WO2019091163A1 - 一种电池均衡装置、方法及无人机 - Google Patents

一种电池均衡装置、方法及无人机 Download PDF

Info

Publication number
WO2019091163A1
WO2019091163A1 PCT/CN2018/099218 CN2018099218W WO2019091163A1 WO 2019091163 A1 WO2019091163 A1 WO 2019091163A1 CN 2018099218 W CN2018099218 W CN 2018099218W WO 2019091163 A1 WO2019091163 A1 WO 2019091163A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
equalization
fuel gauge
threshold
microprocessor
Prior art date
Application number
PCT/CN2018/099218
Other languages
English (en)
French (fr)
Inventor
秦威
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2019091163A1 publication Critical patent/WO2019091163A1/zh
Priority to US15/930,961 priority Critical patent/US11605841B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of battery management technologies, and in particular, to a battery equalization device, method, and drone.
  • Active equalization is generally the process of charging the battery by the charger, and the charger is separately charged and balanced for each battery. Since active balancing requires each balanced cell to lead to a balanced line port, the structural space is bound to occupy an interface space that is not conducive to the miniaturization of the battery.
  • Passive equalization generally uses an external resistor to adjust a large equalizing current. The equalizing speed is fast and the effect is obvious. However, a large power resistor is needed to discharge the battery, which will inevitably occupy some circuit board space. The battery is difficult to use.
  • the technical problem to be solved by the present invention is to overcome the shortcomings of the battery equalization circuit in the prior art, which is disadvantageous to the miniaturization of the battery, thereby providing a battery equalization device, method and drone.
  • an embodiment of the present invention provides a battery equalization device, including: a fuel gauge for monitoring power information when the battery is stationary, a battery equalization circuit is disposed inside the fuel gauge; and a microprocessor, a microprocessor is connected to the communication port of the fuel gauge for acquiring the power information monitored by the fuel gauge, and calculating, according to the power information, a pressure difference between the batteries of the battery when the battery is stationary And determining whether the differential pressure is greater than a differential pressure threshold; when the differential pressure is greater than a differential pressure threshold, the microprocessor sends a trigger signal to the fuel gauge through the communication port to trigger equalization of the fuel gauge The circuit equalizes the battery.
  • the communication port of the fuel gauge is set to a high level, so that the equalization circuit of the fuel gauge equalizes the battery.
  • the microprocessor is further configured to determine whether the differential pressure is less than the differential pressure threshold during battery equalization; and when the differential pressure is less than the differential pressure threshold, the microprocessor Controlling the fuel gauge stops balancing the battery.
  • the microprocessor is further configured to determine, according to the battery power information, whether the remaining battery capacity is less than or equal to a first equalization threshold; when the remaining battery power is less than or equal to the first The microprocessor controls the fuel gauge to not equalize the battery when an equalization threshold is reached.
  • the microprocessor is further configured to determine, according to the battery power quantity information, whether the remaining power of the battery is less than or equal to a second equalization threshold during battery balancing; when the remaining battery When the amount of power is less than or equal to the second equalization threshold, the microprocessor controls the fuel gauge to stop equalizing the battery; wherein the second equalization threshold is less than or equal to the first equalization threshold.
  • the first equalization threshold is 80% of the remaining battery power
  • the second equalization threshold is 70% of the remaining battery power
  • the battery equalization circuit includes: a switching element, wherein an input end of the switching element is connected to a positive pole of the battery; an output end of the switching element is connected to a negative pole of the battery, A control terminal of the switching element is coupled to the microprocessor.
  • the battery equalization circuit further includes: a resistor and a capacitor, wherein the resistor is connected between a positive pole of the battery and an input end of the switching element; one end of the capacitor is connected to the The resistor is connected to the input end of the switching element and the other end is grounded.
  • an embodiment of the present invention further provides a battery equalization method, which is applied to the battery equalization device described above, the method includes: acquiring power information when the battery is stationary, and calculating the battery according to the power information. a pressure difference between the cells of the battery when the battery is stationary, and determining whether the pressure difference is greater than a differential pressure threshold; when the pressure difference is greater than the differential pressure threshold, the power is discharged through the communication port The trigger signal is sent to trigger the fuel gauge to equalize the battery.
  • the communication port of the fuel gauge is set to a high level to equalize the battery by the equalization circuit of the fuel gauge.
  • the battery equalization method further includes: determining whether the pressure difference is less than the differential pressure threshold during battery equalization; and controlling the pressure difference when the pressure difference is less than the differential pressure threshold The fuel gauge stops balancing the battery.
  • the battery balancing method before the step of acquiring the power information when the battery is stationary, the battery balancing method further includes: enabling the static equalization function of the fuel gauge.
  • the battery balancing method further includes: determining, according to the battery power information, whether the remaining battery capacity is less than or equal to a first equalization threshold; and when the remaining battery power is less than or equal to the first When the threshold is equalized, the fuel gauge is controlled to not equalize the battery.
  • the battery equalization method further includes: determining, according to the battery power quantity information, whether the remaining power of the battery is less than or equal to a second equalization threshold during the battery equalization process; when the remaining battery capacity is less than Or equal to the second equalization threshold, controlling the fuel gauge to stop equalizing the battery; wherein the second equalization threshold is less than or equal to the first equalization threshold.
  • the first equalization threshold is 80% of the remaining battery power
  • the second equalization threshold is 70% of the remaining battery power
  • an embodiment of the present invention further provides a non-transitory computer readable storage medium storing computer instructions, which are executed by a processor to implement the foregoing Battery equalization method.
  • an embodiment of the present invention further provides a drone, including a battery, wherein the battery is equalized by the battery equalization method described above.
  • the battery is equalized by using the static balance function integrated in the fuel gauge, which can save the space of the circuit board and facilitate the miniaturization of the battery; in addition, when the battery is stationary, the pressure difference between the respective batteries is greater than When the voltage difference threshold is used, a trigger signal is sent to the fuel gauge through the communication port, and the battery equalization circuit of the fuel gauge is triggered to equalize the battery, which is equivalent to even if the battery has no output (ie, standing still) In the state, the fuel gauge will also equalize the battery until the battery is equalized, thus preventing the fuel gauge from going to sleep before the balance is completed, making full use of the battery rest time in exchange for battery balance. Moreover, since it is controlled by a microprocessor, the degree of battery balance and the effect can be artificially set, which is more flexible and convenient to use.
  • the battery equalization device of the embodiment of the present invention can be used to ensure the balance of the battery without increasing the volume of the battery.
  • FIG. 1 is a schematic structural diagram of a specific example of a battery equalization apparatus according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a specific example of a connection relationship between a microprocessor and a fuel gauge according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a battery equalization circuit inside a fuel gauge according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a specific example of a battery equalization method according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing the hardware structure of a battery equalization terminal device.
  • connection or integral connection; may be mechanical connection or electrical connection; may be directly connected, may also be indirectly connected through an intermediate medium, or may be internal communication of two components, may be wireless connection, or may be wired connection.
  • connection or integral connection; may be mechanical connection or electrical connection; may be directly connected, may also be indirectly connected through an intermediate medium, or may be internal communication of two components, may be wireless connection, or may be wired connection.
  • Embodiments of the present invention provide a battery equalization device.
  • the meaning of battery equalization is to use power electronic technology to maintain the voltage deviation of a lithium ion single cell voltage or a battery pack (multi-core battery) within a desired range, thereby ensuring each single The body battery remains in the same state during normal use to avoid overcharging and overdischarging.
  • the battery equalization device mainly includes a fuel gauge 1 and a microprocessor 2 .
  • the above-mentioned fuel gauge 1 is used for monitoring the battery power information when the battery is stationary, and the fuel gauge 1 is internally provided with a battery equalization circuit, so that the fuel gauge 1 itself has the function of static equalization.
  • the communication port of the fuel gauge 1 is connected to the microprocessor 2.
  • the state when the battery is stationary means that the battery is not charged or discharged. It can be understood that the state of no charge and no discharge here is not absolute, but means that the battery does not charge and discharge the external device.
  • the fuel gauge and the microprocessor belong to the battery itself, and the discharge current is very small. Therefore, the state when the battery is stationary can be understood as a state in which the charging current or the discharging current of the battery is lower than a certain current threshold.
  • the battery contains a plurality of cells.
  • each cell of the battery is connected to the pin of the fuel gauge 1, and the communication port of the fuel gauge 1 is connected to the microprocessor 2. Since the fuel gauge 1 itself has a function option of static equalization, in the specific implementation, the static equalization function of the fuel gauge 1 is first enabled.
  • the microprocessor 2 obtains the electric quantity information monitored by the fuel gauge 1 through the communication port of the fuel gauge 1, calculates the pressure difference between the batteries of the battery when the battery is stationary according to the electric quantity information, and determines whether the differential pressure is greater than the differential pressure threshold (specific Is to calculate the voltage difference between the batteries of the battery, the pressure difference between any two cells is greater than the differential pressure threshold means that battery balancing is required); if the pressure difference is greater than the differential pressure threshold, the microprocessor 2 communicates The port sends a trigger signal to the fuel gauge 1, and raises the communication port of the fuel gauge 1 (ie, controls the communication port of the fuel gauge 1 to be high), and triggers the fuel gauge 1 to equalize the battery.
  • the differential pressure threshold specifically Is to calculate the voltage difference between the batteries of the battery, the pressure difference between any two cells is greater than the differential pressure threshold means that battery balancing is required
  • the microprocessor 2 controls GAUGE_SLEEP to be low level, and then the switching element Q6 (in this embodiment, the switching element is a MOS tube, but the invention is not limited thereto) Turning on, then connecting the communication SMBC and SMBD of the fuel gauge 1 to a high level of 3.3V. After the communication port of the fuel gauge 1 is pulled high, it starts to enter the static equalization mode. Therefore, the trigger signal here refers to a control signal that controls GAUGE_SLEEP to be low level, and is used to trigger the communication port of the fuel gauge 1 to be high level to equalize the battery.
  • a low level may be directly connected to the control terminal of the switching element, and the control signal of the fuel gauge 1 causes the switching element to be turned on when the control terminal of the switching element inputs a low level. It can be understood that after receiving the trigger signal, the fuel gauge 1 can be controlled in different manners, as long as the communication port of the fuel gauge 1 is set to a high level, so that the equalization circuit of the fuel gauge 1 is The battery is balanced.
  • the battery equalization device of the embodiment of the invention controls the fuel gauge 1 by the microprocessor 2, equalizes the voltage by means of passive equalization inside the chip, fully utilizes the rest time of the battery to exchange the voltage balance of the battery core, and at the same time, is the microprocessor 2
  • the control, the degree of equalization, and the effect of equalization can all be set, which is more flexible and convenient to use. In practical applications, especially for the situation where the space of the drone battery is relatively tight, it is an ideal equalization scheme, which not only realizes the balance of the battery voltage, but also avoids the space shortage caused by the miniaturization. problem.
  • the microprocessor 2 before performing battery equalization, the microprocessor 2 further determines, according to the battery power information, whether the remaining battery power is less than or equal to a first equalization threshold, when the remaining battery power reaches the first equalization threshold. Whether the pressure difference of the battery is greater than the differential pressure threshold, the microprocessor 2 controls the fuel gauge 1 not to perform equalization. Because the process of balancing when the battery is stationary is actually the process of power consumption of the battery with higher voltage of the battery. When the remaining battery capacity is less than or equal to the first equilibrium threshold, it is likely that there will be equilibrium. It is no longer possible to balance the fuel gauge.
  • the microprocessor 2 determines whether the differential pressure between the cells of the battery is less than the differential pressure threshold; when the differential pressure is less than the When the differential pressure threshold is reached, it indicates that the voltage deviation between the cells of the battery is kept within the expected range. At this time, the microprocessor 2 controls the fuel gauge 1 to stop equalizing the battery.
  • the microprocessor 2 has calculated the difference between the differential pressure and the differential pressure threshold at the beginning of controlling the fuel gauge 1 for battery equalization, and the microprocessor 2 according to the difference
  • the fuel gauge 1 can be automatically controlled to stop balancing the battery directly when the battery equalization is completed, without having to judge whether the differential pressure is less than the above differential pressure threshold during the battery equalization process.
  • the microprocessor 2 calculates the difference between the differential pressure and the differential pressure threshold at the beginning of the battery balance control by the fuel gauge 1 to be 0.5 volts, then when the battery with a higher voltage in the battery consumes 0.5 volts ( That is, the battery is equalized, and the microprocessor 2 automatically controls the fuel gauge 1 to stop balancing the battery.
  • the microprocessor 2 determines, according to the battery power information, whether the remaining battery power is less than or equal to a second equalization threshold, and when the remaining battery power is less than or equal to the second equalization threshold, The microprocessor 2 controls the fuel gauge 1 to stop equalization.
  • the second equalization threshold is greater than a minimum limit value at which the equalization circuit of the fuel gauge 1 can operate. When the remaining capacity of the battery is less than or equal to the second equalization threshold, the equalization circuit cannot continue to equalize the battery because the power is too low.
  • the first equalization threshold is used to limit a minimum value required for the remaining capacity of the battery to be reached before the battery is equalized
  • the second equalization threshold is mainly set according to a limit of a hardware circuit, that is, the first The second equalization threshold is used to limit the minimum value that the battery allows the remaining capacity of the battery to reach during the equalization process.
  • the second equalization threshold is smaller than the first equalization threshold. For example, if the second equalization threshold is set to 70% of the remaining battery power and the first equalization threshold is set to 60% of the remaining battery power, the fuel gauge 1 stops balancing when the remaining battery power reaches 70%. If the first equilibrium threshold has not been reached, there will be a situation in which it has not been balanced.
  • the second equalization threshold is set to 70% of the remaining battery power
  • the first equalization threshold should be higher than 70%, for example, 80%, thereby avoiding the above-mentioned situation in which the balance cannot be balanced.
  • the limit allowed by the general hardware circuit is about 60% of the remaining battery power, so in order to avoid the limit value of the hardware circuit, the second equalization threshold is generally set higher than 60%.
  • the second equalization threshold and the first equalization threshold cannot be set too low and should be higher than a predetermined percentage value.
  • opening the MOS requires a Vgs voltage of about 1.5V, and because the equalization circuit is connected in series with two 100R resistors, if the voltage of the battery core is not high enough, it is possible It is impossible to open MOS and thus cannot perform voltage equalization.
  • the microprocessor 2 always sends a trigger signal to the fuel gauge 1 before the equalization is completed.
  • the stop vector meter 1 can send the trigger signal. It can be understood that in other embodiments, the microprocessor 2 only needs the vector meter 1 to send a trigger signal, and the fuel gauge 1 starts to equalize the battery until the microcontroller 2 sends a stop signal to the fuel gauge 1 to control the power. Meter 1 stops balancing the battery.
  • the fuel gauge 1 is internally provided with a battery equalization circuit to implement the static equalization function, if the communication port is not pulled up, or the battery has no output, after a short period of time, the fuel gauge 1 will automatically Enters the sleep state, in which the balance is stopped. Therefore, in order to prevent the fuel gauge 1 from going to sleep before the equalization is completed, the microprocessor 2 is required to send a trigger signal to the fuel gauge 1 to control the fuel gauge 1 communication port to be high until the equalization is completed.
  • the battery equalization circuit inside the fuel gauge 1 of the embodiment of the present invention mainly realizes battery equalization by setting switching elements corresponding to the respective battery cells.
  • the input end of the switching element is connected to the positive pole of the battery; the output end of the switching element is connected to the negative pole of the battery, and the control end of the switching element is connected to the microprocessor 2.
  • the switching element may be a MOS transistor, and specifically an NMOS transistor, but the invention is not limited thereto. In other embodiments, any component having a switching function, such as a PMOS, may also be used. Tube, triode, etc.
  • the battery equalization circuit further includes: a resistor and a capacitor, wherein the resistor is connected between the anode of the battery and the input end of the switching element; one end of the capacitor is connected between the resistor and the input end of the switching element, and the other end is grounded.
  • the equalized current is small, and the time required is long (the actual test 4300 mAH cell balances the 50 mV differential pressure, which takes about 20 hours), so the battery When the balance is still set, the indicator light can be turned off and the output is not turned on, so that the user does not have the illusion of power consumption all the time.
  • a prompting device for example, a display screen for displaying or a microphone for sound prompting, etc.
  • the microprocessor 2 triggers the fuel gauge 1 to perform battery balancing, the prompting device provides a prompt to remind the user. After receiving the prompt, it indicates that the battery has a pressure difference to start the battery equalization operation, and at this time, it can be balanced by standing.
  • the battery equalization device of the embodiment of the invention can save the space of the circuit board by using the internal equalization function of the fuel gauge 1 and facilitate the miniaturization of the battery. Moreover, in practical applications, for example, in the case where the space of the circuit board such as the drone is tight, the battery equalization device of the embodiment of the present invention can be used to ensure the battery equalization without increasing the volume of the battery.
  • the microprocessor 2 sends a trigger signal to the fuel gauge 1 through the communication port, and triggers the battery equalization circuit of the fuel gauge 1 to equalize the battery.
  • the fuel gauge 1 will equalize the battery until the battery equalization is completed, thus preventing the fuel gauge 1 from going to sleep before the equilibrium is completed.
  • the battery rest time is used in exchange for battery equalization.
  • the microprocessor 2 since it is controlled by the microprocessor 2, the degree of battery balance and the effect can be artificially set, and it is more flexible and convenient to use.
  • the embodiment of the present invention provides a battery equalization method. As shown in FIG. 4, the battery equalization method mainly includes the following steps:
  • Step S41 Obtaining the electric quantity information when the battery is stationary, and calculating the pressure difference between the respective electric cells when the battery is stationary according to the electric quantity information;
  • each of the batteries of the battery is respectively connected to the pin of the fuel gauge, and the power information of the battery when the battery is stationary can be monitored in real time by a power meter, and the power information is sent to the microprocessor, and the microprocessor according to the power The information can be used to calculate the pressure difference between the cells of the battery when the battery is stationary.
  • the static equalization function of the fuel gauge is further enabled.
  • the fuel gauge itself has a battery static equalization function that needs to be enabled before applying this function.
  • Step S42 determining whether the pressure difference is greater than a pressure difference threshold
  • the microprocessor stores a default or manually set differential pressure threshold.
  • the voltage difference between the individual cells is calculated when the battery is stationary, the voltage between the cells of the battery is The difference is compared with the differential pressure threshold to determine whether the differential pressure is greater than the differential pressure threshold.
  • Step S43 When the pressure difference is greater than the differential pressure threshold, the microprocessor sends a trigger signal to the fuel gauge through the communication port of the fuel gauge, and raises the communication port of the fuel gauge (ie, controls the communication port of the fuel gauge to be high). Trigger the fuel gauge to equalize the battery.
  • step S42 it is determined whether the pressure difference is greater than the differential pressure threshold.
  • step S43 the microprocessor sends a trigger signal to the fuel gauge through the communication port of the fuel gauge to trigger the fuel gauge to perform the battery on the battery. balanced.
  • the microprocessor before performing battery equalization, the microprocessor further determines, according to the battery power information, whether the remaining battery power is less than or equal to a first equalization threshold, and when the remaining battery power reaches the first equalization threshold, The microprocessor controls the fuel gauge to not equalize whether the differential pressure across the battery is greater than the differential pressure threshold. Because the process of balancing when the battery is stationary is actually the process of power consumption of the battery with higher voltage of the battery. When the remaining battery capacity is less than or equal to the first equilibrium threshold, it is likely that there will be equilibrium. It is no longer possible to balance the fuel gauge.
  • the microprocessor determines whether the pressure difference between the cells of the battery is less than the pressure difference threshold; when the pressure difference is less than the differential pressure threshold , indicating that the voltage deviation between the cells of the battery is kept within the expected range. At this time, the microprocessor controls the fuel gauge to stop equalizing the battery.
  • the microprocessor 2 has calculated the difference between the differential pressure and the differential pressure threshold at the beginning of controlling the fuel gauge 1 for battery equalization, and the microprocessor 2 according to the difference
  • the fuel gauge 1 can be automatically controlled to stop balancing the battery directly when the battery equalization is completed, without having to judge whether the differential pressure is less than the above differential pressure threshold during the battery equalization process.
  • the microprocessor 2 calculates the difference between the differential pressure and the differential pressure threshold at the beginning of the battery balance control by the fuel gauge 1 to be 0.5 volts, then when the battery with a higher voltage in the battery consumes 0.5 volts ( That is, the battery is equalized, and the microprocessor 2 automatically controls the fuel gauge 1 to stop balancing the battery.
  • the microprocessor determines, according to the battery power information, whether the remaining battery power is less than or equal to a second equalization threshold, and when the remaining battery power is less than or equal to the second equalization threshold, The processor will control the fuel gauge 1 to stop equalization.
  • the second equalization threshold is greater than a minimum limit at which the equalization circuit of the fuel gauge can operate. When the remaining capacity of the battery is less than or equal to the second equalization threshold, the equalization circuit cannot continue to equalize the battery because the power is too low.
  • the first equalization threshold is used to limit a minimum value required for the remaining capacity of the battery to be reached before the battery is equalized
  • the second equalization threshold is mainly set according to a limit of a hardware circuit, that is, the first The second equalization threshold is used to limit the minimum value that the battery allows the remaining capacity of the battery to reach during the equalization process.
  • the second equalization threshold is smaller than the first equalization threshold. For example, if the second equalization threshold is set to 70% of the remaining battery power and the first equalization threshold is set to 60% of the remaining battery power, the fuel gauge will stop balancing when the remaining battery power reaches 70%. If the first equilibrium threshold is not reached, there will be a situation in which it cannot be balanced.
  • the second equalization threshold is set to 70% of the remaining battery power
  • the first equalization threshold should be higher than 70%, for example, 80%, thereby avoiding the above-mentioned situation in which the balance cannot be balanced.
  • the limit allowed by the general hardware circuit is about 60% of the remaining battery power, so in order to avoid the limit value of the hardware circuit, the second equalization threshold is generally set higher than 60%.
  • the battery equalization method described above can be applied to the battery equalization device as described in Embodiment 1.
  • the components of the battery equalization device and their functions are specifically described in Embodiment 1, where No longer.
  • the embodiment of the invention further provides an unmanned aerial vehicle, wherein the unmanned aerial vehicle is provided with a battery for providing electric energy, and the battery can be equalized by the battery equalization method described in the second embodiment.
  • the UAV is further provided with a battery equalization device as described in Embodiment 1, the battery equalization device mainly comprising: a fuel gauge 1 and a microprocessor 2, the fuel gauge 1 and the microprocessor The function of 2 has been described in detail in Embodiment 1, and will not be described herein.
  • the drone of the embodiment of the present invention can utilize the internal integrated equalization function of the fuel gauge 1 to balance the battery in a state where the battery is stationary, thereby saving space of the circuit board and facilitating miniaturization of the battery. Moreover, it is possible to ensure the battery equalization without increasing the volume of the battery.
  • the embodiment of the present invention further provides a non-transitory computer storage medium, where the computer storage medium stores computer executable instructions, and the computer executable instructions can perform the battery equalization method in any of the foregoing method embodiments.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), a random access memory (RAM), a flash memory, a hard disk (Hard). Disk Drive, abbreviated as: HDD) or Solid-State Drive (SSD), etc.; the storage medium may also include a combination of the above types of memories.
  • FIG. 5 is a schematic diagram of a hardware structure of a battery equalization terminal device according to an embodiment of the present invention. As shown in FIG. 5, the device includes one or more processors 510 and a memory 520. In FIG. 5, a processor 510 is taken as an example.
  • the processor 510 and the memory 520 may be connected by a bus or other means, and the bus connection is taken as an example in FIG.
  • the processor 510 can be a Central Processing Unit (CPU).
  • the processor 510 can also be another general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or Other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc., or a combination of the above various types of chips.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 520 is used as a non-transitory computer readable storage medium for storing non-transitory software programs, non-transitory computer executable programs, and modules, such as program instructions/modules corresponding to the battery equalization method in the embodiments of the present application.
  • the processor 510 executes various functional applications and data processing of the server by running non-transitory software programs, instructions, and modules stored in the memory 520, that is, implementing the battery equalization method described in the foregoing method embodiments.
  • the memory 520 may include a storage program area and an storage data area, wherein the storage program area may store an operating system, an application required for at least one function; the storage data area may store data created according to usage of the battery equalization device, and the like.
  • memory 520 can include high speed random access memory, and can also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid state storage device.
  • memory 520 can optionally include memory remotely located relative to processor 510 that can be connected to the battery equalization device via a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the one or more modules are stored in the memory 520, and when executed by the one or more processors 510, the method as shown in FIG. 4 is performed.
  • the above product can perform the method provided by the embodiment of the present invention, and has the corresponding functional modules and beneficial effects of the execution method.
  • the technical details that are not described in detail in this embodiment, refer to the related description in the embodiment shown in FIG. 1 to FIG. 4.

Abstract

本发明提供一种电池均衡装置、方法及无人机,该电池均衡装置包括:电量计,用于监测电池静置时的电量信息,电量计内部设有电池均衡电路;及微处理器,微处理器与电量计的通信端口连接,用于获取电量计监测到的电量信息,并根据电量信息计算电池静置时该电池各个电芯之间的压差,并判断压差是否高于压差阈值;当压差大于压差阈值时,微处理器通过通信端口向电量计发送触发信号,触发电量计的均衡电路对电池进行均衡。通过实施本发明,利用电量计内部集成的均衡功能,可以节省线路板的空间,便于实现电池小型化。

Description

一种电池均衡装置、方法及无人机
申请要求于2017年11月13日申请的、申请号为201711116462.X、申请名称为“一种电池均衡装置、方法及无人机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电池管理技术领域,具体涉及一种电池均衡装置、方法及无人机。
背景技术
目前随着无人机市场越来越小型化的趋势下,给无人机供电的锂电池也越来越小型化。然而,小型化必然会带来电池空间的紧张,设计电池的时候又不得不省掉一些不是很关键的功能来腾出空间,比如很占用空间的芯片外部被动均衡电路和主动均衡接口等。然而多串无人机电池又对电池的电压一致性要求很高,不均衡的电池存在电量不准、电量跳变的风险,进而给飞机飞行带来安全隐患。
目前针对电池均衡的做法大致可以分为两种,主动均衡和被动均衡:
主动均衡:主动均衡一般是充电器对电池充电的过程中,由充电器分别对每一节电池充电均衡。由于主动均衡需要每一节电芯都要引出一个均衡线端口,所以结构空间上势必会占用一个接口空间不利于电池的小型化 设计。
被动均衡:被动均衡一般利用外部电阻可以调整一个很大的均衡电流,均衡的速度快、效果明显,但是需要很大的功率电阻来对电池放电,势必会占用一些线路板空间,对于一些空间紧张的电池却很难使用该方案。
发明内容
因此,本发明要解决的技术问题在于克服现有技术中的电池均衡电路比较占用空间,不利于电池的小型化的缺陷,从而提供一种电池均衡装置、方法及无人机。
为了实现上述目的,本发明实施例提供一种电池均衡装置,包括:电量计,用于监测电池静置时的电量信息,所述电量计内部设有电池均衡电路;及微处理器,所述微处理器与所述电量计的通信端口连接,用于获取所述电量计监测到的电量信息,并根据所述电量信息计算所述电池静置时所述电池各个电芯之间的压差,并判断所述压差是否大于压差阈值;当所述压差大于压差阈值时,所述微处理器通过所述通信端口向所述电量计发送触发信号,触发所述电量计的均衡电路对所述电池进行均衡。
在一实施例中,上述的电量计在接收所述触发信号之后,所述电量计的通信端口被设置为高电平,以使所述电量计的均衡电路对所述电池进行均衡。
在一实施例中,上述的微处理器还用于在电池均衡的过程中判断所述压差是否小于所述压差阈值;当所述压差小于所述压差阈值时,所述微处理器控制所述电量计停止对所述电池进行均衡。
在一实施例中,上述的微处理器还用于根据所述电池的电量信息判断 所述电池的剩余电量是否小于或等于第一均衡阈值;当所述电池的剩余电量小于或等于所述第一均衡阈值时,所述微处理器控制所述电量计不对所述电池进行均衡。
在一实施例中,上述的所述微处理器还用于在电池均衡过程中根据所述电池的电量信息判断所述电池的剩余电量是否小于或等于第二均衡阈值;当所述电池的剩余电量小于或等于所述第二均衡阈值时,所述微处理器控制所述电量计停止对所述电池进行均衡;其中所述第二均衡阈值小于或等于所述第一均衡阈值。
在一实施例中,上述的第一均衡阈值为电池剩余电量的80%,所述第二均衡阈值为电池剩余电量的70%。
在一实施例中,上述的电池均衡电路包括:开关元件,其中,所述开关元件的输入端连接至所述电池的正极;所述开关元件的输出端连接至所述电池的负极,所述开关元件的控制端连接所述微处理器。
在一实施例中,上述的电池均衡电路还包括:电阻及电容,其中,所述电阻连接于所述电池的正极与所述开关元件的输入端之间;所述电容的一端连接于所述电阻与所述开关元件的输入端之间,另一端接地。
为了实现上述目的,本发明实施例还提供一种电池均衡方法,应用于上述的电池均衡装置中,所述方法包括:获取所述电池静置时的电量信息,根据所述电量信息计算所述电池静置时所述电池各个电芯之间的压差,并判断所述压差是否大于压差阈值;当所述压差大于所述压差阈值时,通过所述通信端口向所述电量计发送触发信号,触发所述电量计对所述电池进行均衡。
在一实施例中,在所述电量计接收所述触发信号之后,所述电量计的通信端口被设置为高电平,以使所述电量计的均衡电路对所述电池进行均 衡。
在一实施例中是,上述的电池均衡方法还包括:在电池均衡的过程中判断所述压差是否小于所述压差阈值;当所述压差小于所述压差阈值时,控制所述电量计停止对所述电池进行均衡。
在一实施例中,在获取所述电池静置时的电量信息的步骤之前,上述的电池均衡方法还包括:使能所述电量计的静置均衡功能。
在一实施例中,上述的电池均衡方法还包括:根据所述电池的电量信息判断所述电池的剩余电量是否小于或等于第一均衡阈值;当所述电池的剩余电量小于或等于所述第一均衡阈值时,控制所述电量计不对所述电池进行均衡。
在一实施例中,上述的电池均衡方法还包括:在电池均衡过程中根据所述电池的电量信息判断所述电池的剩余电量是否小于或等于第二均衡阈值;当所述电池的剩余电量小于或等于所述第二均衡阈值时,控制所述电量计停止对所述电池进行均衡;其中所述第二均衡阈值小于或等于所述第一均衡阈值。
在一实施例中,上述的第一均衡阈值为电池剩余电量的80%,所述第二均衡阈值为电池剩余电量的70%。
为了实现上述目的,本发明实施例还提供一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储计算机指令,所述计算机指令被处理器执行时实现如上所述的电池均衡方法。
为了实现上述目的,本发明实施例还提供一种无人机,包括电池,所述电池采用上述的电池均衡方法进行均衡。
本发明技术方案,具有如下优点:
通过实施本发明,利用电量计内部集成的静置均衡功能对电池进行均衡,可以节省线路板的空间,便于实现电池小型化;另外,当电池静置时其各个电芯之间的压差大于压差阈值时,通过所述通信端口向所述电量计发送一触发信号,触发所述电量计的电池均衡电路对所述电池进行均衡,这样相当于即使电池没有输出的情况下(即静置状态下),电量计也会对电池进行均衡,直至电池均衡完成,这样防止了电量计在还没有均衡完成之前就进入休眠,充分利用了电池静置时间换取电池的均衡。并且,由于是微处理器控制,电池均衡的程度、效果都可以人为设置,使用起来比较灵活、方便。
在实际应用中,可以例如是针对无人机等线路板空间紧张的情况下,采用本发明实施例的电池均衡装置,在既保证实现电池均衡的前提下,又不增加电池的体积。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例的电池均衡装置的一个具体示例的结构示意图;
图2为本发明实施例的微处理器与电量计连接关系的一个具体示例的结构示意图;
图3为本发明实施例的电量计内部的电池均衡电路的原理图;
图4为本发明实施例的电池均衡方法的一个具体示例的流程图;
图5为电池均衡终端设备的硬件结构示意图。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,还可以是两个元件内部的连通,可以是无线连接,也可以是有线连接。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例1
本发明实施例提供一种电池均衡装置,电池均衡的意义就是利用电力电子技术,使锂离子单体电池电压或电池组(多芯电池)电压偏差保持在预期的范围内,从而保证每个单体电池在正常使用时保持相同状态,以避 免过充、过放的发生。
如图1所示,该电池均衡装置主要包括:电量计1及微处理器2。
其中,上述的电量计1用于监测电池静置时的电量信息,电量计1内部设有电池均衡电路,以使得电量计1本身带有静置均衡的功能。电量计1的通信端口与微处理器2连接。电池静置时的状态是指电池无充电、无放电的状态。可以理解,这里的无充电、无放电的状态不是绝对的,而是指电池不对外部设备充电和放电,比如电量计和微处理器属于电池自身耗电,其放电电流非常小。因此,电池静置时的状态可以理解为电池的充电电流或放电电流低于某个电流阈值的状态。
在其中的一个实施例中,电池中包含多个电芯。实际应用中,电池的每一节电芯都分别与电量计1的管脚相连,电量计1的通信端口连接微处理器2。由于电量计1本身具有静置均衡的功能选项,因此,在具体实施时,首先使能电量计1的静置均衡功能。
微处理器2通过电量计1的通信端口获取电量计1监测到的电量信息,根据电量信息计算电池静置时电池各个电芯之间的压差,并判断压差是否大于压差阈值(具体是计算电池各个电芯相互之间的压差,任意两个电芯之间的压差大于压差阈值都表示需要进行电池均衡);如果压差大于该压差阈值,微处理器2通过通信端口向电量计1发送触发信号,拉高电量计1的通信端口(即控制电量计1的通信端口为高电平),触发电量计1对电池进行均衡。
在一个实施例中,如图2所示,微处理器2控制GAUGE_SLEEP为低 电平,然后开关元件Q6(在此实施例中,该开关元件为MOS管,但本发明并不以此为限)导通,继而使电量计1的通信SMBC和SMBD连接到3.3V的高电平。电量计1的通信端口被拉高后,开始进入静置均衡模式。因此,这里的触发信号是指控制GAUGE_SLEEP为低电平的控制信号,用于触发电量计1的通信端口为高电平,以对电池进行均衡。
在其他实施例中,还可以直接在开关元件的控制端连接一个低电平,通过电量计1的控制信号使得开关元件的控制端在输入低电平时开关元件导通。可以理解,电量计1在接收所述触发信号之后,可以通过不同的方式进行控制,只要保证电量计1的通信端口被设置为高电平即可,从而使电量计1的均衡电路对所述电池进行均衡。
本发明实施例的电池均衡装置,由微处理器2控制电量计1,采用芯片内部被动均衡的方式均衡电压,充分利用电池的静置时间换取电芯的电压均衡,同时由于是微处理器2控制,均衡的程度、均衡的效果都可以进行设置,使用起来比较灵活、方便。实际应用中,尤其针对无人机电池这种空间比较紧张的情况,是一个比较理想的均衡方案,不仅巧妙的实现了电池电压的均衡一致,同时又避免了因小型化带来的空间紧张的难题。
在一个实施例中,在进行电池均衡之前,该微处理器2还会根据电池的电量信息判断电池的剩余电量是否小于或等于第一均衡阈值,当电池的剩余电量达到该第一均衡阈值时,无论电池的压差是否大于压差阈值,微处理器2都会控制电量计1不进行均衡。因为电池静置的时候进行均衡的过程其实就是电池的电压较高的电芯进行耗电的过程,当电池的剩余电量 小于或等于第一均衡阈值的情况进行均衡,很可能会出现均衡还没有完成电量计就已经无法均衡了的情况。
在一个实施例中,在微处理器2控制电量计1进行电池均衡的过程中,微处理器2会判断电池的各个电芯间的压差是否小于上述的压差阈值;当压差小于该压差阈值时,表示电池各个电芯之间的电压偏差保持在预期的范围内,此时,微处理器2控制该电量计1停止对电池进行均衡。
可以理解,在其他实施例中,微处理器2在控制电量计1进行电池均衡的开始阶段就已经计算好压差与压差阈值之间的差值,微处理器2根据所述差值就可以直接在电池均衡完成时自动控制电量计1停止对电池进行均衡,而无需在电池均衡过程中一直判断压差是否小于上述压差阈值。比如,微处理器2在控制电量计1进行电池均衡的开始阶段计算出压差与压差阈值之间的差值为0.5伏,那么当电池中电压较高的电芯耗电0.5伏之后(即电池均衡完成),微处理器2并会自动控制电量计1停止对电池进行均衡。
进一步地,在进行电池均衡的过程中,该微处理器2根据电池的电量信息判断电池的剩余电量是否小于或等于第二均衡阈值,当电池的剩余电量小于或等于该第二均衡阈值时,微处理器2会控制电量计1停止均衡。其中该第二均衡阈值大于电量计1的均衡电路能够进行工作的最小极限值。当电池的剩余电量小于或等于该第二均衡阈值时,会因为电量太低而导致均衡电路无法继续对电池进行均衡。
在实际应用中,所述第一均衡阈值是用于限制电池在进行均衡之前要 求电池的剩余电量达到的最低值,所述第二均衡阈值主要是根据硬件电路的极限设置的,即所述第二均衡阈值是用于限制电池在进行均衡过程中允许电池的剩余电量达到的最低值。并且,所述第二均衡阈值要小于所述第一均衡阈值。例如,如果第二均衡阈值设置为电池剩余电量的70%,而第一均衡阈值设置为电池剩余电量的60%,当电池剩余电量到70%的时候电量计1就会停止均衡,而此时还没有达到第一均衡阈值,就会出现一直不能均衡的情况。因此,若第二均衡阈值设置为电池剩余电量的70%,则第一均衡阈值应高于70%,例如是80%,从而避免出现上述的一直不能均衡的情况。一般硬件电路允许的极限在电池剩余电量的60%左右,所以为了避免硬件电路的极限值,第二均衡阈值一般会设置的比60%高。
在其中的一个实施例中,第二均衡阈值和第一均衡阈值不能设置过低,应高于一预设百分比值。如图3所示,由于芯片内部均衡开关元件是使用NMOS,打开MOS需要一个1.5V左右的Vgs电压,又由于均衡回路串联两个100R的电阻,所以,如果电芯的电压不够高就有可能打不开MOS,进而不能进行电压均衡。
在本实施例中,微处理器2在均衡完成之前对电量计1一直在发送触发信号,当需要控制电量计1停止均衡时,停止向量计1发送触发信号即可。可以理解,在其他实施例中,微处理器2只需要向量计1发送一次触发信号,电量计1便开始对所述电池进行均衡,直至微控制器2向电量计1发送停止信号以控制电量计1停止对电池进行均衡。
在实际应用中,虽然电量计1内部设置有电池均衡电路来实现静置均 衡功能,但是如果通信端口没有拉高,或者电池没有输出的情况下,经过一小段时间之后,电量计1就会自动进入休眠状态,该状态下会停止均衡。因此,为了防止电量计1在还没有均衡完成之前就进入休眠,需要微处理器2向电量计1发送触发信号以控制电量计1通信端口为高电平直至均衡完成。
在其中的一个实施例中,如图3所示,本发明实施例的电量计1内部的电池均衡电路主要通过设置的对应于各节电池的开关元件实现电池均衡。开关元件的输入端连接至电池的正极;开关元件的输出端连接至电池的负极,开关元件的控制端连接微处理器2。在其中的一个实施例中,该开关元件可以是MOS管,并且具体是采用NMOS管,但本发明并不以此为限,在其他实施例中还可以采用任何具有开关功能的元件,如PMOS管,三极管等。
进一步地,该电池均衡电路还包括:电阻及电容,其中,电阻连接于电池的正极与开关元件的输入端之间;电容的一端连接于电阻与开关元件的输入端之间,另一端接地。
在其中的一个实施例中,由于使用的是电量计1芯片的内部均衡,均衡的电流较小,需要的时间较长(实际测试4300mAH电芯均衡50mV压差,需要20小时左右),所以电池在静置均衡的时候可以不打开指示灯、不开输出,从而不给用户造成一直耗电的假象。并且,优选地,可设置一提示装置(例如显示屏进行显示或扩音器进行声音提示等),当微处理器2触发电量计1进行电池均衡时,通过该提示装置进行提示,以提醒用户,在收 到提示后,表示电池有压差启动电池均衡操作,此时可以通过静置的方式均衡。
本发明实施例的电池均衡装置,利用电量计1内部集成的均衡功能,可以节省线路板的空间,便于实现电池小型化。并且,在实际应用中,可以例如是针对无人机等线路板空间紧张的情况下,采用本发明实施例的电池均衡装置,在既保证实现电池均衡的前提下,又不增加电池的体积。另外,当电池静置时其各个电芯之间的压差大于压差阈值时,微处理器2通过通信端口向电量计1发送触发信号,触发电量计1的电池均衡电路对电池进行均衡,这样相当于即使电池没有输出的情况下(即静置状态下),电量计1也会对电池进行均衡,直至电池均衡完成,这样防止了电量计1在还没有均衡完成之前就进入休眠,充分利用了电池静置时间换取电池的均衡。并且,由于是微处理器2控制,电池均衡的程度、效果都可以人为设置,使用起来比较灵活、方便。
实施例2
本发明施例提供一种电池均衡方法,如图4所示,该电池均衡方法主要包括以下步骤:
步骤S41:获取电池静置时的电量信息,根据电量信息计算电池静置时其各个电芯之间的压差;
具体地,电池的每一节电芯都分别与电量计的管脚连接,可以通过一电量计实时监测电池静置时的电量信息,并将电量信息发送给微处理器, 微处理器根据电量信息可以计算出电池静置时电池各个电芯之间的压差。
在一个实施例中,步骤S41之前,还包括使能该电量计的静置均衡功能。电量计本身具有电池静置均衡功能,在应用该功能之前需要使能该功能。
步骤S42:判断压差是否大于压差阈值;
在一个实施例中,微处理器存储有一个默认的或者人工设置的压差阈值,当计算出电池静置时其各个电芯之间的压差之后,会将电池各个电芯之间的压差与该压差阈值进行比较,判断压差是否大于压差阈值。
步骤S43:当压差大于该压差阈值时,微处理器通过电量计的通信端口向电量计发送触发信号,拉高电量计的通信端口(即控制电量计的通信端口为高电平),触发电量计对电池进行均衡。
若压差不大于该压差阈值,则不启动电池均衡,微处理器返回继续执行步骤S41,获取电池静置时的电量信息,计算电池静置时各电芯之间的压差,并执行步骤S42,判断压差是否大于该压差阈值,当压差大于该压差阈值时,则执行步骤S43,微处理器通过电量计的通信端口向电量计发送触发信号,触发电量计对电池进行均衡。
在一个实施例中,在进行电池均衡之前,该微处理器还会根据电池的电量信息判断电池的剩余电量是否小于或等于第一均衡阈值,当电池的剩余电量达到该第一均衡阈值时,无论电池的压差是否大于压差阈值,微处理器都会控制电量计不进行均衡。因为电池静置的时候进行均衡的过程其实就是电池的电压较高的电芯进行耗电的过程,当电池的剩余电量小于或等于第一均衡阈值的情况进行均衡,很可能会出现均衡还没有完成电量计 就已经无法均衡了的情况。
在一个实施例中,在微处理器控制电量计进行电池均衡的过程中,微处理器判断电池的各个电芯间的压差是否小于上述的压差阈值;当压差小于该压差阈值时,表示电池各个电芯之间的电压偏差保持在预期的范围内,此时,微处理器控制该电量计停止对电池进行均衡。
可以理解,在其他实施例中,微处理器2在控制电量计1进行电池均衡的开始阶段就已经计算好压差与压差阈值之间的差值,微处理器2根据所述差值就可以直接在电池均衡完成时自动控制电量计1停止对电池进行均衡,而无需在电池均衡过程中一直判断压差是否小于上述压差阈值。比如,微处理器2在控制电量计1进行电池均衡的开始阶段计算出压差与压差阈值之间的差值为0.5伏,那么当电池中电压较高的电芯耗电0.5伏之后(即电池均衡完成),微处理器2并会自动控制电量计1停止对电池进行均衡。
进一步地,在进行电池均衡的过程中,该微处理器根据电池的电量信息判断电池的剩余电量是否小于或等于第二均衡阈值,当电池的剩余电量小于或等于该第二均衡阈值时,微处理器会控制电量计1停止均衡。其中该第二均衡阈值大于电量计的均衡电路能够进行工作的最小极限值。当电池的剩余电量小于或等于该第二均衡阈值时,会因为电量太低而导致均衡电路无法继续对电池进行均衡。
在实际应用中,所述第一均衡阈值是用于限制电池在进行均衡之前要求电池的剩余电量达到的最低值,所述第二均衡阈值主要是根据硬件电路的极限设置的,即所述第二均衡阈值是用于限制电池在进行均衡过程中允 许电池的剩余电量达到的最低值。并且,所述第二均衡阈值要小于所述第一均衡阈值。例如,如果第二均衡阈值设置为电池剩余电量的70%,而第一均衡阈值设置为电池剩余电量的60%,当电池剩余电量到70%的时候电量计就会停止均衡,而此时还没有达到第一均衡阈值,就会出现一直不能均衡的情况。因此,若第二均衡阈值设置为电池剩余电量的70%,则第一均衡阈值应高于70%,例如是80%,从而避免出现上述的一直不能均衡的情况。一般硬件电路允许的极限在电池剩余电量的60%左右,所以为了避免硬件电路的极限值,第二均衡阈值一般会设置的比60%高。
在其中的一个实施例中,上述的电池均衡方法可应用于如实施例1所述的电池均衡装置中,该电池均衡装置的组成部分及其功能,在实施例1已有具体描述,在此不再赘述。
实施例3
本发明实施例还提供一种无人机,该无人机中设置有提供电能的电池,该电池可以采用上述实施例2中所述的电池均衡方法进行均衡。
在其中的一个实施例中,该无人机中还设置有如实施例1所述的电池均衡装置,该电池均衡装置主要包括:电量计1及微处理器2,该电量计1及微处理器2的功能在实施例1中已做详细描述,在此不再赘述。
本发明实施例的无人机,可利用电量计1内部集成的均衡功能,在电池静置的状态下对电池进行均衡,可以节省线路板的空间,便于实现电池小型化。并且,可以在既保证实现电池均衡的前提下,又不增加电池的体积。
实施例4
本发明实施例还提供一种非暂态计算机存储介质,所述计算机存储介质存储有计算机可执行指令,该计算机可执行指令可执行上述任意方法实施例中的电池均衡方法。其中,所述存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)、随机存储记忆体(Random Access Memory,RAM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,缩写:HDD)或固态硬盘(Solid-State Drive,SSD)等;所述存储介质还可以包括上述种类的存储器的组合。
实施例5
本发明实施例还提供一种电池均衡终端设备,图5是本发明实施例提供的电池均衡终端设备的硬件结构示意图,如图5所示,该设备包括一个或多个处理器510以及存储器520,图5中以一个处理器510为例。
处理器510、存储器520可以通过总线或者其他方式连接,图5中以通过总线连接为例。
处理器510可以为中央处理器(Central Processing Unit,CPU)。处理器510还可以为其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等芯片,或者上述各 类芯片的组合。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器520作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序、非暂态计算机可执行程序以及模块,如本申请实施例中的电池均衡方法对应的程序指令/模块。处理器510通过运行存储在存储器520中的非暂态软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现上述方法实施例所述的电池均衡方法。
存储器520可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据电池均衡装置的使用所创建的数据等。此外,存储器520可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施例中,存储器520可选包括相对于处理器510远程设置的存储器,这些远程存储器可以通过网络连接至电池均衡装置。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述一个或者多个模块存储在所述存储器520中,当被所述一个或者多个处理器510执行时,执行如图4所示的方法。
上述产品可执行本发明实施例所提供的方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,具体可参见如图1-图4所示的实施例中的相关描述。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (17)

  1. 一种电池均衡装置,其特征在于,包括:
    电量计,用于监测电池静置时的电量信息,所述电量计内部设有电池均衡电路;及
    微处理器,所述微处理器与所述电量计的通信端口连接,用于获取所述电量计监测到的电量信息,并根据所述电量信息计算所述电池静置时所述电池各个电芯之间的压差,并判断所述压差是否大于压差阈值;
    当所述压差大于压差阈值时,所述微处理器通过所述通信端口向所述电量计发送触发信号,触发所述电量计的均衡电路对所述电池进行均衡。
  2. 根据权利要求1所述的电池均衡装置,其特征在于,所述电量计在接收所述触发信号之后,所述电量计的通信端口被设置为高电平,以使所述电量计的均衡电路对所述电池进行均衡。
  3. 根据权利要求1或2所述的电池均衡装置,其特征在于,所述微处理器还用于在电池均衡的过程中判断所述压差是否小于所述压差阈值;
    当所述压差小于所述压差阈值时,所述微处理器控制所述电量计停止对所述电池进行均衡。
  4. 根据权利要求1~3任一项所述的电池均衡装置,其特征在于,所述微处理器还用于根据所述电池的电量信息判断所述电池的剩余电量是否小于或等于第一均衡阈值;
    当所述电池的剩余电量小于或等于所述第一均衡阈值时,所述微处理器控制所述电量计不对所述电池进行均衡。
  5. 根据权利要求4所述的电池均衡装置,其特征在于,所述微处理器还用于在电池均衡过程中根据所述电池的电量信息判断所述电池的剩余电量是否小于或等于第二均衡阈值;
    当所述电池的剩余电量小于或等于所述第二均衡阈值时,所述微处理器控制所述电量计停止对所述电池进行均衡;
    其中所述第二均衡阈值小于或等于所述第一均衡阈值。
  6. 根据权利要求5所述的电池均衡装置,其特征在于,所述第一均衡阈值为电池剩余电量的80%,所述第二均衡阈值为电池剩余电量的70%。
  7. 根据权利要求1所述的电池均衡装置,其特征在于,所述电池均衡电路包括:开关元件,其中,
    所述开关元件的输入端连接至所述电池的正极;所述开关元件的输出端连接至所述电池的负极,所述开关元件的控制端连接所述微处理器。
  8. 根据权利要求7所述的电池均衡装置,其特征在于,所述电池均衡电路还包括:电阻及电容,其中,
    所述电阻连接于所述电池的正极与所述开关元件的输入端之间;
    所述电容的一端连接于所述电阻与所述开关元件的输入端之间,另一端接地。
  9. 一种电池均衡方法,其特征在于,应用于如权利要求1-8中任一项所述的电池均衡装置中,所述方法包括:
    获取所述电池静置时的电量信息,根据所述电量信息计算所述电池静置时所述电池各个电芯之间的压差,并判断所述压差是否大于压差阈值;
    当所述压差大于所述压差阈值时,通过所述通信端口向所述电量计发送触发信号,触发所述电量计对所述电池进行均衡。
  10. 根据权利要求9所述的电池均衡方法,其特征在于,在所述电量计接收所述触发信号之后,所述电量计的通信端口被设置为高电平,以使所述电量计的均衡电路对所述电池进行均衡。
  11. 根据权利要求9或10所述的电池均衡方法,其特征在于,还包括:
    在电池均衡的过程中判断所述压差是否小于所述压差阈值;
    当所述压差小于所述压差阈值时,控制所述电量计停止对所述电池进行均衡。
  12. 根据权利要求9-11任一项所述的电池均衡方法,其特征在于,在获取所述电池静置时的电量信息的步骤之前,还包括:
    使能所述电量计的静置均衡功能。
  13. 根据权利要求9-12任一项所述的电池均衡方法,其特征在于,还包括:
    根据所述电池的电量信息判断所述电池的剩余电量是否小于或等于第一均衡阈值;
    当所述电池的剩余电量小于或等于所述第一均衡阈值时,控制所述电量计不对所述电池进行均衡。
  14. 根据权利要求13所述的电池均衡方法,其特征在于,还包括:
    在电池均衡过程中根据所述电池的电量信息判断所述电池的剩余电量是否小于或等于第二均衡阈值;
    当所述电池的剩余电量小于或等于所述第二均衡阈值时,控制所述电量计停止对所述电池进行均衡;
    其中所述第二均衡阈值小于或等于所述第一均衡阈值。
  15. 根据权利要求14所述的电池均衡方法,其特征在于,所述第一均衡阈值为电池剩余电量的80%,所述第二均衡阈值为电池剩余电量的70%。
  16. 一种非暂态计算机可读存储介质,其特征在于,所述非暂态计算机可读存储介质存储计算机指令,所述计算机指令被处理器执行时实现如权利要求9~15任一项所述的电池均衡方法。
  17. 一种无人机,包括电池,其特征在于,所述电池采用权利要求9~15任一项所述的电池均衡方法进行均衡。
PCT/CN2018/099218 2017-11-13 2018-08-07 一种电池均衡装置、方法及无人机 WO2019091163A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/930,961 US11605841B2 (en) 2017-11-13 2020-05-13 Battery equalizing apparatus and method, and unmanned aerial vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711116462.XA CN107994278B (zh) 2017-11-13 2017-11-13 一种电池均衡装置、方法及无人机
CN201711116462.X 2017-11-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/930,961 Continuation US11605841B2 (en) 2017-11-13 2020-05-13 Battery equalizing apparatus and method, and unmanned aerial vehicle

Publications (1)

Publication Number Publication Date
WO2019091163A1 true WO2019091163A1 (zh) 2019-05-16

Family

ID=62030882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099218 WO2019091163A1 (zh) 2017-11-13 2018-08-07 一种电池均衡装置、方法及无人机

Country Status (3)

Country Link
US (1) US11605841B2 (zh)
CN (1) CN107994278B (zh)
WO (1) WO2019091163A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107994278B (zh) * 2017-11-13 2024-04-09 深圳市道通智能航空技术股份有限公司 一种电池均衡装置、方法及无人机
CN110138046B (zh) * 2019-06-05 2022-01-14 深圳市道通智能航空技术股份有限公司 电池管理系统、电池管理方法、电源模块及无人机
CN110568804A (zh) * 2019-10-11 2019-12-13 深圳市道通智能航空技术有限公司 一种微处理器管脚扩展电路、电池均衡控制电路和无人机
CN115882537A (zh) * 2021-09-27 2023-03-31 Oppo广东移动通信有限公司 电量检测电路、终端、电量确定方法和可读存储介质
CN116073492B (zh) * 2023-04-04 2023-06-16 江苏纳通能源技术有限公司 一种电芯间被动均衡控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101692508A (zh) * 2009-09-25 2010-04-07 北京北方专用车新技术发展有限公司 锂离子电池组静置状态下的主动均衡方法
CN102412601A (zh) * 2010-09-25 2012-04-11 江苏海四达电源股份有限公司 一种小容量高功率锂电池组的保护控制方法
CN202840545U (zh) * 2012-04-19 2013-03-27 上海方忆新能源科技有限公司 一种全天候实时主动能量均衡系统
CN105449295A (zh) * 2015-11-17 2016-03-30 北京新能源汽车股份有限公司 动力电池均衡控制方法、装置和电路
CN107994278A (zh) * 2017-11-13 2018-05-04 深圳市道通智能航空技术有限公司 一种电池均衡装置、方法及无人机
CN207490058U (zh) * 2017-11-13 2018-06-12 深圳市道通智能航空技术有限公司 一种电池均衡装置及无人机

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060103350A1 (en) * 2004-11-12 2006-05-18 Akku Power Electronic Co., Ltd. [an equalizing-charge charger]
KR101107999B1 (ko) * 2007-10-16 2012-01-25 한국과학기술원 전압 센서와 전하 균일 장치가 결합된 배터리 운용 시스템
JP5486780B2 (ja) * 2008-07-01 2014-05-07 株式会社日立製作所 電池システム
JP2011019329A (ja) * 2009-07-08 2011-01-27 Toshiba Corp 二次電池装置及び車両
JP5567956B2 (ja) * 2010-09-16 2014-08-06 矢崎総業株式会社 複数組電池のセル電圧均等化装置
CN102074991B (zh) * 2011-01-24 2013-01-09 启明信息技术股份有限公司 电动汽车的动力电池全均衡控制方法及装置
US8922165B2 (en) * 2012-05-14 2014-12-30 Freescale Semiconductor, Inc. Cell balance configuration for pin count reduction
US9302595B2 (en) * 2013-01-16 2016-04-05 Ford Global Technologies, Llc Autonomous charge balancing circuit and method for battery pack
CN104393631B (zh) * 2014-10-20 2017-07-07 东莞钜威动力技术有限公司 电量的均衡系统及其均衡的方法
CN104505550B (zh) * 2014-12-25 2017-01-18 宁德时代新能源科技股份有限公司 磷酸铁锂电池组的被动均衡方法及系统
US11111033B1 (en) * 2017-05-12 2021-09-07 Phirst Technologies, Llc Unmanned aerial vehicle recharging system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101692508A (zh) * 2009-09-25 2010-04-07 北京北方专用车新技术发展有限公司 锂离子电池组静置状态下的主动均衡方法
CN102412601A (zh) * 2010-09-25 2012-04-11 江苏海四达电源股份有限公司 一种小容量高功率锂电池组的保护控制方法
CN202840545U (zh) * 2012-04-19 2013-03-27 上海方忆新能源科技有限公司 一种全天候实时主动能量均衡系统
CN105449295A (zh) * 2015-11-17 2016-03-30 北京新能源汽车股份有限公司 动力电池均衡控制方法、装置和电路
CN107994278A (zh) * 2017-11-13 2018-05-04 深圳市道通智能航空技术有限公司 一种电池均衡装置、方法及无人机
CN207490058U (zh) * 2017-11-13 2018-06-12 深圳市道通智能航空技术有限公司 一种电池均衡装置及无人机

Also Published As

Publication number Publication date
CN107994278B (zh) 2024-04-09
US11605841B2 (en) 2023-03-14
CN107994278A (zh) 2018-05-04
US20200343738A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
WO2019091163A1 (zh) 一种电池均衡装置、方法及无人机
WO2020244588A1 (zh) 电池管理系统、电池管理方法、电源模块及无人机
KR102165937B1 (ko) 배터리 관리 방법 및 장치
US10742044B2 (en) Equalization control method, apparatus, and circuit for power battery
US11063306B2 (en) Lithium-ion battery cut-off voltage adjustment
WO2014101807A1 (zh) 一种显示电池电量的方法和终端
CN107436418B (zh) 校准电池电量衰减的方法、终端及装置
KR101770933B1 (ko) 휴대용 전자 디바이스 내의 배터리 모니터링
WO2022111555A1 (zh) 用于换电电池的容量均衡方法、装置、设备及存储介质
US10756533B2 (en) Battery pack charge control device and method
CN110506215A (zh) 一种确定电池内短路的方法及装置
JP2001309568A (ja) 充電システム、充電制御装置、充電制御方法及びコンピュータ
US10224575B2 (en) Method of controlling different kinds of battery cells and electronic device for same
US20190324086A1 (en) Battery Leakage Current Check Method, Apparatus, And Circuit
WO2019210678A1 (zh) 电池功耗控制方法、装置及无人飞行器
CN109980732A (zh) 锂电池充放电控制方法及供电系统
WO2020007328A1 (zh) 无人飞行器电池安全处理方法及其装置
JP2017515453A (ja) 適応的なステップ及び充電電流によるバッテリ充電
CN109450013A (zh) 一种基站电池的管理方法和装置
WO2020015502A1 (zh) 跟踪电池过放电的方法和装置、芯片、电池及飞行器
CN107436410A (zh) 一种电量控制方法、装置、设备和存储介质
CN207490058U (zh) 一种电池均衡装置及无人机
WO2017215266A1 (zh) 终端的充电方法和装置
WO2024016104A1 (zh) 电池均衡检测方法、装置、电子设备及存储介质
US10139451B2 (en) Conditioning cycle for determining battery capacity in an information handling system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18876470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18876470

Country of ref document: EP

Kind code of ref document: A1