WO2022110389A1 - 挠性绝缘板的制备方法及得到的挠性绝缘板、挠性层压板及其制备方法、和应用 - Google Patents

挠性绝缘板的制备方法及得到的挠性绝缘板、挠性层压板及其制备方法、和应用 Download PDF

Info

Publication number
WO2022110389A1
WO2022110389A1 PCT/CN2020/137499 CN2020137499W WO2022110389A1 WO 2022110389 A1 WO2022110389 A1 WO 2022110389A1 CN 2020137499 W CN2020137499 W CN 2020137499W WO 2022110389 A1 WO2022110389 A1 WO 2022110389A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluororesin
flexible
fiber
preparation
flexible insulating
Prior art date
Application number
PCT/CN2020/137499
Other languages
English (en)
French (fr)
Inventor
王宏远
张翼蓝
王和志
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声精密电子沭阳有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声精密电子沭阳有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2022110389A1 publication Critical patent/WO2022110389A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/08Impregnating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/18Handling of layers or the laminate
    • B32B38/1808Handling of layers or the laminate characterised by the laying up of the layers
    • B32B38/1816Cross feeding of one or more of the layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards

Definitions

  • the invention relates to the field of circuit board preparation, in particular to a preparation method of a flexible insulating plate, the obtained flexible insulating plate, a flexible laminated plate, a preparation method and application thereof.
  • FPCs flexible printed circuit boards
  • CTE coefficient of thermal expansion
  • the flexible insulating board substrate for the preparation of FPC—polyimide (PI) substrate due to its high water absorption, high dielectric loss at high frequency (10 GHz), and the need to use adhesives or thermoplastic polyimide resins for the preparation of double-sided panels (TPI) caused by the complex process and other defects, can no longer meet the requirements of flexible printed circuit boards (FPC) such as high-frequency, high-speed, large-capacity storage and transmission.
  • FPC flexible printed circuit boards
  • Liquid crystal polymer substrate is not the best choice for FPC due to its difficulty in film formation, poor bending resistance, strict requirements for multi-layer lamination process and high cost.
  • Fluorine resin has excellent dielectric properties and heat resistance, but its strength is low and CTE is high. When it is prepared into copper clad laminate (CCL), glass fiber cloth or filler is often required to modify it.
  • CCL copper clad laminate
  • the CCL formed by impregnating a layer of thick glass fiber with fluororesin glue for multiple times is difficult to impregnate the thick glass fiber, so the prepared CCL not only has a large thickness, but also has a low fluororesin content.
  • the content of fluororesin is low, and when it is pressed into CCL, the surface glass fiber pattern is obvious, and the CCL obtained by this preparation method is mostly used for rigid circuit boards, not FPC.
  • One of the objectives of the present invention is to provide a preparation method of a flexible insulating board, the flexible insulating board obtained by the preparation method has low dielectric constant, low dielectric loss coefficient, low water absorption rate, low elastic modulus, low thermal expansion coefficient And many advantages such as low cost, can meet the requirements of future electronic components for flexible printed circuit boards such as high frequency, high speed, large capacity storage and transmission.
  • a preparation method of a flexible insulating board comprising the following processes:
  • the semi-finished product is heat-treated to obtain a fiber-reinforced fluororesin layer, wherein, in the fiber-reinforced fluororesin layer, the total mass percentage of the first fluororesin and the second fluororesin is 60% %-95%;
  • One, two or more layers of the fiber-reinforced fluororesin are laminated and molded to obtain the flexible insulating board.
  • Another object of the present invention is to provide a flexible insulating board obtained by the above-mentioned preparation method.
  • the third object of the present invention is to provide a flexible laminated board, which includes the above-mentioned flexible insulating board and conductive metal sheets stacked on one side or both sides of the flexible insulating board.
  • the fourth object of the present invention is to provide a method for preparing the above-mentioned flexible laminate, including the following processes:
  • One side or both sides of the above-mentioned flexible insulating board are covered with conductive metal sheets, and pressed into shape to form the flexible laminate board.
  • the fifth object of the present invention is to provide the application of the above-mentioned flexible insulating board or the above-mentioned flexible laminate board in a flexible printed wiring board.
  • the prepreg is obtained by first adopting the impregnation process and curing after the impregnation process, removing the moisture in the glue, and preparing the prepreg with high fluororesin content, and then using multiple coating or spraying processes, and After each coating or spraying process, it is cured to remove excess moisture, and a fiber-reinforced fluororesin layer with high fluororesin content is further obtained, so that a high-performance flexible insulating board can be prepared.
  • the fiber-reinforced fluororesin layer obtained by the present invention has an ultra-thin structure, the thinner the structure, the more obvious the influence of defects such as flow marks and bubbles on the performance. Therefore, defects such as flow marks and bubbles need to be avoided.
  • the thickness of the fiber-reinforced fluororesin layer of the present invention can be as low as 15 ⁇ m.
  • the ultra-thin fiber layer as the reinforcement, compared with the thick glass fiber in the prior art, the impregnation difficulty is reduced, the content of the fluororesin impregnated by the ultra-thin fiber layer is increased, and the flexible insulating board can be obtained.
  • the surface of the flexible laminate formed by pressing has no glass fiber texture.
  • the flexible laminate prepared by the method of the present invention has the characteristics of low dielectric loss, thin thickness, good flexibility, low CTE, etc., and has greater application prospects in future high-frequency and miniaturized devices.
  • the invention discloses a preparation method of a flexible insulating plate, comprising the following processes:
  • Step S1 preparing a glue solution of the first fluororesin, immersing the ultra-thin fiber layer with a thickness of 8 ⁇ m-25 ⁇ m in the glue solution of the first fluororesin, and curing for the first time to obtain a prepreg.
  • the ultra-thin fiber layer improves the problem of low fluororesin content due to the impregnation difficulty caused by the thick glass fiber in the prior art, avoids the appearance of glass fiber lines on the surface when pressing into CCL, and improves the softness of the insulating board, so that the The insulating board can be applied to the flexible insulating board.
  • the ultra-thin fiber layer is a fiber fabric woven by one or more of glass fibers, quartz fibers and organic fibers.
  • the ultra-thin fiber layer made of glass fiber can be D-type, S-type, E-type or NE-type electronic glass fiber cloth, which is a series of electronic glass fiber cloth developed by Nitto Textile Co., Ltd. of Japan.
  • the thickness of the ultra-thin fiber layer may be 10 ⁇ m, 12 ⁇ m, 14 ⁇ m, 15 ⁇ m, 18 ⁇ m, 20 ⁇ m or 25 ⁇ m.
  • the thinner the ultra-thin fiber layer the more layers of ultra-thin fiber layers distributed along the thickness direction in a flexible insulating board of a certain thickness, and the smaller the CTE of the flexible insulating board, especially the CTE value along the thickness direction can be reduced.
  • the first fluororesin is PTFE resin, PFA resin or a mixture of PTFE resin and PFA resin.
  • PTFE resin has high melt viscosity, high melting temperature and low CTE.
  • the melt viscosity and melting temperature of PFA resin are lower than those of PTFE resin, and the CTE is higher than that of PTFE resin.
  • the mixture of PFA resin and PTFE resin can adjust the dielectric constant Dk and dielectric loss coefficient Df , water absorption and CTE value.
  • the solid mass percentage in the glue solution of the first fluororesin is 20%-68%, the solid content is too low, and the thickness of the resin layer formed each time is too thin, resulting in the formation of the insulating plate of the target thickness.
  • the number of curing increases and the production cycle is prolonged. Too high a solids content and the resin cannot fully soak into the fiber layer, resulting in voids.
  • the average particle size of the first fluororesin is 0.1 ⁇ m-1 ⁇ m, more preferably 0.1 ⁇ m-0.5 ⁇ m. If the average particle size is too small, agglomeration may occur, and if the average particle size is too large, the dispersion may be uneven.
  • the ultra-thin fiber layer is passed through the glue tank containing the first fluororesin glue through a roller, and then the excess glue and air bubbles on the ultra-thin fiber layer are scraped off by a glue scraping device, and then The rollers enter the oven for the first cure, removing moisture from the ultra-thin fiber layers.
  • the temperature of the first curing is 70 °C-150 °C, more preferably 80 °C-120 °C, the temperature is lower than 70 °C, the moisture cannot be completely removed, and the baking time is long, and the production efficiency is reduced , higher than 150 °C, the active agent on the surface of the fluororesin decomposes, the surface energy decreases, the emulsion is difficult to adhere, and the increase of the fluororesin layer in the subsequent steps is affected.
  • Step S2 preparing the second fluororesin glue, coating or spraying the second fluororesin glue on both sides of the prepreg, curing for the second time, repeating the coating or spraying and curing until the first step.
  • the total mass percentage of the fluororesin and the second fluororesin meets the requirements, and a semi-finished product is obtained.
  • This step adopts the coating or spraying process, which can make the added fluororesin layer denser, avoid the flow marks and bubble defects that occur when the squeegee device is used in the dipping process, and reduce the CTE of the fluororesin.
  • the large particles of slag falling off the impregnating resin in the glue tank enter the fluororesin layer to avoid affecting the material uniformity of the fluororesin layer.
  • the conditions of the second curing are similar to those of the first curing, both remove moisture, and the temperature of the second curing is 70°C-150°C, more preferably 80°C-120°C.
  • the solid mass percentage in the glue solution of the second fluororesin is 20%-68%; the average particle size of the second fluororesin is 0.1 ⁇ m-1 ⁇ m.
  • the second fluororesin is PTFE resin, PFA resin or a mixture of PTFE resin and PFA resin.
  • the material of the first fluororesin and the material of the second fluororesin can be the same or different
  • the glue concentration of the first fluororesin and the glue concentration of the second fluororesin can be the same or different
  • each time The material and concentration of the glue used in dipping, coating or spraying can be the same or different.
  • the solid content of the glue ie glue concentration
  • the solid content of the glue can be changed by adding fillers, adjusting the resin content, etc.
  • fillers can be added to the glue solution of the first fluororesin and/or the second fluororesin to adjust the CTE value of the resin.
  • the mass of the filler accounts for 0.1%-25% of the total mass of the fiber-reinforced fluororesin layer, and the filler can reduce the CTE value of the flexible insulating board in the board plane.
  • the filler content is higher than 25%, it tends to settle in the solution and is difficult to disperse.
  • the filler may be selected from at least one of silica, titania, alumina, boron nitride and talc.
  • the average particle size of the filler is 0.1 ⁇ m-5 ⁇ m, more preferably 0.1 ⁇ m-3 ⁇ m. If the particle size is too large, it is difficult to completely impregnate the ultra-thin fiber layer, and if the particle size is too small, it is difficult to disperse.
  • Step S3 heat-treating the semi-finished product to obtain a fiber-reinforced fluororesin layer.
  • the total mass percentage of the first fluororesin and the second fluororesin is 60%. %-95%, specifically 61%, 65%, 70%, 75%, 78%, 80%, 82%, 85%, 87%, 90%, 92%, and 94%.
  • the purpose of this step is to remove the surfactant in the fluororesin.
  • the temperature of the heat treatment is 180 °C-240 °C, the temperature is less than 180 °C, the surfactant is difficult to remove cleanly, > 240 °C , the active agent is easily decomposed and carbonized in the resin, which affects the dielectric properties of the material.
  • the method of continuous multiple dipping is usually used to increase the content of fluororesin, which may cause problems such as flow marks, bubble defects, cracking and peeling of the surface resin, and difficulty in adhering the resin emulsion.
  • the present invention improves the method of continuous multiple dipping. Only the dipping process is used for the first time, and the coating or spraying process is used for the second and third times to increase the thickness of the fluororesin layer, and the coating or spraying process is used. The above problems can be avoided, flow marks and bubble defects, etc. can be reduced, the CTE of the fluororesin in the plate plane can be improved, and the uniformity of the fluororesin can be improved.
  • the present invention improves step S1, still adopts mature technology, the production process is simple, does not increase the production cost, and further improves the resin content and uniformity of each fluororesin layer, so that the resulting flexible Flexible insulating boards and flexible printed circuit boards have the advantages of high resin content, thin thickness, smooth surface, good bending resistance, excellent dielectric properties, low cost, and low CTE, which can meet the requirements of high-frequency and high-speed electronic components in the future. Requirements for flexible printed circuits such as mass storage and transmission.
  • the thin thickness and high fluororesin content can not only improve the dielectric properties, but also avoid the appearance of glass fiber lines on the surface when pressing into CCL, which will affect the performance of the flexible insulating board.
  • the total mass percentage of the first fluororesin and the second fluororesin is 76%-94%, more preferably 78%, 80%, 82%, 85%, 87%, 90% and 92%, etc., the higher the content of fluororesin, the lower the dielectric constant Dk of the flexible insulating plate, and the lower the dielectric loss coefficient Df, which is more conducive to high frequency, high speed, and large capacity transmission.
  • Step S4 laminating one, two or more fiber-reinforced fluororesin layers to form a flexible insulating board.
  • two or more fiber-reinforced fluororesin layers are laminated to obtain a flexible insulating board
  • two or more ultra-thin fiber layers are distributed at intervals in the thickness direction of the flexible insulating board, and the ultra-thin fiber layer and the fluororesin layer Lamination at intervals reduces the thermal expansion coefficient of the flexible insulating board.
  • the obtained fiber-reinforced fluororesin layers are stacked into sheets according to the thickness requirements, and are pressed and sintered at high temperature to obtain a flexible insulating board.
  • the thickness of the single-layer fiber-reinforced fluororesin layer is 15 ⁇ m-30 ⁇ m, and 1-4 layers of fiber-reinforced fluororesin layers are used to laminate to form an ultra-thin flexible insulating board.
  • glass fiber fabrics with models of 1000, 1017, 1015, and 1027 can be used, and their thicknesses are 12 ⁇ 2 ⁇ m, 14 ⁇ 2 ⁇ m, 15 ⁇ 3 ⁇ m, and 20 ⁇ 5 ⁇ m, respectively.
  • the prepared flexible insulating board The conventional thicknesses are 25 ⁇ m, 37.5 ⁇ m, 50 ⁇ m, 75 ⁇ m and 100 ⁇ m, respectively.
  • the thickness of the flexible insulating board prepared by the method of multiple dipping in the prior art is greater than 100 ⁇ m, and is a rigid insulating board with poor bending resistance. Therefore, compared with the prior art, the flexible insulating board prepared by the present invention has more excellent dielectric properties, lower water absorption, CTE and elastic modulus, etc., and improves the market competitiveness of the product.
  • the thermal expansion coefficient of the flexible insulating board of the present invention in the transverse direction in the board plane is less than 10 ppm/°C; the thermal expansion coefficient of the flexible insulating board in the longitudinal direction in the board plane is less than 20 ppm/°C; the flexible insulating board
  • the dielectric constant at the frequency of 10 GHz is less than 3; the dielectric loss coefficient of the flexible insulating plate at the frequency of 10 GHz is less than 0.01; the water absorption rate of the flexible insulating plate is less than 0.05 %; , large-capacity storage and transmission requirements of flexible printed circuit boards.
  • One or both sides of the obtained flexible insulating board are covered with conductive metal sheets, and pressed into shape to form a flexible laminate.
  • the fiber-reinforced fluororesin layers can also be stacked into sheets according to the thickness requirements, then covered with conductive metal sheets up and down, and pressed and sintered at high temperature to obtain a flexible laminate.
  • the conductive metal sheet is copper foil.
  • a circuit is formed on the flexible laminate to obtain a flexible printed wiring board.
  • the first fluororesin glue is the glue of PTFE resin, and its solid content is 60%.
  • the second fluororesin glue is the same as the first fluororesin glue, apply it to both sides of the prepreg by coating, and then enter the oven to cure, the curing temperature The temperature is 70 °C, the drying time is 5 min, the water is removed, and the semi-finished product is obtained.
  • step 5) Transfer the product obtained in step 4) into an oven for heat treatment, the heat treatment temperature is 180° C., and the heat treatment time is 180 min to obtain a fiber-reinforced fluororesin layer with a PTFE content of 80% and a fiber content of 20%.
  • step 5 The two fiber-reinforced fluororesin layers obtained in step 5) are superimposed, and then the upper and lower layers are respectively covered with copper foil, and the flexible laminate 1 is formed by high temperature pressing.
  • the preparation process of Examples 2-4 is the same as that of Example 1, and the parameters of the obtained flexible laminates are shown in Table 1.
  • the ultra-thin fiber layers used in Examples 1-3 are E-type electronic glass fiber cloth.
  • the ultra-thin fiber layer used in Example 4 is NE-type electronic glass fiber cloth.
  • the mass percentage of the ultra-thin fiber layer in Example 4 is filled with NE20, NE represents NE-type electronic glass fiber cloth, and 20 represents The mass percentage of NE type electronic glass fiber cloth is 20%.
  • NE type electronic glass fiber cloth can further reduce the dielectric constant and dielectric loss coefficient of the material and improve the material performance without having to impregnate a higher content of fluororesin.
  • Comparative Examples 1-4 The preparation process of Comparative Examples 1-4 is the same as that of Example 1, and the only difference is that the component contents are different, see Table 1.
  • Comparative example 5 is to superimpose two ultra-thin fiber layers used in Example 1 into a thick fiber layer, and then the thick fiber layer is continuously impregnated to form a fluororesin layer on both sides to obtain an insulating board, so that the fluororesin is formed.
  • the mass of the layer accounts for 80% of the mass of the insulating board, so that the mass of the thick fiber layer accounts for 20% of the mass of the insulating board.
  • Copper foil is covered on both sides of the insulating board to make a laminate.
  • the dielectric constant Dk, dielectric loss coefficient Df, CTE(X), CTE(Y), water absorption, copper peel strength at 180 °C and observation surface of the flexible laminates obtained in Examples 1-4 and Comparative Examples 1-5 were measured Whether there is glass fiber texture.
  • the Dk and Df of the sample were tested using the ADMS01Nc series dielectric constant tester TM mode resonator from AET Corporation of Japan, and the same sample was measured multiple times to obtain the average value.
  • CTE(X) is the thermal expansion coefficient of the flexible insulating board in the transverse direction of the board plane
  • CTE(Y) is the thermal expansion coefficient in the longitudinal direction of the board plane.
  • the insulating board was immersed in distilled water at 23 °C for 24 h, based on the standard of IPC TM-6502.6.2C, the water absorption was calculated from the mass difference between before and after immersion.
  • the 90°C peel force of the sample was measured at normal temperature using a positive peel strength tester.
  • Table 1 shows the performance parameters of the flexible laminates of Examples 1-4 and Comparative Examples 1-5, as can be seen from Table 1:
  • the mass percentage of the fluororesin layer is 80%, the surface has no texture, and the indexes of Dk, Df, CTE(X), CTE(Y), copper peel strength at 180 °C all meet the requirements .
  • Example 2 Comparing Examples 1, 2 and 4 with Example 3, Examples 1, 2 and 4 use PTFE resin, and Example 3 uses PFA resin. Since the viscosity of PFA resin is greater than that of PTFE resin, so, The product of Example 3 has higher copper peel strength, but the CTE value is slightly increased, therefore, better copper peel strength can be obtained by mixing PTFE resin with PFA resin.
  • Example 3 Comparing Example 1 with Example 2, the increase of filler can reduce the CTE value.

Abstract

本发明提供了一种挠性绝缘板的制备方法及得到的挠性绝缘板、挠性层压板及其制备方法、和应用,挠性绝缘板的制备方法包括以下过程:将厚度为8 μm-25 μm的超薄纤维层在第一氟树脂的胶液中浸渍,第一次固化,得到预浸体;将第二氟树脂的胶液涂布或喷淋至预浸体的双面,第二次固化,重复涂布或喷淋以及固化,直至第一氟树脂和第二氟树脂的总质量百分比为60 %-95 %,得到半成品;对半成品进行热处理,得到纤维增强氟树脂层;将一层、两层或两层以上的纤维增强氟树脂层层叠压合成型,得到挠性绝缘板。本发明提供的挠性绝缘板和挠性层压板具有介电损耗低,厚度薄,柔性好等特点,在未来高频化、微型化器件中具有更大的应用前景。

Description

挠性绝缘板的制备方法及得到的挠性绝缘板、挠性层压板及其制备方法、和应用 技术领域
本发明涉及线路板制备领域,具体涉及一种挠性绝缘板的制备方法及得到的挠性绝缘板、挠性层压板及其制备方法、和应用。
背景技术
随着近来电子设备的微型化、高速和各种功能一体化的趋势,介电性能优异、吸水率低、耐弯折性能佳以及热膨胀系数(CTE)低等的挠性印制线路板(FPC)成为电子设备不可或缺的辅助产品。
制备FPC的挠性绝缘板基板—聚酰亚胺(PI)基板,由于其吸水率高、高频(10 GHz)下介电损耗高以及制备双面板时需要使用胶粘剂或热塑性聚酰亚胺树脂(TPI)导致的工艺复杂等缺陷,已不能满足高频、高速、大容量存储及传输等挠性印制线路板(FPC)的要求。
液晶高分子基板(LCP),其成膜困难、耐弯折性能差、多层板压合工艺要求苛刻以及成本高,也不是FPC的最佳选择。
氟树脂具有优异的介电性能和耐热性,但其强度低、CTE偏高,将其制备成覆铜箔层压板(CCL)时常需要玻纤布或填料对其进行改性。
技术问题
在已有的专利或产品中,由一层厚玻纤多次浸渍氟树脂胶液固化而形成的CCL,由于厚玻纤浸渍困难,导致制备的CCL不仅厚度大,而且氟树脂含量低,由于氟树脂含量低,将其压合成CCL时,其表面玻纤纹路明显,且该制备方法制得的CCL多用于硬质电路板,而非FPC。
技术解决方案
本发明的目的之一在于提供一种挠性绝缘板的制备方法,该制备方法得到的挠性绝缘板具有低介电常数、低介质损耗系数、低吸水率、低弹性模量、低热膨胀系数及低成本等诸多优点,能够满足未来电子元器件对高频、高速、大容量存储及传输等挠性印制线路板的要求。
本发明的技术方案如下:
一种挠性绝缘板的制备方法,包括以下过程:
制备第一氟树脂的胶液,将厚度为8 μm-25 μm的超薄纤维层在所述第一氟树脂的胶液中浸渍,第一次固化,得到预浸体;
制备第二氟树脂的胶液,将所述第二氟树脂的胶液涂布或喷淋至所述预浸体的双面,第二次固化,重复涂布或喷淋以及固化,得到半成品;
对所述半成品进行热处理,得到纤维增强氟树脂层,其中,所述纤维增强氟树脂层中,所述第一氟树脂和所述第二氟树脂的总质量百分比为60 %-95 %;
将一层、两层或两层以上的所述纤维增强氟树脂层层叠压合成型,得到所述挠性绝缘板。
本发明的目的之二在于提供上述制备方法得到的挠性绝缘板。
本发明的目的之三在于提供一种挠性层压板,包括上述的挠性绝缘板和叠加在所述挠性绝缘板的单侧或双侧的导电金属片。
本发明的目的之四在于提供上述挠性层压板的制备方法,包括以下过程:
将上述的挠性绝缘板的单侧或双侧覆上导电金属片,压合成型,形成所述挠性层压板。
本发明的目的之五在于提供上述挠性绝缘板或上述挠性层压板在挠性印制线路板中的应用。
有益效果
本发明的有益效果在于:
1)通过先采用浸渍工艺,并在浸渍工艺后固化得到预浸体,去除胶液中的水分,制备出高氟树脂含量的预浸体,然后通过采用多次涂布或喷淋工艺,并在每次涂布或喷淋工艺后固化,去除多余水分,进一步得到高氟树脂含量的纤维增强氟树脂层,从而能够制备出高性能的挠性绝缘板。
2)在浸渍工艺后采用涂布或喷淋工艺,可以避免采用浸渍工艺造成的流痕、气泡缺陷,以及避免表面树脂开裂、脱落以及树脂乳液难以附着等问题。因为,本发明得到的纤维增强氟树脂层为超薄结构,结构越薄,流痕、气泡等缺陷对性能的影响越明显,因此,需避免产生流痕、气泡等缺陷。本发明的纤维增强氟树脂层的厚度可低至15 μm。
3)以超薄纤维层为增强体,和现有技术的厚玻纤为增强体相比,降低了浸渍难度,提高了超薄纤维层浸渍的氟树脂的含量,且能够得到挠性绝缘板。
4)以超薄纤维层为增强体,且高氟树脂含量,压合形成的挠性层压板表面无玻纤纹路。
5)通过本发明方法制备的挠性层压板具有介电损耗低、厚度薄、柔性好、CTE低等特点,在未来高频化、微型化器件中具有更大的应用前景。
本发明的实施方式
下面结合具体实施方式对本发明作进一步说明。
本发明公开了一种挠性绝缘板的制备方法,包括以下过程:
步骤S1:制备第一氟树脂的胶液,将厚度为8 μm-25 μm的超薄纤维层在第一氟树脂的胶液中浸渍,第一次固化,得到预浸体。
超薄纤维层,改善了现有技术中因厚玻纤过厚导致的浸渍困难使氟树脂含量低的问题,避免压合成CCL时表面出现玻纤纹路,以及提高了绝缘板的柔软度,使绝缘板能够应用于挠性绝缘板。
在较佳实施例中,超薄纤维层为玻璃纤维、石英纤维和有机纤维中的一种或两种以上织成的纤维织物。其中,玻璃纤维材质的超薄纤维层可以为D型、S型、E型或NE型电子玻纤布,其为日本日东纺织株式会社开发的一系列电子玻纤布。
在较佳实施例中,超薄纤维层的厚度可以为10 μm、12μm、14μm、15 μm、18 μm、20 μm或25μm。超薄纤维层越薄,一定厚度的挠性绝缘板中沿厚度方向分布的超薄纤维层的层数越多,挠性绝缘板的CTE越小,尤其能降低沿厚度方向的CTE值。
在较佳实施例中,第一氟树脂为PTFE树脂、PFA树脂或PTFE树脂和PFA树脂的混合物。PTFE树脂熔融粘度大,熔融温度高,CTE低,PFA树脂的熔融粘度和熔融温度均低于PTFE树脂,CTE高于PTFE树脂,PFA树脂和PTFE树脂混合可以调节介电常数Dk、介质损耗系数Df、吸水率以及CTE值。
在较佳实施例中,第一氟树脂的胶液中的固体质量百分比为20 %-68 %,固体含量过低,每次形成的树脂层的厚度过薄,导致形成目标厚度的绝缘板的固化次数增多,延长生产周期。固体含量过高,树脂无法完全浸入纤维层,从而产生孔洞。
在较佳实施例中,第一氟树脂的平均粒径为0.1 μm-1 μm,更优选为0.1 μm-0.5 μm,平均粒径过小易发生团聚,平均粒径过大易分散不均匀。
在本步骤中,具体的,将超薄纤维层经滚轴经过含有第一氟树脂的胶液的胶槽,然后通过刮胶装置将超薄纤维层上多余胶液和气泡刮除,再经滚轴进入烘箱内进行第一次固化,去除超薄纤维层上的水分。
在较佳实施例中,第一次固化的温度为70 ℃-150 ℃,更优选的为80 ℃-120 ℃,温度低于70 ℃,水分无法完全去除,且烘烤时间长,生产效率下降,高于150 ℃,氟树脂表面的活性剂分解,表面能下降,乳液难以附着,影响后续步骤氟树脂层的增加。
步骤S2:制备第二氟树脂的胶液,将第二氟树脂的胶液涂布或喷淋至预浸体的双面,第二次固化,重复涂布或喷淋以及固化,直至第一氟树脂和第二氟树脂的总质量百分比满足要求,得到半成品。
本步骤采用涂布或喷淋工艺,可以使增加的氟树脂层更密实,避免浸渍工艺采用刮胶装置出现的流痕和气泡缺陷,降低氟树脂的CTE,不再采用浸渍工艺,也可以避免胶槽中浸渍树脂脱落的大颗粒胶渣进入氟树脂层,避免影响氟树脂层的材质均匀性。
在较佳实施例中,第二次固化的条件和第一次固化的条件类似,均去除水分,第二次固化的温度为70 ℃-150 ℃,更优选的为80 ℃-120 ℃。
在较佳实施例中,第二氟树脂的胶液中的固体质量百分比为20 %-68 %;第二氟树脂的平均粒径为0.1 μm-1 μm。
在较佳实施例中,第二氟树脂为PTFE树脂、PFA树脂或PTFE树脂和PFA树脂的混合物。
值得注意的是,第一氟树脂的材料和第二氟树脂的材料可以相同也可以不同,第一氟树脂的胶液浓度和第二氟树脂的胶液浓度可以相同也可以不同,以及每次浸渍、涂覆或喷淋时所使用的胶液的材质和浓度均可以相同也可以不同。当不同时,可以通过添加填料、调节树脂含量等来改变胶液的固含量(即胶液浓度)。
在较佳实施例中,可以在第一氟树脂和/或第二氟树脂的胶液中添加填料,以调节树脂的CTE值。
在较佳实施例中,填料的质量占纤维增强氟树脂层的总质量的0.1 %-25 %,填料可以降低挠性绝缘板在板平面内的CTE值。填料含量高于25%时,其在溶液中易发生沉降,难以进行分散。
在较佳实施例中,填料可以选自二氧化硅、二氧化钛、氧化铝、氮化硼和滑石粉中的至少一种。
在较佳实施例中,填料的平均粒径为0.1 μm-5 μm,更优选为0.1μm-3 μm,粒径过大难以完全浸渍超薄纤维层,粒径过小分散难度大。
步骤S3:对半成品进行热处理,得到纤维增强氟树脂层,纤维增强氟树脂层中,第一氟树脂和第二氟树脂的总质量百分比为60 %-95 %,具体可以为61 %、65 %、70 %、75%、78 %、80 %、82 %、85 %、87 %、90 %、92 %以及94 %等。
本步骤的目的在于去除氟树脂中的表面活性剂,在较佳实施例中,热处理的温度为热处理的温度是180 ℃-240 ℃,温度<180 ℃,表面活性剂难以去除干净,>240 ℃,活性剂易在树脂中分解碳化,影响材料介电性能。
现有技术中,通常采用连续多次浸渍的方法提高氟树脂的含量,会出现流痕、气泡缺陷,以及表面树脂开裂、脱落以及树脂乳液难以附着等问题。本发明对连续多次浸渍的方法进行改进,仅第一次采用浸渍的工艺,之后第二次、第三次等均采用涂覆或喷涂工艺增加氟树脂层的厚度,采用涂覆或喷涂工艺可以避免上述问题,减少流痕和气泡缺陷等,提高氟树脂在板平面内的CTE,以及提高氟树脂的均匀度。
由于超薄纤维层的厚度太薄,形成纤维增强氟树脂层的氟树脂层的厚度也相对较小,那么,树脂中的流痕、气泡、杂质颗粒等对树脂均匀性、CTE、介电性能等的影响就被放大,因此,本发明对步骤S1进行改进,仍采用成熟工艺,制作过程简单,不增加生产成本,且进一步提高各氟树脂层的树脂含量和均匀性,从而使得到的挠性绝缘板和挠性印制线路板具有树脂含量高、厚度薄、表面平整、耐弯折性能好、介电性能优异、成本低、CTE低等优点,能够满足未来电子元器件高频高速,大容量存储及传输等柔性印制电路的要求。
厚度薄且氟树脂含量高,不仅可以提高介电性能,而且避免压合成CCL时表面出现玻纤纹路,影响挠性绝缘板的性能。
在较佳实施例中,纤维增强氟树脂层中,第一氟树脂和第二氟树脂的总质量百分比为76 %-94 %,更优选的为78 %、80 %、82 %、85 %、87 %、90 %以及92 %等,氟树脂的含量越高,挠性绝缘板的介电常数Dk越低,介质损耗系数Df越低,越有利于进行高频、高速、大容量传输。
步骤S4:将一个、两个或两个以上的纤维增强氟树脂层层叠压合成型,得到挠性绝缘板。
当两个或两个以上的纤维增强氟树脂层层叠得到挠性绝缘板时,挠性绝缘板厚度方向间隔分布有两个或两个以上的超薄纤维层,超薄纤维层与氟树脂层间隔层叠,降低了挠性绝缘板的热膨胀系数。
具体的,将得到的各纤维增强氟树脂层按照厚度要求叠合成片,经高温压合烧结得到挠性绝缘板。
在较佳实施例中,单层纤维增强氟树脂层的厚度为15 μm-30 μm,使用1层-4层纤维增强氟树脂层层叠成超薄挠性绝缘板。
具体的,可以采用型号分别为1000、1017、1015、1027的玻纤织物,其厚度分别为12±2 μm, 14±2 μm,15±3 μm, 20±5 μm,制备的挠性绝缘板的常规厚度分别为25 μm,37.5 μm,50 μm,75 μm和100 μm。现有技术采用多次浸渍的方法制得的挠性绝缘板的厚度大于100 μm,且属于刚性绝缘板,耐弯折性能差。因此,本发明制备的挠性绝缘板相比现有技术,具有更优异的介电性能,更低的吸水率、CTE和弹性模量等,提高产品的市场竞争力。
通过后面的具体实施例,本发明的挠性绝缘板在板平面内横向的热膨胀系数小于10 ppm/℃;挠性绝缘板在板平面内纵向的热膨胀系数小于20 ppm/℃;挠性绝缘板在10 GHz频率下的介电常数小于3;挠性绝缘板在10 GHz频率下的介质损耗系数小于0.01;挠性绝缘板的吸水率小于0.05 %;能够满足未来电子元器件对高频、高速、大容量存储及传输等挠性印制线路板的要求。
将得到的挠性绝缘板的单侧或双侧覆上导电金属片,压合成型,形成挠性层压板。
也可以将各纤维增强氟树脂层按照厚度要求叠合成片后,上下覆盖导电金属片,经高温压合烧结得到挠性层压板。
在一具体实施例中,导电金属片为铜箔。
在挠性层压板上形成电路得到挠性印制线路板。
以下为具体实施例。
实施例1
制备挠性层压板1。
1)配制第一氟树脂胶液,第一氟树脂胶液为PTFE树脂的胶液,其固含量为60 %。
2)取13 μm厚度的超薄纤维层(E型电子玻纤布),将超薄纤维层浸入第一氟树脂胶液后经滚轴进入烘箱中固化,固化温度为70 ℃,干燥时间为5 min,去除水,得到预浸体。
3)配制第二氟树脂胶液,第二氟树脂胶液和第一氟树脂胶液相同,用涂布的方式将其涂布至预浸体的两侧,之后进入烘箱中固化,固化温度为70 ℃,干燥时间为5min,去除水,得到半成品。
4)重复步骤3)三次。
5)将步骤4)得到的产品转入烘箱中进行热处理,热处理温度为180 ℃,热处理时间为180min,得纤维增强氟树脂层,其PTFE含量为80 %、纤维含量为20 %。
6)将两层步骤5)制得的纤维增强氟树脂层叠加,然后上下分别覆盖铜箔,高温压合形成挠性层压板1。
实施例2-4的制备过程和实施例1相同,所得到的挠性层压板的各参数见表1,其中,实施例1~3采用的超薄纤维层为E型电子玻纤布,实施例4采用的超薄纤维层为NE型电子玻纤布,表1中为了加以区分,实施例4的超薄纤维层质量百分比中填写的是NE20,NE代表NE型电子玻纤布,20代表NE型电子玻纤布的质量百分比为20 %,NE型电子玻纤布能够在不必浸渍更高含量的氟树脂的情况下进一步降低材料的介电常数和介电损耗系数,提升材料性能。
对比例1-4的制备过程和实施例1相同,不同点仅在于组份含量不同,见表1。
对比例5为将两层实施例1使用的超薄纤维层叠加成一层厚纤维层,然后将该厚纤维层采用连续浸渍的方法在其两侧形成氟树脂层,得到绝缘板,使氟树脂层的质量占绝缘板的质量百分数为80 %,使厚纤维层的质量占绝缘板的质量百分数为20%。在绝缘板的两侧覆盖铜箔,制成层压板。
实验例1
测量实施例1-4和对比例1-5得到的挠性层压板的介电常数Dk、介质损耗系数Df、CTE(X)、CTE(Y)、吸水率、180 ℃铜剥离强度以及观察表面是否有玻纤纹路。
1)介电常数Dk和介质损耗系数Df的测量方法
基于JISC2565测试标准,使用日本AET公司 ADMS01Nc系列介电常数测试仪TM模式共振器对样品的Dk和Df进行测试,同一样品多次测量取平均值。
2)CTE(X)、CTE(Y)的测量方法
基于IPC TM-6502.4.24.3的标准,使用TA Instrument的TA Q400设备,在25℃至288 ℃的测量条件下测量各绝缘板的CTE值。
CTE(X)为挠性绝缘板在板平面上横向的热膨胀系数,CTE(Y)为板平面上纵向的热膨胀系数。
3)吸水率的测量方法
将绝缘板放在23 ℃的蒸馏水中浸渍24 h之后,基于IPC TM-6502.6.2C的标准,由浸渍前和浸渍后的质量差计算吸水率。
4)90 ℃铜剥离强度的测量方法
基于IPC TM-650 2.4.9的标准,使用正业剥离强度测试仪,在常温下测量样品的90℃剥离力。
表1给出了上述实施例1-4和对比例1-5的各挠性层压板的性能参数,从表1可以看到:
1)参考实施例1-4,氟树脂层的质量百分比为80 %,表面无纹路,且Dk、Df、CTE(X)、CTE(Y)、180 ℃铜剥离强度的各项指标均满足需求。
2)将实施例1、2和4和实施例3相比,实施例1、2和4采用的是PTFE树脂,实施例3采用的是PFA树脂,由于PFA树脂的粘度大于PTFE树脂,所以,实施例3的产品具有更高的铜剥离强度,但CTE值稍微增大,因此,用PFA树脂混合PTFE树脂可以得到更优的铜剥离强度。
3)将实施例1和实施例2对比,填料的增加可以降低CTE值。
4)参考对比例1-3,由于氟树脂层的含量小于或等于60 %,表面均出现纹路。
5)参考对比例4,当氟树脂层的含量大于或等于95 %时,会导致CTE值陡然增加。
6)将实施例1、4和对比例5对比,实施例1、4的CTE明显低的多,且无表面纹路。
Figure dest_path_image001
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (14)

  1. 一种挠性绝缘板的制备方法,其特征在于,包括以下过程:
    制备第一氟树脂的胶液,将厚度为8 μm-25 μm的超薄纤维层在所述第一氟树脂的胶液中浸渍,第一次固化,得到预浸体;
    制备第二氟树脂的胶液,将所述第二氟树脂的胶液涂布或喷淋至所述预浸体的双面,第二次固化,重复涂布或喷淋以及固化,得到半成品;
    对所述半成品进行热处理,得到纤维增强氟树脂层,其中,所述纤维增强氟树脂层中,所述第一氟树脂和所述第二氟树脂的总质量百分比为60 %-95 %;
    将一层、两层或两层以上的所述纤维增强氟树脂层层叠压合成型,得到所述挠性绝缘板。
  2. 根据权利要求1所述的制备方法,其特征在于,所述纤维增强氟树脂层中,所述第一氟树脂和所述第二氟树脂的总质量百分比为76 %-94 %。
  3. 根据权利要求1所述的制备方法,其特征在于,所述超薄纤维层为玻璃纤维、石英纤维和有机纤维中的一种或两种以上织成的纤维织物。
  4. 根据权利要求1所述的制备方法,其特征在于,所述第一氟树脂的胶液中的固体质量百分比为20 %-68 %;
    所述第二氟树脂的胶液中的固体质量百分比为20 %-68 %。
  5. 根据权利要求1所述的制备方法,其特征在于,所述第一次固化的温度是70 ℃-150 ℃;
    所述第二次固化的温度是70 ℃-150 ℃;
    所述热处理的温度是180 ℃-240 ℃。
  6. 根据权利要求1所述的制备方法,其特征在于,
    所述第一氟树脂为PTFE树脂、PFA树脂或PTFE树脂和PFA树脂的混合物;
    所述第二氟树脂为PTFE树脂、PFA树脂或PTFE树脂和PFA树脂的混合物。
  7. 根据权利要求1所述的制备方法,其特征在于,所述第一氟树脂和/或所述第二氟树脂的胶液中还包括填料,所述填料的质量占所述纤维增强氟树脂层的总质量的0.1 %-25 %。
  8. 根据权利要求7所述的制备方法,其特征在于,所述填料选自二氧化硅、二氧化钛、氧化铝、氮化硼和滑石粉中的至少一种,所述填料的平均粒径为0.1 μm-5 μm。
  9. 根据权利要求1所述的制备方法,其特征在于,
    所述第一氟树脂的胶液中的固体平均粒径为0.1 μm-1 μm;
    所述第二氟树脂的胶液中的固体平均粒径为0.1 μm-1 μm;
    所述纤维增强氟树脂层的厚度为15 μm-30 μm;
    所述纤维增强氟树脂层的层数为1层-4层。
  10. 根据权利要求1所述的制备方法,其特征在于,
    所述挠性绝缘板在板平面内横向的热膨胀系数小于10 ppm/℃;
    所述挠性绝缘板在板平面内纵向的热膨胀系数小于20 ppm/℃;
    所述挠性绝缘板在10 GHz频率下的介电常数小于3;
    所述挠性绝缘板在10 GHz频率下的介质损耗系数小于0.01;
    所述挠性绝缘板的吸水率小于0.05 %。
  11. 一种如权利要求1-10任意一项所述的制备方法制得的挠性绝缘板。
  12. 一种挠性层压板,其特征在于,包括如权利要求11所述的挠性绝缘板和叠加在所述挠性绝缘板的单侧或双侧的导电金属片。
  13. 一种挠性层压板的制备方法,其特征在于,包括以下过程:
    将如权利要求11所述的挠性绝缘板的单侧或双侧覆上导电金属片,压合成型,形成所述挠性层压板。
  14. 权利要求11所述的挠性绝缘板或权利要求12所述的挠性层压板在挠性印制线路板中的应用。
PCT/CN2020/137499 2020-11-30 2020-12-18 挠性绝缘板的制备方法及得到的挠性绝缘板、挠性层压板及其制备方法、和应用 WO2022110389A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011371824.1A CN112519357A (zh) 2020-11-30 2020-11-30 挠性绝缘板的制备方法及得到的挠性绝缘板、挠性层压板及其制备方法、和应用
CN202011371824.1 2020-11-30

Publications (1)

Publication Number Publication Date
WO2022110389A1 true WO2022110389A1 (zh) 2022-06-02

Family

ID=74995078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137499 WO2022110389A1 (zh) 2020-11-30 2020-12-18 挠性绝缘板的制备方法及得到的挠性绝缘板、挠性层压板及其制备方法、和应用

Country Status (2)

Country Link
CN (1) CN112519357A (zh)
WO (1) WO2022110389A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202206286A (zh) 2020-07-28 2022-02-16 美商聖高拜塑膠製品公司 介電基板及其形成方法
US20230191750A1 (en) * 2021-12-17 2023-06-22 Saint-Gobain Performance Plastics Corporation Dielectric substrate and method of forming the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103429423A (zh) * 2011-02-24 2013-12-04 伊索拉美国有限公司 超薄层压板
CN104553224A (zh) * 2014-12-30 2015-04-29 广东生益科技股份有限公司 粘性漆布制作方法、应用该方法制成的粘性漆布和覆铜板
CN105437671A (zh) * 2015-12-25 2016-03-30 广东生益科技股份有限公司 超薄型覆铜板的制作方法
CN106633785A (zh) * 2016-12-30 2017-05-10 广东生益科技股份有限公司 用于电路基板的预浸渍料、层压板、制备方法及包含其的印制电路板
CN106696398A (zh) * 2015-11-16 2017-05-24 宜春市航宇时代实业有限公司 低污染高均匀性ptfe覆铜板的制备方法及其ptfe覆铜板
CN107385936A (zh) * 2017-07-12 2017-11-24 广东生益科技股份有限公司 一种制备ptfe漆布的方法、由该方法制备的ptfe漆布和覆金属箔层压板

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5987840B2 (ja) * 2011-12-06 2016-09-07 日東紡績株式会社 ガラス織物及びそれを用いるガラス繊維シート材
KR20150070703A (ko) * 2013-12-17 2015-06-25 삼성전기주식회사 프리프레그 및 그 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103429423A (zh) * 2011-02-24 2013-12-04 伊索拉美国有限公司 超薄层压板
CN104553224A (zh) * 2014-12-30 2015-04-29 广东生益科技股份有限公司 粘性漆布制作方法、应用该方法制成的粘性漆布和覆铜板
CN106696398A (zh) * 2015-11-16 2017-05-24 宜春市航宇时代实业有限公司 低污染高均匀性ptfe覆铜板的制备方法及其ptfe覆铜板
CN105437671A (zh) * 2015-12-25 2016-03-30 广东生益科技股份有限公司 超薄型覆铜板的制作方法
CN106633785A (zh) * 2016-12-30 2017-05-10 广东生益科技股份有限公司 用于电路基板的预浸渍料、层压板、制备方法及包含其的印制电路板
CN107385936A (zh) * 2017-07-12 2017-11-24 广东生益科技股份有限公司 一种制备ptfe漆布的方法、由该方法制备的ptfe漆布和覆金属箔层压板

Also Published As

Publication number Publication date
CN112519357A (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
KR101819805B1 (ko) 회로기판 및 그 제조 방법
KR20190090031A (ko) 개선된 열 전도율을 갖는 유전체층
WO2022110389A1 (zh) 挠性绝缘板的制备方法及得到的挠性绝缘板、挠性层压板及其制备方法、和应用
TWI474921B (zh) 覆金屬之積層板
TWM556457U (zh) 具有複合式疊構的可撓性塗膠銅箔基板
WO2008004399A1 (fr) Composition de résine de liaison pour des substrats de résine fluorée et stratifiés à placage de métal obtenus à l'aide de la composition
CN112109391B (zh) 金属箔积层板及其制法
TWI826452B (zh) 附樹脂之金屬箔之製造方法、附樹脂之金屬箔、積層體及印刷基板
CN114670512B (zh) 一种含玻纤布的聚四氟乙烯柔性覆铜板及其制备方法
WO2017035974A1 (zh) 电路基板及其制备方法
TWI821399B (zh) 積層體、印刷基板及其製造方法
TW202037488A (zh) 積層體及其製造方法、複合積層體之製造方法、以及聚合物膜之製造方法
WO2014092137A1 (ja) 多層プリント配線板及びその製造方法
CN109385174B (zh) 底漆组成物与使用该底漆组成物的铜箔基板
CN114559712B (zh) 一种耐高温低损耗的覆铜板及其制备工艺
JP6364184B2 (ja) プリント配線板
JP7148757B2 (ja) ポリイミド樹脂前駆体、ポリイミド樹脂、金属張り積層板、積層体及びフレキシブルプリント配線板
JP2023022007A5 (zh)
CN115028868A (zh) 一种多层粘结材料及其制备方法和应用
WO2013097127A1 (zh) 电路基板及其制作方法
JP2023002496A (ja) 銅張積層板の製造方法
JPH03239390A (ja) 金属芯基板およびその製法
CN112248595A (zh) 绝缘板及其制备方法、层压板及其制备方法、和应用
CN114574116B (zh) 一种载体树脂膜及其制备方法和应用
CN112223868B (zh) 绝缘板及其制备方法、层压板及其制备方法、及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963277

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20963277

Country of ref document: EP

Kind code of ref document: A1