WO2022193899A1 - 动力电池的均衡监控控制系统、方法、服务器及存储介质 - Google Patents

动力电池的均衡监控控制系统、方法、服务器及存储介质 Download PDF

Info

Publication number
WO2022193899A1
WO2022193899A1 PCT/CN2022/076722 CN2022076722W WO2022193899A1 WO 2022193899 A1 WO2022193899 A1 WO 2022193899A1 CN 2022076722 W CN2022076722 W CN 2022076722W WO 2022193899 A1 WO2022193899 A1 WO 2022193899A1
Authority
WO
WIPO (PCT)
Prior art keywords
equalization
single cell
voltage
balance
monitoring
Prior art date
Application number
PCT/CN2022/076722
Other languages
English (en)
French (fr)
Inventor
姜辉
刘轶鑫
荣常如
杨亚飞
田崇文
刘鹏飞
孟胜考
王永超
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Priority to EP22770254.5A priority Critical patent/EP4287449A1/en
Publication of WO2022193899A1 publication Critical patent/WO2022193899A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0084Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to control modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]

Definitions

  • the present application relates to the technical field of electric vehicles, for example, to a power battery balance monitoring and control system, method, server and storage medium.
  • the battery pack of an electric vehicle is composed of multiple single cells in series. Due to factors such as production and aging, the problem of inconsistent performance of the single cells exists.
  • the performance of the battery pack mainly depends on the single cells with poor performance in the same battery module, so that the performance of other single cells in the battery pack cannot be fully utilized, which in turn affects the capacity utilization of the battery pack.
  • the balance control technology of the battery management system is an effective method to improve the inconsistency of the performance of multiple single cells in the battery pack, but at the same time, there are problems of unsatisfactory or excessive balance.
  • the way to control the balance of the power battery is realized by balancing the hardware loop, and the balancing effect of the balancing hardware loop is not ideal.
  • the present application provides a balance monitoring and control system, method, server and storage medium for a power battery, which can effectively solve the problem of poor consistency of battery capacity caused by circuit imbalance in the power battery and the failure of the balance circuit in the controller in the power battery, Equalization function failure caused by sampling problems, software problems, etc.
  • an embodiment of the present application provides a balance monitoring and control system for a power battery, including: an input module, a balance monitoring and control module, and an execution module, and the balance monitoring and control module is respectively connected to the input module and the execution module;
  • the input module is configured to transmit the voltage at the sampling point of the balance loop, the temperature of the battery module, the current of the power battery and the voltage of the single cell into the balance monitoring control module;
  • the balance monitoring and control module includes a battery pack balance pre-judgment unit, a single cell capacity difference balance control unit, a single cell voltage difference redundancy control unit, a balance loop diagnosis monitoring unit, and a balance watchdog monitoring unit;
  • the battery pack balance pre-judgment unit is configured to pre-judgment whether the battery pack is balanced according to the voltage of the single cell and the voltage of the battery module, wherein the voltage of the battery module is obtained according to the voltage of the single cell;
  • the single cell capacity difference balance control unit is set to obtain the single cell capacity and the minimum single cell capacity according to the temperature of the battery module, the current of the power battery and the single cell voltage. The difference between the cell capacity and the smallest single cell capacity determines whether the equalization switch corresponding to the single cell is turned on. If it is turned on, a first equalization control command is generated, and the first equalization control command is sent to the execution module ;
  • the single cell voltage difference redundancy control unit is configured to monitor the voltage of the single cell in real time after the equalization switch is turned on, and determine whether to close the equalization switch according to the monitoring result, and if it is closed, generate a second equalization control command, and sending the second equalization control instruction to the execution module;
  • the equalization circuit diagnosis and monitoring unit is configured to determine whether to close the equalization switch according to the voltage at the sampling point of the equalization circuit after the equalization switch is turned on, and if it is closed, generate a third equalization control instruction, and send the third equalization control instruction to the the execution module;
  • the equalization watchdog monitoring unit is set to monitor the program operation of the system, and determine whether to close the equalization switch according to the monitoring result, and if it is closed, generate a fourth equalization control instruction, and send the fourth equalization control instruction to the execution module;
  • the execution module is configured to control the equalization switch according to the first equalization control instruction, the second equalization control instruction, the third equalization control instruction or the fourth equalization control instruction.
  • the embodiment of the present application also provides a balance monitoring and control method for a power battery.
  • the method is executed by a monitoring mechanism of a three-layer software architecture in a balance monitoring control module, including:
  • the temperature of the battery module According to the temperature of the battery module, the current of the power battery and the voltage of the single cell, the capacity of the single cell and the minimum single cell capacity are obtained, and the difference between the capacity of the single cell and the minimum single cell capacity is obtained. Determine whether the equalization switch corresponding to the single cell is turned on, and if it is turned on, generate a first equalization control instruction, and send the first equalization control instruction to the execution module;
  • the equalization switch After the equalization switch is turned on, the voltage of the single cell is monitored in real time, and whether to close the equalization switch is determined according to the monitoring result, and if it is closed, a second equalization control instruction is generated, and the second equalization control instruction is sent to the execution module;
  • the equalization switch After the equalization switch is turned on, determine whether to close the equalization switch according to the voltage at the sampling point of the equalization loop, and if it is closed, generate a third equalization control instruction, and send the third equalization control instruction to the execution module;
  • an embodiment of the present application further provides a server, including:
  • processors one or more processors
  • storage means arranged to store one or more programs
  • the one or more programs are executed by the one or more processors, so that the one or more processors implement the balance monitoring and control method for a power battery described in any embodiment of the present application.
  • an embodiment of the present application further provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, realizes the balance monitoring and control of the power battery provided by any embodiment of the present application method.
  • FIG. 1 is a schematic structural diagram of a balance monitoring and control system for a power battery provided in Embodiment 1 of the application;
  • FIG. 2 is a schematic structural diagram of a balance monitoring and control system for a power battery according to Embodiment 2 of the present application;
  • FIG. 3 is a schematic flowchart of a method for monitoring and controlling the balance of a power battery according to Embodiment 3 of the present application;
  • FIG. 4 is a schematic diagram of a software layer of a balance monitoring and control method for a power battery provided in Embodiment 4 of the present application;
  • FIG. 5 is a flowchart of battery pack balance prediction provided in Embodiment 4 of the present application.
  • FIG. 6 is a flowchart of the balance control of the capacitance difference of a single cell according to Embodiment 4 of the present application.
  • FIG. 7 is a flowchart of the balance control of a single cell according to Embodiment 4 of the present application.
  • FIG. 8 is a schematic structural diagram of a server according to Embodiment 5 of the present application.
  • the term “including” and variations thereof are open-ended inclusions, ie, "including but not limited to”.
  • the term “based on” is “based at least in part on.”
  • the term “one embodiment” means “at least one embodiment”; the term “another embodiment” means “at least one additional embodiment”; the term “some embodiments” means “at least some embodiments”. Relevant definitions of other terms will be given in the description below.
  • the battery pack of an electric vehicle is composed of multiple single cells in series. Due to factors such as production and aging, the performance of the single cells will be inconsistent. However, the performance of the battery pack mainly depends on the poor performance of the same battery module. Therefore, the performance of other single cells in the battery pack cannot be fully exerted, which in turn affects the capacity utilization rate of the battery pack.
  • This application protects the single cell in the power battery from the loss of control of the balancing circuit caused by the balancing circuit, software problems and hardware problems, and some single cells through the effective control of the software layer of the main controller in the battery management system in the battery pack.
  • the cells do not respond to the command, and the capacity of some single cells is inconsistent due to over-discharge or non-discharge, which makes the consistency of the single cells worse, so as to avoid the failure to effectively improve the internal single power of the power battery due to the wrong opening of the equalization switch. Core inconsistency problem.
  • FIG. 1 is a schematic structural diagram of a power battery balance monitoring and control system provided in Embodiment 1 of the application.
  • the power battery balance monitoring and control system can be used when the circuit in the power battery is unbalanced and the internal controller of the power battery is due to the balance When the balance function fails due to circuit faults, sampling problems, software problems, etc., the balance monitoring and control in the power battery is carried out.
  • the balance monitoring and control system of the power battery can be implemented by software and hardware, and the balance monitoring and control system of the power battery can include a balance monitoring control module to determine whether a balance control command needs to be generated.
  • a balance monitoring and control system for a power battery provided in Embodiment 1 of the present application includes:
  • the input module 110, the balance monitoring and control module 120 and the execution module 130, the balance monitoring and control module 120 is respectively connected with the input module 110 and the execution module 130;
  • the input module 110 is configured to transmit the voltage at the sampling point of the balance loop, the temperature of the battery module, the current of the power battery and the voltage of the single cell into the balance monitoring control module 120;
  • the balance monitoring and control module 120 includes a battery pack balance prediction unit 121, a single cell capacity difference balance control unit 122, a single cell voltage difference redundancy control unit 123, a balance loop diagnosis monitoring unit 124, and a balance watchdog monitor unit 125;
  • the battery pack balance pre-judgment unit 121 is configured to pre-judg whether the battery pack is balanced according to the voltage of the single cell and the voltage of the battery module, wherein the voltage of the battery module is obtained according to the voltage of the single cell;
  • the single-cell capacity difference balance control unit 122 is set to obtain the single-cell capacity and the minimum single-cell capacity according to the temperature of the battery module, the current of the power battery, and the single-cell voltage.
  • the difference of the minimum cell capacity determines whether the equalization switch corresponding to the single cell is turned on, and if it is turned on, a first equalization control instruction is generated, and the first equalization control instruction is sent to the execution module 130;
  • the single cell voltage difference redundancy control unit 123 is configured to monitor the voltage of the single cell in real time after the equalization switch is turned on, and determine whether to close the equalization switch according to the monitoring result, and if it is closed, generate a second equalization control command, and sending the second equalization control instruction to the execution module 130;
  • the equalization circuit diagnosis and monitoring unit 124 is configured to determine whether to close the equalization switch according to the voltage at the sampling point of the equalization circuit after the equalization switch is turned on, and if it is closed, generate a third equalization control instruction, and send the third equalization control instruction to the execution module 130;
  • the equalization watchdog monitoring unit 125 is configured to monitor the program operation of the system, and determine whether to close the equalization switch according to the monitoring result, if closed, generate a fourth equalization control instruction, and send the fourth equalization control instruction to the execution module 130;
  • the execution module 130 is configured to control the equalization switch according to the first equalization control instruction, the second equalization control instruction, the third equalization control instruction or the fourth equalization control instruction.
  • the input module 110 may be a module for inputting data, the input module 110 may be connected to the balance monitoring control module 120 , and the system may transmit required data to the balance monitoring control module 120 through the input module 110 .
  • the required data can include the voltage at the sampling point of the equalization loop, the temperature of the battery module, the current of the power battery, and the voltage of the single cell.
  • the voltage of the sampling point of the equalization circuit can be obtained after data processing of the voltages collected by multiple sampling points in the equalization circuit of the battery management system of the power battery;
  • the temperature of the battery module can be the analog number ( Analog Digital, AD) signal is converted into the module temperature data signal and obtained after filtering;
  • the current of the power battery can be obtained by converting the AD signal collected by the current sensor into a current value and filtering and smoothing the current value;
  • single The voltage of the body cell may be the voltage of all the single cells included in the power battery, and the voltage of the single cell may be obtained through the sampling chip.
  • the balance monitoring and control module 120 may be a module that monitors the internal balance circuit of the power battery, the execution of the balance control instructions, and the program operation.
  • the balance monitoring and control module 120 can obtain the required
  • the balance monitoring and control module 120 can be connected with the execution module 130 to send the corresponding balance control instruction to the execution module 130, so that the execution module 130 can perform corresponding operations according to the balance control instruction to control the balance switch.
  • the balance monitoring control module 120 is configured to send different balance control commands to the execution module 130 correspondingly according to the monitoring situation when it is detected that the capacities of the plurality of single cells in the power battery cannot be kept balanced.
  • the balance monitoring control module 120 may include a battery pack balance pre-judgment unit 121, the battery pack balance pre-judgment unit 121 may be a kind of pre-judgment unit, and the battery pack balance pre-judgment unit 121 may be set to be based on the voltage of the battery module and the single cell.
  • the voltage threshold judgment eliminates battery modules and single cells with poor consistency that cannot be repaired by equalization.
  • the power battery may include multiple battery modules, and each battery module may include multiple single cells.
  • the battery pack balance pre-judgment unit 121 is configured to pre-judgment whether the battery pack is balanced according to the voltage of the single cell and the voltage of the battery module.
  • the process may be: The voltage of a single cell can be calculated to obtain the voltage of each battery module, that is, the voltage of the battery module can be obtained by calculating the sum of the voltages of multiple single cells; the average voltage of the battery module is calculated according to the voltage of each battery module.
  • the average voltage of the single cell can be calculated according to the single cell voltage of all the single cells; it is judged in turn whether the difference between the voltage of each module and the average value of the battery module voltage is greater than the first set threshold , remove the battery module corresponding to the difference greater than the first set threshold from the battery pack and carry out offline maintenance; judge in turn whether the difference between the voltage of each single cell and the average voltage of the single cell is greater than the second A threshold is set, and the single cell whose difference is greater than the second set threshold is removed from the battery pack and repaired offline.
  • the battery pack obtained through the above process is a battery pack that can be repaired by equalization.
  • the balance monitoring and control module 120 may include a single cell capacity difference balance control unit 122, and the single cell capacity difference balance control unit 122 may be configured as a unit that controls the balance switch to be turned on or off by a single cell capacity difference method. .
  • the process of setting the balance monitoring and control module 120 to control the opening of the balance switch may be as follows: according to the module temperature and the power battery current, the stable time period for the voltage of each single cell to reach a stable voltage can be found through a two-dimensional timetable; calculating that the battery current is less than The duration of the preset current; if the duration or the sleep time of the whole vehicle is greater than the stable duration, the remaining power of different single cells can be calculated according to the single cell voltage and voltage open circuit method of different single cells (State of Charge, SOC); according to the SOC, the capacity of different single cells can be calculated, and the minimum single cell capacity can be determined; the difference between the capacity of each single cell and the minimum single cell capacity can be determined in turn to determine the difference
  • the first equalization control command is generated after the equalization switch of the single cell whose value is greater than the set threshold is turned on.
  • the time two-dimensional table can be obtained through experiments in advance, and the time two-dimensional table can record the stable time for a single cell to reach a stable voltage under different temperatures and different power battery currents. According to the input module temperature and power battery current, the corresponding stable duration of the single cell can be found. Since the model of each single cell in the battery pack is the same, that is, the corresponding stabilization time of each single cell at the same module temperature and power battery current is the same.
  • the sleep time can be obtained through the internal chip of the main controller of the battery management system (Battery Management System, BMS) in the electric vehicle, and the sleep time of the whole vehicle can be input to the balance monitoring control module 120 through the input module 110 .
  • BMS Battery Management System
  • the balance monitoring control module 120 may further include a single cell voltage difference redundant control unit 123, and the single cell voltage difference redundant control unit 123 may be configured to monitor the voltage of the single cell in real time, and determine the voltage of the single cell according to the voltage of the single cell. The maximum value and the minimum value of the single cell voltage determine whether to turn off the equalization switch of the single cell.
  • the single cell voltage difference redundancy control unit 123 is set to determine whether to turn off the equalization switch according to the monitoring result as follows: monitor the voltage of the single cell in real time, and determine the single cell voltage in all the single cells at each moment. The maximum value of the cell voltage and the minimum value of the single cell voltage; the difference between the maximum value of the single cell voltage and the minimum value of the single cell voltage, if the absolute value of the difference is within the set threshold range, it is determined to The equalization switch of the cell is closed.
  • the balance monitoring and control module 120 may further include a balance circuit diagnosis and monitoring unit 124.
  • the balance circuit diagnosis and monitoring unit 124 may be a unit for monitoring the balance reliability of the balance circuit to ensure the balance is turned on or off reliably.
  • the equalization circuit diagnosis and monitoring unit 124 is configured to: diagnose whether an open circuit fault occurs in the equalization circuit and whether a short circuit fault occurs in the equalization circuit; when it is determined that an open circuit fault occurs, all equalization switches are turned off, and when it is determined that a short circuit fault or an open circuit fault occurs, the equalization circuit is performed. Repair.
  • the balance monitoring control module 120 may also include a balance watchdog monitoring unit 125, and the balance watchdog monitoring unit 125 may be a unit that monitors the operation of the control program of the system to prevent problems caused by controller problems or program runaway problems. The failure of the equalization opening.
  • the balanced watchdog monitoring unit 125 can enable the hardware balanced watchdog monitoring function of the sampling chip through configuration.
  • the balanced watchdog monitoring unit 125 is set to monitor system program operation and data transmission. If the monitored data transmission is normal and the program is running normally, the dog feeding operation is performed continuously, that is, the value of the cell balance watchdog does not stop. Add 1 operation; if it is detected that the cell balance watchdog is not 0, the balanced state is maintained. If the termination of data transmission is detected, and the duration of the ON state after the balance switch is detected to be in the ON state reaches the set threshold, the cell balance watchdog will be set. Set to 0.
  • the execution module 130 is a module that controls the equalization switch to be turned on or off according to the instruction.
  • the execution module 130 obtains the first equalization control instruction and the second equalization control instruction sent by the equalization monitoring and control module 120 by connecting with the equalization monitoring control module 120 .
  • instruction, a third equalization control instruction, and a fourth equalization control instruction The execution module 130 controls the equalization switch according to different received commands.
  • a balance monitoring and control system for a power battery provided in the first embodiment of the present application transmits the voltage at the sampling point of the balance loop, the temperature of the battery module, the current of the power battery, and the voltage of the single cell into the balance monitoring control module through the input module;
  • the battery pack balance pre-judgment unit in the balance monitoring control module pre-judges whether the battery pack is balanced according to the voltage of the single cell and the voltage of the battery module; the balance control unit through the capacity difference of the single cell is based on the temperature and power of the battery module.
  • the current of the battery and the voltage of the single cell obtain the capacity of the single cell and the minimum single cell capacity, and the balance switch corresponding to the single cell is determined according to the difference between the capacity of the single cell and the minimum single cell capacity Whether it is turned on, if it is turned on, the first balance control command is generated; the first balance control command is sent to the execution module; after the balance switch is turned on, the single cell pressure difference redundant control unit in the balance monitoring control module is turned on.
  • the single cell voltage is monitored in real time. According to the monitoring results, it is determined whether to close the equalization switch. If it is closed, a second equalization control command is generated, and the second equalization control command is sent to the execution module; the equalization circuit is diagnosed through the equalization monitoring and control module.
  • the monitoring unit determines whether to close the equalization switch according to the voltage at the sampling point of the equalization loop, and if it is closed, generates a third equalization control command, and sends the third equalization control command to the execution module;
  • the balanced watchdog monitoring unit monitors the program operation of the system, determines whether to close the equalization switch according to the monitoring result, if it is closed, generates a fourth equalization control instruction, and sends the fourth equalization control instruction to the execution module;
  • An equalization control instruction, a second equalization control instruction, a third equalization control instruction or a fourth equalization control instruction controls the equalization switch.
  • FIG. 2 is a schematic structural diagram of a balance monitoring and control system for a power battery provided in Embodiment 2 of the present application.
  • Embodiment 2 is described on the basis of Embodiment 1 above. For the details of this embodiment, reference may be made to the first embodiment, which will not be repeated here.
  • the battery pack balance prediction unit 221 may include a voltage calculation subunit 2211 and a decision subunit 2212 .
  • the voltage calculation subunit 2211 can be configured to calculate the average voltage of the single cell and the voltage of the battery module according to the voltage of the single cell according to the following formula:
  • U is the voltage of the single cell
  • m is the number of single cells in the power battery
  • n is the number of single cells in the battery module
  • Usavg is the average voltage of the single cell
  • Uimod is the voltage of the battery module , and calculate the average voltage of the battery module according to the voltage of the battery module according to the following formula:
  • Umavg is the average voltage of the battery module
  • Nmod is the number of modules in the battery pack
  • the decision-making subunit 2212 is configured to sequentially determine whether the difference between the voltage of each battery module and the average voltage of the battery module and the first preset threshold satisfy the formula:
  • a threshold is set, and if it is satisfied, the battery module is determined as an abnormal battery module;
  • the decision-making subunit 2212 is further configured to sequentially determine whether the difference between the voltage of each single cell and the average voltage of the single cell and the second preset threshold satisfies the following formula:
  • the single cell is determined as an abnormal single cell; wherein, ⁇ Us is the second preset threshold.
  • the single cell capacity difference equalization control unit 222 may include a cell capacity calculation subunit 2221 and a first equalization switch control subunit 2222 .
  • the cell capacity calculation subunit 2221 is set to obtain the stable duration of the single cell voltage reaching a stable voltage through interpolation through a two-dimensional timetable according to the temperature of the battery module and the current of the power battery; wherein, the two-dimensional timetable is: According to the two-dimensional table of temperature, power battery current and stable time obtained from the battery pack bench test; the interpolation method can be understood as the method of linear difference.
  • the cell capacity calculation subunit 2221 is configured to calculate the current duration of the power battery when the current is less than the preset current
  • the cell capacity calculation sub-unit 2221 is also configured to obtain the remaining power SOC of the single cell according to the open-circuit voltage method after judging that the current duration or the vehicle sleep time is greater than the stable duration, and according to the SOC of the single cell according to:
  • the following formula calculates the capacity of a single cell:
  • C is the nominal capacity
  • Ahis is the capacity of the single cell
  • Ahsmin min(Ahis) to determine the minimum single cell capacity, where Ahsmin is the minimum single cell capacity;
  • the first equalization switch control sub-unit 2222 is set to make the difference between the capacity of each single cell and the smallest single cell capacity in turn, and turn on the equalization switch of the single cell that satisfies the following formula:
  • ⁇ Ahs is the set threshold value of the capacity difference of the single cell.
  • the single cell voltage difference redundancy control unit 223 may include: a monitoring subunit 2231 and a second equalization switch control subunit 2232 .
  • the monitoring subunit 2231 is set to monitor the voltage of the single cell in real time after the equalization switch is turned on, calculate the maximum voltage of the single cell and calculate the minimum voltage of the single cell;
  • the second equalization switch control sub-unit 2232 is configured to determine that all cells are to be set according to when the difference between the maximum voltage of a single cell and the minimum voltage of a single cell and the set threshold satisfy the formula:
  • Uismax represents the maximum voltage of the single cell
  • Uismin represents the minimum voltage of the single cell
  • ⁇ U is the set threshold.
  • the equalization loop diagnosis and monitoring unit 224 may include a first diagnosis subunit 2241 , a second diagnosis subunit 2242 and a third equalization switch control subunit 2243 .
  • the first diagnosis subunit 2241 is configured to diagnose whether an open circuit fault occurs in the equalization circuit after the equalization switch is turned on;
  • the second diagnosis subunit 2242 is configured to diagnose whether a short-circuit fault occurs in the equalization circuit after the equalization switch is turned off;
  • the third equalization switch control subunit 2243 is configured to turn off all equalization switches when it is determined that an open circuit fault occurs, and to perform maintenance on the equalization circuit when it is determined that a short circuit fault or an open circuit fault occurs.
  • the setting of the first diagnosis subunit 2241 to diagnose whether an open circuit fault occurs in the equalization circuit includes: periodically reading the voltage value of the sampling point of the equalization circuit, and comparing the voltage value with the open circuit voltage of the equalization switch in the equalization register of the sampling chip, The equalizing switch open threshold, equalizing shorting switch open voltage, and equalizing line open short threshold are compared. It can include the following two situations:
  • the equalization switch When the equalization switch is turned on, to diagnose the open circuit fault of the equalization circuit, you can periodically read the voltage values of multiple sampling points of the equalization circuit, and compare the voltage values with the open circuit voltage of the equalization switch and the open circuit threshold of the equalization circuit. If the value is greater than the open-circuit voltage of the equalizing switch and/or the voltage value is greater than the open-circuit threshold of the equalizing line, it is determined that the equalizing circuit has an open-circuit fault;
  • the short-circuit fault of the equalization circuit is diagnosed, and the voltage value of the sampling point in the equalization circuit can be periodically read, and the voltage value is compared with the open-circuit voltage of the equalization short-circuit switch and the short-circuit open-circuit threshold of the equalization circuit. If the voltage value is greater than the open-circuit voltage of the equalization short-circuit switch and/or the short-circuit open-circuit threshold of the equalization line, it is determined that a short-circuit fault occurs in the equalization circuit.
  • the equalization watchdog monitoring unit 225 includes a program monitoring subunit 2251 and a fourth equalization switch control subunit 2252;
  • the program monitoring subunit 2251 is configured to monitor the system program operation and data transmission of the balanced monitoring control module in real time;
  • the fourth equalization switch control sub-unit 2252 is set to continuously add 1 to the watchdog when the monitored program is running normally, and the duration after monitoring that the program is not running normally and monitoring that the equalizing switch is turned on reaches the preset time value, turn off all equalization switches.
  • the execution module 230 is configured to send the first equalization control instruction, the second equalization control instruction, the third equalization control instruction or the fourth equalization control instruction to the equalization switch register, so that the equalization switch register is configured according to the first equalization control instruction, the second equalization control instruction, and the second equalization control instruction.
  • the control command, the third balance control command or the fourth balance control command turns on or off the balance switch.
  • the balance monitoring and control system for a power battery provided in the second embodiment of the present application can effectively solve the loss of control of the balance circuit in the power battery due to the balance circuit, software problems, hardware and other problems.
  • the capacity inconsistency caused by the over-discharge or non-discharge of the single cell makes the consistency of the single cell worse.
  • FIG. 3 is a schematic flowchart of a power battery balance monitoring and control method provided in Embodiment 3 of the present application.
  • This embodiment can be applied to the situation of performing balance monitoring and control in the power battery when the circuit in the power battery is unbalanced.
  • This method It can be implemented by the monitoring mechanism of the three-layer software architecture in the balance monitoring control module of the power battery balance monitoring control system provided by the above embodiments, the system can be implemented by hardware and software, and the method includes the following steps.
  • the voltage of the single cell, the temperature of the battery module, the current of the power battery and the voltage of the sampling point of the equalization loop can be input to the equalization monitoring and control system of the power battery through the input module after being collected.
  • the voltage of the battery module is obtained according to the voltage of the single cell.
  • This step may be: the voltage calculation subunit calculates the average voltage of the single cell and the voltage of the battery module according to the voltage of the single cell according to the following formula:
  • U is the voltage of the single cell
  • m is the number of single cells in the power battery
  • n is the number of single cells in the battery module
  • Usavg is the average voltage of the single cell
  • Uimod is the voltage of the battery module , and calculate the average voltage of the battery module according to the voltage of the battery module according to the following formula:
  • Umavg is the average voltage of the battery module
  • Nmod is the number of modules in the battery pack
  • the decision-making subunit is used to determine whether the difference between the voltage of each battery module and the average voltage of the battery module and the first preset threshold satisfy the formula:
  • Set a threshold value if it is satisfied, the battery module is determined as an abnormal battery module; the decision sub-unit is used to sequentially determine the difference between the voltage of each single cell and the average voltage of the single cell and the second preset value Whether the threshold satisfies the following formula:
  • the single cell is determined as an abnormal single cell; wherein, ⁇ Us is the second preset threshold.
  • the cell capacity calculation subunit can obtain the stable time period for the voltage of a single cell to reach a stable voltage by interpolation according to the module temperature and power battery current through a two-dimensional timetable; the cell capacity calculation subunit Calculate the current duration when the power battery current is less than the preset current; you can also use the cell capacity calculation sub-unit to determine the current duration or the vehicle sleep time is greater than the stable duration, and obtain the remaining power of the single cell according to the open-circuit voltage method.
  • SOC according to the SOC of the single cell, calculate the capacity of the single cell according to the following formula:
  • C is the nominal capacity
  • Ahis is the capacity of the single cell
  • Ahsmin min(Ahis) to determine the minimum single cell capacity, where Ahsmin is the minimum single cell capacity;
  • the first balancing switch control sub-unit makes the difference between the capacity of each single cell and the smallest single cell capacity in turn, and turns on the balancing switch of the single cell that satisfies the following formula:
  • ⁇ Ahs is the set threshold value of the capacity difference of the single cell.
  • the monitoring subunit can monitor the voltage of the single cell in real time, calculate the maximum voltage of the single cell and calculate the minimum voltage of the single cell; control the subunit through the second equalization switch.
  • the unit determines the balance switch of all single cells according to when the difference between the maximum voltage of the single cell and the minimum voltage of the single cell and the set threshold value satisfy the formula:
  • the first diagnosis subunit can be used to diagnose whether an open circuit fault occurs in the equalization circuit; the second diagnosis subunit can diagnose whether a short circuit fault occurs in the equalization circuit; when it is determined that an open circuit fault occurs, all equalization switches are turned off , when it is determined that a short-circuit fault or an open-circuit fault occurs, the equalizing circuit is repaired.
  • S360 Monitor the program operation of the system, and determine whether to turn off the equalization switch according to the monitoring result; if it is closed, generate a fourth equalization control instruction, and send the fourth equalization control instruction to the execution module.
  • the system program operation and data transmission of the balance monitoring control module are monitored in real time by the program monitoring subunit; when the program monitored by the fourth balance switch control subunit is running normally, the fourth balance switch control subunit is used for real-time monitoring.
  • the watchdog is continuously incremented by 1, and when the fourth equalization switch control subunit detects that the program is not running normally and the duration after monitoring that the equalization switches are turned on reaches the preset time value, all equalization switches are turned off.
  • the third embodiment of the present application provides a balance monitoring and control method for a power battery, which illustrates a balance monitoring and control method for a power battery balance monitoring and control system.
  • FIG. 4 is a schematic diagram of software layers of a balance monitoring and control method for a power battery provided in Embodiment 4 of the present application.
  • the three-layer software architecture in the balance monitoring and control module includes an application layer, an integration layer, and a platform software layer. .
  • the application layer it can pre-judgment whether the battery pack is balanced, control the capacitance difference of the single cell, and control the voltage difference of the single cell redundantly; at the integration layer, the balance circuit diagnosis and monitoring can be performed, and at the platform software layer Balanced watchdog monitoring is possible.
  • FIG. 5 is a flowchart of the battery pack balance pre-judgment provided in Embodiment 4 of the present application, which can illustrate the process of the battery pack balance pre-judgment.
  • the balance prediction for the battery pack may include the following steps.
  • Step 1 Calculate the voltage Uimod of each battery module in the battery pack, and calculate the average voltage Umavg of all battery modules.
  • Step 2 Compare the voltage Uimod of each battery module with Umavg in turn, and screen out the battery modules whose difference is greater than the threshold ⁇ Um for maintenance and replacement.
  • the abnormal battery modules that are screened out can be repaired by starting the offline maintenance, so that the battery pack obtained after removing the abnormal battery modules continues to perform step 3.
  • Step 3 Calculate the average voltage Uiavg of all single cells in the battery pack.
  • Step 4 Compare the collected voltage Ui of the single cell with Uiavg in turn, and screen out the single cell whose difference is greater than the threshold ⁇ Us for maintenance and replacement.
  • offline maintenance can be started to repair the abnormal single cells that are screened out, so that the battery pack after the abnormal single cells are removed can continue to carry out the balance control of the capacity difference of the single cells.
  • FIG. 6 is a flowchart of the balance control of the capacitance difference of a single cell provided in Embodiment 4 of the present application.
  • the balance control of the capacitance difference of a single cell may include the following steps.
  • Step 1 Set different voltage stabilization times Tmap according to different battery module temperature sampling values; calculate the stabilization time Ti when the current value of the power battery is less than a threshold; read the vehicle sleep time T of the electric vehicle.
  • Step 2 Determine whether T or Ti is greater than Tmap, if yes, go back to Step 1; if not, go to Step 3.
  • Step 3 Calculate the SOCis of the single cell in the battery pack and the corresponding single cell capacity Ahis, that is, the capacitance of the single cell; determine the minimum single cell capacity Ahsmin corresponding to the minimum SOCis in the battery pack.
  • Step 4 Make the difference between each Ahis and Ahsmin in turn, and judge whether the difference is greater than the threshold ⁇ Ahs. If so, turn on the equalization switch of the single cell; if not, return to step 1.
  • the balance control of the single cell whose balance switch is turned on can also be performed.
  • FIG. 7 is a flowchart of the balance control of a single cell provided in Embodiment 4 of the present application, and the balance control of a single cell may include balance watchdog monitoring, balance loop diagnosis monitoring, and single cell voltage difference. Redundant control. As shown in FIG. 7 , performing equalization control on a single cell may include the following steps.
  • Step 1 Determine whether the information monitored by the balanced watchdog satisfies the condition, if yes, go to Step 7; if not, go to Step 2.
  • Step 2 Perform fault monitoring on the balancing circuit. If a fault is detected, step 7 is performed; if no fault is detected, step 3 is performed.
  • Step 3 Determine whether the difference between the single cell voltage Uis and the minimum single cell voltage Us is less than the threshold ⁇ U, if so, go to Step 6; if not, go to Step 4.
  • Step 4 Calculate the initial capacity Ahimod that needs to be released for all single cells, calculate the capacity ahimod released by the single cell in each operation cycle, and accumulate them.
  • Step 5 Determine whether the absolute value of the difference between Ahimod and ahimod is less than or equal to 0, if not, return to step 4; if so, continue to execute step 6.
  • Step 6 Send the equalization DISABLE command.
  • Step 7 Equalize the DISABLE switch register, and close the equalization switch.
  • the fourth embodiment of the present application provides a balance monitoring and control method for a power battery.
  • abnormal battery modules and abnormal single cells can be screened out to prevent battery production batches, battery cells Consistency of single cells caused by inconsistency of production process, aging of batteries, etc., which is difficult to repair by the balancing function of the power battery itself; the balance control of the capacity difference of single cells can be based on the capacity difference of multiple single cells.
  • the difference is used as the control condition for the equalization opening, and the excess capacity of the single cell is released by closing the equalization circuit until the multiple single cells meet the capacity consistency requirements;
  • the battery pack equalization function uses the voltage difference of the single cell as the Balanced redundant protection, the voltage of the single cell is directly monitored and processed by the acquisition module, and regardless of the size of the load current, as long as the single voltage difference meets the minimum set pressure difference threshold, the equalization switch is turned off to prevent calculation errors, etc.
  • the balance circuit diagnosis and protection of the integration layer through the real-time monitoring of the balance circuit after the balance is turned on, to ensure that multiple single cells are not accidentally turned on or not turned on; the platform software layer balance watchdog monitoring , through the configuration method of the platform software layer, once it is detected that the program runs dead or the communication failure and other problems, the equalization circuit is directly disconnected through the register.
  • FIG. 8 is a schematic structural diagram of a server according to Embodiment 5 of the present application.
  • the server provided in Embodiment 5 of the present application includes: one or more processors 81 and a storage device 82 ; the number of processors 81 in the server may be one or more, and one processor 81 is used in FIG. 8 .
  • the storage device 82 is configured to store one or more programs; the one or more programs are executed by the one or more processors 81, so that the one or more processors 81 implement the embodiments of the present application The method of any of the above.
  • the server may further include: an input device 83 and an output device 84 .
  • the processor 81 , the storage device 82 , the input device 83 and the output device 84 in the server may be connected by a bus or in other ways, and the connection by a bus is taken as an example in FIG. 8 .
  • the storage device 82 in the server may be configured to store one or more programs, and the programs may be software programs, computer-executable programs, and modules, as described in Embodiment 1 or Embodiment 2 of this application.
  • the processor 81 executes various functional applications and data processing of the server by running the software programs, instructions and modules stored in the storage device 82 , that is, to implement the balance monitoring and control method of the power battery in the above method embodiments.
  • the storage device 82 may include a stored program area and a stored data area, wherein the stored program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the server, and the like. Additionally, storage device 82 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device. In some examples, storage device 82 may include memory located remotely from processor 81 that may be connected to the device through a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the input device 83 may be configured to receive input numerical or character information, and to generate key signal input related to user settings and function control of the server.
  • the output device 84 may include a display device such as a display screen.
  • the temperature of the battery module According to the temperature of the battery module, the current of the power battery and the voltage of the single cell, the capacity of the single cell and the minimum single cell capacity are obtained, and the difference between the capacity of the single cell and the minimum single cell capacity is obtained. Determine whether the equalization switch corresponding to the single cell is turned on, and if it is turned on, generate a first equalization control instruction; and send the first equalization control instruction to the execution module;
  • the equalization switch After the equalization switch is turned on, monitor the voltage of the single cell in real time, and determine whether to close the equalization switch according to the monitoring result; if it is closed, generate a second equalization control instruction, and send the second equalization control instruction to the execution module;
  • the equalization switch After the equalization switch is turned on, determine whether to close the equalization switch according to the voltage at the sampling point of the equalization loop, and if it is closed, generate a third equalization control instruction, and send the third equalization control instruction to the execution module;
  • Embodiment 6 of the present application provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, is used to execute a balance monitoring and control method for a power battery, and the method includes:
  • the temperature of the battery module According to the temperature of the battery module, the current of the power battery and the voltage of the single cell, the capacity of the single cell and the minimum single cell capacity are obtained, and the difference between the capacity of the single cell and the minimum single cell capacity is obtained. Determine whether the equalization switch corresponding to the single cell is turned on, and if it is turned on, generate a first equalization control instruction; and send the first equalization control instruction to the execution module;
  • the equalization switch After the equalization switch is turned on, monitor the voltage of the single cell in real time, and determine whether to close the equalization switch according to the monitoring result; if it is closed, generate a second equalization control instruction, and send the second equalization control instruction to the execution module;
  • the equalization switch After the equalization switch is turned on, determine whether to close the equalization switch according to the voltage at the sampling point of the equalization loop, and if it is closed, generate a third equalization control instruction, and send the third equalization control instruction to the execution module;
  • the program when executed by the processor, the program may also be used to execute the balance control method for a power battery provided by any embodiment of the present application.
  • the computer storage medium of the embodiments of the present application may adopt any combination of one or more computer-readable media.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium may be, for example, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or a combination of any of the above.
  • Computer-readable storage media include: electrical connections with one or more wires, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), erasable Erasable Programmable Read Only Memory (EPROM), flash memory, optical fiber, portable Compact Disc Read Only Memory (CD-ROM), optical storage device, magnetic storage device, or any suitable of the above combination.
  • a computer-readable storage medium can be any tangible medium that contains or stores a program that can be used by or in connection with an instruction execution system, apparatus, or device.
  • the storage medium may be a non-transitory storage medium.
  • a computer-readable signal medium may include a propagated data signal in baseband or as part of a carrier wave, with computer-readable program code embodied thereon. Such propagated data signals may take a variety of forms including, but not limited to, electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium can also be any computer-readable medium other than a computer-readable storage medium that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device .
  • Program code embodied on a computer-readable medium may be transmitted using any suitable medium, including but not limited to: wireless, wire, optical fiber cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • suitable medium including but not limited to: wireless, wire, optical fiber cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • Computer program code for carrying out the operations of the present application may be written in one or more programming languages, including object-oriented programming languages, such as Java, Smalltalk, C++, and conventional A procedural programming language, such as the "C" language or similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any kind of network, including a Local Area Network (LAN) or Wide Area Network (WAN), or may be connected to an external computer (eg, use an internet service provider to connect via the internet).
  • LAN Local Area Network
  • WAN Wide Area Network

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请提供了一种动力电池的均衡监控控制系统、方法、服务器及存储介质。该系统包括输入模块、均衡监控控制模块和执行模块;均衡监控控制模块包括电池包均衡预判单元、单体电芯容量差值均衡控制单元、单体电芯压差冗余控制单元、均衡回路诊断监控单元及均衡看门狗监测单元;单体电芯容量差值均衡控制单元设置为根据单体电芯容量与最小单体电芯容量的差值确定单体电芯的均衡开关是否开启;单体电芯压差冗余控制单元设置为对单体电芯电压进行实时监测确定是否关闭均衡开关;均衡回路诊断监控单元设置为根据均衡回路采样点电压确定是否关闭均衡开关;均衡看门狗监测单元设置为对系统的程序运行进行监控确定是否关闭均衡开关。

Description

动力电池的均衡监控控制系统、方法、服务器及存储介质
本申请要求在2021年03月18日提交中国专利局、申请号为202110291971.6的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电动汽车技术领域,例如涉及一种动力电池的均衡监控控制系统、方法、服务器及存储介质。
背景技术
随着科技的发展,汽车工业大变革正在加速演进,汽车电动化的方向非常明确,趋势不可逆转,越来越多的人选择购买电动汽车。电动汽车的电池包由多个单体电芯串联组成,由于生产、老化等因素会造成单体电芯性能不一致的问题存在。
然而电池包的使用性能主要取决于同一电池模组中性能较差的单体电芯,使得电池包内其他单体电芯的性能无法得到充分的发挥,继而影响了电池包的容量利用率。电池管理系统的均衡控制技术是改善电池包内多个单体电芯性能不一致的有效方法,但是同时也存在均衡不理想或均衡过度的问题。控制动力电池均衡的方式是通过均衡硬件回路来实现的,均衡硬件回路的均衡效果不够理想。
发明内容
本申请提供了一种动力电池的均衡监控控制系统、方法、服务器及存储介质,能够有效解决动力电池内的电路不均衡导致电池容量一致性差的问题以及动力电池内控制器内部由于均衡电路故障、采样问题、软件问题等导致的均衡功能失效问题。
第一方面,本申请实施例提供了一种动力电池的均衡监控控制系统,包括:输入模块、均衡监控控制模块和执行模块,所述均衡监控控制模块分别与所述输入模块和执行模块相连;
所述输入模块设置为将均衡回路采样点电压、电池模组温度、动力电池的电流以及单体电芯电压传入均衡监控控制模块;
所述均衡监控控制模块包括电池包均衡预判单元、单体电芯容量差值均衡控制单元、单体电芯压差冗余控制单元、均衡回路诊断监控单元以及均衡看门 狗监测单元;
所述电池包均衡预判单元,设置为根据单体电芯电压以及电池模组电压对电池包是否均衡进行预判断,其中,所述电池模组电压根据所述单体电芯电压获得;
所述单体电芯容量差值均衡控制单元设置为根据电池模组温度、动力电池的电流以及单体电芯电压得到单体电芯容量和最小单体电芯容量,根据所述单体电芯容量与最小单体电芯容量的差值确定单体电芯对应的均衡开关是否开启,若开启,则生成第一均衡控制指令,并将所述第一均衡控制指令发送至所述执行模块;
所述单体电芯压差冗余控制单元设置为在均衡开关开启后,对单体电芯电压进行实时监测,根据监测结果确定是否关闭均衡开关,若关闭,则生成第二均衡控制指令,并将所述第二均衡控制指令发送至所述执行模块;
所述均衡回路诊断监控单元设置为在均衡开关开启后,根据均衡回路采样点电压确定是否关闭均衡开关,若关闭,则生成第三均衡控制指令,并将所述第三均衡控制指令发送至所述执行模块;
所述均衡看门狗监测单元设置为对所述系统的程序运行进行监控,根据监控结果确定是否关闭均衡开关,若关闭,则生成第四均衡控制指令,并将所述第四均衡控制指令发送至所述执行模块;
所述执行模块设置为根据所述第一均衡控制指令、所述第二均衡控制指令、所述第三均衡控制指令或者所述第四均衡控制指令对均衡开关进行控制。
第二方面,本申请实施例还提供了一种动力电池的均衡监控控制方法,该方法由均衡监控控制模块中的三层软件架构的监控机制执行,包括:
获取单体电芯电压、电池模组温度、动力电池的电流以及均衡回路采样点电压;
根据所述单体电芯电压以及电池模组电压对电池包是否均衡进行预判断,其中,所述电池模组电压根据所述单体电芯电压获得;
根据所述电池模组温度、动力电池的电流以及单体电芯电压得到单体电芯容量和最小单体电芯容量,根据所述单体电芯容量与最小单体电芯容量的差值确定单体电芯对应的均衡开关是否开启,若开启,则生成第一均衡控制指令,并将所述第一均衡控制指令发送至执行模块;
在均衡开关开启后,对单体电芯电压进行实时监测,根据监测结果确定是否关闭均衡开关,若关闭,则生成第二均衡控制指令,并将所述第二均衡控制 指令发送至执行模块;
在均衡开关开启后,根据均衡回路采样点电压确定是否关闭均衡开关,若关闭,则生成第三均衡控制指令,并将所述第三均衡控制指令发送至执行模块;
对所述系统的程序运行进行监控,根据监控结果确定是否关闭均衡开关,若关闭,则生成第四均衡控制指令,并将所述第四均衡控制指令发送至所述执行模块。
第三方面,本申请实施例还提供了一种服务器,包括:
一个或多个处理器;
存储装置,设置为存储一个或多个程序;
所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现本申请任意实施例中所述的动力电池的均衡监控控制方法。
第四方面,本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如本申请任意实施例所提供的动力电池的均衡监控控制方法。
附图说明
图1为本申请实施例一提供的一种动力电池的均衡监控控制系统的结构示意图;
图2为本申请实施例二提供的一种动力电池的均衡监控控制系统的结构示意图;
图3为本申请实施例三提供的一种动力电池的均衡监控控制方法的流程示意图;
图4为本申请实施例四提供的一种动力电池的均衡监控控制方法的软件层示意图;
图5为本申请实施例四提供的电池包均衡预判的流程图;
图6为本申请实施例四提供的单体电芯电容量差值均衡控制的流程图;
图7为本申请实施例四提供的单体电芯均衡控制的流程图;
图8为本申请实施例五提供的一种服务器的结构示意图。
具体实施方式
下面将参照附图描述本申请的实施例。虽然附图中显示了本申请的一些实 施例,然而本申请可以通过多种形式来实现,而且不应该被解释为限于这里阐述的实施例。本申请的附图及实施例仅用于示例性作用,并非用于限制本申请的保护范围。
本申请的方法实施方式中记载的多个步骤可以按照不同的顺序执行,和/或并行执行。此外,方法实施方式可以包括附加的步骤和/或省略执行示出的步骤。本申请的范围在此方面不受限制。
本文使用的术语“包括”及其变形是开放性包括,即“包括但不限于”。术语“基于”是“至少部分地基于”。术语“一个实施例”表示“至少一个实施例”;术语“另一实施例”表示“至少一个另外的实施例”;术语“一些实施例”表示“至少一些实施例”。其他术语的相关定义将在下文描述中给出。
本申请中提及的“第一”、“第二”等概念仅用于对不同的装置、模块或单元进行区分,并非用于限定这些装置、模块或单元所执行的功能的顺序或者相互依存关系。
本申请中提及的“一个”、“多个”的修饰是示意性而非限制性的,除非在上下文另有指出,否则应该理解为“一个或多个”。
本申请实施方式中的多个装置之间所交互的消息或者信息的名称仅用于说明性的目的,而并不是用于对这些消息或信息的范围进行限制。
电动汽车的电池包由多个单体电芯串联组成,由于生产、老化等因素会造成单体电芯性能不一致的问题存在,然而电池包的使用性能主要取决于同一电池模组中性能较差的单体电芯,使得电池包内其他单体电芯的性能无法得到充分的发挥,继而影响了电池包的容量利用率。本申请通过对电池包内电池管理系统中的主控制器的软件层的有效控制来保护动力电池内的单体电芯由于均衡回路、软件问题以及硬件等问题导致的均衡电路失控、一些单体电芯不响应指令,一些单体电芯过度放电或不放电导致的容量不一致进而使得单体电芯一致性更差的问题,避免由于均衡开关的误开启导致不能有效改善动力电池内部单体电芯不一致的问题。
实施例一
图1为本申请实施例一提供的一种动力电池的均衡监控控制系统的结构示意图,该动力电池的均衡监控控制系统可适用于当动力电池内电路不均衡以及动力电池内控制器内部由于均衡电路故障、采样问题、软件问题等导致的均衡功能失效问题时对动力电池内进行均衡监控控制的情况。其中,该动力电池的均衡监控控制系统可以由软件和硬件实现,该动力电池的均衡监控控制系统中 可以包括均衡监控控制模块,以确定是否需要发生均衡控制指令。
如图1所示,本申请实施例一提供的一种动力电池的均衡监控控制系统,包括:
输入模块110、均衡监控控制模块120和执行模块130,均衡监控控制模块120分别与输入模块110和执行模块130相连;
输入模块110设置为将均衡回路采样点电压、电池模组温度、动力电池的电流以及单体电芯电压传入均衡监控控制模块120;
均衡监控控制模块120包括电池包均衡预判单元121、单体电芯容量差值均衡控制单元122、单体电芯压差冗余控制单元123、均衡回路诊断监控单元124以及均衡看门狗监测单元125;
电池包均衡预判单元121,设置为根据单体电芯电压以及电池模组电压对电池包是否均衡进行预判断,其中,电池模组电压根据所述单体电芯电压获得;
单体电芯容量差值均衡控制单元122设置为根据电池模组温度、动力电池的电流以及单体电芯电压得到单体电芯容量和最小单体电芯容量,根据单体电芯容量与最小单体电芯容量的差值确定单体电芯对应的均衡开关是否开启,若开启,则生成第一均衡控制指令,并将第一均衡控制指令发送至执行模块130;
单体电芯压差冗余控制单元123设置为在均衡开关开启后,对单体电芯电压进行实时监测,根据监测结果确定是否关闭均衡开关,若关闭,则生成第二均衡控制指令,并将第二均衡控制指令发送至执行模块130;
均衡回路诊断监控单元124设置为在均衡开关开启后,根据均衡回路采样点电压确定是否关闭均衡开关,若关闭,则生成第三均衡控制指令,并将第三均衡控制指令发送至执行模块130;
均衡看门狗监测单元125设置为对系统的程序运行进行监控,根据监控结果确定是否关闭均衡开关,若关闭,则生成第四均衡控制指令,并将第四均衡控制指令发送至执行模块130;
执行模块130设置为根据第一均衡控制指令、第二均衡控制指令、第三均衡控制指令或者第四均衡控制指令对均衡开关进行控制。
在本实施例中,输入模块110可以为输入数据的模块,输入模块110可以与均衡监控控制模块120相连,系统通过输入模块110可以将所需的数据传入均衡监控控制模块120。所需的数据可以包括均衡回路采样点电压、电池模组温度、动力电池的电流以及单体电芯电压。
其中,均衡回路采样点电压可以为动力电池的电池管理系统的均衡回路内 多个采样点采集的电压经过数据处理后得到的;电池模组温度可以为温度传感器采集的动力电池内的模拟数字(Analog Digital,AD)信号转换成模组温度数据信号经过滤波处理后得到的;动力电池的电流可以为电流传感器采集的AD信号转换成电流值后对电流值进行滤波以及平滑处理后得到的;单体电芯电压可以为动力电池内包括的所有单体电芯的电压,单体电芯电压可以通过采样芯片获得。
在本实施例中,均衡监控控制模块120可以为对动力电池内部均衡回路,均衡控制指令的执行以及程序运行等进行监控的模块,均衡监控控制模块120可以通过与输入模块110相连获取所需的数据,均衡监控控制模块120可以通过与执行模块130相连,将相应的均衡控制指令发送至执行模块130,以使执行模块130可以根据均衡控制指令执行相应操作对均衡开关进行控制。
其中,均衡监控控制模块120设置为当监测到动力电池内多个单体电芯的容量无法保持均衡时,根据监测的情况对应发送不同的均衡控制指令至执行模块130。
均衡监控控制模块120可以包括电池包均衡预判单元121,电池包均衡预判单元121可以为一种预判单元,电池包均衡预判单元121可以设置为根据电池模组电压和单体电芯电压的阈值判断剔除不能通过均衡修复的一致性较差的电池模组以及单体电芯。
动力电池可以包括多个电池模组,每个电池模组可以包括多个单体电芯。
电池包均衡预判单元121设置为根据单体电芯电压以及电池模组电压对电池包是否均衡进行预判断的过程可以为:根据每个电池模组中所包括的多个单体电芯的单体电芯电压可以计算得到每个电池模组的电压,即计算多个单体电芯电压之和得到该电池模组的电压;根据每个电池模组的电压计算电池模组电压的平均值,根据所有单体电芯的单体电芯电压可以计算出单体电芯的平均电压;依次判断每个模组电压与电池模组电压的平均值的差值是否大于第一设定阈值,将差值大于第一设定阈值对应的电池模组从电池包中剔除并进行线下维修;依次判断每个单体电芯电压与单体电芯的平均电压的差值是否大于第二设定阈值,将差值大于第二设定阈值对应的单体电芯从电池包中剔除并进行线下维修。经过上述过程得到的电池包为可以通过均衡修复的电池包。
均衡监控控制模块120可以包括单体电芯容量差值均衡控制单元122,单体电芯容量差值均衡控制单元122可以设置为通过单体电芯容量差值法控制均衡开关开启或关闭的单元。
均衡监控控制模块120设置为控制均衡开关开启的过程可以为:根据模组 温度和动力电池电流通过二维时间表可以查找到每个单体电芯电压达到稳定电压的稳定时长;计算电池电流小于预设电流的持续时间;如果持续时间或整车休眠时间大于稳定时长,则可以根据不同单体电芯的单体电芯电压和电压开路法计算得到不同单体电芯的剩余电量(State of Charge,SOC);根据SOC可以计算得到不同单体电芯的容量,并确定出最小单体电芯容量;依次将每个单体电芯的容量与最小单体电芯容量做差,确定差值大于设定阈值的单体电芯的均衡开关开启后生成第一均衡控制指令。
其中,时间二维表可以预先通过试验得到,时间二维表中可以记录不同温度下、不同动力电池电流下单体电芯达到稳定电压的稳定时长。根据输入的模组温度和动力电池电流可以对应查找到该单体电芯对应的稳定时长。由于电池包内每个单体电芯的型号相同,即每个单体电芯在相同模组温度和动力电池电流时对应的稳定时长是相同的。其中,可以通过电动汽车内的电池管理系统(Battery Management System,BMS)的主控制器内部芯片得到休眠时间,整车休眠时间可以通过输入模块110输入到均衡监控控制模块120。
均衡监控控制模块120还可以包括单体电芯压差冗余控制单元123,单体电芯压差冗余控制单元123可以设置为实时监测单体电芯的电压,并根据单体电芯电压最大值和单体电芯电压最小值确定是否将单体电芯的均衡开关关闭。
单体电芯压差冗余控制单元123设置为根据监测结果确定是否关闭均衡开关的过程为:实时监测单体电芯的电压,并确定出每一时刻所有单体电芯中的单体电芯电压最大值以及单体电芯电压最小值;将单体电芯电压最大值与单体电芯电压最小值作差,若差值的绝对值在设定阈值范围内,则确定将单体电芯的均衡开关关闭。
均衡监控控制模块120还可以包括均衡回路诊断监控单元124,均衡回路诊断监控单元124可以为对均衡回路进行均衡可靠性监测的单元,以保证均衡可靠的开启或关闭。
均衡回路诊断监控单元124设置为:诊断均衡回路是否发生开路故障以及诊断均衡回路是否发生短路故障;当确定发生开路故障时将全部均衡开关关闭,当确定发生短路故障或开路故障时对均衡回路进行修护。
均衡监控控制模块120还可以包括均衡看门狗监测单元125,均衡看门狗监测单元125可以为对系统的控制程序的运行进行监控的单元,以防止由于控制器问题或者程序跑飞问题导致的均衡开启的失效。
其中,均衡看门狗监测单元125可以通过配置开启采样芯片硬件均衡开门狗监测功能。
示例性的,均衡看门狗监测单元125设置为监测系统程序运行和数据传输,若监测的数据传输正常,程序运行正常的情况下,执行不停喂狗操作,即cell balance watchdog其值不停加1操作;若监测到cell balance watchdog不为0,则维持均衡状态,如果监测到数据传输终止,同时监测到均衡开关为开启状态后开启状态的持续时间达到设定阈值后,将cell balance watchdog置为0。
在本实施例中,执行模块130为根据指令控制均衡开关开启或关闭的模块,执行模块130通过与均衡监控控制模块120相连获取均衡监控控制模块120发送的第一均衡控制指令、第二均衡控制指令、第三均衡控制指令以及第四均衡控制指令。执行模块130根据接收到的不同指令对均衡开关进行控制。
本申请实施例一提供的一种动力电池的均衡监控控制系统,通过输入模块将均衡回路采样点电压、电池模组温度、动力电池的电流以及单体电芯电压传入均衡监控控制模块;通过均衡监控控制模块中的电池包均衡预判单元根据单体电芯电压以及电池模组电压对电池包是否均衡进行预判断;通过单体电芯容量差值均衡控制单元根据电池模组温度、动力电池的电流以及单体电芯电压得到单体电芯容量和最小单体电芯容量,根据所述单体电芯容量与最小单体电芯容量的差值确定单体电芯对应的均衡开关是否开启,若开启,则生成第一均衡控制指令;并将第一均衡控制指令发送至执行模块;通过均衡监控控制模块中的单体电芯压差冗余控制单元在均衡开关开启后,对单体电芯电压进行实时监测根据监测结果确定是否关闭均衡开关,若关闭,则生成第二均衡控制指令,并将第二均衡控制指令发送至执行模块;通过均衡监控控制模块中的均衡回路诊断监控单元在均衡开关开启后,根据均衡回路采样点电压确定是否关闭均衡开关,若关闭,则生成第三均衡控制指令,并将第三均衡控制指令发送至执行模块;通过均衡监控控制模块中的均衡看门狗监测单元对系统的程序运行进行监控,根据监控结果确定是否关闭均衡开关,若关闭,则生成第四均衡控制指令,并将第四均衡控制指令发送至执行模块;执行模块根据第一均衡控制指令、第二均衡控制指令、第三均衡控制指令或者第四均衡控制指令对均衡开关进行控制。利用上述技术方案,能够有效解决动力电池内电路不均衡导致容量一致性差的问题以及动力电池内控制器内部由于均衡电路故障、采样问题、软件问题等导致的均衡功能失效问题。
实施例二
图2为本申请实施例二提供的一种动力电池的均衡监控控制系统的结构示意图,本实施例二在上述实施例一的基础上进行说明。本实施例尚未详尽之处可参见实施例一,此处不作赘述。
本实施例中,电池包均衡预判单元221可以包括电压计算子单元2211以及决策子单元2212。
其中,电压计算子单元2211可以设置为根据单体电芯电压按照如下公式计算单体电芯平均电压和电池模组电压:
Figure PCTCN2022076722-appb-000001
其中,Uis为单体电芯电压;m为动力电池内部单体电芯个数;n为电池模组内部单体电芯个数,Usavg为单体电芯平均电压,Uimod为电池模组电压,并根据电池模组电压按照如下公式计算电池模组平均电压:
Umavg=Uimod/Nmod
其中,Umavg为电池模组平均电压,Nmod为电池包内模组个数;
决策子单元2212设置为依次判断每个电池模组电压与电池模组平均电压的差值与第一预设阈值是否满足公式:|Uimod-Umavg|>△Um,其中,△Um为第一预设阈值,若满足,则将所述电池模组确定为异常电池模组;
决策子单元2212还设置为依次判断每个单体电芯电压与单体电芯平均电压的差值与第二预设阈值是否满足如下公式:
|Uis-Usavg|>△Us
若满足,则将单体电芯确定为异常单体电芯;其中,△Us为第二预设阈值。
本实施例中,单体电芯容量差值均衡控制单元222可以包括电芯容量计算子单元2221和第一均衡开关控制子单元2222。
其中,电芯容量计算子单元2221设置为根据电池模组温度和动力电池的电流通过二维时间表通过插值的方式得到单体电芯电压达到稳定电压的稳定时长;其中,二维时间表为根据电池包台架试验获取的温度、动力电池电流及稳定时长的二维表;其中,插值的方式可以理解为通过线性差值的方式。
电芯容量计算子单元2221设置为计算所述动力电池的电流小于预设电流的电流持续时长;
电芯容量计算子单元2221还设置为判断所述电流持续时长或整车休眠时间大于稳定时长后,根据开路电压法得到单体电芯的剩余电量SOC,根据所述单体电芯的SOC按照如下公式计算单体电芯容量:
Ahis=SOC*C
其中,C为标称容量,Ahis为单体电芯容量;
并按照公式:Ahsmin=min(Ahis)确定最小单体电芯容量,其中,Ahsmin为最 小单体电芯容量;
第一均衡开关控制子单元2222设置为将每个单体电芯的容量依次与最小单体电芯容量做差,将满足如下公式的单体电芯的均衡开关开启:
Ahis-Ahsmin>△Ahs
其中,△Ahs为单体电芯容量差值设定阈值。
本实施例中,单体电芯压差冗余控制单元223可以包括:监测子单元2231以及第二均衡开关控制子单元2232。
其中,监测子单元2231设置为在均衡开关开启后,实时监测单体电芯的电压,计算单体电芯电压最大值以及计算单体电芯电压最小值;
第二均衡开关控制子单元2232设置为根据当单体电芯电压最大值与单体电芯电压最小值的差值与设定阈值满足公式:|Uismax-Uismin|≤△U时,确定将全部单体电芯的均衡开关关闭;其中,Uismax表示单体电芯电压最大值,Uismin表示单体电芯电压最小值,△U为设定阈值。
本实施例中,均衡回路诊断监控单元224可以包括第一诊断子单元2241、第二诊断子单元2242以及第三均衡开关控制子单元2243。
第一诊断子单元2241设置为在均衡开关开启后,诊断均衡回路是否发生开路故障;
第二诊断子单元2242设置为在均衡开关关闭后,诊断均衡回路是否发生短路故障;
第三均衡开关控制子单元2243设置为当确定发生开路故障时将全部均衡开关关闭,当确定发生短路故障或开路故障时对均衡回路进行修护。
示例性的,第一诊断子单元2241设置为诊断均衡回路是否发生开路故障包括:周期性读取均衡回路采样点的电压值,将该电压值与采样芯片的均衡寄存器中的均衡开关开路电压、均衡开关开路阈值、均衡短路开关开路电压以及均衡线路的短路开路阈值进行比较。可以包括以下两种情况:
当均衡开关开启时,诊断均衡回路开路故障,则可以周期性读取均衡回路多个采样点的电压值,将该电压值分别与均衡开关开路电压和均衡线路的开路阈值进行比较,若该电压值大于均衡开关开路电压和/或该电压值大于均衡线路的开路阈值则确定均衡回路发生开路故障;
当均衡开关关闭时,诊断均衡回路短路故障,则可以周期性读取均衡回路中采样点的电压值,将该电压值分别与均衡短路开关开路电压和均衡线路的短路开路阈值进行比较,若该电压值大于均衡短路开关开路电压和/或均衡线路的 短路开路阈值,则确定均衡回路发生短路故障。
本实施例中,均衡看门狗监测单元225包括程序监测子单元2251以及第四均衡开关控制子单元2252;
其中,程序监测子单元2251设置为对均衡监控控制模块的系统程序运行以及数据传输进行实时监测;
第四均衡开关控制子单元2252设置为当监测到的程序运行正常时,将看门狗持续进行加1操作,当监测到程序运行不正常且监测到均衡开关开启后的持续时间达到预设时间值后,将全部均衡开关关闭。
执行模块230设置为将第一均衡控制指令、第二均衡控制指令、第三均衡控制指令或者第四均衡控制指令发送至均衡开关寄存器,以使均衡开关寄存器根据第一均衡控制指令、第二均衡控制指令、第三均衡控制指令或者第四均衡控制指令开启或关闭均衡开关。
本申请实施例二提供的一种动力电池的均衡监控控制系统,能够有效解决动力电池内由于均衡回路、软件问题以及硬件等问题原因导致的均衡电路失控,一些单体电芯不响应指令,一些单体电芯过度放电或不放电导致的容量不一致进而使得单体电芯一致性更差的问题。
实施例三
图3为本申请实施例三提供的一种动力电池的均衡监控控制方法的流程示意图,本实施例可适用于当动力电池内电路不均衡时对动力电池内进行均衡监控控制的情况,该方法可以由上述实施例提供的动力电池的均衡监控控制系统的均衡监控控制模块中的三层软件架构的监控机制来执行,该系统可以由硬件和软件来实现,该方法包括如下步骤。
S310、获取单体电芯电压、电池模组温度、动力电池的电流以及均衡回路采样点电压。
其中,单体电芯电压、电池模组温度以及动力电池电流以及均衡回路采样点电压经过采集后可以通过输入模块输入动力电池的均衡监控控制系统。
S320、根据单体电芯电压以及电池模组电压对电池包是否均衡进行预判断。
其中,电池模组电压根据单体电芯电压获得。
本步骤可以为:电压计算子单元根据单体电芯电压按照如下公式计算单体电芯平均电压和电池模组电压:
Figure PCTCN2022076722-appb-000002
其中,Uis为单体电芯电压;m为动力电池内部单体电芯个数;n为电池模组内部单体电芯个数,Usavg为单体电芯平均电压,Uimod为电池模组电压,并根据电池模组电压按照如下公式计算电池模组平均电压:
Umavg=Uimod/Nmod
其中,Umavg为电池模组平均电压,Nmod为电池包内模组个数;
通过决策子单元依次判断每个电池模组电压与所述电池模组平均电压的差值与第一预设阈值是否满足公式:|Uimod-Umavg|>△Um,其中,△Um为第一预设阈值,若满足,则将所述电池模组确定为异常电池模组;通过决策子单元依次判断每个单体电芯电压与所述单体电芯平均电压的差值与第二预设阈值是否满足如下公式:
|Uis-Usavg|>△Us
若满足,则将单体电芯确定为异常单体电芯;其中,△Us为第二预设阈值。
S330、根据电池模组温度、动力电池的电流以及单体电芯电压得到单体电芯容量和最小单体电芯容量,根据单体电芯容量与最小单体电芯容量的差值确定单体电芯对应的均衡开关是否开启,若开启,则生成第一均衡控制指令,并将第一均衡控制指令发送至执行模块。
在本步骤中,通过电芯容量计算子单元可以根据模组温度和动力电池电流通过二维时间表通过插值的方式得到单体电芯电压达到稳定电压的稳定时长;通过电芯容量计算子单元计算动力电池电流小于预设电流的电流持续时长;还可以通过电芯容量计算子单元判断电流持续时长或整车休眠时间大于所述稳定时长后,根据开路电压法得到单体电芯的剩余电量SOC,根据单体电芯的SOC按照如下公式计算单体电芯容量:
Ahis=SOC*C
其中,C为标称容量,Ahis为单体电芯容量;
并按照公式:Ahsmin=min(Ahis)确定最小单体电芯容量,其中,Ahsmin为最小单体电芯容量;
通过第一均衡开关控制子单元将每个单体电芯的容量依次与最小单体电芯容量做差,将满足如下公式的单体电芯的均衡开关开启:
Ahis-Ahsmin>△Ahs
其中,△Ahs为单体电芯容量差值设定阈值。
S340、在均衡开关开启后,对单体电芯电压进行实时监测,根据监测结果确定是否关闭均衡开关,若关闭,则生成第二均衡控制指令,并将第二均衡控 制指令发送至执行模块。
在本步骤中,可以通过监测子单元在均衡开关开启后,实时监测单体电芯的电压,计算单体电芯电压最大值以及计算单体电芯电压最小值;通过第二均衡开关控制子单元根据当所述单体电芯电压最大值与单体电芯电压最小值的差值与设定阈值满足公式:|Uismax-Uismin|≤△U时,确定将全部单体电芯的均衡开关关闭;其中,Uismax表示单体电芯电压最大值,Uismin表示单体电芯电压最小值,△U为设定阈值。
S350、在均衡开关开启后,根据均衡回路采样点电压确定是否关闭均衡开关,若关闭,则生成第三均衡控制指令,并将第三均衡控制指令发送至执行模块。
在本步骤中,在均衡开关开启后可以通过第一诊断子单元诊断均衡回路是否发生开路故障;通过第二诊断子单元诊断均衡回路是否发生短路故障;当确定发生开路故障时将全部均衡开关关闭,当确定发生短路故障或开路故障时对所述均衡回路进行修护。
S360、对系统的程序运行进行监控,根据监控结果确定是否关闭均衡开关,若关闭,则生成第四均衡控制指令,并将第四均衡控制指令发送至执行模块。
在本步骤中,通过程序监测子单元对均衡监控控制模块的系统程序运行以及数据传输进行实时监测;当第四均衡开关控制子单元监测到的程序运行正常时,通过第四均衡开关控制子单元将看门狗持续进行加1操作,当第四均衡开关控制子单元监测到程序运行不正常且监测到均衡开关开启后的持续时间达到预设时间值后,将全部均衡开关关闭。
本申请实施例三提供的一种动力电池的均衡监控控制方法,说明了动力电池的均衡监控控制系统的均衡监控控制方法。利用该方法,能够有效解决动力电池内电路不均衡导致电池容量一致性差的问题。
实施例四
在上述实施例的基础上,本申请实施例四对一种动力电池的均衡监控控制方法进行示例性说明。图4为本申请实施例四提供的一种动力电池的均衡监控控制方法的软件层示意图,如图4所示,均衡监控控制模块中的三层软件架构包括应用层、集成层以及平台软件层。在应用层可以对电池包是否均衡进行预判断、对单体电芯电容量差值均衡控制以及对单体电芯电压差冗余控制;在集成层可以进行均衡回路诊断监控,在平台软件层可以进行均衡看门狗监测。
示例性的,图5为本申请实施例四提供的电池包均衡预判的流程图,可说 明电池包均衡预判的过程。如图5所示,对电池包进行均衡预判可以包括如下步骤。
步骤1、计算电池包内每个电池模组的电压Uimod,计算所有电池模组的平均电压Umavg。
步骤2、将每个电池模组电压Uimod依次与Umavg进行比较,将差值大于阈值△Um的电池模组筛选出来进行维修更换。
其中,可以启动线下维修的方式对筛选出的异常电池模组进行维修,使将异常电池模组剔除后得到的电池包继续执行步骤3。
步骤3、计算电池包中所有单体电芯的平均电压Uiavg。
步骤4、将采集的单体电芯电压Ui依次与Uiavg进行比较,将差值大于阈值△Us的单体电芯筛选出来进行维修更换。
其中,可以启动线下维修的方式对筛选出的异常单体电芯进行维修,使将异常单体电芯剔除后的电池包继续进行单体电芯电容量差值均衡控制。
示例性的,图6为本申请实施例四提供的单体电芯电容量差值均衡控制的流程图,如图6所示,对单体电芯容量差值均衡控制可以包括如下步骤。
步骤1、根据不同的电池模组温度采样值设定不同的电压稳定时间Tmap;计算动力电池的电流值小于一个阈值的稳定时间Ti;读取电动汽车的整车休眠时间T。
步骤2、判断T或者Ti是否大于Tmap,若是,则返回步骤1;若否,则执行步骤3。
步骤3、计算电池包内单体电芯的SOCis以及对应的单体电芯容量Ahis即单体电芯的电容量;确定电池包内最小SOCis对应的最小单体电芯容量Ahsmin。
步骤4、将每个Ahis依次与Ahsmin作差,判断差值是否大于阈值△Ahs,若是,则开启单体电芯的均衡开关;若否,则返回执行步骤1。
当单体电芯的均衡开关开启后,还可以对开启均衡开关的单体电芯进行均衡控制。
示例性的,图7为本申请实施例四提供的单体电芯均衡控制的流程图,对单体电芯均衡控制可以包括均衡看门狗监测、均衡回路诊断监控以及单体电芯电压差冗余控制。如图7所示,对单体电芯进行均衡控制可以包括如下步骤。
步骤1、判断均衡看门狗监测到的信息是否满足条件,若是,则执行步骤7;若否,则执行步骤2。
步骤2、对均衡回路进行故障监测,若监测到故障则执行步骤7;若未监测到故障则执行步骤3。
步骤3、判断单体电芯电压Uis与最小单体电芯电压Us的差值是否小于阈值△U,若是,则执行步骤6;若否,则执行步骤4。
步骤4、计算所有单体电芯需要释放的初始容量Ahimod,计算单体电芯在每一运算周期释放的容量ahimod并进行累加。
步骤5、判断Ahimod与ahimod差值的绝对值是否小于或等于0,若否,则返回执行步骤4;若是,则继续执行步骤6。
步骤6、发送均衡DISABLE指令。
步骤7、均衡DISABLE开关寄存器,均衡开关关闭。
本申请实施例四提供的一种动力电池的均衡监控控制方法,通过电池包均衡开启前的预判,可以将异常电池模组和异常单体电芯筛选出来,防止由于电池生产批次、电池生产工艺不一致性、电池老化等原因导致的依靠动力电池本身的均衡功能很难修复的单体电芯一致性问题;单体电芯容量差值均衡控制可以依据多个单体电芯的容量的差异作为均衡开启的控制条件,通过均衡电路的闭合对单体电芯多余容量进行释放,直至多个单体电芯达到容量的一致性要求;电池包均衡功能采用单体电芯电压压差作为均衡的冗余保护,单体电芯的电压是由采集模块直接监控处理,而且无论负载电流的大小只要单体电压压差满足最小设定压差阈值,则关闭均衡开关,防止由于计算误差等原因引起的均衡过度;集成层的均衡回路诊断保护,通过均衡开启后对均衡回路进行实时监测,以确保多个单体电芯没有误开启或者未开启的操作;平台软件层均衡看门狗监测,通过平台软件层的配置方式一旦检测到程序跑死或者通讯故障等问题就通过寄存器直接断开均衡电路。
实施例五
图8为本申请实施例五提供的一种服务器的结构示意图。如图8所示,本申请实施例五提供的服务器包括:一个或多个处理器81和存储装置82;该服务器中的处理器81可以是一个或多个,图8中以一个处理器81为例;存储装置82设置为存储一个或多个程序;所述一个或多个程序被所述一个或多个处理器81执行,使得所述一个或多个处理器81实现如本申请实施例中任一项所述的方法。
所述服务器还可以包括:输入装置83和输出装置84。
服务器中的处理器81、存储装置82、输入装置83和输出装置84可以通过总线或其他方式连接,图8中以通过总线连接为例。
该服务器中的存储装置82作为一种计算机可读存储介质,可设置为存储一个或多个程序,所述程序可以是软件程序、计算机可执行程序以及模块,如本申请实施例一或二所提供的动力电池的均衡监控控制方法对应的程序指令/模块。处理器81通过运行存储在存储装置82中的软件程序、指令以及模块,从而执行服务器的多种功能应用以及数据处理,即实现上述方法实施例中动力电池的均衡监控控制方法。
存储装置82可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据服务器的使用所创建的数据等。此外,存储装置82可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储装置82可包括相对于处理器81远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置83可设置为接收输入的数字或字符信息,以及产生与服务器的用户设置以及功能控制有关的键信号输入。输出装置84可包括显示屏等显示设备。
并且,当上述服务器所包括一个或者多个程序被所述一个或者多个处理器81执行时,程序进行如下操作:
获取单体电芯电压、电池模组温度、动力电池的电流以及均衡回路采样点电压;
根据所述单体电芯电压以及电池模组电压对电池包是否均衡进行预判断,其中,所述电池模组电压根据所述单体电芯电压获得;
根据所述电池模组温度、动力电池的电流以及单体电芯电压得到单体电芯容量和最小单体电芯容量,根据所述单体电芯容量与最小单体电芯容量的差值确定单体电芯对应的均衡开关是否开启,若开启,则生成第一均衡控制指令;并将所述第一均衡控制指令发送至执行模块;
在均衡开关开启后,对单体电芯电压进行实时监测,根据监测结果确定是否关闭均衡开关,若关闭,则生成第二均衡控制指令,并将所述第二均衡控制指令发送至执行模块;
在均衡开关开启后,根据均衡回路采样点电压确定是否关闭均衡开关,若关闭,则生成第三均衡控制指令,并将所述第三均衡控制指令发送至执行模块;
对所述系统的程序运行进行监控,根据监控结果确定是否关闭均衡开关, 若关闭,则生成第四均衡控制指令,并将所述第四均衡控制指令发送至所述执行模块。
实施例六
本申请实施例六提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时用于执行动力电池的均衡监控控制方法,该方法包括:
获取单体电芯电压、电池模组温度、动力电池的电流以及均衡回路采样点电压;
根据所述单体电芯电压以及电池模组电压对电池包是否均衡进行预判断,其中,所述电池模组电压根据所述单体电芯电压获得;
根据所述电池模组温度、动力电池的电流以及单体电芯电压得到单体电芯容量和最小单体电芯容量,根据所述单体电芯容量与最小单体电芯容量的差值确定单体电芯对应的均衡开关是否开启,若开启,则生成第一均衡控制指令;并将所述第一均衡控制指令发送至执行模块;
在均衡开关开启后,对单体电芯电压进行实时监测,根据监测结果确定是否关闭均衡开关,若关闭,则生成第二均衡控制指令,并将所述第二均衡控制指令发送至执行模块;
在均衡开关开启后,根据均衡回路采样点电压确定是否关闭均衡开关,若关闭,则生成第三均衡控制指令,并将所述第三均衡控制指令发送至执行模块;
对所述系统的程序运行进行监控,根据监控结果确定是否关闭均衡开关,若关闭,则生成第四均衡控制指令,并将所述第四均衡控制指令发送至所述执行模块。
可选的,该程序被处理器执行时还可以用于执行本申请任意实施例所提供的动力电池的均衡控制方法。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是,电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、可擦式可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、闪存、光纤、便携式紧凑磁盘只读存储器(Compact Disc Read Only Memory, CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。存储介质可以是非暂态(non-transitory)存储介质。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于:电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:无线、电线、光缆、无线电频率(Radio Frequency,RF)等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言,诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言,诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络,包括局域网(Local Area Network,LAN)或广域网(Wide Area Network,WAN),连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。

Claims (10)

  1. 一种动力电池的均衡监控控制系统,包括:输入模块、均衡监控控制模块和执行模块,所述均衡监控控制模块分别与所述输入模块和所述执行模块相连;
    所述输入模块设置为将均衡回路采样点电压、电池模组温度、动力电池的电流以及单体电芯电压传入所述均衡监控控制模块;
    所述均衡监控控制模块包括电池包均衡预判单元、单体电芯容量差值均衡控制单元、单体电芯压差冗余控制单元、均衡回路诊断监控单元以及均衡看门狗监测单元;
    所述电池包均衡预判单元,设置为根据所述单体电芯电压以及电池模组电压对电池包是否均衡进行预判断,其中,所述电池模组电压根据所述单体电芯电压获得;
    所述单体电芯容量差值均衡控制单元设置为根据所述电池模组温度、所述动力电池的电流以及所述单体电芯电压得到单体电芯容量和最小单体电芯容量,根据所述单体电芯容量与所述最小单体电芯容量的差值确定单体电芯对应的均衡开关是否开启,在单体电芯对应的均衡开关开启的情况下,生成第一均衡控制指令,并将所述第一均衡控制指令发送至所述执行模块;
    所述单体电芯压差冗余控制单元设置为在均衡开关开启后,对所述单体电芯电压进行实时监测,根据监测结果确定是否关闭均衡开关,在关闭均衡开关的情况下,生成第二均衡控制指令,并将所述第二均衡控制指令发送至所述执行模块;
    所述均衡回路诊断监控单元设置为在均衡开关开启后,根据所述均衡回路采样点电压确定是否关闭均衡开关,在关闭均衡开关的情况下,生成第三均衡控制指令,并将所述第三均衡控制指令发送至所述执行模块;
    所述均衡看门狗监测单元设置为对所述系统的程序运行进行监控,根据监控结果确定是否关闭均衡开关,在关闭均衡开关的情况下,生成第四均衡控制指令,并将所述第四均衡控制指令发送至所述执行模块;
    所述执行模块设置为根据所述第一均衡控制指令、所述第二均衡控制指令、所述第三均衡控制指令或者所述第四均衡控制指令对均衡开关进行控制。
  2. 根据权利要求1所述的系统,其中,所述电池包均衡预判单元包括电压计算子单元以及决策子单元;
    所述电压计算子单元设置为根据所述单体电芯电压按照如下公式计算单体电芯平均电压和电池模组电压:
    Figure PCTCN2022076722-appb-100001
    其中,Uis为所述单体电芯电压;m为动力电池内部单体电芯个数;n为电池模组内部单体电芯个数,Usavg为所述单体电芯平均电压,Uimod为所述电池模组电压,并根据所述电池模组电压按照如下公式计算电池模组平均电压:
    Umavg=Uimod/Nmod
    其中,Umavg为所述电池模组平均电压,Nmod为电池包内模组个数;
    所述决策子单元设置为依次判断每个电池模组电压与所述电池模组平均电压的差值与第一预设阈值是否满足公式:|Uimod-Umavg|>△Um,其中,△Um为第一预设阈值,在满足公式的情况下,将所述电池模组确定为异常电池模组;
    所述决策子单元还设置为依次判断每个单体电芯电压与所述单体电芯平均电压的差值与第二预设阈值是否满足如下公式:
    |Uis-Usavg|>△Us
    在满足公式的情况下,将所述单体电芯确定为异常单体电芯,其中,△Us为所述第二预设阈值。
  3. 根据权利要求1所述的系统,其中,所述单体电芯容量差值均衡控制单元包括电芯容量计算子单元和第一均衡开关控制子单元;所述电芯容量计算子单元设置为根据所述电池模组温度和所述动力电池的电流通过二维时间表通过插值的方式得到所述单体电芯电压达到稳定电压的稳定时长;其中,所述二维时间表为根据电池包台架试验获取的温度、动力电池的电流及稳定时长的二维表;
    所述电芯容量计算子单元还设置为计算所述动力电池的电流小于预设电流的电流持续时长;
    所述电芯容量计算子单元还设置为判断所述电流持续时长或整车休眠时间大于所述稳定时长后,根据开路电压法得到单体电芯的剩余电量SOC,根据所述单体电芯的SOC按照如下公式计算所述单体电芯容量:
    Ahis=SOC*C
    其中,C为标称容量,Ahis为所述单体电芯容量;
    并按照公式:Ahsmin=min(Ahis)确定所述最小单体电芯容量,其中,Ahsmin为所述最小单体电芯容量;
    所述第一均衡开关控制子单元设置为将每个单体电芯的容量依次与所述最小单体电芯容量做差,将满足如下公式的单体电芯的均衡开关开启:
    Ahis-Ahsmin>△Ahs
    其中,△Ahs为单体电芯容量差值设定阈值。
  4. 根据权利要求1所述的系统,其中,所述单体电芯压差冗余控制单元包括监测子单元以及第二均衡开关控制子单元;
    所述监测子单元设置为在均衡开关开启后,实时监测单体电芯的电压,计算单体电芯电压最大值以及计算单体电芯电压最小值;
    所述第二均衡开关控制子单元设置为根据在所述单体电芯电压最大值与所述单体电芯电压最小值的差值与设定阈值满足公式:|Uismax-Uismin|≤△U的情况下,确定将全部单体电芯的均衡开关关闭,其中,Uismax表示所述单体电芯电压最大值,Uismin表示所述单体电芯电压最小值,△U为所述设定阈值。
  5. 根据权利要求1所述的系统,其中,所述均衡回路诊断监控单元包括第一诊断子单元、第二诊断子单元以及第三均衡开关控制子单元;
    所述第一诊断子单元设置为在均衡开关开启后,诊断均衡回路是否发生开路故障;
    所述第二诊断子单元设置为在均衡开关关闭后,诊断均衡回路是否发生短路故障;
    所述第三均衡开关控制子单元设置为在确定发生开路故障的情况下将全部均衡开关关闭,在确定发生短路故障或开路故障的情况下对所述均衡回路进行修护。
  6. 根据权利要求1所述的系统,其中,所述均衡看门狗监测单元包括程序监测子单元以及第四均衡开关控制子单元;
    所述程序监测子单元设置为对所述均衡监控控制模块的系统程序运行以及数据传输进行实时监测;
    所述第四均衡开关控制子单元设置为在监测到的程序运行正常的情况下,将看门狗持续进行加1操作,当监测到程序运行不正常且监测到均衡开关开启 后的持续时间达到预设时间值后,将全部均衡开关关闭。
  7. 根据权利要求1所述的系统,其中,所述执行模块是设置为将所述第一均衡控制指令、所述第二均衡控制指令、所述第三均衡控制指令或者所述第四均衡控制指令发送至均衡开关寄存器,以使所述均衡开关寄存器根据所述第一均衡控制指令、所述第二均衡控制指令、所述第三均衡控制指令或者所述第四均衡控制指令开启或关闭均衡开关。
  8. 一种动力电池的均衡监控控制方法,其中,所述方法由均衡监控控制模块中的三层软件架构的监控机制执行,包括:
    获取单体电芯电压、电池模组温度、动力电池的电流以及均衡回路采样点电压;
    根据所述单体电芯电压以及电池模组电压对电池包是否均衡进行预判断,其中,所述电池模组电压根据所述单体电芯电压获得;
    根据所述电池模组温度、所述动力电池的电流以及所述单体电芯电压得到单体电芯容量和最小单体电芯容量,根据所述单体电芯容量与所述最小单体电芯容量的差值确定单体电芯对应的均衡开关是否开启,在单体电芯对应的均衡开关开启的情况下,生成第一均衡控制指令,并将所述第一均衡控制指令发送至执行模块;
    在均衡开关开启后,对所述单体电芯电压进行实时监测,根据监测结果确定是否关闭均衡开关,在关闭均衡开关的情况下,生成第二均衡控制指令,并将所述第二均衡控制指令发送至所述执行模块;
    在均衡开关开启后,根据所述均衡回路采样点电压确定是否关闭均衡开关,在关闭均衡开关的情况下,生成第三均衡控制指令,并将所述第三均衡控制指令发送至所述执行模块;
    对所述系统的程序运行进行监控,根据监控结果确定是否关闭均衡开关,在关闭均衡开关的情况下,生成第四均衡控制指令,并将所述第四均衡控制指令发送至所述执行模块。
  9. 一种服务器,包括:
    一个或多个处理器;
    存储装置,设置为存储一个或多个程序;
    所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器设置为执行权利要求8所述的动力电池的均衡监控控制方法。
  10. 一种计算机可读存储介质,存储有计算机程序,其中,所述计算机程 序被处理器执行时实现如权利要求8所述的动力电池的均衡监控控制方法。
PCT/CN2022/076722 2021-03-18 2022-02-18 动力电池的均衡监控控制系统、方法、服务器及存储介质 WO2022193899A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22770254.5A EP4287449A1 (en) 2021-03-18 2022-02-18 Balance monitoring control system and method for power battery, server, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110291971.6A CN113054706A (zh) 2021-03-18 2021-03-18 一种动力电池的均衡监控控制系统及方法
CN202110291971.6 2021-03-18

Publications (1)

Publication Number Publication Date
WO2022193899A1 true WO2022193899A1 (zh) 2022-09-22

Family

ID=76513352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076722 WO2022193899A1 (zh) 2021-03-18 2022-02-18 动力电池的均衡监控控制系统、方法、服务器及存储介质

Country Status (3)

Country Link
EP (1) EP4287449A1 (zh)
CN (1) CN113054706A (zh)
WO (1) WO2022193899A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118017656A (zh) * 2024-04-07 2024-05-10 深圳海辰储能科技有限公司 电池接入方法、装置、电子设备及存储介质

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113054706A (zh) * 2021-03-18 2021-06-29 中国第一汽车股份有限公司 一种动力电池的均衡监控控制系统及方法
CN114109858B (zh) * 2021-09-24 2023-12-01 中国船舶重工集团公司第七一九研究所 一种锅炉给水泵集群转速均衡控制方法和系统
CN113879177B (zh) * 2021-09-30 2023-05-23 重庆长安新能源汽车科技有限公司 一种动力电池均衡控制方法
CN114268150A (zh) * 2021-12-20 2022-04-01 上海瑞浦青创新能源有限公司 锂电池均衡控制的系统和方法
CN114062956B (zh) * 2022-01-18 2022-04-08 深圳市智安新能源科技有限公司 电池的安全控制方法及智能电池
CN114435182B (zh) * 2022-04-08 2022-07-12 北京远特科技股份有限公司 一种动力电池的控制方法、装置、电子设备及介质
CN116080406B (zh) * 2023-04-10 2023-06-09 深圳市锐深科技有限公司 电动轮船动力电池组监测方法,装置,介质及电子设备
CN117239883B (zh) * 2023-11-13 2024-03-15 深圳市立泰能源科技有限公司 一种船用电池状态采集、均衡系统及方法
CN117595466B (zh) * 2024-01-18 2024-05-14 杭州高特电子设备股份有限公司 一种双重冗余采集监控的电池主动均衡系统和控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110127960A1 (en) * 2009-12-02 2011-06-02 American Electric Vehicles, Inc. System and Method For Equalizing a Battery Pack During a Battery Pack Charging Process
CN106042961A (zh) * 2016-06-15 2016-10-26 重庆长安汽车股份有限公司 一种动力电池被动均衡控制方法及系统
CN108233469A (zh) * 2017-12-28 2018-06-29 常州普莱德新能源电池科技有限公司 动力电池均衡控制方法及控制装置
CN109742818A (zh) * 2018-12-18 2019-05-10 桑顿新能源科技有限公司 电池均衡评估方法与装置、计算机设备、存储介质
CN111490304A (zh) * 2020-05-18 2020-08-04 重庆金康动力新能源有限公司 一种电池均衡使能方法、装置、存储介质和电池包
CN113054706A (zh) * 2021-03-18 2021-06-29 中国第一汽车股份有限公司 一种动力电池的均衡监控控制系统及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009071936A (ja) * 2007-09-11 2009-04-02 Fuji Heavy Ind Ltd 組電池の電圧均等化システム
JP5571485B2 (ja) * 2010-07-14 2014-08-13 矢崎総業株式会社 組電池の電圧均等化装置
CN201947015U (zh) * 2011-01-18 2011-08-24 中国船舶重工集团公司第七一二研究所 锂离子动力电池控制装置
CN203434650U (zh) * 2013-06-27 2014-02-12 比亚迪股份有限公司 一种电池管理装置
CN109995102B (zh) * 2019-03-01 2022-04-01 中国第一汽车股份有限公司 一种电动汽车用动力电池均衡系统及控制方法
CN112213648B (zh) * 2019-10-30 2023-06-02 蜂巢能源科技有限公司 电芯均衡开启的判断方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110127960A1 (en) * 2009-12-02 2011-06-02 American Electric Vehicles, Inc. System and Method For Equalizing a Battery Pack During a Battery Pack Charging Process
CN106042961A (zh) * 2016-06-15 2016-10-26 重庆长安汽车股份有限公司 一种动力电池被动均衡控制方法及系统
CN108233469A (zh) * 2017-12-28 2018-06-29 常州普莱德新能源电池科技有限公司 动力电池均衡控制方法及控制装置
CN109742818A (zh) * 2018-12-18 2019-05-10 桑顿新能源科技有限公司 电池均衡评估方法与装置、计算机设备、存储介质
CN111490304A (zh) * 2020-05-18 2020-08-04 重庆金康动力新能源有限公司 一种电池均衡使能方法、装置、存储介质和电池包
CN113054706A (zh) * 2021-03-18 2021-06-29 中国第一汽车股份有限公司 一种动力电池的均衡监控控制系统及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118017656A (zh) * 2024-04-07 2024-05-10 深圳海辰储能科技有限公司 电池接入方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
EP4287449A1 (en) 2023-12-06
CN113054706A (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
WO2022193899A1 (zh) 动力电池的均衡监控控制系统、方法、服务器及存储介质
KR102059076B1 (ko) 스위치 부품의 고장 진단 장치 및 방법
CN114050633B (zh) 一种锂电池储能系统的动态管控方法、装置和电子设备
WO2021249083A1 (zh) 车辆的电池管理方法和系统、车辆和服务器
KR101732854B1 (ko) 축전지 장치 및 축전지 시스템
WO2022111555A1 (zh) 用于换电电池的容量均衡方法、装置、设备及存储介质
CN102854473A (zh) 电动汽车动力电池自动测试诊断系统和方法
JP7485493B2 (ja) 通信エラーの原因を診断するためのスレーブbms、マスターbmsおよびバッテリパック
JP7384529B2 (ja) 電池診断装置および方法
KR20200107813A (ko) 배터리 관리 시스템 및 배터리 관리 시스템 진단 방법
JPWO2018180520A1 (ja) 監視装置および蓄電システム
KR101291287B1 (ko) 예비용 배터리를 구비한 유피에스의 유지보수 시스템
JP2022535766A (ja) 電池セル異常劣化診断装置および方法
JP7501976B2 (ja) バッテリー異常診断装置及び方法
CN111337823B (zh) 继电器失效检测装置及方法
KR20230052763A (ko) 배터리 진단 장치, 배터리 팩, 전기 차량, 및 배터리 진단 방법
JP2022535114A (ja) 並列バッテリーリレー診断装置及び方法
CN109038756B (zh) 电池包控制方法、装置、系统和电池包
JP6235441B2 (ja) 無瞬断系統切換装置および蓄電池劣化診断方法
US20240123866A1 (en) Method for equalizing battery capacities of vehicle, electronic device, and vehicle
CN111983490B (zh) 一种核容测试系统、方法及装置
KR20220080471A (ko) 배터리 관리 시스템을 내장한 대용량 배터리 장치
KR20190142152A (ko) 시스템 bms 포함하는 에너지 저장 시스템
CN112561298B (zh) 机器人电池管理方法、装置、控制设备及存储介质
KR20230051801A (ko) 단위 배터리 모듈별 제어가 가능한 리튬배터리 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22770254

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022770254

Country of ref document: EP

Effective date: 20230901

NENP Non-entry into the national phase

Ref country code: DE