WO2022110811A1 - 一种非金属半导体材料的提纯设备和提纯方法 - Google Patents

一种非金属半导体材料的提纯设备和提纯方法 Download PDF

Info

Publication number
WO2022110811A1
WO2022110811A1 PCT/CN2021/104410 CN2021104410W WO2022110811A1 WO 2022110811 A1 WO2022110811 A1 WO 2022110811A1 CN 2021104410 W CN2021104410 W CN 2021104410W WO 2022110811 A1 WO2022110811 A1 WO 2022110811A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
furnace body
crucible
pressure
melt
Prior art date
Application number
PCT/CN2021/104410
Other languages
English (en)
French (fr)
Inventor
王书杰
孙聂枫
刘惠生
孙同年
徐森锋
史艳磊
邵会民
付莉杰
姜剑
王阳
李晓岚
Original Assignee
中国电子科技集团公司第十三研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011327308.9A external-priority patent/CN112429708B/zh
Priority claimed from CN202011325625.7A external-priority patent/CN112408345B/zh
Application filed by 中国电子科技集团公司第十三研究所 filed Critical 中国电子科技集团公司第十三研究所
Publication of WO2022110811A1 publication Critical patent/WO2022110811A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/04Purification of phosphorus
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B30/00Obtaining antimony, arsenic or bismuth
    • C22B30/04Obtaining arsenic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/02Refining by liquating, filtering, centrifuging, distilling, or supersonic wave action including acoustic waves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to the field of preparation of high-purity materials, and is especially suitable for the preparation of high-purity non-metallic materials, in particular to a device and method for purifying volatile non-metallic conductor materials through metal melt.
  • Phosphorus, sulfur and arsenic are important semiconductor raw materials, which can prepare semiconductor materials such as indium phosphide, gallium phosphide, gallium arsenide, and molybdenum disulfide, and play an important role in the national economy. Manufacturing semiconductor materials requires high purity of semiconductor raw materials, generally reaching more than 99.999%.
  • Semiconductor raw materials generally contain impurity elements such as Fe, Ca, Co, Mg, Cr, Cd, Mn, Ni, Cu, Pb, Zn, and Al.
  • elements such as phosphorus, sulfur and arsenic have similar properties.
  • other elements will appear in the form of impurities, such as sulfur and arsenic in phosphorus, phosphorus and arsenic in sulfur, and phosphorus in arsenic. and sulfur.
  • impurities such as sulfur and arsenic in phosphorus, phosphorus and arsenic in sulfur, and phosphorus in arsenic. and sulfur.
  • impurities with similar properties are difficult to remove.
  • the present invention has been made to solve the above-mentioned problems.
  • the present invention adopts the following technical scheme: a purification equipment for non-metallic semiconductor materials, the purification equipment includes a sealed furnace body, a balanced pressure valve arranged on the side of the furnace body, and the purification equipment also includes a furnace body.
  • the crucible in the lower middle position, the heating and supporting structure of the crucible, the lifting and lowering injection mechanism arranged directly above the crucible, and the lifting and rotating recovery mechanism arranged beside the lifting and lowering injection mechanism.
  • the liftable injection mechanism includes a source furnace and a source furnace lifting rod connected to the source furnace;
  • the source furnace includes a carrier, a source furnace heating wire arranged on the periphery of the carrier, and an injection pipe connected to the carrier from below; the source furnace is lifted and lowered.
  • the rod extends to the outside of the furnace body to lift and rotate the source furnace through a drive mechanism.
  • the present invention also proposes a purification method for non-metallic semiconductor materials, and the purification method includes the following steps:
  • Step A placing the metal in the crucible of the furnace body, placing the purified substance of the non-metallic material in the carrier; the furnace body is evacuated to 10 -5 Pa;
  • Step B the furnace body is filled with inert gas, so that the pressure of the furnace body is higher than the design pressure;
  • Step C heating the metal to the design temperature, and forming a metal melt after the metal is melted;
  • Step D descend the furnace source, insert the metal melt into the injection pipe;
  • Step E lift the recovery mechanism to the top of the furnace body; heat the non-metallic material to be purified to gasification; inject the gasified non-metallic material into the metal melt until the non-metallic material in the carrier is purified completely vaporized;
  • Step F rise furnace source; stop heating to metal;
  • Step G the recovery mechanism is placed above the crucible to reduce the pressure of the furnace body
  • step H the volatilized air bubbles are collected, and at the same time, the temperature of the recycler is continuously lowered until the air bubbles disappear.
  • the design temperature is T+m
  • T is the melting point of the binary compound formed by the metal and the purified non-metallic material
  • the value of m ranges from 10 to 200K.
  • the design pressure is the saturated vapor pressure at which the metal and the non-metal form a 1% melt system at the design temperature.
  • step G the pressure of the furnace body is reduced to the saturated vapor pressure of the metal and the non-metal to form a Q% melt system; Q ⁇ 1.
  • non-metallic material and the metal synthesized are semiconductor materials.
  • the gasified non-metallic material is injected into the metal melt, and the gasified non-metallic material will diffuse into the metal melt.
  • the atoms of the elements are saturated in the melt and the melt remains stable.
  • semiconductor crystals such as indium phosphide, gallium arsenide, etc., will be formed.
  • the present invention applies another control process: reducing the ambient pressure of the metal melt.
  • the non-metallic materials in the melt will volatilize rapidly, forming bubbles that overflow the melt.
  • Metal impurities in the purified non-metallic material will remain in the metal melt.
  • the purification capacity of the system mainly depends on two factors:
  • the purified substance is phosphorus element, and the symbol of metal is m, then the volatilization rate J P in the phosphorus bubble in the volatilization stage can be expressed as:
  • P e is the partial pressure of phosphorus gas in the bubble, and its value is close to the ambient pressure P 0 when the impurity element concentration is very low
  • ⁇ P4 is the volatilization kinetic coefficient of phosphorus element
  • P atm is the standard atmospheric pressure
  • f P is the activity coefficient of phosphorus in the melt
  • ⁇ G mP is the Gibbs freedom difference of phosphorus dissolved in metal m
  • x 0 is the concentration of phosphorus in the melt
  • M P4 is the molar mass of phosphorus gas (P 4 );
  • R is Avogadro's constant
  • T is the melt temperature.
  • the gas molecular form of the impurity element is N K , and the volatilization rate J N of the impurity element can be expressed as
  • P NK is the partial pressure of the impurity element in the volatilization bubble
  • ⁇ NK is the volatilization kinetic coefficient of the impurity element
  • P atm is the standard atmospheric pressure
  • K is the number of atoms in the impurity element gas molecule
  • f N is the impurity element in the molten
  • the activity coefficient in the bulk, f N is approximately 1 when the impurity content is very low
  • ⁇ G mN is the Gibbs freedom difference of the impurity element dissolved in the metal m
  • xi is the concentration of the impurity element in the melt
  • M NK is the molar mass of the impurity gas ( NK ).
  • Design principle test the content of impurity elements in phosphorus element, design phosphorus to be injected into the melt x 0 , and then calculate x i , according to equation (1) and equation (2), obtain J P > J N and J P /J N >1 ambient pressure P 0 and melt purification temperature T.
  • P 0 is greater than or equal to the maximum saturated vapor pressure when the concentration of phosphorus is x 0 at temperature T. The larger the difference between J P - J N and the ratio of J P /J N , the better the purification effect.
  • Fig. 1 is the working state schematic diagram when the purified non-metallic material is injected into the melt
  • FIG. 2 is a schematic diagram of the working state when the non-metallic material is recovered.
  • 1 Furnace body; 2: Balance pressure valve; 3: Recycler heater; 4: Recycler; 5: Recovery chamber; 6: Main heater; 7: Crucible; 8: Crucible support; 9: Insulation jacket; 10: source furnace lifting rod; 11: source furnace heating wire; 12: source furnace; 13: carrier; 14: injection pipe; 15: cooling pipe; 16: boron oxide; 17: melt; 18: inject bubbles; 19 : support rod; 20: hanger rod; 21: purified substance; 22: open slot in recovery chamber; 23: recovered volatile element; 24: volatilized bubble; 25: weighing device.
  • the vaporized purified material is injected into the metal melt.
  • the saturated vapor pressure of the two elements must be different.
  • the purified element will be volatilized from the melt; due to the small impurity content, volatilization The speed is slow.
  • impurities will remain in the melt, or only part of the elements will be emitted. Purification of the material can be achieved by recovering the volatilized elements.
  • the present invention is the equipment and method designed according to the above principles.
  • the purification equipment for non-metallic materials includes a sealed furnace body 1 and a balanced pressure valve 2 arranged on the side of the furnace body 1 .
  • the furnace body 1 is sealed to maintain the environmental parameters in the purification process. After the purification is completed, the furnace body 1 can be disassembled and reused.
  • the balanced pressure valve 2 is the only channel between the furnace body 1 and the external environment, which can be connected to a vacuum pump and injected with inert gas.
  • the structure of the furnace is functionally divided into 3 parts: the mechanism for generating the metal melt, the lifting and lowering injection mechanism for gasifying the purified material and injecting the metal melt, and the recovery mechanism for volatile elements: the mechanism in the middle of the lower part of the furnace body 1.
  • the crucible 7 is used to melt metal to produce metal melt.
  • the heating and supporting structure of the crucible 7 includes a main heater 6 arranged outside the crucible 7 , a crucible support 8 used to support the crucible 7 , a support rod 19 connected to the crucible support 8 , and a heat preservation jacket 9 arranged around the main heater 6 .
  • the support rod 19 extends to the outside of the furnace body 1 and can be connected to a driving device.
  • a weighing device 25 is arranged between the crucible support 8 and the support rod 19 .
  • Liftable injection mechanism including a source furnace 12 and a source furnace lifting rod 10 connected to the source furnace 12; the source furnace 12 includes a carrier 13, a source furnace heating wire 11 arranged on the periphery of the carrier 13, and the carrier 13 is connected from below.
  • Recovery mechanism including a collector 4 , an annular recovery chamber 5 arranged in the collector 4 , an open groove 22 arranged on the inner upper portion of the annular recovery chamber 5 , a collector heater 3 , a cooling pipe 15 , and a boom 20 .
  • the reclaimer heater 3 is arranged above the reclaimer 4, and the cooling pipe 15 is arranged around the reclaimer 4; the inner diameter of the annular recovery chamber 5 matches the outer diameter of the crucible 7; the boom 20 is connected to the reclaimer 4 and extends to the outside of the furnace body 1; the boom 20 is connected to the driving device, which drives the recovery mechanism to move linearly up and down, and rotate with the boom 20 as the axis.
  • the non-metallic material is a volatile material for making semiconductor crystals
  • the metal is a group III low melting point metal
  • the purity is higher than 99.9%.
  • the purification method includes the following steps: injecting the gasified non-metallic material into the metal melt under a high pressure environment; reducing the ambient pressure, collecting the bubbles volatilized from the metal melt to obtain the purified non-metallic material.
  • the non-metallic materials in the embodiments are volatile materials for making semiconductor crystals, such as phosphorus, sulfur, arsenic and other elements; the metals are group III low melting point metals, such as indium, gallium, etc. etc.; the non-metallic material and the metal synthesized are semiconductor materials, such as indium phosphide and gallium arsenide, therefore, preferably, indium is used to purify phosphorus, gallium to be used to purify arsenic, and the like.
  • the method proposed in the present invention can purify non-metallic materials of any purity. Since a more economical and effective process method can be used for rough purification, the purity of the non-metallic material before purification in the examples is greater than 95%.
  • indium (In) metal is used to purify phosphorus (P).
  • the purified substance 21 (phosphorus) is put into the carrier 13, the carrier 13 is sealed, and only one end of the injection pipe 14 is left to communicate with the outside world.
  • the carrier 13 is placed in the source furnace 12 , and the source furnace 12 is placed in the furnace body 1 .
  • Step A Put pure metal (indium with a purity greater than 99.9%) and boron oxide 16 into the crucible 7, and the furnace body 1 is evacuated to 10 ⁇ 5 Pa through the balanced pressure valve 2 .
  • Step B the furnace body 1 is filled with inert gas. Make the pressure of the furnace body 1 higher than the design pressure.
  • step C the metal is heated to the design temperature by the main heater 6, and the metal melt 17 is formed after the metal is melted.
  • T is the melting point of the binary compound indium phosphide of In and the non-metallic material P to be purified, and the value range of m is 10-200K.
  • the purpose of heating to the design temperature is to keep the metal melt in a molten state, without the formation of indium phosphide crystals due to the temperature drop.
  • indium phosphide in the furnace body 1 is higher than the melting point under normal pressure, therefore, the design temperature is T+m.
  • the design pressure is the saturated vapor pressure at which the metal and the non-metal form a 1% melt system (the metal melt contains 1% of non-metal elements) at the design temperature.
  • In-50at.%P means that In and P form a 50% melt system, that is, the melt contains 50 atom% of phosphorus atoms.
  • the design temperature and design pressure are a set of data corresponding to "temperature (K)” and “saturated vapor pressure (MPa)”.
  • the design temperature in step C is 1345K
  • the design pressure in step B is higher than 5.86MPa.
  • the In-60at.%P melt remains stable, that is, an In-P metal melt is formed.
  • step D the source furnace 12 is lowered and rotated through the source furnace lifting rod 10 , so that the injection pipe 14 is inserted into the melt 17 through the boron oxide layer.
  • Step E heating the purified substance 21 of the non-metallic material through the heating wire 11 of the source furnace to gasify; injecting the gasified non-metallic material into the metal melt 17 to form injection bubbles 18 until the purified material in the source furnace 12 is The substance is completely vaporized.
  • the bubbles 18 are injected into the melt 17, the bubbles are ruptured, and the purified element is integrated with the metal melt. Due to the temperature and pressure, the purified element and the metal will not chemically react. At the same time, since the internal pressure of the furnace body 1 is higher than the saturated vapor pressure of the molten metal with the maximum component at the purification temperature, the purified substance 21 cannot be volatilized from the melt 17 at this time.
  • the amount of metal indium in the furnace body 1 is known. According to the above conditions, it can be calculated that under the design temperature and pressure, the metal melt can be kept stable and can be injected into the melt The maximum amount M of phosphorus. In actual operation, the injection amount should be less than M, otherwise, part of the phosphorus will volatilize out of the melt, resulting in an uncontrollable process.
  • Step F lift the furnace source 12 away from the crucible 7; stop heating the metal.
  • the metal melt is now in a stable state, which includes purified phosphorus and impurities.
  • the saturated vapor pressure of As in the In-60at%As melt is about 0.1-0.3MPa, while the saturated vapor pressure of In-60at%P is 5.86MPa. Since the purity of the purified phosphorus is greater than 95%, the maximum content of As in the In-60at%P system is only about 3at.%, and the saturated vapor pressure of As will be much less than 0.1-0.3MPa, about 0.005-0.015MPa , so when the ambient pressure is the design pressure (greater than or equal to 5.86MPa), As will not be directly precipitated from the In melt.
  • the saturated vapor pressure of S in the In-60at% S melt is less than 0.5MPa. Since the purity of the purified phosphorus is greater than 95%, the maximum content of S in the In-60at%P system is only about 3at.%, and the saturated vapor pressure of S will be far less than 0.5MPa, less than 0.025MPa, so at ambient pressure At the design pressure (greater than or equal to 5.86MPa), S will not be directly precipitated from the In melt.
  • One of the reclaimers 4 is heated to 50-100K above the sublimation point of the P element by the reclaimer heater 3 to prevent the volatile element P from being deposited on the reclaimer 4 during the injection process.
  • Step G Rotate one of the recyclers 4 to the top of the crucible 7 through the boom 20 and descend. Since the inner diameter of the annular recovery chamber 5 matches the outer diameter of the crucible 7 , the lowering recycler 4 can cover the crucible 7 . The recycler 4 is cooled down to below the sublimation point of the purified non-metallic material through the cooling pipe 15 . The status of the device at this time is shown in Figure 2.
  • the rate of pressure drop is 0.1-1000Pa/s, and the saturated vapor pressure value is reduced to Q% of the concentration of phosphorus in the melt .
  • Q 30
  • the saturated vapor pressure of In-30at.%P is reduced to 0.51MPa.
  • the ambient pressure will decrease, and in this embodiment, the ambient pressure will decrease to 0.51MPa. This pressure is still far greater than the saturated vapor pressure of As (about 0.005-0.015MPa), and also far greater than the saturated vapor pressure of S (less than 0.025MPa). Therefore, during the purification process, As and S will not be removed from the melt. volatilized.
  • the volatilization rate of phosphorus is greater than the volatilization rate of impurities, the main element in the volatilized bubbles is phosphorus, and most of the impurity elements remain in the melt, which can realize the purification of phosphorus.
  • Step H the volatilization bubbles 24 enter the annular recovery chamber 5 through the open groove 22 on the inner side of the annular recovery chamber 5. Due to the continuous cooling effect of the cooling pipe 15, after the boron oxide 16 floats on the volatilization bubbles 24, they are broken, and the purified volatile The substances are condensed in the annular recovery chamber 5 to obtain recovered volatile elements 23 . The disappearance of bubbles indicates that there is no volatile extracted substance at this temperature and pressure.
  • the annular recovery chamber 5 of the recovery device 4 is the primary purification element.
  • the first purified elements have the highest purity.
  • the collector 4 is lifted up and away from the crucible 7 .
  • the other reclaimer 4 is heated to 50-100K above the sublimation point of P element through the reclaimer heater 3 .
  • Step 1 the used recovery mechanism is raised to the top of the furnace body 1.
  • Step J Rotate the other recycler 4 to the top of the crucible 7 through the boom 20 and descend. Since the inner diameter of the annular recovery chamber 5 matches the outer diameter of the crucible 7 , the lowering recycler 4 can cover the crucible 7 . The recycler 4 is cooled down to below the sublimation point of the purified non-metallic material through the cooling pipe 15 .
  • the pressure of the furnace body 1 is gradually reduced through the balance pressure valve 2, and the rate of the pressure drop is 0.1-1000Pa/s to the saturated vapor pressure value of R% of the phosphorus concentration in the melt, R ⁇ Q.
  • the value of R is 20, and the pressure can be calculated.
  • step K the volatile air bubbles 24 are collected by the collector 4 until no more volatile air bubbles are generated.
  • the annular recovery chamber 5 of the recovery device 4 contains secondary purified elements.
  • the furnace body 1 is cooled down, and the purified elements in the two recoverers 4 are taken out.
  • the purity of the secondary purified elements is lower than that of the primary purified elements.
  • the pressure in the furnace body 1 can be further reduced to volatilize all the elements for recovery, but the purity will be reduced.
  • the purified elements can be subjected to acid washing to remove the metal elements contained in the melt for further purification.
  • the recycler 4 is made of quartz, which is cleaned after each use, soaked in 5%-30% hydrofluoric acid for 2-5 hours, and then dried for reuse.
  • the inner diameter of the annular recovery chamber 5 matches the outer diameter of the crucible 7 .
  • the inner diameter of the annular recovery chamber 5 is 1-15% larger than the outer diameter of the crucible 7 .
  • the weighing device 25 is used to estimate the weight of the material injected into and volatilized out of the crucible 7 .
  • the purified phosphorus is used as a raw material for further purification, and finally a semiconductor raw material with a purity of more than 99.999% can be obtained.
  • indium group III low melting point metal
  • phosphorus volatile material
  • the following table shows the saturated vapor pressure at different temperatures in different melt systems, according to which other melt systems can be used to achieve the purification of non-metallic volatile materials.
  • melt system Temperature K
  • Saturated vapor pressure MPa
  • In-50at.%As 1226 0.034 In-50at.%As 1256 0.04
  • In-50at.%As 1346 0.07 Ga-50at.%As 1521 0.25 Ga-50at.As 1551 0.35 Ga-50at.%As 1611 0.5
  • the present invention can adjust the saturated vapor pressure of the purified elements and impurities, and the purified elements and The volatilization rate of impurity elements, so as to realize the purification of impurity elements. And through multiple purifications, the elements can be gradually purified.
  • phosphorus is purified through 3-5 cycles, and the purified material is used as the raw material for the next purification.
  • Conditions such as different purification temperatures, different environmental pressures, and different environmental pressure reduction rates are set for each purification according to the purity of the raw materials.
  • the purity after pickling is higher than 99.999%, which meets the requirements for use.
  • the mobility of indium phosphide prepared from red phosphorus purified by this method is 3500-4900 (cm 2 /Vs), and the carrier concentration is >1 ⁇ 10 15 (cm -3 ).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种非金属半导体材料的提纯设备和提纯方法,涉及高纯材料的制备领域,尤其适用于高纯非金属材料的制备,特别是通过金属熔体对易挥发性非金属半导体材料进行提纯的设备及方法。设备包括炉体、平衡压力阀门,设置在炉体下部中间位置的坩埚、坩埚的加热和支撑结构、设置在坩埚正上方的可升降注入机构及设置在可升降注入机构旁边的可升降和旋转的回收机构;方法基于提纯设备完成,包括:将气化的非金属材料在高压环境下注入到金属熔体中;降低环境压力,收集从金属熔体中挥发出的气泡,得到提纯后的非金属材料。采用本发明提出的技术方案,可以有效去除非金属材料中的杂质,尤其是去除性质相近的元素,设备集成化程度高、易于控制、方法简单。

Description

一种非金属半导体材料的提纯设备和提纯方法 技术领域
本发明涉及高纯材料的制备领域,尤其适用于高纯非金属材料的制备,特别是通过金属熔体对易挥发性非金属本导体材料进行提纯的设备及方法。
背景技术
磷、硫及砷等为重要的半导体原材料,其可以制备磷化铟、磷化镓、砷化镓、二硫化钼等半导体材料,在国民经济中具有重要作用。制造半导体材料对半导体原材料的纯度要求很高,一般要达到99.999%以上。
半导体原材料中一般含有Fe、Ca、Co、Mg、Cr、Cd、Mn、Ni、Cu、Pb、Zn、Al等杂质元素。
以磷为例,在磷的提纯领域,传统的工业制备方法为:粗磷的升华、氯化或水解、精馏、提纯、还原等复杂的工艺,设备复杂,世界上仅有几个国家掌握高纯磷的提纯技术。
另外,磷、硫及砷等元素的性质相近,在要求提纯的单一元素中,其它的元素会以杂质的形式出现,如磷中的硫和砷、硫中的磷和砷、砷中的磷和硫。传统的方法,性质相近的杂质很难去除。
发明内容
为解决上述问题提出了本发明。
为实现发明目的,本发明采用以下技术方案:一种非金属半导体材料的提纯设备,所述提纯设备包括密封的炉体、设置在炉体侧面的平衡压力阀门,提纯设备还包括设置在炉体下部中间位置的坩埚、坩埚的加热和支撑结构、设置在坩埚正上方的可升降注入机构及设置在可升降注入机构旁边的可升降和旋转的回收机构。
所述可升降注入机构包括源炉、连接源炉的源炉升降杆;所述源炉包括承载器、设置在承载器外围的源炉加热丝、从下面连接承载器的注入管;源炉升降杆延伸到炉体外部,通过驱动机构升降和旋转源炉。
基于上述设备,本发明还提出了非金属半导体材料的提纯方法,提纯方法包括以下步骤:
步骤A、将金属置于炉体的坩埚中,将非金属材料被提纯物质放置在承载器中;炉体抽真空至10 -5Pa;
步骤B、炉体充入惰性气体,使炉体的压力高于设计压力;
步骤C、加热金属至设计温度,金属熔化后形成金属熔体;
步骤D、下降炉源,注入管插入金属熔体;
步骤E、将回收机构升至炉体的顶部;加热非金属材料被提纯物质至气化;将气化的非金属材料注入到金属熔体内,至直至承载器内的非金属材料被提纯物质完全气化;
步骤F、上升炉源;停止对金属的加热;
步骤G、将回收机构置于坩埚上方,降低炉体的压力;
步骤H、收集挥发出的气泡,同时持续给回收器降温,直至气泡消失。
进一步地,所述设计温度为T+m,T为所述金属与被提纯非金属材料形成的二元化合物的熔点,m的取值范围为10~200K。
所述设计压力为设计温度下,所述金属与非金属形成I%熔体体系的饱和蒸气压。
步骤G中,炉体的压力降至所述金属与非金属形成Q%熔体体系的饱和蒸气压;Q<I。
进一步地,所述非金属材料与所述金属合成后的物质为半导体材料。
原理描述。
在一定的压力下,将气化的非金属材料注入到金属熔体中,气化的非金属材料会扩散到金属熔体中,金属与非金属材料分别以原子状态存在,直至达到该非金属元素的原子在熔体中达到饱和,熔体保持稳定。
在半导体材料生产过程中,此时若进行提拉或者垂直温度梯度凝固,则会生成半导体晶体,如磷化铟、砷化镓等。
本发明应用另一个控制过程:降低金属熔体的环境压力。
随着压力的降低(小于饱和蒸气压),熔体中的非金属材料会快速挥发,形成气泡溢出熔体。
被提纯的非金属材料中的金属杂质会留在金属熔体中。
被提纯的非金属材料中的其他挥发性杂质元素,由于含量少,挥发速率慢,在挥发的气泡中占比很小,与注入的气化物质相比,提高了被提纯元素的比例,达到提纯目的。
气化的非金属材料注入到金属熔体后,根据Langmuir方程,在压力降低阶段,系统的提纯能力主要取决于两个因素:
1、系统压力降低的速率;
2、熔体中的被提纯物质和杂质的浓度。
例如被提纯物质为磷元素,金属的符号为m,则在挥发阶段磷气泡中的挥发速率J P可以表达为:
Figure PCTCN2021104410-appb-000001
式中P e为为气泡中磷气体的分压,当杂质元素浓度很低时其值接近于环境压力P 0;α P4为磷元素的挥发动力学系数;P atm为标准大气压力;f P为磷在熔体中的活度系数;ΔG m-P为磷溶于金属m中的吉布斯自由差;x 0为熔体中磷的浓度;M P4为磷气体(P 4)的摩尔质量;R为阿伏伽德罗常数;T为熔体温度。
从公式可以看出:环境压力P e降低的越快,磷挥发速率J P就越快,磷气泡的长大速率就越快,磷气泡的溢出速率就越快。
杂质元素的气体分子形式为N K,杂质元素的挥发速率J N可以表达为
Figure PCTCN2021104410-appb-000002
式中P NK为挥发气泡中杂质元素的分压,α NK为杂质元素的挥发动力学系数,P atm为标准大气压力,K为杂质元素气体分子中的原子数,f N为杂质元素在熔体中的活度系数,在杂质含量很低的情况下f N近似为1;ΔG m-N为杂质元素溶于金属m中的吉布斯自由差,x i为熔体中杂质元素的浓度,M NK为杂质气体(N K)的摩尔质量。
设计原则:测试杂质元素在磷元素中的含量,设计磷注入到熔体中x 0,进而计算出x i,根据方程(1)和方程(2),获得满足J P>J N且J P/J N>1的环境压力P 0及熔体提纯温度T。P 0大于等于在T温度下,磷的浓度为x 0时的最大饱和蒸气压。J P–J N差值及J P/J N的比值越大,提纯效果越好。
随着环境压力的降低,当环境压力低于此时成分为x 0的熔体饱和蒸气压时,磷元素从熔体中析出形成气泡,随着压力的降低,气泡内压力降低,体积膨胀,P e值快速降低,导致磷的进一步以气体形式进入气泡,环境压力的快速降低,导致磷快速进入气泡中。由于J P大于J N,实现对磷元素的提纯。
另外,即使气泡中磷元素和杂质的挥发速率比例J P/J N在某一阶段为常数时,我们可以通过增加环境的压力P e降低速率,来提高在动态环境气压下的J P速率,从而实现对其的进一步的提纯。
其他杂质,如Fe、Ca、Co、Mg、Cr、Cd、Mn、Ni、Cu、Pb、Zn、Al等,溶解在熔体中。
有益效果:采用本发明提出的技术方案,可以有效去除非金属材料中的杂质,尤其 是去除性质相近的元素,设备集成化程度高、易于控制、方法简单;可以采用本发明提出的设备及方法,对非金属材料多次提纯,逐步提高材料纯度;采用今后相关的金属材料提纯非金属材料,如用铟提纯磷,今后制作磷化铟,可以弱化提纯元素中包含金属元素而产生的副作用。
附图说明
图1是提纯的非金属材料注入熔体时的工作状态示意图,
图2是非金属材料回收时的工作状态示意图。
其中:1:炉体;2:平衡压力阀门;3:回收器加热器;4:回收器;5:回收室;6:主加热器;7:坩埚;8:坩埚支撑;9:保温套;10:源炉升降杆;11:源炉加热丝;12:源炉;13:承载器;14:注入管;15:冷却管;16:氧化硼;17:熔体;18:注入气泡;19:支撑杆;20:吊杆;21:被提纯物质;22:回收室开口槽;23:回收的挥发性元素;24:挥发气泡;25:称重装置。
具体实施方式
将气化的被提纯材料注入到金属熔体中,理论上,两种元素的饱和蒸汽压肯定不相同,降低环境压力后,被提纯元素会从熔体中挥发出;由于杂质含量小,挥发速度慢,在被提纯元素挥发过程中,杂质会留在熔体中,或仅会发出部分元素。通过回收挥发出来的元素,可以实现材料的提纯。本发明就是根据上述原理设计出来的设备及方法。
设备构成。
参看图1和图2,非金属材料的提纯设备,包括密封的炉体1、设置在炉体1侧面的平衡压力阀门2。
炉体1密封可以保持提纯工艺中的环境参数。提纯完成后,炉体1可拆解重复使用。平衡压力阀门2是炉体1与外部环境的唯一通道,可连接真空泵、注入惰性气体。
炉内的结构在功能上分为3个部分:产生金属熔体的机构、气化被提纯材料并注入金属熔体的可升降注入机构和挥发元素的回收机构:在炉体1下部中间位置的坩埚7、坩埚7的加热和支撑结构,设置在坩埚7正上方的可升降注入机构及设置在可升降注入机构旁边的回收机构。
产生金属熔体的机构:坩埚7用于融化金属,产生金属熔体。坩埚7的加热和支撑结构中包括设置在坩埚7外侧的主加热器6、用于支撑坩埚7的坩埚支撑8及连接坩埚支撑8的支撑杆19、设置在主加热器6外围的保温套9。支撑杆19延伸到炉体1外部,可以连接驱动装置。坩埚支撑8和支撑杆19之间设置称重装置25。
可升降注入机构:包括源炉12、连接源炉12的源炉升降杆10;所述源炉12包括承载器13、设置在承载器13外围的源炉加热丝11、从下面连接承载器13的注入管14;源炉升降杆10延伸到炉体1外部,通过驱动机构升降源炉12。
回收机构:包括回收器4、设置在回收器4内的环形回收室5、设置在环形回收室5内侧上部的开口槽22、回收器加热器3、冷却管15、吊杆20。
所述回收器加热器3设置在回收器4的上面,所述冷却管15设置在回收器4周边;环形回收室5的内径与坩埚7的外径尺寸相匹配;吊杆20连接回收器4并延伸到炉体1外部;吊杆20连接驱动装置,驱动回收机构上下直线运动、以吊杆20为轴心进行旋转,旋转到达的位置之一是回收机构位于坩埚7的正上方。
为了在一次提纯过程中尽量回收被提纯元素,设置两套回收机构,在不同工艺条件下进行回收。
方法实现。
提纯方法上述设备完成,所述非金属材料为制作半导体晶体的易挥发性材料,所述金属为III族低熔点金属,纯度高于99.9%。
提纯方法包括以下步骤:将气化的非金属材料在高压环境下注入到金属熔体中;降低环境压力,收集从金属熔体中挥发出的气泡,得到提纯后的非金属材料。
本发明的关注点在制作半导体晶体,因此,实施例中的非金属材料为制作半导体晶体的易挥发性材料,如磷、硫、砷等元素;金属为III族低熔点金属,如铟、镓等;非金属材料与所述金属合成后的物质为半导体材料,如磷化铟、砷化镓,因此,优选地,使用铟提纯磷、使用镓提纯砷等。
由于两种元素在同一种金属熔体中的饱和蒸汽压肯定不相同,采用本发明提出的方法,可以提纯任意纯度的非金属材料。由于粗提纯可以采用更经济、有效的工艺方法,因此,实施例中提纯前非金属材料的纯度大于95%。
测试提纯前非金属材料的纯度,计算杂质元素在材料中的含量,获得满足被提纯元素大于杂质浓度在金属熔体中的挥发速率,所需环境压力、熔体成分及熔体提纯温度。
本实施例中,使用铟(In)金属提纯磷(P)。
具体工作时,将被提纯物质21(磷)放入承载器13中,将承载器13密封,只留下注入管14一端与外界连通。将承载器13置入源炉12中,将源炉12放入炉体1中。
步骤A、将纯金属(纯度大于99.9%的铟)及氧化硼16放入坩埚7中,炉体1通过平衡压力阀门2抽真空至10 -5Pa后。
步骤B、炉体1充入惰性气体。使炉体1的压力高于设计压力。
步骤C、通过主加热器6加热金属至设计温度,金属熔化后形成金属熔体17。
关于设计温度和设计压力。
所述设计温度为T+m,T为In与被提纯非金属材料P的二元化合物磷化铟的熔点,m的取值范围为10~200K。
加热至设计温度的目的是保持金属熔体处于熔融状态,不会由于温度下降生成磷化铟晶体。
由于压力的存在,在炉体1中磷化铟要高于常压下的熔点,因此,设计温度为T+m。
磷化铟常压下的熔点T=1062℃,金属铟常压下的熔点为156.61℃,在加热到设计温度时,金属铟已经融化。
所述设计压力为设计温度下,所述金属与非金属形成I%熔体体系(金属熔体内含I%的非金属元素)的饱和蒸气压。
下表给出了不同条件下的饱和蒸气压。
熔体体系 温度(K) 饱和蒸汽压(MPa)
In-50at.%P 1345 2.86
In-50at.%P 1355 2.89
In-50at.%P 1408 3.15
In-50at%P 1500 3.71
In-60at.%P 1345 5.86
In-60at.%P 1355 5.97
In-60at.%P 1405 6.57
In-60at.%P 1500 7.78
In-30at.%P 1345 0.51
In-30at.%P 1355 0.52
In-30at.%P 1405 0.53
In-30at.%P 1500 0.62
In-35at.%P 1345 0.82
In-35at.%P 1355 0.83
In-35at.%P 1405 0.88
In-35at.%P 1500 1.03
表中,In-50at.%P代表In与P形成50%熔体体系,即熔体中含有原子百分比为50%的磷原子。
在上表中,设计温度和设计压力为“温度(K)”和“饱和蒸气压(MPa)”对应的一组数据。
如选取第5行的数据:
In-60at.%P 1345 5.86
则I=60,步骤C中的设计温度为1345K,步骤B中的设计压力高于5.86MPa。在设计温度和设计压力下,In-60at.%P熔体保持稳定,即形成In-P金属熔体。
步骤D、将源炉12通过源炉升降杆10下降及旋转,使得注入管14通过氧化硼层插入熔体17中。
步骤E、通过源炉加热丝11加热非金属材料被提纯物质21至气化;将气化的非金属材料注入到金属熔体17内,形成的注入气泡18,直至源炉12内的被提纯物质完全气化。
在此步骤前,将回收机构升至炉体1的顶部,远离坩埚7,降低污染回收机构的可能。
注入气泡18进入熔体17后,气泡破裂,此时被提纯元素与金属熔体融为一体,由于温度和压力的原因,被提纯元素与金属不会发生化学反应。同时由于炉体1内部压力高于提纯温度下金属与被提纯元素形成最大成分熔体的饱和蒸气压,此时被提纯物质21不能从熔体17中挥发出来。
根据设计要求和选取的参数计算磷的注入量,影响的参数为:熔体体系、金属铟的总量。
如熔体体系为In-60at.%P,炉体1中金属铟的量是已知的,根据上述条件,可以计算出在在设计温度和压力下,保持金属熔体稳定可注入熔体中磷的最大量M。实际操作时,注入量要小于M,否则,部分磷会挥发出熔体,造成过程不可控。
步骤F、上升炉源12,远离坩埚7;停止对金属的加热。
此时金属熔体处于稳定状态,其中包括被提纯的磷和杂质。
其它非金属易挥发类的杂质在熔体中的状态:
As(砷):在1345K温度下,In-60at%As熔体中As的饱和蒸气压约为0.1-0.3MPa,而此时In-60at%P的饱和蒸气压为5.86MPa。由于被提纯的磷的纯度大于95%,As在In-60at%P体系中的最大含量仅约为3at.%,As的饱和蒸气压将远远小于0.1-0.3MPa,约为0.005-0.015MPa,因此在环境压力为设计压力(大于等于5.86MPa)时,As不会从In熔体中直接析出。
S(硫):同理,在1345K温度下,In-60at%S熔体中S的饱和蒸气压小于0.5MPa。由于被提纯的磷的纯度大于95%,S在In-60at%P体系中的最大含量仅约为3at.%,S的饱和蒸气压将远远小于0.5MPa,小于0.025MPa,因此在环境压力为设计压力(大于等于5.86MPa)时,S不会从In熔体中直接析出。
通过回收器加热器3给其中一个回收器4加热至P元素的升华点以上50-100K,防止在挥发性元素P注入过程中沉积到回收器4上。
步骤G、通过吊杆20将回收器4的其中一个旋转至坩埚7上方并下降,由于环形回收室5的内径与坩埚7的外径尺寸相匹配,下降回收器4可以覆盖坩埚7。通过冷却管15给回收器4降温至被提纯非金属材料的升华点以下。此时设备的状态参看图2.
在保持炉体1温度的同时,通过平衡压力阀门2逐步降低炉体1的压力,压降的速率为0.1- 1000Pa/s,降至持熔体中磷的浓度的Q%的饱和蒸气压值。本实施例中,Q=30,降至In-30at.%P的饱和蒸汽压0.51MPa。
在压降过程中,由于压力小于In-60at.%P的饱和蒸汽压5.86MPa,部分磷元素从熔体中挥发出来。
其它非金属易挥发类的杂质,由于温度、压力以及杂质在熔体中的含量,仍会留在熔体中,不会挥发出来或挥发量极小。
在提纯过程中,环境压力会降低,本实施例中,环境压力会降至0.51MPa。该压力仍远远大于As的饱和蒸气压(约为0.005-0.015MPa),也远远大于S的饱和蒸气压(小于0.025MPa),因此,在提纯过程中,As、S不会从熔体中挥发。
由于磷的挥发速率大于杂质的挥发速率,挥发出的气泡中主要元素是磷,绝大部分的杂质元素留在的熔体中,可以实现对磷的提纯。
金属类杂质和不易挥发的杂质会留在金属熔体17中。
显然,Q要小于I。
步骤H、挥发气泡24经环形回收室5内侧上部的开口槽22进入环形回收室5,由于冷却管15的持续降温作用,挥发气泡24上浮出氧化硼16后,破碎,被提纯的挥发性物质凝结在环形回收室5内,得到回收的挥发性元素23。气泡消失说明在此温度、压力下,已经没有可挥发的被提存物质。
试验证明,经上述步骤得到的磷,纯度较提纯前有明显提高。
由于后期会使用提纯后的磷生产磷化铟,也可以降低铟掺杂在磷中的不良作用。
此时回收器4的环形回收室5内为初次提纯元素。初次提纯元素的纯度最高。
待挥发气泡24消失以后,将回收器4提起并远离坩埚7。
本实施例中,经过上述步骤,由于环境压力的作用,金属熔体中还包含部分磷元素(In-30at.%P)没有挥发出来,可以进一步降炉体1中的压力,使更多的磷挥发出来进行二次回收,但回收得到的磷的纯度会有所降低。如下面步骤描述:
通过回收器加热器3给另外一个回收器4加热至P元素的升华点以上50-100K。
步骤I、将已经使用过的回收机构升至炉体1的顶部。
步骤J、通过吊杆20将另一个回收器4旋转至坩埚7上方并下降,由于环形回收室5的内径与坩埚7的外径尺寸相匹配,下降回收器4可以覆盖坩埚7。通过冷却管15给回收器4降温至被提纯非金属材料的升华点以下。
通过平衡压力阀门2逐步降低炉体1的压力,压降的速率为0.1-1000Pa/s,降至持熔 体中磷的浓度的R%的饱和蒸气压值,R<Q。本实施例中,R取值20,压力可以计算出来。
步骤K、用回收器4收集挥发气泡24,直至不再产生挥发气泡。
此时该回收器4的环形回收室5内为二次提纯元素。
给炉体1降温,取出两个回收器4中的被提纯元素。
二次提纯元素的纯度要低于初次提纯元素。
可以继续降低炉体1内的压力,将所有的元素挥发出来回收,但纯度会有所降低。
提纯的元素可以经过酸洗,去除其中含有的熔体中的金属元素,进一步提纯。
回收器4为石英材质,每次使用后进行清洗,并用5%-30%的氢氟酸浸泡2-5小时后,烘干再次利用。
环形回收室5的内径与坩埚7的外径尺寸相匹配,本实施例中,环形回收室5的内径比坩埚7的外径大1-15%。
称重装置25,用于估计注入和挥发出坩埚7物质的重量。
采用本发明提出的方法,将提纯后的磷作为原材料进一步提纯,最终可以得到纯度99.999%以上的半导体原材料。
上述实施例使用铟(III族低熔点金属)来提纯磷(易挥发性材料),该实施例只是为了帮助理解发明原理和内容,并不是起到限定作用。
下表给出了不同熔体体系中,不同温度下的饱和蒸气压,据此,可以使用其它熔体体系实现非金属易挥发材料的提纯。
熔体体系 温度(K) 饱和蒸汽压(MPa)
In-50at.%As 1226 0.034
In-50at.%As 1256 0.04
In-50at.%As 1346 0.07
Ga-50at.%As 1521 0.25
Ga-50at.As 1551 0.35
Ga-50at.%As 1611 0.5
对于不同杂质,本发明可以通过调整注入到金属熔体的被提纯元素的浓度、环境压力、熔体温度及环境压力降低的速率,来调整被提纯元素及杂质的饱和蒸气压及被提纯元素和杂质元素的挥发速率,从而实现对杂质元素的提纯。并可以通过多次提纯,逐步提纯元素。
采用本发明,磷经3-5次循环提纯,即将提纯后的材料作为下一次提纯的原料,每次提纯根据原料纯度不同设置不同提纯温度、不同环境压力、不同环境压力降低速率等条件,经酸洗后纯度高于99.999%,满足使用要求。
杂质含量:
As<0.1ppm;S<0.1ppm;Cu<0.05ppm;Sb<0.1ppm;Al<0.1ppm;Cu<0.15ppm;Cr<0.05ppm;Fe<0.15ppm。
增加循环提纯次数可进一步提高磷的纯度。
利用该方法提纯的红磷制备磷化铟的迁移率:3500-4900(cm 2/V.s),载流子浓度>1×10 15(cm -3)。
需要说明的是:根据发明原理和实施例的提示而得到的任何技术方案都涵盖在本发明的保护范围内。

Claims (10)

  1. 一种非金属半导体材料的提纯设备,包括密封的炉体(1)、设置在炉体(1)侧面的平衡压力阀门(2),其特征在于:提纯设备还包括设置在炉体(1)下部中间位置的坩埚(7)、坩埚(7)的加热和支撑结构、设置在坩埚(7)正上方的可升降注入机构及设置在可升降注入机构旁边的可升降和旋转的回收机构;
    所述可升降注入机构包括源炉(12)、连接源炉(12)的源炉升降杆(10);所述源炉(12)包括承载器(13)、设置在承载器(13)外围的源炉加热丝(11)、从下面连接承载器(13)的注入管(14);源炉升降杆(10)延伸到炉体(1)外部,通过驱动机构升降和旋转源炉(12)。
  2. 根据权利要求1所述的提纯设备,其特征在于:所述回收机构包括回收器(4)、设置在回收器(4)内的环形回收室(5)、设置在环形回收室(5)内侧上部的开口槽(22)、回收器加热器(3)、冷却管(15)、吊杆(20);
    所述回收器加热器(3)设置在回收器(4)的上面,所述冷却管(15)设置在回收器(4)周边;环形回收室(5)的内径与坩埚(7)的外径尺寸相匹配;吊杆(20)连接回收器(4)并延伸到炉体(1)外部;
    所述回收机构设置两套。
  3. 根据权利要求1或2所述的提纯设备,其特征在于:所述坩埚(7)的加热和支撑结构中包括设置在坩埚(7)外侧的主加热器(6)、用于支撑坩埚(7)的坩埚支撑(8)及连接坩埚支撑(8)的支撑杆(19)、设置在主加热器(6)外围的保温套(9);所述支撑杆(19)延伸到炉体(1)外部;坩埚支撑(8)和支撑杆(19)之间设置称重装置(25)。
  4. 一种非金属半导体材料的提纯方法,基于权利要求1-3任一项所述的提纯设备完成,其特征在于,所述提纯方法包括以下步骤:将气化的非金属材料在高压环境下注入到金属熔体中;降低环境压力,收集从金属熔体中溢出气泡中的非金属材料,从而得到提纯后的非金属材料。
  5. 根据权利要求4所述的提纯方法,其特征在于,所述提纯方法包括以下步骤:
    步骤A、将金属置于炉体(1)的坩埚(7)中,将非金属材料被提纯物质(21)放置在承载器(13)中;炉体(1)抽真空至10 -5Pa;
    步骤B、炉体(1)充入惰性气体,使炉体(1)的压力高于设计压力;
    步骤C、加热金属至设计温度,金属熔化后形成金属熔体(17);
    步骤D、下降炉源(12),注入管(14)插入金属熔体(17);
    步骤E、将回收机构升至炉体(1)的顶部;加热非金属材料被提纯物质(21)至气化;将气化的非金属材料注入到金属熔体(17)内,至直至承载器(13)内的非金属材料被提纯物 质(21)完全气化;
    步骤F、上升炉源(12);停止对金属的加热;
    步骤G、将回收机构置于坩埚(7)上方,降低炉体(1)的压力;
    步骤H、收集挥发出的气泡,同时持续给回收器(4)降温,直至气泡消失。
  6. 根据权利要求4或5所述的提纯方法,其特征在于:所述非金属材料为制作半导体晶体的易挥发性材料;所述金属为III族低熔点金属,纯度高于99.9%;所述非金属材料与所述金属合成后的物质为半导体材料。
  7. 根据权利要求6所述的提纯方法,其特征在于:
    所述设计温度为T+m,T为所述金属与被提纯非金属材料形成的二元化合物的熔点,m的取值范围为10~200K;
    所述设计压力为设计温度下,所述金属与被提纯非金属形成I%熔体体系的饱和蒸气压;
    步骤G中,炉体(1)的压力降至所述金属与被提纯非金属形成Q%熔体体系的饱和蒸气压;Q<I。
  8. 根据权利要求7所述的提纯方法,其特征在于:
    在步骤G之前,回收器(4)加热至被提纯非金属材料的升华点以上50-100K;
    步骤G、将回收机构置于坩埚(7)上方并下降,回收器(4)降温至被提纯非金属材料的升华点以下;降低炉体(1)的压力。
  9. 根据权利要求8所述的提纯方法,其特征在于:
    所述方法还包括:
    步骤I、将回收机构升至炉体(1)的顶部;
    步骤J、将第二套回收机构置于坩埚(7)上方,降低炉体(1)的压力;
    步骤K、收集挥发出的气泡,直至气泡消失。
  10. 根据权利要求9所述的提纯方法,其特征在于:
    步骤J中,炉体(1)的压力降至所述金属与非金属形成R%熔体体系的饱和蒸气压;R<Q。
PCT/CN2021/104410 2020-11-24 2021-07-05 一种非金属半导体材料的提纯设备和提纯方法 WO2022110811A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011327308.9 2020-11-24
CN202011327308.9A CN112429708B (zh) 2020-11-24 2020-11-24 一种非金属半导体材料的提纯方法
CN202011325625.7 2020-11-24
CN202011325625.7A CN112408345B (zh) 2020-11-24 2020-11-24 一种非金属材料的提纯方法

Publications (1)

Publication Number Publication Date
WO2022110811A1 true WO2022110811A1 (zh) 2022-06-02

Family

ID=81753970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104410 WO2022110811A1 (zh) 2020-11-24 2021-07-05 一种非金属半导体材料的提纯设备和提纯方法

Country Status (1)

Country Link
WO (1) WO2022110811A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115198369A (zh) * 2022-07-15 2022-10-18 中国电子科技集团公司第十三研究所 一种磷化铟合成与vgf晶体制备的装置及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB941977A (en) * 1959-06-22 1963-11-20 Monsanto Chemicals Purification of phosphorus and arsenic
US4483746A (en) * 1982-06-04 1984-11-20 Fmc Corporation Process for phosphorus purification
DD234410A1 (de) * 1985-02-04 1986-04-02 Freiberg Spurenmetalle Veb Verfahren zur hochreinigung leichtfluechtiger substanzen
CN101054168A (zh) * 2006-04-13 2007-10-17 张世才 高纯砷的生产方法
CN104404623A (zh) * 2014-11-26 2015-03-11 中国电子科技集团公司第十三研究所 磷化铟单晶炉磷泡升降装置
CN112408345A (zh) * 2020-11-24 2021-02-26 中国电子科技集团公司第十三研究所 一种非金属材料的提纯方法
CN112429708A (zh) * 2020-11-24 2021-03-02 中国电子科技集团公司第十三研究所 一种非金属半导体材料的提纯方法
CN213505992U (zh) * 2020-11-24 2021-06-22 中国电子科技集团公司第十三研究所 一种半导体原材料的提纯设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB941977A (en) * 1959-06-22 1963-11-20 Monsanto Chemicals Purification of phosphorus and arsenic
US4483746A (en) * 1982-06-04 1984-11-20 Fmc Corporation Process for phosphorus purification
DD234410A1 (de) * 1985-02-04 1986-04-02 Freiberg Spurenmetalle Veb Verfahren zur hochreinigung leichtfluechtiger substanzen
CN101054168A (zh) * 2006-04-13 2007-10-17 张世才 高纯砷的生产方法
CN104404623A (zh) * 2014-11-26 2015-03-11 中国电子科技集团公司第十三研究所 磷化铟单晶炉磷泡升降装置
CN112408345A (zh) * 2020-11-24 2021-02-26 中国电子科技集团公司第十三研究所 一种非金属材料的提纯方法
CN112429708A (zh) * 2020-11-24 2021-03-02 中国电子科技集团公司第十三研究所 一种非金属半导体材料的提纯方法
CN213505992U (zh) * 2020-11-24 2021-06-22 中国电子科技集团公司第十三研究所 一种半导体原材料的提纯设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115198369A (zh) * 2022-07-15 2022-10-18 中国电子科技集团公司第十三研究所 一种磷化铟合成与vgf晶体制备的装置及方法
CN115198369B (zh) * 2022-07-15 2024-06-11 中国电子科技集团公司第十三研究所 一种磷化铟合成与vgf晶体制备的装置及方法

Similar Documents

Publication Publication Date Title
US7682585B2 (en) Silicon refining process
JP5462988B2 (ja) 低品位シリコン原料を用いてシリコンインゴットを形成する方法およびシステム
CN112429708B (zh) 一种非金属半导体材料的提纯方法
CN101545135B (zh) 太阳能级硅晶体的制备及提纯方法
WO2022110811A1 (zh) 一种非金属半导体材料的提纯设备和提纯方法
US3615261A (en) Method of producing single semiconductor crystals
CN108913922A (zh) 镍基定向凝固柱晶、单晶高温合金母合金的纯净化熔炼方法
US20120171848A1 (en) Method and System for Manufacturing Silicon and Silicon Carbide
CN112408345B (zh) 一种非金属材料的提纯方法
CN213505992U (zh) 一种半导体原材料的提纯设备
CN113882016A (zh) 氮掺杂p型单晶硅制造方法
JP2011195902A (ja) アルミニウム材およびその製造方法
CN1083396C (zh) 高纯度硅的制造方法
US20240228286A1 (en) Purification apparatus and purification method for non-metal semiconductor material
US20110120365A1 (en) Process for removal of contaminants from a melt of non-ferrous metals and apparatus for growing high purity silicon crystals
CN114250503A (zh) 一种零位错p型锗单晶制备方法
CN115182042A (zh) 一种用于增加拉棒长度的大尺寸掺镓单晶生产方法
CN113735110A (zh) 一种半导体级石墨粉的纯化方法
KR101323191B1 (ko) 야금학적 공정을 이용한 태양전지용 실리콘 제조 방법
CN109536744B (zh) 通过熔析定向凝固耦合提纯稀土金属的方法
JP2012001408A (ja) シリコン単結晶の育成方法
CN102040204B (zh) 磷化镓多晶铸锭的方法
CN117735544B (zh) 一种半导体级石墨粉的深度纯化方法
JP5118268B1 (ja) 高純度シリコンの製造方法および高純度シリコン
CN108128778B (zh) 一种水蒸气辅助电子束熔炼去除硅中硼的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896319

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18291104

Country of ref document: US