WO2022110566A1 - 一种多孔性次毫米层与高致密性复合微米层连接的多层结构复合块材的制备方法 - Google Patents

一种多孔性次毫米层与高致密性复合微米层连接的多层结构复合块材的制备方法 Download PDF

Info

Publication number
WO2022110566A1
WO2022110566A1 PCT/CN2021/079020 CN2021079020W WO2022110566A1 WO 2022110566 A1 WO2022110566 A1 WO 2022110566A1 CN 2021079020 W CN2021079020 W CN 2021079020W WO 2022110566 A1 WO2022110566 A1 WO 2022110566A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
layer
porous
thin layer
millimeter
Prior art date
Application number
PCT/CN2021/079020
Other languages
English (en)
French (fr)
Inventor
温良成
曹更玉
Original Assignee
广东石油化工学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东石油化工学院 filed Critical 广东石油化工学院
Publication of WO2022110566A1 publication Critical patent/WO2022110566A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • H01M8/1226Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to the technical field of process preparation of multi-structure and material compounding, in particular to a preparation method of a multi-layer structure composite block in which a porous sub-millimeter layer and a high-density composite micron layer are connected.
  • SOFC solid oxide fusel cell
  • the operating temperature can be stably used at 650-1000 ° C, and there is no need for expensive platinum materials as catalyst conversion, which makes the cathode and anode materials for catalytic purposes. could be cheaper.
  • the advantages of using SOFC as a power generation system include that the power generation efficiency is high, so the emissions of pollutants such as NOx, SOx and HC during use are relatively small, making the generated CO 2 easier to collect.
  • SOFC fuels such as natural gas, CO, H 2 , methanol and coal gas, and even combustible waste gas and other fuels can be used.
  • SOFC utilizes its high temperature operating environment to carry out internal fuel reforming, which can simplify the system.
  • the power generation efficiency can reach 50-60%.
  • the high-temperature exhaust gas discharged from the SOFC and the turbine build a high-efficiency combined power generation system, and the power generation efficiency can reach more than 90%.
  • the current lithium-ion batteries on the market use polymer electrolytes, ionic liquids, or phosphorus-containing flame-retardant electrolytes, and a separator needs to be used to separate the electrolyte from the electrode. Stability also has an important impact on battery safety.
  • PE polyethylene
  • heat resistance temperature is about 120-130 °C.
  • the operating temperature exceeds 130 °C, it will cause the PE separator to melt through and shrink. phenomenon, the positive and negative electrodes are short-circuited. Therefore, if the electrolyte used in the current lithium-ion battery is changed to an inorganic solid-state lithium-ion conductor, the part of the separator can be removed, and the doubts that the electrolyte may leak and corrode can be solved, and the safety is improved. In addition, if the lithium ion conductivity and lithium ion concentration can be effectively improved, it is the key factor for the inorganic solid-state lithium ion conductor to replace the traditional lithium ion battery electrolyte system.
  • the composite electrolyte material composed of SOFC electrolyte oxides and carbonates, because of the characteristics of three ions of O 2- , H + and CO 3 2- moving in the electrolyte material, exhibits the equivalent of 8YSZ at 750 °C below 500 °C.
  • the commercial cells of SOFC mainly use NiO-8YSZ//8YSZ//GDC//LSC unit cells produced by Elcogen, and the electrolyte thickness is only about 5 ⁇ m.
  • the power density measurement results of the unit cells at 600–850°C are respectively 600°C, about 400mW/cm 2 (0.6V); 650°C, about 550mW/cm 2 (0.8V); 700°C, About 600mW/cm 2 (0.85V).
  • the solid-state carbonate-oxide composite fuel cell is an ESC type, so the current electrolyte thickness is 200 ⁇ m, while the electrolyte thickness of Elcogen cells is only 5 ⁇ m.
  • Figure 5 shows the relationship between the measured maximum power value of the composite salt fuel cells with different electrolyte thicknesses. It can be observed that the thickness of the electrolyte directly affects the power of the battery operation. According to the inverse relationship between the two, if the electrolyte thickness of the composite salt fuel cell is reduced to 5 ⁇ m, which is the same as that of the Elcogen cell, it can be predicted that the system using the composite material unit cell does show the potential of developing medium and low temperature fuel cells.
  • a composite electrolyte substrate was fabricated with an electrolyte-supported type, and then the cathode ((Li 0.2 Ni 0.8 )O 0.9 ) and anode (NiO-SDC) films were coated on both sides of the electrolyte substrate by spin coating and screen printing techniques.
  • the thickness of the electrolyte is reduced to less than 200 ⁇ m, the strength is too low, and the breakage rate is greatly increased during the process of coating and sintering the cathode and anode to prepare the unit cell. Therefore, it is necessary to change the process structure and first fabricate the electrode material as the substrate. Because the electrode material has high conductivity, the thickness of the substrate can be increased to 300–500 ⁇ m as the source of strength.
  • the electrolyte material and another electrode material are sequentially fabricated and assembled to form an electrode-supported unit cell, but the process technology and difficulty are also much higher than that of the electrolyte-supported type.
  • the electrolyte must first be made porous and then immersed in molten carbonate to make it complex. Therefore, the electrode material, which is the substrate, must be protected first, and the porosity of the electrode material must also be maintained when the molten carbonate fills the pores of the electrolyte.
  • the purpose of the present invention is to provide a preparation method of a multi-layer structure composite block with a porous sub-millimeter layer and a high-density composite micro-layer connected.
  • the porous block prepared by the method can be used as an electrolyte substrate. Reducing the thickness of the composite electrolyte layer (micron-scale porous layer and molten salt composite densified oxide/salt composite layer) to 5–20 ⁇ m will greatly improve the operating efficiency of the battery, and achieve operation at 400–500 ° C. Development of a new medium and low temperature fuel cell system.
  • a preparation method of a multi-layer structure composite block in which a porous sub-millimeter layer and a high-density composite micro-layer are connected comprising the following steps:
  • the sub-millimeter porous layer is completely covered by the densified metal oxide thin layer that is easily reduced to a metallic state, and the densified metal oxide thin layer that is easily reduced to a metallic state has a structure with one side connected to the micron-scale porous layer Put it into the liquid molten salt compound, so that the liquid molten salt compound completely penetrates into the pores in the micron-scale porous layer to form a micron-scale highly densified oxide/salt composite layer, that is, a high-density composite layer;
  • the preparation method of the ceramic substrate is as follows: metal oxide powder, MEK (butanone), ethanol, acetone, glycerol, corn oil, PVB (polyvinyl butyral), DBP (phthalic acid) Dibutyl ester), polyethylene glycol (molecular weight 4000-6000), TEA (lauryl sulfate), Li2CO3, according to the weight ratio of 85-90:35-42:25-30:8-12:0.5-1: The ratio of 0.5-0.7:6-10:1.5-2:0.5-0.8:0.5-0.7:0.5-0.8 is added to the grinding jar, and the grinding machine is used for grinding for 24 hours.
  • the metal oxide powder is a metal oxide powder with good electronic conductors or mixed electronic/ionic conductors, including but not limited to : NiO, CuO, (LiNi)O 1-x , AgO, Bi 2 O 3 , (LaSr)MnO 3 , (SmSr)CoO 3 , (LaSr)(CoFe)O 3 , SDC.
  • the metal oxide nano-scale powder described in step (2) and step (3) is made by the dissolution method, specifically: after dissolving the metal compound in deionized water, adding the total number of moles of metal ions to the aqueous solution 2-2.5 times of citric acid, and then add an appropriate amount of concentrated nitric acid to help dissolve, the prepared aqueous solution is adjusted with ammonia water to adjust the pH value of the aqueous solution to between 6-7, and then add 2-2.5 times the total moles of metal ions to the aqueous solution C 2 H 4 (OH) 2 (ethylene glycol), an aqueous solution heated to 120–150°C with heating and stirring, continued heating until 60–80% of the water was removed and ethylene glycol polymerization occurred, making the solution slightly viscous state, increase the heating temperature to 300-350 °C, until the solution spontaneously ignites and burns, that is, nano-scale metal oxide powder;
  • the dissolution method specifically: after dissolving the metal compound in deionized water, adding the total number of
  • the metal oxide that is easily reduced to a metallic state is a metal oxide with good electronic conductor or mixed electronic/ion conductor, including but not limited to: NiO, CuO, (LiNi)O 1-x , AgO, Bi 2 O 3 , (LaSr)MnO 3 , (SmSr)CoO 3 , (LaSr)(CoFe)O 3 ;
  • the metal oxides in step (3) are pure ionic conductor metal oxides, including but not limited to 8YSZ (8mol% Y 2 O 3 stabilized ZrO 2 , LSGM ((LaSr)(GaMg)O 3 ), RDC (rare earth doped CeO 2 ), BYCZ ((BaY)(CaZr)O 3 ).
  • the added amount of the concentrated nitric acid is 10-20% of the total moles of metal ions of the metal compound in the deionized water.
  • the concentration of the concentrated nitric acid is 16 mol/L.
  • the preparation method of the slurry solution in step (2) is as follows: mixing nano-scale metal oxide powder, MEK (butanone), ethanol, acetone, glycerol, corn oil, PVB (polyvinyl butyral), DBP (dibutyl phthalate), polyethylene glycol (molecular weight 4000-6000), TEA (lauryl sulfate), flux, 85-90:240-270:25-30:8 by weight -The ratio of 12:0.5-1:0.5-0.7:6-10:1.5-2:0.5-0.8:0.5-0.7:0.5-0.8 is added to the grinding jar and grinded with a grinder for 24 hours, every 1 hour during the period Stop and dissipate heat for 30 minutes, then reversely rotate and grind for 1 hour, stop and dissipate heat for 30 minutes, and so on, to obtain a slurry solution; wherein, the flux is selected from Li 2 CO 3 , B 2 O 3 , ZnO, Al Mixture of one or more of 2O3 ,
  • the method for forming the densified metal oxide thin layer is as follows: coating the slurry solution on the surface of the ceramic substrate by immersion coating, placing it in a high-temperature furnace, and sintering at 1200-1400° C. for 10 hours to form the surface of the ceramic substrate.
  • the long tail is clamped at a distance of 0.5 cm from the edge of one side of the sub-millimeter-thick porous block and hung upside down with a metal wire, so that the ceramic substrate is immersed in the prepared slurry solution in this way.
  • pull up and enter the oven to dry the slurry solution at 70-90°C in a suspended manner.
  • clamp the long tail at a distance of 0.5 cm from the edge of the other side of the ceramic substrate. In this way, the ceramic substrate is immersed in the above slurry solution for 3-5 seconds, then pulled up and put into the oven, and the slurry solution is suspended and dried at 70-90°C.
  • the coating method adopts a spin coating method or a screen printing coating method, and when the spin coating method is adopted, the preparation method of the coating slurry is: ketone), ethanol, acetone, glycerin, corn oil, PVB (polyvinyl butyral), DBP (dibutyl phthalate), polyethylene glycol (molecular weight 4000-6000), TEA (lauryl sulfate) ), added to the In the grinding jar, grind with a grinder for 24 hours, stop and dissipate heat for 30 minutes every 1 hour, and then reversely rotate for 1 hour to stop and dissipate heat for 30 minutes, and so on; The porous sub-millimeter-thick ceramic substrate of the densified metal oxide thin layer is attached to a turntable.
  • the preparation method of the coating slurry is: ketone), ethanol, acetone, glycerin, corn oil, PVB (polyvinyl butyral), DBP (dibutyl phthalate
  • the turntable can have multiple speeds and can rotate clockwise and counterclockwise.
  • the center of the turntable is the center of the ceramic substrate.
  • the top of the center is the slurry injection position, and the turntable is set to be stationary for 0-0.5 seconds after startup; 0.5-1 seconds to rotate counterclockwise (5 revolutions per second); 1-1.5 seconds to rotate clockwise (5 revolutions per second); 1.5-3 seconds clockwise acceleration (rotation speed 10 rpm/sec); 3-10 seconds clockwise acceleration rotation (rotation speed 30 rpm/sec); drying the coating slurry at 70-90 °C, after drying, put it into a high temperature In the furnace, sintering at 1200-1400 °C for 10 hours, so that the surface of the densified metal oxide thin layer facing upwards forms a porous metal oxide thin layer;
  • the preparation method of the coating slurry is as follows: nanoscale metal oxide powder, ⁇ -Terpineol ( ⁇ -terpineol), ethanol, glycerol, corn oil, Ethyl-Cellulose ( Ethyl cellulose), PVB (polyvinyl butyral), DBP (dibutyl phthalate), polyethylene glycol (molecular weight 4000-6000), TEA (lauryl sulfate) in a weight ratio of 80 The ratio of -120:70-90:10-20:1-1.5:0.5-0.7:3-6:1-3:0.5-1:0.5-1:0.5-0.8 is added to the grinding tank, and the grinding machine is used.
  • the salt compound is selected from one or more mixtures of Li 2 CO 3 , Na 2 CO 3 and K 2 CO 3 ;
  • the specific preparation method of the micron-level highly densified oxide/salt composite layer is: placing the salt compound in a stainless steel container, placing it in a high-temperature furnace and heating to a temperature higher than the melting point of the salt compound, It is completely melted into a liquid state, and the densified metal oxide thin layer that is easily reduced to a metallic state completely covers the sub-millimeter porous layer, and the densified metal oxide thin layer that is easily reduced to a metallic state has one side connected to the micron-scale porous layer.
  • the layered structure is placed in the liquid molten salt compound for 10-24 hours, the power supply of the high temperature furnace is turned off, the above structure is taken out from the liquid molten salt compound, and placed in the high temperature furnace to naturally cool down to room temperature.
  • the method for removing the densified metal oxide thin layer that is easily reduced to a metallic state in step (5) is to use a sandblast polishing machine or a rotary grinder for the densified metal oxide thin layer that is easily reduced to a metallic state. Removal from the surface of the sub-millimeter porous layer exposes the porous structure of the sub-millimeter porous layer.
  • step (6) the continuous 3-layer structure is put into a high-temperature furnace, 100% N 2 gas is introduced, and the temperature is raised to 350-400 ° C, and the introduced gas is converted into a 5% increase every 5 minutes. H 2 gas, until the gas in the high temperature furnace is 50% H 2 and 50% N 2 , maintained for 24 hours, the densified metal oxide thin layer that is easily reduced to a metallic state becomes porous because the metal oxide is reduced to a metallic state .
  • the porous block prepared by the method of the present invention can be used as an electrolyte substrate, the thickness of the composite electrolyte layer can be reduced to 5-20 ⁇ m, the operation efficiency of the battery can be greatly improved, and the operation at 400-500 ⁇ m can be achieved.
  • the solid-state lithium-ion battery can also use the electrolyte substrate to reduce the thickness of the electrolyte, increase the ion concentration, and improve the stress transition tolerance of the battery during charging and discharging.
  • the present invention provides a preparation method of a multi-layer structure composite block in which a porous sub-millimeter layer is connected with a high-density composite micron layer, and the multi-layer structure composite block prepared by the method can be used as an electrolyte.
  • the substrate is used, the operating efficiency of the battery can be improved, and the cost can be reduced.
  • Fig. 1 shows that the lower layer of densified metal oxide thin layer easily reduced to metallic state completely covers the sub-millimeter porous layer, and the densified metal oxide thin layer that is easily reduced to metallic state has a structure with one side connected to the micron-scale porous layer ;
  • Figure 2-3 shows that the porous structure reveals a thick sub-millimeter porous layer/a densified metal oxide thin layer that is easily reduced to a metallic state/highly dense composite layer, a continuous 3-layer structure;
  • Figure 4 shows a composite electrolyte material composed of SOFC electrolyte oxides and carbonates, which exhibits a conductivity measurement value equivalent to 8YSZ at 750-800°C below 500°C, 10 -2 S/cm;
  • Figure 5 shows the relationship between the measured maximum power values of the composite salt fuel cells with different electrolyte thicknesses
  • Figure 6 shows the ceramic substrate prepared in Example 1
  • FIG. 7 shows the formation of a thin layer of densified metal oxide with a thickness of about 1-2 ⁇ m that is easily reduced to a metallic state on the surface of a sub-millimeter-thick porous block in Example 1;
  • FIG. 8 shows the formation of a porous metal oxide thin layer with a thickness of about 2000 ⁇ m on the surface of the densified metal oxide thin layer in Example 1;
  • Example 9 shows a structure in which a micron-scale highly densified oxide/salt composite layer (high-density composite layer) is connected to one side of the densified metal oxide thin layer that is easily reduced to a metallic state in Example 1;
  • Figure 10 shows that the porous structure prepared in Example 1 reveals a thick sub-millimeter porous layer/a thin layer of densified metal oxide that is easily reduced to a metallic state/a high-density composite layer, a continuous 3-layer structure;
  • Figure 11 shows that the densified metal oxide thin layer that is easily reduced to a metallic state in Example 1 becomes porous because the metal oxide is reduced to a metallic state;
  • Figure 12 shows the battery power density of the composite salt-based unit cells prepared from the porous blocks prepared in Examples 1-3;
  • Figure 13 shows that the composite electrolyte material prepared for the present invention exhibits conductivity measurements below 470°C equivalent to 8YSZ at 750-800°C.
  • the embodiment of the present invention provides a preparation method of a multi-layer structure composite block in which a porous sub-millimeter layer is connected with a high-density composite micro-layer, including the following steps:
  • the metal oxide powder (the metal oxide is a good electron conductor or a mixed electron/ion conductor, such as NiO, CuO, (LiNi)O 1-x , AgO, Bi 2 O 3 , (LaSr)MnO 3.
  • Electronic conductors or electronic/ionic mixed conductor metal oxides such as (SmSr)CoO 3 , (LaSr)(CoFe)O 3 , SDC, etc.
  • catalytic activity such as H 2 , CO, CH 4 , C 2 H 6 etc.
  • the metal oxides are good electron conductors, or mixed electron/ion conductors, such as NiO, CuO, (LiNi)O 1-x , AgO, Bi 2 O 3 , (LaSr)MnO 3 , (SmSr)CoO 3 , (LaSr)(CoFe)O 3 and other electronic conductors or electronic/ionic mixed conductor metal oxides, which are easily reduced to metallic state by thin film process
  • the densified metal oxides coat sub-millimeter-thick porous bulk materials at 1-2 ⁇ m thickness.
  • the densified metal oxide which is easily reduced to a metallic state, is coated on a sub-millimeter thick porous block with a thickness of 1-2 ⁇ m by a thin film process.
  • the preparation method is as follows: the metal oxide nano-scale powder which is easily reduced to a metal state is prepared by a solution method. The method is to dissolve the metal compound in deionized water, and then add citric acid with 2-2.5 times the total moles of metal ions to the aqueous solution. Then add an appropriate amount of concentrated nitric acid to help dissolve, and adjust the pH value of the aqueous solution to between 6-7 with ammonia water.
  • the added amount of the nitric acid is 10-20% of the total moles of metal ions of the metal compound in the deionized water; and/or the concentration of the concentrated nitric acid is 16 mol/L.
  • To the aqueous solution was added 2-2.5 times the total moles of metal ions C 2 H 4 (OH) 2 (ethylene glycol).
  • the aqueous solution was heated and raised to 120–150 °C with heating and stirring, and the heating was continued until 60–80% of the water was removed and ethylene glycol polymerization occurred, making the solution slightly viscous. Raise the heating temperature to 300-350°C until the solution spontaneously ignites and burns to obtain nano-scale metal oxide powder.
  • Nanoscale metal oxide powder MEK (butanone), ethanol, acetone, glycerin, corn oil, PVB (polyvinyl butyral), DBP (dibutyl phthalate), polyethylene glycol ( Molecular weight 4000-6000), TEA (lauryl alcohol sulfate) and flux are added into the tungsten steel alloy grinding jar, and their weight ratios are 85-90:240-270:25-30:8-12:0.5-1:0.5 respectively -0.7:6-10:1.5-2:0.5-0.8:0.5-0.7:0.5-0.8.
  • the flux is selected from Li 2 CO 3 , B 2 O 3 , ZnO, Al 2 O 3 , PbO 2 , Bi 2 O 3 , V 2 O 5 .
  • the ground slurry solution is coated on the surface of the sub-millimeter-thick porous block by dip-coating.
  • the infiltration coating is to clamp the long tail at 0.5 cm from the edge of one side of the sub-millimeter thick porous block and hang it upside down with a metal wire, and in this way, the block is immersed in the above-prepared porous block and is easily reduced to a metal state.
  • the slurry of metal oxide nano-scale powder is placed in the slurry of metal oxide nano-scale powder for 3-5 seconds, then pulled up and entered into the oven, and the slurry of metal oxide nano-scale powder which is easy to be reduced to metal state is suspended and dried at 70-90 ° C. . After drying, clamp the long tail at a distance of 0.5 cm from the edge of the other side of the porous block with a thickness of sub-millimeters and hang it upside down with a metal wire.
  • the block is immersed in the above prepared easily reduced metal
  • the slurry of metal oxide nano-scale powder in the state of metal oxide is placed in the slurry of metal oxide nano-scale powder for 3-5 seconds, then pulled up and put into the oven, and the slurry of metal oxide nano-scale powder that is easily reduced to metal state is suspended and dried at 70-90 °C. material. It is placed in a high temperature furnace and sintered at 1200-1400 °C for 10 hours, so that a thin layer of densified metal oxide with a thickness of about 1-2 ⁇ m is formed on the surface of the porous block with a thickness of sub-millimeter and is easily reduced to a metallic state.
  • the metal oxides used in this layer are not limited by the ease of redox properties.
  • This layer is mainly made into a porous shape in terms of technology, and then molten salts are filled into the pores, and solidified to form a high-density oxide/salt composite layer.
  • the metal oxide is a pure ionic conductor, typically acting as a conduction path for oxygen ions (O 2 ⁇ ) or hydrogen ions (H + ) in the electrolyte layer.
  • the lower layer of densified metal oxide thin layer that is easily reduced to metallic state completely covers the sub-millimeter porous layer, and the densified metal oxide thin layer that is easily reduced to metallic state has a structure with one side connected to the micron-scale porous layer, as shown in the figure 1 shown;
  • the sub-millimeter porous layer is completely covered by the densified metal oxide thin layer that is easily reduced to a metallic state, and the densified metal oxide thin layer that is easily reduced to a metallic state has a structure with one side connected to the micron-scale porous layer It is placed in liquid molten salt, so that the liquid molten salt completely penetrates into the micron-scale porous layer to form a highly densified complex.
  • the salt compound includes Li 2 CO 3 , Na 2 CO 3 and K 2 CO 3 and other single salts or a mixture of multiple salts.
  • the above structure is immersed in the liquid molten salt compound, maintained for 10-24 hours, the power supply of the high temperature furnace is turned off, the above structure is taken out from the liquid molten salt compound, and placed in the high temperature furnace to cool down naturally. When it reaches room temperature, the lower layer of densified metal oxide thin layer that is easily reduced to a metallic state can completely cover the sub-millimeter porous layer, and the densified metal oxide thin layer that is easily reduced to a metallic state has one side connected to a micron-level highly dense layer.
  • the structure of the oxidized/salt composite layer high density composite layer).
  • polishing to remove the densified metal oxide thin layer that is easily reduced to a metallic state on the lower surface of the sub-millimeter porous layer or polishing to remove the lower surface and side of the sub-millimeter porous layer as shown in Figure 3 The densified metal oxide thin layer on the surface; the densified metal oxide thin layer that is easily reduced to a metallic state is removed by sandblasting polishing machine or rotary grinder, so that the porous structure in the sub-millimeter porous layer is exposed, The formation of a porous structure reveals a thick sub-millimeter porous layer/a thin layer of densified metal oxide that is easily reduced to a metallic state/a high-density composite layer, a continuous 3-layer structure.
  • spin-coating method spin coating method
  • nano-scale metal oxide powder will be produced by solution method.
  • the method is to dissolve the metal compound in deionized water, and then add citric acid with 2-2.5 times the total moles of metal ions to the aqueous solution.
  • citric acid with 2-2.5 times the total moles of metal ions
  • an appropriate amount of concentrated nitric acid to help dissolve, and adjust the pH value of the aqueous solution to between 6-7 with ammonia water.
  • the added amount of the nitric acid is 10-20% of the total moles of metal ions of the metal compound in the deionized water; and/or the concentration of the concentrated nitric acid is 16 mol/L.
  • aqueous solution was added 2-2.5 times the total moles of metal ions C 2 H 4 (OH) 2 (ethylene glycol).
  • the aqueous solution was heated and raised to 120–150 °C with heating and stirring, and the heating was continued until 60–80% of the water was removed and ethylene glycol polymerization occurred, making the solution slightly viscous. Raise the heating temperature to 300-350°C until the solution spontaneously ignites and burns to obtain nano-scale metal oxide powder.
  • Nanoscale metal oxide powder MEK (butanone), ethanol, acetone, glycerin, corn oil, PVB (polyvinyl butyral), DBP (dibutyl phthalate), polyethylene glycol ( Molecular weight 4000-6000) and TEA (lauryl alcohol sulfate) were added to the tungsten steel alloy grinding jar, and their weight ratios were 180-270:35-42:25-30:8-12:0.5-1:0.5-0.7: 6-10:1.5-2:0.5-0.8:0.5-0.7. Grind with a planetary grinder for 24 hours, stop and cool for 30 minutes every 1 hour, then reverse the grinding for 1 hour, stop and cool for 30 minutes, and so on.
  • the milled slurry solution is coated on the densified metal oxide thin layer that is easily reduced to a metallic state by spin coating.
  • the spin coating method is to attach a 2-layer structure block (a porous block with a thickness of sub-millimeter / a thin layer of densified metal oxide that is easily reduced to a metallic state) on a turntable.
  • the turntable can have multiple sections. speed, and can rotate clockwise and counterclockwise.
  • the center of the turntable is the center of the 2-layer structural block, and above the center is the slurry injection position.
  • the turntable is set to be stationary for 0-0.5 seconds after startup; 0.5-1 seconds to rotate counterclockwise (5 revolutions per second); 1-1.5 seconds to rotate clockwise (5 revolutions per second); 1.5-3 seconds to accelerate clockwise (Rotation speed 10 rev/sec); 3-10 seconds clockwise acceleration (rotation speed 30 rev/sec).
  • nano-scale metal oxide powder will be produced by solution method.
  • the method is to dissolve the metal compound in deionized water, and then add citric acid with 2-2.5 times the total moles of metal ions to the aqueous solution. Then add an appropriate amount of concentrated nitric acid to help dissolve, and adjust the pH value of the aqueous solution to between 6-7 with ammonia water.
  • the added amount of the nitric acid is 10-20% of the total moles of metal ions of the metal compound in the deionized water; and/or the concentration of the concentrated nitric acid is 16 mol/L.
  • aqueous solution was added 2-2.5 times the total moles of metal ions C 2 H 4 (OH) 2 (ethylene glycol).
  • the aqueous solution was heated and raised to 120–150 °C with heating and stirring, and the heating was continued until 60–80% of the water was removed and ethylene glycol polymerization occurred, making the solution slightly viscous. Raise the heating temperature to 300-350°C until the solution spontaneously ignites and burns to obtain nano-scale metal oxide powder.
  • nano-scale metal oxide powder ⁇ -Terpineol ( ⁇ -terpineol), ethanol, glycerol, corn oil, Ethyl-Cellulose (ethyl cellulose), PVB (polyvinyl butyral), DBP (o- Dibutyl phthalate), polyethylene glycol (molecular weight 4000-6000) and TEA (lauryl sulfate) were added to the tungsten steel alloy grinding jar, and their weight ratios were 80-120:70-90:10-20 :1-1.5:0.5-0.7:3-6:1-3:0.5-1:0.5-1:0.5-0.8.
  • the ground slurry solution is coated on the densified metal oxide thin layer that is easily reduced to a metallic state by screen printing.
  • the screen printing coating method is to press a screen frame with a thickness of about 20-50 ⁇ m on the surface of the densified metal oxide thin layer that is easily reduced to a metallic state, place the above slurry on the screen frame, and scrape it back and forth with a scraper for 2 times. Then, remove the screen frame, and dry the nano-scale metal oxide powder slurry at 80-120 °C. After drying, it is placed in a high-temperature furnace and sintered at 1200-1400° C. for 10 hours to form a porous metal oxide thin layer on the surface of the densified metal oxide thin layer that is easily reduced to a metallic state.
  • SDC Sm doped CeO 2 , Sm 0.2 Ce 0.8 O 2 oxide-carbonate (mole ratio 1:1 mixed Li 2 CO 3 and Na 2 CO 3 carbonate mixture) composite (SDC-C ) as an example of a micron-scale composite electrolyte layer to describe the present invention in detail.
  • a preparation method of a multi-layer structure composite block in which a porous sub-millimeter layer and a high-density composite micro-layer are connected comprising the following steps:
  • the metal oxide used to prepare the sub-millimeter porous ceramic bulk is NiO and SDC in a weight ratio of 7:3. In this case, 70 grams of NiO and 30 grams of SDC were taken as oxides.
  • citric acid with 2-2.5 times the total moles of metal ions is added to the aqueous solution.
  • an appropriate amount of concentrated nitric acid to help dissolve, and adjust the pH value of the aqueous solution to between 6-7 with ammonia water.
  • the added amount of the nitric acid is 10-20% of the total moles of metal ions of the metal compound in the deionized water; and/or the concentration of the concentrated nitric acid is 16 mol/L.
  • aqueous solution was added 2-2.5 times the total moles of metal ions C 2 H 4 (OH) 2 (ethylene glycol).
  • the aqueous solution was heated and raised to 120–150 °C with heating and stirring, and the heating was continued until 60–80% of the water was removed and ethylene glycol polymerization occurred, making the solution slightly viscous. Raise the heating temperature to 300-350°C until the solution spontaneously ignites and burns to obtain nano-scale metal oxide powder.
  • Nanoscale metal oxide powder MEK (butanone), ethanol, acetone, glycerin, corn oil, PVB (polyvinyl butyral), DBP (dibutyl phthalate), polyethylene glycol ( Molecular weight 4000-6000), TEA (lauryl alcohol sulfate) and flux were added to the tungsten steel alloy grinding jar, and their weight ratios were 85:250:25:8:0.5:0.5:7:1.5:0.5:0.5:0.5 , in grams.
  • the ground slurry solution is coated on the surface of the sub-millimeter-thick porous block by dip-coating. It is placed in a high temperature furnace and sintered at 1200-1400°C for 10 hours to form a thin layer of densified metal oxide with a thickness of about 1-2 ⁇ m on the surface of the porous block with a thickness of sub-millimeter, which is easily reduced to a metallic state, as shown in Figure 7.
  • the long tail is clamped at a distance of 0.5 cm from the edge of one side of the sub-millimeter-thick porous block, and the metal wire is used to hang it upside down.
  • the ceramic substrate is immersed in the prepared slurry solution for 3- For 5 seconds, pull up and enter the oven to dry the slurry solution in a suspended manner at 70-90°C.
  • After drying clamp it with a long tail at a distance of 0.5 cm from the edge of the other side of the ceramic substrate.
  • the metal wire is hung upside down, and the ceramic substrate is immersed in the above slurry solution for 3-5 seconds in this way, then pulled up and entered into the oven, and the slurry solution is suspended and dried at 70-90°C.
  • the metal oxide used to prepare the porous micro-thin layer is SDC. First dissolve samarium nitrate and cerium nitrate in deionized water, add citric acid with 2-2.5 times the total number of moles of metal ions to the aqueous solution, and then add an appropriate amount of concentrated nitric acid to help dissolve, and adjust the pH of the prepared aqueous solution to 6 with ammonia water.
  • This embodiment adopts the screen printing coating method, and the preparation method of the coating slurry is as follows: nano-scale metal oxide powder, ⁇ -Terpineol ( ⁇ -terpineol), ethanol, glycerol, corn oil, Ethyl- Cellulose (ethyl cellulose), PVB (polyvinyl butyral), DBP (dibutyl phthalate), polyethylene glycol (molecular weight 4000-6000), TEA (lauryl sulfate) by weight It is 80:70:10:1:0.5:3:1:0.5:0.5, the unit is the ratio of grams, add it to the grinding jar, grind it with a grinder for 24 hours, stop every 1 hour and dissipate heat for 30 minutes, Then the reverse rotation grinding is stopped for 1 hour and the heat is dissipated for 30 minutes, and so on.
  • the sub-millimeter porous layer is completely covered by the densified metal oxide thin layer that is easily reduced to a metallic state, and the densified metal oxide thin layer that is easily reduced to a metallic state has a structure with one side connected to the micron-scale porous layer It is placed in liquid molten salt, so that the liquid molten salt completely penetrates into the micron-scale porous layer to form a highly densified complex.
  • the above structure is immersed in the liquid molten salt compound, maintained for 10-24 hours, the power supply of the high temperature furnace is turned off, the above structure is taken out from the liquid molten salt compound, and placed in the high temperature furnace to cool down naturally.
  • the lower layer of densified metal oxide thin layer that is easily reduced to a metallic state can completely cover the sub-millimeter porous layer, and the densified metal oxide thin layer that is easily reduced to a metallic state has one side connected to a micron-level highly dense layer.
  • the structure of the oxidized/salt composite layer (high-density composite layer) is shown in FIG. 9 .
  • the porous structure is exposed to a thick sub-millimeter porous layer/a densified metal oxide thin layer that is easily reduced to a metal state/a high-density composite layer, and the continuous 3-layer structure is placed at high temperature.
  • feed 100% N2 gas and raise the temperature to 350–400°C change the injected gas to 5% H2 gas every 5 minutes, until the high temperature furnace gas is 50% H2 and 50%N 2.
  • the densified metal oxide thin layer that is easily reduced to a metallic state becomes porous because the metal oxide is reduced to a metallic state, as shown in FIG. 11 .
  • Example 1 Compared with Example 1, the preparation method is the same as in Example 1, except that the screen printing coating method is as follows: a screen frame with a thickness of 20-50 ⁇ m is pressed on a porous structure covered with a thin layer of densified metal oxide. On the ceramic substrate with a thickness of sub-millimeter, put the coating slurry in the screen frame, scrape it back and forth with a scraper twice, remove the screen frame, and dry the coating slurry at 80-120 °C.
  • the screen printing coating method is as follows: a screen frame with a thickness of 20-50 ⁇ m is pressed on a porous structure covered with a thin layer of densified metal oxide. On the ceramic substrate with a thickness of sub-millimeter, put the coating slurry in the screen frame, scrape it back and forth with a scraper twice, remove the screen frame, and dry the coating slurry at 80-120 °C.
  • Example 1 Compared with Example 1, the preparation method is the same as in Example 1, except that the screen printing coating method is as follows: a screen frame with a thickness of 20-50 ⁇ m is pressed on a porous structure covered with a thin layer of densified metal oxide. On the ceramic substrate with a thickness of sub-millimeter, put the coating slurry in the screen frame, scrape it back and forth with a scraper twice, remove the screen frame, and dry the coating slurry at 80-120 °C.
  • the screen printing coating method is as follows: a screen frame with a thickness of 20-50 ⁇ m is pressed on a porous structure covered with a thin layer of densified metal oxide. On the ceramic substrate with a thickness of sub-millimeter, put the coating slurry in the screen frame, scrape it back and forth with a scraper twice, remove the screen frame, and dry the coating slurry at 80-120 °C.
  • step (1) metal oxide powder, MEK (butanone), ethanol, acetone, glycerin, corn oil, PVB (polyvinyl butyral), DBP (dibutyl phthalate), polyethylene glycol Alcohol (molecular weight 4000-6000), TEA (lauryl alcohol sulfate), Li2CO3, in a weight ratio of 85:42:30:12:1:0.7:10:1.5:0.8:0.5:0.8; 85-90:35- 42:25-30:8-12:0.5-1:0.5-0.7:6-10:1.5-2:0.5-0.8:0.5-0.7:0.5-0.8
  • step (2) nanoscale metal oxide powder, MEK (butanone), ethanol, acetone, glycerin, corn oil, PVB (polyvinyl butyral), DBP (dibutyl phthalate), poly Ethylene glycol (molecular weight 4000-6000), TEA (lauryl alcohol sulfate) and flux were added to the tungsten steel alloy grinding jar, and their weight ratios were 90:240:30:12:1:0.7:10:2:0.8 :0.7:0.8;85-90:240-270:25-30:8-12:0.5-1:0.5-0.7:6-10:1.5-2:0.5-0.8:0.5-0.7:0.5-0.8
  • step (3) nanoscale metal oxide powder, ⁇ -Terpineol ( ⁇ -terpineol), ethanol, glycerol, corn oil, Ethyl-Cellulose (ethyl cellulose), PVB (polyvinyl butyral) , DBP (dibutyl phthalate), polyethylene glycol (molecular weight 4000-6000), TEA (lauryl alcohol sulfate) according to the weight ratio of 120:90:20:1.5:0.7:6:3:1: 1:0.8; 80-120:70-90:10-20:1-1.5:0.5-0.7:3-6:1-3:0.5-1:0.5-1:0.5-0.8
  • step (1) metal oxide powder, MEK (butanone), ethanol, acetone, glycerin, corn oil, PVB (polyvinyl butyral), DBP (dibutyl phthalate), polyethylene glycol Alcohol (molecular weight 4000-6000), TEA (lauryl alcohol sulfate), Li2CO3, in a weight ratio of 88:39:27:10:0.8:0.6:8:1.8:0.7:0.6:0.6;
  • step (2) nanoscale metal oxide powder, MEK (butanone), ethanol, acetone, glycerin, corn oil, PVB (polyvinyl butyral), DBP (dibutyl phthalate), poly Ethylene glycol (molecular weight 4000-6000), TEA (lauryl sulfate) and flux were added to the tungsten steel alloy grinding jar, and their weight ratios were 87:270:28:10:0.8:0.6:6:1.7:0.7 :0.6:0.7;
  • step (3) nanoscale metal oxide powder, ⁇ -Terpineol ( ⁇ -terpineol), ethanol, glycerol, corn oil, Ethyl-Cellulose (ethyl cellulose), PVB (polyvinyl butyral) , DBP (dibutyl phthalate), polyethylene glycol (molecular weight 4000-6000), TEA (lauryl sulfate) according to the weight ratio of 80-120:70-90:10-20:1-1.5: 0.5-0.7:3-6:1-3:0.5-1:0.5-1:0.5-0.8.
  • the sub-millimeter porous blocks prepared in Examples 1-3 can be used as anodes, and the densified micron-scale metal oxide/carbonate composite thin layers after being composited with carbonate can be used as electrolytes.
  • the cathode ((Li 0.2 Ni 0.8 )O 0.9 ) film was coated on the surface of the densified micron-scale metal oxide/carbonate composite thin layer after composite with carbonate using spin coating or screen printing technology, with a thickness of about 40 ⁇ m. Porous metal oxide thin layers.
  • the preparation method of the coating slurry is as follows: (Li 0.2 Ni 0.8 )O 0.9 metal oxide powder, ⁇ -Terpineol ( ⁇ -terpineol), ethanol, glycerin, corn oil, Ethyl-Cellulose (ethyl alcohol) Cellulose), PVB (polyvinyl butyral), DBP (dibutyl phthalate), polyethylene glycol (molecular weight 4000-6000), TEA (lauryl sulfate) in a weight ratio of 80-120 :70-90:10-20:1-1.5:0.5-0.7:3-6:1-3:0.5-1:0.5-1:0.5-0.8(80:70:10:1:0.5:3:1 : 0.5:0.5:0.5, the unit is grams) into the grinding jar, grind with a grinder for 24 hours, stop every 1 hour and dissipate heat for 30 minutes, and then rotate in reverse for 1 hour to stop and dissipate heat for 30 minutes, And so on; the screen
  • the prepared composite salt unit battery is composed of the anode film being a sub-millimeter-scale porous layer, and the electrolyte being a micron-scale metal oxide/carbonate composite thin layer which is densified after being composited with carbonate. Considering that the melting point temperature of carbonate is relatively low, the cathode is sintered at 450°C lower than the melting point temperature of carbonate to form a composite salt fuel cell.
  • the battery power measurement was carried out at 470 °C, as shown in Figure 12, it can be observed that the maximum battery power densities of the electrolyte (SDC-C) substrate from thick to thin are 3, 40 and 65 mW/cm 2 , respectively, confirming the composite Unit cells do operate at low temperatures. If the electrolyte thickness of the composite salt fuel cell is reduced to the same 5 ⁇ m as the Elcogen cell, it can be predicted that the system using the composite material unit cell does show the potential for developing medium and low temperature fuel cells.
  • SDC-C electrolyte
  • the composite electrolyte material prepared by the present invention has the characteristics of three ions of O 2- , H + and CO 3 2- moving in the electrolyte material, as shown in Figure 13, below 470 °C, it exhibits the equivalent of 8YSZ at 750- Conductivity measurement at 800°C, 10 -2 S/cm.
  • the maximum battery power densities from thick to thin electrolyte (SDC-C) substrates were 3, 40 and 65 mW/cm 2 , respectively, confirming that the composite unit cells can indeed operate at low temperatures.
  • the bipolar plate material required for assembling the battery stack benefits from the low temperature operation and high conductivity of the composite electrolyte material, so the cheap SUS304 stainless steel can be used to replace the expensive Crofer 22APU, and the cost is estimated to be reduced by about 87%. More than 30% of the volume of the electrolyte layer of the composite material is carbonate. For the production of the same volume of electrolyte layer, the cost of the composite material can be reduced by up to about 79% compared with the cost of pure oxide.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了一种多孔性次毫米层与高致密性复合微米层连接的多层结构复合块材的制备方法,包括制备次毫米厚度的陶瓷生胚,烧结成多孔状次毫米厚度的陶瓷基板;在多孔状次毫米厚度的陶瓷基板上形成致密化金属氧化物薄层;然后在形成下层易还原成金属态的致密化金属氧化物薄层完全包覆次毫米多孔层;再制备微米级高度致密化的氧化物/盐类复合层;抛光移除部分易还原成金属态的致密化金属氧化物薄层,形成毫米多孔层/易还原成金属态的致密化金属氧化物薄层/高致密复合体层;最后进行还原处理,将易还原成金属态的致密化金属氧化物薄层变为多孔性结构。该方法制备的多孔块材可以作为电解质基板使用时可提高电池的运转效能,并且可以降低成本。

Description

一种多孔性次毫米层与高致密性复合微米层连接的多层结构复合块材的制备方法 技术领域
本发明涉及多元结构与材料复合化的工艺制备技术领域,具体涉及一种多孔性次毫米层与高致密性复合微米层连接的多层结构复合块材的制备方法。
背景技术
SOFC(solid oxide feul cell)的技术在发电領域上相当具有潜力。因为电池组件的成分主要是由稳定的氧化物组成,所以运转温度可以安定在650-1000℃下使用,且不需昂贵的白金材料作为触媒转换,使得做为催化用途的阴、阳极材料制造成本能够较为低廉。使用SOFC作为发电系统的优势包括,发电效率高,所以使用过程中NOx、SOx和HC等污染物的排放量相对较少,使得产生的CO 2较容易被收集。另外,可以作为SOFC燃料的种类很多元,像是天然气、CO、H 2、甲醇和煤气,甚至可以利用可燃性废气等多种燃料。SOFC利用本身的高温运作环境,进行内部燃料重整,可使系统简化。在输出功率0.3W/㎝2以上,发电效率可达50-60%,SOFC排出的高温尾气与涡輪机构建高效率的聯合发电系统,发电效率更达到90%以上。此外,目前市面上的锂离子电池使用的是高分子电解液或离子液体又或是含磷难燃性的电解液,需要使用隔离膜来隔开电解液和电极部份,所以隔离膜的热稳定性对电池安全性,也有重要影响,目前一般最常用聚乙烯(PE),其耐热温度约在120~130℃间,若是操作温度超过130℃,会造成PE隔离膜熔穿、热缩现象,使正负极出现短路。因此如果将目前锂离子电池所使用的电解液改成无机固态锂离子导体,便能够移除隔离膜的部份也解决了电解液可能外漏及腐蚀的疑虑,提高安全性。此外若能有效提高锂离子导电度与锂离子浓度是无机固态锂离子导体取代传统锂离子电池电解质系统的关键因素。
SOFC电解质氧化物与碳酸盐类结合而成的复合电解质材料,因为具备O 2-、H +与CO 3 2-三种离子在电解质材料中移动的特性,在500℃以下展现出相当于8YSZ在750-800℃的导电度量测值,10 -2S/cm,如图4所示。
目前SOFC的商用电池片主要使用Elcogen公司生产的NiO-8YSZ//8YSZ//GDC//LSC单元电池的电解质厚度仅仅约5μm。而其单元电池的功率量测于600–850℃的功率密度量测结果分别为600℃,约400mW/cm 2(0.6V);650℃,约550mW/cm 2(0.8V);700℃,约600mW/cm 2(0.85V)。然而SDC-C电解质厚度为200μm的固态碳酸盐-氧化物复合燃料电池,NiO-SDC//SDC-C//LiNiO-SDC,取相同的测试电压0.85V,在470℃量到的功率测试资料为40mW/cm 2。在此先不论量测的温度高低,仅就功率值来说,Elcogen电池片比低温型复合盐类燃料电池高出约15倍。不过换个角度来看,固态碳酸盐-氧化物复合燃料电池为ESC型,所以目前的电解质厚度为200μm,而Elcogen电池片的电解质厚度仅5μm。 如图5,不同电解质厚度的复合盐类燃料电池对其所量测到的最大功率值的关系图可以观察到,电解质的厚度直接影响了电池运作的功率。若以两者成反比的关系来看,若将复合盐类燃料电池的电解质厚度降低至与Elcogen电池片一样5μm,可以预测使用复合材料单元电池的系统确实呈现出发展中低温燃料电池的潜力。
然而,以电解质支撑型制作复合材料电解质基板,再使用旋转涂布及网印技术将阴极((Li 0.2Ni 0.8)O 0.9)与阳极(NiO-SDC)薄膜分别涂于电解质基板的两面。当电解质厚度降至200μm以下,强度已经太低,在涂布并烧结阴阳极制备成单元电池的过程破损率大幅提高。因此必须转换制程架构,先制作电极材料作为基板,因为电极材料的导电性高,可以将基板厚度提高至300–500μm作为强度的根源。再将电解质材料与另一个电极材料依序制作组装成电极支撑型单元电池,不过制程工艺与难度也较电解质支撑型提高许多。原因在于电解质必须先制成多孔状,再浸入熔融碳酸盐中使其复合化。因此,必须先保护作为基板的电极材料,必须让熔融碳酸盐在填入电解质孔隙时,也维持住电极材料的多孔性。
发明内容
有鉴于此,本发明的目的是提供一种多孔性次毫米层与高致密性复合微米层连接的多层结构复合块材的制备方法,该方法制备的多孔块材可以作为电解质基板使用,可将复合电解质层(微米级多孔层与熔融盐类复合致密化的氧化物/盐类复合层)的厚度降至5–20μm,将能大幅度提高电池的运转效能,实现运作于400–500℃新式中低温型燃料电池系统的开发。
本发明采取的具体技术方案是:
一种多孔性次毫米层与高致密性复合微米层连接的多层结构复合块材的制备方法,包括如下步骤:
(1)制备次毫米厚度的陶瓷生胚,烧结成多孔状次毫米厚度的陶瓷基板,即次毫米多孔层;
(2)选择一种或多种混合且易还原成金属态的金属氧化物,先将其制成金属氧化物纳米级粉体,然后配以有机物、助焊剂制成浆料溶液,再用薄膜制作工艺将浆料溶液包覆在多孔状次毫米厚度的陶瓷基板上,在多孔状次毫米厚度的陶瓷基板上形成致密化金属氧化物薄层;
(3)选择一种或多种混合的金属氧化物,先将其制成金属氧化物纳米级粉体,然后配以有机物制成涂布浆料,采用涂布方式将涂布浆料涂覆在多孔状次毫米厚度的陶瓷基板一面的致密化金属氧化物薄层上,再经热处理将涂布浆料中的有机物分解移除,并烧结成多孔微米薄层,即微米级多孔层;形成下层易还原成金属态的致密化金属氧化物薄层完全包覆次毫米多孔层,且易还原成金属态的致密化金属氧化物薄层有一面连接微米级多孔层 的结构体;
(4)将下层易还原成金属态的致密化金属氧化物薄层完全包覆次毫米多孔层,且易还原成金属态的致密化金属氧化物薄层有一面连接微米级多孔层的结构体放入液态熔融的盐类化合物中,使液态熔融的盐类化合物完全渗入微米级多孔层中的孔隙中,形成微米级高度致密化的氧化物/盐类复合层,即高致密复合体层;
(5)抛光移除与覆有高致密复合体层的易还原成金属态的致密化金属氧化物薄层位置相对应的包覆次毫米多孔层一面的易还原成金属态的致密化金属氧化物薄层或抛光移除除覆有高致密复合体层的以外的其它包覆在次毫米多孔层上的易还原成金属态的致密化金属氧化物薄层,形成毫米多孔层/易还原成金属态的致密化金属氧化物薄层/高致密复合体层,连续的3层结构体;
(6)将次毫米多孔层/易还原成金属态的致密化金属氧化物薄层/高致密复合体层,连续的3层结构体放入还原气氛下的高温炉内加热,使易还原成金属态的致密化金属氧化物薄层中的金属氧化物还原成金属态,易还原成金属态的致密化金属氧化物薄层变为多孔性结构。
进一步地,所述陶瓷基板的制备方法为:将金属氧化物粉体、MEK(丁酮)、乙醇、丙酮、甘油、玉米油、PVB(聚乙烯醇缩丁醛)、DBP(邻苯二甲酸二丁酯)、聚乙二醇(分子量4000-6000)、TEA(月桂醇硫酸酯)、Li2CO3,按照重量比为85-90:35-42:25-30:8-12:0.5-1:0.5-0.7:6-10:1.5-2:0.5-0.8:0.5-0.7:0.5-0.8的配比加入到研磨罐中,用研磨机研磨24小时,期间每1小时停止并散热30分钟,然后反向旋转研磨1小时停止并散热30分钟,以此类推,然后将研磨完成的浆料用刮刀成型机制作成次毫米厚度的陶瓷生胚,将陶瓷生胚送入烘箱,以70-90℃烘干,再以以1100-1300℃烧结成多孔状次毫米厚度的陶瓷基板;其中,所述金属氧化物粉体为电子良导体或电子/离子混合良导体金属氧化物粉体,包括但不限于:NiO、CuO、(LiNi)O 1-x、AgO、Bi 2O 3、(LaSr)MnO 3、(SmSr)CoO 3、(LaSr)(CoFe)O 3、SDC。
进一步地,步骤(2)和步骤(3)中所述金属氧化物纳米级粉体均采用溶解法制成,具体为:将金属化合物溶解于去离子水中后,向水溶液中加入金属离子总摩尔数2–2.5倍的柠檬酸,再加入适量浓硝酸帮助溶解,配制成的水溶液用氨水调整水溶液pH值到6-7之间,然后向水溶液中加入金属离子总摩尔数2–2.5倍的C 2H 4(OH) 2(乙二醇),水溶液加热升高温度至120–150℃加热搅拌,持续加热直到移除60–80%的水分并发生乙二醇聚合化反应,使溶液呈现略微黏稠状态,升高加热温度至300–350℃,直到溶液自燃起火燃烧,即得纳米级金属氧化物粉体;
进一步地,步骤(2)中所述易还原成金属态的金属氧化物为电子良导体或电子/离子 混合良导体金属氧化物,包括但不限于:NiO、CuO、(LiNi)O 1-x、AgO、Bi 2O 3、(LaSr)MnO 3、(SmSr)CoO 3、(LaSr)(CoFe)O 3
进一步地,步骤(3)中所述金属氧化物为纯离子导体金属氧化物,包括但不限于8YSZ(8mol%Y 2O 3稳定的ZrO 2、LSGM((LaSr)(GaMg)O 3)、RDC(rare earth doped CeO 2)、BYCZ((BaY)(CaZr)O 3)。
进一步地,所述浓硝酸的加入量为投入去离子水中金属化合物金属离子总摩尔数的10–20%;和/或
所述浓硝酸的浓度为16mol/L。
进一步地,步骤(2)中浆料溶液的制备方法为:将纳米级金属氧化物粉体、MEK(丁酮)、乙醇、丙酮、甘油、玉米油、PVB(聚乙烯醇缩丁醛)、DBP(邻苯二甲酸二丁酯)、聚乙二醇(分子量4000-6000)、TEA(月桂醇硫酸酯)、助焊剂,按照重量比为85-90:240-270:25-30:8-12:0.5-1:0.5-0.7:6-10:1.5-2:0.5-0.8:0.5-0.7:0.5-0.8的配比加入到研磨罐中,用研磨机研磨24小时,期间每1小时停止并散热30分钟,然后反向旋转研磨1小时停止并散热30分钟,以此类推,即得浆料溶液;其中,所述助焊剂选自Li 2CO 3、B 2O 3、ZnO、Al 2O 3、PbO 2、Bi 2O 3、V 2O 5中的一种或多种混合;和/或
所述致密化金属氧化物薄层的形成方法为:将浆料溶液以浸润涂布方式涂布于陶瓷基板表面,置入高温炉中,以1200-1400℃烧结10小时,使陶瓷基板表面形成厚度为1-2μm易还原成金属态的致密化金属氧化物薄层。
进一步地,所述浸润涂布是以长尾夹在距离次毫米厚度多孔块材其中一边的边缘0.5公分处夹住并以金属线倒吊起来,以此方式将陶瓷基板浸入配制的浆料溶液中3-5秒钟,拉起、进入烘箱,以70-90℃悬吊式烘干浆料溶液,烘干后,以长尾夹在距离陶瓷基板另外任一一边的边缘0.5公分处夹住并以金属线倒吊起来,以此方式将陶瓷基板浸入上述浆料溶液中3-5秒钟,拉起、进入烘箱,以70-90℃悬吊式烘干浆料溶液。
进一步地,所述涂布方式采用旋转涂布方法或网印涂布方法,采用旋转涂布方法时,所述涂布浆料的制备方法为:将纳米级金属氧化物粉体、MEK(丁酮)、乙醇、丙酮、甘油、玉米油、PVB(聚乙烯醇缩丁醛)、DBP(邻苯二甲酸二丁酯)、聚乙二醇(分子量4000-6000)、TEA(月桂醇硫酸酯),按照重量比为180-270:35-42:25-30:8-12:0.5-1:0.5-0.7:6-10:1.5-2:0.5-0.8:0.5-0.7的配比加入到研磨罐中,用研磨机研磨24小时,期间每1小时停止并散热30分钟,然后反向旋转研磨1小时停止并散热30分钟,以此类推;所述旋转涂布方法具体为:将覆有致密化金属氧化物薄层的多孔状次毫米厚度的陶瓷基板贴附在一转盘上,该转盘可具备多段转速,且可顺逆时针转动,转盘正中央即为陶瓷基板的正中央,此正中央上方为浆料注射位置,转盘设置为启动后0-0.5秒不动;0.5-1秒逆 时针转(转速5转/秒);1-1.5秒顺时针转(转速5转/秒);1.5-3秒顺时针加速转(转速10转/秒);3-10秒顺时针加速转(转速30转/秒);以70-90℃烘干涂布浆料,烘干后置入高温炉中,以1200-1400℃烧结10小时,使面向上方的致密化金属氧化物薄层表面形成多孔金属氧化物薄层;
采用网印涂布方法时,所述涂布浆料的制备方法为:将纳米级金属氧化物粉体、α-Terpineol(α-松油醇)、乙醇、甘油、玉米油、Ethyl-Cellulose(乙基纤维素)、PVB(聚乙烯醇缩丁醛)、DBP(邻苯二甲酸二丁酯)、聚乙二醇(分子量4000-6000)、TEA(月桂醇硫酸酯)按照重量比为80-120:70-90:10-20:1-1.5:0.5-0.7:3-6:1-3:0.5-1:0.5-1:0.5-0.8的配比加入到研磨罐中,用研磨机研磨24小时,期间每1小时停止并散热30分钟,然后反向旋转研磨1小时停止并散热30分钟,以此类推;所述网印涂布方法具体为:将厚度为20-50μm的网框压在覆有致密化金属氧化物薄层的多孔状次毫米厚度的陶瓷基板上,把涂布浆料置于网框内,以刮刀来回刮2趟,取下网框,以80-120℃烘干涂布浆料,烘干后置入高温炉中,以1200-1400℃烧结10小时,使致密化金属氧化物薄层表面形成多孔金属氧化物薄层。
进一步地,所述盐类化合物选自Li 2CO 3、Na 2CO 3、K 2CO 3中的一种或多种混合;
进一步地,所述微米级高度致密化的氧化物/盐类复合层的具体制备方法为:将盐类化合物置于不锈钢容器中,置于高温炉中加热至高于盐类化合物的熔点的温度,使其完全熔融成液态,将下层易还原成金属态的致密化金属氧化物薄层完全包覆次毫米多孔层,且易还原成金属态的致密化金属氧化物薄层有一面连接微米级多孔层的结构体放入液态熔融的盐类化合物中,维持10-24小时,关闭高温炉电源,将上述结构体从液态熔融盐类化合物中取出,置于高温炉内自然降温至室温。
进一步地,步骤(5)中易还原成金属态的致密化金属氧化物薄层的移除方法为将易还原成金属态的致密化金属氧化物薄层用喷砂抛光机或是旋转研磨机从次毫米多孔层表面上移除,使次毫米多孔层的多孔结构显露出来。
进一步地,步骤(6)中将连续的3层结构体放入高温炉内,通入100%N 2气体,并升温至350–400℃,将通入的气体转变成每5分钟提高5%H 2气体,直到高温炉内气体为50%H 2与50%N 2,维持24小时,易还原成金属态的致密化金属氧化物薄层因为金属氧化物还原成金属态而变为多孔状。本发明的有益效果是:本发明方法制备的多孔块材可以作为电解质基板使用,可将复合电解质层的厚度降至5–20μm,将能大幅度提高电池的运转效能,实现运作于400–500℃新式中低温型燃料电池系统的开发。此外,固态锂离子电池亦能通过该电解质基板降低电解质厚度、提高离子浓度,以及提高电池充放电时的应力转变承受能力。
本发明的有益效果是:本发明提供了一种多孔性次毫米层与高致密性复合微米层连接的多层结构复合块材的制备方法,该方法制备的多层结构复合块材可以作为电解质基板使用时可提高电池的运转效能,并且可以降低成本。
附图说明
图1显示为下层易还原成金属态的致密化金属氧化物薄层完全包覆次毫米多孔层,且易还原成金属态的致密化金属氧化物薄层有一面连接微米级多孔层的结构体;
图2-3显示为多孔结构显露出来厚的次毫米多孔层/易还原成金属态的致密化金属氧化物薄层/高致密复合体层,连续的3层结构体;
图4显示为SOFC电解质氧化物与碳酸盐类结合而成的复合电解质材料,在500℃以下展现出相当于8YSZ在750-800℃的导电度量测值,10 -2S/cm;
图5显示为不同电解质厚度的复合盐类燃料电池对其所量测到的最大功率值的关系图;
图6显示为实施例1中制备的陶瓷基板;
图7显示为实施例1中在次毫米厚度的多孔块材表面形成厚度约1-2μm易还原成金属态的致密化金属氧化物薄层;
图8显示为实施例1中在致密化金属氧化物薄层表面形成厚度约2000μm的多孔金属氧化物薄层;
图9显示为实施例1中在易还原成金属态的致密化金属氧化物薄层的一面连接有微米级高度致密化的氧化物/盐类复合层(高致密复合体层)的结构体;
图10显示为实施例1制备的多孔结构显露出来厚的次毫米多孔层/易还原成金属态的致密化金属氧化物薄层/高致密复合体层,连续的3层结构体;
图11显示为实施例1中易还原成金属态的致密化金属氧化物薄层因为金属氧化物还原成金属态而变为多孔状;
图12显示为由实施例1-3制备的多孔块材制备的复合盐类单元电池的电池功率密度;
图13显示为本发明所制备的复合电解质材料在470℃以下展现出相当于8YSZ在750-800℃的导电度量测值。
具体实施方式
为详细说明技术方案的技术内容、构造特征、所实现目的及效果,以下结合具体实施例并配合附图详予说明。
本发明实施例提供了一种多孔性次毫米层与高致密性复合微米层连接的多层结构复合块材的制备方法,包括如下步骤:
(1)将金属氧化物粉体(该金属氧化物为电子良导体或电子/离子混合良导体,如NiO、 CuO、(LiNi)O 1-x、AgO、Bi 2O 3、(LaSr)MnO 3、(SmSr)CoO 3、(LaSr)(CoFe)O 3、SDC等电子导体或电子/离子混合导体金属氧化物。具备催化活性,如H 2、CO、CH 4、C 2H 6等可燃气体的氧化;O 2的还原等等)、MEK(丁酮)、乙醇、丙酮、甘油、玉米油、PVB(聚乙烯醇缩丁醛)、DBP(邻苯二甲酸二丁酯)、聚乙二醇(分子量4000-6000)、TEA(月桂醇硫酸酯)、Li 2CO 3,按照重量比为85-90:35-42:25-30:8-12:0.5-1:0.5-0.7:6-10:1.5-2:0.5-0.8:0.5-0.7:0.5-0.8的配比加入到研磨罐中,用研磨机研磨24小时,期间每1小时停止并散热30分钟,然后反向旋转研磨1小时停止并散热30分钟,以此类推,然后将研磨完成的浆料用刮刀成型机制作成次毫米厚度的陶瓷生胚。进入烘箱,以70-90℃烘干。以1100-1300℃烧结成多孔状次毫米厚度的陶瓷基板。
(2)选择一种或多种混合,容易还原成金属态的金属氧化物,该金属氧化物为电子良导体,或电子/离子混合良导体,如NiO、CuO、(LiNi)O 1-x、AgO、Bi 2O 3、(LaSr)MnO 3、(SmSr)CoO 3、(LaSr)(CoFe)O 3等电子导体或电子/离子混合导体金属氧化物,以薄膜制程将易还原成金属态的致密化金属氧化物以1-2μm的厚度包覆次毫米厚度的多孔块材。所述以薄膜制程将易还原成金属态的致密化金属氧化物以1-2μm的厚度包覆在次毫米厚度的多孔块材上。其制备方法为:易还原成金属态的金属氧化物纳米级粉体将以溶液法制作而成。做法为将金属化合物溶解于去离子水中后,向水溶液中加入金属离子总摩尔数2–2.5倍的柠檬酸。再加入适量浓硝酸帮助溶解,配制成的水溶液用氨水调整水溶液pH值到6-7之间。所述硝酸的加入量为投入去离子水中金属化合物金属离子总摩尔数的10–20%;和/或所述浓硝酸的浓度为16mol/L。向水溶液中加入金属离子总摩尔数2–2.5倍的C 2H 4(OH) 2(乙二醇)。水溶液加热升高温度至120–150℃加热搅拌,持续加热直到移除60–80%的水分并发生乙二醇聚合化反应,使溶液呈现略微黏稠状态。升高加热温度至300–350℃,直到溶液自燃起火燃烧,即得纳米级金属氧化物粉体。将纳米级金属氧化物粉体、MEK(丁酮)、乙醇、丙酮、甘油、玉米油、PVB(聚乙烯醇缩丁醛)、DBP(邻苯二甲酸二丁酯)、聚乙二醇(分子量4000-6000)、TEA(月桂醇硫酸酯)以及助焊剂加入钨钢合金研磨罐中,其重量比分别为85-90:240-270:25-30:8-12:0.5-1:0.5-0.7:6-10:1.5-2:0.5-0.8:0.5-0.7:0.5-0.8。所述助焊剂选自Li 2CO 3、B 2O 3、ZnO、Al 2O 3、PbO 2、Bi 2O 3、V 2O 5。以行星式研磨机研磨24小时,期间每1小时停止并散热30分钟,然后反向旋转研磨1小时停止并散热30分钟,以此类推。研磨完成的浆料溶液以浸润涂布(dip-coating)方式涂布于次毫米厚度的多孔块材表面。所述浸润涂布是以长尾夹在距离次毫米厚度多孔块材其中一边的边缘0.5公分处夹住并以金属线倒吊起来,以此方式将块材浸入上述配制的易还原成金属态的金属氧化物纳米级粉体的浆料中3-5秒钟,拉起、进入烘箱,以70-90℃悬吊式烘干易还原成金属态的金属氧化物纳米级粉体的浆料。烘干后, 以长尾夹在距离次毫米厚度多孔块材另外任一一边的边缘0.5公分处夹住并以金属线倒吊起来,以此方式将块材浸入上述配制的易还原成金属态的金属氧化物纳米级粉体的浆料中3-5秒钟,拉起、进入烘箱,以70-90℃悬吊式烘干易还原成金属态的金属氧化物纳米级粉体的浆料。置入高温炉中,以1200-1400℃烧结10小时,使次毫米厚度的多孔块材表面形成厚度约1-2μm易还原成金属态的致密化金属氧化物薄层。
(3)选择一种或多种混合的金属氧化物,这一层所使用的金属氧化物没有氧化还原性质难易度的限制。此层主要是在工艺上,先制成多孔状,再将熔融盐类填入其孔隙中,并固化形成高致密性氧化物/盐类复合层。如要决定材料类型,该金属氧化物为纯离子导体,一般作为电解质层中氧离子(O 2-)或氢离子(H +)的传导路径。通常使用8YSZ(8mol%Y 2O 3稳定的ZrO 2)、LSGM((LaSr)(GaMg)O 3)、RDC(rare earth doped CeO 2)、BYCZ((BaY)(CaZr)O 3)等离子导体)),先将其制成金属氧化物纳米级粉体,然后配以有机物制成涂布浆料,采用以spin-coating(旋转涂布)、screen printing(网印涂布)或是其它涂布方式将涂布浆料涂覆在多孔状次毫米厚度的陶瓷基板一面的致密化金属氧化物薄层上,再热处理将涂布浆料中的有机物分解移除,并烧结成多孔微米薄层。形成下层易还原成金属态的致密化金属氧化物薄层完全包覆次毫米多孔层,且易还原成金属态的致密化金属氧化物薄层有一面连接微米级多孔层的结构体,如图1所示;
(4)将下层易还原成金属态的致密化金属氧化物薄层完全包覆次毫米多孔层,且易还原成金属态的致密化金属氧化物薄层有一面连接微米级多孔层的结构体置入液态熔融的盐类中,使液态熔融的盐类完全渗入微米级多孔层中,形成高度致密化的复合体。首先将盐类化合物置于SUS316不锈钢容器中,置于高温炉中加热至400-550℃(高于盐类化合物的熔点),使其完全熔融成液态,所述盐类化合物包括Li 2CO 3、Na 2CO 3与K 2CO 3等单一盐类或是多种盐类混合物。将上述结构体沉入液态熔融盐类化合物中,维持10-24小时,关闭高温炉电源,将上述结构体从液态熔融盐类化合物中取出,置于高温炉内自然降温。达室温时,即可得下层易还原成金属态的致密化金属氧化物薄层完全包覆次毫米多孔层,且易还原成金属态的致密化金属氧化物薄层有一面连接微米级高度致密化的氧化物/盐类复合层(高致密复合体层)的结构体。
(5)如图2所示抛光移除次毫米多孔层下表面覆有的易还原成金属态的致密化金属氧化物薄层或如图3所示抛光移除次毫米多孔层下表面及侧表面的致密化金属氧化物薄层;是以喷砂抛光机或是旋转研磨机抛光移除易还原成金属态的致密化金属氧化物薄层,使次毫米多孔层中的多孔结构显露出来,形成多孔结构显露出来厚的次毫米多孔层/易还原成金属态的致密化金属氧化物薄层/高致密复合体层,连续的3层结构体。
(6)将次毫米多孔层/易还原成金属态的致密化金属氧化物薄层/高致密复合体层,连 续的3层结构体置于还原气氛下的高温炉内进加热,使易还原成金属态的致密化金属氧化物薄层,因为还原成金属态而变为多孔性结构。使用通气型高温炉,将多孔结构显露出来厚的次毫米多孔层/易还原成金属态的致密化金属氧化物薄层/高致密复合体层,连续的3层结构体置于高温炉内,通入100%N 2气体,并升温至350–400℃,将通入的气体转变成每5分钟提高5%H 2气体,直到高温炉内气体为50%H 2与50%N 2,维持24小时,易还原成金属态的致密化金属氧化物薄层因为金属氧化物还原成金属态而变为多孔状。
上述方案中具体采用何种涂布方法有所需多孔微米薄层的厚度来选择,具体方法为:
(a)spin-coating method(旋转涂布法),首先纳米级金属氧化物粉体将以溶液法制作而成。做法为将金属化合物溶解于去离子水中后,向水溶液中加入金属离子总摩尔数2–2.5倍的柠檬酸。再加入适量浓硝酸帮助溶解,配制成的水溶液用氨水调整水溶液pH值到6-7之间。所述硝酸的加入量为投入去离子水中金属化合物金属离子总摩尔数的10–20%;和/或所述浓硝酸的浓度为16mol/L。向水溶液中加入金属离子总摩尔数2–2.5倍的C 2H 4(OH) 2(乙二醇)。水溶液加热升高温度至120–150℃加热搅拌,持续加热直到移除60–80%的水分并发生乙二醇聚合化反应,使溶液呈现略微黏稠状态。升高加热温度至300–350℃,直到溶液自燃起火燃烧,即得纳米级金属氧化物粉体。将纳米级金属氧化物粉体、MEK(丁酮)、乙醇、丙酮、甘油、玉米油、PVB(聚乙烯醇缩丁醛)、DBP(邻苯二甲酸二丁酯)、聚乙二醇(分子量4000-6000)以及TEA(月桂醇硫酸酯)加入钨钢合金研磨罐中,其重量比分别为180-270:35-42:25-30:8-12:0.5-1:0.5-0.7:6-10:1.5-2:0.5-0.8:0.5-0.7。以行星式研磨机研磨24小时,期间每1小时停止并散热30分钟,然后反向旋转研磨1小时停止并散热30分钟,以此类推。研磨完成的浆料溶液以旋转涂布方式涂布于易还原成金属态的致密化金属氧化物薄层上。所述旋转涂布方式,是将2层结构的块材(次毫米厚度的多孔块材/易还原成金属态的致密化金属氧化物薄层)贴附在一转盘上,该转盘可具备多段转速,且可顺逆时针转动。转盘正中央即为2层结构块材的正中央,此正中央上方为浆料注射位置。转盘设置为启动后0-0.5秒不动;0.5-1秒逆时针转(转速5转/秒);1-1.5秒顺时针转(转速5转/秒);1.5-3秒顺时针加速转(转速10转/秒);3-10秒顺时针加速转(转速30转/秒)。以70-90℃烘干纳米级金属氧化物粉体浆料。烘干后置入高温炉中,以1200-1400℃烧结10小时,使易还原成金属态的致密化金属氧化物薄层表面形成厚度约3-5μm的多孔金属氧化物薄层。
(b)screen printing method(网印涂布法),首先纳米级金属氧化物粉体将以溶液法制作而成。做法为将金属化合物溶解于去离子水中后,向水溶液中加入金属离子总摩尔数2–2.5倍的柠檬酸。再加入适量浓硝酸帮助溶解,配制成的水溶液用氨水调整水溶液pH值到6-7之间。所述硝酸的加入量为投入去离子水中金属化合物金属离子总摩尔数的 10–20%;和/或所述浓硝酸的浓度为16mol/L。向水溶液中加入金属离子总摩尔数2–2.5倍的C 2H 4(OH) 2(乙二醇)。水溶液加热升高温度至120–150℃加热搅拌,持续加热直到移除60–80%的水分并发生乙二醇聚合化反应,使溶液呈现略微黏稠状态。升高加热温度至300–350℃,直到溶液自燃起火燃烧,即得纳米级金属氧化物粉体。将纳米级金属氧化物粉体、α-Terpineol(α-松油醇)、乙醇、甘油、玉米油、Ethyl-Cellulose(乙基纤维素)、PVB(聚乙烯醇缩丁醛)、DBP(邻苯二甲酸二丁酯)、聚乙二醇(分子量4000-6000)以及TEA(月桂醇硫酸酯)加入钨钢合金研磨罐中,其重量比分别为80-120:70-90:10-20:1-1.5:0.5-0.7:3-6:1-3:0.5-1:0.5-1:0.5-0.8。以行星式研磨机研磨24小时,期间每1小时停止并散热30分钟,然后反向旋转研磨1小时停止并散热30分钟,以此类推。研磨完成的浆料溶液以网印涂布方式涂布于易还原成金属态的致密化金属氧化物薄层上。所述网印涂布方式,是以厚度约20-50μm的网框压在易还原成金属态的致密化金属氧化物薄层表面,把上述浆料置于网框上,以刮刀来回刮2趟,取下网框,以80-120℃烘干纳米级金属氧化物粉体浆料。烘干后置入高温炉中,以1200-1400℃烧结10小时,使易还原成金属态的致密化金属氧化物薄层表面形成多孔金属氧化物薄层。
下面以SDC(Sm掺杂CeO 2,Sm 0.2Ce 0.8O 2)氧化物-碳酸盐类(mole比1:1混合Li 2CO 3和Na 2CO 3碳酸盐混合物)复合材料(SDC-C)做为微米级复合电解质层为例对本发明进行详细描述。
实施例1
一种多孔性次毫米层与高致密性复合微米层连接的多层结构复合块材的制备方法,包括如下步骤:
(1)制备次毫米级多孔陶瓷块材所用的金属氧化物是重量比7:3的NiO与SDC。本案取70克NiO与30克SDC,作为氧化物。将此金属氧化物粉体、MEK(丁酮)、乙醇、丙酮、甘油、玉米油、PVB(聚乙烯醇缩丁醛)、DBP(邻苯二甲酸二丁酯)、聚乙二醇(分子量4000-6000)、TEA(月桂醇硫酸酯)、Li2CO3,按照重量比为90:35:25:8:0.5:0.5:6:2:0.5:0.7:0.5的配比加入到研磨罐中,用研磨机研磨24小时,期间每1小时停止并散热30分钟,然后反向旋转研磨1小时停止并散热30分钟,以此类推,然后将研磨完成的浆料用刮刀成型机制作成次毫米厚度的陶瓷生胚。进入烘箱,以70-90℃烘干。以1100-1300℃烧结成多孔状次毫米厚度的陶瓷基板,如图6所示。
(2)制备易还原成金属态的致密化金属氧化物薄层所用的金属氧化物为NiO:CuO:Bi 2O 3=8:1:1。先以硝酸镍、硝酸铜、硝酸铋溶解于去离子水中后,向水溶液中加入金属离子总摩尔数2–2.5倍的柠檬酸。再加入适量浓硝酸帮助溶解,配制成的水溶液用氨水调整水溶液pH值到6-7之间。所述硝酸的加入量为投入去离子水中金 属化合物金属离子总摩尔数的10–20%;和/或所述浓硝酸的浓度为16mol/L。向水溶液中加入金属离子总摩尔数2–2.5倍的C 2H 4(OH) 2(乙二醇)。水溶液加热升高温度至120–150℃加热搅拌,持续加热直到移除60–80%的水分并发生乙二醇聚合化反应,使溶液呈现略微黏稠状态。升高加热温度至300–350℃,直到溶液自燃起火燃烧,即得纳米级金属氧化物粉体。将纳米级金属氧化物粉体、MEK(丁酮)、乙醇、丙酮、甘油、玉米油、PVB(聚乙烯醇缩丁醛)、DBP(邻苯二甲酸二丁酯)、聚乙二醇(分子量4000-6000)、TEA(月桂醇硫酸酯)以及助焊剂加入钨钢合金研磨罐中,其重量比分别为85:250:25:8:0.5:0.5:7:1.5:0.5:0.5:0.5,单位是克。所述助焊剂为重量比Li 2CO 3:B 2O 3=7:3,以行星式研磨机研磨24小时,期间每1小时停止并散热30分钟,然后反向旋转研磨1小时停止并散热30分钟,以此类推。研磨完成的浆料溶液以浸润涂布(dip-coating)方式涂布于次毫米厚度的多孔块材表面。置入高温炉中,以1200-1400℃烧结10小时,使次毫米厚度的多孔块材表面形成厚度约1-2μm易还原成金属态的致密化金属氧化物薄层,如图7所示。所述浸润涂布是以长尾夹在距离次毫米厚度多孔块材其中一边的边缘0.5公分处夹住并以金属线倒吊起来,以此方式将陶瓷基板浸入配制的浆料溶液中3-5秒钟,拉起、进入烘箱,以70-90℃悬吊式烘干浆料溶液,烘干后,以长尾夹在距离陶瓷基板另外任一一边的边缘0.5公分处夹住并以金属线倒吊起来,以此方式将陶瓷基板浸入上述浆料溶液中3-5秒钟,拉起、进入烘箱,以70-90℃悬吊式烘干浆料溶液。
(3)制备多孔微米薄层所用的金属氧化物是SDC。先取硝酸钐与硝酸铈溶解于去离子水中后,向水溶液中加入金属离子总摩尔数2–2.5倍的柠檬酸,再加入适量浓硝酸帮助溶解,配制成的水溶液用氨水调整水溶液pH值到6-7之间,然后向水溶液中加入金属离子总摩尔数2–2.5倍的C 2H 4(OH) 2(乙二醇),水溶液加热升高温度至120–150℃加热搅拌,持续加热直到移除60–80%的水分并发生乙二醇聚合化反应,使溶液呈现略微黏稠状态,升高加热温度至300–350℃,直到溶液自燃起火燃烧,即得纳米级金属氧化物粉体。所述浓硝酸的加入量为投入去离子水中金属化合物金属离子总摩尔数的10–20%;和/或所述浓硝酸的浓度为16mol/L。本实施例采用网印涂布方法,所述涂布浆料的制备方法为:将纳米级金属氧化物粉体、α-Terpineol(α-松油醇)、乙醇、甘油、玉米油、Ethyl-Cellulose(乙基纤维素)、PVB(聚乙烯醇缩丁醛)、DBP(邻苯二甲酸二丁酯)、聚乙二醇(分子量4000-6000)、TEA(月桂醇硫酸酯)按照重量比为80:70:10:1:0.5:3:1:0.5:0.5:0.5,单位是克的配比加入到研磨罐中,用研磨机研磨24小时,期间每1小时停止并散热30分钟,然后反向旋转研磨1小时停止并散热30分钟,以此类推;所述网印涂布方法具体为:将厚度为20-50μm的网框压在覆有致密化金属氧化物薄层的多孔状次毫米厚度的陶瓷基板上,把涂布浆料置于网框内,以刮刀来回刮2趟,取下网框, 以80-120℃烘干涂布浆料。烘干后,再将厚度为20-50μm的网框压在已经干燥的20-50μm厚度的涂层上,把涂布浆料置于网框内,以刮刀来回刮2趟,取下网框,以80-120℃烘干涂布浆料。重复相同步骤,直到涂层厚度达到2000μm厚度。置入高温炉中,以1200-1400℃烧结10小时,使致密化金属氧化物薄层表面形成厚度约2000μm的多孔金属氧化物薄层,如图8所示;
(4)将下层易还原成金属态的致密化金属氧化物薄层完全包覆次毫米多孔层,且易还原成金属态的致密化金属氧化物薄层有一面连接微米级多孔层的结构体置入液态熔融的盐类中,使液态熔融的盐类完全渗入微米级多孔层中,形成高度致密化的复合体。首先将盐类化合物置于SUS316不锈钢容器中,置于高温炉中加热至400-550℃(高于盐类化合物的熔点),使其完全熔融成液态,所述盐类化合物为摩尔比Li 2CO 3:Na 2CO 3=1:1的混合物。将上述结构体沉入液态熔融盐类化合物中,维持10-24小时,关闭高温炉电源,将上述结构体从液态熔融盐类化合物中取出,置于高温炉内自然降温。达室温时,即可得下层易还原成金属态的致密化金属氧化物薄层完全包覆次毫米多孔层,且易还原成金属态的致密化金属氧化物薄层有一面连接微米级高度致密化的氧化物/盐类复合层(高致密复合体层)的结构体,如图9所示。
(5)抛光移除次毫米多孔层下表面覆有的易还原成金属态的致密化金属氧化物薄层,是以喷砂抛光机或是旋转研磨机抛光移除易还原成金属态的致密化金属氧化物薄层,使次毫米多孔层中的多孔结构显露出来,形成多孔结构显露出来厚的次毫米多孔层/易还原成金属态的致密化金属氧化物薄层/高致密复合体层,连续的3层结构体,如图10所示。
(6)使用通气型高温炉,将多孔结构显露出来厚的次毫米多孔层/易还原成金属态的致密化金属氧化物薄层/高致密复合体层,连续的3层结构体置于高温炉内,通入100%N 2气体,并升温至350–400℃,将通入的气体转变成每5分钟提高5%H 2气体,直到高温炉内气体为50%H 2与50%N 2,维持24小时,易还原成金属态的致密化金属氧化物薄层因为金属氧化物还原成金属态而变为多孔状,如图11所示。
实施例2
制备方法与实施例1相比,其它步骤相同,区别仅在于:所述网印涂布方法具体为:将厚度为20-50μm的网框压在覆有致密化金属氧化物薄层的多孔状次毫米厚度的陶瓷基板上,把涂布浆料置于网框内,以刮刀来回刮2趟,取下网框,以80-120℃烘干涂布浆料。烘干后,再将厚度为20-50μm的网框压在已经干燥的20-50μm厚度的涂层上,把涂布浆料置于网框内,以刮刀来回刮2趟,取下网框,以80-120℃烘干涂布浆料。重复相同步骤,直到涂层厚度达到250μm厚度。置入高温炉中,以1200-1400℃烧结10小时,使致密化金属氧化物薄层表面形成厚度约250μm的多孔金属氧化物薄层。
实施例3
制备方法与实施例1相比,其它步骤相同,区别仅在于:所述网印涂布方法具体为:将厚度为20-50μm的网框压在覆有致密化金属氧化物薄层的多孔状次毫米厚度的陶瓷基板上,把涂布浆料置于网框内,以刮刀来回刮2趟,取下网框,以80-120℃烘干涂布浆料。烘干后,再将厚度为20-50μm的网框压在已经干燥的20-50μm厚度的涂层上,把涂布浆料置于网框内,以刮刀来回刮2趟,取下网框,以80-120℃烘干涂布浆料。重复相同步骤,直到涂层厚度达到200μm厚度。置入高温炉中,以1200-1400℃烧结10小时,使致密化金属氧化物薄层表面形成厚度约200μm的多孔金属氧化物薄层。
实施例4
制备方法与实施例1相比,其它步骤相同,区别仅在于:
步骤(1)中金属氧化物粉体、MEK(丁酮)、乙醇、丙酮、甘油、玉米油、PVB(聚乙烯醇缩丁醛)、DBP(邻苯二甲酸二丁酯)、聚乙二醇(分子量4000-6000)、TEA(月桂醇硫酸酯)、Li2CO3,按照重量比为85:42:30:12:1:0.7:10:1.5:0.8:0.5:0.8;85-90:35-42:25-30:8-12:0.5-1:0.5-0.7:6-10:1.5-2:0.5-0.8:0.5-0.7:0.5-0.8
步骤(2)中纳米级金属氧化物粉体、MEK(丁酮)、乙醇、丙酮、甘油、玉米油、PVB(聚乙烯醇缩丁醛)、DBP(邻苯二甲酸二丁酯)、聚乙二醇(分子量4000-6000)、TEA(月桂醇硫酸酯)以及助焊剂加入钨钢合金研磨罐中,其重量比分别为90:240:30:12:1:0.7:10:2:0.8:0.7:0.8;85-90:240-270:25-30:8-12:0.5-1:0.5-0.7:6-10:1.5-2:0.5-0.8:0.5-0.7:0.5-0.8
步骤(3)中纳米级金属氧化物粉体、α-Terpineol(α-松油醇)、乙醇、甘油、玉米油、Ethyl-Cellulose(乙基纤维素)、PVB(聚乙烯醇缩丁醛)、DBP(邻苯二甲酸二丁酯)、聚乙二醇(分子量4000-6000)、TEA(月桂醇硫酸酯)按照重量比为120:90:20:1.5:0.7:6:3:1:1:0.8;80-120:70-90:10-20:1-1.5:0.5-0.7:3-6:1-3:0.5-1:0.5-1:0.5-0.8
实施例5
制备方法与实施例1相比,其它步骤相同,区别仅在于:
步骤(1)中金属氧化物粉体、MEK(丁酮)、乙醇、丙酮、甘油、玉米油、PVB(聚乙烯醇缩丁醛)、DBP(邻苯二甲酸二丁酯)、聚乙二醇(分子量4000-6000)、TEA(月桂醇硫酸酯)、Li2CO3,按照重量比为88:39:27:10:0.8:0.6:8:1.8:0.7:0.6:0.6;
步骤(2)中纳米级金属氧化物粉体、MEK(丁酮)、乙醇、丙酮、甘油、玉米油、PVB(聚乙烯醇缩丁醛)、DBP(邻苯二甲酸二丁酯)、聚乙二醇(分子量4000-6000)、TEA(月桂醇硫 酸酯)以及助焊剂加入钨钢合金研磨罐中,其重量比分别为87:270:28:10:0.8:0.6:6:1.7:0.7:0.6:0.7;
步骤(3)中纳米级金属氧化物粉体、α-Terpineol(α-松油醇)、乙醇、甘油、玉米油、Ethyl-Cellulose(乙基纤维素)、PVB(聚乙烯醇缩丁醛)、DBP(邻苯二甲酸二丁酯)、聚乙二醇(分子量4000-6000)、TEA(月桂醇硫酸酯)按照重量比为80-120:70-90:10-20:1-1.5:0.5-0.7:3-6:1-3:0.5-1:0.5-1:0.5-0.8。
实施例1-3制备的次毫米多孔块材可以作为阳极,与碳酸盐复合后致密化的微米级金属氧化物/碳酸盐复合薄层可以作为电解质。使用旋转涂布或网印技术将阴极((Li 0.2Ni 0.8)O 0.9)薄膜涂于与碳酸盐复合后致密化的微米级金属氧化物/碳酸盐复合薄层表面,厚度约40μm的多孔金属氧化物薄层。所述涂布浆料的制备方法为:将(Li 0.2Ni 0.8)O 0.9金属氧化物粉体、α-Terpineol(α-松油醇)、乙醇、甘油、玉米油、Ethyl-Cellulose(乙基纤维素)、PVB(聚乙烯醇缩丁醛)、DBP(邻苯二甲酸二丁酯)、聚乙二醇(分子量4000-6000)、TEA(月桂醇硫酸酯)按照重量比为80-120:70-90:10-20:1-1.5:0.5-0.7:3-6:1-3:0.5-1:0.5-1:0.5-0.8(80:70:10:1:0.5:3:1:0.5:0.5:0.5,单位是克)的配比加入到研磨罐中,用研磨机研磨24小时,期间每1小时停止并散热30分钟,然后反向旋转研磨1小时停止并散热30分钟,以此类推;所述网印涂布方法具体为:将厚度为40μm的网框压在覆有致密化金属氧化物薄层的多孔状次毫米厚度的陶瓷基板上,把涂布浆料置于网框内,以刮刀来回刮2趟,取下网框,以80-120℃烘干涂布浆料。置入高温炉中,以450℃烧结10小时,使阴极((Li 0.2Ni 0.8)O 0.9)形成厚度约40μm的多孔金属氧化物层,如此即组装成电池组件。制备成的复合盐类单元电池组成为,阳极膜为次毫米级多孔层,电解质为与碳酸盐复合后致密化的微米级金属氧化物/碳酸盐复合薄层。考虑碳酸盐的熔点温度较低,所以阴极用低于碳酸盐的熔点温度的450℃烧结成复合盐类燃料电池。于470℃下进行电池功率量测,如图12所示,可以观察到电解质(SDC-C)基板的厚度从厚至薄的最大电池功率密度分别为3、40以及65mW/cm 2,证实复合单元电池确实能够于低温下运作。若将复合盐类燃料电池的电解质厚度降低至与Elcogen电池片一样5μm,可以预测使用复合材料单元电池的系统确实呈现出发展中低温燃料电池的潜力。
本发明所制备的复合电解质材料,因为具备O 2-、H +与CO 3 2-三种离子在电解质材料中移动的特性,如图13所示,在470℃以下展现出相当于8YSZ在750-800℃的导电度量测值,10 -2S/cm。电解质(SDC-C)基板的厚度从厚至薄的最大电池功率密度分别为3、40以及65mW/cm 2,证实复合单元电池确实能够于低温下运作。因此组装电池堆所需之双极板材料,受惠于复合电解质材料的低温运作以及高导电性,因此可以使用价格便宜的SUS304不锈钢材取代昂贵的Crofer 22APU,成本估计可以下降约87%。复合材料电解质 层中有30%以上体积为碳酸盐类,以制作相同体积的电解质层而言,复合材料的成本比使用纯氧化物成本估计最多可以下降约79%。
尽管已经对上述各实施例进行了描述,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改,所以以上所述仅为本发明的实施例,并非因此限制本发明的专利保护范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围之内。

Claims (10)

  1. 一种多孔性次毫米层与高致密性复合微米层连接的多层结构复合块材的制备方法,其特征在于,包括如下步骤:
    (1)制备次毫米厚度的陶瓷生胚,烧结成多孔状次毫米厚度的陶瓷基板,即次毫米多孔层;
    (2)选择一种或多种混合且易还原成金属态的金属氧化物,先将其制成金属氧化物纳米级粉体,然后配以有机物、助焊剂制成浆料溶液,再用薄膜制作工艺将浆料溶液包覆在多孔状次毫米厚度的陶瓷基板上,在多孔状次毫米厚度的陶瓷基板上形成致密化金属氧化物薄层;
    (3)选择一种或多种混合的金属氧化物,先将其制成金属氧化物纳米级粉体,然后配以有机物制成涂布浆料,采用涂布方式将涂布浆料涂覆在多孔状次毫米厚度的陶瓷基板一面的致密化金属氧化物薄层上,再经热处理将涂布浆料中的有机物分解移除,并烧结成多孔微米薄层,即微米级多孔层;形成下层易还原成金属态的致密化金属氧化物薄层完全包覆次毫米多孔层,且易还原成金属态的致密化金属氧化物薄层有一面连接微米级多孔层的结构体;
    (4)将下层易还原成金属态的致密化金属氧化物薄层完全包覆次毫米多孔层,且易还原成金属态的致密化金属氧化物薄层有一面连接微米级多孔层的结构体放入液态熔融的盐类化合物中,使液态熔融的盐类化合物完全渗入微米级多孔层中的孔隙中,形成微米级高度致密化的氧化物/盐类复合层,即高致密复合体层;
    (5)抛光移除与覆有高致密复合体层的易还原成金属态的致密化金属氧化物薄层位置相对应的包覆次毫米多孔层一面的易还原成金属态的致密化金属氧化物薄层或抛光移除除覆有高致密复合体层的以外的其它包覆在次毫米多孔层上的易还原成金属态的致密化金属氧化物薄层,形成毫米多孔层/易还原成金属态的致密化金属氧化物薄层/高致密复合体层,连续的3层结构体;
    (6)将次毫米多孔层/易还原成金属态的致密化金属氧化物薄层/高致密复合体层,连续的3层结构体放入还原气氛下的高温炉内加热,使易还原成金属态的致密化金属氧化物薄层中的金属氧化物还原成金属态,易还原成金属态的致密化金属氧化物薄层变为多孔性结构。
  2. 根据权利要求1所述的制备方法,其特征在于,所述陶瓷基板的制备方法为:将金属氧化物粉体、MEK(丁酮)、乙醇、丙酮、甘油、玉米油、PVB(聚乙烯醇缩丁醛)、DBP(邻苯二甲酸二丁酯)、聚乙二醇(分子量4000-6000)、TEA(月桂醇硫酸酯)、Li2CO3,按照重量比为85-90:35-42:25-30:8-12:0.5-1:0.5-0.7:6-10:1.5-2:0.5-0.8:0.5-0.7:0.5-0.8的配比加入到研磨罐中,用研磨机研磨24小时,期间每1小时停止并 散热30分钟,然后反向旋转研磨1小时停止并散热30分钟,以此类推,然后将研磨完成的浆料用刮刀成型机制作成次毫米厚度的陶瓷生胚,将陶瓷生胚送入烘箱,以70-90℃烘干,再以以1100-1300℃烧结成多孔状次毫米厚度的陶瓷基板;其中,所述金属氧化物粉体为电子良导体或电子/离子混合良导体金属氧化物粉体,包括但不限于:NiO、CuO、(LiNi)O 1-x、AgO、Bi 2O 3、(LaSr)MnO 3、(SmSr)CoO 3、(LaSr)(CoFe)O 3、SDC。
  3. 根据权利要求1所述的制备方法,其特征在于,步骤(2)和步骤(3)中所述金属氧化物纳米级粉体均采用溶解法制成,具体为:将金属化合物溶解于去离子水中后,向水溶液中加入金属离子总摩尔数2–2.5倍的柠檬酸,再加入适量浓硝酸帮助溶解,配制成的水溶液用氨水调整水溶液pH值到6-7之间,然后向水溶液中加入金属离子总摩尔数2–2.5倍的C 2H 4(OH) 2(乙二醇),水溶液加热升高温度至120–150℃加热搅拌,持续加热直到移除60–80%的水分并发生乙二醇聚合化反应,使溶液呈现略微黏稠状态,升高加热温度至300–350℃,直到溶液自燃起火燃烧,即得纳米级金属氧化物粉体;和/或
    步骤(2)中所述易还原成金属态的金属氧化物为电子良导体或电子/离子混合良导体金属氧化物,包括但不限于:NiO、CuO、(LiNi)O 1-x、AgO、Bi 2O 3、(LaSr)MnO 3、(SmSr)CoO 3、(LaSr)(CoFe)O 3;和/或
    步骤(3)中所述金属氧化物为纯离子导体金属氧化物,包括但不限于8YSZ(8mol%Y 2O 3稳定的ZrO 2、LSGM((LaSr)(GaMg)O 3)、RDC(rare earth doped CeO 2)、BYCZ((BaY)(CaZr)O 3)。
  4. 根据权利要求3所述的制备方法,其特征在于,所述浓硝酸的加入量为投入去离子水中金属化合物金属离子总摩尔数的10–20%;和/或
    所述浓硝酸的浓度为16mol/L。
  5. 根据权利要求3所述的制备方法,其特征在于,步骤(2)中浆料溶液的制备方法为:将纳米级金属氧化物粉体、MEK(丁酮)、乙醇、丙酮、甘油、玉米油、PVB(聚乙烯醇缩丁醛)、DBP(邻苯二甲酸二丁酯)、聚乙二醇(分子量4000-6000)、TEA(月桂醇硫酸酯)、助焊剂,按照重量比为85-90:240-270:25-30:8-12:0.5-1:0.5-0.7:6-10:1.5-2:0.5-0.8:0.5-0.7:0.5-0.8的配比加入到研磨罐中,用研磨机研磨24小时,期间每1小时停止并散热30分钟,然后反向旋转研磨1小时停止并散热30分钟,以此类推,即得浆料溶液;其中,所述助焊剂选自Li 2CO 3、B 2O 3、ZnO、Al 2O 3、PbO 2、Bi 2O 3、V 2O 5中的一种或多种混合;和/或
    所述致密化金属氧化物薄层的形成方法为:将浆料溶液以浸润涂布方式涂布于陶瓷基板表面,置入高温炉中,以1200-1400℃烧结10小时,使陶瓷基板表面形成厚度为1-2μm易还原成金属态的致密化金属氧化物薄层。
  6. 根据权利要求5所述的制备方法,其特征在于,所述浸润涂布是以长尾夹在距离次毫米厚度多孔块材其中一边的边缘0.5公分处夹住并以金属线倒吊起来,以此方式将陶瓷基板浸入配制的浆料溶液中3-5秒钟,拉起、进入烘箱,以70-90℃悬吊式烘干浆料溶液,烘干后,以长尾夹在距离陶瓷基板另外任一一边的边缘0.5公分处夹住并以金属线倒吊起来,以此方式将陶瓷基板浸入上述浆料溶液中3-5秒钟,拉起、进入烘箱,以70-90℃悬吊式烘干浆料溶液。
  7. 根据权利要求1所述的制备方法,其特征在于,所述涂布方式采用旋转涂布方法或网印涂布方法,采用旋转涂布方法时,所述涂布浆料的制备方法为:将纳米级金属氧化物粉体、MEK(丁酮)、乙醇、丙酮、甘油、玉米油、PVB(聚乙烯醇缩丁醛)、DBP(邻苯二甲酸二丁酯)、聚乙二醇(分子量4000-6000)、TEA(月桂醇硫酸酯),按照重量比为180-270:35-42:25-30:8-12:0.5-1:0.5-0.7:6-10:1.5-2:0.5-0.8:0.5-0.7的配比加入到研磨罐中,用研磨机研磨24小时,期间每1小时停止并散热30分钟,然后反向旋转研磨1小时停止并散热30分钟,以此类推;所述旋转涂布方法具体为:将覆有致密化金属氧化物薄层的多孔状次毫米厚度的陶瓷基板贴附在一转盘上,该转盘可具备多段转速,且可顺逆时针转动,转盘正中央即为陶瓷基板的正中央,此正中央上方为浆料注射位置,转盘设置为启动后0-0.5秒不动;0.5-1秒逆时针转(转速5转/秒);1-1.5秒顺时针转(转速5转/秒);1.5-3秒顺时针加速转(转速10转/秒);3-10秒顺时针加速转(转速30转/秒);以70-90℃烘干涂布浆料,烘干后置入高温炉中,以1200-1400℃烧结10小时,使面向上方的致密化金属氧化物薄层表面形成多孔金属氧化物薄层;
    采用网印涂布方法时,所述涂布浆料的制备方法为:将纳米级金属氧化物粉体、α-Terpineol(α-松油醇)、乙醇、甘油、玉米油、Ethyl-Cellulose(乙基纤维素)、PVB(聚乙烯醇缩丁醛)、DBP(邻苯二甲酸二丁酯)、聚乙二醇(分子量4000-6000)、TEA(月桂醇硫酸酯)按照重量比为80-120:70-90:10-20:1-1.5:0.5-0.7:3-6:1-3:0.5-1:0.5-1:0.5-0.8的配比加入到研磨罐中,用研磨机研磨24小时,期间每1小时停止并散热30分钟,然后反向旋转研磨1小时停止并散热30分钟,以此类推;所述网印涂布方法具体为:将厚度为20-50μm的网框压在覆有致密化金属氧化物薄层的多孔状次毫米厚度的陶瓷基板上,把涂布浆料置于网框内,以刮刀来回刮2趟,取下网框,以80-120℃烘干涂布浆料,烘干后置入高温炉中,以1200-1400℃烧结10小时,使致密化金属氧化物薄层表面形成多孔金属氧化物薄层。
  8. 根据权利要求1所述的制备方法,其特征在于,所述盐类化合物选自Li 2CO 3、Na 2CO 3、K 2CO 3中的一种或多种混合;和/或
    所述微米级高度致密化的氧化物/盐类复合层的具体制备方法为:将盐类化合物置于 不锈钢容器中,置于高温炉中加热至高于盐类化合物的熔点的温度,使其完全熔融成液态,将下层易还原成金属态的致密化金属氧化物薄层完全包覆次毫米多孔层,且易还原成金属态的致密化金属氧化物薄层有一面连接微米级多孔层的结构体放入液态熔融的盐类化合物中,维持10-24小时,关闭高温炉电源,将上述结构体从液态熔融盐类化合物中取出,置于高温炉内自然降温至室温。
  9. 根据权利要求1所述的制备方法,其特征在于,步骤(5)中易还原成金属态的致密化金属氧化物薄层的移除方法为将易还原成金属态的致密化金属氧化物薄层用喷砂抛光机或是旋转研磨机从次毫米多孔层表面上移除,使次毫米多孔层的多孔结构显露出来。
  10. 根据权利要求1所述的制备方法,其特征在于,步骤(6)中将连续的3层结构体放入高温炉内,通入100%N 2气体,并升温至350–400℃,将通入的气体转变成每5分钟提高5%H 2气体,直到高温炉内气体为50%H 2与50%N 2,维持24小时,易还原成金属态的致密化金属氧化物薄层因为金属氧化物还原成金属态而变为多孔状。
PCT/CN2021/079020 2020-11-25 2021-03-04 一种多孔性次毫米层与高致密性复合微米层连接的多层结构复合块材的制备方法 WO2022110566A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011333712.7A CN112448010B (zh) 2020-11-25 2020-11-25 一种多孔性次毫米层与高致密性复合微米层连接的多层结构复合块材的制备方法
CN202011333712.7 2020-11-25

Publications (1)

Publication Number Publication Date
WO2022110566A1 true WO2022110566A1 (zh) 2022-06-02

Family

ID=74738404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079020 WO2022110566A1 (zh) 2020-11-25 2021-03-04 一种多孔性次毫米层与高致密性复合微米层连接的多层结构复合块材的制备方法

Country Status (2)

Country Link
CN (1) CN112448010B (zh)
WO (1) WO2022110566A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113937318B (zh) * 2021-10-14 2024-04-19 东莞华创教育科技有限公司 一种电解质支撑型固体氧化物燃料单元电池的制程方法
CN114315377B (zh) * 2022-01-12 2022-11-08 东莞富瑟尔科技有限公司 一种多层结构复合型功能陶瓷的快速量产方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040168367A1 (en) * 2003-02-27 2004-09-02 Seiichi Suenaga Metal particle-dispersed composite oxides, metal particle-dispersed composite oxide-sintered bodies, method of manufacturing metal particle-dispersed composite oxides, and hydrocarbon-based fuel reformer
CN101137456A (zh) * 2005-01-12 2008-03-05 丹麦科技大学 在烧结多层结构时控制收缩率和孔隙率的方法
JP2009134979A (ja) * 2007-11-30 2009-06-18 Dainippon Printing Co Ltd 固体酸化物型燃料電池の製造方法
CN101562255A (zh) * 2009-05-19 2009-10-21 华中科技大学 一种金属支撑型固体氧化物燃料电池的制备方法
JP2014013694A (ja) * 2012-07-04 2014-01-23 Sumitomo Electric Ind Ltd 電解質複合部材、電解質/電極複合部材、及び電解質複合部材の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101320813A (zh) * 2008-06-25 2008-12-10 施秀英 一种低温氧化物燃料电池的电解质材料及制备方法
KR101669469B1 (ko) * 2015-07-24 2016-10-26 창원대학교 산학협력단 연료전지용 하이브리드형 단위전지 및 이를 포함하는 연료전지 스택
TWI650898B (zh) * 2016-10-26 2019-02-11 行政院原子能委員會核能研究所 快速sofc單元電池粉體加工以及薄膜電池​片製程

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040168367A1 (en) * 2003-02-27 2004-09-02 Seiichi Suenaga Metal particle-dispersed composite oxides, metal particle-dispersed composite oxide-sintered bodies, method of manufacturing metal particle-dispersed composite oxides, and hydrocarbon-based fuel reformer
CN101137456A (zh) * 2005-01-12 2008-03-05 丹麦科技大学 在烧结多层结构时控制收缩率和孔隙率的方法
JP2009134979A (ja) * 2007-11-30 2009-06-18 Dainippon Printing Co Ltd 固体酸化物型燃料電池の製造方法
CN101562255A (zh) * 2009-05-19 2009-10-21 华中科技大学 一种金属支撑型固体氧化物燃料电池的制备方法
JP2014013694A (ja) * 2012-07-04 2014-01-23 Sumitomo Electric Ind Ltd 電解質複合部材、電解質/電極複合部材、及び電解質複合部材の製造方法

Also Published As

Publication number Publication date
CN112448010B (zh) 2021-08-10
CN112448010A (zh) 2021-03-05

Similar Documents

Publication Publication Date Title
Tahir et al. A review on cathode materials for conventional and proton-conducting solid oxide fuel cells
US6479178B2 (en) Direct hydrocarbon fuel cells
US7709124B2 (en) Direct hydrocarbon fuel cells
CN111477881B (zh) 一种NiFe合金纳米颗粒包覆Pr0.8Sr1.2(FeNi)O4-δ材料及其制法
Chen et al. 3D core–shell architecture from infiltration and beneficial reactive sintering as highly efficient and thermally stable oxygen reduction electrode
US9627703B2 (en) Medium and high-temperature carbon-air cell
WO2022110566A1 (zh) 一种多孔性次毫米层与高致密性复合微米层连接的多层结构复合块材的制备方法
Yang et al. Gluing Ba0. 5Sr0. 5Co0. 8Fe0. 2O3− δ with Co3O4 as a cathode for proton-conducting solid oxide fuel cells
US20150263351A1 (en) Anode for direct carbon fuel cell and direct carbon fuel cell including the same
CN107768690B (zh) 一种半导体薄膜电解质型燃料电池及其制作方法
Chasta et al. A review on materials, advantages, and challenges in thin film based solid oxide fuel cells
KR20130123189A (ko) 고체산화물 연료전지용 음극 지지체 및 그 제조방법과 이를 포함한 고체산화물 연료전지
KR20030036966A (ko) 다공성 이온 전도성 세리아 막 코팅으로 삼상 계면이확장된 미세구조의 전극 및 그의 제조방법
KR100691558B1 (ko) 고체 산화물 연료전지의 제조 방법
Miao et al. Optimizing strontium titanate anode in solid oxide fuel cells by ytterbium doping
Yang et al. Tuning Ba0. 5Sr0. 5Co0. 8Fe0. 2O3-δ cathode to high stability and activity via Ce-doping for ceramic fuel cells
US20060057455A1 (en) High-temperature solid electrolyte fuel cell comprising a composite of nanoporous thin-film electrodes and a structured electrolyte
Yusoff et al. Recent advances and influencing parameters in developing electrode materials for symmetrical solid oxide fuel cells
Li et al. Novel and high-performance (La, Sr) MnO3 based composite cathodes for intermediate-temperature solid oxide fuel cells
JP5376586B2 (ja) 金属空気電池モジュールおよび金属空気電池スタック
Ding Nanostructured electrodes for high-performing solid oxide fuel cells
JP3574439B2 (ja) 多孔性イオン伝導性セリア膜コーティングで三相界面が拡張された微細構造の電極およびその製造方法
CN113782794A (zh) 一种基于金属离子电池材料的燃料电池及其制作方法
JPH1021930A (ja) 固体電解質型燃料電池の燃料極
Basu et al. Solid-state electrolytes and electrode materials for fuel cell application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896086

Country of ref document: EP

Kind code of ref document: A1