WO2023225975A1 - 热失控检测的方法和装置 - Google Patents

热失控检测的方法和装置 Download PDF

Info

Publication number
WO2023225975A1
WO2023225975A1 PCT/CN2022/095429 CN2022095429W WO2023225975A1 WO 2023225975 A1 WO2023225975 A1 WO 2023225975A1 CN 2022095429 W CN2022095429 W CN 2022095429W WO 2023225975 A1 WO2023225975 A1 WO 2023225975A1
Authority
WO
WIPO (PCT)
Prior art keywords
threshold
duration
battery
temperature
electrical equipment
Prior art date
Application number
PCT/CN2022/095429
Other languages
English (en)
French (fr)
Inventor
林本锋
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/095429 priority Critical patent/WO2023225975A1/zh
Priority to CN202280041801.5A priority patent/CN117480665A/zh
Publication of WO2023225975A1 publication Critical patent/WO2023225975A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells

Definitions

  • the present application relates to the field of battery technology, and in particular to a method and device for thermal runaway detection.
  • Embodiments of the present application provide a thermal runaway detection method and device, which can effectively improve the safety performance of battery boxes of electrical equipment.
  • a thermal runaway method includes: the battery management unit BMU determines whether thermal runaway has occurred in the battery box according to the battery parameters of the battery box of the electrical device, and the battery parameters include the battery The temperature of the cell and/or the voltage of the battery cell; if it is determined that the battery box has thermal runaway, the BMU will send fault information to the vehicle controller VCU, and the fault information is used to indicate that the battery box has experienced thermal runaway. Thermal runaway.
  • the BMU determines whether thermal runaway has occurred in the battery box based on the battery parameters of the battery box of the electrical equipment. If it is determined that thermal runaway has occurred, it will indicate to the VCU that the battery box has thermal runaway, so that the VCU can promptly handle the thermal runaway of the electrical equipment loaded with the battery box, avoiding the occurrence of thermal runaway of the battery box, thus effectively Improved the safety performance of the battery box. Furthermore, the BMU determines whether thermal runaway has occurred in the battery box based on the voltage and/or temperature of the battery cell. Since the voltage and/or temperature of the battery cell is one of the parameters that best reflects whether the battery box has experienced thermal runaway, Therefore, it is highly accurate to determine whether thermal runaway has occurred in the battery box based on the voltage and/or temperature of the battery cells.
  • the BMU sending the fault information to the vehicle controller VCU includes: the BMU sending the fault information to the VCU through the first gateway.
  • a gateway is set up between the BMU and the VCU, and the BMU and the VCU communicate through the gateway.
  • the communication protocol used by the BMU when sending fault information to the gateway may be, for example, the communication protocol adopted by the BMU.
  • the communication protocol between the BMU and the gateway is fixed, which is conducive to making the battery box a standard part, so that one battery box can be adapted to different models of different car companies, without having to specially produce corresponding batteries for different car companies or models. boxes, which in turn helps save resources and costs, and is also conducive to the unified management of power swap stations in the power swap scenario.
  • the first gateway is provided on the powered device.
  • the first gateway is set on the electrical equipment. In this way, for the first gateway, the communication protocol for communication between it and the VCU is fixed. When the first gateway sends fault information to the VCU, it is not necessary to determine the communication protocol for communication between it and the VCU, thereby reducing communication time and improving communication efficiency.
  • the first gateway is a power swap controller BSC of the electrical device.
  • the first gateway is set as the BSC of the electrical equipment, that is, the BSC is reused as the first gateway. In this way, the number of components of the electrical equipment can be reduced, thereby reducing the size and cost of the electrical equipment.
  • the method further includes: the BMU receiving the battery parameters sent by the cell monitoring unit CSC.
  • the CSC itself is used to collect the temperature and/or voltage of the battery cell.
  • the battery parameters it collects are the temperature and/or voltage of the battery cell and are close to the actual temperature and actual voltage of the battery cell.
  • the BMU determines whether the battery box has experienced thermal runaway by receiving the battery parameters sent by the CSC, which can greatly improve the accuracy of determining whether the battery box has experienced thermal runaway.
  • the battery parameters include at least one of the following parameters: a minimum voltage among the voltages of the battery cells; a maximum temperature among the temperatures of the battery cells; The temperature rise rate with time; the temperature difference between the highest temperature and the lowest temperature in the temperature of the battery cell.
  • the minimum voltage of the battery cell, the maximum temperature of the battery cell temperature, the temperature increase rate of the battery cell over time and the temperature of the battery cell are determined. At least one of the temperature differences between the highest temperature and the lowest temperature will cause abnormality with the occurrence of thermal runaway. Therefore, it is determined according to at least one of these battery parameters whether the battery box has thermal runaway, and the determined battery The accuracy of determining whether thermal runaway occurs in the box is relatively high.
  • the battery management unit BMU determines whether the battery box has thermal runaway according to the battery parameters of the battery box, including: when the battery parameters meet at least one of the following fault conditions, the The BMU determines that the battery box has experienced thermal runaway;
  • the fault condition includes: the minimum voltage is less than the voltage threshold for a duration above a first duration threshold, and the maximum temperature is greater than the first temperature threshold for a duration above a second duration threshold; the minimum voltage is less than The duration during which the voltage threshold lasts is above the first duration threshold, and the duration during which the temperature rise rate with time is greater than the rise rate threshold is above the second duration threshold; the minimum voltage is less than The voltage threshold lasts for a duration above the first duration threshold, the temperature difference lasts for a duration greater than the second temperature threshold for a duration above the second duration threshold, and the maximum temperature lasts for a duration greater than a third temperature threshold.
  • the duration is above the second duration threshold; the duration during which the temperature rise rate over time is greater than the rise rate threshold is above the second duration threshold, and the maximum temperature is greater than the first
  • the temperature threshold lasts for a duration above the second duration threshold; the temperature rise rate with time is greater than the rise rate threshold for a duration above the second duration threshold, and the temperature difference is greater than the The duration during which the second temperature threshold lasts is above the second duration threshold, and the duration during which the maximum temperature is greater than the third temperature threshold is above the second duration threshold; the battery cell cannot be obtained voltage, and the duration during which the maximum temperature is greater than the first temperature threshold is above the second duration threshold; the voltage of the battery cell cannot be obtained, and the rate of increase of the temperature over time is greater than The duration of the increase rate threshold is above the second duration threshold; the voltage of the battery cell cannot be obtained, and the duration of the temperature difference being greater than the second temperature threshold is within the second duration.
  • the duration for which the maximum temperature is greater than the third temperature threshold is above the second duration threshold; within the target time before the battery parameters are not updated, the rate of increase of the temperature over time The duration that is greater than the increase rate threshold is above the second duration threshold, and the duration that the battery parameter is not updated is above the third duration threshold; within the previous target time when the battery parameter is not updated , the duration during which the maximum temperature is greater than the first temperature threshold is above the second duration threshold, and the duration during which the battery parameters are not updated is above the third duration threshold; when the battery parameters are not updated At the pre-target moment, the duration during which the temperature difference is greater than the second temperature threshold is above the second duration threshold, and the duration during which the maximum temperature is greater than the third temperature threshold is above the second duration threshold. The above, and the duration during which the battery parameter is not updated is above the third duration threshold.
  • the above technical solution determines whether the battery box has thermal runaway after the comparison result lasts for a certain period of time, avoiding that the battery parameters only reach the condition of thermal runaway at a certain moment. In fact, it does not Thermal runaway has occurred, or the battery box has experienced thermal runaway for a certain period of time, but then returned to normal state on its own.
  • the voltage threshold is 1.7V; and/or the first duration threshold is 300ms; and/or the second duration threshold is 3000ms; and/or the third duration threshold is 12s; and/or the first temperature threshold is 78°C; and/or the second temperature threshold is 30°C; and/or the third temperature threshold is 60°C; and/or the increase rate threshold It is 3°C/3s; and/or the target time is 20s.
  • the parameters mentioned in the above technical solution are values obtained based on practice and experience.
  • the accuracy is high, which avoids mistakenly determining that a battery box that has not experienced thermal runaway has thermal runaway. Or the battery box that has experienced thermal runaway may be mistakenly determined as not having thermal runaway, which can greatly improve the accuracy of determining whether the battery box has experienced thermal runaway.
  • the battery box includes multiple battery packs
  • the method further includes: the BMU determining a target battery that has experienced thermal runaway based on the battery parameters of each of the multiple battery packs. package; the BMU outputs the identification information of the target battery pack.
  • the above technical solution in addition to determining whether thermal runaway has occurred in the battery box, also determines the specific battery pack that has experienced thermal runaway and outputs the identification information of the battery pack that has experienced thermal runaway, which facilitates the equipment that receives the identification information (such as host computer, VCU, etc. ) For batteries that have experienced thermal runaway, including subsequent operations, such as displaying the battery pack that has experienced thermal runaway on the display screen of the electrical equipment, so that the driver can only replace the battery pack that has experienced thermal runaway instead of replacing the entire battery box. Helps save battery costs.
  • the method is applied to heavy trucks.
  • a thermal runaway detection method includes: the vehicle controller VCU receives fault information sent by the battery management unit BMU, and the fault information is used to indicate that a thermal runaway occurs in the battery box of the electrical equipment. Out of control; the VCU performs thermal runaway processing on the battery box based on the fault information.
  • the VCU after the VCU receives the fault information indicating that the battery box of the electrical equipment has experienced thermal runaway, it performs thermal runaway processing on the battery box of the electrical equipment in a timely manner based on the fault information, thereby avoiding the thermal runaway of the battery box. out of control, thus effectively improving the safety performance of the battery box.
  • the vehicle controller VCU receives the fault information sent by the battery management unit BMU, including: the VCU receives the fault information through the first gateway.
  • the first gateway is provided on the powered device.
  • the first gateway is a power swap controller BSC of the electrical device.
  • the VCU performs thermal runaway processing on the battery box based on the fault information, including: the VCU performs thermal runaway processing on the battery box based on the fault information and the status of the electrical equipment. The box undergoes thermal runaway processing.
  • the VCU performs thermal runaway processing on the battery box based on the fault information and the status of the electrical equipment, including: if the electrical equipment does not perform high-voltage operation, the The VCU prohibits the electrical equipment from performing a high-voltage operation; if the electrical equipment has already performed a high-voltage operation, the VCU sends a high-voltage instruction after a predetermined period of time; if the electrical equipment has already performed a high-voltage operation, and If the VCU does not send the high voltage command within the predetermined time period, the VCU disconnects the contactor; if the electrical equipment is driving, the VCU limits the driving discharge power of the electrical equipment.
  • the VCU limits the driving backcharging power of the electrical equipment to 0%; if the electrical equipment is passing through the charging pile To charge, the VCU controls the battery box to stop charging; if the electrical equipment is exchanging power in the power swap station, the VCU sends the fault information to the station control system of the power swap station.
  • the method is applied to heavy trucks.
  • a third aspect provides a thermal runaway detection device for performing the method in the above first aspect or its respective implementations.
  • the device includes a functional module for executing the method in the above-mentioned first aspect or its respective implementations.
  • a fourth aspect provides a thermal runaway detection device for performing the method in the above second aspect or its respective implementations.
  • the device includes a functional module for executing the method in the above second aspect or its respective implementations.
  • a thermal runaway detection device including a processor and a memory.
  • the memory is used to store a computer program.
  • the processor is used to call the computer program to execute the above first or second aspect or methods in its various implementations.
  • Figure 1 is a schematic flow chart of a thermal runaway detection method provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a BMU sending fault information to a VCU provided in an embodiment of the present application.
  • FIG. 3 is a schematic flow chart of another thermal runaway detection method provided by an embodiment of the present application.
  • Figure 4 is a schematic block diagram of a thermal runaway detection device provided by an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of another thermal runaway detection device provided by an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of yet another thermal runaway detection device provided by an embodiment of the present application.
  • a battery is a battery that provides a source of power for electrical equipment, and may include a battery installed in an electrical equipment and a battery located in a power swap station for power exchange.
  • the battery can be a lithium-ion battery, a lithium metal battery, a lead-acid battery, a nickel separator battery, a nickel-metal hydride battery, a lithium-sulfur battery, a lithium-air battery or a sodium-ion battery.
  • the battery in the embodiment of the present application can be a battery cell/battery cell, or a battery module or a battery pack, which is not specifically limited in the embodiment of the present application.
  • a battery cell may also be called a cell.
  • batteries can also power other electrical devices in electrical equipment.
  • the battery can also power in-car air conditioners, car players, etc.
  • the battery swap station mentioned above can refer to a place that provides battery swap services for electrical equipment.
  • the power swap station may be a fixed location, or the power swap station may be a movable location such as a mobile battery swap vehicle, which is not limited here.
  • the battery swapping technology adopts the method of "vehicle battery separation", which can provide battery replacement services for electrical equipment through battery swap stations. That is, the battery can be quickly removed or installed from the electrical equipment, which only takes 5-10 minutes.
  • the power battery removed from the power consumption equipment can be placed in the power swap cabinet of the power swap station for charging, in preparation for power replacement for subsequent power consumption equipment entering the power swap station.
  • the electrical equipment may be a vehicle, a ship or a spacecraft.
  • a spacecraft includes an airplane, a rocket, a space shuttle, a spaceship, etc.
  • the embodiments of the present application are not limited to this.
  • an embodiment of the present application proposes a thermal runaway detection method.
  • the battery management unit battery management unit, BMU determines whether thermal runaway has occurred in the battery box based on the battery parameters of the battery box of the electrical equipment. If it is determined that thermal runaway has occurred, it will indicate to the vehicle control unit (VCU) that the battery box has thermal runaway, so that the VCU can handle the thermal runaway of the battery box in a timely manner and avoid the thermal runaway of the battery box. occurs, thereby effectively improving the safety performance of the battery box.
  • VCU vehicle control unit
  • FIG. 1 shows a schematic flow chart of a thermal runaway detection method 100 according to an embodiment of the present application.
  • the method 100 may be applied to the BMU, and the method 100 may include at least part of the following contents.
  • the BMU determines whether thermal runaway has occurred in the battery box based on the battery parameters of the battery box of the electrical device.
  • the battery parameters may include the temperature of the battery cell and/or the voltage of the battery cell.
  • the BMU determines whether thermal runaway has occurred in the battery box based on the battery parameters of the battery box of the electrical equipment. If it is determined that thermal runaway has occurred, it will indicate to the VCU that the battery box has thermal runaway, allowing the VCU to handle the thermal runaway of the battery box in a timely manner, avoiding the occurrence of thermal runaway of the battery box, thereby effectively improving the safety performance of the battery box. . Furthermore, the BMU determines whether thermal runaway has occurred in the battery box based on the voltage and/or temperature of the battery cell. Since the voltage and/or temperature of the battery cell is one of the parameters that best reflects whether the battery box has experienced thermal runaway, Therefore, it is highly accurate to determine whether thermal runaway has occurred in the battery box based on the voltage and/or temperature of the battery cells.
  • the electrical equipment can be an electric vehicle, a ship or a spacecraft, etc.
  • the electric vehicle may be, for example, a heavy-duty truck, such as a sprinkler truck, a fire truck, an earth-moving truck, a truck, etc.
  • a heavy-duty truck such as a sprinkler truck, a fire truck, an earth-moving truck, a truck, etc.
  • the overall heavy-duty truck market has about 7 million units, and more than 70% of heavy-duty trucks operate 24 hours a day (two or three shifts).
  • the method 100 is applied to heavy-duty trucks, which can further improve the safety performance of heavy-duty trucks and prevent safety accidents.
  • the BMU is installed on the battery box and can be used to monitor the physical parameters of the battery box in real time, such as voltage, temperature, etc., and can also be used for equalization management, etc.
  • the VCU is set on the chassis of the electrical equipment. Its main functions are: controlling the driving of the electrical equipment and coordinating the normal operation of each subsystem of the electrical equipment; controlling the LCD unit to display the operating status of the electrical equipment, such as vehicle speed, remaining battery power, Motor speed, etc., so that the driver can accurately grasp the overall operating status of electrical equipment and complete corresponding operations; manage the vehicle communication network; perform braking energy feedback control; fault detection and diagnosis, timely alarm when a fault occurs, take safety measures and Send error codes to ensure safe driving of electrical equipment; optimize vehicle energy to improve the cruising range of electrical equipment.
  • the method 100 may also include: the BMU obtains battery parameters.
  • the battery box may include at least one battery pack.
  • One battery pack may include one or more cell supervision units (CSC).
  • the CSC may collect battery parameters of the battery box, such as the temperature and temperature of the battery cells in the battery box. /or voltage. Among them, one CSC can collect the temperature and/or voltage of multiple battery cells. After the CSC collects the data, the CSC can send the collected temperatures and/or voltages of multiple battery cells to the BMU. That is, the BMU can receive the battery parameters sent by the CSC to obtain the battery parameters.
  • the CSC and BMU can communicate through wired or wireless methods.
  • the wired communication method may include, for example, a control area network (CAN) communication method and a daisy chain (daisy chain) communication method.
  • Wireless communication methods may include, for example, Bluetooth communication, wireless fidelity (WIFI) communication, ZigBee communication, and other various methods, which are not limited here.
  • CSC can collect battery parameters periodically. For example, battery parameters are collected every 5ms. Alternatively, CSC can also collect battery parameters aperiodically. For example, the interval between collecting battery parameters for the first and second times is 5ms, and the interval between collecting battery parameters for the second and third times is 8ms.
  • the CSC itself is used to collect the temperature and/or voltage of the battery cell.
  • the battery parameters it collects are the temperature and/or voltage of the battery cell and are close to the actual temperature and actual voltage of the battery cell.
  • the BMU determines whether the battery box has experienced thermal runaway by receiving the battery parameters sent by the CSC, which can greatly improve the accuracy of determining whether the battery box has experienced thermal runaway.
  • the battery parameters may include at least one of the following parameters: a minimum voltage among the voltages of the battery cells, a maximum temperature among the temperatures of the battery cells, a rise rate of the temperature of the battery cells over time, The temperature difference between the highest temperature and the lowest temperature of a body.
  • the minimum voltage of the battery cell, the maximum temperature of the battery cell temperature, the temperature increase rate of the battery cell over time, and the temperature of the battery cell are determined. At least one of the temperature differences between the highest temperature and the lowest temperature will cause abnormality with the occurrence of thermal runaway. Therefore, it is determined according to at least one of these battery parameters whether the battery box has thermal runaway, and the determined battery The accuracy of determining whether thermal runaway occurs in the box is relatively high.
  • S110 may specifically include: when the battery parameters meet at least one of the following fault conditions, the BMU may determine that thermal runaway has occurred in the battery box.
  • fault conditions can include:
  • the temperature rise rate with time is greater than the rise rate threshold for a duration above the second duration threshold, the temperature difference is greater than the second temperature threshold for a duration above the second duration threshold, and the maximum temperature is greater than the third temperature
  • the duration of the threshold is above the second duration threshold
  • the temperature difference is greater than the second temperature threshold for a duration above the second duration threshold, the maximum temperature is greater than the third temperature threshold for a duration above the second duration threshold, and the battery The duration during which parameters are not updated is above the third duration threshold.
  • the failure to obtain the voltage of the battery cell may be, for example, that the battery cell voltage sampling line is disconnected, and/or the obtained voltage of the battery cell is an invalid value.
  • the above technical solution determines whether the battery box has thermal runaway after the comparison result lasts for a certain period of time, avoiding that the battery parameters only reach the condition of thermal runaway at a certain moment. In fact, it does not Thermal runaway has occurred, or the battery box has experienced thermal runaway for a certain period of time, but then returned to normal state on its own.
  • the voltage threshold may be 1.7V; and/or
  • the first duration threshold may be 300ms; and/or
  • the second duration threshold may be 3000ms; and/or
  • the third duration threshold may be 12s; and/or
  • the first temperature threshold may be 78°C; and/or
  • the second temperature threshold may be 30°C; and/or
  • the third temperature threshold may be 60°C; and/or
  • the rise rate threshold can be 3°C/3s; and/or
  • the target time can be 20s.
  • the fault condition can be:
  • the parameters mentioned above are values obtained based on practice and experience.
  • the accuracy is high, which avoids mistakenly determining that a battery box that has not experienced thermal runaway has thermal runaway, or that the battery box has not experienced thermal runaway.
  • the battery box that has experienced thermal runaway is mistakenly determined to be a problem that has not experienced thermal runaway, which can greatly improve the accuracy of determining whether the battery box has thermal runaway.
  • the BMU After the BMU determines that the battery box has experienced thermal runaway, it can send fault information to the VCU.
  • the BMU can directly send fault information to the VCU.
  • the BMU can send fault information to the VCU through the CAN communication bus or the daisy chain communication bus.
  • the BMU may send fault information to the VCU through the first gateway.
  • the first gateway may forward the received fault information to the VCU without performing any processing on the fault information.
  • the BMU may send the fault information to the first gateway through the first communication protocol.
  • the first gateway may convert the fault information based on the second communication protocol and send the converted fault information to the VCU.
  • the first communication protocol may be a communication protocol adopted by the BMU
  • the second communication protocol may be a communication protocol adopted by the electrical equipment.
  • a gateway is set up between the BMU and the VCU, the BMU and the VCU communicate through the gateway, and the BMU sends fault information to the gateway through its own communication protocol. After the gateway receives the fault information, it can convert the fault information based on the communication protocol adopted by the electrical equipment and send the converted fault information to the VCU.
  • the communication protocol between the BMU and the gateway is fixed, which is conducive to making the battery box a standard part, so that one battery box can be adapted to different models of different car companies, without having to specially produce corresponding batteries for different car companies or models. boxes, which in turn helps save resources and costs, and is also conducive to the unified management of power swap stations in the power swap scenario.
  • the first gateway can be set up independently of the powered device.
  • the first gateway can be integrated in the battery box.
  • the first gateway can be set on the electrical device.
  • the first gateway is set on the electrical equipment, so that the communication protocol for communication between the first gateway and the VCU is fixed.
  • the first gateway sends fault information to the VCU, it is not necessary to determine the communication protocol for communication between it and the VCU, thereby reducing communication time and improving communication efficiency.
  • the first gateway may be an additional device added to the electrical equipment.
  • the first gateway may be obtained by reusing an original device in the electrical equipment.
  • the first gateway may be a battery switch controller (BSC) of the electrical equipment.
  • BSC battery switch controller
  • the BSC is also installed on the chassis of the electrical equipment.
  • the first gateway is set as the BSC of the electrical equipment, that is, the BSC is reused as the first gateway. In this way, the number of components in the electrical equipment can be reduced, thereby reducing the size and cost of the electrical equipment.
  • communication between BMU and BSC and between BSC and VCU is carried out through the CAN communication bus, and the CAN communication bus between BMU and BSC is different from the CAN communication bus between BSC and VCU.
  • communication can also be carried out between the BMU and the BSC and between the BSC and the VCU through the daisy chain communication bus.
  • the method 100 may also include: the BMU determines whether each battery pack has experienced thermal runaway based on the battery parameters of each battery pack in the multiple battery packs, and outputs the The corresponding thermal runaway fault flag bit.
  • thermal runaway fault flag is "0", it means that the battery pack has not experienced thermal runaway; if the thermal runaway flag is "1”, it means that the battery pack has experienced thermal runaway. Assuming that the battery box includes 4 battery packs and the BMU output is "0110", you can know that the second and third battery packs have experienced thermal runaway, but the first and fourth battery packs have not experienced thermal runaway. out of control.
  • the BMU outputs the thermal runaway fault flag bit corresponding to each battery pack. It can output the thermal runaway fault flag bit corresponding to each battery pack to the VCU, or it can output the thermal runaway fault flag bit corresponding to each battery pack to the host computer. Of course, it can also output the thermal runaway fault flag bit corresponding to each battery pack to itself.
  • the BMU may only output the identification information of the battery pack that has experienced thermal runaway.
  • the BMU can determine the target battery pack that has experienced thermal runaway based on the battery parameters of each battery pack in the multiple battery packs, and output the identification information of the target battery pack.
  • the identification information may include but is not limited to the serial number (SN) of the target battery pack and the group identification of the target battery pack in multiple battery packs.
  • the group identification of the target battery pack in the multiple battery packs may be the number of the target battery pack in the multiple battery packs, for example, it may be a number determined based on the electrical schematic diagram.
  • the above technical solution in addition to determining whether thermal runaway has occurred in the battery box, also determines the specific battery pack that has experienced thermal runaway and outputs the identification information of the battery pack that has experienced thermal runaway, which facilitates the equipment that receives the identification information (such as host computer, VCU, etc. ) For batteries that have experienced thermal runaway, including subsequent operations, such as displaying the battery pack that has experienced thermal runaway on the display screen of the electrical equipment, so that the driver can only replace the battery pack that has experienced thermal runaway instead of replacing the entire battery box. Helps save battery costs.
  • the VCU can handle the thermal runaway of the battery box of the electrical equipment based on the fault information.
  • the VCU can handle thermal runaway of the electrical equipment based on the fault information and the status of the electrical equipment.
  • the VCU can prohibit the electrical equipment from performing the high-voltage operation.
  • the VCU can send a low voltage command after a predetermined period of time. If the electrical equipment directly performs high-voltage operations on the electrical equipment during driving, the electrical equipment will immediately lose power. In this way, the electrical equipment is prone to safety accidents, such as rollover and other accidents. Therefore, if the electrical equipment has been operated with high voltage, the VCU can control the electrical equipment to slowly reduce the power to 0, and the duration of this process is the predetermined time. In this way, safety accidents in electrical equipment can be avoided, thereby effectively ensuring the safety of electrical equipment.
  • the predetermined time period may be 35 seconds.
  • the VCU can disconnect all contactors.
  • the VCU can limit the driving discharge power of the electrical equipment to 0% and send a high-voltage command.
  • the VCU can limit the driving recharging power of the electrical equipment to 0%.
  • the VCU can control the battery box to stop charging.
  • the charging contactor between the electrical equipment and the charging pile can also be disconnected.
  • the VCU may send request information, which is used to request to disconnect the charging contactor between the electrical device and the charging pile.
  • the battery management system BMS can actively disconnect the charging contactor between the electrical equipment and the charging pile.
  • the VCU can send fault information to the station control system of the power swap station. After receiving the fault information, the station control system can perform processing based on the fault information. For example, the station control system can stop the power exchange of electrical equipment.
  • the VCU can send fault information to the station control system through wireless communication.
  • VCU can send fault information to the station control system via Bluetooth.
  • Bluetooth communication has the advantages of low power consumption, low cost, and strong anti-interference ability, the Bluetooth module is small and easy to integrate. Therefore, the communication power consumption and cost between the VCU and the station control system can be effectively reduced, and the communication efficiency can be improved.
  • FIG. 3 shows a schematic flow chart of another thermal runaway detection method 300 provided by this application.
  • the method 300 may be applied to VCU, and the method 300 may include at least part of the following content.
  • the VCU receives the fault information sent by the BMU.
  • the fault information is used to indicate that the battery box of the electrical equipment has experienced thermal runaway.
  • VCU handles thermal runaway of the battery box based on the fault information.
  • the VCU receives the fault information sent by the BMU, including: the VCU receives the fault information through the first gateway.
  • the first gateway is provided on the electrical device.
  • the first gateway is the BSC of the electrical equipment.
  • the VCU performs thermal runaway processing on the battery box based on the fault information, including: the VCU performs thermal runaway processing on the battery box based on the fault information and the status of the electrical equipment.
  • the VCU in addition to fault information, the VCU also performs thermal runaway processing on the battery box based on the status of the electrical equipment. In this way, the VCU can determine different ways to handle the thermal runaway of the battery box based on the different statuses of the electrical equipment, so that Thermal runaway processing is more efficient and can improve the safety performance of the battery box.
  • the VCU performs thermal runaway processing on the battery box based on the fault information and the status of the electrical equipment, including: if the electrical equipment does not perform high-voltage operation, the VCU prohibits the electrical equipment from applying high voltage.
  • VCU will send a high voltage lowering command after a predetermined time; if the electrical equipment has been operated to high voltage, and VCU has not sent a high voltage lowering command within a predetermined time, VCU will disconnect the contactor; If the electrical equipment is driving, VCU will limit the driving discharge power of the electrical equipment to 0% and send a high-voltage command; if the electrical equipment is driving, VCU will limit the driving recharging power of the electrical equipment to 0%. 0%; if the electrical equipment is being charged through the charging pile, the VCU controls the battery box to stop charging; if the electrical equipment is being replaced in the battery swap station, the VCU sends fault information to the station control system of the battery swap station.
  • method 300 is applied to heavy-duty trucks.
  • method 100 and 300 are respectively described above, this does not mean that methods 100 and 300 are independent, and the descriptions of method 100 and method 300 can be referred to each other. If there is no contradiction, the alternatives of method 100 and method 300 can be used in combination.
  • the description related to the VCU performing thermal runaway processing on the electrical equipment based on the fault information may be applicable to the method 300.
  • the size of the serial numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application. .
  • thermal runaway detection method of the embodiment of the present application is described in detail above, and the thermal runaway detection device of the embodiment of the present application will be described below. It should be understood that the thermal runaway detection device in the embodiment of the present application can perform the thermal runaway detection method in the embodiment of the present application.
  • FIG. 4 shows a schematic block diagram of a thermal runaway detection device 400 according to an embodiment of the present application.
  • the device 400 can be applied to BMU.
  • the device 400 may include:
  • the processing unit 410 is configured to determine whether thermal runaway has occurred in the battery box according to the battery parameters of the battery box of the electrical equipment.
  • the battery parameters include the temperature of the battery cell and/or the voltage of the battery cell.
  • the communication unit 420 is used to send fault information to the vehicle controller VCU if it is determined that thermal runaway has occurred in the battery box.
  • the fault information is used to indicate that thermal runaway has occurred in the battery box.
  • the communication unit 420 is specifically configured to send fault information to the VCU through the first gateway.
  • the first gateway is provided on the electrical device.
  • the first gateway is the power swap controller BSC of the electrical equipment.
  • the communication unit 420 is also used to receive battery parameters sent by the cell monitoring unit CSC.
  • the battery parameters include at least one of the following parameters: the minimum voltage among the voltages of the battery cells; the highest temperature among the temperatures of the battery cells; the temperature of the battery cells over time. Rise rate; the temperature difference between the highest temperature and the lowest temperature of a battery cell.
  • the processing unit 410 is specifically configured to: determine that thermal runaway has occurred in the battery box when the battery parameters meet at least one of the following fault conditions;
  • the fault conditions include: the minimum voltage is less than the voltage threshold for a duration above the first duration threshold, and the maximum temperature is greater than the first temperature threshold for a duration above the second duration threshold; the minimum voltage is less than the voltage threshold for a duration above the second duration threshold.
  • the duration for which the first duration threshold is above, and the temperature rise rate over time is greater than the rise rate threshold is above the second duration threshold; the duration for which the minimum voltage is less than the voltage threshold is above the first duration threshold, and the temperature difference is greater than the second temperature
  • the duration during which the threshold lasts is above the second duration threshold, and the duration during which the maximum temperature is greater than the third temperature threshold is above the second duration threshold; the duration during which the temperature rise rate with time is greater than the rise rate threshold is above the second duration threshold.
  • the duration threshold is above the duration threshold, and the duration during which the maximum temperature is greater than the first temperature threshold is above the second duration threshold; the duration during which the temperature rise rate with time is greater than the rise rate threshold is above the second duration threshold, and the temperature difference is greater than the second duration threshold.
  • the temperature threshold lasts for more than the second duration threshold, and the maximum temperature is greater than the third temperature threshold for a duration that is greater than the second duration threshold; the voltage of the battery cell cannot be obtained, and the maximum temperature is greater than the first temperature threshold.
  • the duration is above the second duration threshold; the voltage of the battery cell cannot be obtained, and the temperature rise rate with time is greater than the rise rate threshold and the duration is above the second duration threshold; the voltage of the battery cell cannot be obtained
  • the duration during which the voltage and temperature difference is greater than the second temperature threshold is above the second duration threshold, and the duration during which the maximum temperature is greater than the third temperature threshold is above the second duration threshold; during the previous target time when the battery parameters are not updated, the temperature The duration during which the increase rate over time is greater than the increase rate threshold is above the second duration threshold, and the duration during which the battery parameters are not updated is above the third duration threshold; within the previous target time when the battery parameters are not updated, the highest The duration during which the temperature is greater than the first temperature threshold is above the second duration threshold, and the duration during which the battery parameters are not updated is above the third duration threshold; at the target time before the battery parameters are not updated, the temperature difference is greater than the second temperature threshold.
  • the duration during which the maximum temperature is greater than the third temperature threshold is above the second duration threshold,
  • the voltage threshold is 1.7V; and/or the first duration threshold is 300ms; and/or the second duration threshold is 3000ms; and/or the third duration threshold is 12s; and/or
  • the first temperature threshold is 78°C; and/or the second temperature threshold is 30°C; and/or the third temperature threshold is 60°C; and/or the rise rate threshold is 3°C/3s; and/or the target time is 20s. .
  • the battery box includes multiple battery packs
  • the processing unit 410 is further configured to: determine the target battery pack where thermal runaway occurs based on the battery parameters of each battery pack in the multiple battery packs; and output Identification information of the target battery pack.
  • the device 400 is applied to heavy-duty trucks.
  • the device 400 can implement the corresponding operations in the method 100, and for the sake of brevity, they will not be described again here.
  • FIG. 5 shows a schematic block diagram of a thermal runaway detection device 500 according to an embodiment of the present application.
  • the device 500 can be applied to VCU.
  • the device 500 may include:
  • the communication unit 510 is configured to receive fault information sent by the battery management unit BMU, where the fault information is used to indicate that thermal runaway has occurred in the battery box of the electrical equipment.
  • the processing unit 520 is used to perform thermal runaway processing on the battery box based on the fault information.
  • the communication unit 510 is specifically configured to: receive fault information through the first gateway.
  • the first gateway is provided on the electrical device.
  • the first gateway is the power swap controller BSC of the electrical equipment.
  • the processing unit 520 is specifically configured to perform thermal runaway processing on the battery box based on the fault information and the status of the electrical equipment.
  • the processing unit 520 is specifically configured to: if the electrical equipment has not performed the high-voltage operation, prohibit the electrical equipment from performing the high-voltage operation; if the electrical equipment has performed the high-voltage operation, and the communication unit 510 does not send a high-voltage command within the predetermined time, disconnect the contactor; if the electrical equipment is driving, limit the driving discharge power of the electrical equipment to 0%, and the communication unit 510 sends a high-voltage command; if the electrical equipment While the equipment is driving, the driving recharging power of the electrical equipment is limited to 0%; if the electrical equipment is being charged through the charging pile, the battery box is controlled to stop charging;
  • the communication unit 510 is specifically used to: if the electrical equipment is exchanging power in the power swap station, send fault information to the station control system of the power swap station; if the electrical equipment has been operated to high voltage, send a high voltage down command after a predetermined period of time.
  • the device 500 is applied to heavy-duty trucks.
  • the device 500 can implement the corresponding operations in the method 300, and for the sake of brevity, they will not be described again here.
  • FIG. 6 is a schematic diagram of the hardware structure of a thermal runaway detection device 600 according to an embodiment of the present application.
  • the device 600 includes a memory 601, a processor 602, a communication interface 603 and a bus 604. Among them, the memory 601, the processor 602, and the communication interface 603 implement communication connections between each other through the bus 604.
  • the memory 601 may be a read-only memory (ROM), a static storage device, and a random access memory (RAM).
  • the memory 601 can store programs. When the program stored in the memory 601 is executed by the processor 602, the processor 602 and the communication interface 603 are used to perform various steps of the thermal runaway detection method in the embodiment of the present application.
  • the processor 602 may be a general central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), a graphics processing unit (GPU), or one or more
  • the integrated circuit is used to execute relevant programs to implement the functions required to be performed by the units in the device of the embodiment of the present application, or to perform the thermal runaway detection method of the embodiment of the present application.
  • the processor 602 may also be an integrated circuit chip with signal processing capabilities. During the implementation process, each step of the thermal runaway detection method in the embodiment of the present application can be completed by instructions in the form of hardware integrated logic circuits or software in the processor 602 .
  • the above-mentioned processor 602 can also be a general-purpose processor, a digital signal processor (digital signal processing, DSP), an ASIC, an off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processing
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • Each method, step and logical block diagram disclosed in the embodiment of this application can be implemented or executed.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor for execution, or can be executed by a combination of hardware and software modules in the processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory 601.
  • the processor 602 reads the information in the memory 601, and combines its hardware to complete the functions required to be performed by the units included in the thermal runaway detection device of the embodiment of the present application, or to perform the thermal runaway detection of the embodiment of the present application. Methods for out-of-control detection.
  • the communication interface 603 uses a transceiver device such as but not limited to a transceiver to implement communication between the device 600 and other devices or communication networks.
  • a transceiver device such as but not limited to a transceiver to implement communication between the device 600 and other devices or communication networks.
  • the device 600 may send fault information to the VCU through the communication interface 603.
  • Bus 604 may include a path that carries information between various components of device 600 (eg, memory 601, processor 602, communication interface 603).
  • the device 600 may also include other devices necessary for normal operation. At the same time, based on specific needs, those skilled in the art should understand that the device 600 may also include hardware devices that implement other additional functions. In addition, those skilled in the art should understand that the device 600 may only include components necessary to implement the embodiments of the present application, and does not necessarily include all components shown in FIG. 6 .
  • Embodiments of the present application also provide a computer-readable storage medium for storing a computer program.
  • the computer program is used to execute the foregoing methods of various embodiments of the present application.
  • the above-mentioned computer-readable storage medium may be a transient computer-readable storage medium or a non-transitory computer-readable storage medium.
  • Embodiments of the present application also provide a computer program product.
  • the computer program product includes a computer program stored on a computer-readable storage medium.
  • the computer program includes program instructions. When the program instructions are executed by the computer, the computer is caused to perform the above-mentioned thermal processing. Methods for out-of-control detection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

提供了一种热失控检测的方法(100)和装置(400),能够有效提高用电设备的电池箱的安全性能。方法包括:电池管理单元BMU根据用电设备的电池箱的电池参数,确定电池箱是否发生了热失控(S110),电池参数包括电池单体的温度和/或电池单体的电压;若确定电池箱发生了热失控,BMU向整车控制器VCU发送故障信息(S120),故障信息用于指示电池箱发生了热失控。

Description

热失控检测的方法和装置 技术领域
本申请涉及电池技术领域,特别是涉及一种热失控检测的方法和装置。
背景技术
节能减排是汽车产业可持续发展的关键。在这种情况下,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。而对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
在电池技术的发展中,除了提高电池的性能外,安全问题也是一个不可忽视的问题。如果电池的安全问题不能保证,那该电池就无法使用。因此,如何增强电池的安全性,是电池技术中一个亟待解决的技术问题。
发明内容
本申请实施例提供一种热失控检测的方法和装置,能够有效提高用电设备的电池箱的安全性能。
第一方面,提供了一种热失控的方法,所述方法包括:电池管理单元BMU根据用电设备的电池箱的电池参数,确定所述电池箱是否发生了热失控,所述电池参数包括电池单体的温度和/或电池单体的电压;若确定所述电池箱发生了热失控,所述BMU向整车控制器VCU发送故障信息,所述故障信息用于指示所述电池箱发生了热失控。
本申请实施例,BMU根据用电设备的电池箱的电池参数,确定该电池箱是否发生了热失控。若确定发生了热失控,则向VCU指示该电池箱发生了热失控,使得VCU能够对装载有该电池箱的用电设备及时地进行热失控处理,避免了电池箱热失控的发生,从而有效提高了电池箱的安全性能。进一步地,BMU根据电池单体的电压和/或温度确定电池箱是否发生了热失控,由于电池单体的电压和/或温度是最能体现电池箱是是否发生了热失控的参数之一,因此,根据电池单体的电压和/或温度确定电池箱是否发生了热失控,准确率较高。
在一些可能的实现方式中,所述BMU向整车控制器VCU发送故障信息,包括:所述BMU通过第一网关向所述VCU发送所述故障信息。
上述技术方案,在BMU和VCU之间设置网关,BMU和VCU之间通过该网关进行通信,这样BMU向该网关发送故障信息时所采用的通信协议例如可以是BMU采用的通信协议。这样,BMU和网关之间的通信协议是固定的,有利于将电池箱做成标准件,使得一个电池箱可以适配不同车企不同车型,不用为不同的车企或车型专门制 作对应的电池箱,进而有利于节省资源和成本,并且在换电的场景下还有利于换电站的统一管理。
在一些可能的实现方式中,所述第一网关设置在所述用电设备上。
上述技术方案,将第一网关设置在用电设备上,这样,对于第一网关来说,其和VCU之间进行通信的通信协议就是固定的。在第一网关向VCU发送故障信息时,不需要确定其和VCU之间进行通信的通信协议,从而能够减小通信时间,提高通信效率。
在一些可能的实现方式中,所述第一网关为所述用电设备的换电控制器BSC。
上述技术方案,将第一网关设置为用电设备的BSC,即复用BSC作为第一网关。如此,能够减小用电设备的构件数量,从而减小用电设备的体积和成本。
在一些可能的实现方式中,所述方法还包括:所述BMU接收电芯监控单元CSC发送的所述电池参数。
上述技术方案,CSC本身是用于采集电池单体的温度和/或电压的,其采集的电池参数,即电池单体的温度和/或电压及其接近电池单体的实际温度和实际电压。这样,BMU通过接收到的CSC发送的电池参数来确定电池箱是否发生了热失控,能够极大地提高确定电池箱是否发生了热失控的准确率。
在一些可能的实现方式中,所述电池参数包括以下参数中的至少一种:所述电池单体的电压中的最小电压;所述电池单体的温度中的最高温度;所述电池单体的温度随时间的升高率;所述电池单体的温度中最高温度与最低温度之间的温差。
上述技术方案,在电池箱发生热失控时,电池单体的电压中的最小电压、电池单体的温度中的最高温度、电池单体的温度随时间的升高率以及电池单体的温度中最高温度与最低温度之间的温差中的至少一种,会随着热失控的发生而发生异常,因此,根据这些电池参数中的至少一种来确定电池箱是否发生了热失控,确定的电池箱是否发生热失控的准确度较高。
在一些可能的实现方式中,所述电池管理单元BMU根据电池箱的电池参数,确定所述电池箱是否发生了热失控,包括:在所述电池参数满足以下至少一个故障条件的情况下,所述BMU确定所述电池箱发生了热失控;
所述故障条件包括:所述最小电压小于电压阈值所持续的时长在第一时长阈值以上,以及所述最高温度大于第一温度阈值所持续的时长在第二时长阈值以上;所述最小电压小于所述电压阈值所持续的时长在所述第一时长阈值以上,以及所述温度随时间的升高率大于升高率阈值所持续的时长在所述第二时长阈值以上;所述最小电压小于所述电压阈值所持续的时长在所述第一时长阈值以上,所述温差大于第二温度阈值所持续的时长在所述第二时长阈值以上,以及所述最高温度大于第三温度阈值所持续的时长在所述第二时长阈值以上;所述温度随时间的升高率大于所述升高率阈值所持续的时长在所述第二时长阈值以上,以及所述最高温度大于所述第一温度阈值所持续的时长在所述第二时长阈值以上;所述温度随时间的升高率大于所述升高率阈值所持续的时长在所述第二时长阈值以上,所述温差大于所述第二温度阈值所持续的时长在所述第二时长阈值以上,以及所述最高温度大于所述第三温度阈值所持续的时长在 所述第二时长阈值以上;获取不到所述电池单体的电压,以及所述最高温度大于所述第一温度阈值所持续的时长在所述第二时长阈值以上;获取不到所述电池单体的电压,以及所述温度随时间的升高率大于所述升高率阈值所持续的时长在所述第二时长阈值以上;获取不到所述电池单体的电压,所述温差大于所述第二温度阈值所持续的时长在所述第二时长阈值以上,以及所述最高温度大于所述第三温度阈值所持续的时长在所述第二时长阈值以上;在所述电池参数不更新的前目标时刻内,所述温度随时间的升高率大于所述升高率阈值所持续的时长在所述第二时长阈值以上,以及所述电池参数不更新所持续的时长在第三时长阈值以上;在所述电池参数不更新的前目标时刻内,所述最高温度大于第一温度阈值所持续的时长在所述第二时长阈值以上,以及所述电池参数不更新所持续的时长在所述第三时长阈值以上;在所述电池参数不更新的前目标时刻,所述温差大于所述第二温度阈值所持续的时长在所述第二时长阈值以上,所述最高温度大于所述第三温度阈值所持续的时长在所述第二时长阈值以上,以及所述电池参数不更新所持续的时长在所述第三时长阈值以上。
上述技术方案,在电池参数与阈值的比较过程中,在比较结果持续一定时长后再确定电池箱是否发生了热失控,避免了电池参数只是某一瞬间达到了热失控的条件,实际上并没有发生热失控的,或者电池箱虽然在某一段时间发生了热失控,但之后自行恢复为正常状态的问题。
在一些可能的实现方式中,所述电压阈值为1.7V;和/或所述第一时长阈值为300ms;和/或所述第二时长阈值为3000ms;和/或所述第三时长阈值为12s;和/或所述第一温度阈值为78℃;和/或所述第二温度阈值为30℃;和/或所述第三温度阈值为60℃;和/或所述升高率阈值为3℃/3s;和/或所述目标时刻为20s。
上述技术方案提到的这些参数,如300ms、78℃等是在实践的基础上结合经验得到的值,准确率较高,避免了将未发生热失控的电池箱误确定为发生了热失控,或者将发生了热失控的电池箱误确定为未发生热失控的问题,进而能够极大地提高确定电池箱是否发生了热失控的准确率。
在一些可能的实现方式中,所述电池箱包括多个电池包,所述方法还包括:所述BMU根据多个所述电池包中每个电池包的电池参数,确定发生热失控的目标电池包;所述BMU输出所述目标电池包的标识信息。
上述技术方案,除了确定电池箱是否发生了热失控,还确定发生热失控的具体电池包并输出发生热失控的电池包的标识信息,方便了接收到标识信息的设备(如上位机、VCU等)针对发生热失控的电池包括进行后续操作,如在用电设备的显示屏上显示发生热失控的电池包,以使驾驶员仅更换发生热失控的电池包,而不用更换整个电池箱,有利于节省电池成本。
在一些可能的实现方式中,所述方法应用于重型卡车。
第二方面,提供了一种热失控检测的方法,所述方法包括:整车控制器VCU接收电池管理单元BMU发送的故障信息,所述故障信息用于指示用电设备的电池箱发生了热失控;所述VCU根据所述故障信息,对所述电池箱进行热失控处理。
本申请实施例,在VCU接收到了用于指示用电设备的电池箱发生了热失控的 故障信息后,基于该故障信息对用电设备的电池箱及时地进行热失控处理,避免了电池箱热失控的发生,从而有效提高了电池箱的安全性能。
在一些可能的实现方式中,所述整车控制器VCU接收电池管理单元BMU发送的故障信息,包括:所述VCU通过第一网关接收所述故障信息。
在一些可能的实现方式中,所述第一网关设置在所述用电设备上。
在一些可能的实现方式中,所述第一网关为所述用电设备的换电控制器BSC。
在一些可能的实现方式中,所述VCU根据所述故障信息,对所述电池箱进行热失控处理,包括:所述VCU根据所述故障信息和所述用电设备的状态,对所述电池箱进行热失控处理。
在一些可能的实现方式中,所述VCU根据所述故障信息和所述用电设备的状态,对所述电池箱进行热失控处理,包括:若所述用电设备未进行上高压操作,所述VCU禁止所述用电设备进行上高压操作;若所述用电设备已进行上高压操作,所述VCU在预定时长后发送下高压指令;若所述用电设备已进行上高压操作,且所述VCU在所述预定时长内未发送所述下高压指令,所述VCU断开接触器;若所述用电设备正在行驶过程中,所述VCU将所述用电设备的行车放电功率限制到0%,并且发送下高压指令;若所述用电设备正在行驶过程中,所述VCU将所述用电设备的行车回充功率限制到0%;若所述用电设备正在通过充电桩进行充电,所述VCU控制所述电池箱停止充电;若所述用电设备正在换电站内进行换电,所述VCU向所述换电站的站控系统发送所述故障信息。
在一些可能的实现方式中,所述方法应用于重型卡车。
第三方面,提供了一种热失控检测的装置,用于执行上述第一方面或其各实现方式中的方法。具体地,该装置包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种热失控检测的装置,用于执行上述第二方面或其各实现方式中的方法。具体地,该装置包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种热失控检测的装置,包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用所述计算机程序,执行上述第一方面或第二方面或其各实现方式中的方法。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请实施例提供的一种热失控检测的方法的示意性流程图。
图2是本申请实施例提供的一种BMU向VCU发送故障信息的示意性图。
图3是本申请实施例提供的另一种热失控检测的方法的示意性流程图。
图4是本申请实施例提供的一种热失控检测的装置的示意性框图。
图5是本申请实施例提供的另一种热失控检测的装置的示意性框图。
图6是本申请实施例提供了再一种热失控检测的装置的示意性框图。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
在使用传统能源作为动力供给的汽车工业环境下,环境污染问题愈发严重,积极发展新能源汽车,能够减少对于环境的危害。对于新能源汽车而言,电池技术是关乎其发展的一项重要因素。
电池为给用电设备提供动力来源的电池,可以包括设置在用电设备内的电池和位于换电站中用于换电的电池。从电池的种类而言,该电池可以是锂离子电池、锂金属电池、铅酸电池、镍隔电池、镍氢电池、锂硫电池、锂空气电池或者钠离子电池等,在本申请实施例中不做具体限定。从电池规模而言,本申请实施例中的电池可以是电芯/电池单体,也可以是电池模组或电池包,在本申请实施例中不做具体限定。在一些实施方式中,电池单体也可称之为电芯。
电池除了可作为动力源为用电设备的电机供电,还可为用电设备中的其他用电器件供电,例如,该电池还可为车内空调、车载播放器等供电。
上文提到的换电站可指为用电设备提供换电服务的场所。示例性地,换电站可以为固定的场所,或者,换电站也可以为如移动换电车辆等可移动场所,在此并不限定。其中,换电技术采用“车电分离”的方式,可以通过换电站为用电设备提供电池的更换服务,即电池可以从用电设备上快速取下或者安装,期间仅需5-10分钟。从用电设备上取下的动力电池可以放入换电站的换电柜中进行充电,以备为后续进入换电站的用电设备进行换电。
可选地,用电设备可以为车辆、船舶或航天器等,例如,航天器包括飞机、火 箭、航天飞机和宇宙飞船等。本申请实施例对此并不限定。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性。
电池在工作过程中会产生热量。在常态下,电池产生的热量是可控的。但是,在非常态,如碰撞、过充电等状态下,电池产生的热量可能是不可控的,进而可能会导致热失控的发生。一旦发生热失控,可能会发生电池燃烧、爆炸等情况,从而严重影响电池的安全性能。
鉴于此,本申请实施例提出了一种热失控检测的方法,电池管理单元(battery management unit,BMU)根据用电设备的电池箱的电池参数,确定该电池箱是否发生了热失控。若确定发生了热失控,则向整车控制单元(vehicle control unit,VCU)指示该电池箱发生了热失控,使得VCU能够对该电池箱及时地进行热失控处理,避免了电池箱热失控的发生,从而有效提高了电池箱的安全性能。
图1示出了本申请实施例的一种热失控检测的方法100的示意性流程图。方法100可以应用于BMU,方法100可以包括以下内容中的至少部分内容。
S110:BMU根据用电设备的电池箱的电池参数,确定该电池箱是否发生了热失控,该电池参数可以包括电池单体的温度和/或电池单体的电压。
S120:若确定该电池箱发生了热失控,BMU向VCU发送故障信息,该故障信息用于指示电池箱发生了热失控。
本申请实施例,BMU根据用电设备的电池箱的电池参数,确定该电池箱是否发生了热失控。若确定发生了热失控,则向VCU指示该电池箱发生了热失控,使得VCU能够该电池箱及时地进行热失控处理,避免了电池箱热失控的发生,从而有效提高了电池箱的安全性能。进一步地,BMU根据电池单体的电压和/或温度确定电池箱是否发生了热失控,由于电池单体的电压和/或温度是最能体现电池箱是是否发生了热失控的参数之一,因此,根据电池单体的电压和/或温度确定电池箱是否发生了热失控,准确率较高。
其中,用电设备可以为电动车辆,也可以为船舶或航天器等。电动车辆例如可以为重型卡车,如洒水车、消防车、拉土车、载货车等。据分析,重型卡车总体市场保有量约为700万辆,超过70%的重型卡车24小时运营(两班倒或三班倒)。在这种情况下,方法100应用于重型卡车,进一步能够提高重型卡车的安全性能,防止安全事故的发生。
BMU设置在电池箱上,可以用于实时监测电池箱的物理参数,如电压、温度等,以及还可以用于均衡管理等。VCU设置在用电设备的底盘上,其主要功能有:控制用电设备行驶,协调用电设备各个分系统正常工作;控制液晶显示单元显示用电设备的运行状态,如车速、电池剩余电量、电机转速等,便于驾驶员准确掌握用电设备整体运行状况完成相应操作;对整车通信网络进行管理;进行制动能量回馈控制;故障检测与诊断,在发生故障时及时报警,采取安全措施并发送错误代码,以确保用电设备安全行驶;进行整车能量优化,以提高用电设备的续航里程。
可选地,在S110之前,方法100还可以包括:BMU获取电池参数。
电池箱可以包括至少一个电池包,一个电池包可以包括一个或者多个电芯监控单元(cell supervision circuit,CSC),CSC可以采集电池箱的电池参数,如电池箱中的电池单体的温度和/或电压。其中,一个CSC可以采集多个电池单体的温度和/或电压。在CSC采集完之后,CSC可以向BMU发送采集的多个电池单体的温度和/或电压。即BMU可以接收CSC发送的电池参数,以获取到电池参数。
CSC和BMU之间可以通过有线或无线的方式进行通信。有线通信方式例如可以包括制器局域网(control area network,CAN)通信方式、菊花链(daisy chain)通信方式。无线通信方式例如可以包括蓝牙通信、无线保真(wireless fidelity,WIFI)通信、ZigBee通信等各种方式,在此并不限定。
CSC可以周期性地采集电池参数。如每5ms采集一次电池参数。或者,CSC也可以非周期性地采集电池参数。比如第一次和第二次之间采集电池参数间隔的时间为5ms,第二次和第三次之间采集电池参数所间隔的时间为8ms。
上述技术方案,CSC本身是用于采集电池单体的温度和/或电压的,其采集的电池参数,即电池单体的温度和/或电压及其接近电池单体的实际温度和实际电压。这样,BMU通过接收到的CSC发送的电池参数来确定电池箱是否发生了热失控,能够极大地提高确定电池箱是否发生了热失控的准确率。
可选地,电池参数可以包括以下参数中的至少一种:电池单体的电压中的最小电压、电池单体的温度中的最高温度、电池单体的温度随时间的升高率、电池单体的温度中最高温度与最低温度之间的温差。
该技术方案,在电池箱发生热失控时,电池单体的电压中的最小电压、电池单体的温度中的最高温度、电池单体的温度随时间的升高率以及电池单体的温度中最高温度与最低温度之间的温差中的至少一种,会随着热失控的发生而发生异常,因此,根据这些电池参数中的至少一种来确定电池箱是否发生了热失控,确定的电池箱是否发生热失控的准确度较高。
在这种情况下,S110具体可以包括:在电池参数满足以下至少一个故障条件的情况下,BMU可以确定电池箱发生了热失控。
其中,故障条件可以包括:
(a)最小电压小于电压阈值所持续的时长在第一时长阈值以上,以及最高温度大于第一温度阈值所持续的时长在第二时长阈值以上;
(b)最小电压小于电压阈值所持续的时长在第一时长阈值以上,以及温度随时间的升高率大于升高率阈值所持续的时长在第二时长阈值以上;
(c)最小电压小于电压阈值所持续的时长在第一时长阈值以上,温差大于第二温度阈值所持续的时长在第二时长阈值以上,以及最高温度大于第三温度阈值所持续的时长在第二时长阈值以上;
(d)温度随时间的升高率大于升高率阈值所持续的时长在第二时长阈值以上,以及最高温度大于第一温度阈值所持续的时长在第二时长阈值以上;
(e)温度随时间的升高率大于升高率阈值所持续的时长在第二时长阈值以上,温差大于第二温度阈值所持续的时长在第二时长阈值以上,以及最高温度大于第三温 度阈值所持续的时长在第二时长阈值以上;
(f)获取不到电池单体的电压,以及最高温度大于第一温度阈值所持续的时长在第二时长阈值以上;
(g)获取不到电池单体的电压,以及温度随时间的升高率大于升高率阈值所持续的时长在第二时长阈值以上;
(h)获取不到电池单体的电压,温差大于第二温度阈值所持续的时长在第二时长阈值以上,以及最高温度大于第三温度阈值所持续的时长在第二时长阈值以上;
(i)在电池参数不更新的前目标时刻内,温度随时间的升高率大于升高率阈值所持续的时长在第二时长阈值以上,以及电池参数不更新所持续的时长在第三时长阈值以上;
(j)在电池参数不更新的前目标时刻内,最高温度大于第一温度阈值所持续的时长在第二时长阈值以上,以及电池参数不更新所持续的时长在第三时长阈值以上;
(k)在电池参数不更新的前目标时刻,温差大于第二温度阈值所持续的时长在第二时长阈值以上,最高温度大于第三温度阈值所持续的时长在第二时长阈值以上,以及电池参数不更新所持续的时长在第三时长阈值以上。
其中,获取不到电池单体的电压例如可以为电池单体电压采样线发生掉线故障,和/或,获取到的电池单体的电压为无效值。
上述技术方案,在电池参数与阈值的比较过程中,在比较结果持续一定时长后再确定电池箱是否发生了热失控,避免了电池参数只是某一瞬间达到了热失控的条件,实际上并没有发生热失控的,或者电池箱虽然在某一段时间发生了热失控,但之后自行恢复为正常状态的问题。
作为示例,电压阈值可以为1.7V;和/或
第一时长阈值可以为300ms;和/或
第二时长阈值可以为3000ms;和/或
第三时长阈值可以为12s;和/或
第一温度阈值可以为78℃;和/或
第二温度阈值可以为30℃;和/或
第三温度阈值可以为60℃;和/或
升高率阈值可以为3℃/3s;和/或
目标时刻可以为20s。
令一时长阈值为300ms,第二时长阈值为3000ms,第一温度阈值为78℃,第二温度阈值为30℃,第三温度阈值为60℃,升高率阈值为3℃/3s,目标时刻为20s,则故障条件可以为:
(a)最小电压Vmin<1.7V(300ms)&&最大温度Tmax>78℃(3000ms);
(b)Vmin<1.7V(300ms)&&温升dT/dt>3℃/3s(3000ms);
(c)Vmin<1.7V(300ms)&&温差(Tmax-Tmin)>30℃&&Tmax>60℃(3000ms);
(d)dT/dt>3℃/3s(3000ms)&&Tmax>78℃(3000ms);
(e)dT/dt>3℃/3s(3000ms)&&温差(Tmax-Tmin)>30℃&&Tmax>60℃(3000ms);
(f)获取不到电池单体的电压&&Tmax>78℃(3000ms);
(g)获取不到电池单体的电压&&dT/dt>3℃/3s(3000ms);
(h)获取不到电池单体的电压&&(Tmax-Tmin)>30℃&&Tmax>60℃(3000ms);
(i)在电池参数不更新前20s dT/dt>3℃/3s(3000ms)&&电池参数不更新(12s);
(j)在电池参数不更新前20s Tmax>78℃(3000ms)&&电池参数不更新(12s);
(k)在电池参数不更新前20s[温差(Tmax-Tmin)>30℃&&Tmax>60℃](3000ms)&&电池参数不更新(12s)。
需要说明的是,上述内容中括号里的时间例如(300ms),表示持续的时长在300ms以上。
上述内容提到的这些参数,如300ms、78℃等是在实践的基础上结合经验得到的值,准确率较高,避免了将未发生热失控的电池箱误确定为发生了热失控,或者将发生了热失控的电池箱误确定为未发生热失控的问题,进而能够极大地提高确定电池箱是否发生了热失控的准确率。
在BMU确定电池箱发生了热失控后,可以向VCU发送故障信息。
作为一种示例,BMU可以直接向VCU发送故障信息。例如,BMU可以通过CAN通信总线或者菊花链通信总线向VCU发送故障信息。
作为另一种示例,BMU可以通过第一网关向VCU发送故障信息。
具体而言,BMU向第一网关发送故障信息后,第一网关可以对故障信息不做任何处理,将接收到的故障信息转发给VCU。
或者,BMU可以通过第一通信协议向第一网关发送故障信息,第一网关接收到故障信息后,可以基于第二通信协议对故障信息进行转换,并向VCU发送转换后的故障信息。其中,第一通信协议可以是BMU采用的通信协议,第二通信协议可以是用电设备采用的通信协议。该技术方案,在BMU和VCU之间设置网关,BMU和VCU之间通过该网关进行通信,且BMU通过自身采用的通信协议向该网关发送故障信息。在该网关接收到该故障信息后,可以基于用电设备采用的通信协议对故障信息进行转换并将转换后的故障信息发送给VCU。这样,BMU和网关之间的通信协议是固定的,有利于将电池箱做成标准件,使得一个电池箱可以适配不同车企不同车型,不用为不同的车企或车型专门制作对应的电池箱,进而有利于节省资源和成本,并且在换电的场景下还有利于换电站的统一管理。
可选地,第一网关可以独立于用电设备设置。例如,第一网关可以集成在电池箱中。
可选地,第一网关可以设置在用电设备上。将第一网关设置在用电设备上,这样,对于第一网关来说,其和VCU之间进行通信的通信协议就是固定的。在第一网关 向VCU发送故障信息时,不需要确定其和VCU之间进行通信的通信协议,从而能够减小通信时间,提高通信效率。
比如,第一网关可以是在用电设备中额外增加的装置。
或者,第一网关可以是复用用电设备中原有的装置得到的。如图2所示,第一网关可以是用电设备的换电控制器(battery switch controller,BSC)。与VCU一样,BSC也设置在用电设备的底盘上。该技术方案,将第一网关设置为用电设备的BSC,即复用BSC作为第一网关。如此,能够减小用电设备中构件的数量,从而减小用电设备的体积和成本。
从图3可以看出,BMU和BSC之间以及BSC和VCU之间均通过CAN通信总线进行通信,且BMU和BSC之间的CAN通信总线与BSC和VCU之间的CAN通信总线不同。当然,BMU和BSC之间以及BSC和VCU之间也可以通过菊花链通信总线进行通信。
进一步地,若电池箱包括多个电池包,方法100还可以包括:BMU根据多个电池包中每个电池包的电池参数,确定每个电池包是否发生了热失控,并输出每个电池包对应的热失控故障标志位。
比如,若热失控故障标志位为“0”,则表示该电池包没有发生热失控;若热失控标志位为“1”,则表示该电池包发生了热失控。假设电池箱包括4个电池包,BMU输出的为“0110”,则可以知道第二个电池包和第三个电池包发生了热失控,第一个电池包和第四个电池包未发生热失控。
BMU输出每个电池包对应的热失控故障标志位,可以是向VCU输出每个电池包对应的热失控故障标志位,也可以是向上位机输出每个电池包对应的热失控故障标志位,当然,也可以是向自身输出每个电池包对应的热失控故障标志位。
可选地,BMU可以仅输出发生热失控的电池包的标识信息。换言之,BMU可以根据多个电池包中每个电池包的电池参数,确定发生热失控的目标电池包,并输出目标电池包的标识信息。
标识信息可以包括但不限于目标电池包的序列号(serial number,SN)和目标电池包在多个电池包中的组内标识。目标电池包在多个电池包中的组内标识可以是目标电池包在多个电池包中的编号,如可以是基于电气原理图确定的编号。
上述技术方案,除了确定电池箱是否发生了热失控,还确定发生热失控的具体电池包并输出发生热失控的电池包的标识信息,方便了接收到标识信息的设备(如上位机、VCU等)针对发生热失控的电池包括进行后续操作,如在用电设备的显示屏上显示发生热失控的电池包,以使驾驶员仅更换发生热失控的电池包,而不用更换整个电池箱,有利于节省电池成本。
在VCU接收到故障信息后,VCU可以基于故障信息对用电设备的电池箱进行热失控处理。
进一步地,VCU可以基于故障信息和用电设备的状态,对用电设备进行热失控处理。
具体而言,若用电设备还未进行上高压操作,则VCU可以禁止用电设备进行 上高压操作。
若用电设备已进行上高压操作,则VCU可以在预定时长后发送下高压指令。由于用电设备在行驶过程中若直接对用电设备进行下高压操作,则用电设备会立即失去动力,这样用电设备很容易发生安全事故,如发生侧翻等事故。因此,若用电设备已进行上高压操作,VCU可以控制用电设备慢慢地将功率降为0,这个过程所持续地时长即为预定时长。如此,能够避免用电设备发生安全事故的情况,从而有效保证用电设备的安全。
示例性地,预定时长可以为35s。
若用电设备已进行上高压操作,且VCU在预定时长内未发送下高压指令,则VCU可以断开所有接触器。
若用电设备正在行驶过程中,则VCU可以将用电设备的行车放电功率限制到0%,并发送下高压指令。
若用电设备正在行驶过程中,VCU可以将用电设备的行车回充功率限制到0%。
若用电设备正在通过充电桩进行充电,则VCU可以控制电池箱停止充电。
用电设备与充电桩之间的充电接触器也可以断开。可选地,VCU可以发送请求信息,该请求信息用于请求断开用电设备与充电桩之间的充电接触器。或者,电池管理系统(battery management system,BMS)可以主动断开用电设备与充电桩之间的充电接触器。
若用电设备正在换电站内进行换电,则VCU可以向换电站的站控系统发生故障信息。站控系统接收到故障信息后,可以基于故障信息进行处理。比如,站控系统可以停止用电设备的换电。
可选地,VCU可以通过无线通信方式向站控系统发送故障信息。例如,VCU可以通过蓝牙向站控系统发送故障信息。由于蓝牙通信具有功耗低、成本低、抗干扰能力强等优点,并且蓝牙模块体积小,便于集成。因此,能够有效降低VCU和站控系统之间的通信功耗和成本,提高通信效率。
图3示出了本申请提供的另一种热失控检测的方法300的示意性流程图。方法300可以应用于VCU,方法300可以包括以下内容中的至少部分内容。
S310:VCU接收BMU发送的故障信息,故障信息用于指示用电设备的电池箱发生了热失控。
S320:VCU根据故障信息,对电池箱进行热失控处理。
可选地,在本申请实施例中,VCU接收BMU发送的故障信息,包括:VCU通过第一网关接收故障信息。
可选地,在本申请实施例中,第一网关设置在用电设备上。
可选地,在本申请实施例中,第一网关为用电设备的BSC。
可选地,在本申请实施例中,VCU根据故障信息,对电池箱进行热失控处理,包括:VCU根据故障信息和用电设备的状态,对电池箱进行热失控处理。
该技术方案,除了故障信息之外,VCU还根据用电设备的状态对电池箱进行热失控处理,这样,VCU可以根据用电设备的不同状态确定对电池箱进行热失控处理的 不同方式,使得热失控处理的效率更高,更能提高电池箱的安全性能。
可选地,在本申请实施例中,VCU根据故障信息和用电设备的状态,对电池箱进行热失控处理,包括:若用电设备未进行上高压操作,VCU禁止用电设备进行上高压操作;若用电设备已进行上高压操作,VCU在预定时长后发送下高压指令;若用电设备已进行上高压操作,且VCU在预定时长内未发送下高压指令,VCU断开接触器;若用电设备正在行驶过程中,VCU将用电设备的行车放电功率限制到0%,并且发送下高压指令;若用电设备正在行驶过程中,VCU将用电设备的行车回充功率限制到0%;若用电设备正在通过充电桩进行充电,VCU控制电池箱停止充电;若用电设备正在换电站内进行换电,VCU向换电站的站控系统发送故障信息。
可选地,在本申请实施例中,方法300应用于重型卡车。
应理解,以上虽然分别描述了方法100和300,但是这并不意味着方法100和300是独立的,方法100和方法300的描述可以相互参考。在不矛盾的情况下,方法100和方法300的可选方案可以结合使用。例如,在方法100中的VCU基于故障信息对用电设备进行热失控处理有关的描述可以适用于方法300。
在本申请实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
并且,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
上文详细描述了本申请实施例的热失控检测的方法,下面将描述本申请实施例的热失控检测的装置。应理解,本申请实施例中的热失控检测的装置可以执行本申请实施例中的热失控检测的方法。
图4示出了本申请实施例的热失控检测的装置400的示意性框图。该装置400可以应用于BMU。如图4所示,该装置400可以包括:
处理单元410,用于根据用电设备的电池箱的电池参数,确定电池箱是否发生了热失控,电池参数包括电池单体的温度和/或电池单体的电压。
通信单元420,用于若确定电池箱发生了热失控,向整车控制器VCU发送故障信息,故障信息用于指示电池箱发生了热失控。
可选地,在本申请实施例中,通信单元420具体用于:通过第一网关向VCU发送故障信息。
可选地,在本申请实施例中,第一网关设置在用电设备上。
可选地,在本申请实施例中,第一网关为用电设备的换电控制器BSC。
可选地,在本申请实施例中,通信单元420还用于:接收电芯监控单元CSC发送的电池参数。
可选地,在本申请实施例中,电池参数包括以下参数中的至少一种:电池单体的电压中的最小电压;电池单体的温度中的最高温度;电池单体的温度随时间的升高率;电池单体的温度中最高温度与最低温度之间的温差。
可选地,在本申请实施例中,处理单元410具体用于:在电池参数满足以下至 少一个故障条件的情况下,确定电池箱发生了热失控;
故障条件包括:最小电压小于电压阈值所持续的时长在第一时长阈值以上,以及最高温度大于第一温度阈值所持续的时长在第二时长阈值以上;最小电压小于电压阈值所持续的时长在第一时长阈值以上,以及温度随时间的升高率大于升高率阈值所持续的时长在第二时长阈值以上;最小电压小于电压阈值所持续的时长在第一时长阈值以上,温差大于第二温度阈值所持续的时长在第二时长阈值以上,以及最高温度大于第三温度阈值所持续的时长在第二时长阈值以上;温度随时间的升高率大于升高率阈值所持续的时长在第二时长阈值以上,以及最高温度大于第一温度阈值所持续的时长在第二时长阈值以上;温度随时间的升高率大于升高率阈值所持续的时长在第二时长阈值以上,温差大于第二温度阈值所持续的时长在第二时长阈值以上,以及最高温度大于第三温度阈值所持续的时长在第二时长阈值以上;获取不到电池单体的电压,以及最高温度大于第一温度阈值所持续的时长在第二时长阈值以上;获取不到电池单体的电压,以及温度随时间的升高率大于升高率阈值所持续的时长在第二时长阈值以上;获取不到电池单体的电压,温差大于第二温度阈值所持续的时长在第二时长阈值以上,以及最高温度大于第三温度阈值所持续的时长在第二时长阈值以上;在电池参数不更新的前目标时刻内,温度随时间的升高率大于升高率阈值所持续的时长在第二时长阈值以上,以及电池参数不更新所持续的时长在第三时长阈值以上;在电池参数不更新的前目标时刻内,最高温度大于第一温度阈值所持续的时长在第二时长阈值以上,以及电池参数不更新所持续的时长在第三时长阈值以上;在电池参数不更新的前目标时刻,温差大于第二温度阈值所持续的时长在第二时长阈值以上,最高温度大于第三温度阈值所持续的时长在第二时长阈值以上,以及电池参数不更新所持续的时长在第三时长阈值以上。
可选地,在本申请实施例中,电压阈值为1.7V;和/或第一时长阈值为300ms;和/或第二时长阈值为3000ms;和/或第三时长阈值为12s;和/或第一温度阈值为78℃;和/或第二温度阈值为30℃;和/或第三温度阈值为60℃;和/或升高率阈值为3℃/3s;和/或目标时刻为20s。
可选地,在本申请实施例中,电池箱包括多个电池包,处理单元410还用于:根据多个电池包中每个电池包的电池参数,确定发生热失控的目标电池包;输出目标电池包的标识信息。
可选地,在本申请实施例中,装置400应用于重型卡车。
应理解,该装置400可以实现该方法100中的相应操作,为了简洁,在此不再赘述。
图5示出了本申请实施例的热失控检测的装置500的示意性框图。该装置500可以应用于VCU。如图5所示,该装置500可以包括:
通信单元510,用于接收电池管理单元BMU发送的故障信息,故障信息用于指示用电设备的电池箱发生了热失控。
处理单元520,用于根据故障信息,对电池箱进行热失控处理。
可选地,在本申请实施例中,通信单元510具体用于:通过第一网关接收故障 信息。
可选地,在本申请实施例中,第一网关设置在用电设备上。
可选地,在本申请实施例中,第一网关为用电设备的换电控制器BSC。
可选地,在本申请实施例中,处理单元520具体用于:根据故障信息和用电设备的状态,对电池箱进行热失控处理。
可选地,在本申请实施例中,处理单元520具体用于:若用电设备未进行上高压操作,禁止用电设备进行上高压操作;若用电设备已进行上高压操作,且通信单元510在预定时长内未发送下高压指令,断开接触器;若用电设备正在行驶过程中,将用电设备的行车放电功率限制到0%,并且通信单元510发送下高压指令;若用电设备正在行驶过程中,将用电设备的行车回充功率限制到0%;若用电设备正在通过充电桩进行充电,控制电池箱停止充电;
通信单元510具体用于:若用电设备正在换电站内进行换电,向换电站的站控系统发送故障信息;若用电设备已进行上高压操作,在预定时长后发送下高压指令。
可选地,在本申请实施例中,装置500应用于重型卡车。
应理解,该装置500可以实现该方法300中的相应操作,为了简洁,在此不再赘述。
图6是本申请实施例的热失控检测的装置600的硬件结构示意图。该装置600包括存储器601、处理器602、通信接口603以及总线604。其中,存储器601、处理器602、通信接口603通过总线604实现彼此之间的通信连接。
存储器601可以是只读存储器(read-only memory,ROM),静态存储设备和随机存取存储器(random access memory,RAM)。存储器601可以存储程序,当存储器601中存储的程序被处理器602执行时,处理器602和通信接口603用于执行本申请实施例的热失控检测的方法的各个步骤。
处理器602可以采用通用的中央处理器(central processing unit,CPU),微处理器,应用专用集成电路(application specific integrated circuit,ASIC),图形处理器(graphics processing unit,GPU)或者一个或多个集成电路,用于执行相关程序,以实现本申请实施例的装置中的单元所需执行的功能,或者执行本申请实施例的热失控检测的方法。
处理器602还可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,本申请实施例的热失控检测的方法的各个步骤可以通过处理器602中的硬件的集成逻辑电路或者软件形式的指令完成。
上述处理器602还可以是通用处理器、数字信号处理器(digital signal processing,DSP)、ASIC、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电 可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器601,处理器602读取存储器601中的信息,结合其硬件完成本申请实施例的热失控检测的装置中包括的单元所需执行的功能,或者执行本申请实施例的热失控检测的方法。
通信接口603使用例如但不限于收发器一类的收发装置,来实现装置600与其他设备或通信网络之间的通信。例如,装置600可以通过通信接口603向VCU发送故障信息。
总线604可包括在装置600各个部件(例如,存储器601、处理器602、通信接口603)之间传送信息的通路。
应注意,尽管上述装置600仅仅示出了存储器、处理器、通信接口,但是在具体实现过程中,本领域的技术人员应当理解,装置600还可以包括实现正常运行所必须的其他器件。同时,根据具体需要,本领域的技术人员应当理解,装置600还可包括实现其他附加功能的硬件器件。此外,本领域的技术人员应当理解,装置600也可仅仅包括实现本申请实施例所必须的器件,而不必包括图6中所示的全部器件。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序用于执行前述本申请各种实施例的方法。
上述的计算机可读存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品包括存储在计算机可读存储介质上的计算机程序,该计算机程序包括程序指令,当程序指令被计算机执行时,使计算机执行上述热失控检测的方法。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (34)

  1. 一种热失控检测的方法,其特征在于,所述方法包括:
    电池管理单元BMU根据用电设备的电池箱的电池参数,确定所述电池箱是否发生了热失控,所述电池参数包括电池单体的温度和/或电池单体的电压;
    若确定所述电池箱发生了热失控,所述BMU向整车控制器VCU发送故障信息,所述故障信息用于指示所述电池箱发生了热失控。
  2. 根据权利要求1所述的方法,其特征在于,所述BMU向整车控制器VCU发送故障信息,包括:
    所述BMU通过第一网关向所述VCU发送所述故障信息。
  3. 根据权利要求2所述的方法,其特征在于,所述第一网关设置在所述用电设备上。
  4. 根据权利要求3所述的方法,其特征在于,所述第一网关为所述用电设备的换电控制器BSC。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述BMU接收电芯监控单元CSC发送的所述电池参数。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述电池参数包括以下参数中的至少一种:
    所述电池单体的电压中的最小电压;
    所述电池单体的温度中的最高温度;
    所述电池单体的温度随时间的升高率;
    所述电池单体的温度中最高温度与最低温度之间的温差。
  7. 根据权利要求6所述的方法,其特征在于,所述电池管理单元BMU根据电池箱的电池参数,确定所述电池箱是否发生了热失控,包括:
    在所述电池参数满足以下至少一个故障条件的情况下,所述BMU确定所述电池箱发生了热失控;
    所述故障条件包括:
    所述最小电压小于电压阈值所持续的时长在第一时长阈值以上,以及所述最高温度大于第一温度阈值所持续的时长在第二时长阈值以上;
    所述最小电压小于所述电压阈值所持续的时长在所述第一时长阈值以上,以及所述温度随时间的升高率大于升高率阈值所持续的时长在所述第二时长阈值以上;
    所述最小电压小于所述电压阈值所持续的时长在所述第一时长阈值以上,所述温差大于第二温度阈值所持续的时长在所述第二时长阈值以上,以及所述最高温度大于第三温度阈值所持续的时长在所述第二时长阈值以上;
    所述温度随时间的升高率大于所述升高率阈值所持续的时长在所述第二时长阈值以上,以及所述最高温度大于所述第一温度阈值所持续的时长在所述第二时长阈值以上;
    所述温度随时间的升高率大于所述升高率阈值所持续的时长在所述第二时长阈值以上,所述温差大于所述第二温度阈值所持续的时长在所述第二时长阈值以上,以及所述最高温度大于所述第三温度阈值所持续的时长在所述第二时长阈值以上;
    获取不到所述电池单体的电压,以及所述最高温度大于所述第一温度阈值所持续的时长在所述第二时长阈值以上;
    获取不到所述电池单体的电压,以及所述温度随时间的升高率大于所述升高率阈值所持续的时长在所述第二时长阈值以上;
    获取不到所述电池单体的电压,所述温差大于所述第二温度阈值所持续的时长在所述第二时长阈值以上,以及所述最高温度大于所述第三温度阈值所持续的时长在所述第二时长阈值以上;
    在所述电池参数不更新的前目标时刻内,所述温度随时间的升高率大于所述升高率阈值所持续的时长在所述第二时长阈值以上,以及所述电池参数不更新所持续的时长在第三时长阈值以上;
    在所述电池参数不更新的前目标时刻内,所述最高温度大于第一温度阈值所持续的时长在所述第二时长阈值以上,以及所述电池参数不更新所持续的时长在所述第三时长阈值以上;
    在所述电池参数不更新的前目标时刻,所述温差大于所述第二温度阈值所持续的时长在所述第二时长阈值以上,所述最高温度大于所述第三温度阈值所持续的时长在所述第二时长阈值以上,以及所述电池参数不更新所持续的时长在所述第三时长阈值以上。
  8. 根据权利要求7所述的方法,其特征在于,所述电压阈值为1.7V;和/或
    所述第一时长阈值为300ms;和/或
    所述第二时长阈值为3000ms;和/或
    所述第三时长阈值为12s;和/或
    所述第一温度阈值为78℃;和/或
    所述第二温度阈值为30℃;和/或
    所述第三温度阈值为60℃;和/或
    所述升高率阈值为3℃/3s;和/或
    所述目标时刻为20s。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述电池箱包括多个电池包,所述方法还包括:
    所述BMU根据多个所述电池包中每个电池包的电池参数,确定发生热失控的目标电池包;
    所述BMU输出所述目标电池包的标识信息。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述方法应用于重型卡车。
  11. 一种热失控检测的方法,其特征在于,所述方法包括:
    整车控制器VCU接收电池管理单元BMU发送的故障信息,所述故障信息用于指 示用电设备的电池箱发生了热失控;
    所述VCU根据所述故障信息,对所述电池箱进行热失控处理。
  12. 根据权利要求11所述的方法,其特征在于,所述整车控制器VCU接收电池管理单元BMU发送的故障信息,包括:
    所述VCU通过第一网关接收所述故障信息。
  13. 根据权利要求12所述的方法,其特征在于,所述第一网关设置在所述用电设备上。
  14. 根据权利要求13所述的方法,其特征在于,所述第一网关为所述用电设备的换电控制器BSC。
  15. 根据权利要求11至14中任一项所述的方法,其特征在于,所述VCU根据所述故障信息,对所述电池箱进行热失控处理,包括:
    所述VCU根据所述故障信息和所述用电设备的状态,对所述电池箱进行热失控处理。
  16. 根据权利要求15所述的方法,其特征在于,所述VCU根据所述故障信息和所述用电设备的状态,对所述电池箱进行热失控处理,包括:
    若所述用电设备未进行上高压操作,所述VCU禁止所述用电设备进行上高压操作;
    若所述用电设备已进行上高压操作,所述VCU在预定时长后发送下高压指令;
    若所述用电设备已进行上高压操作,且所述VCU在所述预定时长内未发送所述下高压指令,所述VCU断开接触器;
    若所述用电设备正在行驶过程中,所述VCU将所述用电设备的行车放电功率限制到0%,并且发送下高压指令;
    若所述用电设备正在行驶过程中,所述VCU将所述用电设备的行车回充功率限制到0%;
    若所述用电设备正在通过充电桩进行充电,所述VCU控制所述电池箱停止充电;
    若所述用电设备正在换电站内进行换电,所述VCU向所述换电站的站控系统发送所述故障信息。
  17. 根据权利要求11至16中任一项所述的方法,其特征在于,所述方法应用于重型卡车。
  18. 一种热失控检测的装置,其特征在于,所述装置应用于电池管理单元BMU,所述装置包括:
    处理单元,用于根据用电设备的电池箱的电池参数,确定所述电池箱是否发生了热失控,所述电池参数包括电池单体的温度和/或电池单体的电压;
    通信单元,用于若确定所述电池箱发生了热失控,向整车控制器VCU发送故障信息,所述故障信息用于指示所述电池箱发生了热失控。
  19. 根据权利要求18所述的装置,其特征在于,所述通信单元具体用于:
    通过第一网关向所述VCU发送所述故障信息。
  20. 根据权利要求19所述的装置,其特征在于,所述第一网关设置在所述用电设备上。
  21. 根据权利要求20所述的装置,其特征在于,所述第一网关为所述用电设备的换电控制器BSC。
  22. 根据权利要求18至21中任一项所述的装置,其特征在于,所述通信单元还用于:
    接收电芯监控单元CSC发送的所述电池参数。
  23. 根据权利要求18至22中任一项所述的装置,其特征在于,所述电池参数包括以下参数中的至少一种:
    所述电池单体的电压中的最小电压;
    所述电池单体的温度中的最高温度;
    所述电池单体的温度随时间的升高率;
    所述电池单体的温度中最高温度与最低温度之间的温差。
  24. 根据权利要求23所述的装置,其特征在于,所述处理单元具体用于:
    在所述电池参数满足以下至少一个故障条件的情况下,确定所述电池箱发生了热失控;
    所述故障条件包括:
    所述最小电压小于电压阈值所持续的时长在第一时长阈值以上,以及所述最高温度大于第一温度阈值所持续的时长在第二时长阈值以上;
    所述最小电压小于所述电压阈值所持续的时长在所述第一时长阈值以上,以及所述温度随时间的升高率大于升高率阈值所持续的时长在所述第二时长阈值以上;
    所述最小电压小于所述电压阈值所持续的时长在所述第一时长阈值以上,所述温差大于第二温度阈值所持续的时长在所述第二时长阈值以上,以及所述最高温度大于第三温度阈值所持续的时长在所述第二时长阈值以上;
    所述温度随时间的升高率大于所述升高率阈值所持续的时长在所述第二时长阈值以上,以及所述最高温度大于所述第一温度阈值所持续的时长在所述第二时长阈值以上;
    所述温度随时间的升高率大于所述升高率阈值所持续的时长在所述第二时长阈值以上,所述温差大于所述第二温度阈值所持续的时长在所述第二时长阈值以上,以及所述最高温度大于所述第三温度阈值所持续的时长在所述第二时长阈值以上;
    获取不到所述电池单体的电压,以及所述最高温度大于所述第一温度阈值所持续的时长在所述第二时长阈值以上;
    获取不到所述电池单体的电压,以及所述温度随时间的升高率大于所述升高率阈值所持续的时长在所述第二时长阈值以上;
    获取不到所述电池单体的电压,所述温差大于所述第二温度阈值所持续的时长在所述第二时长阈值以上,以及所述最高温度大于所述第三温度阈值所持续的时长在所述第二时长阈值以上;
    在所述电池参数不更新的前目标时刻内,所述温度随时间的升高率大于所述升高率阈值所持续的时长在所述第二时长阈值以上,以及所述电池参数不更新所持续的时长在第三时长阈值以上;
    在所述电池参数不更新的前目标时刻内,所述最高温度大于第一温度阈值所持续的时长在所述第二时长阈值以上,以及所述电池参数不更新所持续的时长在所述第三时长阈值以上;
    在所述电池参数不更新的前目标时刻,所述温差大于所述第二温度阈值所持续的时长在所述第二时长阈值以上,所述最高温度大于所述第三温度阈值所持续的时长在所述第二时长阈值以上,以及所述电池参数不更新所持续的时长在所述第三时长阈值以上。
  25. 根据权利要求24所述的装置,其特征在于,所述电压阈值为1.7V;和/或
    所述第一时长阈值为300ms;和/或
    所述第二时长阈值为3000ms;和/或
    所述第三时长阈值为12s;和/或
    所述第一温度阈值为78℃;和/或
    所述第二温度阈值为30℃;和/或
    所述第三温度阈值为60℃;和/或
    所述升高率阈值为3℃/3s;和/或
    所述目标时刻为20s。
  26. 根据权利要求18至25中任一项所述的装置,其特征在于,所述电池箱包括多个电池包,所述处理单元还用于:
    根据多个所述电池包中每个电池包的电池参数,确定发生热失控的目标电池包;
    输出所述目标电池包的标识信息。
  27. 根据权利要求18至26中任一项所述的装置,其特征在于,所述装置应用于重型卡车。
  28. 一种热失控检测的装置,其特征在于,所述装置应用于整车控制器VCU,所述装置包括:
    通信单元,用于接收电池管理单元BMU发送的故障信息,所述故障信息用于指示用电设备的电池箱发生了热失控;
    处理单元,用于根据所述故障信息,对所述电池箱进行热失控处理。
  29. 根据权利要求28所述的装置,其特征在于,所述通信单元具体用于:
    通过第一网关接收所述故障信息。
  30. 根据权利要求29所述的装置,其特征在于,所述第一网关设置在所述用电设备上。
  31. 根据权利要求30所述的装置,其特征在于,所述第一网关为所述用电设备的换电控制器BSC。
  32. 根据权利要求28至31中任一项所述的装置,其特征在于,所述处理单元具体用于:
    根据所述故障信息和所述用电设备的状态,对所述电池箱进行热失控处理。
  33. 根据权利要求32所述的装置,其特征在于,所述处理单元具体用于:
    若所述用电设备未进行上高压操作,禁止所述用电设备进行上高压操作;
    若所述用电设备已进行上高压操作,且所述通信单元在所述预定时长内未发送所述下高压指令,断开接触器;
    若所述用电设备正在行驶过程中,将所述用电设备的行车放电功率限制到0%,并且所述通信单元发送下高压指令;
    若所述用电设备正在行驶过程中,将所述用电设备的行车回充功率限制到0%;
    若所述用电设备正在通过充电桩进行充电,控制所述电池箱停止充电;
    所述通信单元具体用于:
    若所述用电设备正在换电站内进行换电,向所述换电站的站控系统发送所述故障信息;
    若所述用电设备已进行上高压操作,在预定时长后发送下高压指令。
  34. 根据权利要求28至33中任一项所述的装置,其特征在于,所述装置应用于重型卡车。
PCT/CN2022/095429 2022-05-27 2022-05-27 热失控检测的方法和装置 WO2023225975A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/095429 WO2023225975A1 (zh) 2022-05-27 2022-05-27 热失控检测的方法和装置
CN202280041801.5A CN117480665A (zh) 2022-05-27 2022-05-27 热失控检测的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/095429 WO2023225975A1 (zh) 2022-05-27 2022-05-27 热失控检测的方法和装置

Publications (1)

Publication Number Publication Date
WO2023225975A1 true WO2023225975A1 (zh) 2023-11-30

Family

ID=88918103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095429 WO2023225975A1 (zh) 2022-05-27 2022-05-27 热失控检测的方法和装置

Country Status (2)

Country Link
CN (1) CN117480665A (zh)
WO (1) WO2023225975A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118144571A (zh) * 2024-05-11 2024-06-07 太原科技大学 一种多模型融合的动力电池热失控预警系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110967642A (zh) * 2019-04-30 2020-04-07 宁德时代新能源科技股份有限公司 热失控检测电路及方法
CN111267618A (zh) * 2020-01-20 2020-06-12 吉利汽车研究院(宁波)有限公司 一种汽车电池热失控预警控制方法及系统
CN112928348A (zh) * 2019-04-30 2021-06-08 宁德时代新能源科技股份有限公司 电池热失控的检测方法、装置、系统和电池管理单元
CN113904008A (zh) * 2021-09-27 2022-01-07 江西昌河汽车有限责任公司 一种汽车动力电池热失控预警系统
EP3936367A1 (en) * 2020-07-08 2022-01-12 Hyundai Motor Company System and method for managing battery of vehicle
CN114211961A (zh) * 2020-09-18 2022-03-22 长城汽车股份有限公司 动力电池包热失控防护方法及防护系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110967642A (zh) * 2019-04-30 2020-04-07 宁德时代新能源科技股份有限公司 热失控检测电路及方法
CN112928348A (zh) * 2019-04-30 2021-06-08 宁德时代新能源科技股份有限公司 电池热失控的检测方法、装置、系统和电池管理单元
CN111267618A (zh) * 2020-01-20 2020-06-12 吉利汽车研究院(宁波)有限公司 一种汽车电池热失控预警控制方法及系统
EP3936367A1 (en) * 2020-07-08 2022-01-12 Hyundai Motor Company System and method for managing battery of vehicle
CN114211961A (zh) * 2020-09-18 2022-03-22 长城汽车股份有限公司 动力电池包热失控防护方法及防护系统
CN113904008A (zh) * 2021-09-27 2022-01-07 江西昌河汽车有限责任公司 一种汽车动力电池热失控预警系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118144571A (zh) * 2024-05-11 2024-06-07 太原科技大学 一种多模型融合的动力电池热失控预警系统及方法

Also Published As

Publication number Publication date
CN117480665A (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
CN102361100B (zh) 一种动力锂离子电池均衡的控制方法
US9358899B2 (en) Method for revitalizing and increasing lithium ion battery capacity
CN112737018B (zh) 电池包主从动态并机方法、用电设备及存储介质
CN110429671A (zh) 一种电动汽车高适应性充电系统及方法
JP7469554B2 (ja) 電池加熱システム、電池パック及び電力消費装置
CN106450517B (zh) 电池模块组合系统
JP7418556B2 (ja) 充電方法、駆動用バッテリーのバッテリー管理システム及び充電ポスト
CN110843599A (zh) 一种大容量锂电池组充放电控制系统及其控制方法
CN111806288B (zh) 一种充电控制系统及充换电站
KR20220110665A (ko) 충전 방법 및 전력 변환 장치
WO2023225975A1 (zh) 热失控检测的方法和装置
CN202121029U (zh) 一种纯电动汽车电池管理系统
WO2023225974A1 (zh) 热失控检测的方法和装置
CN214957032U (zh) 一种可充电分散式控制电池系统
WO2023206481A1 (zh) 通信的方法和装置
CN202564988U (zh) 一种车用动力电池组充放电控制电路
CN110581576A (zh) 用于平衡电池模块之间的压差的充电电路及其充电方法
CN211252276U (zh) 一种大容量锂电池组充放电控制系统
CN113285130A (zh) 一种可充电分散式控制电池系统及其工作方法
WO2024007277A1 (zh) 电池换电的方法、装置、站控系统和换电站
WO2023206484A1 (zh) 更换电池的方法及装置、站控系统和用电装置
CN117799494B (zh) 一种电动垂直起降飞行器的高压架构
WO2024037377A1 (zh) 一种电池管理系统、方法及相关设备
CN112349978B (zh) 电池包、电池管理方法及车辆
WO2023206507A1 (zh) 电池管理设备的无线连接控制方法、装置和电池管理设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280041801.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943175

Country of ref document: EP

Kind code of ref document: A1