WO2022110167A1 - 气垫和辊子复合式铝带卷材的连续固溶热处理设备及工艺 - Google Patents

气垫和辊子复合式铝带卷材的连续固溶热处理设备及工艺 Download PDF

Info

Publication number
WO2022110167A1
WO2022110167A1 PCT/CN2020/132834 CN2020132834W WO2022110167A1 WO 2022110167 A1 WO2022110167 A1 WO 2022110167A1 CN 2020132834 W CN2020132834 W CN 2020132834W WO 2022110167 A1 WO2022110167 A1 WO 2022110167A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
aluminum strip
group
nozzle
water spray
Prior art date
Application number
PCT/CN2020/132834
Other languages
English (en)
French (fr)
Inventor
蒋宗轩
蒋铭根
姚志刚
张志伟
Original Assignee
苏州中门子工业炉科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州中门子工业炉科技有限公司 filed Critical 苏州中门子工业炉科技有限公司
Priority to PCT/CN2020/132834 priority Critical patent/WO2022110167A1/zh
Publication of WO2022110167A1 publication Critical patent/WO2022110167A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon

Definitions

  • the invention belongs to the technical field of heat treatment of aluminum strips, in particular to a continuous solution heat treatment equipment for a composite aluminum strip coil with an air cushion and a roller, and also relates to a continuous solution heat treatment process for a composite transmission type aluminum coil strip.
  • aluminum coil and strip is a kind of non-ferrous metal that is widely used in industrial production.
  • the heat treatment process is a necessary treatment procedure for aluminum coil and strip, which usually includes solution treatment, quenching treatment and aging treatment.
  • the so-called solid solution treatment refers to the heat treatment process of heating the aluminum strip to a high temperature single-phase region and maintaining it at a constant temperature, so that the excess phase is fully dissolved into the solid solution and then rapidly cooled to obtain a supersaturated solid solution.
  • the water cooling is mainly to flush the upper and lower surfaces of the aluminum strip, and the heat is taken away by the water.
  • some water or hot gas will inevitably enter the heating zone of the solution heat treatment furnace, resulting in the temperature in the heating zone cannot be kept constant. , not only affects the heat treatment quality of the aluminum strip, but also reduces the service life of the furnace;
  • the technical problem to be solved by the present invention is to overcome the deficiencies of the prior art and provide an improved continuous solution heat treatment equipment for the composite aluminum strip coil with air cushion and roller.
  • the invention also relates to a continuous solution heat treatment process for the composite transmission type aluminum coil and strip.
  • the present invention adopts the following technical solutions:
  • An air-cushion and roller composite aluminum strip coil continuous solution heat treatment equipment comprising:
  • an air cushion generator which includes a plurality of air cushion generating units sequentially distributed in the heating zone of the solution heat treatment furnace and forming an aluminum strip transmission channel, wherein each of the air cushion generating units includes an upper blowing box, a lower blowing box, a fan and an air duct, a plurality of the upper blowing boxes are sequentially distributed in the heating zone and located above the aluminum belt conveying channel, and a plurality of the lower blowing boxes are sequentially distributed in the heating zone and located on the aluminum belt Below the transmission channel, a plurality of the upper blowing boxes and a plurality of the lower blowing boxes of each air cushion generating unit are staggered and spaced from each other and are distributed at extreme positions in a sine or cosine image; the upper blowing box is from one end The cavity formed toward the other end gradually becomes smaller and smaller, and the bottom surface is rectangular.
  • the upper air inlet hole is located at the end of the cavity with a larger space and communicates with the air duct, and the upper air jet holes are distributed in an array state.
  • the bottom surface of the blower box; the lower blower box is in the shape of a cuboid, the lower air inlet hole is located at one end of the cuboid and communicated with the air duct, and the lower blower holes are distributed on the top surface of the lower blower box in an array state;
  • a cooling system which includes a quick-cooling chamber communicated with a solution heat treatment furnace, a water-cooling device arranged in the quick-cooling chamber, and an exhaust device, wherein the water-cooling device comprises a plurality of connected and spaced apart upper and lower aluminum strips
  • the water-cooling device comprises a plurality of connected and spaced apart upper and lower aluminum strips
  • each of the water spray units includes a water spray pipe extending along the width direction of the aluminum strip, a plurality of nozzles distributed at intervals on each of the water spray pipes, each of which The water spray area formed by a plurality of the nozzles on the water spray pipe covers the width direction of the aluminum strip, the nozzles are arranged to intersect with the aluminum strip, and the water flow formed by the plurality of nozzles can drive the aluminum
  • the belt is transported to the outlet of the fast cooling chamber, and a plurality of the water spray units are divided into a first group and a second group, wherein the distribution density of the water spray units of the first group is greater
  • the multiple transmission rollers are distributed in turn along the length direction of the aluminum strip transmission channel, and the top surfaces of the multiple transmission rollers are flush to form a transmission surface.
  • Auxiliary tape guiding system which includes feeding tape device and discharging tape device.
  • the upper air blow holes are elongated holes, and are distributed at intervals along the length direction of the rectangle and formed in multiple rows in the width direction of the rectangle.
  • the elongated holes it is convenient for the airflow to be blown out in a flat shape, and the smooth suspension of the aluminum strip is better achieved.
  • each of which is 1.2.3...N columns, wherein the air jet holes in the row with odd numbers are aligned one by one, and the air jet holes in the row with even numbers are arranged one by one. Alignment setting, the distribution of phase dislocation between the blow holes on the odd-numbered column and the blow-holes on the even-numbered column. This unique layout can achieve uniform air volume.
  • the lower air blow holes are elongated holes, and are distributed at intervals along the length direction of the rectangle and are formed in multiple rows in the width direction of the rectangle.
  • the elongated holes it is convenient for the airflow to be blown out in a flat shape, and the smooth suspension of the aluminum strip is better achieved.
  • the lower air blow holes there are multiple rows of the lower air blow holes, and they are 1.2.3...N columns, wherein the lower air blow holes in the odd-numbered columns are aligned one by one, and the even-numbered columns are arranged in one-to-one alignment.
  • the lower air blow holes are arranged in one-to-one alignment, and the lower air blow holes in the odd-numbered column and the lower air blow holes in the even-numbered column are dislocated and distributed.
  • the cross-section of the cavity is a right-angled trapezoid with the hypotenuse facing upwards
  • the upper air blowing holes are distributed on the side where the hypotenuse corresponds to the right angle side
  • the upper air inlet is located on the side where the longer bottom side is located.
  • the shapes of the upper blow box and the lower blow box are different, which is more conducive to the implementation of the air suspension of the aluminum strip, and also further ensures that the aluminum strip passes through the aluminum strip transmission channel smoothly.
  • the air duct includes an air inlet channel and an air outlet channel, wherein there are two groups of air outlet channels, which are a first air outlet channel and a second air outlet channel respectively.
  • the channel is communicated with the upper air inlet hole, and the second air outlet channel is communicated with the lower air inlet hole.
  • the gas flow is controlled by means of shunting, so as to facilitate the control of the air suspension of the aluminum strip.
  • the first air outlet channel and the second air outlet channel are located on opposite sides of the air inlet channel, and the upper air inlet hole is located above the corresponding end of the lower air inlet hole.
  • the air cushion generating unit further includes an air intake guide sleeve disposed above the heater and located in the air intake channel, wherein the outlet of the air intake guide sleeve is communicated with the air inlet of the fan.
  • an air intake guide sleeve disposed above the heater and located in the air intake channel, wherein the outlet of the air intake guide sleeve is communicated with the air inlet of the fan.
  • the inner cavity of the air inlet guide sleeve is gradually reduced from the air inlet to the air outlet, and an arc guide portion is formed on the edge of the air inlet of the air inlet guide sleeve. This can have the best effect of convergence and orientation.
  • the plurality of water spray units constituting the first group are divided into an upper-layer spray group and a lower-layer spray group, wherein the plurality of spray pipes of the upper-layer spray group are evenly spaced, and the center of each spray pipe reaches the aluminum strip.
  • the distances from the upper surfaces are equal, and the multiple nozzles of the upper jet group are parallel and aligned with each other;
  • the nozzles of the corresponding upper-layer jet groups are arranged to intersect, and the nozzles of multiple lower-layer jet groups are parallel and aligned with each other.
  • the distance from the lower surface of the aluminum strip is equal, and the multiple nozzles of the lower jet group are arranged in parallel and aligned with each other. In this way, not only rapid heat dissipation and cooling can be carried out in the dense area, but also the smooth transmission of the aluminum strip can be assisted.
  • the distance from the center of the water spray pipe located in the upper jet group to the upper surface of the aluminum strip is the same as the distance from the center of the water spray pipe located in the lower jet group to the lower surface of the aluminum strip. In this way, while cooling is rapid, it can also ensure that the upper and lower surfaces of the aluminum strip are uniformly stressed and are not easily deformed.
  • the water spray pipe of the upper jet stream group close to the inlet of the quick cooling chamber is the upper water jet pipe I
  • the water jet pipe of the lower jet stream group near the inlet of the quick cooling chamber is the lower water jet Pipe
  • the water-cooling device also includes an upper elbow that is communicated with the upper water spray pipe 1 and is set in a one-to-one correspondence with the nozzles on the upper water spray pipe 1, an upper nozzle that is arranged on the water outlet end of each upper elbow, and a lower water spray.
  • the distance between the bottom of the nozzle and the upper surface of the aluminum strip is smaller than the distance between the bottom of the nozzle and the upper surface of the aluminum strip, and the angle formed by the upper nozzle and the aluminum strip is greater than the angle formed by the corresponding nozzle and the aluminum strip;
  • the distance between the top and the lower surface of the aluminum strip is smaller than the distance between the top of the corresponding nozzle and the lower surface of the aluminum strip, and the angle formed by the lower nozzle and the aluminum strip is greater than the angle formed by the corresponding nozzle and the aluminum strip.
  • the water spray angle formed by the upper and lower nozzles is more conducive to the adhesion of the water flow and the surface of the aluminum strip,
  • the plurality of water spray units forming the second group are divided into an upper spray flow group and a lower spray flow group, wherein the distance between the water spray pipes of the upper spray flow group and the lower spray flow group is the distance between the upper spray flow group and the lower spray flow group 2 to 5 times the distance between the spray pipes of the flow group.
  • the distance between the water spray pipes of the upper spray flow group and the lower spray flow group is the distance between the upper spray flow group and the lower spray flow group 2 to 5 times the distance between the spray pipes of the flow group.
  • the nozzles of the upper jet group are divided into a first echelon and a second echelon along the conveying direction of the aluminum strip, wherein the distance between the bottom of the nozzle of the first echelon and the upper surface of the aluminum strip is greater than that of the first echelon.
  • the distance between the bottom of the nozzle of the second echelon and the upper surface of the aluminum strip is greater than that of the first echelon.
  • the angle formed between the nozzles of the first echelon and the aluminum strip is an obtuse angle, and the nozzles of the second echelon are arranged perpendicular to the aluminum strip.
  • the angle formed between the nozzles of the first echelon and the aluminum strip is an obtuse angle, and the nozzles of the second echelon are arranged perpendicular to the aluminum strip.
  • the distances between the tops of the nozzles of the lower jet groups and the lower surface of the aluminum strip are equal, and the angles formed by the nozzles of the lower jet groups and the aluminum strip are equal. In this way, the angle and strength can be matched with the upper jet group, so as to quickly implement water cooling.
  • the water cooling device further comprises an upper water spray pipe arranged above the aluminum strip and close to the upper spray flow group, and a plurality of upper nozzles arranged side by side on the upper water spray pipe, wherein the upper The center of the water spray pipe is located between the center of the water spray pipe of the upper jet group and the center of the water spray pipe of the upper jet group, and the angle formed by the upper nozzle and the aluminum strip is smaller than the angle formed by the nozzle of the first echelon and the aluminum strip , greater than the angle formed by the nozzle of the second echelon and the aluminum strip.
  • the main purpose of passing the upper nozzle is to push the aluminum strip forward.
  • the first air-cooling assembly includes a first air nozzle, a first duct and a first fan, wherein the lower end of the first air nozzle extends between the water spray unit of the first group and the inlet of the quick cooling chamber, and is located at the edge of the aluminum strip.
  • the wind blown by the first air nozzle intersects the aluminum strip, and can transmit the aluminum strip forward. In this way, under the interception and blowing of the first air nozzle, on the one hand, it is ensured that there is no water on the surface of the aluminum strip entering the fast cooling chamber, which further prevents the possibility of water backflow; on the other hand, the hot air generated by the water cooling is raised. , and then it is convenient for the exhaust device to discharge the gas out of the quick cooling chamber.
  • the second air cooling assembly is located at the outlet of the quick cooling chamber, and includes a second air nozzle, a third air nozzle, a second fan, and a second air blower connecting the second air nozzle and the third air nozzle.
  • a pipeline and a third pipeline wherein the second air nozzle is located above the aluminum strip, and the lower part of the second air nozzle is bent and inclined inward; the third air nozzle is located below the aluminum strip, and the air outlet end of the third air nozzle is located The front and rear of the air outlet end of the second air nozzle are staggered.
  • Another technical solution of the present invention is: a continuous solution heat treatment process for composite transmission type aluminum coils and strips, the process adopts the above-mentioned continuous solution heat treatment equipment for the composite aluminum strip coils with air cushions and rollers, and includes the following steps :
  • the unrolled aluminum strip enters the solution heat treatment furnace under the connection of the feeding and guiding device, and the hot air ejected from the upper and lower air boxes is operated by each air cushion generating unit of the air cushion generator.
  • the aluminum strip is suspended in the transmission channel of the aluminum strip or supported on the top surface of the transmission roller, and at the same time, the aluminum strip is subjected to solution heat treatment by hot air, and is sent out of the solution heat treatment furnace to the fast cooling chamber;
  • the present invention has the following advantages compared with the prior art:
  • the present invention can meet the solution heat treatment of aluminum strips with different thicknesses through the cooperation of the air cushion and the transmission roller, and at the same time, the layout formed by the upper and lower air blow boxes, combined with the distribution of the upper and lower air blow holes, and the shape of the upper and lower air blow boxes, ensure that the aluminum strips are In the transmission channel of the aluminum strip, the force is balanced and the heat is uniform, and no deformation occurs; the other is through the combination of air cooling and water cooling, which can ensure that water and hot gas will not escape into the heating area of the solution heat treatment furnace, and combined with the water spray unit
  • the dense distribution of the density, the angle of the nozzle, and the uniform force on the aluminum strip make the aluminum strip finish cooling and shaping quickly and flatly.
  • the surface of the aluminum strip is air-dried to ensure that no water stains remain.
  • FIG. 1 is a schematic front view of a solution heat treatment equipment of the present invention
  • Fig. 2 is the top view schematic diagram of Fig. 1;
  • FIG. 3 is a schematic front view of the solution heat treatment furnace in FIG. 1;
  • FIG. 4 is a schematic cross-sectional view (enlarged) of a certain air cushion generating unit in FIG. 3;
  • FIG. 5 is a schematic diagram (enlarged) of the distribution of the upper air blow holes of the present invention.
  • FIG. 6 is a schematic diagram (enlarged) of the distribution of the lower air blow holes of the present invention.
  • FIG. 7 is a schematic front view of the cooling system in FIG. 1;
  • Fig. 8 is the top schematic view of Fig. 7;
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
  • plurality means at least two, such as two, three, etc., unless otherwise expressly and specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit.
  • installed may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit.
  • the first feature "on” or “under” the second feature may be in direct contact between the first and second features, or the first and second features indirectly through an intermediary touch.
  • the first feature being “above”, “over” and “above” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature being “below”, “below” and “below” the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
  • the continuous solution heat treatment equipment for air cushion and roller composite aluminum strip coils in this embodiment includes a solution heat treatment furnace 1, an air cushion generator 2, a cooling system 3 and a transfer roll 4, Auxiliary lead system 5.
  • an air cushion generator 2 which includes a plurality of air cushion generating units Q that are sequentially distributed in the heating zone of the solution heat treatment furnace 1 and form an aluminum strip transmission channel, wherein each air cushion generating unit Q includes an upper spray bellows q1, a lower spray The bellows q2, the fan q3 and the air duct q4.
  • the cooling system 3 includes a quick cooling chamber 1 communicated with the solution heat treatment furnace 1, a water cooling device 2 , an air cooling device 3 , and an exhaust device 4 arranged in the quick cooling chamber 1 .
  • the multiple transmission rollers 4 are distributed in turn along the length of the aluminum strip transmission channel, and the top surfaces of the multiple transmission rollers 4 are flush to form a transmission surface, and the transmission surface is located at the air outlet end of the lower air box q2.
  • the upper part and the transmission surface are arranged parallel to the air outlet end surface.
  • the transfer roller 4 is a backup solution.
  • the solution heat treatment of the aluminum strip can be carried out by suspending the air cushion. Of course, once the aluminum strip is thick, it can be The solution heat treatment of aluminum strip is carried out by the combination of air cushion and transfer roller.
  • Auxiliary belt guiding system 5 includes a feeding belt guiding device 5 and a discharging belt guiding device 6, wherein the feeding belt guiding device 5 and the discharging belt guiding device 6 are in the conventional transfer mode of the receiving roller, that is to say, by the receiving and guiding The rotation of the roller ensures that the fast threading and guiding can be completed under any working conditions.
  • a plurality of upper blast boxes q1 are sequentially distributed in the heating zone and located above the aluminum strip transmission channel, and a plurality of lower blast boxes q2 are sequentially distributed in the heating zone and below the aluminum strip transmission channel.
  • each air cushion generating unit Q is staggered and spaced apart from each other, and are distributed at extreme values in a sine or cosine image.
  • each air cushion generating unit Q forms a cycle, and a plurality of air cushion generating units Q are correspondingly distributed in the upper blowing box q1 and the lower blowing box q2 according to the period.
  • the cavity formed by the upper blast box q1 is gradually reduced from one end to the other end, and the bottom surface is rectangular.
  • the upper air inlet holes are located at the larger end of the cavity and communicate with the air duct q4, and the upper air jet holes q10 are distributed on the bottom surface of the upper air jet box q1 in an array state.
  • the cross-section of the cavity is a right-angled trapezoid, with its hypotenuse facing upwards, the upper air jet holes q10 are distributed on the side where the hypotenuse corresponds to the right-angled side, and the upper air inlet is located on the side where the longer bottom side (right side in Figure 2) is located.
  • the shape of the upper blow box and the lower blow box are different, which is more conducive to the implementation of the air suspension of the aluminum strip, and also further ensures that the aluminum strip X passes through the aluminum strip transmission channel smoothly.
  • the upper air blow holes q10 are elongated holes, and are distributed at intervals along the length direction of the rectangle and are formed in multiple rows in the width direction of the rectangle. Through the arrangement of the elongated holes, it is convenient for the airflow to be blown out in a flat shape, and the smooth suspension of the aluminum strip is better achieved.
  • upper air blow holes q10 on the bottom surface of the upper air blow box q1 which are the first row, the second row and the third row respectively, wherein the upper air blow holes q10 on the first row and the third row are They are arranged in one-to-one alignment, and the upper air blow holes q10 of the first row or the third row and the upper air blow holes q10 of the second row are dislocated and distributed.
  • This unique layout can achieve uniform air volume.
  • the lower blower box q2 is in the shape of a cuboid, the lower air inlet hole is located at one end of the cuboid and communicated with the air duct q4, and the lower blower holes q20 are distributed on the top surface of the lower blower box q2 in an array state.
  • the lower air blow holes q20 are elongated holes, which are distributed at intervals along the length direction of the rectangle, and three rows are formed along the width direction of the rectangle. Through the arrangement of the elongated holes, it is convenient for the airflow to be blown out in a flat shape, and the smooth suspension of the aluminum strip is better achieved.
  • the three rows of lower air jet holes q20 are respectively the first row, the second row and the third row, wherein the lower air jet holes q20 on the first row and the third row are aligned one by one, and the first row or The lower air blow holes q20 of the third row and the lower air blow holes q20 of the second row are distributed in a phase-staggered manner.
  • This unique layout can achieve uniform air volume.
  • the air channel q4 includes an air inlet channel q40 and an air outlet channel q41, of which there are two groups of air outlet channels q41, which are the first air outlet channel q411 and the second air outlet channel q412, the first air outlet channel q411 and the upper air inlet hole.
  • the second air outlet channel q412 communicates with the lower air inlet hole.
  • the gas flow is controlled by means of shunting, so as to facilitate the control of the air suspension of the aluminum strip.
  • first air outlet channel q411 and the second air outlet channel q412 are located on opposite sides of the air inlet channel q40, and the upper air inlet holes are located above the corresponding ends of the lower air inlet holes.
  • the air cushion generating unit Q further includes an air intake guide sleeve q5 disposed above the heater J and located in the air intake passage q40, wherein the outlet of the intake air guide sleeve q5 is communicated with the air inlet of the fan q3.
  • the intake guide sleeve q5 Under the action of the intake guide sleeve q5, it is convenient for the fan to draw in the hot air with a large flow and then discharge it from the first air outlet channel and the second air outlet channel on both sides.
  • the inner cavity of the air intake guide sleeve q5 is gradually set smaller from the air inlet to the air outlet. This can have the best effect of convergence and orientation.
  • the sides of the cross-section of the air intake guide sleeve q5 form an arc-shaped transition from top to bottom, and an arc-shaped guide portion q50 that is arched downward is formed at the lower sleeve mouth, so that the formed airflow obstruction is small, which is convenient for hot air flow cycle to ensure uniformity of heat treatment.
  • the water cooling device 2 includes a plurality of water spray units 20 and water supply units 21 that are connected and distributed at intervals above and below the aluminum strip X. As shown in FIG. 7 , the water cooling device 2 includes a plurality of water spray units 20 and water supply units 21 that are connected and distributed at intervals above and below the aluminum strip X. As shown in FIG. 7 , the water cooling device 2 includes a plurality of water spray units 20 and water supply units 21 that are connected and distributed at intervals above and below the aluminum strip X. As shown in FIG.
  • the air-cooling device 3 includes a first air-cooling component 31 arranged at the inlet of the quick-cooling chamber 1 and preventing water or gas from entering the solution heat treatment furnace 1, and a first air-cooling component 31 arranged at the outlet of the quick-cooling chamber 1 and used for drying the upper and lower surfaces of the aluminum strip X.
  • the second air cooling assembly 32 is a first air-cooling component 31 arranged at the inlet of the quick-cooling chamber 1 and preventing water or gas from entering the solution heat treatment furnace 1, and a first air-cooling component 31 arranged at the outlet of the quick-cooling chamber 1 and used for drying the upper and lower surfaces of the aluminum strip X.
  • the exhaust device 4 includes an exhaust pipe 40 and an exhaust fan 41 communicated with the quick cooling chamber 1 .
  • each water spray unit 20 includes a water spray pipe 200 extending along the width direction of the aluminum strip X, and a plurality of nozzles 201 distributed on each water spray pipe 200 at intervals, wherein each water spray pipe 200
  • the water spray area formed by the plurality of nozzles 201 above covers the width direction of the aluminum strip X, the nozzles 201 are arranged to intersect with the aluminum strip X, and the water flow formed by the plurality of nozzles 201 can drive the aluminum strip X to transfer to the outlet of the quick cooling chamber 1 .
  • the plurality of water spray units 20 are divided into a first group A and a second group B, wherein the distribution density of the water spray units 20 of the first group A is greater than the distribution density of the water spray units 20 of the second group B, and the One group A is arranged near the inlet of the quick cooling chamber, and the second group B is arranged near the first group A.
  • the plurality of water spray units 20 constituting the first group A are divided into an upper layer spray flow group A1 and a lower layer spray flow group A2.
  • the water spray units 20 of the upper layer jet group A1 and the water spray units 20 of the lower layer jet group A2 are arranged in a one-to-one correspondence.
  • the plurality of water spray pipes 200 of the upper jet group A1 are evenly spaced, and the distance from the center of each water spray pipe 200 to the upper surface of the aluminum strip X is equal; the plurality of nozzles 201 of the upper jet group A1 are parallel to each other and alignment settings.
  • the multiple water spray pipes 200 of the lower jet group A2 are evenly spaced, and the distance from the center of each water spray pipe 200 to the lower surface of the aluminum strip X is equal; the nozzles 201 of the lower jet group A2 and the corresponding upper jet
  • the nozzles 201 of the group A1 are arranged to intersect, and the nozzles 201 of the plurality of lower jet groups A2 are arranged in parallel and aligned with each other. In this way, not only rapid heat dissipation and cooling can be carried out in the dense area, but also the smooth transmission of the aluminum strip can be assisted.
  • the distance from the center of the water spray pipe 200 of the upper jet group A1 to the upper surface of the aluminum strip X is the same as the distance from the center of the water spray pipe 200 of the lower jet group A2 to the lower surface of the aluminum strip X. In this way, while cooling is rapid, it can also ensure that the upper and lower surfaces of the aluminum strip are uniformly stressed and are not easily deformed.
  • the water cooling device 2 also includes an upper elbow 22 that is communicated with the upper water spray pipe 1 200a and is set in one-to-one correspondence with the nozzles 201 on the upper water spray pipe 1 200a, and an upper nozzle that is arranged on the water outlet end of each upper elbow 22. 23.
  • the lower elbow 24 that is communicated with the lower water spray pipe 1200b and is set in one-to-one correspondence with the nozzles 201 on the lower water spray pipe 1200b, and the lower nozzle 25 that is arranged at the water outlet end of each lower elbow 24, wherein the upper The spray head 23 and the lower spray head 25 are arranged close to the entrance of the quick cooling chamber 1, the distance between the bottom of the upper spray head 23 and the upper surface of the aluminum strip X is smaller than the distance between the bottom of the nozzle 201 and the upper surface of the aluminum strip X, and the distance between the upper spray head 23 and the aluminum strip X
  • the angle formed by the strip X is greater than the angle formed by the corresponding nozzle 201 and the aluminum strip X; the distance between the top of the lower nozzle 25 and the lower surface of the aluminum strip X is smaller than the distance between the top of the nozzle 201 corresponding to the top of the nozzle 201 and the lower surface of the aluminum strip X, And the angle formed by the lower nozzle 25 and the aluminum strip
  • the plurality of water spray units 20 constituting the second group B are divided into an upper spray flow group B1 and a lower spray flow group B2, wherein the distance between the spray pipes 200 of the upper spray flow group B1 and the lower spray flow group B2 is the upper spray flow
  • the distance between the spray pipes 200 of the group A1 and the lower jet group A2 is 2 to 5 times.
  • the nozzles 201 of the upper jet group B1 are divided into a first echelon b11 and a second echelon b12 along the conveying direction of the aluminum strip, wherein the distance between the bottom of the nozzles 201 of the first echelon b11 and the upper surface of the aluminum strip X is greater than that of the nozzles of the second echelon b12 The distance between the bottom of 201 and the top surface of aluminum strip X. This facilitates the cooling and shaping of the aluminum strip X under different forces.
  • the angle formed by the nozzles 201 of the first echelon b11 and the aluminum strip X is an obtuse angle, and the nozzles 201 of the second echelon b12 are arranged perpendicular to the aluminum strip X.
  • it is not only convenient to implement fast cooling, but also parallel transmission under positive pressure to ensure the flatness of the cooling and shaping of the aluminum strip.
  • the distances from the top of the nozzles 201 of the lower jet group B2 to the lower surface of the aluminum strip X are equal, and the angles formed by the nozzles 201 of the lower jet group B2 and the aluminum strip X are the same. In this way, the angle and strength can be matched with the upper jet group, so as to quickly implement water cooling.
  • the water cooling device 2 also includes an upper water spray pipe 26 arranged above the aluminum strip X and close to the upper spray flow group B1, and a plurality of upper nozzles 27 arranged side by side on the upper water spray pipe 26, wherein the center of the upper water spray pipe 26 is Located between the center of the water spray pipe 200 of the upper jet group B1 and the center of the water spray pipe 200 of the upper jet group A1, the angle formed by the upper nozzle 27 and the aluminum strip X is smaller than that of the nozzle 201 of the first echelon b11 and the aluminum strip.
  • the angle formed by X is greater than the angle formed by the nozzle 201 of the second echelon b12 and the aluminum strip X.
  • the main purpose of passing the upper nozzle is to push the aluminum strip forward.
  • these water spray units 20 distributed on the top and bottom of the aluminum strip are divided into three areas from the inlet of the quick cooling chamber 1 to the outlet of the quick cooling chamber 1.
  • the first area is the hard quenching area, which corresponds to the first group above.
  • the water spray unit 20 distributed above and below the aluminum strip is provided with a group of independent automatic control
  • the second area is the soft quenching area, which corresponds to the above-mentioned second group, this area is distributed in the water spray above and below the aluminum strip
  • the group unit also has a group of independent automatic control units.
  • the cooling water flow and pressure of these two groups of independent automatic control units are related to the material of the aluminum strip, the heat treatment temperature, and the conveying speed of the strip.
  • the aluminum heat can be controlled.
  • the purpose of heat treatment deformation; as for the third area is the cooling area, corresponding to the area between the upper nozzle 27 and the outlet of the quick cooling chamber 1, the water spray unit 20 distributed on the aluminum strip in this area is provided with a set of independent manual control units, also That is, cooling of the surface of the aluminum strip is accomplished by manually adjusting the flow rate and pressure of the upper nozzle 27 .
  • the first air cooling assembly 31 includes a first air nozzle 311, a first duct 312 and a first fan 313, wherein the lower end of the first air nozzle 311 extends into the water spray unit 20 of the first group A and the inlet of the quick cooling chamber 1 Between and above the aluminum strip X, the wind blown by the first air nozzle 311 is arranged to intersect with the aluminum strip X, and can transmit the aluminum strip X forward. In this way, under the interception and blowing of the first air nozzle, on the one hand, it is ensured that there is no water on the surface of the aluminum strip entering the fast cooling chamber, which further prevents the possibility of water backflow; on the other hand, the hot air generated by the water cooling is raised. , and then it is convenient for the exhaust device to discharge the gas out of the quick cooling chamber.
  • the second air cooling assembly 32 is located at the outlet of the quick cooling chamber 1 , and includes a second air nozzle 322 , a third air nozzle 323 , a second fan 324 , and connects the second fan 324 with the second air nozzle 322 and the third air nozzle 323
  • the second duct 325 and the third duct 326 communicate with each other, wherein the second tuyere 322 is located above the aluminum strip X, and the lower part of the second tuyere 322 is bent inward and inclined; the third tuyere 323 is located on the aluminum strip X. and the air outlet end of the third air nozzle 323 and the air outlet end of the second air nozzle 322 are staggered back and forth.
  • the continuous solution heat treatment process of the composite transmission type aluminum coil and strip in this embodiment includes the following steps:
  • the aluminum strip X is transferred from the solution heat treatment furnace 1 to the fast cooling chamber 1, and the exhaust fan 41 is turned on at this time, and the aluminum strip X enters between the upper jet stream group A1 and the lower jet stream group A2 of the first group A,
  • First spray water from the nozzle 201 to completely cover the width direction of the aluminum strip X with water cooling, and hold the aluminum strip X through the water flow formed up and down to transmit it to the upper and lower jet groups B1 and B2 of the second group B, and at the same time
  • the upper nozzle 23 and the lower nozzle 25 are sprayed close to each other, and combined with the purging coordination of the first air nozzle 311 to prevent water or gas from entering the solution heat treatment furnace 1 from the quick cooling chamber 1, and then enter the upper jet group
  • the aluminum strip X between B1 and the lower jet group B2 forms a long distance between the nozzles 201 of the first echelon b11 and the second echelon b12 corresponding to the upper jet group B1 and the
  • this embodiment has the following advantages:
  • the special layout of the blast box in the furnace combined with the specific distribution of blast holes on the box body, can form an air cushion for the continuous passing aluminum strip, and the effect of rapid and uniform heating of the air jet can ensure that the aluminum strip is balanced in the transmission channel of the aluminum strip. It is uniformly heated and will not be deformed, and it can also perform continuous solution heat treatment of the entire aluminum coil and strip;
  • the gas flow of the upper and lower blow boxes can be set according to the requirements, so as to meet the requirements of different thicknesses, especially suitable for the implementation of air suspension of aluminum strips with a thickness of less than 5mm;
  • the combination of air cooling and water cooling can ensure that water and hot gas will not enter the heating zone of the solution heat treatment furnace, and can greatly shorten the cooling time and achieve fast cooling;
  • the auxiliary belt guiding device can ensure that the fast threading and guiding can be completed under any working conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

一种气垫和辊子复合式铝带卷材的连续固溶热处理设备,该设备包括固溶热处理炉(①)、气垫发生器(②)、冷却系统(③)、传输辊(④)和辅助引带系统(⑤)。以及一种采用该设备的连续固溶热处理工艺。通过气垫和传输辊的配合,能够满足0.2-15mm厚度铝带的固溶热处理,同时通过上下喷风箱(q1,q2)形成的布局,结合上下喷风孔(q10,q20)的分布,以及上下喷风箱的造型,确保铝带在铝带传输通道中受力均衡和受热均匀,不会产生变形;另一方面通过风冷和水冷的组合,能够确保水和热气不会窜入固溶热处理炉的加热区,同时结合喷水单元(20)的密集程度分布、喷嘴的角度、以及对铝带所受到的作用力均匀,使得铝带快速且平整的完成冷却,此外,通过铝带表面的风干,确保不会残留水渍。

Description

气垫和辊子复合式铝带卷材的连续固溶热处理设备及工艺 技术领域
本发明属于铝带热处理技术领域,具体涉及一种气垫和辊子复合式铝带卷材的连续固溶热处理设备,同时还涉及一种复合传动型铝卷带材连续固溶热处理工艺。
背景技术
众所周知,铝卷带材是工业生产中应用极其广泛的一类有色金属,热处理过程是铝卷带材必经的一道处理程序,通常包括固溶处理、淬火处理以及时效处理。
而所谓的固溶处理:指将铝带加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中后快速冷却,以得到过饱和固溶体的热处理工艺。
目前,针对5mm以下厚度的铝带,为了确保铝带高品质且连续进行整卷的热处理,该固溶热处理炉内采用气浮动传输的较多,因此,所采用的气垫发生器主要包括上气箱和下气箱、以及风机,其中通过风机将热气流分别导向上气箱和下气箱,然后上气箱的底部向下吹气、自下气箱的顶部向上吹气,从而将铝带循环在加热区,并在两端引带装置的带动下,完成整卷铝带的连续热处理。
然而,在上述气浮动传输过程中,气箱分布的规律、气箱的形状、出风孔的布局,这些直接影响铝带悬浮时所受作用力,一旦出现不均匀,就会导致铝带发生拱或凹的变形,进而影响产品热处理的品质,同时一旦铝带厚度增加了,固溶热处理炉很难实施气悬浮了,这样一来,降低了固溶热处理炉的通用性。
与此同时,在快速冷却的过程中,最常用的是水冷,但是若单独采用水冷,会存在以下缺陷:
1)、水冷主要就是向铝带上下表面冲水,通过水将热量带走,然而在水冷过程中难免会有一些水或热气窜入固溶热处理炉的加热区,造成加热区内温度无法恒温,不仅影响铝带的热处理品质,而且还会降低炉膛的使用寿命;
2)、水冷过程中,水冷区域的控制以及喷头角度、喷头布局等等十分重要,一但受力不均,具有导致铝带的冷却变形;
3)、水冷过程中,难免会有水珠残留在铝带表面,因此,若不处理,会在铝带表面形成水渍,进而影响产品的品质。
发明内容
本发明所要解决的技术问题是克服现有技术的不足,提供一种改进的气垫和辊子复合式铝带卷材的连续固溶热处理设备。
同时本发明还涉及一种复合传动型铝卷带材连续固溶热处理工艺。
为解决以上技术问题,本发明采取如下技术方案:
一种气垫和辊子复合式铝带卷材的连续固溶热处理设备,其包括:
固溶热处理炉;
气垫发生器,其包括依次分布在所述固溶热处理炉的加热区且形成铝带传输通道的多个气垫发生单元,其中每个所述气垫发生单元包括上喷风箱、下喷风箱、风机以及风道,多个所述上喷风箱依次间隔分布在所述加热区且位于所述铝带传输通道的上方,多个所述下喷风箱依次间隔分布在所述加热区且位于所述铝带传输通道的下方,其中每个气垫发生单元的多个所述上喷风箱和多个所述下喷风箱相互错位间隔且呈正弦或余弦图像分布在极值位置;所述上喷风箱自一端部向另一端部所形成腔体逐步变小设置,且底面呈矩形,上进风孔为位于腔体空间较大的端部且与所述风道连通,上喷风孔呈阵列状态分布所述上喷风箱的底面上;所述的下喷风箱呈长方体状,下进风孔位于长方体的一端且与所述风道连通,下喷风孔呈阵列状态分布所述下喷风箱的顶面上;
冷却系统,其包括与固溶热处理炉相连通的快冷室、设置在所述快冷室内的水冷装置、以及排风装置,其中所述水冷装置包括多个相连通且间隔分布在铝带上下方的喷水单元、及水供应单元,每个所述喷水单元包括沿着铝带宽度方向延伸的喷水管、间隔分布在每根所述喷水管上的多个喷嘴,其中每根所述喷水管上的多个所述喷嘴所形成喷水区域将铝带宽度方向覆盖,所述喷嘴与所述铝带相交设置,且多个所述喷嘴所形成的水流能够驱使所述铝带向所述快冷室出口传输,多个所述喷水单元分成第一组和第二组,其中所述第一组的喷水单元所分布的密集度大于所述第二组的喷水单元所分布的密集度,且所述的第一组靠近所述快冷室入口设置,所述的第二组靠近所述第一组设置;所述冷却系统还包括风冷装置,所述风冷装置包括设置在所述快冷室入口且防止水或气体窜入所述固溶热处理炉的第一风冷组件和设置在所述快冷室出口且用于将铝带上下表面风干的第二风冷组件;
传输辊,其有多根,多根传输辊沿着铝带传输通道长度方向依次分布,且多根传输辊顶面齐平形成传输面,传输面位于下喷风箱出风端面的上方且传输面与出风端面平行设置;
辅助引带系统,其包括进料引带装置和出料引带装置。
优选地,上喷风孔为长形孔,且沿着矩形长度方向间隔分布且在矩形宽度方向形成有多排。通过长形孔的设置,便于气流呈扁平状集中吹出,更好的实现铝带平稳的悬浮。
根据本发明的一个具体实施和优选方面,多排上喷风孔,且分别为1.2.3…N列,其中奇数所在列上喷风孔一一对齐设置,偶数所在列上喷风孔一一对齐设置,奇数所在列上喷风孔和偶数所在列上喷风孔之间相错位分布。这样独特的布局,才能实现出风量的均匀。
优选地,下喷风孔为长形孔,且沿着长方形长度方向间隔分布且在长方形宽度方向形成有多排。通过长形孔的设置,便于气流呈扁平状集中吹出,更好的实现铝带平稳的悬浮。
根据本发明的又一个具体实施和优选方面,多排所述下喷风孔,且分别为1.2.3…N列,其中奇数所在列所述下喷风孔一一对齐设置,偶数所在列所述下喷风孔一一对齐设置,奇数所在列所述下喷风孔和所述偶数所在列所述下喷风孔之间相错位分布。这样独特的布局,才能实现出风量的均匀。
优选地,腔体的截面呈直角梯形,其斜边朝上,上喷风孔分布在斜边相对应直角边所在面上,上进风口位于较长底边所在面。使得上喷风箱和下喷风箱的形状不同,而且更有利于铝带气悬浮的实施,同时也进一步确保铝带平稳在铝带传输通道中穿过。
根据本发明的又一个具体实施和优选方面,风道包括进风通道和出风通道,其中出风通道有两组,且分别为第一出风通道和第二出风通道,第一出风通道与上进风孔连通,第二出风通道与下进风孔连通。通过分流的方式控制气体流量,从而便于铝带气悬浮的控制。
优选地,第一出风通道和第二出风通道位于进风通道的相对两侧,上进风孔位于下进风孔相对应端部的上方。合理布局,且合理利用空间,实现上喷风箱的下喷风箱气体的供应。
此外,气垫发生单元还包括设置在加热器上方且位于所述进风通道中的进气导流套,其中进气导流套的出口与风机的进风口相连通。在进气导流套的作用下,便于风机大流量的将热气抽入后自两侧第一出风通道和第二出风通道排出。
优选地,进气导流套内腔自进气口向出气口逐步变小设置,且在进气导流套的进气口边缘形成弧形导流部。这样能够起到汇聚和导向最佳的效果。
优选地,构成第一组的多个喷水单元分成上层喷流组和下层喷流组,其中上层喷流组的多个喷水管均匀间隔分布、且每根喷水管的中心至铝带上表面的距离相等,上层喷流组的多个喷嘴相互平行且对齐设置;下层喷流组的喷水单元与上层喷流组的喷水单元一一对应设置,其中下层喷流组的喷嘴与所对应的上层喷流组的喷嘴相交设置,且多个下层喷流组的喷嘴相互平行且对齐设置,下层喷流组的多个喷水管均匀间隔分布、且每根喷水管的中心至铝带下表面的距离相等,下层喷流组的多个喷嘴相互平行且对齐设置。这样一来,在密集区不仅能够快速的进行散热冷却,而且还能够辅助铝带平稳的传输。
进一步的,位于上层喷流组的喷水管的中心至铝带上表面的距离和位于下层喷流组的喷水管的中心至铝带下表面的距离相等。这样使得快速冷却的同时,还能够确保铝带上下表面受力均匀,不易发生变形。
根据本发明的一个具体实施和优选方面,靠近快冷室入口的上层喷流组的喷水管为上喷水管I,靠近快冷室入口的下层喷流组的喷水管为下喷水管I,水冷装置还包括与上喷水管I连通且与上喷水管I上的喷嘴一一对应设置的上弯管、设置在每根上弯管出水端部的上喷头、与下喷水管I连通且与下喷水管I上的喷嘴一一对应设置的下弯管、设置在每根下弯管出水端部的下喷头,其中上喷头和下喷头靠近快冷室入口设置,上喷头的底部距离铝带上表面的距离小于与之对应的喷嘴底部距离铝带上表面的距离,且上喷头与铝带形成的角度大 于与之对应的喷嘴与铝带形成的角度;下喷头的顶部距离铝带下表面的距离小于与之对应的喷嘴顶部距离铝带下表面的距离,且下喷头与铝带形成的角度大于与之对应的喷嘴与铝带形成的角度。在上下喷头所形成喷水角度更有利于水流和铝带表面贴合,进而大幅度的降低冷却水回流的可能性。
优选地,构成第二组的多个喷水单元分成上喷流组和下喷流组,其中上喷流组和下喷流组的喷水管之间的距离为上层喷流组和下层喷流组的喷水管之间的距离的2~5倍。通过距离改变,配合密集度的变化,能够最佳的实现铝带表面的水冷。
根据本发明的又一个具体实施和优选方面,上喷流组的喷嘴沿着铝带传输方向分成第一梯队和第二梯队,其中第一梯队的喷嘴的底部距离铝带上表面的距离大于第二梯队的喷嘴的底部距离铝带上表面的距离。这样便于铝带在不同作用力下进行冷却定型。
优选地,第一梯队的喷嘴与铝带形成的角度为钝角,第二梯队的喷嘴与铝带垂直设置。通过角度的变化,不仅便于实施快冷,而且在正压力下平行传输,以确保铝带冷却定型的平整度。
优选地,下喷流组的喷嘴顶部距离铝带下表面的距离相等,且下喷流组的喷嘴与铝带形成的角度相等。这样能够与上喷流组形成角度和力度的配合,进而快速实施水冷。
根据本发明的又一个具体实施和优选方面,水冷装置还包括设置在铝带上方且靠近上喷流组设置的上喷水管、并排设置在上喷水管上的多个上喷嘴,其中上喷水管的中心位于上喷流组的喷水管的中心和上层喷流组的喷水管的中心之间,上喷嘴与铝带形成的角度小于第一梯队的喷嘴与铝带形成的角度、大于第二梯队的所述喷嘴与所述铝带形成的角度。在此,通过上喷嘴主要目的就是向前推送铝带。
此外,第一风冷组件包括第一风嘴、第一管道和第一风机,其中第一风嘴下端部伸入第一组的喷水单元与快冷室入口之间,且位于铝带的上方,第一风嘴所吹出的风与铝带相交设置,并能够将铝带向前传输。这样一来,在第一风嘴的拦截和吹动下,一方面确保进入快冷室段铝带表面不会有水,这样进一步防止水回流的可能;另一方面将水冷所产生的热气上扬,进而便于排风装置将气体排出快冷室。
优选地,第二风冷组件位于快冷室的出口,且包括第二风嘴、第三风嘴、第二风机以及将第二风机与第二风嘴和第三风嘴相连通的第二管道和第三管道,其中第二风嘴位于铝带的上方,且第二风嘴的下部向内弯折倾斜设置;第三风嘴位于铝带的下方,且第三风嘴的出风端部和第二风嘴出风端部前后错开。
本发明的另一技术方案是:一种复合传动型铝卷带材连续固溶热处理工艺,该工艺采用了上述的气垫和辊子复合式铝带卷材的连续固溶热处理设备,且包括如下步骤:
1)、退卷的铝带在进料引带装置的接引下,进入固溶热处理炉,由气垫发生器的每个气垫发生单元的工作,上喷风箱和下喷风箱所喷出的热风将铝带悬浮在铝带传输通道或者支撑在传输辊的顶面,同时有热风对铝带进行固溶热处理,并传出固溶热处理炉至快冷室;
2)、进入快冷室的铝带,依次经过多个喷水单元构成的第一组和第二组,并且在第一风冷组件的吹风下,阻挡水或气回窜至固溶热处理炉,同时由排风装置将冷却所产生的气体抽出快冷室,此时,铝带经过水冷和第一风冷组件的风冷下,向快冷室出口传输,同时由所述快冷室出口处的第二风冷组件将铝带上下表面风干,并传出快冷室,完成铝带的快速冷却;
3)、在上述步骤1)和步骤2)的连续热处理和快速冷却下,即可完成整卷铝卷带材的连续固溶热处理。
由于以上技术方案的实施,本发明与现有技术相比具有如下优点:
本发明一方面通过气垫和传输辊的配合,能够满足不同厚度铝带的固溶热处理,同时通过上下喷风箱形成的布局,结合上下喷风孔的分布,以及上下喷风箱的造型,确保铝带在铝带传输通道中受力均衡和受热均匀,不会产生变形;另一通过风冷和水冷的组合,能够确保水和热气不会窜入固溶热处理炉的加热区,同时结合喷水单元的密集程度分布、喷嘴的角度、以及对铝带所受到的作用力均匀,使得铝带快速且平整的完成冷却定型,此外,通过铝带表面的风干,确保不会残留水渍。
附图说明
下面结合附图和具体的实施例,对本发明做进一步详细的说明:
图1为本发明的固溶热处理设备的主视图示意图;
图2为图1的俯视示意图;
图3为图1中固溶热处理炉的主视示意图;
图4为图3中某一个气垫发生单元的截面示意图(放大);
图5为本发明的上喷风孔的分布示意图(放大);
图6为本发明的下喷风孔的分布示意图(放大);
图7为图1中冷却系统的主视示意图;
图8为图7的俯视示意图;
其中:①、固溶热处理炉;②、气垫发生器;Q、气垫发生单元;q1、上喷风箱;q10、上喷风孔;q2、下喷风箱;q20、下喷风孔;q3、风机;q4、风道;q40、进风通道;q41、出风通道;q411、第一出风通道;q412、第二出风通道;q5、进气导流套;q50、弧形导流部;③、冷却系统;1、快冷室;2、水冷装置;20、喷水单元;200、喷水管;201、喷嘴;A、第一组;A1、上层喷流组;A2、下层喷流组;200a、上喷水管I;200b、下喷水管I;22、上弯管;23、上喷头;24、下弯管;25、下喷头;B、第二组;B1、上喷流组;B2、下喷流组;21、水供应单元;b11、第一梯队;b12、第二梯队;26、上喷水管;27、上喷嘴;3、风冷装置;31、第一风冷组件;311、第一风嘴;312、第一管道;323、第一风机;32、第二风冷组件;322、第二风嘴;323、第三风嘴;324、 第二风机;325、第二管道;326、第三管道;4、排风装置;40、排风管路;41、排风风机;④、传输辊;⑤、辅助引带系统;5、进料引带装置;6、出料引带装置;J、加热器;X、铝带。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图与具体实施方式对本发明做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在实用新型中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
如图1和图2所示,本实施例的气垫和辊子复合式铝带卷材的连续固溶热处理设备,其包括固溶热处理炉 ①、气垫发生器②、冷却系统③和传输辊④、辅助引带系统⑤。
具体的,气垫发生器②,其包括依次分布在固溶热处理炉①的加热区且形成铝带传输通道的多个气垫发生单元Q,其中每个气垫发生单元Q包括上喷风箱q1、下喷风箱q2、风机q3以及风道q4。
冷却系统③,其包括与固溶热处理炉①相连通的快冷室1、设置在快冷室1内的水冷装置2、风冷装置3、及排风装置4。
传输辊④,其有多根,多根传输辊④沿着铝带传输通道长度方向依次分布,且多根传输辊④顶面齐平形成传输面,传输面位于下喷风箱q2出风端面的上方且传输面与出风端面平行设置。在此,传输辊④是属于备用方案,一旦5mm以下厚度的铝带,就需要使用传输辊④了,由气垫悬浮即可实施铝带的固溶热处理,当然,一旦铝带较厚,就可以采用气垫和传输辊组合的方式进行铝带的固溶热处理。
辅助引带系统⑤包括进料引带装置5和出料引带装置6,其中进料引带装置5和出料引带装置6为常规的接引辊传输模式,也就是说,由接引辊的转动,保证任何工况,均能完成快速穿、引带。
结合图3所示,多个上喷风箱q1依次间隔分布在加热区且位于铝带传输通道的上方,多个下喷风箱q2依次间隔分布在加热区且位于铝带传输通道的下方。
本例中,每个气垫发生单元Q的多个上喷风箱q1和多个下喷风箱q2相互错位间隔且呈正弦或余弦图像分布在极值位置。这样一来,每个气垫发生单元Q形成一个周期,多个气垫发生单元Q按周期对应分布上喷风箱q1和下喷风箱q2。
结合图4和图5所示,上喷风箱q1自一端部向另一端部所形成腔体逐步变小设置,且底面呈矩形。
上进风孔为位于腔体空间较大的端部且与风道q4连通,上喷风孔q10呈阵列状态分布上喷风箱q1的底面上。
腔体的截面呈直角梯形,其斜边朝上,上喷风孔q10分布在斜边相对应直角边所在面上,上进风口位于较长底边(图2中的右侧)所在面。使得上喷风箱和下喷风箱的形状不同,而且更有利于铝带气悬浮的实施,同时也进一步确保铝带X平稳在铝带传输通道中穿过。
上喷风孔q10为长形孔,且沿着矩形长度方向间隔分布且在矩形宽度方向形成有多排。通过长形孔的设置,便于气流呈扁平状集中吹出,更好的实现铝带平稳的悬浮。
本例中,上喷风箱q1的底面上设有三排上喷风孔q10,且分别为第一排、第二排和第三排,其中第一排和第三排上的上喷风孔q10一一对齐设置,且第一排或第三排的上喷风孔q10与第二排的上喷风孔q10之间相错位分布。这样独特的布局,才能实现出风量的均匀。
下喷风箱q2呈长方体状,下进风孔位于长方体的一端且与风道q4连通,下喷风孔q20呈阵列状态分布下 喷风箱q2的顶面上。
结合图6所示,下喷风孔q20为长形孔,且沿着长方形长度方向间隔分布且在长方形宽度方向形成有三排。通过长形孔的设置,便于气流呈扁平状集中吹出,更好的实现铝带平稳的悬浮。
本例中,三排下喷风孔q20分别为第一排、第二排和第三排,其中第一排和第三排上的下喷风孔q20一一对齐设置,且第一排或第三排的下喷风孔q20与第二排的下喷风孔q20之间相错位分布。这样独特的布局,才能实现出风量的均匀。
风道q4包括进风通道q40和出风通道q41,其中出风通道q41有两组,且分别为第一出风通道q411和第二出风通道q412,第一出风通道q411与上进风孔连通,第二出风通道q412与下进风孔连通。通过分流的方式控制气体流量,从而便于铝带气悬浮的控制。
具体的,第一出风通道q411和第二出风通道q412位于进风通道q40的相对两侧,上进风孔位于下进风孔相对应端部的上方。合理布局,且合理利用空间,实现上喷风箱的下喷风箱气体的供应。
此外,气垫发生单元Q还包括设置在加热器J上方且位于进风通道q40中的进气导流套q5,其中进气导流套q5的出口与风机q3的进风口相连通。在进气导流套q5的作用下,便于风机大流量的将热气抽入后自两侧第一出风通道和第二出风通道排出。
具体的,进气导流套q5内腔自进气口向出气口逐步变小设置。这样能够起到汇聚和导向最佳的效果。
同时,进气导流套q5的截面的侧边自上而下呈弧形过渡,且在下套口形成向下拱起的弧形导流部q50,这样所形成的气流阻碍小,便于热气流的循环,以确保热处理的均匀性。
结合图7所示,水冷装置2包括多个相连通且间隔分布在铝带X上下方的喷水单元20、及水供应单元21。
风冷装置3包括设置在快冷室1入口且防止水或气体窜入固溶热处理炉①的第一风冷组件31和设置在快冷室1出口且用于将铝带X上下表面风干的第二风冷组件32。
排风装置4包括与快冷室1相连通的排风管路40和排风风机41。
结合图8所示,每个喷水单元20包括沿着铝带X宽度方向延伸的喷水管200、间隔分布在每根喷水管200上的多个喷嘴201,其中每根喷水管200上的多个喷嘴201所形成喷水区域将铝带X宽度方向覆盖,喷嘴201与铝带X相交设置,且多个喷嘴201所形成的水流能够驱使铝带X向快冷室1出口传输。
多个喷水单元20分成第一组A和第二组B,其中第一组A的喷水单元20所分布的密集度大于第二组B的喷水单元20所分布的密集度,且第一组A靠近快冷室入口设置,第二组B靠近第一组A设置。
构成第一组A的多个喷水单元20分成上层喷流组A1和下层喷流组A2。
上层喷流组A1的喷水单元20和下层喷流组A2的喷水单元20一一对应设置。
具体的,上层喷流组A1的多个喷水管200均匀间隔分布、且每根喷水管200的中心至铝带X上表面的距离相等;上层喷流组A1的多个喷嘴201相互平行且对齐设置。
下层喷流组A2的多个喷水管200均匀间隔分布、且每根喷水管200的中心至铝带X下表面的距离相等;下层喷流组A2的喷嘴201与所对应的上层喷流组A1的喷嘴201相交设置,且多个下层喷流组A2的喷嘴201相互平行且对齐设置。这样一来,在密集区不仅能够快速的进行散热冷却,而且还能够辅助铝带平稳的传输。
上层喷流组A1的喷水管200的中心至铝带X上表面的距离和位于下层喷流组A2的喷水管200的中心至铝带X下表面的距离相等。这样使得快速冷却的同时,还能够确保铝带上下表面受力均匀,不易发生变形。
同时,靠近快冷室1入口的上层喷流组A1的喷水管200为上喷水管I 200a,靠近快冷室1入口的下层喷流组A2的喷水管200为下喷水管I 200b,水冷装置2还包括与上喷水管I 200a连通且与上喷水管I 200a上的喷嘴201一一对应设置的上弯管22、设置在每根上弯管22出水端部的上喷头23、与下喷水管I 200b连通且与下喷水管I 200b上的喷嘴201一一对应设置的下弯管24、设置在每根下弯管24出水端部的下喷头25,其中上喷头23和下喷头25靠近快冷室1入口设置,上喷头23的底部距离铝带X上表面的距离小于与之对应的喷嘴201底部距离铝带X上表面的距离,且上喷头23与铝带X形成的角度大于与之对应的喷嘴201与铝带X形成的角度;下喷头25的顶部距离铝带X下表面的距离小于与之对应的喷嘴201顶部距离铝带X下表面的距离,且下喷头25与铝带X形成的角度大于与之对应的喷嘴201与铝带X形成的角度。在上下喷头所形成喷水角度更有利于水流和铝带表面贴合,进而大幅度的降低冷却水回流的可能性。
构成第二组B的多个喷水单元20分成上喷流组B1和下喷流组B2,其中上喷流组B1和下喷流组B2的喷水管200之间的距离为上层喷流组A1和下层喷流组A2的喷水管200之间的距离的2~5倍。通过距离改变,配合密集度的变化,能够最佳的实现铝带表面的水冷。
上喷流组B1的喷嘴201沿着铝带传输方向分成第一梯队b11和第二梯队b12,其中第一梯队b11的喷嘴201的底部距离铝带X上表面的距离大于第二梯队b12的喷嘴201的底部距离铝带X上表面的距离。这样便于铝带X在不同作用力下进行冷却定型。
第一梯队b11的喷嘴201与铝带X形成的角度为钝角,第二梯队b12的喷嘴201与铝带X垂直设置。通过角度的变化,不仅便于实施快冷,而且在正压力下平行传输,以确保铝带冷却定型的平整度。
下喷流组B2的喷嘴201顶部距离铝带X下表面的距离相等,且下喷流组B2的喷嘴201与铝带X形成的角度相等。这样能够与上喷流组形成角度和力度的配合,进而快速实施水冷。
水冷装置2还包括设置在铝带X上方且靠近上喷流组B1设置的上喷水管26、并排设置在上喷水管26上的多个上喷嘴27,其中上喷水管26的中心位于上喷流组B1的喷水管200的中心和上层喷流组A1的喷水管200的中心之间,上喷嘴27与铝带X形成的角度小于第一梯队b11的喷嘴201与铝带X形成的角度、大于第二梯队 b12的喷嘴201与铝带X形成的角度。在此,通过上喷嘴主要目的就是向前推送铝带。
同时,这些分布在铝带上下方的喷水单元20,从快冷室1入口至快冷室1出口方向,被分成三个区域,第一个区域为硬淬火区域,与上述第一组对应,该区域分布在铝带上面和下面的喷水单元20设置一组独立自动控制,第二个区域为软淬火区域,与上述第二组对应,该区域分布在铝带上面和下面的喷水组单元也设一组独立自动控制单元,这两组独立自动控制单元的冷却水流量、压力与铝带的材料、热处理温度、带材的传送速度相关联,通过控制系统,可以达到控制铝热热处理变形量的目的;至于第三个区域为冷却区域,与上喷嘴27至快冷室1出口之间对应,该区域分布在铝带上面的喷水单元20设一组独立手动控制单元,也就是说,通过手动调节上喷嘴27的流量和压力,完成铝带表面的冷却。
此外,第一风冷组件31包括第一风嘴311、第一管道312和第一风机313,其中第一风嘴311下端部伸入第一组A的喷水单元20与快冷室1入口之间,且位于铝带X的上方,第一风嘴311所吹出的风与铝带X相交设置,并能够将铝带X向前传输。这样一来,在第一风嘴的拦截和吹动下,一方面确保进入快冷室段铝带表面不会有水,这样进一步防止水回流的可能;另一方面将水冷所产生的热气上扬,进而便于排风装置将气体排出快冷室。
第二风冷组件32位于快冷室1的出口,且包括第二风嘴322、第三风嘴323、第二风机324以及将第二风机324与第二风嘴322和第三风嘴323相连通的第二管道325和第三管道326,其中第二风嘴322位于铝带X的上方,且第二风嘴322的下部向内弯折倾斜设置;第三风嘴323位于铝带X的下方,且第三风嘴323的出风端部和第二风嘴322出风端部前后错开。
综上,本实施例的复合传动型铝卷带材连续固溶热处理工艺,包括如下步骤:
1)、退卷的铝带X在进料引带装置的接引下,进入固溶热处理炉①,同时由气垫发生器②的每个气垫发生单元Q的工作,上喷风箱q1和下喷风箱q2所喷出的热风将铝带X悬浮在铝带传输通道中,同时有热风对铝带X进行固溶热处理,最后在出料引带装置的接引下,传出固溶热处理炉①;
2)、铝带X自固溶热处理炉①传输至快冷室1,此时排风风机41开启,铝带X进入第一组A的上层喷流组A1和下层喷流组A2之间,先由喷嘴201进行喷水将铝带X宽度方向全面覆盖式水冷,并通过上下形成的水流夹持着铝带X向第二组B的上喷流组B1和下喷流组B2传输,同时在上喷头23和下喷头25贴近式喷水下,并结合第一风嘴311的吹扫配合,防止水或气体自快冷室1窜入固溶热处理炉①,然后,进入上喷流组B1和下喷流组B2之间的铝带X在对应上喷流组B1的第一梯队b11和第二梯队b12的喷嘴201和角度一致的下喷流组B2的喷嘴201所形成远距离的喷水冷却下,确保铝带X平稳进行冷却定型,同时在上喷嘴27喷水的推送下向快冷室1的出口传输,当铝带X移动至快冷室1出口处,此时由上下设置的第二风嘴322和第三风嘴323对铝带X上下表面进行吹扫,确保铝带X表面无残留水珠,排风风机41将冷却所产生的热气自快冷室1抽出,最后传出 快冷室,完成铝带X的快速冷却;
3)、在上述步骤1)和步骤2)的连续热处理和快速冷却下,即可完成整卷铝卷带材的连续固溶热处理。
综上,本实施例具有以下优势:
1、通过气垫和传输辊(采用的是石墨辊)的配合,能够满足0.2-15mm不同厚度成圈铝带的连续固溶热处理,当5mm以下厚度铝带,可以被完全的气浮,不会产生擦伤;大于5mm厚度的铝带,由气垫、结合炉内的石墨辊子复合传送,石墨辊子不会对铝带表面产生擦伤;
2、炉内特殊布局的喷风箱,结合箱体上特定分布局喷风孔,可以对连续通过的铝带形成气垫、及喷气快速均匀加热效果,确保铝带在铝带传输通道中受力均衡和受热均匀,不会产生变形,而且也能够实施整个铝卷带材的连续固溶热处理;
3、通过出风通道的分流,使得上下喷风箱的气体流量可以根据要求进行设定,从而满足不同厚度,尤其适合5mm以下厚度铝带气悬浮的实施;
4、风冷和水冷的组合,能够确保水和热气不会窜入固溶热处理炉的加热区,而且能够大幅度缩短冷却时间,实现快冷;
5、结合喷水单元的密集程度分布、喷嘴和喷头的角度、喷嘴和喷头至铝带表面的距离、以及对铝带所受到的作用力均匀,使得铝带一边传输,一边冷却定型,进而大幅度冷却变形的概率;
6、通过快冷室第二风嘴和第三风嘴的设置,不仅能够对铝带的上下表面进行风冷,而且还能够将铝带表面干燥,不会残留水珠,形成水渍;
7、辅助引带装置,保证任何工况,均能完成快速穿、引带。
以上对本发明做了详尽的描述,其目的在于让熟悉此领域技术的人士能够了解本发明的内容并加以实施,并不能以此限制本发明的保护范围,凡根据本发明的精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围内。

Claims (18)

  1. 一种气垫和辊子复合式铝带卷材的连续固溶热处理设备,其包括:固溶热处理炉;气垫发生器,其包括依次分布在所述固溶热处理炉的加热区且形成铝带传输通道的多个气垫发生单元,其中每个所述气垫发生单元包括上喷风箱、下喷风箱、风机以及风道;冷却系统,其包括与固溶热处理炉相连通的快冷室、设置在所述快冷室内的水冷装置、以及排风装置,其中所述水冷装置包括多个相连通且间隔分布在铝带上下方的喷水单元、及水供应单元;辅助引带系统,其包括进料引带装置和出料引带装置,其特征在于:
    多个所述上喷风箱依次间隔分布在所述加热区且位于所述铝带传输通道的上方,多个所述下喷风箱依次间隔分布在所述加热区且位于所述铝带传输通道的下方,其中每个气垫发生单元的多个所述上喷风箱和多个所述下喷风箱相互错位间隔且呈正弦或余弦图像分布在极值位置;所述上喷风箱自一端部向另一端部所形成腔体逐步变小设置,且底面呈矩形,上进风孔为位于腔体空间较大的端部且与所述风道连通,上喷风孔呈阵列状态分布所述上喷风箱的底面上;所述的下喷风箱呈长方体状,下进风孔位于长方体的一端且与所述风道连通,下喷风孔呈阵列状态分布所述下喷风箱的顶面上;
    每个所述喷水单元包括沿着铝带宽度方向延伸的喷水管、间隔分布在每根所述喷水管上的多个喷嘴,其中每根所述喷水管上的多个所述喷嘴所形成喷水区域将铝带宽度方向覆盖,所述喷嘴与所述铝带相交设置,且多个所述喷嘴所形成的水流能够驱使所述铝带向所述快冷室出口传输,多个所述喷水单元分成第一组和第二组,其中所述第一组的喷水单元所分布的密集度大于所述第二组的喷水单元所分布的密集度,且所述的第一组靠近所述快冷室入口设置,所述的第二组靠近所述第一组设置;所述冷却系统还包括风冷装置,所述风冷装置包括设置在所述快冷室入口且防止水或气体窜入所述固溶热处理炉的第一风冷组件和设置在所述快冷室出口且用于将铝带上下表面风干的第二风冷组件;
    所述的热处理设备还包括沿着所述铝带传输通道长度方向依次分布的多根传输辊,其中多根所述传输辊顶面齐平形成传输面,所述传输面位于所述下喷风箱出风端面的上方且所述传输面与所述出风端面平行设置。
  2. 根据权利要求1所述的气垫和辊子复合式铝带卷材的连续固溶热处理设备,其特征在于:所述上喷风孔和所述的下喷风孔形状相同,分布也相同,其中所述上喷风孔为长形孔,且沿着矩形长度方向间隔分布且在矩形宽度方向形成有多排,多排所述上喷风孔,且分别为1.2.3…N列,其中奇数所在列所述上喷风孔一一对齐设置,偶数所在列所述上喷风孔一一对齐设置,奇数所在列所述上喷风孔和所述偶数所在列所述上喷风孔之间相错位分布。
  3. 根据权利要求1所述的气垫和辊子复合式铝带卷材的连续固溶热处理设备,其特征在于:所述腔体的截面呈直角梯形,其斜边朝上,所述上喷风孔分布在斜边相对应直角边所在面上,所述上进风口位于较长底边所在面。
  4. 根据权利要求1所述的气垫和辊子复合式铝带卷材的连续固溶热处理设备,其特征在于:所述风道包括 进风通道和出风通道,其中所述出风通道有两组,且分别为第一出风通道和第二出风通道,所述第一出风通道与所述上进风孔连通,所述第二出风通道与所述下进风孔连通。
  5. 根据权利要求4所述的气垫和辊子复合式铝带卷材的连续固溶热处理设备,其特征在于:所述的第一出风通道和所述第二出风通道位于所述进风通道的相对两侧,所述上进风孔位于所述下进风孔相对应端部的上方。
  6. 根据权利要求4所述的气垫和辊子复合式铝带卷材的连续固溶热处理设备,其特征在于:所述的气垫发生单元还包括设置在加热器上方且位于所述进风通道中的进气导流套,其中所述进气导流套的出口与所述风机的进风口相连通。
  7. 根据权利要求6所述的气垫和辊子复合式铝带卷材的连续固溶热处理设备,其特征在于:所述的进气导流套内腔自进气口向出气口逐步变小设置,且在所述进气导流套的进气口边缘形成弧形导流部。
  8. 根据权利要求1所述的气垫和辊子复合式铝带卷材的连续固溶热处理设备,其特征在于:构成所述第一组的多个喷水单元分成上层喷流组和下层喷流组,其中所述上层喷流组的多个所述喷水管均匀间隔分布、且每根所述喷水管的中心至所述铝带上表面的距离相等,所述上层喷流组的多个所述喷嘴相互平行且对齐设置;所述下层喷流组的喷水单元与所述上层喷流组的喷水单元一一对应设置,其中所述下层喷流组的喷嘴与所对应的所述上层喷流组的喷嘴相交设置,且多个所述下层喷流组的喷嘴相互平行且对齐设置,所述下层喷流组的多个所述喷水管均匀间隔分布、且每根所述喷水管的中心至所述铝带下表面的距离相等,所述下层喷流组的多个所述喷嘴相互平行且对齐设置。
  9. 根据权利要求8所述的气垫和辊子复合式铝带卷材的连续固溶热处理设备,其特征在于:位于所述上层喷流组的所述喷水管的中心至所述铝带上表面的距离和位于所述下层喷流组的所述喷水管的中心至所述铝带下表面的距离相等。
  10. 根据权利要求8所述的气垫和辊子复合式铝带卷材的连续固溶热处理设备,其特征在于:靠近所述快冷室入口的所述上层喷流组的所述喷水管为上喷水管I,靠近所述快冷室入口的所述下层喷流组的所述喷水管为下喷水管I,所述的水冷装置还包括与所述上喷水管I连通且与所述上喷水管I上的所述喷嘴一一对应设置的上弯管、设置在每根所述上弯管出水端部的上喷头、与所述下喷水管I连通且与所述下喷水管I上的所述喷嘴一一对应设置的下弯管、设置在每根所述下弯管出水端部的下喷头,其中上喷头和下喷头靠近所述快冷室入口设置,所述上喷头的底部距离所述铝带上表面的距离小于与之对应的所述喷嘴底部距离所述铝带上表面的距离,且所述上喷头与所述铝带形成的角度大于与之对应的所述喷嘴与所述铝带形成的角度;所述的下喷头的顶部距离所述铝带下表面的距离小于与之对应的所述喷嘴顶部距离所述铝带下表面的距离,且所述下喷头与所述铝带形成的角度大于与之对应的所述喷嘴与所述铝带形成的角度。
  11. 根据权利要求8所述的气垫和辊子复合式铝带卷材的连续固溶热处理设备,其特征在于:构成所述第二 组的多个喷水单元分成上喷流组和下喷流组,其中所述的上喷流组和所述下喷流组的喷水管之间的距离为所述上层喷流组和所述下层喷流组的喷水管之间的距离的2~5倍。
  12. 根据权利要求11所述的气垫和辊子复合式铝带卷材的连续固溶热处理设备,其特征在于:所述上喷流组的所述喷嘴沿着铝带传输方向分成第一梯队和第二梯队,其中第一梯队的所述喷嘴的底部距离铝带上表面的距离大于第二梯队的所述喷嘴的底部距离铝带上表面的距离;第一梯队的所述喷嘴与所述铝带形成的角度为钝角,第二梯队的所述喷嘴与铝带垂直设置。
  13. 根据权利要求12所述的气垫和辊子复合式铝带卷材的连续固溶热处理设备,其特征在于:所述下喷流组的所述喷嘴顶部距离所述铝带下表面的距离相等,且所述下喷流组的喷嘴与所述铝带形成的角度相等。
  14. 根据权利要求12所述的气垫和辊子复合式铝带卷材的连续固溶热处理设备,其特征在于:所述水冷装置还包括设置在铝带上方且靠近所述上喷流组设置的上喷水管、并排设置在所述上喷水管上的多个上喷嘴,其中所述上喷水管的中心位于所述上喷流组的喷水管的中心和所述上层喷流组的喷水管的中心之间,所述的上喷嘴与所述铝带形成的角度小于第一梯队的所述喷嘴与所述铝带形成的角度、大于第二梯队的所述喷嘴与所述铝带形成的角度。
  15. 根据权利要求1所述的气垫和辊子复合式铝带卷材的连续固溶热处理设备,其特征在于:所述第一风冷组件包括第一风嘴、第一管道和第一风机,其中所述第一风嘴下端部伸入第一组的喷水单元与所述快冷室入口之间,且位于铝带的上方,所述第一风嘴所吹出的风与铝带相交设置,并能够将铝带向前传输。
  16. 根据权利要求1所述的气垫和辊子复合式铝带卷材的连续固溶热处理设备,其特征在于:所述第二风冷组件位于所述快冷室的出口,且包括第二风嘴、第三风嘴、第二风机以及将所述第二风机与所述第二风嘴和第三风嘴相连通的第二管道和第三管道,其中所述第二风嘴位于所述铝带的上方,且所述第二风嘴的下部向内弯折倾斜设置;所述第三风嘴位于所述铝带的下方,且所述第三风嘴的出风端部和所述第二风嘴出风端部前后错开。
  17. 一种气垫和辊子复合式铝带卷材的连续固溶热处理设备,其包括:固溶热处理炉;气垫发生器,其包括依次分布在所述固溶热处理炉的加热区且形成铝带传输通道的多个气垫发生单元,其中每个所述气垫发生单元包括上喷风箱、下喷风箱、风机以及风道;冷却系统,其包括与固溶热处理炉相连通的快冷室、设置在所述快冷室内的水冷装置、以及排风装置,其中所述水冷装置包括多个相连通且间隔分布在铝带上下方的喷水单元、及水供应单元;辅助引带系统,其包括进料引带装置和出料引带装置,其特征在于:
    多个所述上喷风箱依次间隔分布在所述加热区且位于所述铝带传输通道的上方,多个所述下喷风箱依次间隔分布在所述加热区且位于所述铝带传输通道的下方,其中每个气垫发生单元的多个所述上喷风箱和多个所述下喷风箱相互错位间隔且呈正弦或余弦图像分布在极值位置;所述上喷风箱自一端部向另一端部所形成腔体逐步 变小设置,且底面呈矩形,上进风孔为位于腔体空间较大的端部且与所述风道连通,上喷风孔呈阵列状态分布所述上喷风箱的底面上;所述的下喷风箱呈长方体状,下进风孔位于长方体的一端且与所述风道连通,下喷风孔呈阵列状态分布所述下喷风箱的顶面上;所述上喷风孔和所述的下喷风孔形状相同,分布也相同,其中所述上喷风孔为长形孔,且沿着矩形长度方向间隔分布且在矩形宽度方向形成有多排,多排所述上喷风孔,且分别为1.2.3…N列,其中奇数所在列所述上喷风孔一一对齐设置,偶数所在列所述上喷风孔一一对齐设置,奇数所在列所述上喷风孔和所述偶数所在列所述上喷风孔之间相错位分布;所述腔体的截面呈直角梯形,其斜边朝上,所述上喷风孔分布在斜边相对应直角边所在面上,所述上进风口位于较长底边所在面;所述风道包括进风通道和出风通道,其中所述出风通道有两组,且分别为第一出风通道和第二出风通道,所述第一出风通道与所述上进风孔连通,所述第二出风通道与所述下进风孔连通;所述的第一出风通道和所述第二出风通道位于所述进风通道的相对两侧,所述上进风孔位于所述下进风孔相对应端部的上方;所述的气垫发生单元还包括设置在加热器上方且位于所述进风通道中的进气导流套,其中所述进气导流套的出口与所述风机的进风口相连通;所述的进气导流套内腔自进气口向出气口逐步变小设置,且在所述进气导流套的进气口边缘形成弧形导流部;每个所述喷水单元包括沿着铝带宽度方向延伸的喷水管、间隔分布在每根所述喷水管上的多个喷嘴,其中每根所述喷水管上的多个所述喷嘴所形成喷水区域将铝带宽度方向覆盖,所述喷嘴与所述铝带相交设置,且多个所述喷嘴所形成的水流能够驱使所述铝带向所述快冷室出口传输,多个所述喷水单元分成第一组和第二组,其中所述第一组的喷水单元所分布的密集度大于所述第二组的喷水单元所分布的密集度,且所述的第一组靠近所述快冷室入口设置,所述的第二组靠近所述第一组设置;所述冷却系统还包括风冷装置,所述风冷装置包括设置在所述快冷室入口且防止水或气体窜入所述固溶热处理炉的第一风冷组件和设置在所述快冷室出口且用于将铝带上下表面风干的第二风冷组件;所述的热处理设备还包括沿着所述铝带传输通道长度方向依次分布的多根传输辊,其中多根所述传输辊顶面齐平形成传输面,所述传输面位于所述下喷风箱出风端面的上方且所述传输面与所述出风端面平行设置;构成所述第一组的多个喷水单元分成上层喷流组和下层喷流组,其中所述上层喷流组的多个所述喷水管均匀间隔分布、且每根所述喷水管的中心至所述铝带上表面的距离相等,所述上层喷流组的多个所述喷嘴相互平行且对齐设置;所述下层喷流组的喷水单元与所述上层喷流组的喷水单元一一对应设置,其中所述下层喷流组的喷嘴与所对应的所述上层喷流组的喷嘴相交设置,且多个所述下层喷流组的喷嘴相互平行且对齐设置,所述下层喷流组的多个所述喷水管均匀间隔分布、且每根所述喷水管的中心至所述铝带下表面的距离相等,所述下层喷流组的多个所述喷嘴相互平行且对齐设置;位于所述上层喷流组的所述喷水管的中心至所述铝带上表面的距离和位于所述下层喷流组的所述喷水管的中心至所述铝带下表面的距离相等;靠近所述快冷室入口的所述上层喷流组的所述喷水管为上喷水管I,靠近所述快冷室入口的所述下层喷流组的所述喷水管为下喷水管I,所述的水冷装置还包括与所述上喷水管I连通且与所述上喷水管I上的所述喷嘴一一对应设置的上弯管、设置在每根所述上弯管出水端部的上喷头、与所述下喷水管I连通且与所述下喷水管I上的所述喷嘴 一一对应设置的下弯管、设置在每根所述下弯管出水端部的下喷头,其中上喷头和下喷头靠近所述快冷室入口设置,所述上喷头的底部距离所述铝带上表面的距离小于与之对应的所述喷嘴底部距离所述铝带上表面的距离,且所述上喷头与所述铝带形成的角度大于与之对应的所述喷嘴与所述铝带形成的角度;所述的下喷头的顶部距离所述铝带下表面的距离小于与之对应的所述喷嘴顶部距离所述铝带下表面的距离,且所述下喷头与所述铝带形成的角度大于与之对应的所述喷嘴与所述铝带形成的角度;构成所述第二组的多个喷水单元分成上喷流组和下喷流组,其中所述的上喷流组和所述下喷流组的喷水管之间的距离为所述上层喷流组和所述下层喷流组的喷水管之间的距离的2~5倍;所述上喷流组的所述喷嘴沿着铝带传输方向分成第一梯队和第二梯队,其中第一梯队的所述喷嘴的底部距离铝带上表面的距离大于第二梯队的所述喷嘴的底部距离铝带上表面的距离;第一梯队的所述喷嘴与所述铝带形成的角度为钝角,第二梯队的所述喷嘴与铝带垂直设置;所述下喷流组的所述喷嘴顶部距离所述铝带下表面的距离相等,且所述下喷流组的喷嘴与所述铝带形成的角度相等;所述水冷装置还包括设置在铝带上方且靠近所述上喷流组设置的上喷水管、并排设置在所述上喷水管上的多个上喷嘴,其中所述上喷水管的中心位于所述上喷流组的喷水管的中心和所述上层喷流组的喷水管的中心之间,所述的上喷嘴与所述铝带形成的角度小于第一梯队的所述喷嘴与所述铝带形成的角度、大于第二梯队的所述喷嘴与所述铝带形成的角度;所述第一风冷组件包括第一风嘴、第一管道和第一风机,其中所述第一风嘴下端部伸入第一组的喷水单元与所述快冷室入口之间,且位于铝带的上方,所述第一风嘴所吹出的风与铝带相交设置,并能够将铝带向前传输;所述第二风冷组件位于所述快冷室的出口,且包括第二风嘴、第三风嘴、第二风机以及将所述第二风机与所述第二风嘴和第三风嘴相连通的第二管道和第三管道,其中所述第二风嘴位于所述铝带的上方,且所述第二风嘴的下部向内弯折倾斜设置;所述第三风嘴位于所述铝带的下方,且所述第三风嘴的出风端部和所述第二风嘴出风端部前后错开。
  18. 一种复合传动型铝卷带材连续固溶热处理工艺,其特征在于:该固溶热处理工艺采用了权利要求1至17中任一项权利要求所述的气垫和辊子复合式铝带卷材的连续固溶热处理设备,且包括如下步骤:
    1)、退卷的铝带在进料引带装置的接引下,进入固溶热处理炉,由气垫发生器的每个气垫发生单元的工作,上喷风箱和下喷风箱所喷出的热风将铝带悬浮在铝带传输通道或者支撑在传输辊的顶面,同时有热风对铝带进行固溶热处理,并传出固溶热处理炉至快冷室;
    2)、进入快冷室的铝带,依次经过多个喷水单元构成的第一组和第二组,并且在第一风冷组件的吹风下,阻挡水或气回窜至固溶热处理炉,同时由排风装置将冷却所产生的气体抽出快冷室,此时,铝带经过水冷和第一风冷组件的风冷下,向快冷室出口传输,同时由所述快冷室出口处的第二风冷组件将铝带上下表面风干,并传出快冷室,完成铝带的快速冷却;
    3)、在上述步骤1)和步骤2)的连续热处理和快速冷却下,即可完成整卷铝卷带材的连续固溶热处理。
PCT/CN2020/132834 2020-11-30 2020-11-30 气垫和辊子复合式铝带卷材的连续固溶热处理设备及工艺 WO2022110167A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/132834 WO2022110167A1 (zh) 2020-11-30 2020-11-30 气垫和辊子复合式铝带卷材的连续固溶热处理设备及工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/132834 WO2022110167A1 (zh) 2020-11-30 2020-11-30 气垫和辊子复合式铝带卷材的连续固溶热处理设备及工艺

Publications (1)

Publication Number Publication Date
WO2022110167A1 true WO2022110167A1 (zh) 2022-06-02

Family

ID=81755187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132834 WO2022110167A1 (zh) 2020-11-30 2020-11-30 气垫和辊子复合式铝带卷材的连续固溶热处理设备及工艺

Country Status (1)

Country Link
WO (1) WO2022110167A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711344A (ja) * 1993-06-29 1995-01-13 Kurosaki Rokogyo Kk 帯板冷却装置
EP1146305B1 (de) * 2000-04-11 2005-06-15 Siempelkamp Handling Systeme GmbH & Co. Vorwärmtechnik mit Leistungsdrosselung bei Betriebsunterbrechungen
CN104878188A (zh) * 2015-05-20 2015-09-02 东北大学 一种可实现铝带气垫式热处理的实验装置及实验方法
CN105039675A (zh) * 2015-08-27 2015-11-11 苏州中门子科技有限公司 一种具有v型辊轮支撑装置的气垫炉及其应用
CN108707737A (zh) * 2018-08-17 2018-10-26 海安金锻工业有限公司 一种自动固溶生产线及固溶处理方法
CN111699356A (zh) * 2018-01-16 2020-09-22 艾伯纳工业炉(太仓)有限公司 用于处理铝带材的连续炉

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711344A (ja) * 1993-06-29 1995-01-13 Kurosaki Rokogyo Kk 帯板冷却装置
EP1146305B1 (de) * 2000-04-11 2005-06-15 Siempelkamp Handling Systeme GmbH & Co. Vorwärmtechnik mit Leistungsdrosselung bei Betriebsunterbrechungen
CN104878188A (zh) * 2015-05-20 2015-09-02 东北大学 一种可实现铝带气垫式热处理的实验装置及实验方法
CN105039675A (zh) * 2015-08-27 2015-11-11 苏州中门子科技有限公司 一种具有v型辊轮支撑装置的气垫炉及其应用
CN111699356A (zh) * 2018-01-16 2020-09-22 艾伯纳工业炉(太仓)有限公司 用于处理铝带材的连续炉
CN108707737A (zh) * 2018-08-17 2018-10-26 海安金锻工业有限公司 一种自动固溶生产线及固溶处理方法

Similar Documents

Publication Publication Date Title
US4527974A (en) Ceramic roller-hearth kiln with controlled combustion and cooling
CN202388930U (zh) 壁纸发泡烘箱
CN101182593A (zh) 一种双室常压淬火炉的气体炉外循环冷却方法及冷却系统
WO2010072042A1 (zh) 浮法在线生产低辐射镀膜玻璃的成套装置
WO2022110167A1 (zh) 气垫和辊子复合式铝带卷材的连续固溶热处理设备及工艺
CN112322886B (zh) 一种适用于换热器热处理的防变形方法
CN201534867U (zh) 金属热处理炉用强对流冷却装置
WO2022110165A1 (zh) 一种铝卷带材连续固溶热处理的冷却系统
JP4489214B2 (ja) 板ガラスの強化方法とその装置
CN112501423B (zh) 气垫和辊子复合式铝带卷材的连续固溶热处理设备及工艺
CN201151730Y (zh) 一种双室常压淬火炉的气体炉外循环冷却系统
CN111578698A (zh) 一种适用于碳化硅纤维热处理的辊道炉
CN202440537U (zh) 一种不锈钢及钛钢连续退火炉喷冷装置
CN216377923U (zh) 一种钢化炉生产真空low-e玻璃的强制对流装置
CN210085815U (zh) 一种节能循环定型机用烘箱
WO2022110166A1 (zh) 一种铝卷带材连续固溶热处理炉的气垫发生器
CN103221353B (zh) 用于淬火装置的喷嘴
JP4220877B2 (ja) 基板冷却方法、基板冷却装置、及び製膜装置
CN210718533U (zh) 高速导热油喷射式干燥机
CN204325444U (zh) 热处理炉双层夹送冷却装置
JP4210833B2 (ja) 連続焼成炉
CN214300275U (zh) 一种铝卷带材连续固溶热处理炉的气垫发生器
WO2019192206A1 (zh) 一种冷却装置、玻璃纤维的成形装置、冷却及成形方法
CN215279202U (zh) 一种轧机多角度吹扫装置
CN213866369U (zh) 一种铝卷带材连续固溶热处理的冷却系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20963055

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20963055

Country of ref document: EP

Kind code of ref document: A1