WO2024037377A1 - 一种电池管理系统、方法及相关设备 - Google Patents

一种电池管理系统、方法及相关设备 Download PDF

Info

Publication number
WO2024037377A1
WO2024037377A1 PCT/CN2023/111692 CN2023111692W WO2024037377A1 WO 2024037377 A1 WO2024037377 A1 WO 2024037377A1 CN 2023111692 W CN2023111692 W CN 2023111692W WO 2024037377 A1 WO2024037377 A1 WO 2024037377A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
signal
information
power supply
supply circuit
Prior art date
Application number
PCT/CN2023/111692
Other languages
English (en)
French (fr)
Inventor
徐平红
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024037377A1 publication Critical patent/WO2024037377A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present application relates to the field of battery management, and in particular, to a battery management system, method and related equipment.
  • batteries are used as energy storage and energy supply modules in equipment, and their safety risks have become increasingly prominent as energy density increases.
  • battery thermal runaway phenomena such as spontaneous combustion and explosion occur frequently. Battery thermal runaway accidents have become a bottleneck restricting the further promotion and large-scale application of batteries.
  • This application provides a battery management system (battery management system, BMS), methods and related equipment, which controls the battery unit to be connected or disconnected in the power supply circuit through the collected operating parameters of the battery unit, so as to improve the battery operation process. security.
  • BMS battery management system
  • the first aspect of this application provides a battery management system.
  • the battery management system includes N first nodes, second nodes and M control switches, where M and N are both integers greater than or equal to 2; the first node is to generate a first signal and send the N first signals to the second node; wherein the first signal includes the operating parameters of the battery unit corresponding to the first node in the power supply circuit; the second node is used to Generate a second signal based on the N first signals from the N first nodes, and send the second signal to the control switch; the control switch is used to control the battery unit corresponding to the control switch to provide power based on the second signal. connected or disconnected in a circuit.
  • the N first nodes in the battery management system are used to generate and send first signals including operating parameters of the battery units in the power supply circuit, and the second node determines based on the received N first signals and sending a second signal, so that the control switch controls the battery unit corresponding to the control switch to turn on or off in the power supply circuit based on the second signal.
  • the collected operating parameters of the battery unit are used to control the battery unit to be turned on or off in the power supply circuit to improve the safety of the battery during operation.
  • each control switch among the M control switches is connected to one or more battery units among the N battery units, and each control switch is used to control one or more battery units among the N battery units. Make or break the power supply circuit.
  • the corresponding relationship between the M control switches and the N battery units can be implemented in a variety of ways.
  • M control switches correspond to N battery units one-to-one.
  • At least one control switch among the M control switches corresponds to two or more battery units among the N battery units, and the at least one control switch is It is used to control two or more battery units among N battery units to be connected or disconnected in the power supply circuit.
  • the first part of the M control switches can be used as the main control switch (the number of main control switches is greater than or equal to 2), and each of the main control switches
  • the control switches correspond to one or more battery units among the N battery units, and the main control switch is respectively used to control one or more battery units among the N battery units to be turned on or off in the power supply circuit.
  • the second part of the M control switches serves as a backup switch, and the backup switch is used to control one or more of the N battery units in the power supply circuit when the main control switch fails. On or off for further security.
  • the battery management system mainly consists of the battery control unit (which can be referred to as the main control board, battery main control board, battery management main control board, etc.), the battery slave control unit (which can be referred to as the slave board, battery slave control board, battery management slave board, etc.) control panel, etc.).
  • the first node may be a battery management slave control board
  • the second node may be a battery management main control board.
  • the first signal indicates that the first signal
  • the second signal is used to indicate the third
  • the battery unit corresponding to a signal is disconnected in the power supply circuit; or, when the first signal (or the calculation result obtained based on the first signal) indicates that the battery unit corresponding to the first signal is normal, the second signal is used. Instructing that the battery unit corresponding to the first signal is turned on in the power supply circuit.
  • the battery unit corresponding to the first signal is abnormal, as
  • the second signal determined by the second node based on the first signal is used to instruct the M switches to control the battery unit corresponding to the first signal to be disconnected in the power supply circuit to avoid abnormal operation of the battery unit from continuing to run. Its safety status will further deteriorate, and even cause thermal runaway events such as fires and explosions in serious cases. At the same time, it is necessary to prevent abnormally operating battery units from having a negative impact on other battery units or the battery as a whole in the power supply circuit.
  • the battery unit corresponding to the first signal is normal.
  • the second signal determined by the second node based on the first signal is used to instruct the M switches to control the battery unit corresponding to the first signal to be turned on (or continuously turned on) in the power supply circuit, so that normal The operating battery unit is continuously supplied with power in this supply circuit.
  • the battery management system determines the predetermined range through pre-configuration, or the battery management system determines the predetermined range by receiving instructions from other devices (such as cloud servers, vehicle controllers, etc.), where No restrictions.
  • other devices such as cloud servers, vehicle controllers, etc.
  • k first signals among the N first signals indicate that the k first signals correspond to
  • the second signal is used to indicate that the k battery units corresponding to the k first signals are disconnected in the power supply circuit, and/or, the second signal is also used to indicate that in addition to the k
  • the remaining N-k battery units other than the k battery units corresponding to the first signal are connected in the power supply circuit.
  • the second signal determined by the second node based on the N first signals is used to instruct the M switches to control the battery units corresponding to the k first signals to be disconnected in the power supply circuit, and/or, the The second signal determined by the second node based on the N first signals is used to instruct the M switches to control the battery units corresponding to the N-k first signals to be turned on in the power supply circuit.
  • the battery management system further includes a communication unit and a processing unit, the communication unit is used to send first information to the cloud server, the first information is used to indicate the N battery units The k battery units in the power supply circuit are disconnected and/or the first information is used to indicate that the N-k battery units in the N battery units are connected in the power supply circuit; the communication unit is also used to Receive second information from the cloud server, the second information includes the control strategy when the N-k battery units are connected in the power supply circuit, or the second information includes the k battery units when the power supply circuit is interrupted. The control strategy when turning on; the processing unit is also used to update the control strategy of the power supply circuit based on the second information.
  • the battery management system can also send the first information to the cloud server and based on the information from the cloud server
  • the second information updates the control strategy of the power supply circuit in order to enable the updated control strategy of the power supply circuit to adapt to the number of connected battery cells in the power supply circuit.
  • the first information can also be replaced by other expressions.
  • the first information is used to indicate that the k battery cells among the N battery cells are abnormal and/or the first information is used to indicate that the N-k battery cells among the N battery cells are normal.
  • the first information is used to indicate that there are k battery units operating abnormally (or in an abnormal operating state) among the N battery units.
  • the first information is used to indicate that there are N-k battery units that are working normally (or are in a normal working state) among the N battery units.
  • the battery management system at least includes a second node and N first nodes
  • the communication unit sending the first information to the cloud server may include: some of the N first nodes in the battery management system
  • the communication unit (for example, k nodes corresponding to k first signals, Nk nodes corresponding to Nk first signals) sends the first information to the cloud server, and the communication units of the N first nodes in the battery management system send the first information to the cloud server.
  • the cloud server sends the first information
  • the communication unit of the second node in the battery management system sends the first information and at least one item to the cloud server.
  • the processing unit in the battery management system is also used to update the control strategy of the power supply circuit based on the second information, which may include: the processing unit of the second node in the battery management system updates the control strategy of the power supply circuit based on the second information.
  • the processing unit of some of the N first nodes in the battery management system (for example, k nodes corresponding to k first signals, N-k nodes corresponding to N-k first signals) updates the control of the power supply circuit strategy, the processing units of the N first nodes in the battery management system update at least one of the control strategies of the power supply circuit.
  • the process of the communication unit sending the first information to the cloud server includes: the communication unit sending the first information to the cloud server through a direct link, or the communication unit sending the first information to the cloud server through other relay devices.
  • the process of the communication unit receiving the second information from the cloud server includes: the communication unit receiving the second information from the cloud server through a direct link, or the communication unit receiving the second information from the cloud server through other relay devices. Second information.
  • the relay device can be a vehicle control unit (VCU), a wireless gateway (Telematics BOX, T-box), a wireless access network device (such as a 4G base station, a 5G base station, or a future 6G Base station, etc.), road side unit (road side unit, RSU), etc.
  • VCU vehicle control unit
  • T-box wireless gateway
  • wireless access network device such as a 4G base station, a 5G base station, or a future 6G Base station, etc.
  • road side unit road side unit, RSU
  • the cloud server can be a device that provides services for the battery management system.
  • the cloud server can be a remote vehicle monitoring platform, a remote server, a manufacturer's server that provides software (and or hardware) updates in the battery management system, etc. This There are no restrictions anywhere.
  • the processing unit is configured to update the control strategy of the power supply circuit based on the second information when a first condition is met, and the first condition includes at least one of the following:
  • the abnormality levels of the k battery cells do not reach the threshold
  • the operating parameters of the k battery units do not exceed the predetermined range
  • the state of health (SOH) of the N-k batteries does not exceed the threshold
  • the cumulative mileage of the equipment where the power supply circuit is located is lower than the threshold or agreed value; or,
  • the cumulative running time of the equipment where the power supply circuit is located is lower than the threshold or the agreed value.
  • the processing unit can determine that the operation risk of the k abnormally working battery units and/or the normal working N-k battery units in the current battery is controllable. To this end, the The processing unit may execute updating the control strategy of the power supply circuit based on the second information.
  • the processing unit may determine that the operating risk of k abnormally working battery units and/or N-k normally working battery units in the current battery is too high, and the processing The unit does not update the control strategy for the power supply circuit based on the second information, and/or the processing unit generates and broadcasts alarm information (through voice, images, text, etc.) in order to make the user aware of the risks of the battery operation. Subsequent Users can perform maintenance, replacement and other operations on the battery to improve safety.
  • the second node is also used to control charging of the k battery units to a predetermined amount of electricity.
  • the second node can also control the charging of the k battery units to a predetermined amount of power, so as to facilitate continuous monitoring of the k abnormally working battery units to avoid the abnormally working k battery units due to no power supply.
  • the corresponding k first nodes cannot know the operating parameters of the k battery units, further improving the safety of battery use.
  • the second node may also be used to control charging of one or more battery units among the N battery units.
  • the operating parameters include internal operating parameters and/or external operating parameters of the battery unit;
  • the internal operating parameters include the internal temperature of the battery unit, internal gas types, air pressure, and gas concentration. , one or more of voltage, current, potential of the positive electrode piece, potential of the negative electrode piece, electrolyte signal, internal resistance and stress;
  • the external operating parameters include the external temperature of the battery unit, gas type, air pressure, gas One or more of concentration, voltage, current, stress, electrolyte signal, smoke sense, internal resistance and stress.
  • the operating parameters of the battery unit may also include other information that can characterize the status of the battery cells, battery cell groups, or modules. This application does not limit the type and quantity of the operating parameters.
  • the battery unit is one or more battery cells, one or more battery cell groups, or one or more modules.
  • the number of cells (or cell groups, or modules) contained in different battery units may be the same or different, which is not limited here.
  • a module in a battery, includes at least two battery packs or cells, and a battery pack includes at least two cells.
  • the battery management system further includes a communication unit configured to send an indication indicating the abnormality when the first signal indicates that the battery unit corresponding to the first signal is abnormal. information.
  • the battery management system further includes a communication unit and a user interaction unit.
  • the communication unit is used to report to the battery unit.
  • the user interaction unit sends indication information indicating the abnormality, so as to indicate the abnormality through at least one of voice, text, and image information.
  • the battery management system can indicate an abnormality in the battery unit by sending indication information to other devices, or by broadcasting the indication to the user, so that the recipient of the indication can learn about the abnormality, and can subsequently Further operations such as monitoring and maintenance of the battery unit are performed based on the abnormality to improve the safety of battery use.
  • the second aspect of the present application provides a battery management method.
  • the method is executed by a second node, or the method is executed by some components (such as a processor, a chip or a chip system, etc.) in the second node, or the method also It can be implemented by a logic module or software that can realize all or part of the functions of the second node.
  • the method is described by taking the example that the method is executed by the second node.
  • the second node receives N first signals from N first nodes.
  • the first signals include operating parameters of the battery unit corresponding to the first node in the power supply circuit.
  • N is greater than or equal to 2.
  • the second node When the circuit is connected or disconnected, M is an integer greater than or equal to 2.
  • the N first signals received by the second node respectively include operating parameters of N battery units in the power supply circuit, and the second node generates and sends a second signal based on the N first signals, so that M A control switch controls the corresponding battery unit to be turned on or off in the power supply circuit based on the second signal.
  • the second node controls the battery unit to be turned on or off in the power supply circuit through the collected operating parameters of the battery unit to improve safety during battery operation.
  • the battery management system mainly consists of a battery control unit (which can be referred to as a main control board, battery main control board, battery management main control board, etc.), a battery slave control unit (which can be referred to as a slave board, battery slave control board, battery management board, etc.) It is composed of control panel, etc.).
  • the first node may be a battery management slave control board
  • the second node may be a battery management main control board.
  • the first signal indicates that the first signal
  • the second signal is used to indicate that the battery unit corresponding to the first signal is disconnected in the power supply circuit; or, when the first signal or the calculation result obtained based on the first signal indicates that the third
  • the second signal is used to indicate that the battery unit corresponding to the first signal is turned on in the power supply circuit.
  • the battery unit corresponding to the first signal is abnormal, as
  • the second signal determined by the second node based on the first signal is used to instruct the M switches to control the battery unit corresponding to the first signal to be disconnected in the power supply circuit to avoid abnormal operation of the battery unit from continuing to run. Its safety status will further deteriorate, and even cause thermal runaway events such as fires and explosions in serious cases. At the same time, it is necessary to prevent abnormally operating battery units from having a negative impact on other battery units or the battery as a whole in the power supply circuit.
  • the battery unit corresponding to the first signal is normal.
  • the second signal determined by the second node based on the first signal is used to instruct the M switches to control the battery unit corresponding to the first signal to be turned on (or continuously turned on) in the power supply circuit, so that normal The operating battery unit is continuously supplied with power in this supply circuit.
  • the second node determines the predetermined range through pre-configuration, or the second node determines the predetermined range by receiving instructions from other devices (such as cloud servers, vehicle controllers, etc.), where No restrictions.
  • other devices such as cloud servers, vehicle controllers, etc.
  • k first signals among the N first signals indicate that the k first signals correspond to
  • the second signal is used to indicate that the k battery units corresponding to the k first signals are disconnected in the power supply circuit, and/or, the second signal is also used to indicate that in addition to the k
  • the remaining N-k battery units other than the k battery units corresponding to the first signal are connected in the power supply circuit.
  • the k electrical signals corresponding to the k first signals Pool unit abnormality the second signal determined by the second node based on the N first signals is used to instruct the M switches to control the battery units corresponding to the k first signals to be disconnected in the power supply circuit, and/or, the The second signal determined by the second node based on the N first signals is used to instruct the M switches to control the battery units corresponding to the Nk first signals to be turned on in the power supply circuit.
  • the method further includes: the second node sending first information to the cloud server, the first information being used to indicate that the k battery units among the N battery units are in The power supply circuit is disconnected and/or the first information is used to indicate that the N-k battery units among the N battery units are connected in the power supply circuit; the second node receives the second information from the cloud server, The second information includes the control strategy when the N-k battery units are connected in the power supply circuit, or the second information includes the control strategy when the k battery units are disconnected in the power supply circuit; the second node The control strategy of the power supply circuit is updated based on the second information.
  • the second node can also send the first information to the cloud server and send the first information to the cloud server based on the data received from the cloud server.
  • the second information updates the control strategy of the power supply circuit in order to enable the updated control strategy of the power supply circuit to adapt to the number of connected battery cells in the power supply circuit.
  • the process of the second node sending the first information to the cloud server includes: the second node sending the first information to the cloud server through a direct link, or the second node sending the first information to the cloud server through other relay devices.
  • the process of the second node receiving the second information from the cloud server includes: the second node receiving the second information from the cloud server through a direct link, or the second node receiving the second information from the cloud server through other relay devices. Second information of the cloud server.
  • the relay device can be a vehicle control unit (VCU), a wireless gateway (Telematics BOX, T-box), a wireless access network device (such as a 4G base station, a 5G base station, or a future 6G Base station, etc.), road side unit (road side unit, RSU), etc.
  • VCU vehicle control unit
  • T-box wireless gateway
  • wireless access network device such as a 4G base station, a 5G base station, or a future 6G Base station, etc.
  • road side unit road side unit, RSU
  • the second node updating the control strategy of the power supply circuit based on the second information includes: when the first condition is met, the second node updates the control strategy of the power supply circuit based on the second information.
  • control strategy, the first condition includes at least one of the following:
  • the abnormality levels of the k battery cells do not reach the threshold
  • the operating parameters of the k battery units do not exceed the predetermined range
  • the health status SOH of the N-k batteries does not exceed the threshold
  • the cumulative mileage of the equipment where the power supply circuit is located is lower than the threshold or agreed value; or,
  • the cumulative running time of the equipment where the power supply circuit is located is lower than the threshold or the agreed value.
  • the second node when the above first condition is met, can determine that the operation risk of the k abnormally working battery units and/or the normal working N-k battery units in the current battery is controllable. To this end, The second node may update the control strategy of the power supply circuit based on the second information.
  • the second node may determine that the operation risk of k abnormally working battery units and/or N-k normally working battery units in the current battery is too high, and the second node does not Execute the control strategy for updating the power supply circuit based on the second information, and/or, the second node generates and broadcasts alarm information (through voice, image, text, etc.), in order to make the user aware of the risks of the battery operation, and subsequent users The battery can be repaired, replaced, etc. to improve safety.
  • the method further includes: the second node controlling the k battery units to charge to a predetermined amount of electricity.
  • the second node can also control the charging of the k battery units to a predetermined amount of power, so as to facilitate continuous monitoring of the k abnormally working battery units to avoid the abnormally working k battery units due to no power supply.
  • the corresponding k first nodes cannot know the operating parameters of the k battery units, further improving the safety of battery use.
  • the second node may also be used to control charging of one or more battery units among the N battery units.
  • the operating parameters include internal operating parameters and/or external operating parameters of the battery unit;
  • the internal operating parameters include the internal temperature of the battery unit, internal gas types, air pressure, and gas concentration. , voltage, current, positive pole One or more of the potential of the electrode piece, the potential of the negative electrode piece, electrolyte signal, internal resistance and stress;
  • the external operating parameters include the external temperature of the battery unit, gas type, air pressure, gas concentration, voltage, current, One or more of stress, electrolyte signal, smoke sense, internal resistance and stress.
  • the operating parameters of the battery unit may also include other information that can characterize the status of the battery cells, battery cell groups, or modules. This application does not limit the type and quantity of the operating parameters.
  • the battery unit is one or more battery cells, one or more battery cell groups, or one or more modules.
  • the number of cells (or cell groups, or modules) contained in different battery units may be the same or different, which is not limited here.
  • a module in a battery, includes at least two battery packs or cells, and a battery pack includes at least two cells.
  • the method further includes: when the first signal indicates that the battery unit corresponding to the first signal is abnormal, the second node sends indication information indicating the abnormality.
  • the method further includes: when the first signal indicates that the battery unit corresponding to the first signal is abnormal, the second node sends indication information indicating the abnormality to the user interaction unit. , to indicate the abnormality with at least one of voice, text, and image information through the user interaction unit.
  • the second node can indicate the abnormality of the battery unit by sending indication information to other devices, or by broadcasting the indication to the user, etc., so that the recipient of the indication can learn about the abnormality, and can subsequently Further operations such as monitoring and maintenance of the battery unit are performed based on the abnormality to improve the safety of battery use.
  • the third aspect of this application provides a battery management method, which is executed by a cloud server, or the method is executed by some components in the cloud server (such as a processor, a chip or a chip system, etc.), or the method can also be executed by A logical module or software implementation that can realize all or part of the cloud server functions.
  • the method is described by taking the example of the method being executed by the cloud server.
  • the cloud server receives first information from the battery management system, the first information is used to indicate that the k battery units among the N battery units are disconnected in the power supply circuit and/or the first information is used to indicate Indicates that the N-k battery units among the N battery units are turned on in the power supply circuit; N is an integer greater than or equal to 2; the cloud server determines second information based on the first information, and the second information includes the N-k The control strategy when the k battery units are connected in the power supply circuit, or the second information includes the control strategy when the k battery units are disconnected in the power supply circuit; the cloud server sends the control strategy to the battery management system 2.
  • Information is included in the battery management system.
  • the first information received by the cloud server is used to indicate that the k battery units among the N battery units are disconnected in the power supply circuit and/or the first information is used to indicate that the k battery units among the N battery units are disconnected.
  • N-k battery units are connected in the power supply circuit.
  • the cloud server determines and sends second information based on the first information, so that the battery management system updates the control strategy of the power supply circuit based on the second information, in order to make the updated
  • the control strategy of the power supply circuit can adapt to the number of battery cells connected in the power supply circuit.
  • the first information can also be replaced by other expressions.
  • the first information is used to indicate that the k battery cells among the N battery cells are abnormal and/or the first information is used to indicate that the N-k battery cells among the N battery cells are normal.
  • the first information is used to indicate that there are k battery units operating abnormally (or in an abnormal operating state) among the N battery units.
  • the first information is used to indicate that there are N-k battery units that are working normally (or are in a normal working state) among the N battery units.
  • the battery management system includes at least N first nodes and second nodes
  • the cloud server receiving the first information from the battery management system may include: the cloud server receiving the Nth information from the battery management system.
  • the first information sent by some nodes in a node for example, k nodes corresponding to k first signals, N-k nodes corresponding to N-k first signals
  • the cloud server receives the N first information from the battery management system
  • the cloud server receives at least one of the first information sent by the node and the first information sent by the second node in the battery management system.
  • the cloud server receiving the first information from the battery management system includes: the cloud server receiving the first information from the battery management system through a direct link, or the cloud server receiving the first information from the battery management system through other relay devices.
  • the process of the cloud server sending the second information to the battery management system includes: the cloud server sending the second information to the battery management system through a direct link, or the cloud server sending the second information to the battery management system through other relay devices. The battery management system sends the second information.
  • the relay device can be a vehicle control unit (VCU), a wireless gateway (Telematics BOX, T-box), a wireless access network device (such as a 4G base station, a 5G base station, or a future 6G base station, etc.), road side unit (road side unit, RSU) etc.
  • VCU vehicle control unit
  • T-box wireless gateway
  • wireless access network device such as a 4G base station, a 5G base station, or a future 6G base station, etc.
  • road side unit road side unit, RSU
  • the cloud server determining the second information based on the first information includes: the cloud server determining the second information based on the first information and third information, and the third information includes Historical operating data for one or more battery management systems.
  • the historical operating data of one or more battery management systems may include: when some or all battery units in one or more battery management systems are connected in the power supply circuit, the battery management system (or the battery management system equipped with the battery management system) can equipment) control strategy for normal operation.
  • the historical operating data of any battery management system includes when some or all battery units are connected in the power supply circuit, which can make the battery The control strategy for the normal operation of the management system (or the device equipped with the battery management system).
  • control strategy may include power on and off management information for some or all battery units.
  • the power on and off management information includes one or more of the following:
  • Battery parameter threshold battery parameter sampling (such as the number of battery cells, voltage, current, temperature, insulation, collision, impedance, smoke, electrolyte signal, potential, stress, gas concentration, air pressure, gas type, potential of the positive electrode, negative electrode Potential of pole piece, electrolyte signal, etc.), high-voltage interlock, crash signal, monitoring and diagnosis of electronic devices such as relays, battery status assessment, charging control, discharge control, thermal management control strategy, fault diagnosis, early warning and One or more of alarm control, battery consistency control, balancing function, information storage, communication function, protection function, etc.
  • battery parameter sampling such as the number of battery cells, voltage, current, temperature, insulation, collision, impedance, smoke, electrolyte signal, potential, stress, gas concentration, air pressure, gas type, potential of the positive electrode, negative electrode Potential of pole piece, electrolyte signal, etc.
  • high-voltage interlock crash signal
  • monitoring and diagnosis of electronic devices such as relays, battery status assessment, charging control, discharge control, thermal management control strategy, fault diagnosis, early warning and
  • the cloud server can obtain the third information in a variety of ways.
  • the cloud server collects the third information through a wired or wireless communication connection with the one or more battery management systems, or the cloud server
  • the third information is obtained through manual configuration (or writing), which is not limited here.
  • the cloud server in addition to using the first information as one of the basis for determining the second information, can also use the third information including historical operating data of one or more battery management systems as the third information.
  • One of the basis for determining the second information is to determine the second information through the control strategy with better operating effect in the historical operation data of other battery management systems, in order to improve the battery management system's control of the power supply circuit based on the second information update The operational effect after the strategy.
  • a fourth aspect of the present application provides a communication device that can implement the method in the above second aspect or any possible implementation manner of the second aspect.
  • the device includes corresponding units or modules for performing the above method.
  • the units or modules included in the device can be implemented by software and/or hardware.
  • the device can be a second node, or the device can be a component in the second node (such as a processor, a chip or a chip system, etc.), or the device can also be a device that can implement all or part of the functions of the second node.
  • Logic modules or software are examples of the functions of the second node.
  • the device includes a processing unit and a transceiver unit; the transceiver unit is used to receive N first signals from N first nodes, the first signals include operating parameters of the battery unit corresponding to the first node in the power supply circuit , N is an integer greater than or equal to 2; the processing unit is used to generate a second signal based on the N first signals; the transceiver unit is also used to send the second signal to the M control switches, and the second signal is To indicate whether the battery unit corresponding to the control switch is turned on or off in the power supply circuit, M is an integer greater than or equal to 2.
  • the first signal or the calculation result obtained based on the first signal indicates that the first signal corresponds to When the battery unit is abnormal, the second signal is used to indicate that the battery unit corresponding to the first signal is disconnected in the power supply circuit; or, when the first signal or the calculation result obtained based on the first signal indicates the first signal When the corresponding battery unit is normal, the second signal is used to indicate that the battery unit corresponding to the first signal is turned on in the power supply circuit.
  • k first signals among the N first signals or calculation results obtained based on the k first signals indicate k corresponding to the k first signals.
  • the second signal is used to indicate that the k battery units corresponding to the k first signals are disconnected in the power supply circuit, and/or, the second signal is also used to indicate that in addition to the k first signals The remaining N-k battery cells other than the k battery cells corresponding to the signal are connected in the power supply circuit.
  • the transceiver unit is also configured to send first information to the cloud server, where the first information is used to indicate that the k battery units among the N battery units are in the power supply circuit. Interruption and/or the first information is used to indicate that the Nk battery units among the N battery units are connected in the power supply circuit; the transceiver unit is also used to receive the second information from the cloud server, the The second information includes the control strategy when the Nk battery units are turned on in the power supply circuit, or the second information includes the k batteries a control strategy when the unit is disconnected in the power supply circuit; the processing unit is further configured to update the control strategy of the power supply circuit based on the second information.
  • the processing unit when a first condition is met, is configured to update the control strategy of the power supply circuit based on the second information, and the first condition includes at least one of the following:
  • the abnormality levels of the k battery cells do not reach the threshold
  • the operating parameters of the k battery units do not exceed the predetermined range
  • the health status SOH of the N-k batteries does not exceed the threshold
  • the cumulative mileage of the equipment where the power supply circuit is located is lower than the threshold or agreed value
  • the cumulative running time of the equipment where the power supply circuit is located is lower than the threshold or the agreed value.
  • the processing unit is also used to control the k battery units to be charged to a predetermined amount of electricity.
  • the operating parameters include internal operating parameters and/or external operating parameters of the battery unit;
  • the internal operating parameters include the internal temperature, internal gas type, air pressure, and gas concentration of the battery unit. , one or more of voltage, current, potential of the positive electrode piece, potential of the negative electrode piece, electrolyte signal, internal resistance and stress;
  • the external operating parameters include the external temperature of the battery unit, gas type, air pressure, gas One or more of concentration, voltage, current, stress, electrolyte signal, smoke sense, internal resistance and stress.
  • the operating parameters of the battery unit may also include other information that can characterize the status of the battery cells, battery cell groups, or modules. This application does not limit the type and quantity of the operating parameters.
  • the battery unit is one or more battery cells, one or more battery cell groups, or one or more modules.
  • a fifth aspect of the present application provides a communication device that can implement the method in the above third aspect or any possible implementation manner of the third aspect.
  • the device includes corresponding units or modules for performing the above method.
  • the units or modules included in the device can be implemented by software and/or hardware.
  • the device can be a cloud server, or the device can be a component in the cloud server (such as a processor, a chip or a chip system, etc.), or the device can also be a logic module that can implement all or part of the cloud server functions or software.
  • the device includes a processing unit and a transceiver unit; the transceiver unit is used to receive the first information from the battery management system, the first information is used to indicate that the k battery units among the N battery units are disconnected in the power supply circuit And/or the first information is used to indicate that the N-k battery units among the N battery units are turned on in the power supply circuit; N is an integer greater than or equal to 2; the processing unit is used to determine based on the first information Second information, the second information includes the control strategy when the N-k battery units are connected in the power supply circuit, or the second information includes the control strategy when the k battery units are disconnected in the power supply circuit; The transceiver unit is also used to send the second information to the battery management system.
  • the transceiver unit is used to receive the first information from the battery management system, the first information is used to indicate that the k battery units among the N battery units are disconnected in the power supply circuit And/or the first information is used to indicate that the N-k battery units among the N battery units are turned on in
  • the cloud server determines the second information based on the first information: the cloud server determines the second information based on the first information and third information, and the third information includes Historical operating data for one or more battery management systems.
  • a sixth aspect of the present application provides a communication device, including at least one processor, the at least one processor is coupled to a memory; the memory is used to store programs or instructions; the at least one processor is used to execute the program or instructions, to
  • the device is configured to implement the method described in the aforementioned second aspect or any possible implementation manner of the second aspect, or the device is configured to implement the method described in the aforementioned third aspect or any possible implementation manner of the third aspect. .
  • the seventh aspect of the present application provides a communication device, including at least one logic circuit and an input and output interface; the input and output interface is used to input N first signals, and the N first signals respectively include N battery units in the power supply circuit. operating parameters, N is an integer greater than or equal to 2; the logic circuit is used to generate a second signal based on the N first signals, the second signal is used to indicate at least one battery unit to be turned on or off in the power supply circuit On; the input-output interface is also used to output the second signal; the logic circuit is also used to perform the method described in the aforementioned second aspect or any possible implementation of the second aspect.
  • An eighth aspect of the present application provides a communication device, including at least one logic circuit and an input and output interface; the input and output interface is used to input first information, and the first information is used to indicate the k batteries among the N battery units.
  • the unit is disconnected in the power supply circuit and/or the first information is used to indicate that the Nk battery units among the N battery units are connected in the power supply circuit; N is an integer greater than or equal to 2;
  • the logic circuit uses Determining second information based on the first information, the second information includes the control strategy when the Nk battery units are turned on in the power supply circuit, or the second information includes the k battery units in the power supply circuit.
  • the control strategy when disconnected; the input and output connected The port is also used to output the second information; the logic circuit is also used to perform the method described in the foregoing third aspect or any possible implementation manner of the third aspect.
  • a ninth aspect of the present application provides a computer-readable storage medium that stores instructions.
  • the processor executes the above second aspect or any possible implementation of the second aspect.
  • the method described above, or the processor performs the method described in the above third aspect or any possible implementation manner of the third aspect.
  • a tenth aspect of the present application provides a computer program product, including instructions.
  • the processor executes the method described in the above second aspect or any possible implementation of the second aspect, Or, the processor executes the method described in the above third aspect or any possible implementation manner of the third aspect.
  • the eleventh aspect of the embodiment of the present application provides a chip system, which includes at least one processor and is used to support a communication device to implement the functions involved in the above second aspect or any possible implementation manner of the second aspect. , or, used to support the communication device to implement the functions involved in the above third aspect or any possible implementation manner of the third aspect.
  • the chip system may also include a memory for storing necessary program instructions and data of the communication device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the chip system further includes an interface circuit that provides program instructions and/or data to the at least one processor.
  • a twelfth aspect of the present application provides a device, which is characterized in that the device includes the battery management system of the above-mentioned first aspect or any possible implementation of the first aspect.
  • the device is a vehicle or an energy storage system.
  • a thirteenth aspect of this application provides a system, including the battery management system of the above-mentioned first aspect or any possible implementation of the first aspect, and N battery units.
  • the system is a battery device.
  • Figure 1a is a schematic diagram of a battery management system provided by an embodiment of the present application.
  • Figure 1b is another schematic diagram of a battery management system provided by an embodiment of the present application.
  • Figure 1c is another schematic diagram of a battery management system provided by an embodiment of the present application.
  • Figure 1d is another schematic diagram of a battery management system provided by an embodiment of the present application.
  • FIG. 2 is another schematic diagram of a battery management system provided by an embodiment of the present application.
  • FIG. 3 is another schematic diagram of a battery management system provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of a battery management method provided by an embodiment of the present application.
  • Figure 5 is another schematic diagram of a battery management method provided by an embodiment of the present application.
  • Figure 6a is another schematic diagram of a battery management system provided by an embodiment of the present application.
  • Figure 6b is another schematic diagram of a battery management system provided by an embodiment of the present application.
  • Figure 7a is another schematic diagram of a battery management system provided by an embodiment of the present application.
  • Figure 7b is another schematic diagram of a battery management system provided by an embodiment of the present application.
  • Figure 7c is another schematic diagram of a battery management system provided by an embodiment of the present application.
  • Figure 8a is another schematic diagram of a battery management system provided by an embodiment of the present application.
  • Figure 8b is another schematic diagram of a battery management system provided by an embodiment of the present application.
  • Figure 8c is another schematic diagram of a battery management system provided by an embodiment of the present application.
  • Figure 9 is another schematic diagram of a battery management method provided by an embodiment of the present application.
  • Figure 10 is another schematic diagram of a battery management method provided by an embodiment of the present application.
  • Figure 11 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • Figure 12 is another schematic diagram of a communication device provided by an embodiment of the present application.
  • batteries are used as energy storage and energy supply modules in equipment, and their safety risks have become increasingly prominent as energy density increases.
  • battery thermal runaway phenomena such as spontaneous combustion and explosion occur frequently. Battery thermal runaway accidents have become a bottleneck restricting the further promotion and large-scale application of batteries.
  • lithium batteries in new energy vehicles As an example, as the number of charge and discharge cycles of lithium batteries increases, the lithium batteries in vehicles gradually age and decline, which will cause the consistency of the lithium batteries to gradually deteriorate.
  • the degree of aging or self-discharge of a single battery cell is greater than that of other cells, the voltage difference between different cells in the battery system will generally become larger.
  • the battery system containing this cell when the battery system containing this cell is continued to be used, it may cause the cell and/or other cells to overcharge or over-discharge, over-temperature, lithium precipitation, etc., thereby accelerating the aging and decline of the entire battery system. In severe cases, it can cause thermal runaway accidents such as fires and explosions.
  • battery thermal runaway generally involves a thermal diffusion process, which is mainly caused by the heat being transferred to adjacent single cells after thermal runaway occurs in a single cell. After the adjacent single cells are affected, thermal runaway will continue to occur, leading to thermal runaway. spread, eventually causing safety accidents of new energy vehicles.
  • the active protection system uses the battery management system to perform voltage equalization, thermal management, etc. to enhance the voltage consistency of the battery and prevent over-temperature.
  • the battery management system has limited means and effects of control and cannot directly isolate the abnormal cell from the circuit, causing the cell to continue to deteriorate as the entire battery management system is used, causing its safety status to further deteriorate. It is impossible to effectively avoid thermal runaway when a short circuit in the battery cell worsens; or the entire battery management system can only be shut down, rendering the vehicle unusable.
  • Another implementation method is to use a high-voltage relay solution to control the spread of battery thermal runaway.
  • the battery management system can control the turning on and off of the high-voltage relay, thereby realizing the turning on and off of the entire battery high-voltage circuit.
  • the high-voltage relay is disconnected, the entire battery high-voltage circuit is disconnected, and the vehicle loses power and cannot continue to be used.
  • relays are generally installed at the positive and negative interfaces of the battery, and cannot directly isolate individual abnormal cells from the high-voltage circuit.
  • this application provides a battery management system, method and related equipment, which controls the battery unit to be connected or disconnected in the power supply circuit through the collected operating parameters of the battery unit, so as to improve the safety during battery operation. sex. This will be further introduced below with reference to the accompanying drawings.
  • Figure 1a is a schematic diagram of the battery management system provided by this application.
  • the battery management system includes N first nodes, second nodes and M control switches.
  • M and N are both integers greater than or equal to 2 (in the illustrated example, M and N are both greater than 2). example).
  • the first node is used to generate a first signal and send the first signal to the second node; wherein the first signal includes operating parameters of the battery unit corresponding to the first node in the power supply circuit; the second The node is used to generate a second signal based on the first signal and send the second signal to the control switch; the control switch is used to control the battery unit corresponding to the control switch to turn on or off in the power supply circuit based on the second signal. disconnect.
  • the first node in the battery management system is used to generate and send a first signal including operating parameters of the battery unit in the power supply circuit, and the second node generates and sends a signal based on the received first signal.
  • Send a second signal so that the control switch is based on The second signal controls at least one battery unit to be turned on or off in the power supply circuit.
  • the collected operating parameters of the battery unit are used to control the battery unit to be turned on or off in the power supply circuit to improve the safety of the battery during operation.
  • each control switch among the M control switches is connected to one or more battery units among the N battery units, and each control switch is used to control one of the N battery units.
  • One or more battery cells are switched on or off in the supply circuit.
  • M control switches correspond to N battery units one-to-one.
  • At least one control switch among the M control switches corresponds to two or more battery units among the N battery units, and the at least one control switch is It is used to control two or more battery units among N battery units to be connected or disconnected in the power supply circuit.
  • the first part of the M control switches can be used as the main control switch (the number of main control switches is greater than or equal to 2), and each control switch in the main control switch The switch corresponds to one or more battery units among the N battery units, and the main control switch is respectively used to control one or more battery units among the N battery units to be turned on or off in the power supply circuit.
  • the second part of the M control switches serves as a backup switch, and the backup switch is used to control one or more of the N battery units in the power supply circuit when the main control switch fails. On or off for further security.
  • the battery management system shown in Figure 1a mainly consists of a battery control unit (which can be referred to as a main control board, battery main control board, battery management main control board, etc.), a battery slave control unit (which can be referred to as a slave board, battery slave control unit, etc.). board, battery management consists of control board, etc.).
  • the first node may be a battery management slave control board
  • the second node may be a battery management main control board.
  • FIG 1a is an implementation example of the battery management system provided by this application.
  • the battery management system provided by this application can also be implemented as shown in Figure 1b, Figure 1c or Figure 1d. There are no limitations here.
  • the battery management system shown in Figure 1a can be applied to devices that need to be powered by batteries, such as vehicles, energy storage systems, etc.
  • the battery management system shown in Figure 1a being applied to a vehicle as an example.
  • the vehicle can be equipped with the battery management system shown in Figure 1a.
  • the battery management system in the vehicle can also implement the control strategy of the battery management system in the vehicle (or the control strategy of other modules inside the vehicle) through the communication connection with the cloud server.
  • Over-the-air technology (OTA) upgrade is an example of the battery management system in the vehicle.
  • the cloud server can be a device that provides services for the battery management system.
  • the cloud server can be a remote vehicle monitoring platform, a remote server, a manufacturer's server that provides software (and or hardware) updates in the battery management system, etc. This There are no restrictions anywhere.
  • the first signal collected by the first node indicates that the When the battery unit corresponding to the first signal is abnormal, the second signal is used to indicate that the battery unit corresponding to the first signal is disconnected in the power supply circuit; or, the first signal collected at the first node (or based on the first node When the calculation result obtained from the collected first signal indicates that the battery unit corresponding to the first signal is normal, the second signal is used to indicate that the battery unit corresponding to the first signal is turned on in the power supply circuit.
  • the battery unit corresponding to the first signal is abnormal.
  • the second signal determined by the second node based on the first signal is used to instruct the M switches to control the battery unit corresponding to the first signal to be disconnected in the power supply circuit to prevent the abnormally operating battery unit from continuing to operate and causing its safety
  • the condition will further deteriorate, and even cause thermal runaway events such as fires and explosions in severe cases.
  • it is necessary to avoid abnormally operating battery units from having a negative impact on other battery units or the battery as a whole in the power supply circuit.
  • the battery unit corresponding to the first signal is normal.
  • the second signal determined by the second node based on the first signal is used to instruct the M switches to control the battery unit corresponding to the first signal to be turned on (or continuously turned on) in the power supply circuit, so that normal The operating battery unit is continuously supplied with power in this supply circuit.
  • the battery management system determines the predetermined range (or the threshold, agreed value, etc. mentioned below) in a preconfigured manner, or the battery management system (or the second node) determines the predetermined range through
  • the predetermined range is determined by receiving instructions from other devices (such as cloud servers, vehicle controllers, etc.), which is not limited here.
  • the second node may determine whether the operating parameter of the battery unit included in the first signal exceeds a predetermined range through a threshold. Taking the operating parameter as temperature as an example, if the threshold is greater than -10 degrees Celsius and less than 55 degrees Celsius, then in the If the operating parameters of the battery unit included in a signal include the temperature of the battery unit and the temperature is within the range indicated by the threshold, the second node (or the first node) can determine the operating parameters of the battery unit included in the first signal.
  • the operating parameter exceeds the predetermined range; conversely, when the operating parameter of the battery unit included in the first signal includes the temperature of the battery unit and the temperature is within the range indicated by the threshold, the second node (or the first node) can It is determined that the operating parameter of the battery unit included in the first signal exceeds a predetermined range.
  • the second node may determine whether the calculation result obtained based on the first signal exceeds a predetermined range through a threshold. For example, the second node will use the operating parameters directly measured by the first node to calculate data that cannot be directly measured through a preset algorithm. These data can be said to be secondary variables, such as state of charge (SOC). , state of health (SOH), power state (state of power, SOP), remaining battery capacity (state of energy, SOE), functional state (state of function, SOF), voltage difference across the entire battery system, or The difference between the maximum voltage of any cell and the minimum voltage of any cell, etc.
  • the second node can determine whether the data exceeds the predetermined range based on the threshold. If so, the second node determines that the operating parameters of the battery unit included in the first signal exceed the predetermined range; if not, the second node determines that the first signal The operating parameters of the included battery unit are outside the predetermined range.
  • the threshold may be pre-configured on the second node (or the first node), or the threshold may be configured by other devices (such as cloud servers) to the second node (or the first node). Sent, there is no limit here.
  • k first signals among the N first signals collected by the N first nodes (or based on the k first signals
  • the second signal is used to indicate that the k battery units corresponding to the k first signals are disconnected in the power supply circuit, and /Or, the second signal is also used to indicate that the remaining N-k battery units except the k battery units corresponding to the k first signals are turned on in the power supply circuit.
  • the second signal determined by the second node based on the N first signals is used to instruct the M switches to control the battery units corresponding to the k first signals to be disconnected in the power supply circuit, and/or, the The second signal determined by the second node based on the N first signals is used to instruct the M switches to control the battery units corresponding to the N-k first signals to be turned on in the power supply circuit.
  • the second signal may be used to indicate that k battery units corresponding to the k first signals are disconnected in the power supply circuit (for ease of reference, the second signal may be used to indicate A information) , and/or, the second signal can also be used to indicate that the remaining N-k battery units except the k battery units corresponding to the k first signals are connected in the power supply circuit (for ease of reference, denoted as the The second signal can be used to indicate B information).
  • the second signal can be used to indicate B information.
  • the second signal may indicate A information but not B information, so that the M switches clearly need to disconnect k battery units in the power supply circuit based on the A information, and because the A information does not indicate the control instructions of N-k battery units , for this reason, the M switches control the other N-k battery cells by default and the working state of being turned on in the power supply circuit remains unchanged.
  • the second signal may indicate B information but not A information, so that the M switches clearly need to connect N-k battery units in the power supply circuit based on the B information, and because the B information does not indicate the control of k battery units Instructions, for this purpose, M switches control the k battery cells to be disconnected in the power supply circuit by default.
  • the second signal may indicate B information and indicate A information, so that M switches clearly need to connect N-k battery units in the power supply circuit based on B information, and M switches clearly need to connect N-k battery units in the power supply circuit based on A information. Disconnect k battery cells.
  • the battery management system further includes a communication unit configured to send indication information indicating the abnormality when the first signal indicates that the battery unit corresponding to the first signal is abnormal.
  • the battery management system further includes a communication unit and a user interaction unit.
  • the communication unit sends indication information indicating the abnormality to the user interaction unit to use the
  • the user interaction unit indicates the abnormality with at least one of voice, text, and image information.
  • the battery management system can indicate an abnormality in the battery unit by sending indication information to other devices, or by broadcasting the indication to the user, etc., so that the recipient of the indication can learn about the abnormality. Subsequently, it can be further based on This exception performs operations such as monitoring and repairing the battery unit to improve the safety of battery use.
  • the battery management system mainly consists of the battery control unit (which can be referred to as the main control board, battery main control board, battery management main control board, etc.), the battery slave control unit (which can be referred to as the slave board, battery slave control board). , battery management consists of control board, etc.).
  • the first node in the above embodiment is the battery management slave control board
  • the second node is the battery management main control board
  • the battery management system is applied to the vehicle as an example.
  • the battery management provided by this application will be described with reference to more drawings. The system and methods are introduced.
  • this application also provides a battery management system and a battery management system including the battery management system.
  • the battery management system includes:
  • the battery management main control board is used to receive N battery units from the battery management slave control board (in Figure 3, battery units include cells, cell groups or modules 1... cells, cell groups or modules). (Group N is used as an example) N first signals, the N first signals at least include operating parameters of N battery units respectively, and send control instructions;
  • N battery management slave control boards are respectively connected to N cells, cell groups or modules.
  • the operating parameters of the cells, cell groups or modules are collected through the sampling module, and the first signal containing these operating parameters is collected. Transmit to the battery management main control board via wires or wirelessly, and execute the instructions of the battery management main control board;
  • M control switches respectively connected to N cells, cell groups or modules, are used to receive instructions from the battery management main control board and turn on or off the connected cells, cell groups or modules. loop.
  • the N first signals may also include operating parameters of the battery system where the battery management system is located.
  • the battery system may also include a liquid cooling system, a communication system, relays and other battery system-level sensors, high-voltage boxes, battery casings, etc. At least one component.
  • the VCU is connected to the battery management main control board and communicates with the cloud server (when the battery management system is applied to the vehicle, the cloud server can be the vehicle monitoring platform in Figure 3).
  • the battery management main control board and the vehicle controller are equipped with an OTA module, which can receive signals communicated by the vehicle monitoring platform and be used to update the battery management control software, algorithms and parameters.
  • the battery management slave control board includes a processing unit (the processing unit can also be called a processing module, sampling unit, sampling module, etc.) and a communication unit.
  • the processing unit can detect the battery.
  • the communication unit is configured to transmit a signal indicating the operating parameter (for example, a first signal) to the battery management main control board.
  • the battery management slave control board can obtain the operating parameters of the battery unit in a variety of ways.
  • the battery cell, battery cell group, and module are configured to contain external sensors.
  • the external sensor is electrically connected to the battery management slave control board.
  • External sensors collect the operating parameters of the battery cells or battery packs and send them to the battery management slave control board.
  • the battery core is configured to contain a sensor inside the battery core.
  • the internal sensor of the cell is electrically connected to the battery management slave control board.
  • the internal sensor of the battery cell collects the operating parameters inside the battery cell and sends them to the battery management slave control board.
  • the battery management main control board includes a processing unit and a communication unit.
  • the communication unit can be used to receive the operating parameters of the battery cell, battery cell group or module and the operating parameters of the battery system.
  • the communication unit can be used to analyze and process the operating parameters of the battery cell, battery cell group or module. and the operating parameters of the battery system, and determine whether there is an abnormality in the battery cells, battery packs or modules.
  • the processing unit controls the communication unit to send a control command (such as a second signal) to the control switch for switching the connected battery cell, battery cell group or module.
  • the battery pack or module is partially bypassed, while maintaining the integrity of the high-voltage circuit of the entire battery management system.
  • the control switch includes a switch control unit and a communication unit, where the communication unit is used to receive control instructions (for example, the second signal) from the battery management main control board, and the switch controls The unit is used to perform switching on or off the circuit of the connected battery cells, battery core groups or modules based on the control instructions.
  • control instructions for example, the second signal
  • control switch can be an electronic component relay, a bypass switch circuit unit, a metal-oxide-semiconductor field-effect transistor (MOSFET), etc.
  • MOSFET metal-oxide-semiconductor field-effect transistor
  • any of the above communication units can communicate with other communication units through wired communication or wireless communication, which is not limited here.
  • the battery management system in any of the above embodiments is electrically connected to an external power supply and is powered by the external power supply.
  • the battery management system is electrically connected to a direct current/direct current (DC/DC) converter, and the DC/DC converter is The converter is powered by the battery management system itself.
  • the battery management slave control board is electrically connected to the battery cell, battery cell group or module, and is powered by the battery cell, battery cell group or module.
  • the battery management system shown in any of the foregoing embodiments determines that k batteries among the N battery units are abnormal
  • the battery management system can perform local preconfiguration (for example, factory preconfiguration). , manual configuration, etc.) two or more control strategies to update the battery control strategy, or the battery management system can update the battery control strategy through interaction with the cloud server.
  • local preconfiguration for example, factory preconfiguration. , manual configuration, etc.
  • two or more control strategies to update the battery control strategy
  • the battery management system can update the battery control strategy through interaction with the cloud server.
  • the implementation process shown in Figure 4 is an exemplary description of the latter implementation process. As shown in Figure 4, the method includes the following steps.
  • the implementation process of step S401 and step S402 can be executed by the communication unit in the battery management system
  • the implementation process of step S403 can be executed by the processing unit in the battery management system.
  • the battery management system includes at least N first nodes and second nodes.
  • the communication unit and the processing unit executing the method shown in Figure 4 can be the communication unit and the processing unit in the N first nodes.
  • the processing unit may also be a communication unit and a processing unit in the second node, or may be a communication unit and a processing unit provided independently of the first node and the second node in the battery management system, which are not limited here.
  • the relevant implementation process is taken as the "battery management system" as the execution subject.
  • the battery management system sends the first information to the cloud server.
  • the battery management system sends the first information to the cloud server in step S401, and accordingly, the cloud server receives the first information in step S401.
  • the first information is used to indicate that the k battery units among the N battery units are disconnected in the power supply circuit and/or the first information is used to indicate the N-k battery units among the N battery units. Switched on in this supply circuit.
  • the first information can also be replaced by other expressions.
  • the first information is used to indicate that the k battery cells among the N battery cells are abnormal and/or the first information is used to indicate that the N-k battery cells among the N battery cells are normal.
  • the first information is used to indicate that there are k battery units operating abnormally (or in an abnormal operating state) among the N battery units.
  • the first information is used to indicate that there are N-k battery units that are working normally (or are in a normal working state) among the N battery units.
  • the cloud server sends the second information to the battery management system.
  • the cloud server after the cloud server receives the first information in step S401, the cloud server generates second information based on the first information, and the cloud server sends the second information to the battery management system in step S402.
  • the battery management system receives the second information from the cloud server in step S402.
  • the second information includes the control strategy when the N-k battery units are connected in the power supply circuit, or the second information includes the control strategy when the k battery units are disconnected in the power supply circuit.
  • the second information obtained by the battery management system in step S402 includes the control strategy when the N-k battery units are turned on in the power supply circuit.
  • the second information may be a control strategy required to satisfy the normal operation (and/or satisfy the operation of the entire vehicle) of the N-k battery units when they are connected in the power supply circuit.
  • control strategy may include power on and off management information of the N-k battery units.
  • the power on and off management information includes one or more of the following:
  • Battery parameter threshold battery parameter sampling (such as the number of battery cells, voltage, current, temperature, insulation, collision, impedance, smoke, electrolyte signal, potential, stress, gas concentration, air pressure, gas type, potential of the positive electrode, negative electrode Potential of pole piece, electrolyte signal, etc.), high-voltage interlock, crash signal, monitoring and diagnosis of relays and other electronic devices, battery status evaluation (SOC, SOH, SOE, SOF, SOP, etc.), charge control, discharge One or more of control, thermal management control strategy, fault diagnosis, early warning and alarm control, battery consistency control, balancing function, information storage, communication function, protection function, etc.
  • the second information may include specific information included in the control policy, or may include an index, identification, etc. of the specific information included in the control policy, which is not limited here.
  • the cloud server determines the second information based on the first information: the cloud server determines the second information based on the first information and third information, and the third information includes a Or historical operating data of multiple battery management systems.
  • the cloud server can also use third information including historical operating data of one or more battery management systems as the second information.
  • One of the determination basis is to determine the second information through the control strategy with better operating effect in the historical operation data of other battery management systems, in order to improve the battery management system after updating the control strategy for the power supply circuit based on the second information. operating effect.
  • the historical operating data of one or more battery management systems may include: when some or all battery units in one or more battery management systems are connected in the power supply circuit, the battery management system (or the battery management system equipped with the battery management system) can equipment) control strategy for normal operation.
  • the historical operating data of any battery management system includes when some or all battery units are connected in the power supply circuit, which can make the battery The control strategy for the normal operation of the management system (or the device equipped with the battery management system).
  • the cloud server can obtain the third information in a variety of ways.
  • the cloud server collects the third information through a wired or wireless communication connection with the one or more battery management systems, or the cloud server
  • the third information is obtained through manual configuration (or writing), which is not limited here.
  • control strategy may include power on and off management information for some or all battery units.
  • power on and off management information includes one or more of those described in the above embodiments.
  • the battery management system updates the control strategy of the power supply circuit based on the second information.
  • the battery management system after the battery management system receives the second information in step S402, the battery management system updates the control strategy of the power supply circuit based on the second information in step S403.
  • the battery management system can also send the first information to the cloud server and perform the operation based on
  • the second information from the cloud server updates the control strategy of the power supply circuit, so that the updated control strategy of the power supply circuit can adapt to the number of connected battery units in the power supply circuit.
  • the battery management system includes at least N first nodes and second nodes.
  • the battery management system sending the first information to the cloud server may include: some nodes among the N first nodes in the battery management system (for example, k nodes corresponding to k first signals, The communication units in the N-k nodes corresponding to the N-k first signals) send the first information to the cloud server, and the communication units in the N first nodes in the battery management system send the first information to the cloud server.
  • the battery management system The communication unit in the second node sends at least one item of first information to the cloud server.
  • the battery management system receiving the second information from the cloud server may include: some nodes among the N first nodes in the battery management system (for example, k nodes corresponding to k first signals). , the communication units in the N-k nodes corresponding to the N-k first signals) receive the second information from the cloud server, the communication units in the N first nodes in the battery management system receive the second information from the cloud server, the The communication unit in the second node in the battery management system receives at least one item of second information from the cloud server.
  • the battery management system updating the control strategy of the power supply circuit based on the second information in step S403 may include: the processing unit in the second node in the battery management system updating the control strategy of the power supply circuit based on the second information,
  • the processing units in some of the N first nodes in the battery management system (for example, k nodes corresponding to k first signals, N-k nodes corresponding to N-k first signals) update the control strategy of the power supply circuit
  • the processing units in the N first nodes in the battery management system update at least one of the control strategies of the power supply circuit.
  • the process of the battery management system sending the first information to the cloud server in step S401 includes: the battery management system sending the first information to the cloud server through a direct link, or the battery management system sending the first information to the cloud server through other relay devices.
  • the cloud server sends the first information.
  • the process of the battery management system receiving the second information from the cloud server in step S402 includes: the battery management system receives the second information from the cloud server through a direct link, or the battery management system receives the second information from the cloud server through other means.
  • the relay device receives second information from the cloud server.
  • the relay device can be a vehicle control unit (VCU), a wireless gateway (Telematics BOX, T-box), or a wireless access network device (such as a 4G base station, 5G Base station, or future 6G base station, etc.), road side unit (road side unit, RSU), etc.
  • VCU vehicle control unit
  • T-box wireless gateway
  • wireless access network device such as a 4G base station, 5G Base station, or future 6G base station, etc.
  • road side unit road side unit, RSU
  • the battery management system is also configured to update the control strategy of the power supply circuit based on the second information when the first condition is met, and the first condition includes at least one of the following:
  • the abnormality levels of the k battery cells do not reach the threshold
  • the operating parameters of the k battery units do not exceed the predetermined range
  • the state of health (SOH) of the N-k batteries does not exceed the threshold
  • the cumulative mileage of the equipment where the power supply circuit is located is lower than the threshold or agreed value
  • the cumulative running time of the equipment where the power supply circuit is located is lower than the threshold or the agreed value.
  • the battery management system can determine that the operating risks of k abnormally working battery units and/or N-k normally working battery units in the current battery are controllable. To this end, the battery The management system may update the control strategy of the power supply circuit based on the second information.
  • the battery management system may determine the operating risks of k abnormally working battery units and/or N-k normally working battery units in the current battery. If the value is too large, the battery management system does not update the control strategy for the power supply circuit based on the second information in step S403, and/or the battery management system generates and broadcasts alarm information (through voice, image, text, etc.) in order to This allows users to know the risks of battery operation, and subsequent users can perform repairs, replacements, etc. on the battery to improve safety.
  • alarm information through voice, image, text, etc.
  • the second node is also used to control the k battery units to be charged to a predetermined amount of electricity.
  • the second node can also control the k battery units to be charged to a predetermined level of power, so as to facilitate continuous monitoring of the k abnormally working battery units and further improve the safety of battery use.
  • the operating parameters of the battery unit collected by any first node include the internal operating parameters and/or external operating parameters of the battery unit;
  • the internal The operating parameters include one or more of the internal temperature of the battery unit, internal gas type, air pressure, gas concentration, voltage, current, potential of the positive electrode piece, potential of the negative electrode piece, electrolyte signal, internal resistance and stress;
  • the external operating parameters include one or more of the battery unit's external temperature, gas type, air pressure, gas concentration, voltage, current, stress, electrolyte signal, smoke, internal resistance and stress.
  • the operating parameters of the battery unit may also include other information that can characterize the status of the battery cells, battery cell groups, or modules. This application does not limit the type and quantity of the operating parameters.
  • the battery unit is one or more battery cells, one or more battery cell groups, or one or more modules.
  • the number of cells (or cell groups, or modules) contained in different battery units may be the same or different, which is not limited here.
  • a module in a battery, includes at least two battery packs or cells, and a battery pack includes at least two cells.
  • the vehicle controller shown in Figure 3 is connected to the battery management main control board, and can be connected to the remote vehicle monitoring platform (it can be seen from the previous description that the remote vehicle monitoring platform is An implementation of cloud server) communication.
  • the battery management main control board can send the bypass status signal of the battery cell, battery cell group or module to the vehicle controller, and the vehicle controller sends the bypass status signal to the remote vehicle monitoring platform.
  • the remote vehicle monitoring platform receives the bypass status signal of the vehicle controller, and through analysis and calculation, provides an updated control strategy (such as battery management control software, algorithms and parameters).
  • the remote vehicle monitoring platform is set to send the control strategy (such as battery management control software, algorithms and parameters) to the battery management main control board and vehicle controller.
  • the battery management main control board and vehicle controller are equipped with OTA modules that can receive signals communicated by the vehicle monitoring platform, including the updated control strategy (such as battery management control software, algorithms and parameters).
  • the battery management main control board and vehicle controller update the corresponding battery control strategy (such as battery management control software, algorithms and parameters) in a targeted manner.
  • the battery management main control board sends update control instructions and updated control strategies (such as battery management control software, algorithms and parameters) to the battery management slave control board.
  • the battery management receives the updated control instructions and the updated control strategy (such as battery management control software, algorithms and parameters) from the control board, and updates them.
  • the battery management method that may be executed by the second node in the battery management system will be further described below with reference to FIG. 5 .
  • FIG. 5 is a schematic diagram of an implementation of the battery management method provided by this application. The method includes the following steps.
  • S501.N first nodes collect N first signals.
  • N first nodes collect N first signals in step S501.
  • the N first signals respectively include operating parameters of N battery units in the power supply circuit, and N is an integer greater than or equal to 2.
  • the first node may collect the first signal through a sensor or other device.
  • N first nodes send N first signals to second nodes.
  • the N first nodes collect N first signals in step S501
  • the N first nodes send the N first signals to the second node in step S502.
  • the second node receives the N first signals in step S502.
  • the second node generates a second signal based on N first signals.
  • the second node after the second node receives the N first signals in step S502, the second node generates a second signal based on the N first signals in step S503.
  • the second signal is used to indicate at least one battery unit to be turned on or off in the power supply circuit.
  • step S503 if the second node determines that the first signal or the calculation result obtained based on the first signal indicates that the battery unit corresponding to the first signal is abnormal, the second signal is used to Indicate that the battery unit corresponding to the first signal is disconnected in the power supply circuit; or, in step S503, if the second node determines the first signal or the calculation result obtained based on the first signal indicates that the battery corresponding to the first signal When the unit is normal, the second signal is used to indicate that the battery unit corresponding to the first signal is turned on in the power supply circuit.
  • the battery unit corresponding to the first signal is abnormal.
  • the The second signal determined by the second node based on the first signal is used to instruct the M switches to control the battery unit corresponding to the first signal to be disconnected in the power supply circuit to prevent the abnormally operating battery unit from continuing to operate and causing its safe state. It will further deteriorate and even cause thermal runaway events such as fire and explosion in severe cases. At the same time, it is necessary to avoid abnormally operating battery units from having a negative impact on other battery units or the battery as a whole in the power supply circuit.
  • the battery unit corresponding to the first signal is normal.
  • the second signal determined by the second node based on the first signal is used to instruct the M switches to control the battery unit corresponding to the first signal to be turned on (or continuously turned on) in the power supply circuit, so that normal The operating battery unit is continuously supplied with power in this supply circuit.
  • the second node determines k first signals among the N first signals or the calculation results obtained based on the k first signals indicate the k first signals.
  • the second signal is used to indicate that the k battery units corresponding to the k first signals are disconnected in the power supply circuit, and/or, the second signal is also used to indicate that the k battery units are disconnected in addition to the k first signals.
  • the remaining N-k battery units other than the k battery units corresponding to the k first signals are connected in the power supply circuit.
  • the second signal determined by the second node based on the N first signals is used to instruct the M switches to control the battery units corresponding to the k first signals to be disconnected in the power supply circuit, and/or, the The second signal determined by the second node based on the N first signals is used to instruct the M switches to control the battery units corresponding to the N-k first signals to be turned on in the power supply circuit.
  • the method further includes: the second node sending first information to the cloud server, the first information being used to indicate the k battery units among the N battery units. disconnected in the power supply circuit and/or the first information is used to indicate that the N-k battery units among the N battery units are connected in the power supply circuit; the second node receives the second information from the cloud server , the second information includes the control strategy when the N-k battery units are connected in the power supply circuit, or the second information includes the control strategy when the k battery units are disconnected in the power supply circuit; the second The node updates the control strategy of the power supply circuit based on the second information.
  • the method further includes: the second node controlling the k battery units to charge to a predetermined amount of electricity.
  • the second node can also control the k battery units to be charged to a predetermined level of power, so as to facilitate continuous monitoring of the k abnormally working battery units and further improve the safety of battery use.
  • the second node sends the second signal to the M switches.
  • the second node after the second node generates the second signal based on the N first signals in step S503, the second node sends the second signal to M switches in step S504, where M is greater than or equal to 2. integer.
  • the M switches receive the second signal in step S504, so that the M control switches control at least one battery unit to be turned on or off in the power supply circuit based on the second signal.
  • the method further includes: the second node determines that when the first signal received in step S502 indicates that the battery unit corresponding to the first signal is abnormal, the second node Send an indication message indicating the exception.
  • the second node determines that the first signal received in step S502 indicates that the battery unit corresponding to the first signal is abnormal
  • the second node interacts with the user to
  • the user interaction unit sends indication information indicating the abnormality to indicate the abnormality through at least one of voice, text, and image information.
  • the second node can indicate the abnormality of the battery unit by sending indication information to other devices, or by broadcasting the indication to the user, etc., so that the recipient of the indication can learn about the abnormality. Subsequently, it can be further based on This exception performs operations such as monitoring and repairing the battery unit to improve the safety of battery use.
  • the N first signals received by the second node in step S502 respectively include the operating parameters of the N battery units in the power supply circuit
  • the second node receives the N first signals in step S503 based on the Nth battery units in the power supply circuit.
  • a signal generates a second signal and sends the second signal in step S504, so that the M control switches control at least one battery unit to be turned on or off in the power supply circuit based on the second signal.
  • the second node controls the battery unit to be turned on or off in the power supply circuit through the collected operating parameters of the battery unit to improve safety during battery operation.
  • the battery unit shown in Figure 3 can be implemented in various forms such as battery cells, battery cell groups or modules, which will be described below with reference to more embodiments.
  • the battery managed by the battery management system can be composed of multiple cells connected in series.
  • the battery units in the battery include cells.
  • each battery unit corresponds to one cell as an example. illustrate.
  • the battery management main control board determines that the battery cell is abnormal, it sends a control command to the control switch connected to the abnormal battery cell to bypass the abnormal battery cell while maintaining the high-voltage circuit of the entire battery management system. whole.
  • the control switch includes a connection switch and one or more of a positive switch and a negative switch.
  • the control switch performs corresponding operations based on instructions from the battery management main control board.
  • the connection switch under normal operating conditions, the connection switch is open, the positive switch and/or the negative switch are closed, the current can flow through the battery core normally, and the battery core works normally.
  • the control switch receives a control instruction from the battery management main control board to bypass the connected abnormal battery circuit, it completes the bypass of the abnormal battery in the order of first opening the positive and negative switches, and then closing the connecting switch to prevent A short circuit occurs in the battery cell. At this time, the current does not flow through the abnormal cell and the cell does not work, but the entire high-voltage circuit is still connected.
  • the battery managed by the battery management system can be composed of multiple battery packs connected in series.
  • the battery units in the battery include battery packs.
  • each battery unit corresponds to one battery pack. Take an example to illustrate.
  • the battery management main control board determines that the battery cell is abnormal, it sends a control command to the control switch connected to the abnormal battery cell or battery cell group.
  • the battery core group is composed of multiple battery cells connected in parallel.
  • control switch performs corresponding operations based on instructions from the battery management main control board.
  • the control switch can bypass the entire battery pack while maintaining the integrity of the high-voltage circuit of the entire battery management system.
  • the control switch includes a connection switch, and one or more of a positive switch and a negative switch.
  • the connection switch Under normal operating conditions, the connection switch is open, the positive switch and/or the negative switch are closed, current can flow through the battery pack normally, and the battery pack works normally.
  • the control switch receives a control instruction from the battery management main control board to bypass the battery cell group circuit where the connected abnormal battery cell is located, it will complete the abnormal battery cell operation in the order of first opening the positive and negative switches, and then closing the connecting switch. Bypass the battery pack where it is located to prevent short circuit of the battery pack. At this time, the current does not flow through the abnormal battery core group, and the battery core group does not work, but the entire high-voltage circuit is still connected.
  • control switch performs corresponding operations based on instructions from the battery management main control board.
  • the control switch can bypass individual abnormal cells.
  • the cell group where the abnormal cell is located and other cell groups are still normal. Work. At the same time, the high-voltage circuit integrity of the entire battery management system is maintained.
  • connection switch under normal operating conditions, the connection switch is open, the positive switch and/or the negative switch are closed, current can flow through the battery pack normally, and the battery pack operates normally.
  • the control switch receives a control instruction from the battery management main control board to bypass the connected abnormal battery cell (in the example of Figure 7c, battery cell 1 is the abnormal battery cell), the switch of the abnormal battery cell is turned on. At this time, current does not flow through the abnormal cell, the cell group continues to work with other cells, and the entire high-voltage circuit is still connected.
  • the battery managed by the battery management system can be composed of multiple modules connected in series.
  • the battery units in the battery include modules.
  • each battery unit corresponds to a module as an example. illustrate.
  • the battery management main control board determines that the battery cell is abnormal, it sends a control command to the control switch connected to the abnormal battery cell or module.
  • the module is composed of multiple cells connected in series and parallel.
  • control switch performs corresponding operations based on instructions from the battery management main control board.
  • the control switch can bypass the entire module while maintaining the integrity of the high-voltage circuit of the entire battery management system.
  • the control switch includes a connection switch, and one or more of a positive switch and a negative switch.
  • the connection switch Under normal operating conditions, the connection switch is open, the positive switch and/or the negative switch are closed, current can flow through the module normally, and the module works normally.
  • the control switch receives a control instruction from the battery management main control board to bypass the module circuit where the connected abnormal battery core is located, it will complete the process of opening the positive and negative pole switches first, and then closing the connection switch. Bypass the module to prevent short circuit of the module. At this time, current does not flow through the abnormal module and the module does not work, but the entire high-voltage circuit is still connected.
  • control switch performs corresponding operations based on instructions from the battery management main control board.
  • the control switch can bypass individual abnormal cells, and the module where the abnormal cells are located and other modules still work normally. At the same time, the high-voltage circuit integrity of the entire battery management system is maintained.
  • connection switch under normal operating conditions, the connection switch is open, the positive switch and/or the negative switch are closed, current can flow through the battery pack normally, and the battery pack operates normally.
  • the control switch receives a control instruction from the battery management main control board to bypass the connected abnormal battery cell (in the example of Figure 8c, battery cell m1 is an abnormal battery cell), the switch of the abnormal battery cell is turned on. At this time, current does not flow through the abnormal cell, other cells in the module continue to work, and the entire high-voltage circuit is still connected.
  • the implementation process of the battery management method involved in this application mainly involves the communication process and processing process between the battery management main control board (hereinafter referred to as the master) and the battery management slave control board (hereinafter referred to as the slave).
  • the battery management method can be further implemented through the participation of a vehicle controller (VCU), a cloud server (hereinafter referred to as a vehicle monitoring platform), etc.
  • VCU vehicle controller
  • a cloud server hereinafter referred to as a vehicle monitoring platform
  • FIG 9 is another schematic diagram of the battery management method provided by this application.
  • the method includes the following steps.
  • step 901 can refer to the implementation process of N first nodes collecting N first signals in the aforementioned step S501 and achieve corresponding technical effects, which will not be described again here.
  • the slave control can also send the collected signal to the master control, so that the master control can perform step 903.
  • the slave controls an alarm (or generates and displays an alarm signal).
  • the slave control determines whether the battery unit is abnormal. If so, execute step 903. If not, execute step 911.
  • step 902 is an optional step, that is, the slave control can perform step 902 so that the slave control sends abnormal signals among the N first signals to the master control to save overhead.
  • the slave control may not perform step 902, that is, the slave control may send all N first signals to the master control, so that the master control determines an abnormal battery unit based on the N first signals in step 903.
  • the main control determines whether the battery unit is abnormal. If so, perform step 904. If not, perform step 911.
  • step 903 can refer to the implementation process of the second node generating the second signal based on the N first signals in the aforementioned step S502 and achieve corresponding technical effects, which will not be described again here.
  • the main control selector switch is disconnected, and the selector switch confirms the disconnected state.
  • step 904 can refer to the implementation process of the second node sending the second signal in the aforementioned step S503 and achieve corresponding technical effects, which will not be described again here.
  • control switch serves as a receiver of the second signal. After receiving the second signal in step 904, the control switch performs an operation of turning on or off the battery unit based on the second signal.
  • the master controls an alarm (or generates and displays an alarm signal).
  • step 901 step 903 and step 904, it can be known that in the battery management system, the collected operating parameters of the battery unit are used to control the battery unit to be connected or disconnected in the power supply circuit to improve the battery operation process. safety.
  • step 903 after the main control determines that there is an abnormal battery unit, the main control and the battery management system where the main control is located may also perform the subsequent implementation processes of steps 905 and 912. It should be understood that the remaining steps in the subsequent steps except step 905 and step 912 are optional steps.
  • the main control sends this information to the vehicle monitoring platform. This information is used to indicate the abnormal information determined by the main control in step 903.
  • the vehicle monitoring platform is an implementation method of the cloud server.
  • the process of the main control sending information to the vehicle monitoring platform in step 905 can refer to the process of the battery management system sending the first information to the cloud server in step S401, and realize The corresponding technical effects will not be described here.
  • step 906. Determine whether it is a first-level alarm (and/or the number of alarms has not reached the threshold). If so, execute step 908; if not, execute step 907.
  • the maintenance in step 907 refers to the user of the battery management system or the maintenance manufacturer performing maintenance operations on the battery.
  • step 908. Determine whether the SOH of the remaining battery is greater than or equal to 80% of the factory value or the agreed value. If so, perform step 910. If not, perform step 909.
  • the vehicle monitoring platform (which may be referred to as the vehicle platform) confirms the next operation: update the control strategy or repair. Among them, if the vehicle monitoring platform determines in step 909 that the next operation to be executed is to update the control strategy, step 912 is executed.
  • step 910. Determine whether the total mileage in the form is less than or equal to the converted total mileage. If so, execute step 912. If not, execute step 909.
  • the battery management main control board sends the cell abnormal signal and the bypass status signal of the cell, cell group or module to the vehicle controller, and the vehicle controller sends the abnormal signal and The bypass status signal is sent to the remote vehicle monitoring platform.
  • the cell abnormality signal can involve one or more cells in the entire battery management system.
  • the vehicle monitoring platform can perform at least one judgment process in step 906, step 908 and step 910, which will be introduced below in conjunction with some embodiments.
  • steps 906, 908 and 910 are some implementation examples of the first condition in the foregoing embodiments, and these steps are optional steps.
  • the vehicle monitoring platform can perform step 906 to determine whether the battery cell abnormal signal is a first-level alarm signal or other agreed alarm levels, or whether the number of alarms reaches a threshold.
  • the cell abnormality signal indicates that the abnormality is a first-level alarm (in this example, the first-level alarm is a higher level alarm level), or other agreed alarm levels that may lead to safety accidents such as thermal runaway, or electrical If the number of core abnormal signal alarms reaches the threshold, or other agreed judgment conditions for safety accidents such as thermal runaway, it is determined that the battery management system of the vehicle requires further maintenance, that is, step 907 is executed.
  • the vehicle monitoring platform may perform step 906 to determine that the battery cell abnormal signal is not a first-level alarm, or other agreed alarm levels that may lead to safety accidents such as thermal runaway, and the number of battery cell abnormal signal alarms has not reached the threshold, or For other agreed determination conditions of safety accidents such as thermal runaway, the SOH of the battery will continue to be determined, that is, step 908 will be executed.
  • step 908 the vehicle monitoring platform determines that the SOH of the remaining battery is less than 80% or other agreed values, and then the vehicle monitoring platform compares the historical operating data of the vehicle with the historical operating data of other vehicles. When it is determined that there is a safety risk, it is confirmed that the vehicle battery management system requires further maintenance and step 909 is executed; otherwise, the vehicle monitoring platform executes step 912.
  • an implementation example of the SOH remaining calculation method of the remaining battery is:
  • the total number of battery cells is n
  • the number of losses is x
  • x can be one or more
  • the aging degree of the battery at the time of abnormality t is SOHt abnormality.
  • step 910 determines in step 910 whether the mileage traveled exceeds the converted total mileage according to the warranty.
  • the mileage that has been traveled exceeds the converted total mileage as agreed under the warranty or other agreed values, and it is determined to be a safety risk
  • step 909 is executed; otherwise, the vehicle monitoring The platform executes step 912.
  • an implementation example of the converted mileage remaining calculation method is:
  • Mileage remaining mileage warranty*(n-x)/n;
  • the total number of battery cells is n
  • the number of lost cells is x
  • x can be one or more
  • the total cruising range of the original vehicle is covered by the mileage warranty according to the warranty agreement.
  • the local vehicle controller and battery management main control board update the control strategy (including algorithms or thresholds, etc.) of the client battery management system.
  • the local vehicle controller is configured with a variety of control strategies, algorithms or thresholds in a pre-configured manner to facilitate local updates when an abnormality occurs in the cells, cell groups or modules.
  • the remote vehicle monitoring platform receives the bypass status signal of the vehicle controller, and provides updated battery management control software, algorithms and parameters through analysis and calculation.
  • the remote vehicle monitoring platform is configured to send the updated battery management control software, algorithms and parameters to the battery management main control board and vehicle controller.
  • the battery management main control board sends update control instructions and updated battery management control software, algorithms and parameters to the battery management slave control board.
  • the battery management receives the update control instructions and the updated battery management control software, algorithms and parameters from the control board, and updates them.
  • the battery management system can update the control strategy of the power supply circuit so that the updated control strategy of the power supply circuit can adapt to the number of connected battery cells in the power supply circuit.
  • step 914 Determine whether the number of isolated battery cells is not equal to zero. If it is zero, this part of the process ends. If it is not zero, step 915 is executed.
  • step 915 Determine whether the status data of the isolated battery unit is normal, and whether the value or change rate does not exceed the threshold. If yes, execute step 917; if not, execute step 906.
  • the battery is in normal use.
  • the battery management main control board can perform at least one of steps 914, 915, and 917.
  • step 915 when the monitored abnormal cell, cell group or module status data does not deteriorate further, does not exceed a defined threshold or safety level, and other agreed conditions that will lead to a safety accident. conditions, monitor the battery power.
  • steps 917 and 918 when it is determined that the power of the abnormal cell, cell group or module is less than 10% or other agreed value: then when the vehicle and battery management system are charging, by The battery management main control board sends control instructions to the control switch to allow abnormal cells, cell groups or modules to access the battery high-voltage circuit and complete charging; or when the vehicle and battery are not charged, active balancing or passive balancing is performed Make the power of abnormal cells, cell groups or modules reach 30% or less than other agreed values.
  • step 919 the battery management system and the vehicle controller complete the restart to ensure that the vehicle and battery can continue to be used as a vehicle.
  • FIG 10 is another schematic diagram of the battery management method provided by this application.
  • the method includes the following steps.
  • step 1012 shown in Figure 10 the vehicle monitoring platform remotely updates the control strategy, algorithm or threshold of the client battery management system through OTA, instead of performing local update through the local vehicle controller in step 912, in order to obtain the latest control. Configuration of policies, algorithms or thresholds without the need to pre-configure multiple control strategies locally.
  • the slave control determines whether the battery is abnormal. If so, execute step 1003. If not, execute step 1011.
  • step 1003. The main control determines whether the battery is abnormal. If so, execute step 1004. If not, execute step 1011.
  • the main control selector switch is disconnected, and the selector switch confirms the disconnected state.
  • the main control sends this information to the vehicle monitoring platform.
  • step 1006. Determine whether it is not a first-level alarm and the number of alarms has not reached the threshold. If so, execute step 1008; if not, execute step 1007.
  • step 1008. Determine whether the SOH of the remaining battery is greater than or equal to 80% of the factory value or the agreed value. If so, perform step 1010. If not, perform step 1009.
  • the vehicle monitoring platform confirms the next operation: update the control strategy or repair.
  • the vehicle monitoring platform remotely updates the control strategy, algorithm or threshold of the client battery management system through OTA.
  • step 1014 Determine whether the number of isolated battery cells is not equal to zero. If it is zero, this part of the process ends. If it is not zero, step 1015 is executed.
  • step 1015 Determine whether the status data of the isolated battery is normal, and whether the value or change rate does not exceed the threshold. If yes, execute step 1017; if not, execute step 1006.
  • step 1017 It is judged that the power of the isolated battery is lower than 10% or the agreed value. If yes, execute step 1018; if not, execute step 1019.
  • the battery is in normal use.
  • control switches and sampling modules are installed at the cell, cell group or module level.
  • the cell, cell group or module can be disconnected through the control switch. This prevents these abnormal cells, cell groups and modules from continuing to be used with the entire battery management system and causing accelerated aging, causing the battery service life to fail to meet the warranty period and mileage, resulting in the need to update the entire battery system. This will bring huge after-sales maintenance costs to vehicle manufacturers and consumers (battery accounts for about 40-50% of the cost of new energy vehicles).
  • this application also provides different disconnection methods for cells, cell groups, and modules. Therefore, the disconnection method can be flexibly handled according to specific situations, ensuring safety while maintaining battery performance and vehicle driving experience as much as possible.
  • this application also provides that under risk-controllable conditions, through the reserved OTA system, the remote platform can update the control software, algorithms, and parameters according to the number of isolated or disconnected cells, and can maintain the vehicle Drive normally; if it is judged that the risk is too great, ensure that the vehicle is driven to a maintenance point or stopped directly. Therefore, after the battery management system is updated, the battery management system can continue to be used. Under controllable conditions (the degree of aging is not too great, the safety alarm level is not high, and the conditions are generally safe and controllable, see flow chart 9 or 10 for details), a large amount of maintenance, battery replacement, etc. expenses are basically eliminated. Zero cost maintenance can be achieved.
  • the second node and cloud server provided by this application will be further introduced below through Figures 11 and 12.
  • the second node or cloud server can be the communication device in Figures 11 and 12.
  • the communication device includes a processing unit 1102 and a transceiver unit 1101.
  • the communication device 1100 shown in Figure 11 can implement the method performed by the second node in any of the above embodiments.
  • the device can be a second node, or the device can be a component in the second node (such as a processor, a chip or a chip system, etc.), or the device can also be a device that can implement all or part of the functions of the second node.
  • Logic modules or software can implement all or part of the functions of the second node.
  • the device 1100 includes a transceiver unit 1101 and a processing unit 1102; the transceiver unit 1101 is used to receive N first signals from N first nodes, and the N first signals respectively include the signals of N battery units in the power supply circuit. Operating parameters, N is an integer greater than or equal to 2; the processing unit 1102 is configured to generate a second signal based on the N first signals from the N first nodes, the second signal is used to indicate at least one battery unit in the The power supply circuit is connected or disconnected; the transceiver unit 1101 is also used to send the second signal to the M control switches, where M is an integer greater than or equal to 2.
  • the second signal is used to indicate the electrical voltage corresponding to the first signal.
  • the battery unit is disconnected in the power supply circuit; or, when the first signal or the calculation result obtained based on the first signal indicates that the battery unit corresponding to the first signal is normal, the second signal is used to indicate the first signal
  • the corresponding battery cell is switched on in this supply circuit.
  • the second signal is used to indicate that the k battery units corresponding to the k first signals are disconnected in the power supply circuit, and/or, the second signal is also used to indicate that in addition to the k corresponding to the k first signals, The remaining N-k battery cells except the battery cells are connected in the power supply circuit.
  • the transceiver unit 1101 is also used to send first information to the cloud server, where the first information is used to indicate that the k battery units among the N battery units are disconnected in the power supply circuit. And/or the first information is used to indicate that the N-k battery units among the N battery units are turned on in the power supply circuit; the transceiver unit 1101 is also used to receive second information from the cloud server, the second The information includes the control strategy when the N-k battery units are connected in the power supply circuit, or the second information includes the control strategy when the k battery units are disconnected in the power supply circuit; the processing unit 1102 is also used to The control strategy of the power supply circuit is updated based on the second information.
  • the processing unit 1102 when a first condition is met, is configured to update the control strategy of the power supply circuit based on the second information, and the first condition includes at least one of the following:
  • the abnormality levels of the k battery cells do not reach the threshold
  • the operating parameters of the k battery units do not exceed the predetermined range
  • the health status SOH of the N-k batteries does not exceed the threshold
  • the cumulative mileage of the equipment where the power supply circuit is located is lower than the threshold or agreed value
  • the cumulative running time of the equipment where the power supply circuit is located is lower than the threshold or the agreed value.
  • the processing unit 1102 is also used to control the k battery units to be charged to a predetermined amount of electricity.
  • the operating parameters include internal operating parameters and/or external operating parameters of the battery unit;
  • the internal operating parameters include the internal temperature, internal gas type, air pressure, gas concentration, voltage, and current of the battery unit. , one or more of the potential of the positive electrode piece, the potential of the negative electrode piece, electrolyte signal, internal resistance and stress;
  • the external operating parameters include the external temperature of the battery unit, gas type, air pressure, gas concentration, voltage, One or more of current, stress, electrolyte signal, smoke sense, internal resistance and stress.
  • the battery unit is one or more battery cells, one or more battery cell groups, or one or more modules.
  • the communication device 1100 shown in Figure 11 can implement the method executed by the cloud server in any of the above embodiments.
  • the device can be a cloud server, or the device can be a component in the cloud server (such as a processor, a chip or a chip system, etc.), or the device can also be a logic module that can implement all or part of the cloud server functions or software.
  • the device 1100 includes a transceiver unit 1101 and a processing unit 1102; the transceiver unit 1101 is used to receive first information from the battery management system, the first information is used to indicate that the k battery units among the N battery units are supplying power. The circuit is disconnected and/or the first information is used to indicate that the N-k battery units among the N battery units are connected in the power supply circuit; N is an integer greater than or equal to 2; the processing unit 1102 is used to The first information determines the second information, the second information includes the control strategy when the N-k battery units are turned on in the power supply circuit, or the second information includes the k battery units are disconnected in the power supply circuit. control strategy; the transceiver unit 1101 is also used to send the second information to the battery management system.
  • the transceiver unit 1101 is specifically configured to determine the second information based on the first information and third information, where the third information includes historical operating data of one or more battery management systems.
  • the communication device 1100 shown in Figure 11 can be used to implement the steps implemented by the second node or the cloud server in the foregoing method embodiment, and to achieve the corresponding technical effects of the second node or the cloud server, as shown in Figure 11
  • For specific implementation methods of the communication device reference may be made to the descriptions in the foregoing method embodiments, and will not be described again here.
  • each functional unit may be integrated into one processor, or may exist physically alone, or two or more units may be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • FIG. 12 is another schematic structural diagram of a communication device 1200 provided in this application.
  • the communication device 1200 at least includes an input and output interface 1202 .
  • the communication device 1200 may be a chip or an integrated circuit.
  • the communication device also includes a logic circuit 1201.
  • the transceiver unit 1101 shown in FIG. 11 may be a communication interface, and the communication interface may be the input-output interface 1202 in FIG. 12.
  • the input-output interface 1202 may include an input interface and an output interface.
  • the communication interface may also be a transceiver circuit, and the transceiver circuit may include an input interface circuit and an output interface circuit.
  • the input and output interface 1202 is used to input N first signals from N first nodes.
  • the first signals include operating parameters of the battery unit corresponding to the first node in the power supply circuit.
  • N is greater than or An integer equal to 2; the logic circuit 1201 is used to generate a second signal based on the N first signals; the input and output interface 1202 is also used to output the second signal.
  • the input and output interface 1202 is used to input first information, the first information is used to indicate that the k battery units among the N battery units are disconnected in the power supply circuit and/or the first information is used to indicate The N-k battery cells among the N battery cells are connected in the power supply circuit; N is an integer greater than or equal to 2; the logic circuit 1201 is used to determine second information based on the first information, and the second information includes The control strategy when the N-k battery units are connected in the power supply circuit, or the second information includes the control strategy when the k battery units are disconnected in the power supply circuit; the input and output interface 1202 is also used to output the second information.
  • the logic circuit 1201 and the input and output interface 1202 can also perform other steps performed by the second node or the cloud server in any embodiment and achieve corresponding beneficial effects, which will not be described again here.
  • the processing unit 1102 shown in FIG. 11 may be the logic circuit 1201 in FIG. 12 .
  • the logic circuit 1201 may be a processing device, and the functions of the processing device may be partially or fully implemented through software. Among them, the functions of the processing device can be partially or fully implemented through software.
  • the processing device may include a memory and a processor, wherein the memory is used to store a computer program, and the processor reads and executes the computer program stored in the memory to perform corresponding processing and/or steps in any method embodiment. .
  • the processing means may comprise only a processor.
  • the memory for storing computer programs is located outside the processing device, and the processor is connected to the memory through circuits/wires to read and execute the computer programs stored in the memory.
  • the memory and processor can be integrated together, or they can also be physically independent of each other.
  • the processing device may be one or more chips, or one or more integrated circuits.
  • the processing device may be one or more field-programmable gate arrays (FPGA), application specific integrated circuit (ASIC), system on chip (SoC), central processing unit (central processor unit, CPU), network processor (network processor, NP), digital signal processing circuit (digital signal processor, DSP), microcontroller unit (micro controller unit, MCU), programmable logic device, PLD) or other integrated chips, or any combination of the above chips or processors, etc.
  • FPGA field-programmable gate arrays
  • ASIC application specific integrated circuit
  • SoC system on chip
  • central processing unit central processor unit, CPU
  • network processor network processor
  • NP network processor
  • DSP digital signal processing circuit
  • microcontroller unit microcontroller unit
  • microcontroller unit micro controller unit, MCU
  • PLD programmable logic device
  • Embodiments of the present application also provide a computer-readable storage medium, which includes instructions that, when run on a computer, cause the computer to perform the method described in the above embodiments.
  • An embodiment of the present application also provides a chip system, which includes at least one processor and an interface circuit. Further optionally, the chip system may also include memory or external memory.
  • the processor is configured to execute instructions and/or data interaction through the interface circuit to implement the method in the above method embodiment.
  • the chip system can be composed of chips or include chips and other discrete devices.
  • An embodiment of the present application also provides a computer program product, which includes instructions that, when run on a computer, cause the computer to execute the method described in the above embodiment.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, or a co-processor. etc., the various methods, steps and logical block diagrams disclosed in the embodiments of this application can be implemented or executed.
  • a general-purpose processor may be a microprocessor or any conventional processor, etc.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor for execution, or can be executed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or it may be a volatile memory (volatile memory), such as Random-access memory (RAM).
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in the embodiment of the present application can also be a circuit or any other device capable of realizing a storage function, used to store program instructions and/or data.
  • the methods provided by the embodiments of this application can be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, a network device, a user equipment, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the available media may be magnetic media (eg, floppy disk, hard disk, tape), optical media (eg, digital video disc (DVD)), or semiconductor media (eg, SSD), etc.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Power Sources (AREA)

Abstract

提供了一种电池管理系统、方法及相关设备,通过采集到的电池单元的运行参数控制电池单元在供电电路中接通或断开,以提升电池运行过程中的安全性。在电池管理系统中,包括N个第一节点,第二节点和M个控制开关;该第一节点,用于生成第一信号,并向该第二节点发送该第一信号;其中,该第一信号包括供电电路中与该第一节点对应的电池单元的运行参数;该第二节点,用于基于来自该N个第一节点的N个第一信号生成第二信号,并向该控制开关发送该第二信号;该控制开关,用于基于该第二信号控制该控制开关对应的电池单元在供电电路中接通或断开。

Description

一种电池管理系统、方法及相关设备
本申请要求于2022年08月17日提交中国国家知识产权局,申请号为202210988522.1,发明名称为“一种电池管理系统、方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池管理领域,尤其涉及一种电池管理系统、方法及相关设备。
背景技术
随着新能源技术的发展,电池作为设备中储能与供能的模块,其安全隐患随着能量密度的提升日益凸显。其中,自燃、爆炸等电池热失控现象频频发生,电池热失控事故已经成为制约电池进一步推广与规模化应用的瓶颈问题。
为此,如何提升电池使用的安全性,是一个亟待解决的技术问题。
发明内容
本申请提供了一种电池管理系统(battery management system,BMS)、方法及相关设备,通过采集到的电池单元的运行参数控制电池单元在供电电路中接通或断开,以提升电池运行过程中的安全性。
本申请第一方面提供了一种电池管理系统,该电池管理系统包括N个第一节点,第二节点和M个控制开关,M和N均为大于或等于2的整数;该第一节点用于生成第一信号,并向该第二节点发送该N个第一信号;其中,该第一信号包括供电电路中与该第一节点对应的电池单元的运行参数;该第二节点,用于基于来自N个第一节点的N个第一信号生成第二信号,并向该控制开关发送该第二信号;该控制开关,用于基于该第二信号控制该控制开关对应的电池单元在供电电路中接通或断开。
基于上述技术方案,该电池管理系统中的N个第一节点用于生成并发送包括供电电路中电池单元的运行参数的第一信号,并且,第二节点基于接收到的N个第一信号确定并发送第二信号,使得控制开关基于该第二信号控制该控制开关对应的电池单元在供电电路中接通或断开。换言之,在该电池管理系统中,通过采集到的电池单元的运行参数控制电池单元在供电电路中接通或断开,以提升电池运行过程中的安全性。
需要说明的是,M个控制开关中的每个控制开关连接N个电池单元中的一个或多个电池单元,该每个控制开关用于控制该N个电池单元中的一个或多个电池单元在供电电路中接通或断开。
此外,M个控制开关与N个电池单元之间的对应关系可以有多种实现方式。
例如,M的取值与N的取值相等的情况下,M个控制开关与N个电池单元一一对应。
又如,M的取值小于N的取值的情况下,M个控制开关中的至少一个控制开关对应于N个电池单元中的两个或两个以上电池单元,且该至少一个控制开关用于控制N个电池单元中的两个或两个以上电池单元在供电电路中接通或断开。
又如,M的取值大于或等于N的的情况下,M个控制开关中的第一部分控制开关可以作为主控制开关(主控制开关的数量大于或等于2),该主控制开关中的每个控制开关对应于N个电池单元中的一个或多个电池单元,且该主控制开关分别用于控制N个电池单元中的一个或多个电池单元在供电电路中接通或断开。并且,M个控制开关中的第二部分控制开关作为备用开关,且该备用开关用于在主控制开关发生故障的情况下,控制N个电池单元中的一个或多个电池单元在供电电路中接通或断开,以进一步提升安全性。
此外,电池管理系统主要由电池控制单元(可以简称为主控板,电池主控板,电池管理主控板等)、电池从控单元(可以简称为从板,电池从控板,电池管理从控板等)等组成。在本申请中,第一节点可以为电池管理从控板,第二节点可以为电池管理主控板。
在第一方面的一种可能的实现方式中,对于该N个第一信号中的任一个第一信号,在该第一信号(或者基于该第一信号得到的计算结果)指示该第一信号对应的电池单元异常时,该第二信号用于指示该第 一信号对应的电池单元在该供电电路中断开;或,在该第一信号(或者基于该第一信号得到的计算结果)指示该第一信号对应的电池单元正常时,该第二信号用于指示该第一信号对应的电池单元在该供电电路中接通。
基于上述技术方案,在第一信号所包含的电池单元的运行参数超出预定范围(或基于该第一信号得到的计算结果超出预定范围)的情况下,该第一信号对应的电池单元异常,为此,该第二节点基于该第一信号确定的第二信号用于指示该M个开关控制该第一信号对应的电池单元在该供电电路中断开,以避免异常运行的电池单元继续运行导致其安全状态进一步恶化,甚至严重时引发起火、爆炸等热失控事件,同时避免异常运行的电池单元在该供电电路中对其它电池单元或电池整体产生负面影响。
相应的,在第一信号所包含的电池单元的运行参数未超出预定范围(或基于该第一信号得到的计算结果未超出预定范围)的情况下,该第一信号对应的电池单元正常。为此,该第二节点基于该第一信号确定的第二信号用于指示该M个开关控制该第一信号对应的电池单元在该供电电路中接通(或持续接通),以使得正常运行的电池单元在该供电电路中持续供电。
可选地,该电池管理系统通过预配置的方式确定该预定范围,或者,该电池管理系统通过接收其它设备(例如云服务器、整车控制器等)的指示的方式确定该预定范围,此处不做限定。
在第一方面的一种可能的实现方式中,在该N个第一信号中的k个第一信号(或者基于该k个第一信号得到的计算结果)指示该k个第一信号对应的k个电池单元异常时,该第二信号用于指示该k个第一信号对应的k个电池单元在该供电电路中断开,和/或,该第二信号还用于指示除该k个第一信号对应的k个电池单元之外的其余N-k个电池单元在该供电电路中接通。
基于上述技术方案,在N个第一信号中的k个第一信号所包含的k个电池单元的运行参数超出预定范围(或基于该k个第一信号得到的计算结果超出预定范围)的情况下,该k个第一信号对应的k个电池单元异常。为此,该第二节点基于该N个第一信号确定的第二信号用于指示该M个开关控制该k个第一信号对应的电池单元在该供电电路中断开,和/或,该第二节点基于该N个第一信号确定的第二信号用于指示该M个开关控制该N-k个第一信号对应的电池单元在该供电电路中接通。从而,避免异常运行的电池单元继续运行导致其安全状态进一步恶化,甚至严重时引发起火、爆炸等热失控事件,同时避免异常运行的电池单元在该供电电路中对其它电池单元或电池整体产生负面影响,也可以使得正常运行的N-k电池单元在该供电电路中持续供电,以使得包含有该电池管理系统的设备能够在部分电池单元出现异常的情况下仍然能够基于未出现异常的电池单元持续安全作业。
在第一方面的一种可能的实现方式中,该电池管理系统还包括通信单元和处理单元,该通信单元用于向云服务器发送第一信息,该第一信息用于指示该N个电池单元中的该k个电池单元在该供电电路中断开和/或该第一信息用于指示该N个电池单元中的该N-k个电池单元在该供电电路中接通;该通信单元还用于接收来自该云服务器的第二信息,该第二信息包括该N-k个电池单元在该供电电路中接通时的控制策略,或,该第二信息包括该k个电池单元在该供电电路中断开时的控制策略;该处理单元还用于基于第二信息更新该供电电路的控制策略。
基于上述技术方案,在电池所包含的N个电池单元中的k个电池单元异常且在供电电路中断开的情况下,该电池管理系统还可以向云服务器发第一信息并基于来自云服务器的第二信息更新该供电电路的控制策略,以期使得更新后的供电电路的控制策略能够适配该供电电路中接通的电池单元数量。
应理解,第一信息还可以替换为其它表述。例如,第一信息用于指示该N个电池单元中的该k个电池单元异常和/或该第一信息用于指示该N个电池单元中的该N-k个电池单元正常。又如,第一信息用于指示该N个电池单元中存在异常工作(或处于异常工作状态)的k个电池单元。又如,第一信息用于指示该N个电池单元中存在正常工作(或处于正常工作状态)的N-k个电池单元。
可以理解的是,电池管理系统至少包括第二节点和N个第一节点,其中,该通信单元向云服务器发送第一信息可以包括:该电池管理系统中的N个第一节点中的部分节点(例如k个第一信号对应的k个节点,N-k个第一信号对应的N-k个节点)的通信单元向云服务器发送第一信息,该电池管理系统中的N个第一节点的通信单元向云服务器发送第一信息,该电池管理系统中的第二节点的通信单元向云服务器发送第一信息等至少一项。
类似地,该电池管理系统中的处理单元还用于基于第二信息更新该供电电路的控制策略可以包括:该电池管理系统中的第二节点的处理单元基于第二信息更新该供电电路的控制策略,该电池管理系统中的N个第一节点中的部分节点(例如k个第一信号对应的k个节点,N-k个第一信号对应的N-k个节点)的处理单元更新该供电电路的控制策略,该电池管理系统中的N个第一节点的处理单元更新该供电电路的控制策略等至少一项。
此外,该通信单元向云服务器发送第一信息的过程包括:该通信单元通过直连链路向云服务器发送第一信息,或,该通信单元通过其它中继设备向云服务器发送第一信息。类似地,该通信单元接收来自云服务器的第二信息的过程包括:该通信单元通过直连链路接收来自云服务器的第二信息,或,该通信单元通过其它中继设备接收来自云服务器的第二信息。
可选地,该中继设备可以为整车控制器(vehicle control unit,VCU),无线网关(Telematics BOX,T-box),无线接入网设备(例如4G基站,5G基站,或未来的6G基站等),路侧单元(road side unit,RSU)等。
可选地,云服务器可以为该电池管理系统提供服务的设备,例如该云服务器可以为远程整车监控平台,远程服务器,提供电池管理系统中软件(和或硬件)更新的厂商服务器等,此处不做限定。
在第一方面的一种可能的实现方式中,该处理单元用于在满足第一条件时,基于第二信息更新对该供电电路的控制策略,该第一条件包括以下至少一项:
该k个电池单元的异常等级未达到阈值;
该k个电池单元的运行参数未超出预定范围;
该N-k个电池的健康状态(state of health,SOH)未超过阈值;
该供电电路所在设备的累计行驶里程数低于阈值或者约定值;或者,
该供电电路所在设备的累计运行时长低于阈值或者约定值。
基于上述技术方案,在满足上述第一条件的情况下,该处理单元可以确定当前电池中异常工作的k个电池单元和/或正常工作的N-k个电池单元的运行风险可控,为此,该处理单元可以执行基于第二信息更新对该供电电路的控制策略。
可选地,该电池管理系统在确定不满足第一条件时,该处理单元可以确定当前电池中异常工作的k个电池单元和/或正常工作的N-k个电池单元的运行风险过大,该处理单元不执行基于第二信息更新对该供电电路的控制策略,和/或,该处理单元生成并(通过语音、图像、文字等形式)播报报警信息,以期使得用户知晓该电池运行的风险,后续用户可以对该电池执行维修、更换等操作,以提升安全性。
在第一方面的一种可能的实现方式中,该第二节点,还用于控制该k个电池单元充电至预定电量。
基于上述技术方案,第二节点还可以控制该k个电池单元充电至预定电量,便于对该异常工作的k个电池单元持续监控,以避免该异常工作的k个电池单元由于没有电量供应而导致对应的k个第一节点无法获知该k个电池单元的运行参数,进一步提升电池使用的安全性。
可选地,该第二节点还可以用于控制该N个电池单元中的一个或多个电池单元充电。
在第一方面的一种可能的实现方式中,该运行参数包括电池单元的内部运行参数和/或外部运行参数;该内部运行参数包括该电池单元的内部温度,内部气体种类,气压,气体浓度,电压,电流,正极极片的电位,负极极片的电位,电解液信号,内阻以及应力中的一个或多个;该外部运行参数包括该电池单元的外部温度,气体种类,气压,气体浓度,电压,电流,应力,电解液信号,烟感,内阻以及应力中的一个或多个。
应理解,电池单元的运行参数还可以包括其他能够表征电芯、电芯组或者模组状态的信息,本申请不限定该运行参数的类型和数量。
在第一方面的一种可能的实现方式中,该电池单元为一个或多个电芯,一个或多个电芯组,或者,一个或多个模组。
应理解,该N个电池单元中,不同的电池单元所包含的电芯(或电芯组,或模组)的数量可以是相同的,也可以是不同的,此处不做限定。
可以理解的是,在电池中,一个模组包括至少两个电芯组或者电芯,一个电芯组包括至少两个电芯。
在第一方面的一种可能的实现方式中,该电池管理系统还包括通信单元,在该第一信号指示该第一信号对应的电池单元异常时,该通信单元用于发送指示该异常的指示信息。
在第一方面的一种可能的实现方式中,该电池管理系统还包括通信单元和用户交互单元,在该第一信号指示该第一信号对应的电池单元异常时,该通信单元用于向该用户交互单元发送指示该异常的指示信息,以通过该用户交互单元以语音、文字、图像中的至少一项信息指示该异常。
基于上述技术方案,该电池管理系统可以通过向其它设备发送指示信息的方式,或者通过向用户播报指示的方式等多种方式指示电池单元异常,以便于该指示的接收方获知该异常,后续可以进一步基于该异常执行对电池单元的监控、维修等操作,以提升电池使用的安全性。
本申请第二方面提供了一种电池管理方法,该方法由第二节点执行,或者,该方法由第二节点中的部分组件(例如处理器、芯片或芯片系统等)执行,或者该方法还可以由能实现全部或部分第二节点功能的逻辑模块或软件实现。在第二方面及其可能的实现方式中,以该方法由第二节点执行为例进行描述。在该方法中,第二节点接收来自N个第一节点的N个第一信号,该第一信号包括供电电路中与该第一节点对应的电池单元的运行参数,N为大于或等于2的整数;该第二节点基于该N个第一信号生成第二信号;该第二节点向M个控制开关发送该第二信号,该第二信号用于指示该控制开关对应的电池单元在该供电电路中接通或断开,M为大于或等于2的整数。
基于上述技术方案,第二节点接收的N个第一信号分别包括供电电路中N个电池单元的运行参数,并且,该第二节点基于该N个第一信号生成并发送第二信号,使得M个控制开关基于该第二信号控制对应的电池单元在供电电路中接通或断开。换言之,该第二节点通过采集到的电池单元的运行参数控制电池单元在供电电路中接通或断开,以提升电池运行过程中的安全性。
应理解,电池管理系统主要由电池控制单元(可以简称为主控板,电池主控板,电池管理主控板等)、电池从控单元(可以简称为从板,电池从控板,电池管理从控板等)等组成。在本申请中,第一节点可以为电池管理从控板,第二节点可以为电池管理主控板。
在第二方面的一种可能的实现方式中,对于该N个第一信号中的任一个第一信号,在该第一信号(或者基于该第一信号得到的计算结果)指示该第一信号对应的电池单元异常时,该第二信号用于指示该第一信号对应的电池单元在该供电电路中断开;或,在该第一信号或者基于该第一信号得到的计算结果指示该第一信号对应的电池单元正常时,该第二信号用于指示该第一信号对应的电池单元在该供电电路中接通。
基于上述技术方案,在第一信号所包含的电池单元的运行参数超出预定范围(或基于该第一信号得到的计算结果)超出预定范围的情况下,该第一信号对应的电池单元异常,为此,该第二节点基于该第一信号确定的第二信号用于指示该M个开关控制该第一信号对应的电池单元在该供电电路中断开,以避免异常运行的电池单元继续运行导致其安全状态进一步恶化,甚至严重时引发起火、爆炸等热失控事件,同时避免异常运行的电池单元在该供电电路中对其它电池单元或电池整体产生负面影响。
相应的,在第一信号所包含的电池单元的运行参数未超出预定范围(或基于该第一信号得到的计算结果未超出预定范围)的情况下,该第一信号对应的电池单元正常。为此,该第二节点基于该第一信号确定的第二信号用于指示该M个开关控制该第一信号对应的电池单元在该供电电路中接通(或持续接通),以使得正常运行的电池单元在该供电电路中持续供电。
可选地,该第二节点通过预配置的方式确定该预定范围,或者,该第二节点通过接收其它设备(例如云服务器、整车控制器等)的指示的方式确定该预定范围,此处不做限定。
在第二方面的一种可能的实现方式中,在该N个第一信号中的k个第一信号(或者基于该k个第一信号得到的计算结果)指示该k个第一信号对应的k个电池单元异常时,该第二信号用于指示该k个第一信号对应的k个电池单元在该供电电路中断开,和/或,该第二信号还用于指示除该k个第一信号对应的k个电池单元之外的其余N-k个电池单元在该供电电路中接通。
基于上述技术方案,在N个第一信号中的k个第一信号所包含的k个电池单元的运行参数超出预定范围(或基于该k个第一信号得到的计算结果超出预定范围)的情况下,该k个第一信号对应的k个电 池单元异常。为此,该第二节点基于该N个第一信号确定的第二信号用于指示该M个开关控制该k个第一信号对应的电池单元在该供电电路中断开,和/或,该第二节点基于该N个第一信号确定的第二信号用于指示该M个开关控制该N-k个第一信号对应的电池单元在该供电电路中接通。从而,可以避免异常运行的电池单元继续运行导致其安全状态进一步恶化,甚至严重时引发起火、爆炸等热失控事件,同时避免异常运行的电池单元在该供电电路中对其它电池单元或电池整体产生负面影响,也可以使得正常运行的N-k电池单元在该供电电路中持续供电,以使得包含有该电池管理系统的设备能够在部分电池单元出现异常的情况下仍然能够基于未出现异常的电池单元持续安全作业。
在第二方面的一种可能的实现方式中,该方法还包括:该第二节点向云服务器发送第一信息,该第一信息用于指示该N个电池单元中的该k个电池单元在该供电电路中断开和/或该第一信息用于指示该N个电池单元中的该N-k个电池单元在该供电电路中接通;该第二节点接收来自该云服务器的第二信息,该第二信息包括该N-k个电池单元在该供电电路中接通时的控制策略,或,该第二信息包括该k个电池单元在该供电电路中断开时的控制策略;该第二节点基于第二信息更新该供电电路的控制策略。
基于上述技术方案,在电池所包含的N个电池单元中的k个电池单元异常且在供电电路中断开的情况下,该第二节点还可以向云服务器发第一信息并基于来自云服务器的第二信息更新该供电电路的控制策略,以期使得更新后的供电电路的控制策略能够适配该供电电路中接通的电池单元数量。
应理解,该第二节点向云服务器发送第一信息的过程包括:该第二节点通过直连链路向云服务器发送第一信息,或,该第二节点通过其它中继设备向云服务器发送第一信息。类似地,该第二节点接收来自云服务器的第二信息的过程包括:该第二节点通过直连链路接收来自云服务器的第二信息,或,该第二节点通过其它中继设备接收来自云服务器的第二信息。
可选地,该中继设备可以为整车控制器(vehicle control unit,VCU),无线网关(Telematics BOX,T-box),无线接入网设备(例如4G基站,5G基站,或未来的6G基站等),路侧单元(road side unit,RSU)等。
在第二方面的一种可能的实现方式中,第二节点基于第二信息更新该供电电路的控制策略包括:在满足第一条件时,该第二节点基于该第二信息更新对该供电电路的控制策略,该第一条件包括以下至少一项:
该k个电池单元的异常等级未达到阈值;
该k个电池单元的运行参数未超出预定范围;
该N-k个电池的健康状态SOH未超过阈值;
该供电电路所在设备的累计行驶里程数低于阈值或者约定值;或者,
该供电电路所在设备的累计运行时长低于阈值或者约定值。
基于上述技术方案,在满足上述第一条件的情况下,该第二节点可以确定当前电池中异常工作的k个电池单元和/或正常工作的N-k个电池单元的运行风险可控,为此,该第二节点可以执行基于第二信息更新对该供电电路的控制策略。
可选地,在确定不满足第一条件时,该第二节点可以确定当前电池中异常工作的k个电池单元和/或正常工作的N-k个电池单元的运行风险过大,该第二节点不执行基于第二信息更新对该供电电路的控制策略,和/或,该第二节点生成并(通过语音、图像、文字等形式)播报报警信息,以期使得用户知晓该电池运行的风险,后续用户可以对该电池执行维修、更换等操作,以提升安全性。
在第二方面的一种可能的实现方式中,该方法还包括:该第二节点控制该k个电池单元充电至预定电量。
基于上述技术方案,第二节点还可以控制该k个电池单元充电至预定电量,便于对该异常工作的k个电池单元持续监控,以避免该异常工作的k个电池单元由于没有电量供应而导致对应的k个第一节点无法获知该k个电池单元的运行参数,进一步提升电池使用的安全性。
可选地,该第二节点还可以用于控制该N个电池单元中的一个或多个电池单元充电。
在第二方面的一种可能的实现方式中,该运行参数包括电池单元的内部运行参数和/或外部运行参数;该内部运行参数包括该电池单元的内部温度,内部气体种类,气压,气体浓度,电压,电流,正极 极片的电位,负极极片的电位,电解液信号,内阻以及应力中的一个或多个;该外部运行参数包括该电池单元的外部温度,气体种类,气压,气体浓度,电压,电流,应力,电解液信号,烟感,内阻以及应力中的一个或多个。
应理解,电池单元的运行参数还可以包括其他能够表征电芯、电芯组或者模组状态的信息,本申请不限定该运行参数的类型和数量。
在第二方面的一种可能的实现方式中,该电池单元为一个或多个电芯,一个或多个电芯组,或者,一个或多个模组。
应理解,该N个电池单元中,不同的电池单元所包含的电芯(或电芯组,或模组)的数量可以是相同的,也可以是不同的,此处不做限定。
可以理解的是,在电池中,一个模组包括至少两个电芯组或者电芯,一个电芯组包括至少两个电芯。
在第二方面的一种可能的实现方式中,该方法还包括:在该第一信号指示该第一信号对应的电池单元异常时,该第二节点发送指示该异常的指示信息。
在第二方面的一种可能的实现方式中,该方法还包括:在该第一信号指示该第一信号对应的电池单元异常时,该第二节点向用户交互单元发送指示该异常的指示信息,以通过该用户交互单元以语音、文字、图像中的至少一项信息指示该异常。
基于上述技术方案,该第二节点可以通过向其它设备发送指示信息的方式,或者通过向用户播报指示的方式等多种方式指示电池单元异常,以便于该指示的接收方获知该异常,后续可以进一步基于该异常执行对电池单元的监控、维修等操作,以提升电池使用的安全性。
本申请第三方面提供了一种电池管理方法,该方法由云服务器执行,或者,该方法由云服务器中的部分组件(例如处理器、芯片或芯片系统等)执行,或者该方法还可以由能实现全部或部分云服务器功能的逻辑模块或软件实现。在第三方面及其可能的实现方式中,以该方法由云服务器执行为例进行描述。在该方法中,云服务器接收来自电池管理系统的第一信息,该第一信息用于指示N个电池单元中的该k个电池单元在供电电路中断开和/或该第一信息用于指示该N个电池单元中的该N-k个电池单元在该供电电路中接通;N为大于或等于2的整数;该云服务器基于该第一信息确定第二信息,该第二信息包括该N-k个电池单元在该供电电路中接通时的控制策略,或,该第二信息包括该k个电池单元在该供电电路中断开时的控制策略;该云服务器向该电池管理系统发送该第二信息。
基于上述技术方案,云服务器接收的第一信息用于指示N个电池单元中的该k个电池单元在供电电路中断开和/或该第一信息用于指示该N个电池单元中的该N-k个电池单元在该供电电路中接通,此后,该云服务器基于该第一信息确定并发送第二信息,使得该电池管理系统基于该第二信息更新供电电路的控制策略,以期使得更新后的供电电路的控制策略能够适配该供电电路中接通的电池单元数量。
应理解,第一信息还可以替换为其它表述。例如,第一信息用于指示该N个电池单元中的该k个电池单元异常和/或该第一信息用于指示该N个电池单元中的该N-k个电池单元正常。又如,第一信息用于指示该N个电池单元中存在异常工作(或处于异常工作状态)的k个电池单元。又如,第一信息用于指示该N个电池单元中存在正常工作(或处于正常工作状态)的N-k个电池单元。
可以理解的是,电池管理系统至少包括N个第一节点和第二节点,其中,该云服务器接收来自电池管理系统的第一信息可以包括:该云服务器接收来自电池管理系统中的N个第一节点中的部分节点(例如k个第一信号对应的k个节点,N-k个第一信号对应的N-k个节点)发送的第一信息,该云服务器接收来自电池管理系统中的N个第一节点发送的第一信息,该云服务器接收来自电池管理系统中的第二节点发送的第一信息等至少一项。
此外,该云服务器接收来自电池管理系统的第一信息包括:该云服务器通过直连链路接收来自电池管理系统的第一信息,或,该云服务器通过其它中继设备接收来自电池管理系统的第一信息。类似地,该云服务器向该电池管理系统发送该第二信息的过程包括:该云服务器通过直连链路向该电池管理系统发送该第二信息,或,该云服务器通过其它中继设备向该电池管理系统发送该第二信息。
可选地,该中继设备可以为整车控制器(vehicle control unit,VCU),无线网关(Telematics BOX,T-box),无线接入网设备(例如4G基站,5G基站,或未来的6G基站等),路侧单元(road side unit, RSU)等。
在第三方面的一种可能的实现方式中,该云服务器基于该第一信息确定第二信息包括:该云服务器基于该第一信息和第三信息确定该第二信息,该第三信息包括一个或多个电池管理系统的历史运行数据。
应理解,一个或多个电池管理系统的历史运行数据可以包括:一个或多个电池管理系统中部分或全部电池单元在供电电路中接通时,能够使得电池管理系统(或具备该电池管理系统的设备)正常运行的控制策略。换言之,对于一个或多个电池管理系统中任一电池管理系统的历史运行数据而言,该任一电池管理系统的历史运行数据包括部分或全部电池单元在供电电路中接通时,能够使得电池管理系统(或具备该电池管理系统的设备)正常运行的控制策略。
可选地,该控制策略可以包括该部分或全部电池单元的上下电管理信息。例如,该上下电管理信息包括以下一种或多种:
电池参数阈值,电池参数采样(例如电池单元数量,电压,电流,温度,绝缘,碰撞,阻抗,烟雾,电解液信号,电位,应力,气体浓度,气压,气体种类,正极极片的电位,负极极片的电位,电解液信号等),高压互锁,崩溃(Crash)信号,继电器等电子器件的监测和诊断,电池状态评估,充电控制,放电控制,热管理控制策略,故障诊断,预警和报警控制,电池一致性控制,均衡功能,信息存储,通讯功能,保护功能等的一种或者多种。
可选地,该云服务器可以通过多种方式获取该第三信息,例如,该云服务器通过与该一个或多个电池管理系统的有线或无线通信连接收集该第三信息,或者,该云服务器通过人工配置(或写入)的方式获取该第三信息,此处不做限定。
基于上述技术方案,该云服务器除了将第一信息作为第二信息的确定依据之一之外,该云服务器还可以将包括一个或多个电池管理系统的历史运行数据的第三信息作为该第二信息的确定依据之一,以便于通过其它电池管理系统的历史运行数据中的运行效果较好的控制策略确定该第二信息,以期提升电池管理系统基于该第二信息更新对供电电路的控制策略之后的运行效果。
本申请第四方面提供了一种通信装置,该装置可以实现上述第二方面或第二方面任一种可能的实现方式中的方法。该装置包括用于执行上述方法的相应的单元或模块。该装置包括的单元或模块可以通过软件和/或硬件方式实现。例如,该装置可以为第二节点,或者,该装置可以为第二节点中的组件(例如处理器、芯片或芯片系统等),或者该装置还可以为能实现全部或部分第二节点功能的逻辑模块或软件。
其中,该装置包括处理单元和收发单元;该收发单元用于接收来自N个第一节点的N个第一信号,该第一信号包括供电电路中与该第一节点对应的电池单元的运行参数,N为大于或等于2的整数;该处理单元用于基于该N个第一信号生成第二信号;该收发单元还用于向该M个控制开关发送该第二信号,该第二信号用于指示控制开关对应的电池单元在该供电电路中接通或断开,M为大于或等于2的整数。
在第四方面的一种可能的实现方式中,对于该N个第一信号中的任一个第一信号,在该第一信号或者基于该第一信号得到的计算结果指示该第一信号对应的电池单元异常时,该第二信号用于指示该第一信号对应的电池单元在该供电电路中断开;或,在该第一信号或者基于该第一信号得到的计算结果指示该第一信号对应的电池单元正常时,该第二信号用于指示该第一信号对应的电池单元在该供电电路中接通。
在第四方面的一种可能的实现方式中,在该N个第一信号中的k个第一信号或者基于该k个第一信号得到的计算结果指示该k个第一信号对应的k个电池单元异常时,该第二信号用于指示该k个第一信号对应的k个电池单元在该供电电路中断开,和/或,该第二信号还用于指示除该k个第一信号对应的k个电池单元之外的其余N-k个电池单元在该供电电路中接通。
在第四方面的一种可能的实现方式中,该收发单元还用于向云服务器发送第一信息,该第一信息用于指示该N个电池单元中的该k个电池单元在该供电电路中断开和/或该第一信息用于指示该N个电池单元中的该N-k个电池单元在该供电电路中接通;该收发单元还用于接收来自该云服务器的第二信息,该第二信息包括该N-k个电池单元在该供电电路中接通时的控制策略,或,该第二信息包括该k个电池 单元在该供电电路中断开时的控制策略;该处理单元还用于基于第二信息更新该供电电路的控制策略。
在第四方面的一种可能的实现方式中,在满足第一条件时,该处理单元用于基于该第二信息更新对该供电电路的控制策略,该第一条件包括以下至少一项:
该k个电池单元的异常等级未达到阈值;
该k个电池单元的运行参数未超出预定范围;
该N-k个电池的健康状态SOH未超过阈值;
该供电电路所在设备的累计行驶里程数低于阈值或者约定值;
该供电电路所在设备的累计运行时长低于阈值或者约定值。
在第四方面的一种可能的实现方式中,该处理单元还用于控制该k个电池单元充电至预定电量。
在第四方面的一种可能的实现方式中,该运行参数包括电池单元的内部运行参数和/或外部运行参数;该内部运行参数包括该电池单元的内部温度,内部气体种类,气压,气体浓度,电压,电流,正极极片的电位,负极极片的电位,电解液信号,内阻以及应力中的一个或多个;该外部运行参数包括该电池单元的外部温度,气体种类,气压,气体浓度,电压,电流,应力,电解液信号,烟感,内阻以及应力中的一个或多个。
应理解,电池单元的运行参数还可以包括其他能够表征电芯、电芯组或者模组状态的信息,本申请不限定该运行参数的类型和数量。
在第四方面的一种可能的实现方式中,该电池单元为一个或多个电芯,一个或多个电芯组,或者,一个或多个模组。
本申请第五方面提供了一种通信装置,该装置可以实现上述第三方面或第三方面任一种可能的实现方式中的方法。该装置包括用于执行上述方法的相应的单元或模块。该装置包括的单元或模块可以通过软件和/或硬件方式实现。例如,该装置可以为云服务器,或者,该装置可以为云服务器中的组件(例如处理器、芯片或芯片系统等),或者该装置还可以为能实现全部或部分云服务器功能的逻辑模块或软件。
其中,该装置包括处理单元和收发单元;该收发单元用于接收来自电池管理系统的第一信息,该第一信息用于指示N个电池单元中的该k个电池单元在供电电路中断开和/或该第一信息用于指示该N个电池单元中的该N-k个电池单元在该供电电路中接通;N为大于或等于2的整数;该处理单元用于基于该第一信息确定第二信息,该第二信息包括该N-k个电池单元在该供电电路中接通时的控制策略,或,该第二信息包括该k个电池单元在该供电电路中断开时的控制策略;该收发单元还用于向该电池管理系统发送该第二信息。
在第五方面的一种可能的实现方式中,该云服务器基于该第一信息确定第二信息包括:该云服务器基于该第一信息和第三信息确定该第二信息,该第三信息包括一个或多个电池管理系统的历史运行数据。
本申请第六方面提供了一种通信装置,包括至少一个处理器,所述至少一个处理器与存储器耦合;该存储器用于存储程序或指令;该至少一个处理器用于执行该程序或指令,以使该装置实现前述第二方面或第二方面任意一种可能的实现方式所述的方法,或者,以使该装置实现前述第三方面或第三方面任意一种可能的实现方式所述的方法。
本申请第七方面提供了一种通信装置,包括至少一个逻辑电路和输入输出接口;该输入输出接口用于输入N个第一信号,该N个第一信号分别包括供电电路中N个电池单元的运行参数,N为大于或等于2的整数;该逻辑电路用于基于该N个第一信号生成第二信号,该第二信号用于指示至少一个电池单元在该供电电路中接通或断开;该输入输出接口还用于输出该第二信号;该逻辑电路还用于执行如前述第二方面或第二方面任意一种可能的实现方式所述的方法。
本申请第八方面提供了一种通信装置,包括至少一个逻辑电路和输入输出接口;该输入输出接口用于输入第一信息,该第一信息用于指示N个电池单元中的该k个电池单元在供电电路中断开和/或该第一信息用于指示该N个电池单元中的该N-k个电池单元在该供电电路中接通;N为大于或等于2的整数;该逻辑电路用于基于该第一信息确定第二信息,该第二信息包括该N-k个电池单元在该供电电路中接通时的控制策略,或,该第二信息包括该k个电池单元在该供电电路中断开时的控制策略;该输入输出接 口还用于输出该第二信息;该逻辑电路还用于执行如前述第三方面或第三方面任意一种可能的实现方式所述的方法。
本申请第九方面提供了一种计算机可读存储介质,该介质存储有指令,当该指令被计算机执行时,该处理器执行如上述第二方面或第二方面任意一种可能的实现方式所述的方法,或,该处理器执行如上述第三方面或第三方面任意一种可能的实现方式所述的方法。
本申请第十方面提供了一种计算机程序产品,包括指令,当该指令在计算机上运行时,该处理器执行如上述第二方面或第二方面任意一种可能的实现方式所述的方法,或,该处理器执行如上述第三方面或第三方面任意一种可能的实现方式所述的方法。
本申请实施例第十一方面提供了一种芯片系统,该芯片系统包括至少一个处理器,用于支持通信装置实现上述第二方面或第二方面任意一种可能的实现方式中所涉及的功能,或,用于支持通信装置实现上述第三方面或第三方面任意一种可能的实现方式中所涉及的功能。
在一种可能的设计中,该芯片系统还可以包括存储器,存储器,用于保存该通信装置必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。可选的,所述芯片系统还包括接口电路,所述接口电路为所述至少一个处理器提供程序指令和/或数据。
本申请第十二方面提供了一种设备,其特征在于,该设备包括上述第一方面或第一方面任意一种可能实现方式的电池管理系统。
可选地,该设备为车辆或者储能系统。
本申请第十三方面提供了一种系统,包括上述第一方面或第一方面任意一种可能实现方式的电池管理系统,以及N个电池单元。
可选地,该系统为电池装置。
应理解,上述第四方面至第十三方面的技术效果,请参见上述第一方面至第三方面中任一实现方式对应的技术效果描述,这里不再赘述。
附图说明
图1a为本申请实施例提供的一种电池管理系统的一个示意图;
图1b为本申请实施例提供的一种电池管理系统的另一个示意图;
图1c为本申请实施例提供的一种电池管理系统的另一个示意图;
图1d为本申请实施例提供的一种电池管理系统的另一个示意图;
图2为本申请实施例提供的一种电池管理系统的另一个示意图;
图3为本申请实施例提供的一种电池管理系统的另一个示意图;
图4为本申请实施例提供的一种电池管理方法的一个示意图;
图5为本申请实施例提供的一种电池管理方法的另一个示意图;
图6a为本申请实施例提供的一种电池管理系统的另一个示意图;
图6b为本申请实施例提供的一种电池管理系统的另一个示意图;
图7a为本申请实施例提供的一种电池管理系统的另一个示意图;
图7b为本申请实施例提供的一种电池管理系统的另一个示意图;
图7c为本申请实施例提供的一种电池管理系统的另一个示意图;
图8a为本申请实施例提供的一种电池管理系统的另一个示意图;
图8b为本申请实施例提供的一种电池管理系统的另一个示意图;
图8c为本申请实施例提供的一种电池管理系统的另一个示意图;
图9为本申请实施例提供的一种电池管理方法的另一个示意图;
图10为本申请实施例提供的一种电池管理方法的另一个示意图;
图11为本申请实施例提供的一种通信装置的一个示意图;
图12为本申请实施例提供的一种通信装置的另一个示意图。
具体实施方式
随着新能源技术的发展,电池作为设备中储能与供能的模块,其安全隐患随着能量密度的提升日益凸显。其中,自燃、爆炸等电池热失控现象频频发生,电池热失控事故已经成为制约电池进一步推广与规模化应用的瓶颈问题。
以新能源车辆中的锂电池为例,随着锂电池充放电循环次数的增加,车辆中的锂电池逐渐老化衰退,将会导致锂电池的一致性逐渐变差。其中,当单个电芯的老化程度或者自放电程度大于其他电芯时候,一般会出现电池系统内不同电芯之间压差变大等现象。此外,当含有该电芯的电池系统被继续使用,可能会导致该电芯和/或其他电芯发生过充或者过放、过温、析锂等情况,从而加速整个电池系统的老化衰退,严重时会引发起火、爆炸等热失控事故。同时,电池热失控一般有一个热扩散过程,主要由当单体电池发生热失控之后,热量传递到相邻单体电池,相邻单体电池受影响后也将继续发生热失控,导致热失控蔓延,最终引发新能源车辆的安全事故。
下面将通过一些实现示例,以解决上述问题。
一种实现示例是采取被动防护措施来控制电池热失控的蔓延。该实现示例中,主要是在不同电池电芯和/或不同电池模组之间利用各类耐火的阻燃隔热材料进行物理隔离,从而保障车辆乘客和车辆整体的安全。然而,在该实现示例中,阻燃隔热材料占用了大量了电池管理系统中的宝贵空间,且增加了整体电池管理系统的重量,不利于提升电池管理系统的能量密度,对新能源汽车的续航里程会有影响。此外,被动防护只能在电池已经发生热失控的情况下起作用,没有预防热失控发生的功能。
另一种实现方式是采取主动防护措施来控制电池热失控的蔓延。该实现方式中,主动防护系统是通过电池管理系统来进行电压均衡、热管理等方式来增强电池的电压一致性和防止过温。然而,在该实现示例中,电池管理系统管控的手段和效果有限,无法从电路中直接隔离异常电芯,从而导致该电芯继续随着整个电池管理系统被使用而导致其安全状态进一步恶化,无法有效避免电芯内短路恶化等情况下的热失控;或者只能关闭整个电池管理系统,导致车辆无法使用。
另一种实现方式是采用高压继电器的方案来控制电池热失控的蔓延。该实现方式中,电池管理系统可以控制高压继电器的接通和断开,从而实现间整个电池高压回路的接通和断开。然而,当电池发生异常时,高压继电器断开,整个电池高压回路断开,车辆失去动力,无法继续使用。此外,继电器一般是安装在电池总正和总负接口,无法从高压电路中直接隔离单个的异常电芯。
由上述描述可知,在电池的工作过程中,单个电芯出现异常(老化异常或者自放电过大等情况),上述实现示例并无法单独从高压回路中被断开或者旁路掉。此外,在电芯异常情况尚未超过阈值,继续随着整个电池系统被使用,不仅异常电芯的安全状态会进一步恶化,同时还会加速该异常电芯和整个电池系统其他电芯的老化,造成电池系统老化加速,甚至无法完成正常质保期服役,导致需要更换整个电池管理系统,成本巨大,也是电池售后维修的痛点之一。而在电芯异常情况超过一定的阈值,通过高压继电器切断整个电池高压回路,此时电池管理系统无法工作,整车失去动力无法正常使用。
综上所述,如何提升电池使用的安全性,是一个亟待解决的技术问题。
为了解决上述问题,本申请提供了一种电池管理系统、方法及相关设备,通过采集到的电池单元的运行参数控制电池单元在供电电路中接通或断开,以提升电池运行过程中的安全性。下面将结合附图进一步介绍。
请参阅图1a,为本申请提供的电池管理系统的一个示意图。
如图1a所示,该电池管理系统包括N个第一节点,第二节点和M个控制开关,M和N均为大于或等于2的整数(图示示例中以M和N均大于2为例)。该第一节点,用于生成第一信号,并向该第二节点发送该第一信号;其中,该第一信号包括供电电路中与该第一节点对应的电池单元的运行参数;该第二节点,用于基于该第一信号生成第二信号,并向控制开关发送该第二信号;该控制开关,用于基于该第二信号控制该控制开关对应的电池单元在供电电路中接通或断开。
基于图1a所示技术方案,该电池管理系统中的第一节点用于生成并发送包括供电电路中电池单元的运行参数的第一信号,并且,第二节点基于接收到的第一信号生成并发送第二信号,使得控制开关基于 该第二信号控制至少一个电池单元在供电电路中接通或断开。换言之,在该电池管理系统中,通过采集到的电池单元的运行参数控制电池单元在供电电路中接通或断开,以提升电池运行过程中的安全性。
需要说明的是,在图1a中,M个控制开关中的每个控制开关连接N个电池单元中的一个或多个电池单元,该每个控制开关用于为控制该N个电池单元中的一个或多个电池单元在供电电路中接通或断开。
此外,在图1a中,M个控制开关与N个电池单元之间的对应关系可以有多种实现方式。
例如,M的取值与N的取值相等的情况下,M个控制开关与N个电池单元一一对应。
又如,M的取值小于N的取值的情况下,M个控制开关中的至少一个控制开关对应于N个电池单元中的两个或两个以上电池单元,且该至少一个控制开关用于控制N个电池单元中的两个或两个以上电池单元在供电电路中接通或断开。
又如,M的取值大于N的的情况下,M个控制开关中的第一部分控制开关可以作为主控制开关(主控制开关的数量大于或等于2),该主控制开关中的每个控制开关对应于N个电池单元中的一个或多个电池单元,且该主控制开关分别用于控制N个电池单元中的一个或多个电池单元在供电电路中接通或断开。并且,M个控制开关中的第二部分控制开关作为备用开关,且该备用开关用于在主控制开关发生故障的情况下,控制N个电池单元中的一个或多个电池单元在供电电路中接通或断开,以进一步提升安全性。
此外,在图1a所示电池管理系统主要由电池控制单元(可以简称为主控板,电池主控板,电池管理主控板等)、电池从控单元(可以简称为从板,电池从控板,电池管理从控板等)等组成。在本申请中,第一节点可以为电池管理从控板,第二节点可以为电池管理主控板。
可以理解的是,图1a所示实现过程为本申请提供的电池管理系统的一个实现示例,其中,本申请提供的电池管理系统还可以通过如图1b、图1c或图1d所示方式实现,此处不做限定。
在一种可能的实现方式中,以上述图1a所示实现为例,图1a所示电池管理系统可以应用于需要通过电池供电的设备,例如车辆、储能系统等。示例性的,作为一种实现示例,以图1a所示电池管理系统应用于车辆为例,如图2所示,车辆可以搭载图1a所示电池管理系统。
可选地,如图2所示,车辆中的电池管理系统还可以通过与云服务器之间的通信连接,实现车辆中电池管理系统对电池管理的控制策略(或者车辆内部其它模块的控制策略)的空中下载技术(over-the-air technology,OTA)升级。
可选地,云服务器可以为该电池管理系统提供服务的设备,例如该云服务器可以为远程整车监控平台,远程服务器,提供电池管理系统中软件(和或硬件)更新的厂商服务器等,此处不做限定。
在一种可能的实现方式中,在前述任一实施例所示的电池管理系统中,第一节点采集的第一信号(或者基于该第一节点采集的第一信号得到的计算结果)指示该第一信号对应的电池单元异常时,该第二信号用于指示该第一信号对应的电池单元在该供电电路中断开;或,在第一节点采集的第一信号(或者基于第一节点采集的第一信号得到的计算结果)指示该第一信号对应的电池单元正常时,该第二信号用于指示该第一信号对应的电池单元在该供电电路中接通。具体地,在第一信号所包含的电池单元的运行参数超出预定范围(或基于该第一信号得到的计算结果超出预定范围)的情况下,该第一信号对应的电池单元异常,为此,该第二节点基于该第一信号确定的第二信号用于指示该M个开关控制该第一信号对应的电池单元在该供电电路中断开,以避免异常运行的电池单元继续运行导致其安全状态进一步恶化,甚至严重时引发起火、爆炸等热失控事件,同时避免异常运行的电池单元在该供电电路中对其它电池单元或电池整体产生负面影响。相应的,在第一信号所包含的电池单元的运行参数未超出预定范围,或基于该第一信号得到的计算结果未超出预定范围的情况下,该第一信号对应的电池单元正常。为此,该第二节点基于该第一信号确定的第二信号用于指示该M个开关控制该第一信号对应的电池单元在该供电电路中接通(或持续接通),以使得正常运行的电池单元在该供电电路中持续供电。
可选地,该电池管理系统(或第二节点)通过预配置的方式确定该预定范围(或后文提及的阈值、约定值等),或者,该电池管理系统(或第二节点)通过接收其它设备(例如云服务器、整车控制器等)的指示的方式确定该预定范围(或后文提及的阈值、约定值等),此处不做限定。
一种实现示例中,第二节点(或第一节点)可以通过阈值确定第一信号所包含的电池单元的运行参数是否超出预定范围。以该运行参数为温度为例,若该阈值为大于-10摄氏度且小于55摄氏度,则在第 一信号所包含的电池单元的运行参数包含有电池单元的温度且该温度在该阈值指示的范围内的情况下,第二节点(或第一节点)可以确定第一信号所包含的电池单元的运行参数超出预定范围;反之,在第一信号所包含的电池单元的运行参数包含有电池单元的温度且该温度在该阈值指示的范围内的情况下,第二节点(或第一节点)可以确定第一信号所包含的电池单元的运行参数超出预定范围。
另一种实现示例中,第二节点可以通过阈值确定基于该第一信号得到的计算结果是否超出预定范围。例如,第二节点会利用第一节点直接测得的运行参数通过预设的算法计算出不能直接测得的数据,这些数据可以说是二次变量,如荷电状态(state of charge,SOC),健康状态(state of health,SOH),功率状态(state of power,SOP),电池剩余电量(state of energy,SOE),功能状态(state of function,SOF),整个电池系统的压差,或者任一电芯最大电压和任一电芯的最小电压的差值等。相应的,第二节点可以基于阈值判断这些数据是否超出预定范围,若是,则第二节点确定第一信号所包含的电池单元的运行参数超出预定范围;若否,则第二节点确定第一信号所包含的电池单元的运行参数超出预定范围。
可选地,在上述实现示例中,该阈值可以为预配置于第二节点(或第一节点),或者,该阈值可以为其它设备(例如云服务器)向第二节点(或第一节点)发送的,此处不做限定。
在一种可能的实现方式中,在前述任一实施例所示的电池管理系统中,N个第一节点采集的N个第一信号中的k个第一信号(或者基于该k个第一信号得到的计算结果)指示该k个第一信号对应的k个电池单元异常时,该第二信号用于指示该k个第一信号对应的k个电池单元在该供电电路中断开,和/或,该第二信号还用于指示除该k个第一信号对应的k个电池单元之外的其余N-k个电池单元在该供电电路中接通。具体地,在N个第一信号中的k个第一信号所包含的k个电池单元的运行参数超出预定范围(或基于该k个第一信号得到的计算结果超出预定范围)的情况下,该k个第一信号对应的k个电池单元异常。为此,该第二节点基于该N个第一信号确定的第二信号用于指示该M个开关控制该k个第一信号对应的电池单元在该供电电路中断开,和/或,该第二节点基于该N个第一信号确定的第二信号用于指示该M个开关控制该N-k个第一信号对应的电池单元在该供电电路中接通。从而,避免异常运行的电池单元继续运行导致其安全状态进一步恶化,甚至严重时引发起火、爆炸等热失控事件,同时避免异常运行的电池单元在该供电电路中对其它电池单元或电池整体产生负面影响,也可以使得正常运行的N-k电池单元在该供电电路中持续供电,以使得包含有该电池管理系统的设备能够在部分电池单元出现异常的情况下仍然能够基于未出现异常的电池单元持续安全作业。
在该实现方式中,该第二信号可以用于指示该k个第一信号对应的k个电池单元在该供电电路中断开(为便于引用,记为第二信号可以用于指示A信息),和/或,该第二信号还可以用于指示除该k个第一信号对应的k个电池单元之外的其余N-k个电池单元在该供电电路中接通(为便于引用,记为第二信号可以用于指示B信息)。其中,第二信号可以存在多种不同的实现。
例如,该第二信号可以指示A信息而不指示B信息,使得M个开关基于A信息明确需要在供电电路中断开k个电池单元,并且,由于A信息未指示N-k个电池单元的控制指令,为此,M个开关默认控制其它N-k个电池单元的在供电电路中接通的工作状态保持不变。
又如,该第二信号可以指示B信息而不指示A信息,使得M个开关基于B信息明确需要在供电电路中接通N-k个电池单元,并且,由于B信息未指示k个电池单元的控制指令,为此,M个开关默认控制该k个电池单元的在供电电路中断开。
又如,该第二信号可以指示B信息并指示A信息,使得M个开关基于B信息明确需要在供电电路中接通N-k个电池单元,并且,M个开关基于A信息明确需要在供电电路中断开k个电池单元。
在一种可能的实现方式中,该电池管理系统还包括通信单元,在该第一信号指示该第一信号对应的电池单元异常时,该通信单元用于发送指示该异常的指示信息。或者,该电池管理系统还包括通信单元和用户交互单元,在该第一信号指示该第一信号对应的电池单元异常时,该通信单元向用户交互单元发送指示该异常的指示信息,以通过该用户交互单元以语音、文字、图像中的至少一项信息指示该异常。具体地,该电池管理系统可以通过向其它设备发送指示信息的方式,或者通过向用户播报指示的方式等多种方式指示电池单元异常,以便于该指示的接收方获知该异常,后续可以进一步基于该异常执行对电池单元的监控、维修等操作,以提升电池使用的安全性。
由前述描述可知,电池管理系统中主要由电池控制单元(可以简称为主控板,电池主控板,电池管理主控板等)、电池从控单元(可以简称为从板,电池从控板,电池管理从控板等)等组成。下面将以上述实施例中的第一节点为电池管理从控板,第二节点为电池管理主控板且该电池管理系统应用于车辆作为示例,结合更多的附图对本申请提供的电池管理系统及方法进行介绍。
请参阅图3,本申请还提供了一种电池管理系统和包括该电池管理系统的电池管理系统。
如图3所示,电池管理系统包括:
电池管理主控板,用于接收来自电池管理从控板的N个电池单元(在图3中,以电池单元包括电芯、电芯组或者模组1……电芯、电芯组或者模组N为例)的N个第一信号,该N个第一信号至少分别包括N个电池单元的运行参数,并发送控制指令;
N个电池管理从控板,分别与N个电芯、电芯组或者模组相连,通过采样模块采集电芯、电芯组或者模组的运行参数,将包含有这些运行参数的第一信号通过有线或者无线地传输至电池管理主控板,并执行电池管理主控板的指令;
M个控制开关,分别与N个电芯、电芯组或者模组相连,用于接收来自电池管理主控板的指令并接通或者断开所连接的电芯、电芯组或者模组的回路。
可选地,该N个第一信号除了分别包含有N个电池的运行参数之外,该N个第一信号还可以包括电池管理系统所在的电池系统的运行参数。其中,在该电池系统中,除了包含有电池管理系统以及至少N个电池单元之外,还可以包括液冷系统、通信系统、继电器和其他电池系统级别的传感、高压盒、电池壳体等至少一个部件。
如图3所示,VCU和电池管理主控板相连接,并和云服务器(当电池管理系统应用于车辆时,该云服务器可以为图3中的整车监控平台)通信。
可选地,电池管理主控板、整车控制器设置有OTA模块,可以接收整车监控平台通信的信号,用于更新电池管理控制软件、算法和参数。
一种设计中,如图3所示电池管理系统,电池管理从控板包括处理单元(该处理单元也可以称为处理模块,采样单元,采样模块等)和通信单元,该处理单元可以检测电芯、电芯组或者模组的状态信号,该通信单元被设置为将指示该运行参数的信号(例如第一信号)传输至电池管理主控板。
其中,电池管理从控板可以通过多种方式获取电池单元的运行参数。例如,该电芯、电芯组、模组被设置为含有外部传感器。该外部传感器与电池管理从控板电性连接。外部传感器采集电芯或者电芯组的运行参数,并发送给电池管理从控板。又如,该电芯被设置为含有电芯内部传感器。该电芯内部传感器与电池管理从控板电性连接。电芯内部传感器采集电芯内部的运行参数,并发送给电池管理从控板。
一种设计中,如图3所示电池管理系统,电池管理主控板包括处理单元和通信单元。其中,该通信单元可以用于接收电芯、电芯组或者模组的运行参数和电池系统的运行参数,该通信单元可以用于通过分析和处理电芯、电芯组或者模组的运行参数和电池系统的运行参数,并判定电芯、电芯组或者模组是否出现异常。此外,在该处理单元判定电芯、电芯组或者模组是否出现异常后,该处理单元控制该通信单元发送控制指令(例如第二信号)给控制开关,用于将所连接的电芯、电芯组或者模组部分旁路,但同时维持整个电池管理系统的高压回路完整。
一种设计中,如图3所示电池管理系统,控制开关包括开关控制单元和通信单元,其中,该通信单元用于接收电池管理主控板的控制指令(例如第二信号),该开关控制单元用于基于该控制指令执行接通或断开所连接的电芯、电芯组或者模组的回路。
可选的,控制开关可以是电子元件继电器、旁路开关电路单元、金属-氧化物半导体场效应晶体管(metal-oxide-semiconductor field-effect transistor,MOSFET)等。
应理解,上述任一通信单元可以通过有线通信或者无线通信的方式与其它通信单元进行通信,此处不做限定。
可选地,在上述任一实施例中的电池管理系统和外部电源电性连接,并由外部电源供电。或者,电池管理系统和直流转换器(direct current/direct current,DC/DC)电性连接,并通过DC/DC直流 转换器由电池管理系统自身供电。或者,电池管理从控板和电芯、电芯组或者模组电性连接,并由该电芯、电芯组或者模组供电。
在一种可能的实现方式中,在前述任一实施例所示的电池管理系统确定N个电池单元中的k个电池异常的情况下,电池管理系统可以通过在本地预配置(例如出厂预配置,人工配置等方式)两种或两种以上控制策略的方式实现对电池的控制策略的更新,或者,该电池管理系统可以通过与云服务器的交互实现对电池的控制策略的更新,下面将通过图4所示实现过程对后者的实现过程进行示例性描述。如图4所示的方法,该方法包括如下步骤。
需要说明的是,在图4所示实现过程中,步骤S401以及步骤S402的实现过程可以通过电池管理系统中的通信单元执行,步骤S403的实现过程可以通过电池管理系统中的处理单元执行。如前述实施例所示,电池管理系统至少包括N个第一节点以及第二节点,为此,执行图4所示方法中的通信单元和处理单元可以为N个第一节点中的通信单元和处理单元,也可以为第二节点中的通信单元和处理单元,还可以为电池管理系统中独立于第一节点和第二节点所设置的通信单元和处理单元,此处不做限定。下面图4所示实施例中,以相关实现过程为“电池管理系统”作为执行主体为例。
S401.电池管理系统向云服务器发送第一信息。
本实施例中,电池管理系统在步骤S401中向云服务器发送第一信息,相应的,云服务器在步骤S401中接收该第一信息。其中,该第一信息用于指示该N个电池单元中的该k个电池单元在该供电电路中断开和/或该第一信息用于指示该N个电池单元中的该N-k个电池单元在该供电电路中接通。
应理解,第一信息还可以替换为其它表述。例如,第一信息用于指示该N个电池单元中的该k个电池单元异常和/或该第一信息用于指示该N个电池单元中的该N-k个电池单元正常。又如,第一信息用于指示该N个电池单元中存在异常工作(或处于异常工作状态)的k个电池单元。又如,第一信息用于指示该N个电池单元中存在正常工作(或处于正常工作状态)的N-k个电池单元。
S402.云服务器向电池管理系统发送第二信息。
本实施例中,云服务器在步骤S401中接收第一信息之后,该云服务器基于该第一信息生成第二信息,并且,该云服务器在步骤S402中向电池管理系统发送第二信息。相应的,该电池管理系统在步骤S402中接收来自该云服务器的第二信息。其中,该第二信息包括该N-k个电池单元在该供电电路中接通时的控制策略,或,该第二信息包括该k个电池单元在该供电电路中断开时的控制策略。
可以理解的是,电池管理系统在步骤S402中获得的第二信息包括该N-k个电池单元在该供电电路中接通时的控制策略。换言之,第二信息可以是满足该N-k个电池单元在该供电电路中接通时正常运行(和/或满足整车运行)所需的控制策略。
可选地,该控制策略可以包括该N-k个电池单元的上下电管理信息。例如,该上下电管理信息包括以下一种或多种:
电池参数阈值,电池参数采样(例如电池单元数量,电压,电流,温度,绝缘,碰撞,阻抗,烟雾,电解液信号,电位,应力,气体浓度,气压,气体种类,正极极片的电位,负极极片的电位,电解液信号等),高压互锁,崩溃(Crash)信号,继电器等电子器件的监测和诊断,电池状态评估(SOC,SOH,SOE,SOF,SOP等),充电控制,放电控制,热管理控制策略,故障诊断,预警和报警控制,电池一致性控制,均衡功能,信息存储,通讯功能,保护功能等的一种或者多种。
可选地,该第二信息可以包括该控制策略所包含的具体信息,也可以包括该控制策略所包含的具体信息的索引、标识等,此处不做限定。
在步骤S402的一种可能的实现方式中,该云服务器基于该第一信息确定第二信息包括:该云服务器基于该第一信息和第三信息确定该第二信息,该第三信息包括一个或多个电池管理系统的历史运行数据。具体地,该云服务器除了将第一信息作为第二信息的确定依据之一之外,该云服务器还可以将包括一个或多个电池管理系统的历史运行数据的第三信息作为该第二信息的确定依据之一,以便于通过其它电池管理系统的历史运行数据中的运行效果较好的控制策略确定该第二信息,以期提升电池管理系统基于该第二信息更新对供电电路的控制策略之后的运行效果。
应理解,一个或多个电池管理系统的历史运行数据可以包括:一个或多个电池管理系统中部分或全部电池单元在供电电路中接通时,能够使得电池管理系统(或具备该电池管理系统的设备)正常运行的控制策略。换言之,对于一个或多个电池管理系统中任一电池管理系统的历史运行数据而言,该任一电池管理系统的历史运行数据包括部分或全部电池单元在供电电路中接通时,能够使得电池管理系统(或具备该电池管理系统的设备)正常运行的控制策略。
可选地,该云服务器可以通过多种方式获取该第三信息,例如,该云服务器通过与该一个或多个电池管理系统的有线或无线通信连接收集该第三信息,或者,该云服务器通过人工配置(或写入)的方式获取该第三信息,此处不做限定。
类似地,该控制策略可以包括该部分或全部电池单元的上下电管理信息。例如,该上下电管理信息包括上文实施例描述的一种或多种。
S403.电池管理系统基于第二信息更新该供电电路的控制策略。
本实施例中,电池管理系统在步骤S402中接收第二信息之后,该电池管理系统在步骤S403中基于第二信息更新该供电电路的控制策略。
基于图4所示技术方案,在电池所包含的N个电池单元中的k个电池单元异常且在供电电路中断开的情况下,该电池管理系统还可以向云服务器发第一信息并基于来自云服务器的第二信息更新该供电电路的控制策略,以期使得更新后的供电电路的控制策略能够适配该供电电路中接通的电池单元数量。
可以理解的是,如前述任一实施例所示,电池管理系统至少包括N个第一节点和第二节点。为此,在步骤S401中,该电池管理系统向云服务器发送第一信息可以包括:该电池管理系统中的N个第一节点中的部分节点(例如k个第一信号对应的k个节点,N-k个第一信号对应的N-k个节点)中的通信单元向云服务器发送第一信息,该电池管理系统中的N个第一节点中的通信单元向云服务器发送第一信息,该电池管理系统中的第二节点中的通信单元向云服务器发送第一信息等至少一项。相应的,在步骤S402中,该电池管理系统接收来自云服务器的第二信息可以包括:该电池管理系统中的N个第一节点中的部分节点(例如k个第一信号对应的k个节点,N-k个第一信号对应的N-k个节点)中的通信单元接收来自云服务器的第二信息,该电池管理系统中的N个第一节点中的通信单元接收来自云服务器的第二信息,该电池管理系统中的第二节点中的通信单元接收来自云服务器的第二信息等至少一项。
类似地,该电池管理系统在步骤S403中基于第二信息更新该供电电路的控制策略可以包括:该电池管理系统中的第二节点中的处理单元基于第二信息更新该供电电路的控制策略,该电池管理系统中的N个第一节点中的部分节点(例如k个第一信号对应的k个节点,N-k个第一信号对应的N-k个节点)中的处理单元更新该供电电路的控制策略,该电池管理系统中的N个第一节点中的处理单元更新该供电电路的控制策略等至少一项。
此外,该电池管理系统在步骤S401中向云服务器发送第一信息的过程包括:该电池管理系统通过直连链路向云服务器发送第一信息,或,该电池管理系统通过其它中继设备向云服务器发送第一信息。类似地,该电池管理系统在步骤S402中接收来自云服务器的第二信息的过程包括:该电池管理系统通过直连链路接收来自云服务器的第二信息,或,该电池管理系统通过其它中继设备接收来自云服务器的第二信息。
可选地,该中继设备可以为如图2所示的整车控制器(vehicle control unit,VCU),无线网关(Telematics BOX,T-box),无线接入网设备(例如4G基站,5G基站,或未来的6G基站等),路侧单元(road side unit,RSU)等。
在一种可能的实现方式中,在步骤S403中,电池管理系统还用于在满足第一条件时,基于第二信息更新对该供电电路的控制策略,该第一条件包括以下至少一项:
该k个电池单元的异常等级未达到阈值;
该k个电池单元的运行参数未超出预定范围;
该N-k个电池的健康状态(state of health,SOH)未超过阈值;
该供电电路所在设备的累计行驶里程数低于阈值或者约定值;
该供电电路所在设备的累计运行时长低于阈值或者约定值。
具体地,在满足上述第一条件的情况下,该电池管理系统可以确定当前电池中异常工作的k个电池单元和/或正常工作的N-k个电池单元的运行风险可控,为此,该电池管理系统可以执行基于第二信息更新对该供电电路的控制策略。
可选地,在步骤S402之后,若电池管理系统确定不满足第一条件时,该电池管理系统可以确定当前电池中异常工作的k个电池单元和/或正常工作的N-k个电池单元的运行风险过大,该电池管理系统不执行步骤S403中基于第二信息更新对该供电电路的控制策略,和/或,该电池管理系统生成并(通过语音、图像、文字等形式)播报报警信息,以期使得用户知晓该电池运行的风险,后续用户可以对该电池执行维修、更换等操作,以提升安全性。
在一种可能的实现方式中,在前述任一实施例所示电池管理系统中,该第二节点还用于控制该k个电池单元充电至预定电量。具体地,第二节点还可以控制该k个电池单元充电至预定电量,便于对该异常工作的k个电池单元持续监控,进一步提升电池使用的安全性。
在一种可能的实现方式中,在前述任一实施例所示电池管理系统中,任一第一节点采集的电池单元的运行参数包括电池单元的内部运行参数和/或外部运行参数;该内部运行参数包括该电池单元的内部温度,内部气体种类,气压,气体浓度,电压,电流,正极极片的电位,负极极片的电位,电解液信号,内阻以及应力中的一个或多个;该外部运行参数包括该电池单元的外部温度,气体种类,气压,气体浓度,电压,电流,应力,电解液信号,烟感,内阻以及应力中的一个或多个。
应理解,电池单元的运行参数还可以包括其他能够表征电芯、电芯组或者模组状态的信息,本申请不限定该运行参数的类型和数量。
在一种可能的实现方式中,在前述任一实施例所示电池管理系统中,该电池单元为一个或多个电芯,一个或多个电芯组,或者,一个或多个模组。
应理解,该N个电池单元中,不同的电池单元所包含的电芯(或电芯组,或模组)的数量可以是相同的,也可以是不同的,此处不做限定。
可以理解的是,在电池中,一个模组包括至少两个电芯组或者电芯,一个电芯组包括至少两个电芯。
由上述图3和图4所示实现过程可知,图3所示整车控制器和电池管理主控板相连接,并能够和远程整车监控平台(由前述描述可知,远程整车监控平台为云服务器的一种实现)通信。其中,电池管理主控板可以将电芯、电芯组或者模组的旁路情况信号发送给整车控制器,整车控制器将该旁路情况信号发送给远程整车监控平台。相应的,远程整车监控平台接收到该整车控制器的该旁路情况信号,通过分析和计算,给出更新的控制策略(例如电池管理控制软件、算法和参数)。远程整车监控平台被设置为向电池管理主控板、整车控制器发送该控制策略(例如电池管理控制软件、算法和参数)。此外,电池管理主控板、整车控制器设置有OTA模块,可以接收整车监控平台通信的信号,包括该更新的控制策略(例如电池管理控制软件、算法和参数)。该电池管理主控板、整车控制器针对性地更新对应的电池的控制策略(例如电池管理控制软件、算法和参数)。
可选的,电池管理主控板发送更新控制指令和更新的控制策略(例如电池管理控制软件、算法和参数)给电池管理从控板。电池管理从控板收到更新控制指令和该更新的控制策略(例如电池管理控制软件、算法和参数),并进行更新。
下面将结合图5对电池管理系统中的第二节点可能执行的电池管理方法进一步说明。
请参阅图5,为本申请提供的电池管理方法的一个实现示意图,该方法包括如下步骤。
S501.N个第一节点采集N个第一信号。
本实施例中,N个第一节点在步骤S501中采集N个第一信号,该N个第一信号分别包括供电电路中N个电池单元的运行参数,N为大于或等于2的整数。具体的,第一节点可以通过传感器等装置采集第一信号。
S502.N个第一节点向第二节点发送N个第一信号。
本实施例中,N个第一节点在步骤S501中采集N个第一信号之后,该N个第一节点在步骤S502中向第二节点发送该N个第一信号。相应的,第二节点在步骤S502中接收该N个第一信号。
S503.第二节点基于N个第一信号生成第二信号。
本实施例中,第二节点在步骤S502中接收该N个第一信号之后,该第二节点在步骤S503中基于该N个第一信号生成第二信号。其中,该第二信号用于指示至少一个电池单元在该供电电路中接通或断开。
在一种可能的实现方式中,在步骤S503中,若第二节点确定第一信号或者基于该第一信号得到的计算结果指示该第一信号对应的电池单元异常时,该第二信号用于指示该第一信号对应的电池单元在该供电电路中断开;或,在步骤S503中,若第二节点确定第一信号或者基于该第一信号得到的计算结果指示该第一信号对应的电池单元正常时,该第二信号用于指示该第一信号对应的电池单元在该供电电路中接通。具体地,在第一信号所包含的电池单元的运行参数超出预定范围,或基于该第一信号得到的计算结果超出预定范围的情况下,该第一信号对应的电池单元异常,为此,该第二节点基于该第一信号确定的第二信号用于指示该M个开关控制该第一信号对应的电池单元在该供电电路中断开,以避免异常运行的电池单元继续运行导致其安全状态进一步恶化,甚至严重时引发起火、爆炸等热失控事件,同时避免异常运行的电池单元在该供电电路中对其它电池单元或电池整体产生负面影响。相应的,在第一信号所包含的电池单元的运行参数未超出预定范围,或基于该第一信号得到的计算结果未超出预定范围的情况下,该第一信号对应的电池单元正常。为此,该第二节点基于该第一信号确定的第二信号用于指示该M个开关控制该第一信号对应的电池单元在该供电电路中接通(或持续接通),以使得正常运行的电池单元在该供电电路中持续供电。
在一种可能的实现方式中,在步骤S503中,该第二节点确定N个第一信号中的k个第一信号或者基于该k个第一信号得到的计算结果指示该k个第一信号对应的k个电池单元异常时,该第二信号用于指示该k个第一信号对应的k个电池单元在该供电电路中断开,和/或,该第二信号还用于指示除该k个第一信号对应的k个电池单元之外的其余N-k个电池单元在该供电电路中接通。具体地,在N个第一信号中的k个第一信号所包含的k个电池单元的运行参数超出预定范围,或基于该k个第一信号得到的计算结果超出预定范围的情况下,该k个第一信号对应的k个电池单元异常。为此,该第二节点基于该N个第一信号确定的第二信号用于指示该M个开关控制该k个第一信号对应的电池单元在该供电电路中断开,和/或,该第二节点基于该N个第一信号确定的第二信号用于指示该M个开关控制该N-k个第一信号对应的电池单元在该供电电路中接通。从而,避免异常运行的电池单元继续运行导致其安全状态进一步恶化,甚至严重时引发起火、爆炸等热失控事件,同时避免异常运行的电池单元在该供电电路中对其它电池单元或电池整体产生负面影响,也可以使得正常运行的N-k电池单元在该供电电路中持续供电,以使得包含有该电池管理系统的设备能够在部分电池单元出现异常的情况下仍然能够基于未出现异常的电池单元持续安全作业。
在一种可能的实现方式中,在步骤S503之后,该方法还包括:该第二节点向云服务器发送第一信息,该第一信息用于指示该N个电池单元中的该k个电池单元在该供电电路中断开和/或该第一信息用于指示该N个电池单元中的该N-k个电池单元在该供电电路中接通;该第二节点接收来自该云服务器的第二信息,该第二信息包括该N-k个电池单元在该供电电路中接通时的控制策略,或,该第二信息包括该k个电池单元在该供电电路中断开时的控制策略;该第二节点基于第二信息更新该供电电路的控制策略。
应理解,第二节点与云服务器之间的交互还可以参考前述图4所示实现过程,并实现相应的技术效果,此处不做赘述。
在一种可能的实现方式中,该方法还包括:该第二节点控制该k个电池单元充电至预定电量。具体地,第二节点还可以控制该k个电池单元充电至预定电量,便于对该异常工作的k个电池单元持续监控,进一步提升电池使用的安全性。
S504.第二节点向M个开关发送第二信号。
本实施例中,第二节点在步骤S503中基于该N个第一信号生成第二信号之后,该第二节点在步骤S504中向M个开关发送该第二信号,M为大于或等于2的整数。相应的,该M个开关在步骤S504中接收该第二信号,使得该M个控制开关基于该第二信号控制至少一个电池单元在供电电路中接通或断开。
在一种可能的实现方式中,图5所示技术方案中,该方法还包括:第二节点确定在步骤S502接收的第一信号指示该第一信号对应的电池单元异常时,该第二节点发送指示该异常的指示信息。或者,第二节点确定在步骤S502接收的第一信号指示该第一信号对应的电池单元异常时,该第二节点向用户交互单 元发送指示该异常的指示信息,以通过该用户交互单元以语音、文字、图像中的至少一项信息指示该异常。具体地,该第二节点可以通过向其它设备发送指示信息的方式,或者通过向用户播报指示的方式等多种方式指示电池单元异常,以便于该指示的接收方获知该异常,后续可以进一步基于该异常执行对电池单元的监控、维修等操作,以提升电池使用的安全性。
基于图5所示技术方案,第二节点在步骤S502中接收的N个第一信号分别包括供电电路中N个电池单元的运行参数,并且,该第二节点在步骤S503中基于该N个第一信号生成第二信号并在步骤S504中发送第二信号,使得M个控制开关基于该第二信号控制至少一个电池单元在供电电路中接通或断开。换言之,该第二节点通过采集到的电池单元的运行参数控制电池单元在供电电路中接通或断开,以提升电池运行过程中的安全性。
需要说明的是,图5所示技术方案中,第二节点执行各个步骤的实现过程可以参考前述图1a至图4任一实施例中的描述,并实现相应的技术效果,此处不做赘述。
由前述实现过程可知,图3所示电池单元可以为电芯、电芯组或模组等多种实现,下面将结合更多的实施例进行描述。
如图6a所示,电池管理系统所管理的电池可以由多个电芯串联组成,换言之,电池中的电池单元包括电芯,本实施例中以每个电池单元对应于一个电芯为例进行说明。在图6a中,当电池管理主控板判定电芯出现异常后,发送控制指令给连接该异常电芯的控制开关,用于将异常电芯旁路,但同时维持整个电池管理系统的高压回路完整。
示例性的,如图6b所示,该控制开关包含连接开关,和正极开关、负极开关中的一个或者多个,控制开关基于电池管理主控板的指令执行对应的操作。在图6b中,在正常运行状态下,连接开关打开,正极开关和/或负极开关关闭,电流可正常流经电芯,电芯正常工作。当控制开关收到收到电池管理主控板的控制指令要求旁路所连接的异常电芯回路时,按照先打开正极、负极开关,再关闭连接开关的顺序完成异常电芯的旁路,防止发生电芯的短路。此时电流不流经异常电芯,该电芯不工作,但整个高压回路依然是连通的。
如图7a所示,电池管理系统所管理的电池可以由多个电芯组串联组成,换言之,电池中的电池单元包括电芯组,本实施例中以每个电池单元对应于一个电芯组为例进行说明。当电池管理主控板判定电芯出现异常后,发送控制指令给连接该异常电芯或者电芯组的控制开关。
可选地,该电芯组由多个电芯并联组成。
在一些实施例中,控制开关基于电池管理主控板的指令执行对应的操作,控制开关可以将整个电芯组旁路,但同时维持整个电池管理系统的高压回路完整。
示例性的,如图7b所示,该控制开关包含连接开关,和正极开关、负极开关中的一个或者多个。在正常运行状态下,连接开关打开,正极开关和/或负极开关关闭,电流可正常流经电芯组,电芯组正常工作。当控制开关收到收到电池管理主控板的控制指令要求旁路所连接的异常电芯所在的电芯组回路时,按照先打开正极、负极开关,再关闭连接开关的顺序完成异常电芯所在的电芯组的旁路,防止发生电芯组的短路。此时电流不流经异常电芯组,该电芯组不工作,但整个高压回路依然是连通的。
在另外一些实施例中,控制开关基于电池管理主控板的指令执行对应的操作,控制开关可以将个别异常电芯旁路,该异常电芯所在的电芯组和其他的电芯组依然正常工作。同时维持整个电池管理系统的高压回路完整。
示例性的,如图7c所示,在正常运行状态下,连接开关打开,正极开关和/或负极开关关闭,电流可正常流经电芯组,电芯组正常工作。当控制开关收到收到电池管理主控板的控制指令要求旁路所连接的异常电芯(在图7c的示例中,电芯1为异常电芯)时,打开该异常电芯的开关。此时电流不流经该异常电芯,该电芯组中跟其他电芯继续工作,整个高压回路依然是连通的。
如图8a所示,电池管理系统所管理的电池可以由多个模组串联组成,换言之,电池中的电池单元包括模组,本实施例中以每个电池单元对应于一个模组为例进行说明。当电池管理主控板判定电芯出现异常后,发送控制指令给连接该异常电芯或者模组的控制开关。
可选地,模组由多个电芯串并联组成。
在一些实施例中,控制开关基于电池管理主控板的指令执行对应的操作,控制开关可以将整个模组旁路,但同时维持整个电池管理系统的高压回路完整。
示例性的,如图8b所示,该控制开关包含连接开关,和正极开关、负极开关中的一个或者多个。在正常运行状态下,连接开关打开,正极开关和/或负极开关关闭,电流可正常流经模组,模组正常工作。当控制开关收到收到电池管理主控板的控制指令要求旁路所连接的异常电芯所在的模组回路时,按照先打开正极、负极开关,再关闭连接开关的顺序完成异常电芯所在的模组旁路,防止发生模组的短路。此时电流不流经异常模组,该模组不工作,但整个高压回路依然是连通的。
在另外一些实施例中,控制开关基于电池管理主控板的指令执行对应的操作,控制开关可以将个别异常电芯旁路,该异常电芯所在的模组和其他的模组依然正常工作。同时维持整个电池管理系统的高压回路完整。
示例性的,如图8c所示,在正常运行状态下,连接开关打开,正极开关和/或负极开关关闭,电流可正常流经电芯组,电芯组正常工作。当控制开关收到收到电池管理主控板的控制指令要求旁路所连接的异常电芯(在图8c的示例中,电芯m1为异常电芯)时,打开该异常电芯的开关。此时电流不流经该异常电芯,该模组中其他电芯继续工作,整个高压回路依然是连通的。
由前述描述可知,本申请涉及的电池管理方法的实现过程主要涉及电池管理主控板(下文记为主控)和电池管理从控板(下文记为从控)之间的通信过程以及处理过程。在一些实施例中,该电池管理方法还可以进一步通过整车控制器(VCU),云服务器(下文记为整车监控平台)等参与实现,下面将结合更多的实现示例对本申请提供的电池管理方法进行介绍。
请参阅图9,为本申请提供的电池管理方法的另一个示意图,该方法包括如下步骤。
901.从控采集信号。
应理解,步骤901的实现过程可以参考前述步骤S501中N个第一节点采集N个第一信号的实现过程并实现相应的技术效果,此处不做赘述。
此外,从控在步骤901之后,还可以向主控发送所采集的信号,以便于主控执行步骤903。
可选地,若存在异常信号则从控报警(或生成并显示报警信号)。
902.从控判定电池单元是否异常,若是则执行步骤903,若否则执行步骤911。
其中,步骤902为可选步骤,即从控可以执行步骤902,以便于从控向主控发送N个第一信号中的异常信号,节省开销。或者,从控也可以不执行步骤902,即从控将N个第一信号都发送给主控,使得主控在步骤903中基于个第一信号确定出存在异常的电池单元。
903.主控确定电池单元是否异常,若是则执行步骤904,若否则执行步骤911。
应理解,步骤903的实现过程可以参考前述步骤S502中第二节点基于N个第一信号生成第二信号的实现过程并实现相应的技术效果,此处不做赘述。
904.主控控制选择开关断开,选择开关确认断开状态。
应理解,步骤904的实现过程可以参考前述步骤S503中第二节点发送第二信号的实现过程并实现相应的技术效果,此处不做赘述。
此外,控制开关作为第二信号的接收方,该控制开关在步骤904中接收该第二信号之后基于该第二信号对电池单元执行接通或断开的操作。
可选地,若存在异常信号则主控报警(或生成并显示报警信号)。
可以理解的是,上述步骤901至步骤904的实现过程可以参考前述N个第一节点与第二节点之间的实现过程,并实现相应的技术效果,此处不做赘述。
基于步骤901、步骤903和步骤904的实现过程可知,在该电池管理系统中,通过采集到的电池单元的运行参数控制电池单元在供电电路中接通或断开,以提升电池运行过程中的安全性。
在步骤903中,主控确定存在异常的电池单元之后,主控以及主控所在的电池管理系统还可以执行后续的步骤905和步骤912的实现过程。应理解,后续步骤中除了步骤905和步骤912的其余步骤为可选步骤。
905.主控发送该信息给整车监控平台,该信息用于指示主控在步骤903确定的异常信息。
其中,整车监控平台作为云服务器的一种实现方式,主控在步骤905向整车监控平台发送信息的过程可以参考前述步骤S401中电池管理系统向云服务器发送第一信息的过程,并实现相应的技术效果,此处不做赘述。
906.判断是否为一级报警(和/或报警次数未达到阈值),若是则执行步骤908,若否则执行步骤907。
907.维修。其中,步骤907的维修指的是电池管理系统的使用用户或者维修厂商对该电池执行维修操作。
908.判断剩余电池的SOH是否大于或等于80%出厂值或者约定值,若是则执行步骤910,若否则执行步骤909。
909.整车监控平台(可简称整车平台)确认下一步操作:更新控制策略或维修。其中,若整车监控平台在步骤909中确定执行的下一步操作为更新控制策略,则执行步骤912。
910.判断形式的总里程是否小于或等于折算后的总里程,若是则执行步骤912,若否则执行步骤909。
911.取消报警状态。
可选地,在上述步骤905中,电池管理主控板将电芯异常信号及电芯、电芯组或者模组的旁路情况信号发送给整车控制器,整车控制器将异常信号和所述旁路情况信号发送给远程整车监控平台。电芯异常信号可以涉及整个电池管理系统各种的一个电芯或者多个电芯。此外,在步骤905之后,整车监控平台可以执行步骤906、步骤908和步骤910中的至少一项判断过程,下面将结合一些实施例进行介绍。
应理解,步骤906、步骤908和步骤910为前述实施例中第一条件的一些实现示例,这些步骤为可选步骤。
在一些实施例中,整车监控平台可以执行步骤906中判断所述电芯异常信号是否为一级报警信号或者其他约定的报警等级,或者报警次数是否达到阈值。
可选地,电芯异常信号显示该异常为一级报警(在该示例中,一级报警为较高级别的告警等级),或者其他约定的可能导致热失控等安全事故的报警等级,或者电芯异常信号报警次数达到阈值,或者其他约定的热失控等安全事故的判定条件,则判定该整车的电池管理系统需要进行进一步维修处理,即执行步骤907。
可选地,整车监控平台可以执行步骤906中确定电芯异常信号不是一级报警,或者其他约定的可能导致热失控等安全事故的报警等级,且电芯异常信号报警次数未达到阈值,或者其他约定的热失控等安全事故的判定条件,则继续判定电池的SOH,即执行步骤908。
在一些实施例中,整车监控平台在步骤908中,确定剩余电池的SOH小于80%或者其他约定值,则通过整车监控平台根据该车辆的历史运行数据和其他车辆的历史运行数据对比,当判定为具有安全风险,则确认车辆电池管理系统需要进行进一步维修处理,执行步骤909;否则,该整车监控平台执行步骤912。
可选地,剩余电池的SOH剩余计算方法的一个实现示例为:
SOH剩余=SOHt异常*(n-x)/n;
其中,电芯总数量为n,损失的数量为x,x可以是一个或者多个,出现异常t时刻电池的老化程度为SOHt异常。
可选地,当整车监控平台在步骤910中确定已经行驶的里程数是否超过折算后的按质保约定总里程数。当已经行驶的里程数超过折算后的按质保约定总里程数或者其他约定值,当判定为具有安全风险,则确认车辆电池管理系统需要进行进一步维修处理,执行步骤909;否则,该整车监控平台执行步骤912。
可选地,折算的里程剩余计算方法的一个实现示例为:
里程剩余=里程质保*(n-x)/n;
其中,电芯总数量为n,损失的数量为x,x可以是一个或者多个,原整车按质保约定总续航里程为里程质保。
912.本地整车控制器和电池管理主控板更新用户端电池管理系统的控制策略(包括算法或者阈值等)。换言之,本地整车控制器通过预配置的方式配置有多种控制策略、算法或者阈值,以便于在电芯、电芯组或者模组出现异常时执行本地更新。
示例性的,在步骤912中,远程整车监控平台接收到所述整车控制器的所述旁路情况信号,通过分析和计算,给出更新的电池管理控制软件、算法和参数。远程整车监控平台被设置为向电池管理主控板、整车控制器发送所述更新的电池管理控制软件、算法和参数。
可选的,电池管理主控板发送更新控制指令和更新的电池管理控制软件、算法和参数给电池管理从控板。电池管理从控板收到更新控制指令和所述更新的电池管理控制软件、算法和参数,并进行更新。
基于步骤905和步骤912的实现过程可知,电池管理系统可以更新该供电电路的控制策略,以期使得更新后的供电电路的控制策略能够适配该供电电路中接通的电池单元数量。
913.电池管理系统重新启动。
914.判断被隔离电池单元数是否不等于零。如果是零则这部分的流程结束,如果不是零则执行步骤915。
915.判断被隔离电池单元的状态数据是否正常,数值或者变化率是否未超过阈值。若是则执行步骤917,若否则执行步骤906。
916.通过维修去除异常电池单元或者替换部分或全部的电池单元。
917.判断被隔离电池电量低于10%或者约定值。若是则执行步骤918,若否则执行步骤919。
918.充电时:打开选择开关,并进行充电时:主动或者被动均衡进行充电至电量达到30%或者约定值。
919.电池正常使用。
由上述步骤可知,当车辆还存在异常电芯、电芯组或者模组时,x≠0,则需要对这些异常电芯、电芯组或者模组进一步监测以避免出现突发安全事故。即电池管理主控板可以执行步骤914、步骤915和步骤917中的至少一个步骤。
在一些实施例中,在步骤915中,当监测到的异常电芯、电芯组或者模组状态数据进一步恶化,超过限定的阈值或者安全等级,及其他约定的将导致安全事故的条件,则需要对电池进行维修处理,去除或者替换异常电芯、电芯组或者模组,同步刷新异常电芯、电芯组或者模组为零,x=0。
在另一些实施例中,在步骤915中,当监测到的异常电芯、电芯组或者模组状态数据无进一步恶化,未超过限定的阈值或者安全等级,及其他约定的将导致安全事故的条件,则监测电池的电量。
在另一些实施例中,在步骤917和步骤918中,当确定异常电芯、电芯组或者模组的电量少于10%或者其他约定值:则在整车和电池管理系统充电时,通过电池管理主控板发送控制指令给控制开关,让异常电芯、电芯组或者模组接入电池高压回路,并可以完成充电;或者整车和电池未充电状态下,通过主动均衡或者被动均衡使得异常电芯、电芯组或者模组的电量达到30%或者或者其他约定值以下。
此后,在步骤919中,电池管理系统和整车控制器完成重新启动,以保证车辆和电池可以继续整车使用。
请参阅图10,为本申请提供的电池管理方法的另一个示意图,该方法包括如下步骤。
可以理解的是,图10所示实现过程与图9所示实现过程的区别在于步骤912和步骤1012的实现过程不同。在图10所示步骤1012中,整车监控平台通过OTA远程更新用户端电池管理系统的控制策略、算法或者阈值,而非步骤912中通过本地整车控制器执行本地更新,以期获得最新的控制策略、算法或者阈值等配置,而无需本地预配置多种控制策略。
此外,图10所示实现过程的其他步骤可以参考图9所示实现过程的其它步骤的实现,并实现相应的技术效果,此处不做赘述。
1001.检测异常信号;
1002.从控判定电池是否异常,若是则执行步骤1003,若否则执行步骤1011。
1003.主控确定电池是否异常,若是则执行步骤1004,若否则执行步骤1011。
1004.主控控制选择开关断开,选择开关确认断开状态。
1005.主控发送该信息给整车监控平台。
1006.判断是否为不是一级报警且报警次数未达到阈值,若是则执行步骤1008,若否则执行步骤1007。
1007.维修。
1008.判断剩余电池的SOH是否大于或等于80%出厂值或者约定值,若是则执行步骤1010,若否则执行步骤1009。
1009.整车监控平台确认下一步操作:更新控制策略或维修。
1010.判断形式的总里程是否小于或等于折算后的总里程。
1011.取消报警状态。
1012.整车监控平台通过OTA远程更新用户端电池管理系统的控制策略、算法或者阈值。
1013.电池管理系统重新启动。
1014.判断被隔离电池单元数是否不等于零。如果是零则这部分的流程结束,如果不是零则执行步骤1015。
1015.判断被隔离电池的状态数据是否正常,数值或者变化率是否未超过阈值。若是则执行步骤1017,若否则执行步骤1006。
1016.通过维修去除或者替换。
1017.判断被隔离电池电量低于10%或者约定值。若是则执行步骤1018,若否则执行步骤1019。
1018.充电时:打开选择开关,并进行充电时:主动或者被动均衡进行充电至电量达到30%或者约定值。
1019.电池正常使用。
综上所述,本申请提供的电池管理系统及方法应用于车辆时,在电芯、电芯组或者模组级安装控制开关和采样模块,当发现个别电芯、电芯组或者模组异常,可以通过控制开关断开该电芯、电芯组或者模组。从而,防止这些异常的电芯、电芯组和模组继续跟随整个电池管理系统继续使用而导致加速老化,导致电池使用寿命达不到质保保证的年限和里程数,导致需要更新整个电池系统,而给整车厂和消费者带来大额的售后维修费用(电池占新能源汽车成本的40~50%左右)。
此外,还可以防止这些异常的电芯、电芯组和模组继续跟随整个电池管理系统继续使用安全性能进一步恶化,从而导致热失控或者起火、爆炸等安全事件,带来人身安全、财产的损失。
在一些实施例中,本申请还提供了电芯、电芯组和模组不同断开方式。从而,可根据具体的情况灵活的处理断开的方式,使得在尽量维持电池性能和整车驾驶体验的基础上保证安全性。
在一些实施例中,本申请还提供了在风险可控条件下,通过预留的OTA系统,根据被隔离或者断开的电芯数量,远程平台可以更新控制软件、算法、参数,可保持车辆正常行驶;若判定风险太大,则保证车辆行驶至维修点或者直接停止使用。从而,使得电池管理系统更新后,可以使得该电池管理系统继续使用。在可控的情况下(老化程度不是太大、安全报警等级不高,总体来说安全可控的条件,具体见流程图9或图10),免去大量的维修、替换电池等费用,基本可以实现零成本维护。
下面将通过图11和图12对本申请提供的第二节点和云服务器进一步介绍,该第二节点或云服务器可以为图11和图12中的通信装置。
请参阅图11,该通信装置包括处理单元1102和收发单元1101。
一种可能的实现方式中,图11所示通信装置1100可以实现上述任一实施例中第二节点执行的方法。例如,该装置可以为第二节点,或者,该装置可以为第二节点中的组件(例如处理器、芯片或芯片系统等),或者该装置还可以为能实现全部或部分第二节点功能的逻辑模块或软件。
其中,该装置1100包括收发单元1101和处理单元1102;该收发单元1101用于接收来自N个第一节点的N个第一信号,该N个第一信号分别包括供电电路中N个电池单元的运行参数,N为大于或等于2的整数;该处理单元1102用于基于来自该N个第一节点的N个第一信号生成第二信号,该第二信号用于指示至少一个电池单元在该供电电路中接通或断开;该收发单元1101还用于向该M个控制开关发送该第二信号,M为大于或等于2的整数。
在一种可能的实现方式中,对于N个第一信号中的任一个第一信号,在该第一信号或者基于该第一信号得到的计算结果指示该第一信号对应的电池单元异常时,该第二信号用于指示该第一信号对应的电 池单元在该供电电路中断开;或,在该第一信号或者基于该第一信号得到的计算结果指示该第一信号对应的电池单元正常时,该第二信号用于指示该第一信号对应的电池单元在该供电电路中接通。
在一种可能的实现方式中,在该N个第一信号中的k个第一信号或者基于该k个第一信号得到的计算结果指示该k个第一信号对应的k个电池单元异常时,该第二信号用于指示该k个第一信号对应的k个电池单元在该供电电路中断开,和/或,该第二信号还用于指示除该k个第一信号对应的k个电池单元之外的其余N-k个电池单元在该供电电路中接通。
在一种可能的实现方式中,该收发单元1101还用于向云服务器发送第一信息,该第一信息用于指示该N个电池单元中的该k个电池单元在该供电电路中断开和/或该第一信息用于指示该N个电池单元中的该N-k个电池单元在该供电电路中接通;该收发单元1101还用于接收来自该云服务器的第二信息,该第二信息包括该N-k个电池单元在该供电电路中接通时的控制策略,或,该第二信息包括该k个电池单元在该供电电路中断开时的控制策略;该处理单元1102还用于基于第二信息更新该供电电路的控制策略。
在一种可能的实现方式中,在满足第一条件时,该处理单元1102用于基于该第二信息更新对该供电电路的控制策略,该第一条件包括以下至少一项:
该k个电池单元的异常等级未达到阈值;
该k个电池单元的运行参数未超出预定范围;
该N-k个电池的健康状态SOH未超过阈值;
该供电电路所在设备的累计行驶里程数低于阈值或者约定值;
该供电电路所在设备的累计运行时长低于阈值或者约定值。
在一种可能的实现方式中,该处理单元1102还用于控制该k个电池单元充电至预定电量。
在一种可能的实现方式中,该运行参数包括电池单元的内部运行参数和/或外部运行参数;该内部运行参数包括该电池单元的内部温度,内部气体种类,气压,气体浓度,电压,电流,正极极片的电位,负极极片的电位,电解液信号,内阻以及应力中的一个或多个;该外部运行参数包括该电池单元的外部温度,气体种类,气压,气体浓度,电压,电流,应力,电解液信号,烟感,内阻以及应力中的一个或多个。
在一种可能的实现方式中,该电池单元为一个或多个电芯,一个或多个电芯组,或者,一个或多个模组。
另一种可能的实现方式中,图11所示通信装置1100可以实现上述任一实施例中云服务器执行的方法。例如,该装置可以为云服务器,或者,该装置可以为云服务器中的组件(例如处理器、芯片或芯片系统等),或者该装置还可以为能实现全部或部分云服务器功能的逻辑模块或软件。
其中,该装置1100包括收发单元1101和处理单元1102;该收发单元1101用于接收来自电池管理系统的第一信息,该第一信息用于指示N个电池单元中的该k个电池单元在供电电路中断开和/或该第一信息用于指示该N个电池单元中的该N-k个电池单元在该供电电路中接通;N为大于或等于2的整数;该处理单元1102用于基于该第一信息确定第二信息,该第二信息包括该N-k个电池单元在该供电电路中接通时的控制策略,或,该第二信息包括该k个电池单元在该供电电路中断开时的控制策略;该收发单元1101还用于向该电池管理系统发送该第二信息。
在一种可能的实现方式中,该收发单元1101具体用于基于该第一信息和第三信息确定该第二信息,该第三信息包括一个或多个电池管理系统的历史运行数据。
需要说明的是,图11所示通信装置1100具体可以用于实现前述方法实施例中第二节点或云服务器所实现的步骤,并实现第二节点或云服务器对应的技术效果,图11所示通信装置的具体实现方式,均可以参考前述方法实施例中的叙述,此处不再一一赘述。
此外,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请实施例中各功能单元可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
请参阅图12,为本申请提供的通信装置1200的另一种示意性结构图,通信装置1200至少包括输入输出接口1202。其中,通信装置1200可以为芯片或集成电路。
可选的,该通信装置还包括逻辑电路1201。
其中,图11所示收发单元1101可以为通信接口,该通信接口可以是图12中的输入输出接口1202,该输入输出接口1202可以包括输入接口和输出接口。或者,该通信接口也可以是收发电路,该收发电路可以包括输入接口电路和输出接口电路。
可选的,该输入输出接口1202用于输入来自N个第一节点的N个第一信号,该第一信号包括供电电路中与该第一节点对应的电池单元的运行参数,N为大于或等于2的整数;该逻辑电路1201用于基于该N个第一信号生成第二信号;该输入输出接口1202还用于输出该第二信号。
可选的,该输入输出接口1202用于输入第一信息,该第一信息用于指示N个电池单元中的该k个电池单元在供电电路中断开和/或该第一信息用于指示该N个电池单元中的该N-k个电池单元在该供电电路中接通;N为大于或等于2的整数;该逻辑电路1201用于基于该第一信息确定第二信息,该第二信息包括该N-k个电池单元在该供电电路中接通时的控制策略,或,该第二信息包括该k个电池单元在该供电电路中断开时的控制策略;该输入输出接口1202还用于输出该第二信息。
其中,逻辑电路1201和输入输出接口1202还可以执行任一实施例中第二节点或云服务器执行的其他步骤并实现对应的有益效果,此处不再赘述。
在一种可能的实现方式中,图11所示处理单元1102可以为图12中的逻辑电路1201。
可选的,逻辑电路1201可以是一个处理装置,处理装置的功能可以部分或全部通过软件实现。其中,处理装置的功能可以部分或全部通过软件实现。
可选的,处理装置可以包括存储器和处理器,其中,存储器用于存储计算机程序,处理器读取并执行存储器中存储的计算机程序,以执行任意一个方法实施例中的相应处理和/或步骤。
可选地,处理装置可以仅包括处理器。用于存储计算机程序的存储器位于处理装置之外,处理器通过电路/电线与存储器连接,以读取并执行存储器中存储的计算机程序。其中,存储器和处理器可以集成在一起,或者也可以是物理上互相独立的。
可选地,该处理装置可以是一个或多个芯片,或一个或多个集成电路。例如,处理装置可以是一个或多个现场可编程门阵列(field-programmable gate array,FPGA)、专用集成芯片(application specific integrated circuit,ASIC)、系统芯片(system on chip,SoC)、中央处理器(central processor unit,CPU)、网络处理器(network processor,NP)、数字信号处理电路(digital signal processor,DSP)、微控制器(micro controller unit,MCU),可编程控制器(programmable logic device,PLD)或其它集成芯片,或者上述芯片或者处理器的任意组合等。
关于具体细节,可参见上文方法实施例中的记载,在此不再赘述。
本申请实施例还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上文实施例所描述的方法。
本申请实施例还提供一种芯片系统,该芯片系统包括至少一个处理器和接口电路。进一步可选的,该芯片系统还可以包括存储器或者外接存储器。该处理器用于通过该接口电路执行指令和/或数据的交互,以实现上文方法实施例中的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行上文实施例所描述的方法。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件、协处理器等,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,SSD)等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (30)

  1. 一种电池管理系统,其特征在于,包括N个第一节点,第二节点和M个控制开关,M和N均为大于或等于2的整数;
    所述第一节点,用于生成第一信号,并向所述第二节点发送所述第一信号;其中,所述第一信号包括供电电路中与所述第一节点对应的电池单元的运行参数;
    所述第二节点,用于基于来自所述N个第一节点的N个第一信号生成第二信号,并向所述控制开关发送所述第二信号;
    所述控制开关,用于基于所述第二信号控制所述控制开关对应的电池单元在供电电路中接通或断开。
  2. 根据权利要求1所述的系统,其特征在于,对于所述N个第一信号中的任一个第一信号:
    在所述第一信号指示所述第一信号对应的电池单元异常时,所述第二信号用于指示所述第一信号对应的电池单元在所述供电电路中断开;
    或,
    在所述第一信号指示所述第一信号对应的电池单元正常时,所述第二信号用于指示所述第一信号对应的电池单元在所述供电电路中接通。
  3. 根据权利要求1或2所述的系统,其特征在于,
    在所述N个第一信号中的k个第一信号指示所述k个第一信号对应的k个电池单元异常时,所述第二信号用于指示所述k个第一信号对应的k个电池单元在所述供电电路中断开,和/或,所述第二信号还用于指示除所述k个第一信号对应的k个电池单元之外的其余N-k个电池单元在所述供电电路中接通。
  4. 根据权利要求1至3任一项所述的系统,其特征在于,所述电池管理系统还包括通信单元和处理单元;
    所述通信单元,用于向云服务器发送第一信息,所述第一信息用于指示所述N个电池单元中的k个电池单元在所述供电电路中断开和/或所述第一信息用于指示所述N个电池单元中的N-k个电池单元在所述供电电路中接通;
    所述通信单元还用于接收来自所述云服务器的第二信息,所述第二信息包括所述N-k个电池单元在所述供电电路中接通时的控制策略,和/或,所述第二信息包括所述k个电池单元在所述供电电路中断开时的控制策略;
    所述处理单元用于基于第二信息更新所述供电电路的控制策略。
  5. 根据权利要求4所述的系统,其特征在于,
    所述处理单元用于在满足第一条件时,基于第二信息更新对所述供电电路的控制策略,所述第一条件包括以下至少一项:
    所述k个电池单元的异常等级未达到阈值;
    所述k个电池单元的运行参数未超出预定范围;
    所述N-k个电池的健康状态SOH未超过阈值;
    所述供电电路所在设备的累计行驶里程数低于阈值或者约定值;或者,
    所述供电电路所在设备的累计运行时长低于阈值或者约定值。
  6. 根据权利要求3至5任一项所述的系统,其特征在于,
    所述第二节点,还用于控制所述k个电池单元充电至预定电量。
  7. 根据权利要求1至6任一项所述的系统,其特征在于,所述运行参数包括电池单元的内部运行参数和/或外部运行参数;
    所述内部运行参数包括所述电池单元的内部温度,内部气体种类,气压,气体浓度,电压,电流,正极极片的电位,负极极片的电位,电解液信号,内阻以及应力中的一个或多个;
    所述外部运行参数包括所述电池单元的外部温度,气体种类,气压,气体浓度,电压,电流,应力,电解液信号,烟感,内阻以及应力中的一个或多个。
  8. 根据权利要求1至7任一项所述的系统,其特征在于,所述电池单元为一个或多个电芯,一个或多个电芯组,或者,一个或多个模组。
  9. 根据权利要求1至3任一项所述的系统,其特征在于,所述系统还包括通信单元;
    在所述第一信号指示所述第一信号对应的电池单元异常时,所述通信单元用于发送指示所述异常的指示信息。
  10. 根据权利要求9所述的系统,其特征在于,
    在所述第一信号指示所述第一信号对应的电池单元异常时,所述通信单元用于向用户交互单元发送所述指示所述异常的指示信息,以通过所述用户交互单元以语音、文字、图像中的至少一项信息指示所述异常。
  11. 一种电池管理方法,其特征在于,包括:
    接收来自N个第一节点的N个第一信号,所述第一信号包括供电电路中与所述第一节点对应的电池单元的运行参数,N为大于或等于2的整数;
    基于所述N个第一信号生成第二信号;
    向M个控制开关发送所述第二信号,所述第二信号用于指示所述控制开关对应的电池单元在所述供电电路中接通或断开,M为大于或等于2的整数。
  12. 根据权利要求11所述的方法,其特征在于,对于所述N个第一信号中的任一个第一信号:
    在所述第一信号指示所述第一信号对应的电池单元异常时,所述第二信号用于指示所述第一信号对应的电池单元在所述供电电路中断开;
    或,
    在所述第一信号指示所述第一信号对应的电池单元正常时,所述第二信号用于指示所述第一信号对应的电池单元在所述供电电路中接通。
  13. 根据权利要求11或12所述的方法,其特征在于,
    在所述N个第一信号中的k个第一信号或者基于所述k个第一信号得到的计算结果指示所述k个第一信号对应的k个电池单元异常时,所述第二信号用于指示所述k个第一信号对应的k个电池单元在所述供电电路中断开,和/或,所述第二信号还用于指示除所述k个第一信号对应的k个电池单元之外的其余N-k个电池单元在所述供电电路中接通。
  14. 根据权利要求11至13任一项所述的方法,其特征在于,所述方法还包括:
    向云服务器发送第一信息,所述第一信息用于指示所述N个电池单元中的所述k个电池单元在所述供电电路中断开和/或所述第一信息用于指示所述N个电池单元中的所述N-k个电池单元在所述供电电路中接通;
    接收来自所述云服务器的第二信息,所述第二信息包括所述N-k个电池单元在所述供电电路中接通时的控制策略,和/或,所述第二信息包括所述k个电池单元在所述供电电路中断开时的控制策略;
    基于第二信息更新所述供电电路的控制策略。
  15. 根据权利要求14所述的方法,其特征在于,所述基于第二信息更新所述供电电路的控制策略包括:
    在满足第一条件时,基于所述第二信息更新对所述供电电路的控制策略,所述第一条件包括以下至少一项:
    所述k个电池单元的异常等级未达到阈值;
    所述k个电池单元的运行参数未超出预定范围;
    所述N-k个电池的健康状态SOH未超过阈值;
    所述供电电路所在设备的累计行驶里程数低于阈值或者约定值;
    所述供电电路所在设备的累计运行时长低于阈值或者约定值。
  16. 根据权利要求13至15任一项所述的方法,其特征在于,所述方法还包括:
    控制所述k个电池单元充电至预定电量。
  17. 根据权利要求11至16任一项所述的方法,其特征在于,所述运行参数包括电池单元的内部运行参数和/或外部运行参数;
    所述内部运行参数包括所述电池单元的内部温度,内部气体种类,气压,气体浓度,电压,电流, 正极极片的电位,负极极片的电位,电解液信号,内阻以及应力中的一个或多个;
    所述外部运行参数包括所述电池单元的外部温度,气体种类,气压,气体浓度,电压,电流,应力,电解液信号,烟感,内阻以及应力中的一个或多个。
  18. 根据权利要求11至17任一项所述的方法,其特征在于,所述电池单元为一个或多个电芯,一个或多个电芯组,或者,一个或多个模组。
  19. 根据权利要求11至18任一项所述的方法,其特征在于,所述方法还包括:
    在所述第一信号指示所述第一信号对应的电池单元异常时,发送指示所述异常的指示信息。
  20. 根据权利要求19所述的方法,其特征在于,所述发送指示所述异常的指示信息,包括:
    向用户交互单元发送所述指示信息,以通过所述用户交互单元以语音、文字、图像中的至少一项信息指示所述异常。
  21. 一种电池管理方法,其特征在于,包括:
    接收来自电池管理系统的第一信息,所述第一信息用于指示N个电池单元中的所述k个电池单元在供电电路中断开和/或所述第一信息用于指示所述N个电池单元中的所述N-k个电池单元在所述供电电路中接通;N为大于或等于2的整数;
    基于所述第一信息确定第二信息,所述第二信息包括所述N-k个电池单元在所述供电电路中接通时的控制策略,或,所述第二信息包括所述k个电池单元在所述供电电路中断开时的控制策略;
    向所述电池管理系统发送所述第二信息。
  22. 根据权利要求21所述的方法,其特征在于,所述基于所述第一信息确定第二信息包括:
    基于所述第一信息和第三信息确定所述第二信息,所述第三信息包括一个或多个电池管理系统的历史运行数据。
  23. 一种通信装置,其特征在于,包括用于执行如权利要求11至20中任一项所述方法的模块。
  24. 一种通信装置,其特征在于,包括用于执行如权利要求21或22所述方法的模块。
  25. 一种通信装置,其特征在于,包括至少一个处理器,与存储器耦合;
    所述存储器用于存储程序或指令;
    所述至少一个处理器用于执行所述程序或指令,以使所述装置实现如权利要求11至20中任一项所述的方法。
  26. 一种通信装置,其特征在于,包括至少一个处理器,与存储器耦合;
    所述存储器用于存储程序或指令;
    所述至少一个处理器用于执行所述程序或指令,以使所述装置实现如权利要求21至22中任一项所述的方法。
  27. 一种计算机可读存储介质,其特征在于,所述介质存储有指令,当所述指令被计算机执行时,实现权利要求11至20任一项所述的方法,或者,实现权利要求21或22所述的方法。
  28. 一种设备,其特征在于,所述设备包括如权利要求1至10任一项所述的电池管理系统。
  29. 根据权利要求28所述的设备,其特征在于,所述设备为车辆或者储能系统。
  30. 一种系统,其特征在于,包括如权利要求1至10任一项所述的电池管理系统,以及所述N个电池单元。
PCT/CN2023/111692 2022-08-17 2023-08-08 一种电池管理系统、方法及相关设备 WO2024037377A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210988522.1 2022-08-17
CN202210988522.1A CN117638261A (zh) 2022-08-17 2022-08-17 一种电池管理系统、方法及相关设备

Publications (1)

Publication Number Publication Date
WO2024037377A1 true WO2024037377A1 (zh) 2024-02-22

Family

ID=89940645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/111692 WO2024037377A1 (zh) 2022-08-17 2023-08-08 一种电池管理系统、方法及相关设备

Country Status (2)

Country Link
CN (1) CN117638261A (zh)
WO (1) WO2024037377A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104868546A (zh) * 2015-05-25 2015-08-26 沈阳中科一唯电子技术有限公司 一种电池管理系统
US20160248266A1 (en) * 2015-02-19 2016-08-25 Microsoft Technology Licensing, Llc Heterogeneous Battery Cell Charging
CN111224417A (zh) * 2018-11-26 2020-06-02 周锡卫 一种基于监测采样模块主动控制的储能电池管理系统
CN111478387A (zh) * 2020-04-09 2020-07-31 苏州桑倍储能技术有限公司 一种电池管理系统
CN212012176U (zh) * 2020-04-09 2020-11-24 苏州山倍能源科技有限公司 一种电池管理系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160248266A1 (en) * 2015-02-19 2016-08-25 Microsoft Technology Licensing, Llc Heterogeneous Battery Cell Charging
CN104868546A (zh) * 2015-05-25 2015-08-26 沈阳中科一唯电子技术有限公司 一种电池管理系统
CN111224417A (zh) * 2018-11-26 2020-06-02 周锡卫 一种基于监测采样模块主动控制的储能电池管理系统
CN111478387A (zh) * 2020-04-09 2020-07-31 苏州桑倍储能技术有限公司 一种电池管理系统
CN212012176U (zh) * 2020-04-09 2020-11-24 苏州山倍能源科技有限公司 一种电池管理系统

Also Published As

Publication number Publication date
CN117638261A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
CN101232110B (zh) 电池充电方法和装置
CN106849232B (zh) 一种实现电动车多块电池组自动切换的方法和系统
WO2015181866A1 (ja) 電池システム
CN104600784B (zh) 多支路电池储能系统的上电流程控制方法和装置
CN102959790B (zh) 一种用于监控蓄电池的充电过程的方法
KR101855092B1 (ko) 릴레이 제어신호 독립 모니터링 장치 및 방법
CN104638718A (zh) 一种电动车电池智能管理系统和方法
WO2018113270A1 (zh) 自动导引运输车的电池模组管理方法、装置
CN107104453A (zh) 一种兼具多级保护的集装箱多簇并联储能系统
KR101612645B1 (ko) 축전 장치 관리 시스템
CN203005128U (zh) 一种具有gprs功能的电池监控管理装置
CN102624065A (zh) 一种车用动力电池组充放电控制电路
CN108400397B (zh) 电池管理系统及平台
CN114024349A (zh) 一种串并联组合式电池簇的均衡保护控制方法
TWI482714B (zh) 電動車電池並聯控制系統
CN103010042A (zh) 一种可以支持网络工作的电池管理系统
CN111276989B (zh) 储能控制保护方法及系统
CN211605342U (zh) 一种基站退役电池智能管理系统
WO2024037377A1 (zh) 一种电池管理系统、方法及相关设备
CN205523735U (zh) 一种动力锂电池全生命周期智能监管系统
CN205453237U (zh) 一种锂电池电源模块管理系统
CN112311052A (zh) 一种智能保护板控制锂电池的充电方法及系统
WO2020215583A1 (zh) 一种电池组监控系统及方法
CN116780711A (zh) 电池管理方法、系统、电池组、低空交通工具及存储介质
CN207398874U (zh) 锂电船电池管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854280

Country of ref document: EP

Kind code of ref document: A1