上文图3中所示的电池管理设备300中的控制装置310。
具体地,在本申请实施例中,步骤S610至步骤S630的具体技术方案可以参见上文图5所示实施例中步骤S510至步骤S530的相关描述。
另外,本申请实施例中的步骤S641至步骤S643可以为上述步骤S540的一种实现方式。
具体地,在步骤S641中,连断状态数据能够用于指示无线连接装置320与第一设备之间的连断状态,即用于指示无线连接装置320与第一设备的连断状态为相互连接或者相互断开。连断请求数据中可以包括无线连接装置320与第一设备之间的连断请求类型,即外部设备请求无线连接装置320与第一设备相互连接或者相互断开。
在步骤S642中,在连断状态数据指示的连断状态与连断请求数据指示的连断请求一致的情况下,控制装置310可以确定无线连接装置320与第一设备之间的无线连断为正常,即该无线连接装置320所在的电池管理设备300与第一设备之间的无线连断为正常。例如,在连断状态数据指示的连断状态为相互连接,且连断请求数据指示的连断请求也为相互连接的情况下,可以确定无线连接装置320及其所在的电池管理设备300与第一设备之间的无线连接为正常。
对应的,在步骤S643中,在连断状态数据指示的连断状态与连断请求数据指示的连断请求不一致的情况下,控制装置310可以确定无线连接装置320与第一设备之间的无线连断为异常,即该无线连接装置320所在的电池管理设备300与第一设备之间的无线连断为异常。例如,在连断状态数据指示的连断状态为相互断开,但连断请求数据指示的连断请求为相互连接的情况下,可以确定无线连接装置320及其所在的电池管理设备300与第一设备之间的无线连接为异常。
在本申请实施例的技术方案中,通过判断连断状态数据指示的连断状态与连断请求数据指示的连断请求是否一致,从而可准确判断电池管理设备与第一设备之间的无线连接或断开是否为正常。该技术方案实施方便且准确度高,不仅能对电池管理设备300与第一设备之间的无线连断实现准确且有效的监控,还能较为方便的通过硬件和/或软件实现于控制装置310中。
可选地,在一些实施方式中,上述连断状态数据被配置为:采用第一数值指示无线连接装置320与第一设备之间的连断状态为连接,采用第二数值指示无线连接装置320与第一设备之间的连断状态为断开。上述连断请求数据被配置为:采用第一数值指示无线连接装置320与第一设备之间的连断请求为连接,采用第二数值指示无线连接装 置320与第一设备之间的连断请求为断开。
在该实施方式下,上述图6中的步骤S641可以包括:判断连断状态数据与连断请求数据是否一致。进一步地,上述步骤S642可以包括:在连断状态数据与连断请求数据一致的情况下,确定电池管理设备与第一设备之间的无线连接为正常。上述步骤S643可以包括:在连断状态数据与连断请求数据不一致的情况下,确定电池管理设备与第一设备之间的无线连接为异常。
作为一种示例,第一数值和第二数值可以分别为0和1,其仅需占用较小的存储空间,即可有效标识不同的连断状态和连断请求。当然,在其它示例中,第一数值和第二数值还可以分别为其它数值,本申请实施例对此不做具体限定。
通过该实施方式的技术方案,连断状态数据和连断请求数据均用不同数值表示不同状态和不同请求,因而,可以直接通过判断连断状态数据与连断请求数据是否一致,从而准确判断电池管理设备与第一设备之间的无线连接或断开是否为正常。该实现方式最为便捷,且能够降低连断状态数据与连断请求数据在控制装置310中所需占用的存储空间,提高控制装置310对该连断状态数据与连断请求数据的处理效率。
图7示出了本申请实施例提供的一种电池管理设备300的无线连接控制方法700的示意性流程框图。该无线连接控制方法700可同样应用于上文图3中所示的电池管理设备300中的控制装置310。
如图7所示,在本申请实施例中,该电池管理设备的无线连接控制方法700包括上文图4所示实施例中的步骤S410至S440,在此基础上,在确定电池管理设备与第一设备之间的无线连接或断开为异常的情况下,该无线连接控制方法700还可以包括以下步骤。
S750:根据连断请求命令,控制无线连接装置至少一次与第一设备无线连接或断开。
S760:至少一次检测无线连接装置的连断状态数据,直至确定电池管理设备与第一设备之间的无线连接或断开正常。
具体地,上述步骤S750至步骤S760的执行主体可为上文图3中所示的电池管理设备300中的控制装置310。
具体地,在本申请实施例中,在控制装置310检测到无线连接装置320与第一设备之间的无线连断为异常,即确定电池管理设备300与第一设备之间的无线连断为异常的情况下,控制装置310可以继续根据连断请求命令,控制无线连接装置320至少一次重新与第一设备无线连接或断开,以修复该电池管理设备300与第一设备之间的无线连断异常。
具体地,在无线连接装置320每次执行与第一设备的无线连接或断开后,控制装置310可以重新检测无线连接装置320的连断状态数据,且根据该新检测到的连断状态数据判断无线连接装置320及其所在的电池管理设备300与第一设备之间无线连断是否正常。
通过控制无线连接装置320至少一次重新与第一设备无线连接或断开,且至少一次检测无线连接装置320的连断状态数据,直至确定无线连接装置320及其所在的电 池管理设备300与第一设备之间无线连断正常,即该电池管理设备300与第一设备之间的无线连断异常得到修复,控制装置310停止控制无线连接装置320继续与第一设备无线连接或断开。
通过本申请实施例的技术方案,在电池管理设备300与第一设备之间的无线连断存在异常的情况下,控制装置310能够对该异常进行修复,以使得电池管理设备300与第一设备之间的无线连断恢复到正常状态,从而进一步提高电池管理设备300与第一设备之间的连接可靠性。
图8示出了本申请实施例提供的一种电池管理设备300的无线连接控制方法800的示意性流程框图。该无线连接控制方法800可同样应用于上文图3中所示的电池管理设备300中的控制装置310。
如图8所示,在本申请实施例中,该电池管理设备的无线连接控制方法800包括上文图6所示实施例中的步骤S610至S643,在此基础上,在步骤S643之后,即在确定电池管理设备300与第一设备之间的无线连接或断开为异常的情况下,该无线连接控制方法800还可以包括以下步骤。
S850:向无线连接装置至少一次发送连断请求数据,以使得该无线连接装置至少一次根据该连断请求数据与第一设备无线连接或断开。
S860:至少一次检测无线连接装置的连断状态数据,直至连断状态数据指示的连断状态与连断请求数据指示的连断请求一致。
具体地,上述步骤S850至步骤S860的执行主体可为上文图3中所示的电池管理设备300中的控制装置310。
可选地,该步骤S850可以为上文图7中步骤S750的一种实现方式。该步骤S860可以为上文图7中步骤S860的一种实现方式。
具体地,在本申请实施例中,控制装置310可以将对连断请求命令转换得到连断请求数据至少一次的发送至无线连接装置320,以控制该无线连接装置320至少一次根据该连断请求数据与第一设备无线连接或断开。
进一步地,控制装置310向无线连接装置320发送一次连断请求数据后,该控制装置310可以重新检测无线连接装置320的连断状态数据,并判断该连断状态数据指示的连断状态与连断请求数据指示的连断请求是否一致,从而判断无线连接装置320及其所在的电池管理设备300与第一设备之间的无线连接或断开是否正常。
在控制装置310至少一次向无线连接装置320发送连断请求数据,且至少一次检测无线连接装置320的连断状态数据后,直至确定连断状态数据指示的连断状态与连断请求数据指示的连断请求一致,可以确定无线连接装置320及其所在的电池管理设备300与第一设备之间无线连断正常,即该电池管理设备300与第一设备之间的无线连断异常得到修复,控制装置310停止继续向无线连接装置320发送连断请求数据。
通过本申请实施例的技术方案,控制装置310能够有效控制无线连接装置320与第一设备的无线连断,且控制装置310对于无线连接装置320及其所在电池管理设备300与第一设备之间的无线连断异常的判断准确度也较高,能够有效且快速的对该异常进行修复,以使得电池管理设备300与第一设备之间的无线连断快速且可靠的恢复到正 常状态。
图9示出了本申请实施例提供的一种电池管理设备300的无线连接控制方法900的示意性流程框图。该无线连接控制方法900可同样应用于上文图3中所示的电池管理设备300中的控制装置310。可选地,该控制装置310可以包括非易失性存储(Non-Volatile Memory,NVM)模块。
如图9所示,在本申请实施例中,该电池管理设备的无线连接控制方法900可以包括上文图8所示实施例中的步骤S610至S643以及步骤S850至S860,在此基础上,在步骤S621之后,该无线连接控制方法900还可以包括以下步骤。
S910:将连断请求数据存储于非易失性存储(Non-Volatile Memory,NVM)模块。
具体地,上述步骤S910的执行主体可为上文图3中所示的电池管理设备300中的控制装置310。
具体地,在本申请实施例中,NVM模块为一种掉电后,其中存储的数据不会丢失的存储模块。该NVM模块可以位于控制装置310的内部,便于控制装置310对该NVM模块中的数据进行读写。或者,该NVM模块也可以位于控制装置310的外部,且电连接于该控制装置310。
为了便于后续根据该连断请求数据进行电池管理设备300与第一设备的无线连断异常判断,在控制装置310接收连断请求命令,并将该连断请求命令转换为连断请求数据后,该控制装置310用于同步将该连断请求数据存储于NVM模块中。通过该技术方案,可以防止掉电等外部原因造成连断请求数据丢失,保障后续对电池管理设备300与第一设备的无线连断异常判断的进行,从而进一步提升电池管理设备300与第一设备之间的连接性能。
基于该NVM模块,在步骤S643之后,即确定电池管理设备300与第一设备之间的无线连接或断开为异常之后,该无线连接控制方法900还可以包括以下步骤。
S920:从NVM模块获取连断请求数据。
具体地,上述步骤S920的执行主体可为上文图3中所示的电池管理设备300中的控制装置310。
在步骤S920之后,控制装置310再执行步骤S850至步骤S860。
因此,在该实施方式中,NVM模块中的连断请求数据还可以用于保障后续对电池管理设备300与第一设备的无线连断异常的修复,以更进一步提升电池管理设备300与第一设备之间的连接性能。
图10示出了本申请实施例提供的一种电池管理设备300的无线连接控制方法1000的示意性流程框图。该无线连接控制方法900可同样应用于上文图3中所示的电池管理设备300中的控制装置310。
如图10所示,在本申请实施例中,该电池管理设备的无线连接控制方法1000可以包括以下步骤。
S1010:获取连断请求命令,该连断请求命令用于指示电池管理设备与第一设备之间的无线连接或断开。
S1021:将基于第一通信协议的连断请求命令转换为基于第二通信协议的连断请求数据。
S1022:向无线连接装置发送连断请求数据,以使得该无线连接装置根据连断请求数据与第一设备无线连接或断开。
S1031:在发送连断请求数据之后的第一预设时间段内检测无线连接装置的连断状态数据。
S1032:每间隔第二预设时间段检测无线连接装置的连断状态数据。
S1040:根据连断状态数据和连断请求数据,判断电池管理设备与第一设备之间的无线连接或断开是否正常。
具体地,上述步骤S1010至步骤S1040的执行主体可为上文图3中所示的电池管理设备300中的控制装置310。
在本申请实施例中,步骤S1010、S1021、S1022和步骤S1040的具体实施方案可以参见上文图5中步骤S510、S521、S522和步骤S540的相关描述。
步骤S1031和步骤S1032可以为上文图5中步骤S530的一种实现方式。
具体地,在步骤S1031中,第一预设时间段大于或等于连断请求数据在控制装置310与无线连接装置320之间的传输时间。该传输时间受控于控制装置310与无线连接装置320之间的连接方式。作为示例,在控制装置310与无线连接装置320通过SPI总线相互连接时,则数据在二者之间的传输时间大约在5ms左右。鉴于此,在本申请实施例中,第一预设时间段可以为5ms,控制装置310在向无线连接装置320发送连断请求数据之后的5ms内,检测无线连接装置320的连断状态数据。
通过该技术方案,控制装置310能够有效检测无线连接装置320最新的连断状态数据,保证数据的有效性和可靠性。根据该有效且可靠的连断状态数据,可以提升控制装置310对于无线连接装置320与第一设备之间的无线连断异常的判断的有效性及可靠性。
具体地,在步骤S1032中,控制装置310还可以每间隔第二预设时间段检测无线连接装置320当前的连断状态数据,以实现对无线连接装置320与第一设备之间无线连断的持续监控,保障该无线连接装置320与第一设备之间长期的无线连断的可靠性。
作为一种示例,本申请实施例中第二预设时间段可小于或等于100ms。在其它示例中,该第二预设时间段还可以根据实际情况进行调整,本申请实施例对该第二预设时间段的具体数值不做限定。
可选地,在一些实施方式中,上述控制装置310接收的连断请求命令可以为蓝牙连断命令,对应的,无线连接装置320可以为蓝牙芯片。
在该实施方式中,将无线连接装置320设计为蓝牙芯片,该无线连接装置320可以通过蓝牙协议与第一设备进行相互通信。该无线连接装置320可以具有蓝牙芯片的低功耗、低延时、低成本的特点,因而较为适宜的设置于车辆1和/或换电站2中,实现短距离、低成本的可靠通信。
图11示出了本申请实施例提供的一种电池管理设备300的无线连接控制方法1100的示意性流程框图。该无线连接控制方法1100可同样应用于上文图3中所示的电 池管理设备300中的控制装置310,可选地,该控制装置310可以为控制芯片,或者也可以称之为主芯片。该控制芯片(主芯片)连接于电池管理设备300中的无线通信芯片,例如:蓝牙芯片。
如图11所示,在本申请实施例中,该无线连接控制方法1100可以包括以下步骤。
S1110:接收CAN传输的蓝牙连断请求命令。
S1120:将蓝牙连断命令的报文转换为连断请求数据,该连断请求数据包括:待连接设备的蓝牙MAC,位置,连断请求。
S1130:调用连断命令处理函数,拷贝连断请求数据至SPI可访问结构体以及NVM中,并做数据校准。
S1140:调用SPI传输数据状态机,拷贝连断请求数据至SPI需传输的数组中。
S1150:调用SPI协议向蓝牙芯片传输连断请求数据。
S1160:5ms后通过SPI回读蓝牙芯片的蓝牙连断状态。
S1170:判断连断状态与连断请求数据是否相同。
S1180:从NVM中读取连断请求数据,重新调用连断命令处理函数。
具体地,上述步骤S1110至S1180的执行主体可为上文图3中所示的电池管理设备300中的控制装置310。
具体地,对于步骤S1110,在车辆的换电流程中,或者在车辆的运行过程中,电池管理设备300中的主芯片可以通过CAN总线连接于外部设备,该主芯片可以接收外部设备通过CAN总线传输的蓝牙连断请求命令,该蓝牙连断请求命令可以用于指示电池管理设备300与待连接设备(例如上文的第一设备)的蓝牙连断。
对于步骤S1120,主芯片将蓝牙连断命令的报文转换为连断请求数据,该连断请求数据包括:蓝牙MAC,待连接设备的位置,连断请求。
具体地,通过CAN总线传输的蓝牙连断命令可以为报文数据,主芯片能够将该报文数据转换为连断请求数据,该连断请求数据可以满足SPI协议。在该连断请求数据中,可以包括待连接设备的蓝牙Mac地址、位置、连断请求等信息,以便于主芯片将该连断请求数据传输至蓝牙芯片后,该蓝牙芯片能够根据该蓝牙Mac地址以及位置等信息确定待连接设备,且根据连断请求建立与待连接设备的蓝牙连断。
对于步骤S1130,主芯片可包括主程序,该主程序可以调用连断命令处理函数,该连断命令处理函数可以用于将连断请求数据同步拷贝至SPI可访问结构体以及NVM中。在拷贝过程中,可以对连断请求数据进行校准,即每拷贝一项数据,即更新该数据对应的标志位,保证连断请求数据全部进行了拷贝。
对于步骤S1140,主芯片还可包括SPI传输数据状态机,主程序可调用该SPI传输数据状态机,该SPI传输数据状态机用于将SPI可访问结构体中的连断请求数据再拷贝至SPI需传输的数组中。
对于步骤S1150,主芯片还可包括:SPI协议层,主芯片中的主程序可调用该SPI协议层,将SPI需传输的数组中的连断请求数据通过SPI传输至蓝牙芯片中。
对于步骤S1160,通过SPI协议传输一次数据时长需5ms。通过SPI协议传输数 据之后,主芯片马上回读蓝牙芯片的状态。例如,主芯片向蓝牙芯片发送连断状态请求信息,蓝牙芯片将其与待连接设备的连断状态发送回主芯片,以使得主芯片回读到蓝牙芯片与待连接设备之间当前的连断状态。
对于步骤S1170,主芯片判断连断状态与连断请求数据是否相同。若是,则表明当前蓝牙芯片与待连接设备之间正常连断,无异常发生。
若否,则执行步骤S1180,主芯片从NVM中读取连断请求数据,重新调用连断命令处理函数,再次拷贝连断请求数据至SPI可访问结构体以及NVM中。然后,重复执行上述步骤S1130至步骤S1170,以重新向蓝牙芯片传输连断请求数据,且回读蓝牙芯片的蓝牙连断状态,直至判断连断状态与连断请求数据相同,以确定当前蓝牙芯片与待连接设备之间正常连断,无异常发生。
上文结合图4至图11说明了本申请提供的电池管理设备的无线连接控制方法实施例,下面,结合图12和图13,说明本申请提供的电池管理设备的无线连接控制装置实施例。应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图12示出了本申请实施例提供的一种电池管理设备的无线连接控制装置1200的示意性结构框图。该无线连接控制装置1200可以连接于电池管理设备中的无线连接装置,例如,该无线连接控制装置1200可以为图3中所示的控制装置310,其可以连接于无线连接装置320。
如图12所示,该无线连接控制装置1200包括:获取模块1210和控制模块1220。其中,获取模块1210用于获取连断请求命令,该连断请求命令用于指示电池管理设备与第一设备之间的无线连接或断开。控制模块1220用于根据连断请求命令,控制无线连接装置与第一设备无线连接或断开,检测无线连接装置的连断状态数据,并根据连断状态数据,判断电池管理设备与第一设备之间的无线连接或断开是否正常。
在一些可能的实施方式中,如图12所示,该无线连接控制装置1200还可包括:发送模块1230。在该实施方式中,控制模块1220用于:将基于第一通信协议的连断请求命令转换为基于第二通信协议的连断请求数据,其中,第一通信协议与第二通信协议为不同类型的两种通信协议。发送模块1230用于:向无线连接装置发送连断请求数据,以使得无线连接装置根据连断请求数据与第一设备无线连接或断开。
在一些可能的实施方式中,连断请求命令为基于控制器局域网络(CAN)协议的请求命令,和/或,连断请求数据为基于串行外设接口(SPI)协议的请求数据。
在一些可能的实施方式中,控制模块1220用于:根据连断状态数据和连断请求数据,判断电池管理设备与第一设备之间的无线连接或断开是否正常。
在一些可能的实施方式中,控制模块1220用于:判断连断状态数据指示的连断状态与连断请求数据指示的连断请求是否一致;在连断状态数据指示的连断状态与连断请求数据指示的连断请求一致的情况下,确定电池管理设备与第一设备之间的无线连接或断开为正常;在连断状态数据指示的连断状态与连断请求数据指示的连断请求不一致的情况下,确定电池管理设备与第一设备之间的无线连接或断开为异常。
在一些可能的实施方式中,在确定电池管理设备与第一设备之间的无线连接或 断开为异常的情况下,控制模块1220还用于:根据连断请求命令,控制无线连接装置至少一次与第一设备无线连接或断开;至少一次检测无线连接装置的连断状态数据,直至确定电池管理设备与第一设备之间的无线连接或断开正常。
在一些可能的实施方式中,控制模块1220用于:通过发送模块1230向无线连接装置至少一次发送根据连断请求命令转换得到的连断请求数据,以使得无线连接装置至少一次根据连断请求数据与第一设备无线连接或断开;至少一次检测无线连接装置的连断状态数据,直至连断状态数据指示的连断状态与连断请求数据指示的连断请求一致。
在一些可能的实施方式中,无线连接控制装置1200还包括非易失性存储(NVM)模块,控制模块1220还用于:将连断请求数据存储于该NVM模块。
在一些可能的实施方式中,控制模块1220用于:在发送连断请求数据之后的第一预设时间段内检测无线连接装置的连断状态数据,第一预设时间段大于或等于连断请求数据在控制装置与无线连接装置之间的传输时间。
在一些可能的实施方式中,控制模块1220用于:每间隔第二预设时间段检测无线连接装置的连断状态数据,第二预设时间段小于或等于100ms。
在一些可能的实施方式中,连断请求命令为蓝牙连断命令,无线连接装置为蓝牙芯片。
在一些可能的实施方式中,电池管理设备为车辆中的主电池管理设备MBMU,第一设备为车辆中的从电池管理设备(SBMU);或,电池管理设备为换电站中的充电电池管理设备(CBMU),第一设备为换电站中的从电池管理设备(SBMU);或,电池管理设备为换电站中的换电电池管理设备(TBMU),第一设备为车辆中的主电池管理设备(MBMU)。
图13示出了本申请实施例提供的一种电池管理设备的无线连接控制装置1300的示意性结构框图。
如图13所示,该无线连接控制装置1300包括:处理器1310和存储器1320,其中,存储器1320用于存储程序,处理器1310用于从存储器中调用并运行程序以执行上述任一实施例中的无线连接控制方法。
图14示出了本申请实施例提供的一种电池管理设备1400的示意性结构框图。
如图14所示,该电池管理设备1400包括:无线连接装置1410以及上述无线连接控制装置1200或无线连接控制装置1300或控制装置310。
其中,无线连接控制装置1200/1300连接于无线连接装置1410,无线连接控制装置1200/1300/310用于控制无线连接装置1410与第一设备无线连接或断开,以实现电池管理设备与第一设备之间的无线连接或断开。
可选地,本申请实施例中,无线连接装置1410可以为上文实施例中的无线连接装置320。
图15示出了本申请实施例提供的一种电子设备1500的示意性结构框图。
如图15所示,该电子设备1500包括:上述电池管理设备1400。
可选地,该电子设备1500可以为用电设备,例如该用电设备可以为上述图1中 所示的车辆1。或者,该电子设备1500还可以换电设备,例如该换电设备可以为上述图2中所示的换电站2。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (28)

  1. 一种电池管理设备的无线连接控制方法,其特征在于,所述无线连接控制方法应用于所述电池管理设备中的控制装置,所述控制装置连接于所述电池管理设备中的无线连接装置,所述无线连接控制方法包括:
    获取连断请求命令,所述连断请求命令用于指示所述电池管理设备与第一设备之间的无线连接或断开;
    根据所述连断请求命令,控制所述无线连接装置与所述第一设备无线连接或断开;
    检测所述无线连接装置的连断状态数据;
    根据所述连断状态数据,判断所述电池管理设备与所述第一设备之间的无线连接或断开是否正常。
  2. 根据权利要求1所述的无线连接控制方法,其特征在于,所述根据所述连断请求命令,控制所述无线连接装置与所述第一设备无线连接或断开,包括:
    将基于第一通信协议的所述连断请求命令转换为基于第二通信协议的连断请求数据,其中,所述第一通信协议与所述第二通信协议不同;
    向所述无线连接装置发送所述连断请求数据,以使得所述无线连接装置根据所述连断请求数据与所述第一设备无线连接或断开。
  3. 根据权利要求2所述的无线连接控制方法,其特征在于,所述连断请求命令为基于控制器局域网络CAN协议的请求命令,和/或,所述连断请求数据为基于串行外设接口SPI协议的请求数据。
  4. 根据权利要求2或3所述的无线连接控制方法,其特征在于,所述根据所述连断状态数据,判断所述电池管理设备与所述第一设备之间的无线连接或断开是否正常,包括:
    根据所述连断状态数据和所述连断请求数据,判断所述电池管理设备与所述第一设备之间的无线连接或断开是否正常。
  5. 根据权利要求4所述的无线连接控制方法,其特征在于,所述根据所述连断状态数据和所述连断请求数据,判断所述电池管理设备与所述第一设备之间的无线连接或断开是否正常,包括:
    判断所述连断状态数据指示的连断状态与所述连断请求数据指示的连断请求是否一致;
    在所述连断状态数据指示的连断状态与所述连断请求数据指示的连断请求一致的情况下,确定所述电池管理设备与所述第一设备之间的无线连接或断开为正常;
    在所述连断状态数据指示的连断状态与所述连断请求数据指示的连断请求不一致的情况下,确定所述电池管理设备与所述第一设备之间的无线连接或断开为异常。
  6. 根据权利要求1至5中任一项所述的无线连接控制方法,其特征在于,在确定所述电池管理设备与所述第一设备之间的无线连接或断开为异常的情况下,所述无线连接控制方法还包括:
    根据所述连断请求命令,控制所述无线连接装置至少一次与所述第一设备无线连接或断开;
    至少一次检测所述无线连接装置的连断状态数据,直至确定所述电池管理设备与所述第一设备之间的无线连接或断开正常。
  7. 根据权利要求6所述的无线连接控制方法,其特征在于,所述根据所述连断请求命令,控制所述无线连接装置至少一次与所述第一设备无线连接或断开,包括:
    向所述无线连接装置至少一次发送根据所述连断请求命令转换得到的连断请求数据,以使得所述无线连接装置至少一次根据所述连断请求数据与所述第一设备无线连接或断开;
    所述至少一次检测所述无线连接装置的连断状态数据,直至确定所述电池管理设备与所述第一设备之间的无线连接或断开正常,包括:
    至少一次检测所述无线连接装置的连断状态数据,直至所述连断状态数据指示的连断状态与所述连断请求数据指示的连断请求一致。
  8. 根据权利要求2至7中任一项所述的无线连接控制方法,其特征在于,所述控制装置包括非易失性存储模块,在所述将所述连断请求命令转换为连断请求数据之后,所述无线连接控制方法还包括:
    将所述连断请求数据存储于所述非易失性存储模块。
  9. 根据权利要求2至8中任一项所述的无线连接控制方法,其特征在于,所述检测所述无线连接装置的连断状态数据,包括:
    在发送所述连断请求数据之后的第一预设时间段内检测所述无线连接装置的连断状态数据,所述第一预设时间段大于或等于所述连断请求数据在所述控制装置与所述无线连接装置之间的传输时间。
  10. 根据权利要求1至9中任一项所述的无线连接控制方法,其特征在于,所述检测所述无线连接装置的连断状态数据,包括:
    每间隔第二预设时间段检测所述无线连接装置的连断状态数据,所述第二预设时间段小于或等于100ms。
  11. 根据权利要求1至10中任一项所述的无线连接控制方法,其特征在于,所述连断请求命令为蓝牙连断命令,所述无线连接装置为蓝牙芯片。
  12. 根据权利要求1至11中任一项所述的无线连接控制方法,其特征在于,所述电池管理设备为用电设备中的主电池管理单元MBMU,所述第一设备为所述用电设备中的从电池管理单元SBMU;或,
    所述电池管理设备为换电设备中的充电电池管理单元CBMU,所述第一设备为所述换电设备中的从电池管理单元SBMU;或,
    所述电池管理设备为换电设备中的换电电池管理单元TBMU,所述第一设备为用电设备中的主电池管理单元MBMU。
  13. 一种电池管理设备的无线连接控制装置,其特征在于,所述无线连接控制装置连接于所述电池管理设备中的无线连接装置,所述无线连接控制装置包括:
    获取模块,用于获取连断请求命令,所述连断请求命令用于指示所述电池管理设 备与第一设备之间的无线连接或断开;
    控制模块,用于根据所述连断请求命令,控制所述无线连接装置与所述第一设备无线连接或断开;
    检测所述无线连接装置的连断状态数据;
    根据所述连断状态数据,判断所述电池管理设备与所述第一设备之间的无线连接或断开是否正常。
  14. 根据权利要求13所述的无线连接控制装置,其特征在于,所述无线连接控制装置还包括:发送模块;
    所述控制模块用于:将基于第一通信协议的所述连断请求命令转换为基于第二通信协议的连断请求数据,其中,所述第一通信协议与所述第二通信协议不同;
    所述发送模块用于:向所述无线连接装置发送所述连断请求数据,以使得所述无线连接装置根据所述连断请求数据与所述第一设备无线连接或断开。
  15. 根据权利要求14所述的无线连接控制装置,其特征在于,所述连断请求命令为基于控制器局域网络CAN协议的请求命令,和/或,所述连断请求数据为基于串行外设接口SPI协议的请求数据。
  16. 根据权利要求14或15所述的无线连接控制装置,其特征在于,所述控制模块用于:
    根据所述连断状态数据和所述连断请求数据,判断所述电池管理设备与所述第一设备之间的无线连接或断开是否正常。
  17. 根据权利要求16所述的无线连接控制装置,其特征在于,所述控制模块用于:
    判断所述连断状态数据指示的连断状态与所述连断请求数据指示的连断请求是否一致;
    在所述连断状态数据指示的连断状态与所述连断请求数据指示的连断请求一致的情况下,确定所述电池管理设备与所述第一设备之间的无线连接或断开为正常;
    在所述连断状态数据指示的连断状态与所述连断请求数据指示的连断请求不一致的情况下,确定所述电池管理设备与所述第一设备之间的无线连接或断开为异常。
  18. 根据权利要求13至17中任一项所述的无线连接控制装置,其特征在于,在确定所述电池管理设备与所述第一设备之间的无线连接或断开为异常的情况下,所述控制模块还用于:根据所述连断请求命令,控制所述无线连接装置至少一次与所述第一设备无线连接或断开;
    至少一次检测所述无线连接装置的连断状态数据,直至确定所述电池管理设备与所述第一设备之间的无线连接或断开正常。
  19. 根据权利要求18所述的无线连接控制装置,其特征在于,所述控制模块用于:通过发送模块向所述无线连接装置至少一次发送根据所述连断请求命令转换得到的连断请求数据,以使得所述无线连接装置至少一次根据所述连断请求数据与所述第一设备无线连接或断开;
    至少一次检测所述无线连接装置的连断状态数据,直至所述连断状态数据指示的连断状态与所述连断请求数据指示的连断请求一致。
  20. 根据权利要求14至19中任一项所述的无线连接控制装置,其特征在于,所述无线连接控制装置还包括非易失性存储模块,所述控制模块还用于:
    将所述连断请求数据存储于所述非易失性存储模块。
  21. 根据权利要求13至20中任一项所述的无线连接控制装置,其特征在于,所述控制模块用于:
    在发送所述连断请求数据之后的第一预设时间段内检测所述无线连接装置的连断状态数据,所述第一预设时间段大于或等于所述连断请求数据在所述控制装置与所述无线连接装置之间的传输时间。
  22. 根据权利要求13至21中任一项所述的无线连接控制装置,其特征在于,所述控制模块用于:
    每间隔第二预设时间段检测所述无线连接装置的连断状态数据,所述第二预设时间段小于或等于100ms。
  23. 根据权利要求13至22中任一项所述的无线连接控制装置,其特征在于,所述连断请求命令为蓝牙连断命令,所述无线连接装置为蓝牙芯片。
  24. 根据权利要求13至23中任一项所述的无线连接控制装置,其特征在于,所述电池管理设备为用电设备中的主电池管理单元MBMU,所述第一设备为所述用电设备中的从电池管理单元SBMU;或,
    所述电池管理设备为换电设备中的充电电池管理单元CBMU,所述第一设备为所述换电设备中的从电池管理单元SBMU;或,
    所述电池管理设备为换电设备中的换电电池管理单元TBMU,所述第一设备为用电设备中的主电池管理单元MBMU。
  25. 一种电池管理设备的无线连接控制装置,其特征在于,包括:处理器和存储器,所述存储器用于存储程序,所述处理器用于从存储器中调用并运行所述程序以执行权利要求1至12中任一项所述的无线连接控制方法。
  26. 一种电池管理设备,其特征在于,包括:无线连接装置以及,
    如权利要求13至25中任一项所述的无线连接控制装置;
    其中,所述无线连接装置连接于所述无线连接控制装置,所述无线连接控制装置用于控制所述无线连接装置与第一设备无线连接或断开,以实现所述电池管理设备与所述第一设备之间的无线连接或断开。
  27. 一种电子设备,其特征在于,包括:如权利要求26所述的电池管理设备。
  28. 根据权利要求27所述的电子设备,其特征在于,所述电子设备为用电设备或换电设备。
PCT/CN2022/090618 2022-04-29 2022-04-29 电池管理设备的无线连接控制方法、装置和电池管理设备 WO2023206507A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/090618 WO2023206507A1 (zh) 2022-04-29 2022-04-29 电池管理设备的无线连接控制方法、装置和电池管理设备
CN202280032998.6A CN117280564A (zh) 2022-04-29 2022-04-29 电池管理设备的无线连接控制方法、装置和电池管理设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/090618 WO2023206507A1 (zh) 2022-04-29 2022-04-29 电池管理设备的无线连接控制方法、装置和电池管理设备

Publications (1)

Publication Number Publication Date
WO2023206507A1 true WO2023206507A1 (zh) 2023-11-02

Family

ID=88517009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090618 WO2023206507A1 (zh) 2022-04-29 2022-04-29 电池管理设备的无线连接控制方法、装置和电池管理设备

Country Status (2)

Country Link
CN (1) CN117280564A (zh)
WO (1) WO2023206507A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1536776A (zh) * 2003-04-08 2004-10-13 威海蓝牙科技有限公司 蓝牙智能模块
CN112788800A (zh) * 2021-02-01 2021-05-11 深圳市旭联信息技术有限公司 一种基于无线连接的长距离数据传输方法、系统及计算机可读存储介质
CN113491050A (zh) * 2019-02-27 2021-10-08 株式会社杰士汤浅国际 蓄电池监视装置以及蓄电池监视方法
EP3972198A1 (en) * 2019-07-03 2022-03-23 LG Energy Solution Ltd. Battery management system and management method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1536776A (zh) * 2003-04-08 2004-10-13 威海蓝牙科技有限公司 蓝牙智能模块
CN113491050A (zh) * 2019-02-27 2021-10-08 株式会社杰士汤浅国际 蓄电池监视装置以及蓄电池监视方法
EP3972198A1 (en) * 2019-07-03 2022-03-23 LG Energy Solution Ltd. Battery management system and management method
CN112788800A (zh) * 2021-02-01 2021-05-11 深圳市旭联信息技术有限公司 一种基于无线连接的长距离数据传输方法、系统及计算机可读存储介质

Also Published As

Publication number Publication date
CN117280564A (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
EP4383511A2 (en) Wireless battery management apparatus and battery pack including same
WO2022111555A1 (zh) 用于换电电池的容量均衡方法、装置、设备及存储介质
WO2023098808A1 (zh) 电池系统、充电控制方法、装置、电子设备和存储介质
CN115242652A (zh) 一种多簇电池包管理系统的网络拓扑装置
WO2023206507A1 (zh) 电池管理设备的无线连接控制方法、装置和电池管理设备
CN109808498A (zh) 一种基于红外传输的电池系统智能控制方法
KR20200031931A (ko) Bms 인식 시스템 및 방법
WO2023206495A1 (zh) 电池管理设备的无线连接方法、装置和电池管理设备
WO2023206492A1 (zh) 电池管理设备的无线连接方法、装置和电池管理设备
WO2020215583A1 (zh) 一种电池组监控系统及方法
WO2023206503A1 (zh) 电池管理设备的无线连接方法、装置和电池管理设备
WO2023221018A1 (zh) 电力控制的方法和充放电系统
CN108448184A (zh) 一种基于燃料电池的节能管理系统
US11880264B2 (en) BMS recognition system and method
WO2023206471A1 (zh) 电池管理设备的无线连接方法和电池管理设备
WO2023206494A1 (zh) 电池管理设备、用电装置和电池
WO2023206483A1 (zh) 电池管理方法、电池管理单元和用电设备
CN217903207U (zh) 电池管理设备、用电装置和电池
WO2023225975A1 (zh) 热失控检测的方法和装置
WO2023225974A1 (zh) 热失控检测的方法和装置
WO2023206481A9 (zh) 通信的方法和装置
KR20190142152A (ko) 시스템 bms 포함하는 에너지 저장 시스템
CN220615549U (zh) 主控电池管理系统及电动汽车
CN213585237U (zh) 一种改进型车载t-box用车规级电源
WO2023206470A1 (zh) 更换电池的方法、装置以及站控系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280032998.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939354

Country of ref document: EP

Kind code of ref document: A1