WO2023206503A1 - 电池管理设备的无线连接方法、装置和电池管理设备 - Google Patents

电池管理设备的无线连接方法、装置和电池管理设备 Download PDF

Info

Publication number
WO2023206503A1
WO2023206503A1 PCT/CN2022/090612 CN2022090612W WO2023206503A1 WO 2023206503 A1 WO2023206503 A1 WO 2023206503A1 CN 2022090612 W CN2022090612 W CN 2022090612W WO 2023206503 A1 WO2023206503 A1 WO 2023206503A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless connection
connection
connection request
request data
battery management
Prior art date
Application number
PCT/CN2022/090612
Other languages
English (en)
French (fr)
Inventor
程康
翟江浪
Original Assignee
时代电服科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 时代电服科技有限公司 filed Critical 时代电服科技有限公司
Priority to PCT/CN2022/090612 priority Critical patent/WO2023206503A1/zh
Priority to CN202280033038.1A priority patent/CN117280566A/zh
Publication of WO2023206503A1 publication Critical patent/WO2023206503A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power

Definitions

  • Embodiments of the present application relate to the field of batteries, and more specifically, to a wireless connection method and device for a battery management device, and a battery management device.
  • batteries, electric vehicles, battery swap stations and other institutions can be equipped with battery management equipment, such as battery management unit (Battery Manager Unit, BMU), etc.
  • the battery management equipment can be connected to other equipment and exchange information, for example, Battery management devices between different organizations can be connected to each other and exchange information to facilitate battery monitoring and management.
  • Battery management devices between different organizations can be connected to each other and exchange information to facilitate battery monitoring and management.
  • the connection performance between the battery management device and other devices is poor, the battery management effect of the battery management device will be affected, resulting in potential safety hazards for the battery.
  • how to improve the connection performance of battery management equipment is an urgent technical issue that needs to be solved.
  • Embodiments of the present application provide a wireless connection method and device for a battery management device, and a battery management device, which can improve the connection performance of the battery management device.
  • a wireless connection method of a battery management device is provided.
  • the wireless connection method is applied to a wireless connection device in the battery management device, and the wireless connection method includes: receiving connection request data; according to the connection request data, and The first device is wirelessly connected or disconnected; detects the first status identifier, which is used to indicate the connection status with the first device; determines the connection with the first device according to the first status identifier and the connection request data. Whether the wireless connection or disconnection between the two devices is normal.
  • the wireless connection device detects the first state identifier used to indicate the connection state with the first device, and combines the first state identifier and the connection request data to determine the connection with the first device. Whether the wireless connection or disconnection between the battery management devices and the first device is normal is beneficial to effectively monitor the wireless connection status between the wireless connection device and the first device, thereby improving the connection performance between the battery management device and the first device.
  • determining whether the wireless connection or disconnection with the first device is normal based on the first status identifier and the connection request data includes: determining the connection status and connection status indicated by the first status identifier. Whether the connection request indicated by the disconnection request data is consistent; when the connection status indicated by the first status identifier is consistent with the connection request indicated by the connection request data, it is determined that the wireless connection with the first device is normal; in When the connection state indicated by the first status identifier is inconsistent with the connection request indicated by the connection request data, it is determined that the wireless connection with the first device is abnormal.
  • the wireless connection or connection between the wireless connection device and the first device can be accurately determined. Is the disconnection normal? This technical solution is easy to implement and has high accuracy. It can not only accurately and effectively monitor the wireless connection between the wireless connection device and the first device, but can also be more conveniently implemented in the wireless connection device through hardware and/or software. middle.
  • the above-mentioned first status identifier is configured to: use a first value to indicate that the connection state with the first device is connected, and use a second value to indicate the connection state with the first device. is disconnection;
  • the connection request data is configured to: use the first numerical value to indicate that the connection request with the first device is a connection, and use the second numerical value to indicate that the connection request with the first device is a disconnection; wherein , the above-mentioned determination of whether the connection status indicated by the first status identifier is consistent with the connection request indicated by the connection request data includes: determining whether the first status identifier and the connection request data are consistent.
  • the first status identifier and the connection request data use different values to represent different states and different requests. Therefore, the battery can be accurately determined by directly judging whether the first status identifier and the connection request data are consistent. Whether the wireless connection or disconnection between the management device and the first device is normal.
  • This implementation method is the most convenient, and can reduce the storage space occupied by the first status identifier and connection request data in the wireless connection device, and improve the processing efficiency of the first status identifier and connection request data by the wireless connection device.
  • the wireless connection method when it is determined that the wireless connection or disconnection with the first device is abnormal, further includes: performing wireless communication with the first device at least once according to the connection request data. Connect or disconnect; detect the first status identifier at least once until the number of executions reaches a preset number or the connection status indicated by the first status identifier is consistent with the connection request indicated by the connection request data.
  • the wireless connection device when there is an abnormality in the wireless connection between the wireless connection device and the first device, the wireless connection device itself can repair the abnormality, so that the wireless connection between it and the first device The connection is restored to the normal state, thereby further improving the connection reliability between the battery management device and the first device.
  • the wireless connection device when the wireless connection device repeatedly performs the wireless connection operation with the first device for a preset number of times and the abnormality cannot be repaired, the wireless connection device will not continue to repeatedly perform the wireless connection with the first device. Intermittent actions result in a waste of system resources and can also optimize the overall performance of the battery management device to a certain extent.
  • determining whether the wireless connection or disconnection with the first device is normal based on the first status identifier and the connection request data includes: every preset time period, based on the first status identifier and connection request data to determine whether the wireless connection or disconnection with the first device is normal.
  • the wireless connection device can determine whether the wireless connection or disconnection with the first device is normal according to the first status identifier and the connection request data every preset time period, so as to realize the connection with the third device.
  • the continuous monitoring of the wireless connection between a device ensures the reliability of the long-term wireless connection between the wireless connection device and the first device.
  • the wireless connection device includes a storage module; wherein, after receiving the connection request data, the wireless connection method further includes: writing the connection request data into the storage module.
  • the connection request data can be written into the memory, such as a structure module in the memory, so that the connection request data can be quickly processed in the subsequent process.
  • the connection request data in the structure module is read and written, and the connection fault is repaired according to the connection request data, thereby improving the connection reliability between the wireless connection device and the first device.
  • the wireless connection device after the wireless connection device receives the connection request data, it can also store the connection request data in a non-volatile storage module, thereby preventing the loss of the connection request data caused by external reasons such as power outage and ensuring subsequent wireless connection.
  • the connection device monitors the connection status with the first device, thereby further improving the connection reliability between the battery management device and the first device.
  • the wireless connection method further includes: writing the first status identifier into the storage module.
  • the first state identifier can also be written into the memory, such as a structure module, so that in the subsequent process, the structure module can be quickly Read and write the first status identifier in the device, and monitor the connection and disconnection status between the wireless connection device and the first device according to the first status ID, thereby improving the monitoring of the connection and disconnection status between the wireless connection device and the first device. efficiency.
  • the first status identifier can also be written into the non-volatile storage module to prevent the loss of the first status identifier caused by external reasons such as power outage and ensure that the wireless connection device can Monitoring performance of the connection status with the first device.
  • the wireless connection method before detecting the first status identifier, further includes: determining whether a data packet sent by the first device is received within a preset time period; setting the first status identifier according to the determination result; wherein , when the data packet sent by the first device is received within the preset time period, the first status identifier is used to indicate the interconnection with the first device, and the data packet sent by the first device is not received within the preset time period.
  • the first status identifier is used to indicate mutual disconnection from the first device.
  • the wireless connection device can effectively set the first status indicator to indicate the connection status between it and the first device. Therefore, after setting the first status identifier, the wireless connection device detects the first status identifier and determines whether the wireless connection between it and the first device is normal based on the first status identifier, which has higher reliability.
  • the wireless connection method further includes: performing master-slave authentication with the first device.
  • the wireless connection device performs master-slave authentication with the first device to determine whether the wireless connection device and the first device can adapt to each other, thereby ensuring the subsequent communication between the wireless connection device and the first device. Normal data transmission improves system robustness.
  • performing the master-slave authentication with the first device includes: receiving a first message and a first random number sent by the first device, where the first message is used to indicate the master-slave authentication of the first device. Authentication; performing algorithm processing on the first random number to obtain the first target number; sending a second message matching the first message and the first target number to the first device, so that the first device identifies the second message, And perform an algorithm check on the first target number to determine the result of master-slave authentication.
  • the master-slave authentication process is realized through the interaction of messages and data between the wireless connection device and the first device, which can achieve higher accuracy and facilitate the internal software of the wireless connection device and the first device. And/or hardware implements the master-slave authentication process.
  • the first message and the second message are Controller Area Network (CAN) messages.
  • CAN Controller Area Network
  • CAN messages are used between the wireless connection device and the first device to indicate master-slave authentication.
  • CAN messages can be used between the battery management device and the first device in related technologies.
  • the technical solution of master-slave authentication on the other hand, can also facilitate subsequent processes to parse the CAN message to locate the master-slave authentication interaction between the wireless connection device and the first device.
  • the wireless connection device further includes a non-volatile storage module; wherein, after performing the master-slave authentication with the first device, the wireless connection method further includes: after the master-slave authentication with the first device is successful, In this case, the authentication information of the first device is stored in the non-volatile storage module.
  • the battery management device further includes a control device connected to the wireless connection device; wherein the above-mentioned receiving the connection request data includes: receiving the connection request data sent by the control device, wherein the connection The request data is the data after the control device processes the connection request command received by the control device.
  • the connection request command is communication data based on the first communication protocol.
  • the connection request data is communication data based on the second communication protocol. The first communication protocol Different from the second communication protocol.
  • the control device in the battery management device receives the connection request command based on the first communication protocol, and sends the connection request data based on the second communication protocol to the wireless connection device.
  • the battery management device and the external device can communicate with each other based on the first communication protocol.
  • the existing technology solution is still used to communicate with each other through the CAN protocol or other protocol methods, and the control device converts the received connection request command.
  • the wireless connection device can communicate with each other based on the second communication protocol. Therefore, this embodiment is compatible with the communication architecture of the existing battery management equipment, and the communication effect between the control device and the wireless connection device in the battery management equipment is also better, thereby improving the overall communication performance of the battery management equipment.
  • connection request data is Bluetooth connection request data
  • wireless connection device is a Bluetooth chip
  • the wireless connection device is designed as a Bluetooth chip, and the wireless connection device can communicate with the first device through the Bluetooth protocol.
  • the wireless connection device can have the characteristics of low power consumption, low delay, and low cost of the Bluetooth chip, so it is more suitable to be installed in vehicles and/or battery swapping stations to achieve short-distance, low-cost and reliable communication.
  • the battery management device is the master battery management unit MBMU in the powered device, and the first device is the slave battery management unit (SBMU) in the powered device; or, the battery management device is the slave battery management unit (SBMU) in the powered device.
  • the rechargeable battery management unit (CBMU) the first device is the slave battery management unit (SBMU) in the power replacement device; or the battery management device is the power replacement battery management unit (TBMU) in the power replacement device, and the first device is The main battery management unit (MBMU) in the powered device.
  • the battery management device can be of multiple types and applied in different scenarios.
  • a relatively stable wireless connection between TBMU and MBMU can be achieved, and/or a relatively stable wireless connection between CBMU/MBMU and SBMU can be achieved, thereby simplifying many aspects of power consumption equipment and/or power replacement equipment.
  • a wireless connection device for a battery management device including: a receiving module for receiving connection request data; a processing module for wirelessly connecting or disconnecting with the first device according to the connection request data; and detecting The first state identifier is used to indicate the connection and disconnection state with the first device; based on the first state identifier and the connection request data, it is determined whether the wireless connection or disconnection with the first device is normal.
  • the processing module is configured to: determine whether the connection status indicated by the first status indicator is consistent with the connection request indicated by the connection request data; when the connection status indicated by the first status indicator is consistent with the connection request When the connection request indicated by the data is consistent, it is determined that the wireless connection with the first device is normal; when the connection state indicated by the first status identifier is inconsistent with the connection request indicated by the connection request data, it is determined The wireless connection to the first device is abnormal.
  • the first status identifier is configured to: use a first value to indicate that the connection state with the first device is connected, and use a second value to indicate that the connection state with the first device is Disconnect;
  • the connection request data is configured to use the first numerical value to indicate that the connection request with the first device is connected, and the second numerical value to indicate that the connection request with the first device is disconnected;
  • the processing module Used to: determine whether the first status identifier is consistent with the connection request data.
  • the processing module when it is determined that the wireless connection or disconnection with the first device is abnormal, is also configured to: perform wireless connection with the first device at least once according to the connection request data. or disconnect; detect the first status identifier at least once until the number of executions reaches a preset number or the connection status indicated by the first status identifier is consistent with the connection request indicated by the connection request data.
  • the processing module is configured to: every preset time period, determine whether the wireless connection or disconnection with the first device is normal according to the first status identifier and the connection request data.
  • the wireless connection device further includes a storage module; the processing module is also configured to write the connection request data into the storage module.
  • the processing module is also configured to write the first status identifier into the storage module.
  • the processing module is also configured to: determine whether the data packet sent by the first device is received within the preset time period; set the first status identifier according to the judgment result; wherein, receive the data packet within the preset time period.
  • the first status identifier is used to indicate the interconnection with the first device.
  • the first status identifier is used to indicate the interconnection with the first device.
  • a status indicator is used to indicate mutual disconnection from the first device.
  • the processing module and the receiving module are also configured to: perform master-slave authentication with the first device.
  • the wireless connection device further includes: a sending module; and a receiving module configured to: receive a first message and a first random number sent by the first device, where the first message is used to indicate the host of the first device. From the authentication; the processing module is used to: perform algorithm processing on the first random number to obtain the first target number; the sending module is used to: send the second message matching the first message and the first target number to the first device, So that the first device recognizes the second message, performs an algorithm check on the first target number, and determines the result of the master-slave authentication.
  • the first message and the second message are Controller Area Network (CAN) messages.
  • CAN Controller Area Network
  • the wireless connection device further includes a non-volatile storage module; the processing module is also configured to: when the master-slave authentication with the first device is successful, store the authentication information of the first device in the non-volatile storage module; in the lossy storage module.
  • the battery management device further includes a control device connected to the wireless connection device; the receiving module is configured to: receive connection request data sent by the control device, where the connection request data is the Data processed by the received connection request command, the connection request command is communication data based on the first communication protocol, the connection request data is communication data based on the second communication protocol, and the first communication protocol is different from the second communication protocol.
  • connection request data is Bluetooth connection request data
  • wireless connection device is a Bluetooth chip
  • the battery management device is the master battery management unit MBMU in the powered device, and the first device is the slave battery management unit (SBMU) in the powered device; or, the battery management device is the slave battery management unit (SBMU) in the powered device.
  • the rechargeable battery management unit (CBMU) the first device is the slave battery management unit (SBMU) in the power replacement device; or the battery management device is the power replacement battery management unit (TBMU) in the power replacement device, and the first device is The main battery management unit (MBMU) in the powered device.
  • a wireless connection device for a battery management device including: a processor and a memory, the memory is used to store a program, and the processor is used to call and run the program from the memory to execute the above first aspect or any one of the first aspects.
  • a wireless connection method in a possible implementation.
  • a fourth aspect provides a battery management device, including: a wireless connection device and the above second aspect, any possible implementation of the second aspect, or the wireless connection device in the third aspect; wherein the wireless connection device is connected to the control unit.
  • the control device is used to control the wireless connection or disconnection of the wireless connection device and the first device to realize the wireless connection or disconnection between the battery management device and the first device.
  • a fifth aspect provides an electronic device, including: the battery management device in the above fourth aspect.
  • the electronic device is a power consumption device or a power exchange device.
  • the wireless connection device detects the first state identifier used to indicate the connection state with the first device, and combines the first state identifier and the connection request data to determine the connection with the first device. Whether the wireless connection or disconnection between the battery management devices and the first device is normal is beneficial to effectively monitor the wireless connection status between the wireless connection device and the first device, thereby improving the connection performance between the battery management device and the first device.
  • Figure 1 is a schematic structural block diagram of a vehicle applicable to an embodiment of the present application
  • Figure 2 is a schematic structural block diagram of a power swap station applicable to an embodiment of the present application
  • FIG. 3 is a schematic structural block diagram of a battery management device provided by an embodiment of the present application.
  • Figure 4 is a schematic flow diagram of a wireless connection method for a battery management device provided by an embodiment of the present application
  • Figure 5 is a schematic flow diagram of a wireless connection method for a battery management device provided by another embodiment of the present application.
  • Figure 6 is a schematic flow diagram of a wireless connection method for a battery management device provided by another embodiment of the present application.
  • Figure 7 is a schematic flow diagram of a wireless connection method for a battery management device provided by another embodiment of the present application.
  • Figure 8 is a schematic flow diagram of a wireless connection method for a battery management device provided by another embodiment of the present application.
  • Figure 9 is a schematic flow diagram of a wireless connection method for a battery management device provided by another embodiment of the present application.
  • Figure 10 is a schematic flow diagram of a wireless connection method for a battery management device provided by another embodiment of the present application.
  • Figure 11 is a schematic structural block diagram of a wireless connection device of a battery management device provided by an embodiment of the present application.
  • Figure 12 is a schematic structural block diagram of a wireless connection device of a battery management device provided by another embodiment of the present application.
  • Figure 13 is a schematic structural block diagram of a battery management device provided by an embodiment of the present application.
  • Figure 14 is a schematic structural block diagram of an electronic device provided by an embodiment of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. It will be explicitly and implicitly understood by those skilled in the art that the embodiments described herein may be combined with other embodiments.
  • a battery refers to a single physical module that includes one or more battery cells to provide higher voltage and capacity.
  • the battery generally includes a case for enclosing one or more battery cells.
  • the battery mentioned in this application may be called a battery pack.
  • the battery can be any type of battery, such as: lithium-ion battery, lithium metal battery, lithium-sulfur battery, lead-acid battery, nickel separator battery, nickel-metal hydride battery, or lithium-air battery, etc.
  • battery management equipment such as a battery management unit (BMU)
  • BMU battery management unit
  • BMUs are configured inside both electric vehicles and batteries.
  • the BMU in the electric vehicle can be called the Master Battery Manager Unit (MBMU), and the BMU configured inside the battery can be called the Master Battery Manager Unit (MBMU).
  • MBMU Master Battery Manager Unit
  • MBMU Master Battery Manager Unit
  • SBMU slave Battery Manager Unit
  • the MBMU and the SBMU can be connected to each other and exchange information to jointly monitor and manage the operating status of the battery.
  • the MBMU and SBMU are connected to each other through physical wiring (for example: Controller Area Network (Controller Area Network, CAN) wiring).
  • the installation method of this physical wiring on the two BMUs is relatively complex and affects manufacturing. and maintenance efficiency.
  • the MBMU and the SBMU are connected through a wireless connection. In this wireless connection mode, the communication between the MBMU and the SBMU is easily affected by various factors such as the environment, so connection failures are prone to occur.
  • one or more BMUs will also be configured in the battery swap station.
  • Various BMUs in the power swap station are also connected to each other, and/or the BMUs in the power swap station and the BMUs in the power devices are also connected to each other. Therefore, in the wireless connection mode, in addition to the above-mentioned MBMU and SBMU being prone to connection failures, , Connection failures are also more likely to occur between various BMUs in the power swap station, and/or between the BMUs in the power swap station and the BMUs in the power consumption devices.
  • the present application provides a wireless connection method for battery management equipment, where the battery management equipment includes but is not limited to a BMU.
  • the wireless connection method is applied to the wireless connection device in the battery management equipment.
  • the wireless connection method includes: Receive connection request data, wirelessly connect or disconnect with the first device according to the connection request data, detect a first status identifier, the first status identifier is used to indicate the connection status with the first device, according to the The first status identifier and the connection request data are used to determine whether the wireless connection or disconnection with the first device is normal.
  • the first state identifier used to indicate the connection state with the first device is detected, and the wireless connection with the first device is determined based on the first state identifier and the connection request data. Or whether the disconnection is normal is beneficial to effectively monitor the wireless connection status between the wireless connection device and the first device, thereby improving the connection performance between the battery management device and the first device.
  • FIG. 1 shows a schematic structural block diagram of a vehicle 1 to which the embodiment of the present application is applicable.
  • vehicle 1 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • a battery 10 is provided in the vehicle 1.
  • the battery 10 can be used to power the vehicle 1.
  • the battery 10 can be used as an operating power supply for the vehicle 1 and for the circuit of the vehicle 1.
  • the system is, for example, used for starting, navigation and operating power requirements of the vehicle 1 .
  • the battery 10 can not only be used as an operating power source of the vehicle 1 , but also can be used as a driving power source of the vehicle 1 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1 .
  • the battery 10 is provided with a slave battery management unit (SBMU) 110 .
  • SBMU slave battery management unit
  • MBMU main battery management unit
  • the battery 10 may include at least one battery cell (or battery cell) 11 , and the at least one battery cell 11 is packaged in the same box to form a battery pack.
  • the box can also be provided with an SBMU 110 and other related components.
  • the SBMU 110 is used to detect relevant status parameters of each battery cell 11 in the battery 10, such as voltage, current , temperature, state of charge (State of Charge, SOC), health state (State of Health, SOH), etc.
  • the vehicle 1 is provided with an MBMU 120 capable of communicating with the SBMU 110.
  • the SBMU 110 can transmit the detected relevant parameters of the battery 10 to the MBMU 120, and the MBMU 120 can perform calculations and analysis on the data it receives, and transmit signals to the SBMU 110 to control and manage the SBMU 110.
  • the vehicle 1 is also provided with a vehicle controller 130, such as a vehicle controller (Vehicle Control Unit, VCU) or a domain controller (Domain Control Unit, DCU), etc.
  • VCU vehicle Control Unit
  • DCU Domain Control Unit
  • the MBMU 120 In addition to being able to communicate with the SBMU 110, it can also communicate with the vehicle controller 130. Specifically, the MBMU 120 can transmit relevant data of the battery 10 in the vehicle 1 to the vehicle controller 130.
  • the vehicle 1 may be provided with multiple batteries 10, and each battery 10 may be provided with a corresponding SBMU 110.
  • the vehicle 1 may be provided with multiple batteries 110.
  • Each SBMU 110 and MBMU 120 can establish communication connections with multiple SBMUs 110 at the same time to achieve control and management of multiple SBMUs 110.
  • FIG. 1 is only an example, illustrating that the vehicle 1 may be provided with a communication system formed by a vehicle controller 130, an MBMU 120 and a plurality of batteries 10.
  • the vehicle 1 may be provided with a communication system formed only by the vehicle controller 130 and a plurality of batteries 10 .
  • each battery 10 in the plurality of batteries 10 may be provided with a monitoring unit that monitors the battery cells 11 .
  • the monitoring unit may establish a communication connection with the vehicle controller 130 so that the vehicle controller 130 can monitor the multiple batteries. 10. Control management.
  • the battery 10 in the embodiment of the present application can also adopt the Cell To Chassis (CTC) architecture.
  • CTC Cell To Chassis
  • At least one cell in the battery 10 is integrated into the chassis of the vehicle.
  • the vehicle controller 130 in the vehicle 1 may be a domain controller that directly manages the battery 10 and even at least one cell in the battery 10.
  • FIG. 2 shows a schematic structural block diagram of a power swap station 2 applicable to the embodiment of the present application.
  • the power swap station 2 can provide rapid battery replacement services for various types of vehicles such as passenger cars or heavy trucks, and the power swap station 2 can also include a charging bin 20 to charge the replaced batteries in the vehicle.
  • a plurality of batteries 10 can be provided in the charging compartment 20 of the battery swap station 2, wherein an SBMU 110 is provided in each battery 10.
  • the charging compartment 20 is also provided with at least one charging battery management unit (Charger Battery Manager Unit, CBMU) 210.
  • CBMU Charger Battery Manager Unit
  • each CBMU 210 in the charging compartment 20 can establish communication connections with a preset number of SBMUs 110, and control and manage the SBMUs 110.
  • each CBMU 210 can be installed in the charging compartment 20, and each CBMU 210 establishes communication with a preset number of SBMUs 110 to ensure that each SBMU 110 and its location are The battery 10 is effectively monitored and managed.
  • a station control system 21 in addition to providing a charging compartment 20 to charge multiple batteries 10 , a station control system 21 is also provided.
  • the station control system 21 can control multiple functional devices in the power swap station 2 to Execute the corresponding function.
  • the power swap station 2 includes a battery loading and unloading device (not shown in FIG. 2 ), and the station control system 21 can control the battery loading and unloading device to remove the battery 10 in a depleted state from the vehicle entering the power swap station 2 . , and install the battery 10 with sufficient power in the battery swap station to the vehicle.
  • the station control system 21 can establish a communication connection with at least one CBMU 210 in the charging compartment 20, thereby facilitating the station control system 21 to control multiple batteries 10 in the charging compartment 20 through the CBMU 210. Carry out control management.
  • a battery swap battery management unit (Transmission Battery Manager Unit, TBMU) 220 is also provided.
  • the TBMU 220 can establish a communication connection with the MBMU 120 in the vehicle 1, thereby facilitating information exchange between the TBMU 220 and the MBMU 120, and also facilitating the TBMU 220 to communicate with each other through the MBMU 120.
  • the battery 10 on the vehicle 1 implements monitoring and management.
  • the TBMU 220 also establishes a communication connection with the station control system 21. Therefore, the station control system 21 can monitor and manage the battery 10 on the vehicle 1 through the TBMU 220 and the MBMU 120.
  • different types of BMUs can establish communication connections wirelessly to reduce the complexity of connection installation between different types of BMUs.
  • the station control system 21 in order to ensure the reliability of communication between the station control system 21 and other components, can establish a communication connection with the CBMU 210 and/or TBMU 220 through a wired method.
  • FIG. 3 shows a schematic structural block diagram of a battery management device 300 provided by an embodiment of the present application.
  • the battery management device 300 may be the MBMU 120, CBMU 210, TBMU 220 or vehicle controller 130 shown in Figures 1 and 2 above.
  • the battery management device 300 includes: a wireless connection device 320, which can implement wireless connections with other wireless devices.
  • the wireless connection device 320 may be a wireless communication chip in the battery management device 300 .
  • the battery management device 300 may also include: a control device 310 interconnected with the wireless connection device 320 , and the control device 310 can send commands to the wireless connection device 320 to control the wireless connection device 320 Perform corresponding actions according to this command.
  • the control device 310 may be a control chip of the battery management device 300 , for example, it may be a main control chip in the battery management device 300 .
  • FIG. 4 shows a schematic flow chart of a wireless connection method 400 for a battery management device 300 provided by an embodiment of the present application.
  • the wireless connection method 400 is applied to the wireless connection device 320 in the battery management device 300 shown in FIG. 3.
  • the execution subject of the wireless connection method 400 in the embodiment of the present application is the wireless connection device 320.
  • the wireless connection method 400 includes the following steps.
  • S420 Wirelessly connect or disconnect with the first device according to the connection request data.
  • S430 Detect the first status identifier, which is used to indicate the connection state with the first device.
  • S440 Determine whether the wireless connection or disconnection with the first device is normal according to the first status identifier and the connection request data.
  • the execution subject of the above steps S410 to S440 may be the wireless connection device 320 in the battery management device 300 shown in FIG. 3 above.
  • the wireless connection device 320 is configured to receive externally sent connection request data.
  • the connection request data may include request data indicating a request type for connecting or disconnecting with the first device and information data indicating the first device.
  • the information data used to indicate the first device includes but is not limited to: the location of the first device, the Media Access Control Address (MAC) of the first device, and so on.
  • the wireless connection device 320 can perform wireless connection or disconnection with the first device according to the relevant information in the connection request data, thereby realizing wireless connection or disconnection between the battery management device 300 and the first device.
  • the first device includes: It is not limited to the SBMU 110 in electrical equipment (such as the above-mentioned vehicle 1).
  • the first device includes, but is not limited to, the first device in the power exchange equipment (such as the above-mentioned power swap station 2). SBMU 110.
  • the first device includes but is not limited to a TBMU in a power-consuming device (such as the above-mentioned vehicle 1).
  • MBMU 120 is not limited to a TBMU in a power-consuming device (such as the above-mentioned vehicle 1).
  • the battery management device 300 can be of various types and applied in different scenarios.
  • a relatively stable wireless connection between TBMU 220 and MBMU 120 can be achieved, and/or a relatively stable wireless connection between CBMU 210/MBMU 120 and SBMU 110 can be achieved, thereby simplifying electrical equipment and/or
  • the connection methods between various battery management devices 300 in the power swap equipment improve the connection stability and robustness of the entire system.
  • the battery management device 300 includes the control device 310 shown in FIG. 3 , and the control device 310 is connected to the wireless connection device 320 .
  • the wireless connection device 320 may receive the connection request data sent by the control device 310, where the connection request data is the data after the control device 310 processes the connection request command received by the control device 310.
  • the connection request command is communication data based on the first communication protocol
  • the connection request data is communication data based on the second communication protocol.
  • the first communication protocol is different from the second communication protocol.
  • the control device 310 may be connected to an external device of the battery management device 300 based on a first communication protocol, and connected to the wireless connection device 320 through a second communication protocol.
  • the control device 310 may receive a connection request command of the first data type sent by the external device based on the first communication protocol, and convert the connection request command of the first data type into a third connection request command based on the second communication protocol.
  • the connection request data of the second data type is conveniently transmitted to the wireless connection device 320 smoothly.
  • the first communication protocol may be a CAN protocol
  • the second communication protocol may be a Serial Peripheral Interface (SPI) protocol.
  • SPI Serial Peripheral Interface
  • the control device 310 in the battery management device 300 receives the connection request command based on the first communication protocol, and sends the connection request data based on the second communication protocol to the wireless connection device 320 .
  • the battery management device 300 and the external device can communicate with each other based on the first communication protocol.
  • the existing technology solution is still used to communicate with each other through the CAN protocol or other protocol methods, and the control device 310 receives the connection request command.
  • the wireless connection device 320 can communicate with each other based on the second communication protocol. Therefore, this embodiment is compatible with the communication architecture of the existing battery management device 300, and the communication effect between the control device 310 and the wireless connection device 320 in the battery management device 300 is also better, thereby improving the overall communication performance of the battery management device 300. .
  • connection request data received by the wireless connection device 320 may not be sent by the control device 310 but directly sent by an external device.
  • the wireless connection device 320 may directly respond to the connection request data. Perform connection or disconnection with the first device.
  • the wireless connection device 320 detects a first status identifier, which may be used to indicate the connection status between the wireless connection device 320 and the first device.
  • the first status identifier may be used to indicate that the wireless connection device 320 and the first device are connected to or disconnected from each other.
  • the first status identifier may be further used to indicate other related connection status information between the wireless connection device 320 and the first device.
  • the wireless connection method 400 further includes: the wireless connection device 320 determines whether the data packet sent by the first device is received within a preset time period; and the wireless connection The device 320 sets a first status identifier according to the judgment result; wherein, when a data packet sent by the first device is received within a preset time period, the first status identifier is used to indicate the interconnection with the first device. When a data packet sent by the first device is received within a preset time period, the first status identifier is used to indicate mutual disconnection from the first device.
  • the wireless connection device 320 may have a wireless communication protocol stack, and the wireless connection device 320 may call the wireless communication protocol stack according to the connection request data to achieve wireless connection or disconnection with the first device.
  • the first device can send a data packet to the wireless connection device 320. If the wireless connection device 320 receives the data packet sent by the first device within a preset time period, then The wireless connection device 320 may set the first status indicator to the mutual connection status. On the contrary, if the wireless connection device 320 does not receive the data packet sent by the first device within the preset time period, the wireless connection device 320 sets the first status indicator to the mutually disconnected state.
  • the first status identifier may be a real-time updated identifier in the wireless connection device 320, that is, the wireless connection device 320 may detect the connection status between itself and the first device in real time to detect the real-time updated first status. logo.
  • the wireless connection device 320 can effectively set the first status indicator to indicate the connection status between it and the first device. Therefore, after setting the first status identifier, the wireless connection device 320 detects the first status identifier and determines whether the wireless connection with the first device is normal based on the first status identifier, which has higher reliability.
  • the wireless connection device 320 may comprehensively determine whether the wireless connection or disconnection with the first device is normal based on the first status identifier and the connection request data. Compared with the technical solution that only determines whether the wireless connection or disconnection with the first device is normal based on the first state identifier, through the technical solution of this embodiment, the first state identifier and the connection request data are integrated, Determining whether the wireless connection or disconnection between the wireless connection device 320 and the first device is normal can further improve the accuracy of the determination.
  • the wireless connection device 320 detects the first state identifier used to indicate the connection state with the first device, and combines the first state identifier and the connection request data to determine and Whether the wireless connection or disconnection between the first device is normal is helpful for the wireless connection device 320 to effectively monitor the wireless connection status with the first device, thereby improving the stability between the battery management device 300 and the first device. Connection performance.
  • FIG. 5 shows a schematic flow diagram of a wireless connection method 500 for a battery management device 300 provided by an embodiment of the present application.
  • the wireless connection method 500 is also applied to the wireless connection device 320 in the battery management device 300 shown in FIG. 3 above.
  • the wireless connection method 500 includes the following steps.
  • S520 Wirelessly connect or disconnect with the first device according to the connection request data.
  • S530 Detect the first status identifier, which is used to indicate the connection state with the first device.
  • S541 Determine whether the connection status indicated by the first status identifier is consistent with the connection request indicated by the connection request data.
  • the execution subject of the above-mentioned steps S510 to step S543 may be the wireless connection device 320 in the battery management device 300 shown in FIG. 3 above.
  • step S510 to step S530 for the specific technical solution from step S510 to step S530, please refer to the relevant description of step S410 to step S430 in the embodiment shown in FIG. 4 above.
  • steps S541 to S543 in the embodiment of the present application may be an implementation manner of the above-mentioned step S440.
  • the first status identifier can be used to indicate that the current connection status of the wireless connection device 320 and the first device is mutual connection or mutual disconnection.
  • the connection request data may include request data indicating a request type for indicating the wireless connection device 320 to connect or disconnect from the first device.
  • step S542 if the connection status indicated by the first status identifier is consistent with the connection request indicated by the connection request data, the wireless connection device 320 may determine that the wireless connection with the first device is normal. For example, when the connection state indicated by the first status identifier is mutual connection, and the connection request indicated by the connection request data is also mutual connection, the wireless connection device 320 may determine that the wireless connection with the first device is normal.
  • step S543 when the connection status indicated by the first status identifier is inconsistent with the connection request indicated by the connection request data, the wireless connection device 320 may determine that the wireless connection with the first device is abnormal. For example, when the connection state indicated by the first status identifier is mutual disconnection, but the connection request indicated by the connection request data is mutual connection, the wireless connection device 320 may determine that the wireless connection with the first device is abnormal.
  • the wireless connection between the wireless connection device 320 and the first device can be accurately determined. Whether the connection or disconnection is normal.
  • This technical solution is easy to implement and has high accuracy. It can not only accurately and effectively monitor the wireless connection between the wireless connection device 320 and the first device, but can also more conveniently implement the wireless connection through hardware and/or software. in device 320.
  • the above-mentioned first status identifier is configured to: use a first value to indicate that the connection state with the first device is connected, and use a second value to indicate that the connection state with the first device is connected.
  • the disconnection status is disconnected.
  • the above-mentioned connection request data is configured to use a first numerical value to indicate that the connection request with the first device is a connection, and a second numerical value to indicate that the connection request with the first device is a disconnection.
  • step S541 in Figure 5 may include: determining whether the first status identifier is consistent with the connection request data. Further, the above-mentioned step S542 may include: when the first status identifier is consistent with the connection request data, determining that the wireless connection with the first device is normal. The above step S543 may include: determining that the wireless connection with the first device is abnormal when the first status identifier is inconsistent with the connection request data.
  • the first value and the second value can be 0 and 1 respectively, which only need to occupy a small storage space and can effectively identify different connection states and connection requests.
  • the first numerical value and the second numerical value may also be other numerical values, which are not specifically limited in the embodiments of the present application.
  • the first status identifier and the connection request data use different values to represent different states and different requests. Therefore, the battery can be accurately determined by directly judging whether the first status identifier and the connection request data are consistent. Whether the wireless connection or disconnection between the management device and the first device is normal.
  • This implementation method is the most convenient, and can reduce the storage space required by the first status identifier and connection request data in the wireless connection device 320, and improve the processing efficiency of the wireless connection device 320 for the first status identifier and connection request data. .
  • Figure 6 shows a schematic flow chart of a wireless connection method 600 for a battery management device 300 provided by an embodiment of the present application.
  • the wireless connection method 600 is also applied to the wireless connection device 320 in the battery management device 300 shown in FIG. 3 above.
  • the wireless connection method 600 includes steps S510 to S543 in the embodiment shown in Figure 5 above. Based on this, after determining the wireless connection with the first device Or when the disconnection is abnormal, the wireless connection method 600 may also include the following steps.
  • S650 Perform wireless connection or disconnection with the first device at least once according to the connection request data.
  • S660 Detect the first status identifier at least once until the number of executions reaches a preset number or the connection status indicated by the first status identifier is consistent with the connection request indicated by the connection request data.
  • the execution subject of the above steps S650 to S660 may be the wireless connection device 320 in the battery management device 300 shown in FIG. 3 above.
  • the wireless connection device 320 when the wireless connection device 320 determines that the wireless connection with the first device is abnormal, the wireless connection device 320 may continue to perform at least one connection request based on the connection request data.
  • the first device is connected or disconnected wirelessly to repair the abnormal wireless connection with the first device.
  • the wireless connection device 320 may re-detect the first state identifier, and determine whether it is connected to the third device based on the newly detected first state identifier. Whether the wireless connection between the devices is normal.
  • the wireless connection device 320 re-executes the wireless connection or disconnection with the first device at least once, and detects the first status identifier at least once, until it is determined that the wireless connection between the wireless connection device 320 and the first device is normal, that is, the wireless connection device 32 and the first device.
  • the abnormal wireless connection between the devices is repaired, or until the number of executions reaches a preset number, the wireless connection device 320 stops continuing to perform wireless connection or disconnection with the first device.
  • the preset number may be less than or equal to 10, for example, the preset number may be 5.
  • the wireless connection device 320 can send the abnormality information to the external device of the battery management device 300 so that the administrator can respond to the abnormality in a timely manner. Pay attention to and perform repairs on relevant parts.
  • the wireless connection device 320 when there is an abnormality in the wireless connection between the wireless connection device 320 and the first device, the wireless connection device 320 itself can repair the abnormality so that it can communicate with the first device.
  • the wireless connection between the battery management device 300 and the first device is restored to a normal state, thereby further improving the connection reliability between the battery management device 300 and the first device.
  • the wireless connection device 320 when the wireless connection device 320 repeatedly performs the wireless connection operation with the first device for a preset number of times and the abnormality cannot be repaired, the wireless connection device 320 will not continue to repeatedly perform the wireless connection operation with the first device.
  • Wireless continuous actions cause a waste of system resources and can also optimize the overall performance of the battery management device 300 to a certain extent.
  • FIG. 7 shows a schematic flow chart of a wireless connection method 700 for a battery management device 300 provided by an embodiment of the present application.
  • the wireless connection method 700 is also applied to the wireless connection device 320 in the battery management device 300 shown in FIG. 3 above.
  • the wireless connection method 700 may include the following steps.
  • S720 Wirelessly connect or disconnect with the first device according to the connection request data.
  • S730 Detect the first status identifier, which is used to indicate the connection state with the first device.
  • S740 Every preset time period, determine whether the wireless connection or disconnection with the first device is normal according to the first status identifier and the connection request data.
  • the execution subject of the above steps S710 to S740 may be the wireless connection device 320 in the battery management device 300 shown in FIG. 3 above.
  • steps S710 to S730 please refer to the relevant description of steps S410 to S430 in Figure 4 above.
  • Step S740 may be an implementation of step S430 in Figure 4 above.
  • the wireless connection device 320 may determine whether the wireless connection or disconnection with the first device is normal according to the first status identifier and the connection request data every preset time period, so as to realize the connection with the first device.
  • the continuous monitoring of the wireless connection between the first device ensures the reliability of the long-term wireless connection between the wireless connection device 320 and the first device.
  • the preset time period in the embodiment of the present application may be less than or equal to 1 ms.
  • the preset time period can also be adjusted according to actual conditions, and the embodiment of the present application does not limit the specific value of the preset time period.
  • FIG. 8 shows a schematic flow chart of a wireless connection method 800 for the battery management device 300 provided by the embodiment of the present application.
  • the wireless connection method 800 is also applied to the wireless connection device 320 in the battery management device 300 shown in FIG. 3 above.
  • the wireless connection device 320 may also include a structure module and/or a non-volatile memory (Non-Volatile Memory, NVM) module.
  • the structure module may be located in the memory of the wireless connection device 320 to facilitate the wireless connection device 320 to read and write data in the structure module.
  • the NVM module can also be located outside the wireless connection device 320 and connected to the wireless connection device 320 .
  • the wireless connection method 800 may include the following steps.
  • S820 Write the connection request data into the storage module, where the storage module includes: a structure module and/or an NVM module.
  • S830 Wirelessly connect or disconnect with the first device according to the connection request data.
  • S840 Detect the first status identifier, which is used to indicate the connection state with the first device.
  • S860 Determine whether the wireless connection or disconnection with the first device is normal according to the first status identifier and the connection request data.
  • the execution subject of the above-mentioned steps S810 to step S860 may be the wireless connection device 320 in the battery management device 300 shown in FIG. 3 above.
  • steps S810, S830, S840 and S860 please refer to the relevant description of steps S410 to S440 in Figure 4 above.
  • step S820 after receiving the connection request data, the wireless connection device 320 can write the connection request data into the structure module in the memory, so that in the subsequent process, the connection request data in the structure module can be quickly processed.
  • the connection request data is read and written, and the connection fault is repaired according to the connection request data, thereby improving the connection reliability between the wireless connection device 320 and the first device.
  • the wireless connection device 320 after the wireless connection device 320 receives the connection request data, it can also store the connection request data in the NVM module.
  • the NVM module is a storage module in which the data stored in it will not be lost after power failure.
  • connection request data is stored in the NVM module, the loss of the connection request data caused by external reasons such as power outage can be prevented, ensuring the monitoring performance of the subsequent wireless connection device 320 for the connection status with the first device, thereby further improving The connection reliability between the battery management device 300 and the first device.
  • the first status identifier can also be written into the structure module in the memory. , so that in the subsequent process, the first status identifier in the structure module can be quickly read and written, and the connection status between the wireless connection device 320 and the first device can be monitored according to the first status identifier, The monitoring efficiency of the connection status between the wireless connection device 320 and the first device is improved.
  • the first state identifier can also be written into the NVM module to prevent the first state identifier from being caused by external reasons such as power outage. The loss of the status identifier ensures subsequent monitoring performance of the connection status between the wireless connection device 320 and the first device.
  • FIG. 9 shows a schematic flow chart of a wireless connection method 900 for the battery management device 300 provided by the embodiment of the present application.
  • the wireless connection method 900 is also applied to the wireless connection device 320 in the battery management device 300 shown in FIG. 3 above.
  • the wireless connection method 900 may include the following steps.
  • S910 Receive connection request data.
  • S920 Wirelessly connect to the first device according to the connection request data.
  • S930 Perform master-slave authentication with the first device.
  • S950 Detect the first status identifier, which is used to indicate the connection state with the first device.
  • S960 Determine whether the wireless connection with the first device is normal according to the first status identifier and the connection request data.
  • the execution subject of the above steps S910 to S960 may be the wireless connection device 320 in the battery management device 300 shown in FIG. 3 above.
  • steps S910 to S920 please refer to the relevant description of steps S410 to S420 in Figure 4 above.
  • steps S950 to S960 please refer to the relevant description of steps S430 to S440 in Figure 4 above.
  • step S920 that is, after the wireless connection device 320 wirelessly connects to the first device according to the connection request data
  • the wireless connection device 320 executes step S930, that is, the wireless connection device 320 executes the connection with the first device.
  • Master-slave authentication of a device is used to determine whether the wireless connection device 320 and the first device can adapt to each other, thereby ensuring subsequent normal data transmission between the wireless connection device 320 and the first device and improving system robustness.
  • step S930 may include the following steps.
  • S931 Receive the first message and the first random number sent by the first device.
  • the first message is used to indicate master-slave authentication of the first device.
  • S932 Perform algorithm processing on the first random number to obtain the first target number.
  • S933 Send the second message matching the first message and the first target number to the first device, so that the first device recognizes the second message, and performs an algorithm check on the first target number to determine the master-slave number. Certification results.
  • the wireless connection device 320 receives the first message and the first random number sent by the first device.
  • the wireless connection device 320 can identify the first message and determine the start time based on the first message. Perform master-slave authentication with the first device.
  • the wireless connection device 320 can use a specific algorithm to perform data on the first random number to obtain the first target number.
  • the specific algorithm may be an algorithm pre-agreed between the wireless connection device 320 and the first device, and the embodiment of the present application does not specifically limit the type of the specific algorithm.
  • step S933 the wireless connection device 320 sends a second message matching the first message and the first target number to the first device, where the second message is used to indicate the master-slave authentication of the wireless connection device 320.
  • the first device receives and identifies the second message, and determines to start performing master-slave authentication with the wireless connection device 320 according to the first message.
  • the first device can also use a specific algorithm to check the first target number to determine the master-slave authentication result with the wireless connection device 320 .
  • the specific algorithm used by the first device can match the specific algorithm used by the wireless connection device 320.
  • the specific algorithm used by the wireless connection device 320 can be an encryption algorithm, and the specific algorithm used by the first device can match the encoding. Algorithm decryption algorithm.
  • the first device uses a specific algorithm to process the first target number and can recover the first random number
  • the connection devices 320 can adapt to each other.
  • the first device will start sending data to the wireless connection device 320 through wireless communication, and the first device and the wireless connection device 320 will establish a normal wireless connection.
  • the first device cannot recover the first random number after using a specific algorithm to process the first target number, it is considered that the master-slave authentication between the first device and the wireless connection device 320 has failed, and the first device and the wireless connection device 320 cannot authenticate each other.
  • the first device does not send data to the wireless connection device 320, and the wireless connection between the first device and the wireless connection device 320 is disconnected from each other.
  • the master-slave authentication process is implemented between the wireless connection device 320 and the first device through the interaction of messages and data, which can achieve higher accuracy and facilitate the communication between the wireless connection device 320 and the first device.
  • Internal software and/or hardware implements the master-slave authentication process.
  • the first message and the second message are Controller Area Network (CAN) messages.
  • CAN messages are used between the wireless connection device 320 and the first device to indicate master-slave authentication.
  • CAN messages can be used to perform master-slave authentication between the battery management device 300 and the first device in related technologies.
  • the technical solution of slave authentication on the other hand, can also facilitate subsequent processes to parse the CAN message to locate the master-slave authentication interaction between the wireless connection device 320 and the first device.
  • the wireless connection device 320 may also include an NVM module.
  • the wireless connection device 320 after step S930, that is, after the wireless connection device 320 completes the master-slave authentication with the first device, the wireless connection device 320 also performs step S940, that is, after the wireless connection device 320 completes the master-slave authentication with the first device,
  • step S940 the authentication information of the first device is stored in the NVM module, where the authentication information of the first device is used to indicate that the master-slave authentication of the first device and the wireless connection device 320 is successful.
  • the wireless connection device 320 even if the wireless connection device 320 is powered off, the storage of the authentication information of the first device in the NVM module will not be affected. After the wireless connection device 320 is powered off and restarted, according to the authentication information of the first device in the NVM module, when the wireless connection device 320 subsequently performs a wireless connection with the first device, data communication can be directly performed without the need to perform it again. Master-slave authentication with the first device, thereby saving system resources and improving wireless connection performance between the wireless connection device 320 and the first device.
  • connection request data in the above embodiments may be Bluetooth connection request data
  • the wireless connection device 320 may be a Bluetooth chip.
  • the wireless connection device 320 is designed as a Bluetooth chip, and the wireless connection device 320 can communicate with the first device through the Bluetooth protocol.
  • the wireless connection device 320 can have the characteristics of low power consumption, low delay, and low cost of the Bluetooth chip, so it is more suitable to be installed in the vehicle 1 and/or the battery swap station 2 to achieve short-distance, low-cost and reliable communication.
  • FIG. 10 shows a schematic flow chart of a wireless connection method 1000 for a battery management device 300 provided by an embodiment of the present application.
  • the wireless connection method 1000 can also be applied to the wireless connection device 320 in the battery management device 300 shown in FIG. 3 above.
  • the wireless connection device 320 can be a Bluetooth chip.
  • the battery management device 300 may also include a control device 310 connected to the wireless connection device 320.
  • the control device 310 may be a control chip, or may also be called a main chip.
  • the wireless connection method 1000 may include the following steps.
  • S1020 Call the connection command processing function to copy it to the specific ECU table and NVM, and switch the main state machine to process the connection command.
  • S1030 The main state machine determines the specific connection command and calls the protocol stack interface to complete the connection with the device to be connected.
  • S1060 Determine whether the authentication is successful.
  • the execution subject of the above steps S1010 to S1100 may be the wireless connection device 320 in the battery management device 300 shown in FIG. 3 above.
  • the connection request data may be data sent by the main chip in the battery management device 300 to the Bluetooth chip through a communication bus (such as an SPI bus).
  • a communication bus such as an SPI bus.
  • the Bluetooth chip copies it to a specific array so that subsequent connection command processing functions can access the connection request data in the array.
  • the Bluetooth chip includes a main program and a main state machine program.
  • the main program can call the connection command processing function.
  • the connection command processing function can copy the connection request data in the above-mentioned specific array to a specific electronic control.
  • ECU table is a structure in the memory of the Bluetooth chip
  • NVM is the non-volatile memory in the Bluetooth chip.
  • the Bluetooth chip also includes a Bluetooth protocol stack.
  • the main state machine determines the content of the connection request data. If it is a connection command, the connection interface of the Bluetooth protocol stack is called and the content of the connection request data is input to the connection interface. If it is a disconnection command, the disconnection interface of the Bluetooth protocol stack is called, and the content of the connection request data is input into the disconnection interface.
  • the main state machine's interface call to the Bluetooth protocol stack Bluetooth connection and disconnection between the Bluetooth chip and the device to be connected (for example, the first device above) can be realized.
  • step S1040 after the connection or disconnection action of the Bluetooth protocol stack is completed, the Bluetooth chip is connected or disconnected from the device to be connected. If a Bluetooth connection is achieved between the Bluetooth chip and the device to be connected, the device to be connected and the Bluetooth chip can send data packets (or, it can also be called heartbeat packets) to each other.
  • data packets or, it can also be called heartbeat packets
  • the Bluetooth chip receives the data packet normally, the identification bit recorded in the ECU table in the Bluetooth chip to indicate the Bluetooth connection status (for example, the first status identification above) is written as the first value (for example, 1), indicating that Bluetooth is connected.
  • the first value for example, 1
  • the Bluetooth protocol stack When the signal is unstable and the data packets received by the Bluetooth chip are not updated after a preset time period (such as 2s), the Bluetooth protocol stack will handle the disconnection. At this time, the flag bit recorded in the ECU table in the Bluetooth chip for indicating the Bluetooth connection status is written as a second value (for example, 0), indicating that Bluetooth is in a disconnected state.
  • master-slave authentication can be understood as the process of handshaking between the Bluetooth chip and the device to be connected, where the battery management device where the Bluetooth chip is located can be understood as the master device, and the device to be connected can be understood as the slave device.
  • master-slave authentication process after the Bluetooth chip and the device to be connected are connected to each other, they start sending and receiving data to each other. At this time, only data exchanges of limited length can be carried out.
  • the device to be connected first sends a specific message frame and a random number A to the Bluetooth chip.
  • the Bluetooth chip processes the random number A through a specific algorithm to obtain the target number B. Then, the Bluetooth chip sends another frame of message and the target number B to the Bluetooth chip. to the device to be connected.
  • the connected device After the connected device receives the target number B, it performs an algorithm check. If there is no problem, normal data interaction is allowed.
  • the above-mentioned master-slave authentication process needs to be completed within a predetermined time period (for example: 500ms). If any data to be connected is not received by any device to be connected during the interaction and times out, the device to be connected will actively disconnect the Bluetooth chip.
  • the Bluetooth chip and the device to be connected can be considered to be mutually adapted, and the two can subsequently perform normal data interaction.
  • the SBMU can send data such as battery current, voltage, temperature, SOC, and SOH to the Bluetooth chip in the MBMU. If not, the Bluetooth chip and the device to be connected are not compatible with each other, and the device to be connected actively disconnects the Bluetooth connection with the Bluetooth chip and does not send data to the Bluetooth chip.
  • the relevant information of the device to be connected can be written into the NVM of the Bluetooth chip.
  • the master-slave authentication can no longer be performed, saving system resources.
  • the main program in the Bluetooth chip can schedule the main state machine every 1ms, so that the main state machine executes S1090, that is, it determines whether the current Bluetooth connection is normal.
  • the main state machine may check the flag bit used to indicate the Bluetooth connection status in the ECU table to determine whether the current Bluetooth connection status is consistent with the connection request. If yes, it means that the current Bluetooth connection status is normal.
  • step S10100 is executed.
  • the main program of the Bluetooth chip can read the connection request command data from the ECU table and re-execute the above steps S1020 to S1040 to perform Bluetooth reconnection.
  • the number of reconnections can be up to 5 times to prevent excessive reconnections and waste of system resources.
  • Figure 11 shows a schematic structural block diagram of a wireless connection device 1100 of a battery management device provided by an embodiment of the present application.
  • the wireless connection device 1100 includes: a receiving module 1110 and a processing module 1120.
  • the receiving module 1110 is used to receive connection request data.
  • the processing module 1120 is configured to wirelessly connect or disconnect with the first device according to the connection request data; detect the first status identifier, which is used to indicate the connection status with the first device; and according to the first status
  • the identification and connection request data are used to determine whether the wireless connection or disconnection with the first device is normal.
  • the processing module 1120 is configured to: determine whether the connection status indicated by the first status identifier is consistent with the connection request indicated by the connection request data; If the connection request indicated by the request data is consistent, the wireless connection with the first device is determined to be normal; if the connection state indicated by the first status identifier is inconsistent with the connection request indicated by the connection request data, It is determined that the wireless connection with the first device is abnormal.
  • the first status identifier is configured to: use a first value to indicate that the connection state with the first device is connected, and use a second value to indicate that the connection state with the first device is Disconnect;
  • the connection request data is configured to use a first numerical value to indicate that the connection request with the first device is a connection, and a second numerical value to indicate that the connection request with the first device is a disconnection.
  • the processing module 1120 is configured to determine whether the first status identifier is consistent with the connection request data.
  • the processing module 1120 when it is determined that the wireless connection or disconnection with the first device is abnormal, is further configured to: perform wireless communication with the first device at least once according to the connection request data. Connect or disconnect; detect the first status identifier at least once until the number of executions reaches a preset number or the connection status indicated by the first status identifier is consistent with the connection request indicated by the connection request data.
  • the processing module 1120 is configured to: every preset time period, determine whether the wireless connection or disconnection with the first device is normal according to the first status identifier and the connection request data.
  • the wireless connection device 1100 also includes a storage module, such as the structure module 1140 and/or the non-volatile memory (NVM) module 1150 shown in Figure 11; the processing module 1120 is also used to transfer the connection The interrupt request data is written into the structure module 1140 and/or the non-volatile storage module 1150.
  • a storage module such as the structure module 1140 and/or the non-volatile memory (NVM) module 1150 shown in Figure 11; the processing module 1120 is also used to transfer the connection The interrupt request data is written into the structure module 1140 and/or the non-volatile storage module 1150.
  • NVM non-volatile memory
  • the processing module 1120 is also configured to write the first status identifier into the structure module 1140 and/or the non-volatile storage module 1150.
  • the processing module 1120 is also configured to: determine whether the data packet sent by the first device is received within a preset time period; set a first status identifier according to the determination result; wherein, within the preset time period, When the data packet sent by the first device is received, the first status identifier is used to indicate the interconnection with the first device; when the data packet sent by the first device is not received within the preset time period, The first status identifier is used to indicate mutual disconnection from the first device.
  • processing module 1120 and the receiving module 1110 are also configured to: perform master-slave authentication with the first device.
  • the wireless connection device 1100 further includes: a sending module 1130; a receiving module 1110 configured to: receive a first message and a first random number sent by the first device, where the first message is used to indicate the first Master-slave authentication of the device; the processing module 1120 is used to perform algorithm processing on the first random number to obtain the first target number; the sending module 1130 is used to: send a second message matching the first message to the first device; The first target number is used to enable the first device to identify the second message and perform an algorithm check on the first target number to determine the result of the master-slave authentication.
  • the first message and the second message are controller area network CAN messages.
  • the wireless connection device 1100 also includes a non-volatile storage module 1150; the processing module 1120 is also configured to: when the master-slave authentication with the first device is successful, store the authentication information of the first device in the non-volatile storage module 1150.
  • the battery management device further includes a control device connected to the wireless connection device 1100, wherein the receiving module 1110 is configured to: receive connection request data sent by the control device, where the connection request data is The control device processes the data after receiving the connection request command.
  • the connection request command is communication data based on the first communication protocol.
  • the connection request data is communication data based on the second communication protocol.
  • the first communication protocol and the second communication protocol are used. The communication protocols are different.
  • connection request data is Bluetooth connection request data
  • wireless connection device 1100 is a Bluetooth chip.
  • the battery management device is the master battery management unit MBMU in the vehicle, and the first device is the slave battery management unit (SBMU) in the vehicle; or the battery management device is the rechargeable battery management unit in the battery swap station.
  • CBMU the first device is the slave battery management unit (SBMU) in the battery swap station; or the battery management device is the battery swap battery management unit (TBMU) in the battery swap station, and the first device is the master battery management unit in the vehicle (MBMU).
  • Figure 12 shows a schematic structural block diagram of a wireless connection device 1200 of a battery management device provided by an embodiment of the present application.
  • the wireless connection device 1200 includes: a processor 1210 and a memory 1220, where the memory 1220 is used to store programs, and the processor 1210 is used to call and run the program from the memory to execute any of the above embodiments. Wireless connection method.
  • Figure 13 shows a schematic structural block diagram of a battery management device 1300 provided by an embodiment of the present application.
  • the battery management device 1300 includes: a control device 1310 and the above-mentioned wireless connection device 1100 or wireless connection device 1200 or wireless connection device 320.
  • the wireless connection device 1100/1200/320 is connected to the control device 1310.
  • the control device 1310 is used to control the wireless connection device 1100/1200/320 to wirelessly connect or disconnect the first device to realize the wireless connection between the battery management device 1300 and the first device. Wireless connection or disconnection between devices.
  • control device 1310 may be the control device 310 in the above embodiment.
  • Figure 14 shows a schematic structural block diagram of an electronic device 1400 provided by an embodiment of the present application.
  • the electronic device 1400 includes the above-mentioned battery management device 1300.
  • the electronic device 1400 may be an electrical device.
  • the electrical device may be the vehicle 1 shown in FIG. 1 .
  • the electronic device 1400 may also be a power swapping device.
  • the power swapping device may be the power swapping station 2 shown in FIG. 2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种电池管理设备的无线连接方法、装置和电池管理设备,能够提高电池管理设备的连接性能。该无线连接方法应用于电池管理设备中的无线连接装置,且该无线连接方法包括:接收连断请求数据;根据连断请求数据,与第一设备无线连接或断开;检测第一状态标识,第一状态标识用于指示与第一设备之间的连断状态;根据第一状态标识以及连断请求数据,判断与第一设备之间的无线连接或断开是否正常。通过该技术方案,综合该第一状态标识以及连断请求数据判断与第一设备之间的无线连接或断开是否正常,有利于实现无线连接装置对与第一设备之间的无线连断状态的有效监控,从而提高电池管理设备与第一设备之间的连接性能。

Description

电池管理设备的无线连接方法、装置和电池管理设备 技术领域
本申请实施例涉及电池领域,并且更具体地,涉及一种电池管理设备的无线连接方法、装置和电池管理设备。
背景技术
随着时代的发展,电动汽车由于其高环保性、低噪音、使用成本低等优点,具有巨大的市场前景且能够有效促进节能减排,有利社会的发展和进步。对于电动汽车而言,电池技术是关乎其发展的一项重要因素。
目前,电池、电动车辆以及换电站等机构可配置有电池管理设备,例如:电池管理单元(Battery Manager Unit,BMU)等,该电池管理设备可与其它设备可相互连接并进行信息交互,例如,不同机构之间的电池管理设备可相互连接并进行信息交互,以便于对电池进行监控管理。在电池管理设备与其它设备的连接性能不佳的情况下,会影响该电池管理设备对电池的管理效果,产生电池的安全隐患。鉴于此,如何提高电池管理设备的连接性能,是一项亟待解决的技术问题。
发明内容
本申请实施例提供一种电池管理设备的无线连接方法、装置和电池管理设备,能够提高电池管理设备的连接性能。
第一方面,提供一种电池管理设备的无线连接方法,该无线连接方法应用于电池管理设备中的无线连接装置,且该无线连接方法包括:接收连断请求数据;根据连断请求数据,与第一设备无线连接或断开;检测第一状态标识,第一状态标识用于指示与第一设备之间的连断状态;根据第一状态标识以及连断请求数据,判断与第一设备之间的无线连接或断开是否正常。
通过本申请实施例的技术方案,无线连接装置检测用于指示与第一设备之间的连断状态的第一状态标识,且综合该第一状态标识以及连断请求数据判断与第一设备之间的无线连接或断开是否正常,有利于实现无线连接装置对与第一设备之间的无线连断状态的有效监控,从而提高电池管理设备与第一设备之间的连接性能。
在一些可能的实施方式中,上述根据第一状态标识以及连断请求数据,判断与第一设备之间的无线连接或断开是否正常,包括:判断第一状态标识指示的连断状态与连断请求数据指示的连断请求是否一致;在第一状态标识指示的连断状态与连断请求数据指示的连断请求一致的情况下,确定与第一设备之间的无线连接为正常;在第一状态标识指示的连断状态与连断请求数据指示的连断请求不一致的情况下,确定与 第一设备之间的无线连接为异常。
在该实施方式的技术方案中,通过判断第一状态标识指示的连断状态与连断请求数据指示的连断请求是否一致,从而可准确判断无线连接装置与第一设备之间的无线连接或断开是否为正常。该技术方案实施方便且准确度高,不仅能对无线连接装置与第一设备之间的无线连断的实现准确且有效的监控,还能较为方便的通过硬件和/或软件实现于无线连接装置中。
在一些可能的实施方式中,上述第一状态标识被配置为:采用第一数值指示与第一设备之间的连断状态为连接,采用第二数值指示与第一设备之间的连断状态为断开;连断请求数据被配置为:采用第一数值指示与第一设备之间的连断请求为连接,采用第二数值指示与第一设备之间的连断请求为断开;其中,上述判断第一状态标识指示的连断状态与连断请求数据指示的连断请求是否一致,包括:判断第一状态标识与连断请求数据是否一致。
通过该实施方式的技术方案,第一状态标识和连断请求数据均用不同数值表示不同状态和不同请求,因而,可以直接通过判断第一状态标识与连断请求数据是否一致,从而准确判断电池管理设备与第一设备之间的无线连接或断开是否为正常。该实现方式最为便捷,且能够降低第一状态标识与连断请求数据在无线连接装置中所需占用的存储空间,提高无线连接装置对该第一状态标识与连断请求数据的处理效率。
在一些可能的实施方式中,在确定与第一设备之间的无线连接或断开为异常的情况下,该无线连接方法还包括:根据连断请求数据,再至少一次执行与第一设备无线连接或断开;至少一次检测第一状态标识,直至执行次数到达预设数量或第一状态标识指示的连断状态与连断请求数据指示的连断请求一致。
通过该实施方式的技术方案,在无线连接装置与第一设备之间的无线连断存在异常的情况下,无线连接装置自身能够对该异常进行修复,以使得其与第一设备之间的无线连断恢复到正常状态,从而进一步提高电池管理设备与第一设备之间的连接可靠性。或者,在无线连接装置重复执行与第一设备的无线连断动作达到预设次数,且无法对该异常进行修复的情况下,该无线连接装置不会再继续重复执行与第一设备的无线连断动作,造成系统资源浪费,也能在一定程度上优化电池管理设备的整体性能。
在一些可能的实施方式中,上述根据第一状态标识以及连断请求数据,判断与第一设备之间的无线连接或断开是否正常,包括:每间隔预设时间段,根据第一状态标识以及连断请求数据,判断与第一设备之间的无线连接或断开是否正常。
通过该实施方式的技术方案,无线连接装置可以每间隔预设时间段根据第一状态标识以及连断请求数据,判断与第一设备之间的无线连接或断开是否正常,以实现对与第一设备之间无线连断的持续监控,保障该无线连接装置与第一设备之间长期的无线连断的可靠性。
在一些可能的实施方式中,无线连接装置包括存储模块;其中,在接收连断请求数据之后,该无线连接方法还包括:将连断请求数据写入存储模块。
通过该实施方式的技术方案,在无线连接装置在接收连断请求数据后,可以将该连断请求数据写入内存,例如内存中的结构体模块,以便于后续过程中,能够快速 的对该结构体模块中的连断请求数据进行读写,并根据该连断请求数据对连接故障进行修复,提高无线连接装置与第一设备的连接可靠性。另外,在无线连接装置在接收连断请求数据后,也可以将该连断请求数据存储至非易失性存储模块中,从而防止掉电等外部原因造成连断请求数据的丢失,保障后续无线连接装置对于与第一设备的连断状态的监控性能,从而进一步提升电池管理设备与第一设备之间的连接可靠性。
在一些可能的实施方式中,在检测第一状态标识之后,该无线连接方法还包括:将第一状态标识写入存储模块。
通过该实施方式的技术方案,在无线连接装置检测第一状态标识之后,同样可以将该第一状态标识写入内存,例如结构体模块,以便于后续过程中,能够快速的对该结构体模块中的第一状态标识进行读写,并根据该第一状态标识实现对无线连接装置与第一设备之间连断状态的监控,提高无线连接装置与第一设备之间的连断状态的监控效率。另外,在无线连接装置检测第一状态标识之后,也可以将该第一状态标识写入非易失性存储模块中,防止掉电等外部原因造成第一状态标识的丢失,保障无线连接装置对于与第一设备之间的连断状态的监控性能。
在一些可能的实施方式中,在检测第一状态标识之前,无线连接方法还包括:判断是否在预设时间段内接收到第一设备发送的数据包;根据判断结果设置第一状态标识;其中,在预设时间段内接收到第一设备发送的数据包的情况下,第一状态标识用于指示与第一设备之间的相互连接,未在预设时间段内接收到第一设备发送的数据包的情况下,第一状态标识用于指示与第一设备之间的相互断开。
通过该实施方式的技术方案,无线连接装置能够有效的设置第一状态标识以指示其与第一设备之间的连断状态。因此,在设置该第一状态标识后,无线连接装置检测该第一状态标识且根据该第一状态标识判断其与第一设备之间的无线连断是否正常,具有较高的可靠性。
在一些可能的实施方式中,在根据连断请求数据,执行与第一设备无线连接之后,该无线连接方法还包括:执行与第一设备的主从认证。
通过该实施方式的技术方案,无线连接装置执行与第一设备的主从认证,以判断无线连接装置与第一设备之间是否能够相互适配,从而保证无线连接装置与第一设备之间后续正常的数据传输,提高系统鲁棒性。
在一些可能的实施方式中,上述执行与第一设备的主从认证,包括:接收第一设备发送的第一报文以及第一随机数,第一报文用于指示第一设备的主从认证;对第一随机数执行算法处理,得到第一目标数;向第一设备发送匹配于第一报文的第二报文以及第一目标数,以使得第一设备识别第二报文,并对第一目标数进行算法检查,确定主从认证的结果。
通过该实施方式的技术方案,无线连接装置与第一设备之间通过报文以及数据的交互实现主从认证过程,可以具有较高的准确度,也便于无线连接装置与第一设备内部的软件和/或硬件对该主从认证过程进行实现。
在一些可能的实施方式中,第一报文与第二报文为控制器局域网络(CAN)报文。
在该实施方式的技术方案中,无线连接装置与第一设备之间利用CAN报文指示主从认证,一方面,可以适配相关技术中电池管理设备与第一设备之间利用CAN报文进行主从认证的技术方案,另一方面,也可以便于后续过程对该CAN报文进行解析,以定位无线连接装置与第一设备之间的主从认证交互。
在一些可能的实施方式中,无线连接装置还包括非易失性存储模块;其中,在执行与第一设备的主从认证之后,该无线连接方法还包括:在与第一设备主从认证成功的情况下,将第一设备的认证信息存储于非易失性存储模块中。
通过该实施方式的技术方案,即使无线连接装置掉电,也不会影响NVM模块中第一设备的认证信息的存储。在无线连接装置掉电并重启后,根据该NVM模块中第一设备的认证信息,当无线连接装置后续与第一设备进行无线连接时,可以直接进行数据通信,而不需要再重新进行与第一设备的主从认证,从而节约系统资源,提高无线连接装置与第一设备的无线连接性能。
在一些可能的实施方式中,电池管理设备还包括控制装置,该控制装置连接于无线连接装置;其中,上述接收连断请求数据,包括:接收控制装置发送的连断请求数据,其中,连断请求数据为控制装置对其接收的连断请求命令处理后的数据,连断请求命令为基于第一通信协议的通信数据,连断请求数据为基于第二通信协议的通信数据,第一通信协议与第二通信协议不同。
在该实施方式的技术方案中,通过电池管理设备中的控制装置接收基于第一通信协议的连断请求命令,且向无线连接装置发送基于第二通信协议的连断请求数据。该电池管理设备与外部设备可以基于第一通信协议相互通信,例如,仍然采用现有技术的方案,通过CAN协议或者其它协议方式相互通信,而控制装置将其接收后的连断请求命令进行转换之后,可以与无线连接装置基于第二通信协议相互通信。因此,该实施方式能够兼容现有的电池管理设备的通信架构,且电池管理设备中控制装置与无线连接装置的通信效果也较优,从而可以提升电池管理设备整体的通信性能。
在一些可能的实施方式中,连断请求数据为蓝牙连断请求数据,无线连接装置为蓝牙芯片。
在该实施方式的技术方案中,将无线连接装置设计为蓝牙芯片,该无线连接装置可以通过蓝牙协议与第一设备进行相互通信。该无线连接装置可以具有蓝牙芯片的低功耗、低延时、低成本的特点,因而较为适宜的设置于车辆和/或换电站中,实现短距离、低成本的可靠通信。
在一些可能的实施方式中,电池管理设备为用电设备中的主电池管理单元MBMU,第一设备为用电设备中的从电池管理单元(SBMU);或,电池管理设备为换电设备中的充电电池管理单元(CBMU),第一设备为换电设备中的从电池管理单元(SBMU);或,电池管理设备为换电设备中的换电电池管理单元(TBMU),第一设备为用电设备中的主电池管理单元(MBMU)。
在该实施方式的技术方案中,电池管理设备可以为多种类型,且应用于不同场景下。通过该方案,可以实现TBMU与MBMU之间较为稳定的无线连断,和/或,实现CBMU/MBMU与SBMU之间较为稳定的无线连断,从而简化用电设备和/或换电设 备中多种电池管理设备之间的连接方式,提高整个系统的连接稳定性以及鲁棒性。
第二方面,提供一种电池管理设备的无线连接装置,包括:接收模块,用于接收连断请求数据;处理模块,用于根据连断请求数据,与第一设备无线连接或断开;检测第一状态标识,第一状态标识用于指示与第一设备之间的连断状态;根据第一状态标识以及连断请求数据,判断与第一设备之间的无线连接或断开是否正常。
在一些可能的实施方式中,处理模块用于:判断第一状态标识指示的连断状态与连断请求数据指示的连断请求是否一致;在第一状态标识指示的连断状态与连断请求数据指示的连断请求一致的情况下,确定与第一设备之间的无线连接为正常;在第一状态标识指示的连断状态与连断请求数据指示的连断请求不一致的情况下,确定与第一设备之间的无线连接为异常。
在一些可能的实施方式中,第一状态标识被配置为:采用第一数值指示与第一设备之间的连断状态为连接,采用第二数值指示与第一设备之间的连断状态为断开;连断请求数据被配置为:采用第一数值指示与第一设备之间的连断请求为连接,采用第二数值指示与第一设备之间的连断请求为断开;处理模块用于:判断第一状态标识与连断请求数据是否一致。
在一些可能的实施方式中,在确定与第一设备之间的无线连接或断开为异常的情况下,处理模块还用于:根据连断请求数据,再至少一次执行与第一设备无线连接或断开;至少一次检测第一状态标识,直至执行次数到达预设数量或第一状态标识指示的连断状态与连断请求数据指示的连断请求一致。
在一些可能的实施方式中,处理模块用于:每间隔预设时间段,根据第一状态标识以及连断请求数据,判断与第一设备之间的无线连接或断开是否正常。
在一些可能的实施方式中,无线连接装置还包括存储模块;处理模块还用于将连断请求数据写入存储模块。
在一些可能的实施方式中,处理模块还用于:将第一状态标识写入存储模块。
在一些可能的实施方式中,处理模块还用于:判断是否在预设时间段内接收到第一设备发送的数据包;根据判断结果设置第一状态标识;其中,在预设时间段内接收到第一设备发送的数据包的情况下,第一状态标识用于指示与第一设备之间的相互连接,未在预设时间段内接收到第一设备发送的数据包的情况下,第一状态标识用于指示与第一设备之间的相互断开。
在一些可能的实施方式中,处理模块和接收模块还用于:执行与第一设备的主从认证。
在一些可能的实施方式中,无线连接装置还包括:发送模块;接收模块用于:收第一设备发送的第一报文以及第一随机数,第一报文用于指示第一设备的主从认证;处理模块用于:对第一随机数执行算法处理,得到第一目标数;发送模块用于:向第一设备发送匹配于第一报文的第二报文以及第一目标数,以使得第一设备识别第二报文,并对第一目标数进行算法检查,确定主从认证的结果。
在一些可能的实施方式中,第一报文与第二报文为控制器局域网络(CAN)报文。
在一些可能的实施方式中,无线连接装置还包括非易失性存储模块;处理模块还用于:在与第一设备主从认证成功的情况下,将第一设备的认证信息存储于非易失性存储模块中。
在一些可能的实施方式中,电池管理设备还包括控制装置,控制装置连接于无线连接装置;接收模块用于:接收控制装置发送的连断请求数据,其中,连断请求数据为控制装置对其接收的连断请求命令处理后的数据,连断请求命令为基于第一通信协议的通信数据,连断请求数据为基于第二通信协议的通信数据,第一通信协议与第二通信协议不同。
在一些可能的实施方式中,连断请求数据为蓝牙连断请求数据,无线连接装置为蓝牙芯片。
在一些可能的实施方式中,电池管理设备为用电设备中的主电池管理单元MBMU,第一设备为用电设备中的从电池管理单元(SBMU);或,电池管理设备为换电设备中的充电电池管理单元(CBMU),第一设备为换电设备中的从电池管理单元(SBMU);或,电池管理设备为换电设备中的换电电池管理单元(TBMU),第一设备为用电设备中的主电池管理单元(MBMU)。
第三方面,提供一种电池管理设备的无线连接装置,包括:处理器和存储器,存储器用于存储程序,处理器用于从存储器中调用并运行程序以执行上述第一方面或第一方面中任一可能的实施方式中的无线连接方法。
第四方面,提供一种电池管理设备,包括:无线连接装置以及上述第二方面、第二方面中任一可能的实施方式或第三方面中的无线连接装置;其中,无线连接装置连接于控制装置,该控制装置用于控制无线连接装置与第一设备无线连接或断开,以实现电池管理设备与第一设备之间的无线连接或断开。
第五方面,提供一种电子设备,包括:上述第四方面中的电池管理设备。
在一些可能的实施方式中,电子设备为用电设备或换电设备。
通过本申请实施例的技术方案,无线连接装置检测用于指示与第一设备之间的连断状态的第一状态标识,且综合该第一状态标识以及连断请求数据判断与第一设备之间的无线连接或断开是否正常,有利于实现无线连接装置对与第一设备之间的无线连断状态的有效监控,从而提高电池管理设备与第一设备之间的连接性能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一实施例适用的一种车辆的示意性结构框图;
图2是本申请一实施例适用的一种换电站的示意性结构框图;
图3是本申请一实施例提供的一种电池管理设备的示意性结构框图;
图4是本申请一实施例提供的一种电池管理设备的无线连接方法的示意性流程框图;
图5是本申请另一实施例提供的一种电池管理设备的无线连接方法的示意性流程框图;
图6是本申请另一实施例提供的一种电池管理设备的无线连接方法的示意性流程框图;
图7是本申请另一实施例提供的一种电池管理设备的无线连接方法的示意性流程框图;
图8是本申请另一实施例提供的一种电池管理设备的无线连接方法的示意性流程框图;
图9是本申请另一实施例提供的一种电池管理设备的无线连接方法的示意性流程框图;
图10是本申请另一实施例提供的一种电池管理设备的无线连接方法的示意性流程框图;
图11是本申请一实施例提供的一种电池管理设备的无线连接装置的示意性结构框图;
图12是本申请另一实施例提供的一种电池管理设备的无线连接装置的示意性结构框图;
图13是本申请一实施例提供的一种电池管理设备的示意性结构框图;
图14是本申请一实施例提供的一种电子设备的示意性结构框图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:存在A,同时存在A和B,存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的 包含。本申请的说明书、权利要求书或附图中的术语“第一”、“第二”、“第三”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
在新能源领域中,电池作为用电装置,例如电动车辆、船舶或航天器等的主要动力源,其重要性不言而喻。在本申请中,电池是指包括一个或多个电池单体(battery cell)以提供更高的电压和容量的单一的物理模块。该电池一般包括用于封装一个或多个电池单体的箱体。可选地,本申请中所提到的电池可以称之为电池包(battery pack)。可选地,该电池可以是任意类型的电池,例如:锂离子电池、锂金属电池、锂硫电池、铅酸电池、镍隔电池、镍氢电池、或者锂空气电池等等。
在电池的运行、充电、换电过程中,均需要对电池的实时状态进行监控,以提高电池在上述各过程中的安全性。因此,根据实际情况的需要,在电池的内部、用电装置、换电站等位置可配置有电池管理设备,例如:电池管理单元(BMU)等,对便于对电池的运行状态进行监控和管理。
作为一种示例,在电动车辆以及电池的内部均配置有BMU,其中,电动车辆中的BMU可称之为主电池管理单元(Master Battery Manager Unit,MBMU),电池的内部配置的BMU可称之为从电池管理单元(Slaver Battery Manager Unit,SBMU)。在该示例中,MBMU可以与SBMU相互连接并进行信息交互,以共同实现对电池的运行状态的监控和管理。
在一些实施方式中,MBMU与SBMU通过实体走线(例如:控制器局域网络(Controller Area Network,CAN)走线)相互连接,该实体走线在两个BMU上的安装方式较为复杂,影响制造和维修效率。在另一些实施方式中,MBMU与SBMU通过无线方式进行连接,在该无线连接方式下,MBMU与SBMU之间的通信易受到环境等多种因素的影响,因而容易出现连接故障。
可以理解的是,除了上述MBMU与SBMU以外,换电站中也会配置一种或多种BMU。该换电站中多种BMU之间,和/或,换电站中的BMU与用电装置中的BMU之间也相互连接,因而,在无线连接方式下,除了上述MBMU与SBMU容易出现连接故障以外,换电站中多种BMU之间,和/或,换电站中的BMU与用电装置中的BMU之间也较为容易出现连接故障。
鉴于此,本申请提供一种电池管理设备的无线连接方法,其中,该电池管理设备包括但不限于是BMU,该无线连接方法应用于电池管理设备中的无线连接装置,该无线连接方法包括:接收连断请求数据,根据该连断请求数据,与第一设备无线连接或断开,检测第一状态标识,该第一状态标识用于指示与第一设备之间的连断状态,根据该第一状态标识以及连断请求数据,判断与第一设备之间的无线连接或断开是否正常。通过该技术方案,通过检测用于指示与所述第一设备之间的连断状态的第一状态标识,且综合该第一状态标识以及连断请求数据判断与第一设备之间的无线连接或 断开是否正常,有利于实现对无线连接装置与第一设备之间的无线连断状态的有效监控,从而提高电池管理设备与第一设备之间的连接性能。
图1示出了本申请实施例适用的一种车辆1的示意性结构框图。该车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。
如图1所示,在本申请实施例中,车辆1中设置有电池10,该电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源,用于车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
为了便于监测该电池10在车辆1中的运行状态,该电池10中设置有从电池管理单元(SBMU)110。对应于该电池10内部的SBMU 110,车辆1中还设置有主电池管理单元(MBMU)120。
具体地,电池10中可包括至少一个电池单体(或者也可称之为电芯)11,该至少一个电池单体11被封装在同一个箱体中,以形成一个电池包。除了该至少一个电池单体11以外,该箱体中还可设置有SBMU 110以及其它相关部件,该SBMU 110用于检测电池10中每个电池单体11的相关状态参数,例如,电压、电流、温度、荷电状态(State of Charge,SOC),健康状态(State of Health,SOH)等等。
在电池10以外,车辆1中设置有与SBMU 110能够相互通信的MBMU 120。SBMU 110能够将检测到的电池10的相关参数传输至MBMU 120,MBMU 120能够对其接收到的数据进行计算分析,且向SBMU 110传输信号以控制和管理该SBMU 110。
另外,除了电池10以及MBMU以外,该车辆1中还设置有车辆控制器130,例如:整车控制器(Vehicle Control Unit,VCU)或者域控制器(Domain Control Unit,DCU)等,该MBMU 120除了能够与SBMU 110相互通信以外,还能够与车辆控制器130相互通信,具体地,该MBMU 120能够将车辆1中电池10的相关数据传输至车辆控制器130。
可选地,如图1所示,在一些实施方式中,车辆1中可设置有多个电池10,且该每个电池10中均对应设置有SBMU 110,换言之,车辆1中可设置有多个SBMU 110,MBMU 120可同时与多个SBMU 110建立通信连接,以实现对多个SBMU 110的控制管理。
需要说明的是,上文图1仅作为示例,说明车辆1可设置有由车辆控制器130、MBMU 120以及多个电池10形成的通信系统。在另一些实施方式中,车辆1可以设置有仅由车辆控制器130以及多个电池10形成的通信系统。例如,多个电池10中每个电池10内部可设置有对电池单体11进行监测的监测单元,该监测单元可与车辆控制器130建立通信连接,以使得车辆控制器130实现对多个电池10的控制管理。
可选地,本申请实施例中的电池10除了可采用传统的电芯至电池包(Cell To Pack,CTP)的架构以外,还可以采用电芯至底盘(Cell To Chassis,CTC)架构,将电池10中的至少一个电芯集成到车辆的底盘中。在该情况下,车辆1中的车辆控制器 130可为域控制器,直接对电池10乃至电池10中的至少一个电芯进行管理。
图2示出了本申请实施例适用的一种换电站2的示意性结构框图。该换电站2可以为乘用车或者重型卡车等多种不同类型的车辆提供快速更换电池的服务,且该换电站2也可以包括充电仓20,以对车辆中更换下来的电池进行充电。
如图2所示,换电站2的充电仓20内可设置有多个电池10,其中,每个电池10中设置有SBMU 110。为了便于对该多个SBMU 110进行控制管理,充电仓20内还设置有至少一个充电电池管理单元(Charger Battery Manager Unit,CBMU)210。作为示例,充电仓20中的每个CBMU 210能够与预设数量的SBMU 110建立通信连接,且对该SBMU 110进行控制管理。在充电仓20内可容纳的电池10数量较多时,该充电仓20内可设置多个CBMU 210,每个CBMU 210与预设数量的SBMU 110建立通信,以保证对每个SBMU 110及其所在的电池10进行有效监控和管理。
继续参见图2,在换电站2中,除了设置充电仓20对多个电池10进行充电以外,还设置有站控系统21,该站控系统21可以控制换电站2中的多个功能装置以执行对应的功能。例如,换电站2中包括电池装取设备(图2中未示出),该站控系统21可以控制该电池装取设备从进入换电站2中的车辆上拆取处于亏电状态的电池10,并将换电站内电量充足的电池10安装至车辆上。
具体地,在本申请实施例中,该站控系统21可以与充电仓20中的至少一个CBMU 210建立通信连接,从而便于站控系统21通过该CBMU 210对充电仓20中的多个电池10进行控制管理。
如图2所示,在换电站2中,除了CBMU 210以外,还设置有换电电池管理单元(Transmission Battery Manager Unit,TBMU)220。当图1中所示的车辆1进入换电站2之后,该TBMU 220能够与车辆1中的MBMU 120建立通信连接,从而便于TBMU 220与MBMU 120实现信息交互,也便于该TBMU 220通过MBMU 120对车辆1上的电池10实现监控管理。
进一步地,为了便于站控系统21监控管理车辆上的电池10,该TBMU 220还与站控系统21建立通信连接。因此,站控系统21可以通过该TBMU 220以及MBMU 120对车辆1上的电池10实现监控管理。
可选地,在上述图1和图2所示的车辆1以及换电站2中,不同类型的BMU可以通过无线方式建立通信连接,以降低不同类型的BMU之间连接安装的复杂度。另外,在换电站2中,为了保障站控系统21与其它部件的通信可靠性,该站控系统可以通过有线方式与CBMU 210和/或TBMU 220建立通信连接。
图3示出了本申请实施例提供的一种电池管理设备300的示意性结构框图。可选地,该电池管理设备300可以为上文图1和图2中所示的MBMU 120,CBMU 210、TBMU 220或者车辆控制器130。
如图3所示,该电池管理设备300包括:无线连接装置320,该无线连接装置320能够与其它无线装置实现无线连接。作为示例而非限定,该无线连接装置320可以为电池管理设备300中的无线通信芯片。
可选地,如图3所示,该电池管理设备300还可以包括:与无线连接装置320 相互连接的控制装置310,该控制装置310能够向无线连接装置320发送命令,以控制无线连接装置320根据该命令执行相应的动作。作为示例而非限定,该控制装置310可以为电池管理设备300的控制芯片,例如可以是电池管理设备300中的主控芯片。
图4示出了本申请实施例提供的一种电池管理设备300的无线连接方法400的示意性流程框图。该无线连接方法400应用于上文图3中所示的电池管理设备300中的无线连接装置320,换言之,本申请实施例中的无线连接方法400的执行主体为上述无线连接装置320。
如图4所示,在本申请实施例中,该无线连接方法400包括以下步骤。
S410:接收连断请求数据。
S420:根据连断请求数据,与第一设备无线连接或断开。
S430:检测第一状态标识,该第一状态标识用于指示与所述第一设备之间的连断状态。
S440:根据第一状态标识以及连断请求数据,判断与第一设备之间的无线连接或断开是否正常。
具体地,上述步骤S410至步骤S440的执行主体可为上文图3中所示的电池管理设备300中的无线连接装置320。
具体地,在步骤S410和步骤S420中,无线连接装置320用于接收外部发送的连断请求数据。其中,该连断请求数据可包括用于指示与第一设备连接或断开的请求类型的请求数据以及用于指示该第一设备的信息数据。其中,该用于指示该第一设备的信息数据包括但不限于是:第一设备的位置、第一设备的媒体存取控制位址(Media Access Control Address,MAC)等等。进一步地,无线连接装置320可根据该连断请求数据中的相关信息,执行与第一设备的无线连接或断开,从而实现电池管理设备300与第一设备的无线连接或断开。
作为一种示例,在电池管理设备300为用电设备(例如上述车辆1)中的MBMU 120或主控制器(例如上述车辆1中的车辆控制器130)的情况下,该第一设备包括但不限于是用电设备(例如上述车辆1)中的SBMU 110。
作为另一种示例,在电池管理设备300为换电设备(例如上述换电站2)中的CBMU 210的情况下,该第一设备包括但不限于是换电设备(例如上述换电站2)中的SBMU 110。
作为第三种示例,在电池管理设备300为换电设备(例如上述换电站2)中的TBMU 220的情况下,该第一设备包括但不限于是用电设备(例如上述车辆1)中的MBMU 120。
通过该几种示例的实施方式,电池管理设备300可以为多种类型,且应用于不同场景下。通过该方案,可以实现TBMU 220与MBMU 120之间较为稳定的无线连断,和/或,实现CBMU 210/MBMU 120与SBMU 110之间较为稳定的无线连断,从而简化用电设备和/或换电设备中多种电池管理设备300之间的连接方式,提高整个系统的连接稳定性以及鲁棒性。
可选地,在一些实施方式中,电池管理设备300包括图3中所示的控制装置310, 该控制装置310连接于无线连接装置320。在该情况下,对于步骤S410,无线连接装置320可以接收控制装置310发送的连断请求数据,其中,该连断请求数据为控制装置310对其接收的连断请求命令处理后的数据,该连断请求命令为基于第一通信协议的通信数据,该连断请求数据为基于第二通信协议的通信数据,该第一通信协议与第二通信协议不同。
具体地,在该实施方式中,控制装置310可基于第一通信协议连接于电池管理设备300的外部设备,且通过第二通信协议连接于无线连接装置320。在该情况下,控制装置310可接收外部设备基于第一通信协议发送的第一数据类型的连断请求命令,且将该第一数据类型的连断请求命令转换为基于第二通信协议的第二数据类型的连断请求数据,从而便于该第二数据类型的连断请求数据能够顺利传输至无线连接装置320。作为示例而非限定,该第一通信协议可以为CAN协议,第二通信协议可以为串行外设接口(Serial Peripheral Interface,SPI)协议。
在该实施方式的技术方案中,通过电池管理设备300中的控制装置310接收基于第一通信协议的连断请求命令,且向无线连接装置320发送基于第二通信协议的连断请求数据。该电池管理设备300与外部设备可以基于第一通信协议相互通信,例如,仍然采用现有技术的方案,通过CAN协议或者其它协议方式相互通信,而控制装置310将其接收后的连断请求命令进行转换之后,可以与无线连接装置320基于第二通信协议相互通信。因此,该实施方式能够兼容现有的电池管理设备300的通信架构,且电池管理设备300中控制装置310与无线连接装置320的通信效果也较优,从而可以提升电池管理设备300整体的通信性能。
或者,在另一些实施方式中,无线连接装置320接收的连断请求数据也可以不是控制装置310发送的,而是由外部设备直接发送的,该无线连接装置320可以直接根据该连断请求数据执行与第一设备的连接或断开。
在步骤S430中,无线连接装置320检测第一状态标识,该第一状态标识可用于指示无线连接装置320与第一设备之间的连断状态。可选地,该第一状态标识可用于指示无线连接装置320与第一设备相互连接或者相互断开。或者,在此基础上,该第一状态标识还可以进一步用于指示无线连接装置320与第一设备之间其它相关的连断状态信息。
可选地,在一些实施方式中,在该步骤S430之前,该无线连接方法400还包括:无线连接装置320判断是否在预设时间段内接收到第一设备发送的数据包;且该无线连接装置320根据判断结果设置第一状态标识;其中,在预设时间段内接收到第一设备发送的数据包的情况下,第一状态标识用于指示与第一设备之间的相互连接,未在预设时间段内接收到第一设备发送的数据包的情况下,第一状态标识用于指示与第一设备之间的相互断开。
具体地,在无线连接装置320中可具有无线通信协议栈,该无线连接装置320可根据连断请求数据,调用无线通信协议栈,以实现与第一设备的无线连接或断开。在无线连接装置320与第一设备建立起无线连接之后,第一设备可向无线连接装置320发送数据包,若无线连接装置320在预设时间段内接收到第一设备发送的数据包,则无 线连接装置320可将第一状态标识设置为相互连接状态。反之,若无线连接装置320在预设时间段内未接收到第一设备发送的数据包,则无线连接装置320将第一状态标识设置为相互断开状态。
可选地,该第一状态标识可以为无线连接装置320中实时更新的标识,即该无线连接装置320可以实时检测其与第一设备之间的连断状态,以检测实时更新的第一状态标识。
通过该实施方式的技术方案,无线连接装置320能够有效的设置第一状态标识以指示其与第一设备之间的连断状态。因此,在设置该第一状态标识后,无线连接装置320检测该第一状态标识且根据该第一状态标识判断其与第一设备之间的无线连断是否正常,具有较高的可靠性。
在步骤S440中,无线连接装置320可根据该第一状态标识以及连断请求数据,综合判断与第一设备之间的无线连接或断开是否正常。相比于仅根据第一状态标识判断与第一设备之间的无线连接或断开是否正常的技术方案,通过本实施方式的技术方案,综合第一状态标识和连断请求数据两种数据,判断无线连接装置320与第一设备之间的无线连接或断开是否正常,能够进一步提高判断的准确性。
综上,通过本申请实施例的技术方案,无线连接装置320检测用于指示与第一设备之间的连断状态的第一状态标识,且综合该第一状态标识以及连断请求数据判断与第一设备之间的无线连接或断开是否正常,有利于实现无线连接装置320对与第一设备之间的无线连断状态的有效监控,从而提高电池管理设备300与第一设备之间的连接性能。
图5示出了本申请实施例提供的一种电池管理设备300的无线连接方法500的示意性流程框图。该无线连接方法500同样应用于上文图3中所示的电池管理设备300中的无线连接装置320。
如图5所示,在本申请实施例中,该无线连接方法500包括以下步骤。
S510:接收连断请求数据。
S520:根据连断请求数据,与第一设备无线连接或断开。
S530:检测第一状态标识,该第一状态标识用于指示与第一设备之间的连断状态。
S541:判断第一状态标识指示的连断状态与连断请求数据指示的连断请求是否一致。
S542:在第一状态标识指示的连断状态与连断请求数据指示的连断请求一致的情况下,确定与第一设备之间的无线连接为正常。
S543:在第一状态标识指示的连断状态与连断请求数据指示的连断请求不一致的情况下,确定与第一设备之间的无线连接为异常。
具体地,上述步骤S510至步骤S543的执行主体可为上文图3中所示的电池管理设备300中的无线连接装置320。
具体地,在本申请实施例中,步骤S510至步骤S530的具体技术方案可以参见上文图4所示实施例中步骤S410至步骤S430的相关描述。
另外,本申请实施例中的步骤S541至步骤S543可以为上述步骤S440的一种实现方式。
具体地,在步骤S541中,第一状态标识能够用于指示无线连接装置320与第一设备当前的连断状态为相互连接或者相互断开。连断请求数据中可以包括用于指示无线连接装置320与第一设备连接或断开的请求类型的请求数据。
在步骤S542中,在第一状态标识指示的连断状态与连断请求数据指示的连断请求一致的情况下,无线连接装置320可以确定与第一设备之间的无线连断为正常。例如,在第一状态标识指示的连断状态为相互连接,且连断请求数据指示的连断请求也为相互连接的情况下,无线连接装置320可以确定与第一设备之间的无线连接为正常。
对应的,在步骤S543中,在第一状态标识指示的连断状态与连断请求数据指示的连断请求不一致的情况下,无线连接装置320可以确定与第一设备之间的无线连断为异常。例如,在第一状态标识指示的连断状态为相互断开,但连断请求数据指示的连断请求为相互连接的情况下,无线连接装置320可以确定与第一设备之间的无线连接为异常。
在本申请实施例的技术方案中,通过判断第一状态标识指示的连断状态与连断请求数据指示的连断请求是否一致,从而可准确判断无线连接装置320与第一设备之间的无线连接或断开是否为正常。该技术方案实施方便且准确度高,不仅能对无线连接装置320与第一设备之间的无线连断的实现准确且有效的监控,还能较为方便的通过硬件和/或软件实现于无线连接装置320中。
可选地,在一些实施方式中,上述第一状态标识被配置为:采用第一数值指示与第一设备之间的连断状态为连接,采用第二数值指示与第一设备之间的连断状态为断开。上述连断请求数据被配置为:采用第一数值指示与第一设备之间的连断请求为连接,采用第二数值指示与第一设备之间的连断请求为断开。
在该实施方式下,上述图5中的步骤S541可以包括:判断第一状态标识与连断请求数据是否一致。进一步地,上述步骤S542可以包括:在第一状态标识与连断请求数据一致的情况下,确定与第一设备之间的无线连接为正常。上述步骤S543可以包括:在第一状态标识与连断请求数据不一致的情况下,确定与第一设备之间的无线连接为异常。
作为一种示例,第一数值和第二数值可以分别为0和1,其仅需占用较小的存储空间,即可有效标识不同的连断状态和连断请求。当然,在其它示例中,第一数值和第二数值还可以分别为其它数值,本申请实施例对此不做具体限定。
通过该实施方式的技术方案,第一状态标识和连断请求数据均用不同数值表示不同状态和不同请求,因而,可以直接通过判断第一状态标识与连断请求数据是否一致,从而准确判断电池管理设备与第一设备之间的无线连接或断开是否为正常。该实现方式最为便捷,且能够降低第一状态标识与连断请求数据在无线连接装置320中所需占用的存储空间,提高无线连接装置320对该第一状态标识与连断请求数据的处理效率。
图6示出了本申请实施例提供的一种电池管理设备300的无线连接方法600的 示意性流程框图。该无线连接方法600同样应用于上文图3中所示的电池管理设备300中的无线连接装置320。
如图6所示,在本申请实施例中,该无线连接方法600包括上文图5所示实施例中的步骤S510至S543,在此基础上,在确定与第一设备之间的无线连接或断开为异常的情况下,该无线连接方法600还可以包括以下步骤。
S650:根据连断请求数据,再至少一次执行与第一设备无线连接或断开。
S660:至少一次检测第一状态标识,直至执行次数到达预设数量或第一状态标识指示的连断状态与连断请求数据指示的连断请求一致。
具体地,上述步骤S650至步骤S660的执行主体可为上文图3中所示的电池管理设备300中的无线连接装置320。
具体地,在本申请实施例中,在无线连接装置320确定与第一设备之间的无线连断为异常的情况下,该无线连接装置320可以继续根据连断请求数据,再至少一次执行与第一设备无线连接或断开,以修复与第一设备之间的无线连断异常。
具体地,在无线连接装置320每次执行与第一设备的无线连接或断开后,无线连接装置320可以重新检测第一状态标识,且根据该新检测到的第一状态标识判断其与第一设备之间无线连断是否正常。
无线连接装置320至少一次重新执行与第一设备无线连接或断开,且至少一次检测第一状态标识,直至确定其与第一设备之间无线连断正常,即该无线连接装置32与第一设备之间的无线连断异常得到修复,或者,直至执行次数到达了预设数量,无线连接装置320停止继续执行与第一设备无线连接或断开。作为示例而非限定,该预设数量可以小于或等于10,例如,该预设数量可以为5。
在执行次数到达了预设数量,且无线连接装置320无法修复异常的情况下,该无线连接装置320可将该异常信息发送给电池管理设备300的外部设备,以便于管理者能够对该异常及时关注并进行相关部件的维修。
通过本申请实施例的技术方案,在无线连接装置320与第一设备之间的无线连断存在异常的情况下,无线连接装置320自身能够对该异常进行修复,以使得其与第一设备之间的无线连断恢复到正常状态,从而进一步提高电池管理设备300与第一设备之间的连接可靠性。或者,在无线连接装置320重复执行与第一设备的无线连断动作达到预设次数,且无法对该异常进行修复的情况下,该无线连接装置320不会再继续重复执行与第一设备的无线连断动作,造成系统资源浪费,也能在一定程度上优化电池管理设备300的整体性能。
图7示出了本申请实施例提供的一种电池管理设备300的无线连接方法700的示意性流程框图。该无线连接方法700同样应用于上文图3中所示的电池管理设备300中的无线连接装置320。
如图7所示,在本申请实施例中,该无线连接方法700可以包括以下步骤。
S710:接收连断请求数据。
S720:根据连断请求数据,与第一设备无线连接或断开。
S730:检测第一状态标识,该第一状态标识用于指示与第一设备之间的连断状 态。
S740:每间隔预设时间段,根据第一状态标识以及连断请求数据,判断与第一设备之间的无线连接或断开是否正常。
具体地,上述步骤S710至步骤S740的执行主体可为上文图3中所示的电池管理设备300中的无线连接装置320。
在本申请实施例中,步骤S710至S730的具体实施方案可以参见上文图4中步骤S410至S430的相关描述。
步骤S740可以为上文图4中步骤S430的一种实现方式。
具体地,在步骤S740中,无线连接装置320可以每间隔预设时间段根据第一状态标识以及连断请求数据,判断与第一设备之间的无线连接或断开是否正常,以实现对与第一设备之间无线连断的持续监控,保障该无线连接装置320与第一设备之间长期的无线连断的可靠性。
作为一种示例,本申请实施例中预设时间段可小于或等于1ms。在其它示例中,该预设时间段还可以根据实际情况进行调整,本申请实施例对该预设时间段的具体数值不做限定。
图8示出了本申请实施例提供的一种电池管理设备300的无线连接方法800的示意性流程框图。该无线连接方法800同样应用于上文图3中所示的电池管理设备300中的无线连接装置320。可选地,在本申请实施例中,无线连接装置320还可包括结构体模块和/或非易失性存储(Non-Volatile Memory,NVM)模块。其中,该结构体模块可位于无线连接装置320的内存中,便于该无线连接装置320对该结构体模块中的数据进行读写。该NVM模块除了可位于无线连接装置320以外,还可以位于无线连接装置320的外部且与该无线连接装置320连接。
如图8所示,在本申请实施例中,该无线连接方法800可以包括以下步骤。
S810:接收连断请求数据。
S820:将连断请求数据写入存储模块,其中,存储模块包括:结构体模块和/或NVM模块。
S830:根据连断请求数据,与第一设备无线连接或断开。
S840:检测第一状态标识,该第一状态标识用于指示与第一设备之间的连断状态。
S850:将第一状态标识写入存储模块。
S860:根据第一状态标识以及连断请求数据,判断与第一设备之间的无线连接或断开是否正常。
具体地,上述步骤S810至步骤S860的执行主体可为上文图3中所示的电池管理设备300中的无线连接装置320。
在本申请实施例中,步骤S810、S830、S840和S860的具体实施方案可以参见上文图4中步骤S410至S440的相关描述。
在步骤S820中,在无线连接装置320在接收连断请求数据后,可以将该连断请求数据写入内存中的结构体模块,以便于后续过程中,能够快速的对该结构体模块中 的连断请求数据进行读写,并根据该连断请求数据对连接故障进行修复,提高无线连接装置320与第一设备的连接可靠性。另外,在无线连接装置320在接收连断请求数据后,也可以将该连断请求数据存储至NVM模块中,该NVM模块为一种掉电后,其中存储的数据不会丢失的存储模块。因此,将连断请求数据存储至NVM模块之后,可以防止掉电等外部原因造成连断请求数据的丢失,保障后续无线连接装置320对于与第一设备的连断状态的监控性能,从而进一步提升电池管理设备300与第一设备之间的连接可靠性。
类似地,在步骤850中,在无线连接装置320检测用于指示与第一设备之间的连断状态的第一状态标识之后,同样可以将该第一状态标识写入内存中的结构体模块,以便于后续过程中,能够快速的对该结构体模块中的第一状态标识进行读写,并根据该第一状态标识实现对无线连接装置320与第一设备之间连断状态的监控,提高无线连接装置320与第一设备之间的连断状态的监控效率。另外,在无线连接装置320检测用于指示与第一设备之间的连断状态的第一状态标识之后,也可以将该第一状态标识写入NVM模块,防止掉电等外部原因造成第一状态标识的丢失,保障后续无线连接装置320与第一设备之间的连断状态的监控性能。
图9示出了本申请实施例提供的一种电池管理设备300的无线连接方法900的示意性流程框图。该无线连接方法900同样应用于上文图3中所示的电池管理设备300中的无线连接装置320。
如图9所示,在本申请实施例中,该无线连接方法900可以包括以下步骤。
S910:接收连断请求数据。
S920:根据连断请求数据,与第一设备无线连接。
S930:执行与第一设备的主从认证。
S940:在与第一设备主从认证成功的情况下,将第一设备的认证信息存储于非易失性存储模块中。
S950:检测第一状态标识,该第一状态标识用于指示与第一设备之间的连断状态。
S960:根据第一状态标识以及连断请求数据,判断与第一设备之间的无线连接是否正常。
具体地,上述步骤S910至步骤S960的执行主体可为上文图3中所示的电池管理设备300中的无线连接装置320。
在本申请实施例中,步骤S910至S920的具体实施方案可以参见上文图4中步骤S410至S420的相关描述。且步骤S950至步骤S960的具体实施方案可以参见上文图4中步骤S430至S440的相关描述。
另外,在本申请实施例中,在步骤S920之后,即无线连接装置320根据连断请求数据,与第一设备无线连接之后,该无线连接装置320执行步骤S930,即无线连接装置320执行与第一设备的主从认证,以判断无线连接装置320与第一设备之间是否能够相互适配,从而保证无线连接装置320与第一设备之间后续正常的数据传输,提高系统鲁棒性。
可选地,如图9所示,在一些实施方式中,步骤S930可以包括以下步骤。
S931:接收第一设备发送的第一报文以及第一随机数,该第一报文用于指示所述第一设备的主从认证。
S932:对第一随机数执行算法处理,得到第一目标数。
S933:向第一设备发送匹配于该第一报文的第二报文以及第一目标数,以使得第一设备识别第二报文,并对该第一目标数进行算法检查,确定主从认证的结果。
具体地,在步骤S931中,无线连接装置320接收第一设备发送的第一报文以及第一随机数,该无线连接装置320能够识别该第一报文,并根据该第一报文确定开始执行与第一设备的主从认证。
在步骤S932中,无线连接装置320能够使用特定算法对第一随机数进行数据,得到第一目标数。其中,该特定算法可以为无线连接装置320与第一设备预先约定的算法,本申请实施例对该特定算法的类型不做具体限定。
在步骤S933中,无线连接装置320向第一设备发送匹配于该第一报文的第二报文以及第一目标数,其中,该第二报文用于指示无线连接装置320的主从认证,第一设备接收并识别该第二报文,并根据该第一报文确定开始执行与无线连接装置320的主从认证。
具体地,第一设备也能够使用特定算法对第一目标数进行检查,以确定与无线连接装置320的主从认证结果。其中,第一设备使用的特定算法可以与无线连接装置320使用的特定算法相互匹配,例如,无线连接装置320使用的特定算法可以为加密算法,第一设备使用的特定算法可以为匹配于该编码算法的解密算法。
在一些实施方式中,第一设备使用特定算法对第一目标数进行处理后,可以恢复得到第一随机数,则认为第一设备与无线连接装置320主从认证成功,该第一设备与无线连接装置320能够相互适配,第一设备会通过无线通信方式开始向无线连接装置320发送数据,该第一设备与无线连接装置320建立起正常的无线连接。反之,第一设备使用特定算法对第一目标数进行处理后,不能恢复得到第一随机数,则认为第一设备与无线连接装置320主从认证失败,该第一设备与无线连接装置320不能相互适配,该第一设备不向无线连接装置320发送数据,该第一设备与无线连接装置320之间的无线连接相互断开。
通过本申请实施例的技术方案,无线连接装置320与第一设备之间通过报文以及数据的交互实现主从认证过程,可以具有较高的准确度,也便于无线连接装置320与第一设备内部的软件和/或硬件对该主从认证过程进行实现。
在一些实施方式中,上述第一报文与第二报文为控制器局域网络(CAN)报文。在该实施方式中,无线连接装置320与第一设备之间利用CAN报文指示主从认证,一方面,可以适配相关技术中电池管理设备300与第一设备之间利用CAN报文进行主从认证的技术方案,另一方面,也可以便于后续过程对该CAN报文进行解析,以定位无线连接装置320与第一设备之间的主从认证交互。
可选地,在本申请实施例中,无线连接装置320还可包括NVM模块。继续参见图9,可选地,在本申请实施例中,在步骤S930之后,即无线连接装置320执行完 与第一设备的主从认证之后,无线连接装置320还执行步骤S940,即在与第一设备主从认证成功的情况下,将第一设备的认证信息存储于NVM模块中,其中,该第一设备的认证信息用于指示第一设备与无线连接装置320的主从认证成功。
通过本申请实施例的技术方案,即使无线连接装置320掉电,也不会影响NVM模块中第一设备的认证信息的存储。在无线连接装置320掉电并重启后,根据该NVM模块中第一设备的认证信息,当无线连接装置320后续与第一设备进行无线连接时,可以直接进行数据通信,而不需要再重新进行与第一设备的主从认证,从而节约系统资源,提高无线连接装置320与第一设备的无线连接性能。
可选地,在一些实施方式中,上述各实施例中的连断请求数据可以为蓝牙连断请求数据,对应的,无线连接装置320可以为蓝牙芯片。
在该实施方式中,将无线连接装置320设计为蓝牙芯片,该无线连接装置320可以通过蓝牙协议与第一设备进行相互通信。该无线连接装置320可以具有蓝牙芯片的低功耗、低延时、低成本的特点,因而较为适宜的设置于车辆1和/或换电站2中,实现短距离、低成本的可靠通信。
图10示出了本申请实施例提供的一种电池管理设备300的无线连接方法1000的示意性流程框图。该无线连接方法1000可同样应用于上文图3中所示的电池管理设备300中的无线连接装置320,可选地,该无线连接装置320可以为蓝牙芯片。可选地,该电池管理设备300还可以包括连接于无线连接装置320的控制装置310,该控制装置310可以为控制芯片,或者,也可以称之为主芯片。
如图10所示,在本申请实施例中,该无线连接方法1000可以包括以下步骤。
S1010:接收连断请求数据后,拷贝具体数据至特定数组中。
S1020:调用连断命令处理函数拷贝至特定ECU表格以及NVM中,并将主状态机切换至处理连断命令。
S1030:主状态机判断具体的连断命令,调用协议栈接口完成与待接连接设备的连断。
S1040:蓝牙协议栈连断动作完成。
S1050:主从认证。
S1060:判断是否认证成功。
S1070:正常数据交互。
S1080:1ms调度主状态机。
S1090:检查连断状态与连断请求是否一致。
S1100:从ECU表格取出连断请求,重调用连断命令处理函数,共有5次重连机会。
具体地,上述步骤S1010至步骤S1100的执行主体可为上文图3中所示的电池管理设备300中的无线连接装置320。
具体地,对于步骤S1010,该连断请求数据可以为电池管理设备300中的主芯片通过通信总线(例如SPI总线)发送至蓝牙芯片的数据。蓝牙芯片接收到该连断请求数据后,将其拷贝至特定数组,以使得后续连断命令处理函数能够访问该数组中的连 断请求数据。
对于步骤S1020,蓝牙芯片中包括主程序和主状态机程序,该主程序可调用连断命令处理函数,该连断命令处理函数能够将上述特定数组中的连断请求数据拷贝至特定的电子控制单元(Electronic Control Unit,ECU)表格以及NVM中,并将主状态机切换至处理该连断请求数据。其中,ECU表格为蓝牙芯片的内存中的一种结构体,NVM为蓝牙芯片中的非易失性存储器。
对于步骤S1030,蓝牙芯片中还包括蓝牙协议栈,主状态机判断连断请求数据的内容,若为连接命令,则调用蓝牙协议栈的连接接口,将连断请求数据的内容输入至连接接口。若为断开命令,则调用蓝牙协议栈的断开接口,将连断请求数据的内容输入至断开接口。通过该主状态机对蓝牙协议栈的接口调用,可以实现蓝牙芯片与待连接设备(例如,上文的第一设备)的蓝牙连断。
对于步骤S1040,蓝牙协议栈的连接或断开动作完成后,蓝牙芯片与待连接设备之间实现蓝牙连接或断开。若蓝牙芯片与待连接设备之间实现蓝牙连接后,待连接设备与蓝牙芯片之间可相互发送数据包(或者,也可以称之为心跳包)。
若蓝牙芯片正常接收到数据包,则蓝牙芯片中ECU表格记录的用于表示蓝牙连断状态的标识位(例如,上文的第一状态标识)写为第一数值(例如1),表示蓝牙处于连接状态。
信号不稳定时,蓝牙芯片接收到的数据包在预设时间段(例如2s)后没有更新,蓝牙协议栈就会处理断开。此时,蓝牙芯片中ECU表格记录的用于表示蓝牙连接状态的标识位写为第二数值(例如0),表示蓝牙处于断开状态。
对于步骤S1050,主从认证可以理解为蓝牙芯片与待连接设备互相握手的过程,其中蓝牙芯片所在的电池管理设备可理解为主设备,待连接设备可理解为从设备。具体地,在主从认证过程中,蓝牙芯片与待连接设备相互连接后,互相打开数据的收发,这时只能进行长度有限的数据交互。待连接设备先发一帧特定报文与随机数A给到蓝牙芯片,蓝牙芯片将随机数A经过特定算法处理后得到目标数B,然后,蓝牙芯片再发一帧报文与目标数B给到待连接设备。待连接设备接收到目标数B后进行算法检查,没问题的情况下,允许数据正常交互。上述主从认证的过程需要在预定时间段(例如:500ms)以内完成,如果交互过程中,任意一个数据待连接设备没收到超时了,则待连接设备会主动断开蓝牙芯片。
对于步骤S1060和步骤S1070,判断是否认证成功,若是,则蓝牙芯片与待连接设备之间可认为是相互适配的,两者后续可以进行正常的数据交互。例如,若待连接设备为车辆中的SMBU,蓝牙芯片所在的电池管理设备为MBMU,SBMU可向MBMU中的蓝牙芯片发送:电池的电流、电压,温度、SOC、SOH等数据。若否,则蓝牙芯片与待连接设备之间则不是相互适配的,待连接设备主动断开与蓝牙芯片之间的蓝牙连接,不向蓝牙芯片发送数据。
另外,主从认证成功后,可以将待连接设备的相关信息写入蓝牙芯片的NVM中,后续蓝牙芯片与该待连接设备连接时,可以不再执行主从认证,节约系统资源。
对于步骤S1080,蓝牙芯片中的主程序可每间隔1ms调度主状态机,使得主状 态机执行S1090,即判断当前蓝牙连断是否正常。
具体地,对于步骤S1090,主状态机可检查ECU表格中用于表示蓝牙连断状态的标识位,判断当前蓝牙连断状态是否与连断请求一致。若是,则说明当前蓝牙连断状态正常。
若否,执行步骤S10100,蓝牙芯片的主程序可从ECU表格读取连断请求命令数据,重新执行上述步骤S1020至步骤S1040,以执行蓝牙重连。该重连次数最多可达到5次,以防止重连次数过多,浪费系统资源。
上文结合图4至图10说明了本申请提供的电池管理设备的无线连接方法实施例,下面,结合图11和图12,说明本申请提供的电池管理设备的无线连接装置实施例。应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图11示出了本申请实施例提供的一种电池管理设备的无线连接装置1100的示意性结构框图。
如图11所示,该无线连接装置1100包括:接收模块1110和处理模块1120。其中,接收模块1110用于接收连断请求数据。处理模块1120用于根据连断请求数据,与第一设备无线连接或断开;检测第一状态标识,第一状态标识用于指示与第一设备之间的连断状态;并根据第一状态标识以及连断请求数据,判断与第一设备之间的无线连接或断开是否正常。
在一些可能的实施方式中,处理模块1120用于:判断第一状态标识指示的连断状态与连断请求数据指示的连断请求是否一致;在第一状态标识指示的连断状态与连断请求数据指示的连断请求一致的情况下,确定与第一设备之间的无线连接为正常;在第一状态标识指示的连断状态与连断请求数据指示的连断请求不一致的情况下,确定与第一设备之间的无线连接为异常。
在一些可能的实施方式中,第一状态标识被配置为:采用第一数值指示与第一设备之间的连断状态为连接,采用第二数值指示与第一设备之间的连断状态为断开;连断请求数据被配置为:采用第一数值指示与第一设备之间的连断请求为连接,采用第二数值指示与第一设备之间的连断请求为断开。在该情况下,处理模块1120用于:判断第一状态标识与连断请求数据是否一致。
在一些可能的实施方式中,在确定与第一设备之间的无线连接或断开为异常的情况下,处理模块1120还用于:根据连断请求数据,再至少一次执行与第一设备无线连接或断开;至少一次检测第一状态标识,直至执行次数到达预设数量或第一状态标识指示的连断状态与连断请求数据指示的连断请求一致。
在一些可能的实施方式中,处理模块1120用于:每间隔预设时间段,根据第一状态标识以及连断请求数据,判断与第一设备之间的无线连接或断开是否正常。
在一些可能的实施方式中,无线连接装置1100还包括存储模块,例如图11中所示的结构体模块1140和/或非易失性存储(NVM)模块1150;处理模块1120还用于将连断请求数据写入该结构体模块1140和/或非易失性存储模块1150。
在一些可能的实施方式中,处理模块1120还用于:将第一状态标识写入结构体模块1140和/或非易失性存储模块1150。
在一些可能的实施方式中,处理模块1120还用于:判断是否在预设时间段内接收到第一设备发送的数据包;根据判断结果设置第一状态标识;其中,在预设时间段内接收到第一设备发送的数据包的情况下,第一状态标识用于指示与第一设备之间的相互连接,未在预设时间段内接收到第一设备发送的数据包的情况下,第一状态标识用于指示与第一设备之间的相互断开。
在一些可能的实施方式中,处理模块1120和接收模块1110还用于:执行与第一设备的主从认证。
在一些可能的实施方式中,无线连接装置1100还包括:发送模块1130;接收模块1110用于:接收第一设备发送的第一报文以及第一随机数,第一报文用于指示第一设备的主从认证;处理模块1120用于:对第一随机数执行算法处理,得到第一目标数;发送模块1130用于:向第一设备发送匹配于第一报文的第二报文以及第一目标数,以使得第一设备识别第二报文,并对第一目标数进行算法检查,确定主从认证的结果。
在一些可能的实施方式中,第一报文与第二报文为控制器局域网络CAN报文。
在一些可能的实施方式中,无线连接装置1100还包括非易失性存储模块1150;处理模块1120还用于:在与第一设备主从认证成功的情况下,将第一设备的认证信息存储于非易失性存储模块1150中。
在一些可能的实施方式中,电池管理设备还包括控制装置,控制装置连接于无线连接装置1100,其中,接收模块1110用于:接收控制装置发送的连断请求数据,其中,连断请求数据为控制装置对其接收的连断请求命令处理后的数据,连断请求命令为基于第一通信协议的通信数据,连断请求数据为基于第二通信协议的通信数据,第一通信协议与第二通信协议不同。
在一些可能的实施方式中,连断请求数据为蓝牙连断请求数据,无线连接装置1100为蓝牙芯片。
在一些可能的实施方式中,电池管理设备为车辆中的主电池管理单元MBMU,第一设备为车辆中的从电池管理单元(SBMU);或,电池管理设备为换电站中的充电电池管理单元(CBMU),第一设备为换电站中的从电池管理单元(SBMU);或,电池管理设备为换电站中的换电电池管理单元(TBMU),第一设备为车辆中的主电池管理单元(MBMU)。
图12示出了本申请实施例提供的一种电池管理设备的无线连接装置1200的示意性结构框图。
如图12所示,该无线连接装置1200包括:处理器1210和存储器1220,其中,存储器1220用于存储程序,处理器1210用于从存储器中调用并运行程序以执行上述任一实施例中的无线连接方法。
图13示出了本申请实施例提供的一种电池管理设备1300的示意性结构框图。
如图13所示,该电池管理设备1300包括:控制装置1310以及上述无线连接装置1100或无线连接装置1200或无线连接装置320。
其中,无线连接装置1100/1200/320连接于控制装置1310,该控制装置1310用于控制无线连接装置1100/1200/320与第一设备无线连接或断开,以实现电池管理设备 1300与第一设备之间的无线连接或断开。
可选地,本申请实施例中,控制装置1310可以为上文实施例中的控制装置310。
图14示出了本申请实施例提供的一种电子设备1400的示意性结构框图。
如图14所示,该电子设备1400包括:上述电池管理设备1300。
可选地,该电子设备1400可以为用电设备,例如该用电设备可以为上述图1中所示的车辆1。或者,该电子设备1400还可以换电设备,例如该换电设备可以为上述图2中所示的换电站2。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (34)

  1. 一种电池管理设备的无线连接方法,其特征在于,所述无线连接方法应用于所述电池管理设备中的无线连接装置,所述无线连接方法包括:
    接收连断请求数据;
    根据所述连断请求数据,与第一设备无线连接或断开;
    检测第一状态标识,所述第一状态标识用于指示与所述第一设备之间的连断状态;
    根据所述第一状态标识以及所述连断请求数据,判断与所述第一设备之间的无线连接或断开是否正常。
  2. 根据权利要求1所述的无线连接方法,其特征在于,所述根据所述第一状态标识以及所述连断请求数据,判断与所述第一设备之间的无线连接或断开是否正常,包括:
    判断所述第一状态标识指示的连断状态与所述连断请求数据指示的连断请求是否一致;
    在所述第一状态标识指示的连断状态与所述连断请求数据指示的连断请求一致的情况下,确定与所述第一设备之间的无线连接为正常;
    在所述第一状态标识指示的连断状态与所述连断请求数据指示的连断请求不一致的情况下,确定与所述第一设备之间的无线连接为异常。
  3. 根据权利要求2所述的无线连接方法,其特征在于,所述第一状态标识被配置为:采用第一数值指示与所述第一设备之间的连断状态为连接,采用第二数值指示与所述第一设备之间的连断状态为断开;
    所述连断请求数据被配置为:采用所述第一数值指示与所述第一设备之间的连断请求为连接,采用所述第二数值指示与所述第一设备之间的连断请求为断开;
    其中,所述判断所述第一状态标识指示的连断状态与所述连断请求数据指示的连断请求是否一致,包括:
    判断所述第一状态标识与所述连断请求数据是否一致。
  4. 根据权利要求2或3所述的无线连接方法,其特征在于,在确定与所述第一设备之间的无线连接或断开为异常的情况下,所述无线连接方法还包括:
    根据所述连断请求数据,再至少一次执行与所述第一设备无线连接或断开;
    至少一次检测所述第一状态标识,直至执行次数到达预设数量或所述第一状态标识指示的连断状态与所述连断请求数据指示的连断请求一致。
  5. 根据权利要求1至4中任一项所述的无线连接方法,其特征在于,所述根据所述第一状态标识以及所述连断请求数据,判断与所述第一设备之间的无线连接或断开是否正常,包括:
    每间隔预设时间段,根据所述第一状态标识以及所述连断请求数据,判断与所述第一设备之间的无线连接或断开是否正常。
  6. 根据权利要求1至5中任一项所述的无线连接方法,其特征在于,所述无线连接装置包括存储模块;
    其中,在所述接收连断请求数据之后,所述无线连接方法还包括:
    将所述连断请求数据写入所述存储模块。
  7. 根据权利要求6所述的无线连接方法,其特征在于,在所述检测第一状态标识之后,所述无线连接方法还包括:
    将所述第一状态标识写入所述存储模块。
  8. 根据权利要求1至7中任一项所述的无线连接方法,其特征在于,在所述检测第一状态标识之前,所述无线连接方法还包括:
    判断是否在预设时间段内接收到所述第一设备发送的数据包;
    根据判断结果设置所述第一状态标识;
    其中,在预设时间段内接收到所述第一设备发送的数据包的情况下,所述第一状态标识用于指示与所述第一设备之间的相互连接,未在预设时间段内接收到所述第一设备发送的数据包的情况下,所述第一状态标识用于指示与所述第一设备之间的相互断开。
  9. 根据权利要求1至8中任一项所述的无线连接方法,其特征在于,在所述根据所述连断请求数据,执行与所述第一设备无线连接之后,所述无线连接方法还包括:
    执行与所述第一设备的主从认证。
  10. 根据权利要求9所述的无线连接方法,其特征在于,所述执行与所述第一设备的主从认证,包括:
    接收所述第一设备发送的第一报文以及第一随机数,所述第一报文用于指示所述第一设备的主从认证;
    对所述第一随机数执行算法处理,得到第一目标数;
    向所述第一设备发送匹配于所述第一报文的第二报文以及所述第一目标数,以使得所述第一设备识别所述第二报文,并对所述第一目标数进行算法检查,确定主从认证的结果。
  11. 根据权利要求10所述的无线连接方法,其特征在于,所述第一报文与所述第二报文为控制器局域网络CAN报文。
  12. 根据权利要求9至11中任一项所述的无线连接方法,其特征在于,所述无线连接装置还包括非易失性存储模块;
    其中,在执行与所述第一设备的主从认证之后,所述无线连接方法还包括:
    在与所述第一设备主从认证成功的情况下,将所述第一设备的认证信息存储于所述非易失性存储模块中。
  13. 根据权利要求1至12中任一项所述的无线连接方法,其特征在于,所述电池管理设备还包括控制装置,所述控制装置连接于所述无线连接装置;
    其中,所述接收连断请求数据,包括:
    接收所述控制装置发送的所述连断请求数据,其中,所述连断请求数据为所述控制装置对其接收的连断请求命令处理后的数据,所述连断请求命令为基于第一通信协议的通信数据,所述连断请求数据为基于第二通信协议的通信数据,所述第一通信协议与所述第二通信协议不同。
  14. 根据权利要求1至13中任一项所述的无线连接方法,其特征在于,所述连断请求数据为蓝牙连断请求数据,所述无线连接装置为蓝牙芯片。
  15. 根据权利要求1至14中任一项所述的无线连接方法,其特征在于,所述电池管理设备为用电设备中的主电池管理单元MBMU,所述第一设备为所述用电设备中的从电池管理单元SBMU;或,
    所述电池管理设备为换电设备中的充电电池管理单元CBMU,所述第一设备为所述换电设备中的从电池管理单元SBMU;或,
    所述电池管理设备为换电设备中的换电电池管理单元TBMU,所述第一设备为用电设备中的主电池管理单元MBMU。
  16. 一种电池管理设备的无线连接装置,其特征在于,包括:
    接收模块,用于接收连断请求数据;
    处理模块,用于根据所述连断请求数据,与第一设备无线连接或断开;
    检测第一状态标识,所述第一状态标识用于指示与所述第一设备之间的连断状态;
    根据所述第一状态标识以及所述连断请求数据,判断与所述第一设备之间的无线连接或断开是否正常。
  17. 根据权利要求16所述的无线连接装置,其特征在于,所述处理模块用于:
    判断所述第一状态标识指示的连断状态与所述连断请求数据指示的连断请求是否一致;
    在所述第一状态标识指示的连断状态与所述连断请求数据指示的连断请求一致的情况下,确定与所述第一设备之间的无线连接为正常;
    在所述第一状态标识指示的连断状态与所述连断请求数据指示的连断请求不一致的情况下,确定与所述第一设备之间的无线连接为异常。
  18. 根据权利要求17所述的无线连接装置,其特征在于,所述第一状态标识被配置为:采用第一数值指示与所述第一设备之间的连断状态为连接,采用第二数值指示与所述第一设备之间的连断状态为断开;
    所述连断请求数据被配置为:采用所述第一数值指示与所述第一设备之间的连断请求为连接,采用所述第二数值指示与所述第一设备之间的连断请求为断开;
    所述处理模块用于:判断所述第一状态标识与所述连断请求数据是否一致。
  19. 根据权利要求17或18所述的无线连接装置,其特征在于,在确定与所述第一设备之间的无线连接或断开为异常的情况下,所述处理模块还用于:
    根据所述连断请求数据,再至少一次执行与所述第一设备无线连接或断开;
    至少一次检测所述第一状态标识,直至执行次数到达预设数量或所述第一状态标识指示的连断状态与所述连断请求数据指示的连断请求一致。
  20. 根据权利要求16至19中任一项所述的无线连接装置,其特征在于,所述处理模块用于:
    每间隔预设时间段,根据所述第一状态标识以及所述连断请求数据,判断与所述第一设备之间的无线连接或断开是否正常。
  21. 根据权利要求16至20中任一项所述的无线连接装置,其特征在于,所述无线 连接装置还包括存储模块;
    所述处理模块还用于将所述连断请求数据写入所述存储模块。
  22. 根据权利要求21所述的无线连接装置,其特征在于,所述处理模块还用于:
    将所述第一状态标识写入所述存储模块。
  23. 根据权利要求16至22中任一项所述的无线连接装置,其特征在于,所述处理模块还用于:
    判断是否在预设时间段内接收到所述第一设备发送的数据包;
    根据判断结果设置所述第一状态标识;
    其中,在预设时间段内接收到所述第一设备发送的数据包的情况下,所述第一状态标识用于指示与所述第一设备之间的相互连接,未在预设时间段内接收到所述第一设备发送的数据包的情况下,所述第一状态标识用于指示与所述第一设备之间的相互断开。
  24. 根据权利要求16至23中任一项所述的无线连接装置,其特征在于,所述处理模块和所述接收模块还用于:
    执行与所述第一设备的主从认证。
  25. 根据权利要求24所述的无线连接装置,其特征在于,所述无线连接装置还包括:发送模块;
    所述接收模块用于:接收所述第一设备发送的第一报文以及第一随机数,所述第一报文用于指示所述第一设备的主从认证;
    所述处理模块用于:对所述第一随机数执行算法处理,得到第一目标数;
    所述发送模块用于:向所述第一设备发送匹配于所述第一报文的第二报文以及所述第一目标数,以使得所述第一设备识别所述第二报文,并对所述第一目标数进行算法检查,确定主从认证的结果。
  26. 根据权利要求25所述的无线连接装置,其特征在于,所述第一报文与所述第二报文为控制器局域网络CAN报文。
  27. 根据权利要求24至26中任一项所述的无线连接装置,其特征在于,所述无线连接装置还包括非易失性存储模块;
    所述处理模块还用于:在与所述第一设备主从认证成功的情况下,将所述第一设备的认证信息存储于所述非易失性存储模块中。
  28. 根据权利要求16至27中任一项所述的无线连接装置,其特征在于,所述电池管理设备还包括控制装置,所述控制装置连接于所述无线连接装置;
    所述接收模块用于:接收所述控制装置发送的所述连断请求数据,其中,所述连断请求数据为所述控制装置对其接收的连断请求命令处理后的数据,所述连断请求命令为基于第一通信协议的通信数据,所述连断请求数据为基于第二通信协议的通信数据,所述第一通信协议与所述第二通信协议不同。
  29. 根据权利要求16至28中任一项所述的无线连接装置,其特征在于,所述连断请求数据为蓝牙连断请求数据,所述无线连接装置为蓝牙芯片。
  30. 根据权利要求16至29中任一项所述的无线连接装置,其特征在于,所述电池 管理设备为用电设备中的主电池管理单元MBMU,所述第一设备为所述用电设备中的从电池管理单元SBMU;或,
    所述电池管理设备为换电设备中的充电电池管理单元CBMU,所述第一设备为所述换电设备中的从电池管理单元SBMU;或,
    所述电池管理设备为换电设备中的换电电池管理单元TBMU,所述第一设备为用电设备中的主电池管理单元MBMU。
  31. 一种电池管理设备的无线连接装置,其特征在于,包括:处理器和存储器,所述存储器用于存储程序,所述处理器用于从存储器中调用并运行所述程序以执行权利要求1至15中任一项所述的无线连接方法。
  32. 一种电池管理设备,其特征在于,包括:控制装置以及,
    如权利要求16至31中任一项所述的无线连接装置;
    其中,所述无线连接装置连接于所述控制装置,所述控制装置用于控制所述无线连接装置与第一设备无线连接或断开,以实现所述电池管理设备与所述第一设备之间的无线连接或断开。
  33. 一种电子设备,其特征在于,包括:如权利要求32所述的电池管理设备。
  34. 根据权利要求33所述的电子设备,其特征在于,所述电子设备为用电设备或换电设备。
PCT/CN2022/090612 2022-04-29 2022-04-29 电池管理设备的无线连接方法、装置和电池管理设备 WO2023206503A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/090612 WO2023206503A1 (zh) 2022-04-29 2022-04-29 电池管理设备的无线连接方法、装置和电池管理设备
CN202280033038.1A CN117280566A (zh) 2022-04-29 2022-04-29 电池管理设备的无线连接方法、装置和电池管理设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/090612 WO2023206503A1 (zh) 2022-04-29 2022-04-29 电池管理设备的无线连接方法、装置和电池管理设备

Publications (1)

Publication Number Publication Date
WO2023206503A1 true WO2023206503A1 (zh) 2023-11-02

Family

ID=88516981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090612 WO2023206503A1 (zh) 2022-04-29 2022-04-29 电池管理设备的无线连接方法、装置和电池管理设备

Country Status (2)

Country Link
CN (1) CN117280566A (zh)
WO (1) WO2023206503A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180212476A1 (en) * 2017-01-26 2018-07-26 Denso Corporation Foreign object detection in a wireless power transfer system
CN108808765A (zh) * 2018-05-02 2018-11-13 青岛海信移动通信技术股份有限公司 一种充电提示方法和装置
CN111313500A (zh) * 2020-03-16 2020-06-19 Oppo广东移动通信有限公司 充电管理方法和装置、电子设备、计算机可读存储介质
CN112534673A (zh) * 2018-07-16 2021-03-19 三星电子株式会社 用于接收无线电力的电子装置以及其无线充电方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180212476A1 (en) * 2017-01-26 2018-07-26 Denso Corporation Foreign object detection in a wireless power transfer system
CN108808765A (zh) * 2018-05-02 2018-11-13 青岛海信移动通信技术股份有限公司 一种充电提示方法和装置
CN112534673A (zh) * 2018-07-16 2021-03-19 三星电子株式会社 用于接收无线电力的电子装置以及其无线充电方法
CN111313500A (zh) * 2020-03-16 2020-06-19 Oppo广东移动通信有限公司 充电管理方法和装置、电子设备、计算机可读存储介质

Also Published As

Publication number Publication date
CN117280566A (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
EP4383511A2 (en) Wireless battery management apparatus and battery pack including same
CN112511615B (zh) 一种实时监测整车网络休眠状况的网关控制方法
JP7241232B2 (ja) バッテリーを充電するための装置、システム、及び方法
KR20200038817A (ko) Bms 간 통신 시스템 및 방법
JPWO2017149638A1 (ja) 充放電装置
WO2023206503A1 (zh) 电池管理设备的无线连接方法、装置和电池管理设备
WO2023206495A1 (zh) 电池管理设备的无线连接方法、装置和电池管理设备
KR20200031931A (ko) Bms 인식 시스템 및 방법
WO2023206492A1 (zh) 电池管理设备的无线连接方法、装置和电池管理设备
WO2023206507A1 (zh) 电池管理设备的无线连接控制方法、装置和电池管理设备
WO2023206471A1 (zh) 电池管理设备的无线连接方法和电池管理设备
WO2020215583A1 (zh) 一种电池组监控系统及方法
KR101633834B1 (ko) 전원 안전 차단 기능을 가진 배터리 관리 시스템 및 그 제어 방법
US20220239127A1 (en) Method for pre-charging power conversion device and power conversion device
JP7468478B2 (ja) 制御システム、及び電力調整方法
JP7326491B2 (ja) 電力変換装置の給電制御方法及び電力変換装置
JP7135254B2 (ja) Bms認識システム及び方法
CN115706284A (zh) 一种电池系统低温加热的控制方法
WO2023206483A1 (zh) 电池管理方法、电池管理单元和用电设备
WO2023206481A9 (zh) 通信的方法和装置
WO2023206494A1 (zh) 电池管理设备、用电装置和电池
WO2023225975A1 (zh) 热失控检测的方法和装置
WO2023225974A1 (zh) 热失控检测的方法和装置
CN217903207U (zh) 电池管理设备、用电装置和电池
WO2024108401A1 (zh) 一种电池包并联方法、电池管理系统、电池包和用电设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280033038.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939350

Country of ref document: EP

Kind code of ref document: A1