WO2022107771A1 - 吸収性物品 - Google Patents

吸収性物品 Download PDF

Info

Publication number
WO2022107771A1
WO2022107771A1 PCT/JP2021/042099 JP2021042099W WO2022107771A1 WO 2022107771 A1 WO2022107771 A1 WO 2022107771A1 JP 2021042099 W JP2021042099 W JP 2021042099W WO 2022107771 A1 WO2022107771 A1 WO 2022107771A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
fiber
less
fibers
hole
Prior art date
Application number
PCT/JP2021/042099
Other languages
English (en)
French (fr)
Inventor
岳 松下
美奈 富田
嵩 坂倉
圭介 黒田
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021084976A external-priority patent/JP7554708B2/ja
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to CN202180076539.3A priority Critical patent/CN116456946A/zh
Publication of WO2022107771A1 publication Critical patent/WO2022107771A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/51Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers
    • A61F13/511Topsheet, i.e. the permeable cover or layer facing the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/51Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers
    • A61F13/511Topsheet, i.e. the permeable cover or layer facing the skin
    • A61F13/512Topsheet, i.e. the permeable cover or layer facing the skin characterised by its apertures, e.g. perforations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F13/539Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium characterised by the connection of the absorbent layers with each other or with the outer layers

Definitions

  • the present invention relates to an absorbent article.
  • Absorbent articles such as disposable diapers generally have a surface sheet that comes into contact with the wearer's skin on the skin-facing surface side of the liquid-retaining absorber. Further, in an absorbent article, a sheet member made of fibers is often directly laminated on the surface sheet on the non-skin facing surface side of the surface sheet. For example, the applicant has previously provided a first non-woven fabric and a second non-woven fabric, and a surface sheet having through holes formed in a fused portion formed by partially heat-sealing the two non-woven fabrics and joining them, and a liquid. Disclosed is an absorbent article in which a permeable sublayer is laminated and the fused portion has a protrusion protruding toward the sublayer (Patent Document 1).
  • the present invention relates to an absorbent article comprising a surface sheet made of a fibrous material and a fibrous sheet. It is preferable that the fiber sheet is arranged adjacent to the surface sheet on the non-skin facing surface side of the surface sheet. It is preferable that the surface sheet has a plurality of through holes and has a fiber orientation region in which the fibers are oriented in one direction at a part of the open end of the through holes. It is preferable that the fibers located in the fiber orientation region of the surface sheet and the constituent fibers of the fiber sheet are engaged with each other.
  • FIG. 1 is a developed plan view schematically showing a skin-facing surface side (surface sheet side) in an unfolded and stretched state of a deployable disposable diaper according to an embodiment of the absorbent article of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a cross section taken along line II-II of FIG.
  • FIG. 3 is a plan view schematically showing the surface sheet shown in FIG.
  • FIG. 4 is a cross-sectional view taken along the vertical direction of the surface sheet shown in FIG.
  • FIG. 5 is an enlarged plan view of the through hole shown in FIG.
  • FIG. 6 is a perspective view showing the convex portion and the through hole of the surface sheet shown in FIG. FIG.
  • FIG. 7 is a cross-sectional view taken along the vertical direction of the surface sheet and the sublayer shown in FIG.
  • FIG. 8 is a perspective view of the sublayer shown in FIG.
  • FIG. 9 is a schematic view showing an embodiment of a surface sheet manufacturing apparatus.
  • FIG. 10 is an enlarged perspective view showing a main part of the uneven roll (first roll) shown in FIG. 9.
  • FIG. 11 is a front view showing a state in which the main part of the ultrasonic welding machine shown in FIG. 9 is viewed from the upstream side in the transport direction of the second sheet.
  • FIG. 12 is a diagram showing a main part (a tip portion of an ultrasonic horn and its vicinity) of the manufacturing apparatus shown in FIG.
  • FIG. 13 is an enlarged cross-sectional view schematically showing an enlarged cross section of the tip of the ultrasonic horn shown in FIG. 12 along the direction (MD) orthogonal to the rotation axis of the concave-convex roll.
  • FIG. 14 is a plan view of the vibration application surface (tip surface) of the ultrasonic horn shown in FIG.
  • FIG. 15 is a diagram corresponding to FIG. 13 showing another embodiment of the ultrasonic horn.
  • FIG. 16 is a diagram corresponding to FIG. 13 of still another embodiment of the ultrasonic horn.
  • FIG. 17 is a diagram corresponding to FIG. 13 of still another embodiment of the ultrasonic horn.
  • FIG. 18 (a) is a diagram corresponding to FIG. 13 of still another embodiment of the ultrasonic horn, and FIG. 18 (b) schematically shows the uneven portion shown in FIG. 18 (a) and its vicinity in an enlarged manner. It is a figure.
  • Providing multiple through holes in the surface sheet is effective in increasing the permeability of urine, loose stool, etc.
  • the surface sheet is provided with a through hole, the contact area between the surface sheet and the fiber sheet arranged adjacent to the surface sheet becomes small, and the bondability between the surface sheet and the fiber sheet may be deteriorated. As a result, the position of the surface sheet may shift, which may impair the wearing feeling and the like.
  • the through hole is made small in order to solve the problem of zygosity, the permeability of excrement may be impaired.
  • the absorbent article described in Patent Document 1 has room for improvement in that it suppresses misalignment of the surface sheet while maintaining the permeability of excrement.
  • the present invention relates to an absorbent article capable of suppressing misalignment of the surface sheet while maintaining the permeability of excrement.
  • the diaper 11 includes the surface sheet 10 of the above-described embodiment.
  • the diaper 11 has a vertical direction P corresponding to the front-back direction of the wearer and a lateral direction Q orthogonal to the vertical direction P, and is arranged on the liquid-retaining absorber 14 and the side closer to the wearer's skin than the absorber 14.
  • the surface sheet 10 is provided.
  • the diaper 11 has an inseam B arranged in the crotch portion of the wearer, and a ventral side portion A and a dorsal portion C extending in front of and behind the inseam portion B.
  • the ventral portion A, the inseam B, and the dorsal portion C may correspond to each region when the diaper 11 is divided into three equal parts in the vertical direction X.
  • the inseam B has an excretion portion facing portion that is arranged to face the excretion portion of the wearer's penis, anus, etc. when the diaper 11 is worn, and the excretion portion facing portion is usually in the vertical direction P of the diaper 11. It is located in or near the center.
  • the vertical direction X corresponds to the direction extending from the ventral side A of the diaper 1 to the dorsal side C via the inseam B.
  • the surface sheet 10, the liquid-permeable sublayer 15, and the liquid-retaining absorber 14 are laminated in this order in the order closer to the wearer's skin.
  • the diaper 11 is arranged on the skin facing surface side of the absorber 14 which is the main liquid absorbing portion and the absorber 14, and the absorber 14 is located closer to the wearer's skin than the absorber 14.
  • the "skin facing surface” is a surface of an absorbent article such as a disposable diaper or a component thereof (for example, an absorbent body) that is directed toward the skin side of the wearer when the absorbent article is worn, that is, relatively.
  • the side close to the wearer's skin, and the "non-skin facing surface” is the surface of the absorbent article or its constituents that faces the opposite side (clothing side) of the absorbent article when the absorbent article is worn, that is, relative to the skin. It is the side far from the wearer's skin.
  • the term "when worn” here means a state in which the normal proper wearing position is maintained, and does not include the case where the absorbent article is in a state deviated from the proper wearing position.
  • the front surface sheet 10 and the back surface sheet 13 have larger dimensions than the sublayer 15 and the absorber 14 interposed between the two sheets 10 and 13, respectively, and the unfolded and stretched diaper 11 as shown in FIG. It forms the outer shape.
  • the absorber 14 has a long shape in the vertical direction P and extends from the ventral side A to the dorsal side C.
  • the absorber 14 includes a liquid-retaining absorbent core 140 and a core wrap sheet 141 that covers the outer surface of the absorbent core 140.
  • the absorbent core 140 is typically made of a fiber aggregate mainly composed of hydrophilic fibers such as wood pulp, and may further have a water-absorbent polymer particle supported on the fiber aggregate or a sheet.
  • the core wrap sheet 141 is typically made of paper, non-woven fabric or the like.
  • various materials conventionally used for this kind of absorbent article can be used without particular limitation, and a resin film, a laminate of a resin film and a non-woven fabric, or the like can be used.
  • the diaper 11 of the present embodiment includes a sub-layer 15 as a fiber sheet arranged adjacent to the surface sheet 10.
  • the sub-layer 15 is arranged on the non-skin facing surface side of the surface sheet 10 to improve the permeability of the liquid from the surface sheet 10 to the absorber 14 and to the surface sheet 10 of the liquid absorbed by the absorber 14. It plays a role of reducing liquid return and covers almost the entire area of the absorber 14 facing the skin.
  • the front surface sheet 10, the sub-layer 15, the absorber 14 (absorbent core 140, core wrap sheet 141) and the back surface sheet 13 are bonded to each other by a known bonding means such as an adhesive.
  • each leak-proof cuff 16 includes a liquid-resistant or water-repellent and breathable leak-proof sheet 160, wherein one end of the lateral Q is attached to another member (for example, a front sheet or a back sheet). It is fixed and is a fixed end, and the other end side in the lateral direction Q is a free end that is not fixed to other members.
  • An elastic member 161 for forming a leak-proof cuff is fixed to the free end of the leak-proof sheet 160 in an extended state in the vertical direction P so as to be expandable and contractible in the same direction.
  • the contraction force of the elastic member 161 causes the free end side of the leak-proof sheet 160 to stand up on the wearer side with the fixed end as the standing base end, at least in the inseam B.
  • the leak-proof cuffs 16 and 16 stand up to prevent the outflow of excrement such as urine to the outside in the lateral direction Q.
  • leak-proof sheet 160 those used as the material of the leak-proof cuff in this kind of absorbent article can be used without particular limitation, and those having liquid resistance or water repellency and breathability are preferable.
  • a single-layer or multi-layer water-repellent non-woven fabric, a laminating material of a resin film and a non-woven fabric, or the like can be used.
  • a thread-like elastic member 17 is extended along the vertical direction P between the leak-proof sheet 160 and the back surface sheet 13 at the left and right leg portions arranged around the wearer's legs. It is fixed, so that a pair of leg gathers are formed on the leg portion when the diaper 11 is worn due to the contraction of the elastic member 17.
  • the front surface sheet 10, the sub-layer 15, the back surface sheet 13, the absorber 14, the leakage-proof sheet 160, and the elastic member 161 are bonded to each other by a known bonding means such as a hot melt type adhesive.
  • a pair of fastening tapes 18 and 18 are provided on both side edges of the dorsal portion C of the diaper 11 along the vertical direction P.
  • a fastening portion made of a male member of a mechanical hook-and-loop fastener is attached to the fastening tape 18.
  • a landing region 19 made of a female member of a mechanical hook-and-loop fastener is formed on the non-skin facing surface of the ventral side A of the diaper 11.
  • a female member of a mechanical hook-and-loop fastener is attached to the non-skin facing surface of the back surface sheet 13 forming the non-skin facing surface of the ventral side A by a known joining means such as an adhesive or a heat seal. It is formed by joining and fixing, and the fastening portion of the fastening tape 18 can be detachably fastened.
  • the surface sheet 10 of the present embodiment is a fiber sheet made of a fiber material, and has a plurality of through holes 6 penetrating the sheet.
  • the surface sheet 10 has a laminated structure in which the first sheet 1 and the second sheet 2 made of a fiber material are laminated.
  • the first sheet 1 and the second sheet 2 are joined to each other via a fused portion (not shown) fused to each other.
  • the first sheet 1 and the second sheet 2 are made of a sheet made of a fiber material.
  • a non-woven fabric, a woven fabric, a knitted fabric, or the like can be used. From the viewpoint of touch and the like, it is preferable to use a non-woven fabric.
  • the types of the sheets constituting the first sheet 1 and the second sheet 2 may be the same or different.
  • the non-woven fabric examples include air-through non-woven fabric, spunbond non-woven fabric, spunlace non-woven fabric, meltblown non-woven fabric, resin bond non-woven fabric, needle punch non-woven fabric and the like.
  • a laminated body in which two or more kinds of these non-woven fabrics are combined can also be used.
  • the basis weight of each of the first sheet 1 and the second sheet 2 is preferably 10 g / m 2 or more, more preferably 15 g / m 2 or more, and preferably 40 g / m 2 or less, more preferably 35 g / m 2 . It is preferably 10 g / m 2 or more and 40 g / m 2 or less, and more preferably 15 g / m 2 or more and 35 g / m 2 or less.
  • thermoplastic resin examples include polyolefins such as polyethylene, polypropylene and polybuden, polyesters such as polyethylene terephthalate and polybutylene terephthalate, polyamides such as nylon 6 and nylon 66, polyacrylic acid, polymethacrylic acid alkyl esters, polyvinyl chloride and polychloride. Examples include vinylidene. These resins can be used alone or as a blend of two or more. Further, it can be used in the form of a composite fiber such as a core sheath type or a side-by-side type.
  • the surface sheet 10 of the present embodiment has a plurality of convex portions 5 protruding toward one surface of the surface sheet 10 at a portion adjacent to the through hole 6.
  • at least a part of the portion other than the through hole 6 in the first sheet 1 forms a plurality of convex portions 5 protruding to the side opposite to the second sheet 2 side. ..
  • the protrusions 5 and the through holes 6 are arranged alternately and in a row in the vertical direction P, and the rows are parallel to the surface of the surface sheet 10 and orthogonal to the vertical direction P. It is formed in multiple rows in the horizontal direction Q.
  • the convex portions 5 and the through holes 6 in the rows adjacent to each other are arranged so as to be offset in the vertical direction P, and more specifically, they are arranged so as to be offset by a half pitch.
  • the vertical direction P is a direction parallel to the flow direction (machine direction, hereinafter also referred to as “MD”) at the time of manufacturing the surface sheet 10
  • the horizontal direction Q is the direction at the time of manufacturing the surface sheet 10. It is a direction parallel to the direction orthogonal to the MD (hereinafter, also referred to as “CD”).
  • the rotation axes of the concave-convex roll 31 (first roll) and the concave-convex roll 32 (second roll), which will be described later, are parallel to the CD and orthogonal to the MD.
  • the surface sheet 10 of the present embodiment has a large number of recesses 3 sandwiched between the convex portions 5 in both the X direction and the Y direction on the surface on the first sheet 1 side, and is formed on the bottom of each concave portion 3. , A through hole 6 is formed.
  • the surface sheet 10 has large undulating irregularities on the surface on the first sheet 1 side, which is composed of the concave portion 3 and the convex portion 5, and the surface on the second sheet 2 side is flat. Or, it is a substantially flat surface with relatively small undulations with respect to the surface on the first sheet 1 side.
  • each of the convex portion 5 and the through hole 6 has a long plan view shape in the vertical direction P in a plan view (see FIG. 3).
  • Each through hole 6 has a long shape in the vertical direction P, and more specifically, a substantially rectangular shape in a plan view.
  • the surface sheet 10 has a fused portion in which the first sheet 1 and the second sheet 2 are fused to each other at a part of the open end 6e of the through hole 6 (not shown). In such a fused portion, the heat-sealing resin of the constituent fibers in at least one of the first sheet 1 and the second sheet 2 is melt-solidified, whereby the first sheet 1 and the second sheet 2 are joined to each other. ing.
  • the surface sheet 10 includes a fiber orientation region 20 in which fibers are oriented in one direction at a part of the opening end 6e of the through hole 6 in a plan view.
  • the through hole 6 of the present embodiment has a pair of fiber orientation regions 20 and 20 located on both side portions along the longitudinal direction (longitudinal direction P) of the through hole 6.
  • the surface sheet 10 may have a fiber orientation region 20 on only one of both side portions along the longitudinal direction of the through hole 6, and a pair along the lateral direction of the through hole 6.
  • the fiber orientation region 20 may be provided on one or both ends of the fiber orientation region 20.
  • the fiber orientation region 20 is a region along a part of the open end 6e of the through hole 6, and in this region, the constituent fibers of the first sheet 1 and the second sheet 2 are not formed into a film, and the fiber morphology is maintained. ing.
  • the fiber 21 located in the region 20 is located in the through hole 6.
  • the "fiber 21 located in the through hole 6 in the fiber orientation region 20" is also referred to as an "intra-region fiber 21".
  • the constituent fibers of the surface sheet 10 are oriented in one direction. Specifically, in the fiber orientation region 20, the extending directions of the fibers 21 in each region are substantially the same.
  • the intra-regional fibers 21 of the present embodiment are oriented so as to have an angle with respect to the longitudinal direction (longitudinal direction P) of the through hole 6 in a plan view (see FIG. 5). Further, when the surface sheet 10 is viewed along the thickness direction, some of the fibers 21 in the region are inclined at a constant angle with respect to the main surface (planar direction) of the surface sheet 10. .. More specifically, among the fibers 21 in the region, there are fibers that are oriented with the tip facing the non-skin facing surface side in the thickness direction of the surface sheet 10. The orientation direction of the fibers 21 in the region in the fiber orientation region 20 is not particularly limited.
  • the intraregional fiber 21 may be oriented toward the ventral side A side along the vertical direction P, or may be oriented toward the dorsal side C side along the vertical direction P. It may be oriented along the lateral direction Q. Further, the intra-regional fibers 21 may be two-dimensionally oriented in the main surface (planar direction) of the surface sheet 10, or may be three-dimensionally oriented in the thickness direction of the surface sheet 10. For convenience of explanation, FIGS. 3 and 4 do not show the orientation state of the fiber 21 in the region, but show the position of the fiber orientation region 20.
  • the surface sheet 10 is adjacent to the sublayer 15 arranged on the non-skin facing surface side thereof.
  • the intra-regional fibers 21 in the fiber orientation region 20 of the surface sheet 10 are engaged with the constituent fibers of the sub-layer 15.
  • the through hole 6 of the surface sheet 10 and the convex portion 152 of the sublayer 15 overlap each other, and the fiber 21 located in the fiber alignment region 20 engages with the fiber 153 located in the convex portion 152. (See Fig. 7).
  • the fibers 21 located in the fiber orientation region 20 engage with the constituent fibers of the fiber sheet arranged adjacent to the surface sheet 10 such as the sublayer 15, thereby causing the surface sheet 10 and the fiber sheet to be engaged with each other. Is firmly joined, and the misalignment of the surface sheet 10 can be effectively suppressed. That is, even if the contact area between the surface sheet 10 and the fiber sheet is reduced by forming the through hole 6 in the surface sheet 10, the engagement ensures the bonding strength between the surface sheet 10 and the fiber sheet. Therefore, the displacement of the surface sheet 10 can be suppressed while maintaining the permeability of the excrement through the through hole 6.
  • the fiber orientation region 20 is a region that is a constituent fiber of the surface sheet 10 and the orientation direction of each of these fibers is substantially the same when the fibers 21 located in the through hole 6 are observed. Specified by.
  • Observation method of fiber orientation region With respect to the surface sheet 10, a region having a plan view of 50 mm ⁇ 50 mm is cut out using a sharp razor (for example, a single blade manufactured by Feather Safety Razor Co., Ltd.), and this is used as a sample. Then, using an electron microscope (for example, JEOL Ltd., model number: JCM-6000Plus) or a microscope (for example, KEYENCE Co., Ltd., model number: VHX-1000), the skin-facing surface and the non-skin-facing surface of the sample are used. Observe the through hole 6 from one of the two surfaces.
  • a sharp razor for example, a single blade manufactured by Feather Safety Razor Co., Ltd.
  • a microscope for example, KEYENCE Co., Ltd., model number: VHX-1000
  • the through hole 6 is observed from the side opposite to the side on which the convex portion 5 protrudes.
  • the through hole 6 is observed from the non-skin facing surface side.
  • the magnification when observing the through hole 6 in this plan view is 100 times. Then, an area of 3 mm ⁇ 3 mm is photographed in the observation field of view. The obtained image is binarized.
  • the image is taken into Image-Pro Plus (manufactured by Nippon Roper Co., Ltd.), the black-and-white contrast is set to 100 for contrast enhancement, and noise is generated by filtering (median, 5x5 5 times).
  • the fiber located in the through hole 6 is the observation target.
  • the angle formed by the opening end 6e where the base end of the fiber is located is defined as the orientation angle, and the orientation angle is measured.
  • a region in which the tips of the fibers are oriented in substantially the same direction and the average value of the orientation angles of the fibers is within 0 to 60 degrees is specified, and this is designated as the fiber orientation region 20.
  • the open end 6e of the through hole 6 is defined as a boundary between a region in which the fibers are oriented in one direction (fiber orientation region 20) and a region in which the fibers are randomly oriented.
  • the “region in which the fibers are randomly oriented” is a region having the same degree of orientation as that of the nonwoven fabric before forming the through holes 6 in the method for manufacturing the surface sheet 10 described later. Further, the "region in which the fibers are randomly oriented" includes a region in which the alignment state of the fibers cannot be specified due to film formation of the fibers or the like.
  • Such a region is a region observed as a whitened portion so that the orientation state of the fibers cannot be grasped in the above-mentioned binarized image.
  • the surface sheet 10 is cut together with the through hole 6 along the longitudinal direction of the through hole 6 so as to divide the total length of the through hole 6 in the lateral direction into two equal parts, and the cross section thereof is bisected by the same method as described above. Acquire the image that has been binarized.
  • a region in which a fiber having a tip (free end) facing the non-skin facing surface side is specified, and this is referred to as a fiber orientation region 20.
  • the fibers are inclined at a constant angle with respect to the main surface (planar direction) of the surface sheet 10.
  • the average value of the angles formed by the fiber and the longitudinal direction of the through hole 6 is more than 0 degrees to 90 degrees or less.
  • the above-mentioned [method for observing fiber orientation region] can be applied to all non-woven fabrics having the structure of the surface sheet 10 of the present invention. More specifically, when the surface sheet 10 is an air-through nonwoven fabric, the fiber orientation region 20 can be specified by the following method. An image obtained by binarizing the surface sheet 10 in a plan view is obtained by the same method as the above-mentioned [Method for observing fiber orientation region]. By observing the through hole 6 and its vicinity in this image, it can be confirmed that the film portion existing in the through hole 6 and the air through portion in which the constituent fibers maintaining the fiber morphology are present.
  • the film portion is a portion where the constituent fibers that maintain the fiber morphology are not observed and the constituent fibers are melted, and the thickness is extremely smaller than that of the air-through portion.
  • the film portion is a film-like portion having a thickness of 50 ⁇ m or less.
  • the boundary between the film portion and the air-through portion is defined as the open end 6e of the through hole 6.
  • the orientation of the fibers (fibers 21 in the region) constituting the fiber orientation region 20 in the surface sheet 10 is the opening end e1 (edge of the through hole 6) located on the proximal end side of the fiber 21 and the fiber. It is represented by the angle formed by the virtual line connecting the base end and the free end of 21. The angle is an acute angle of 0 to 90 degrees.
  • the average value of the angles formed by the opening end e1 (the edge of the through hole 6) located on the base end side of the fiber 21 and the virtual line is more than 0 degrees. It will be within 90 degrees.
  • the base end of the intra-regional fiber 21 is a connecting portion with the film portion of the fiber 21 protruding from the film portion.
  • the fiber orientation region 20 has one or more, preferably two or more in-region fibers 21.
  • the length of the film portion in the longitudinal direction (P direction in this embodiment) of the through hole 6 is preferably 5 times or more and less than 450 times the thickness of the film portion. Is. With such a configuration, the intra-regional fiber 21 and the constituent fiber of the fiber sheet can be more firmly engaged with each other. From the same viewpoint as above, the length of the film portion of the through hole 6 in the lateral direction (Q direction in the present embodiment) is preferably 5 times or more and less than 250 times the thickness of the film portion.
  • the configuration of the fiber orientation region 20 and the surface sheet 10 will be described in detail, but the following description can be applied to all non-woven fabrics having the configuration of the surface sheet 10 of the present invention.
  • the fibers 21 located in the fiber orientation region 20 and the constituent fibers of the fiber sheet arranged adjacent to the surface sheet 10 such as the sublayer 15 are engaged can be confirmed by the following method. can. From the diaper 11, the surface sheet 10 and the fiber sheets arranged adjacent to the surface sheet 10 are laminated, and the entire fiber orientation region 20 in the through hole 6 is included in the thickness direction in a plan view of 50 mm. Cut out a sample of ⁇ 50 mm.
  • the cross section of the sample is observed at a magnification of 100 times using an electron microscope (for example, manufactured by JEOL Ltd., model number: JCM-6000Plus) or a microscope (for example, manufactured by Keyence Corporation, model number: VHX-1000). do.
  • an electron microscope for example, manufactured by JEOL Ltd., model number: JCM-6000Plus
  • a microscope for example, manufactured by Keyence Corporation, model number: VHX-1000.
  • the average length of the intra-regional fiber 21 is preferably 0.3 mm or more, more preferably 0.5 mm or more, and preferably 4 mm. Hereinafter, it is more preferably 1.5 mm or less, preferably 0.3 mm or more and 4 mm or less, and more preferably 0.5 mm or more and 1.5 mm or less.
  • the average length of the fibers 21 in the region is measured by measuring the length from the open end 6e of the through hole 6 in the observation field of the through hole 6 in a plan view, that is, the length from the base end to the free end of the fiber 21.
  • the measurement target is fibers of 0.2 mm or more.
  • the average length of the fibers 21 in the region is the length from the base end to the free end protruding from the film portion.
  • the measurement is performed for any 10 through holes 6 in the surface sheet 10, and the average of these is taken as the average length of the intra-regional fibers 21.
  • the number of intra-regional fibers 21 in one through hole 6 is one or more, preferably two or more, more preferably five or more, and further. It is preferably 20 or more, preferably 100 or less, more preferably 50 or less, preferably 2 or more and 100 or less, more preferably 5 or more and 100 or less, still more preferably 20 or more. 50 or less. Further, from the same viewpoint as above, in the observation field of the through hole 6 in a plan view, the number of fibers 21 in the region per fixed field area (9 mm 2 ) of the fiber orientation region 20 is preferably one or more. It is preferably 5 or more, more preferably 10 or more, preferably 50 or less, more preferably 30 or less, and preferably 1 or more and 50 or less, more preferably 5 or more and 50 or less. , More preferably 10 or more and 30 or less.
  • the number of fibers whose tips are directed toward the non-skin facing surface side in the thickness direction of the surface sheet 10 is preferably one or more. It is more preferably 20 or more, preferably 100 or less, more preferably 50 or less, preferably 1 or more and 100 or less, and more preferably 20 or more and 100 or less. Further, from the same viewpoint as above, among the fibers 21 in the region per fixed field area (9 mm 2 ) of the fiber orientation region 20, the number of fibers facing the non-skin facing surface side is preferably one or more. , More preferably 10 or more, preferably 50 or less, more preferably 30 or less, preferably 1 or more and 50 or less, and more preferably 10 or more and 30 or less.
  • the measurement of the number of fibers 21 in the region or the number of existing fibers 21 is performed for the through holes 6 including the fiber orientation regions 20 at arbitrary 10 positions in the surface sheet 10, and the average of these is averaged in the region in one through hole 6.
  • the number of fibers 21 or the number of existing fibers 21 in the region per fixed viewing area (9 mm 2 ) of the fiber orientation region 20.
  • the “constant visual field area (9 mm 2 ) of the fiber alignment region 20” is a region of 3 mm ⁇ 3 mm set at an arbitrary position of the fiber alignment region 20 in the observation field of the through hole 6, and is within the region existing in the region.
  • the number of existing fibers 21 is counted, and the above-mentioned "number of existing fibers 21 in the region per fixed visual field area (9 mm 2 ) of the fiber orientation region 20" is measured. Further, the "fiber facing the non-skin facing surface side” can be specified by observing the cross section of the surface sheet 10 cut together with the through hole 6 in the above-mentioned [method for observing the fiber orientation region].
  • the surface sheet 10 has a fiber orientation region 20 in a part of the opening end 6e of the through hole 6.
  • the length of the fiber alignment region 20 along the opening end 6e of the through hole 6 is preferable with respect to the entire circumference of the opening end 6e of the through hole 6 in a plan view. Is 10% or more, more preferably 25% or more, preferably 60% or less, more preferably 50% or less, and preferably 10% or more and 60% or less, more preferably 25% or more and 50% or less. be.
  • the length of the fiber orientation region 20 along the opening end 6e of the through hole 6 and the entire circumference of the opening end 6e of the through hole 6 are measured by performing image processing on the electron microscope image of the through hole 6.
  • the length measurement menu of the multipoint distance implemented by default in the software name "KEYENCE VHX-1000" is used.
  • the entire circumference of the opening end 6e can be measured by performing an operation of tracing the opening end 6e.
  • the fibers 21 located in the fiber orientation region 20 are preferably oriented along the vertical direction P (see FIG. 5). As a result, the surface sheet 10 is less likely to shift to the ventral side A side, and it is possible to further suppress the accumulation of stool in the inseam B.
  • the fibers 21 in the region are oriented in the vertical direction P means that among the fibers 21 located in the fiber orientation region 20, 50% or more of the fibers 21 in the region are in the vertical direction P and ⁇ in the plan view of the through hole 6. It means that the angle is within 45 degrees.
  • the longitudinal direction of the through hole 6 of the present embodiment coincides with the longitudinal direction P, is the angle formed by the side portion of the through hole 6 along the longitudinal direction and the intra-regional fiber 21 within ⁇ 45 degrees? Whether or not the fibers 21 in the region are oriented in the vertical direction P may be determined. From the viewpoint of further suppressing the displacement of the surface sheet 10 toward the ventral side A side, the intra-regional fibers 21 are oriented along the vertical direction P with the tip thereof facing the ventral side A side. It is preferable to have. Taking the embodiment shown in FIG. 5 as an example, it is preferable that the A side is the ventral side A side and the B side is the dorsal side C side. Further, taking the embodiment shown in FIG. 6 as an example, the A side (left side in FIG. 6) is the ventral side A side, and the B side (right side in FIG. 6) is the dorsal side C side. preferable.
  • the surface sheet 10 of the present embodiment has fiber orientation regions 20 on both sides along the longitudinal direction (longitudinal direction P) of the through hole 6. From the viewpoint of further suppressing the displacement of the surface sheet 10 in the vertical direction P, the fiber located in the fiber orientation region 20, that is, the fiber 21 in the region has an angle ⁇ (with respect to the reference line La along the lateral direction of the through hole 6).
  • is preferably more than 0 degrees, more preferably 30 degrees or more, still more preferably 45 degrees or more, preferably less than 90 degrees, more preferably 80 degrees or less, and preferably more than 0 degrees. It is less than 90 degrees, more preferably 30 degrees or more and less than 90 degrees, and more preferably 45 degrees or more and 80 degrees or less.
  • the reference line La is a straight line parallel to the short side of the through hole 6.
  • the side portion of the through hole 6 is a portion of the open end 6e (contour) of the through hole 6 along the longitudinal direction of the through hole 6, whereas the short side portion is connected to the intra-regional fiber 21. It is a portion adjacent to the side portion of the through hole 6 and forming a short side in the contour of the rectangular through hole 6.
  • the angle ⁇ of the intra-regional fiber 21 with respect to the reference line La means the angle formed by the straight line connecting both ends of the intra-regional fiber 21 (the straight line connecting the free end and the base end) and the reference line La.
  • the intersection of the fiber and the open end 6e of the through hole 6 is set. The opposite end.
  • the tip (free end) of the fiber 21 in the region faces the inward side of the through hole 6.
  • the surface sheet 10 can be more firmly engaged with the adjacent fiber sheet.
  • the tip of the fiber 21 in the region faces the inward side of the through hole 6 and the fiber 21 extends linearly.
  • the size of the through hole 6 is preferably within the following range.
  • the area ratio of the through hole 6 (area of the through hole 6 / area of the surface sheet 10) in the surface sheet 10 is preferably 4% or more, more preferably 8% or more, and preferably 30% or less, more preferably. It is 20% or less, preferably 4% or more and 30% or less, and more preferably 8% or more and 20% or less.
  • the area of the through hole 6 per piece is preferably 1 mm 2 or more, more preferably 3 mm 2 or more, preferably 30 mm 2 or less, more preferably 20 mm 2 or less, and preferably 1 mm 2 or more and 30 mm 2 Hereinafter, it is more preferably 3 mm 2 or more and 20 mm 2 or less.
  • the through hole 6 of the present embodiment has a long shape in the vertical direction P, but may have a long shape in the horizontal direction Q. From the same viewpoint as above, the size of the through hole 6 is preferably within the following range.
  • the length L6 in the vertical direction P is preferably 0.1 times or more, more preferably 1 time or more, and preferably 5 times or less, more preferably the length W6 in the horizontal direction Q. Is 1.5 times or less, preferably 0.1 times or more and 5 times or less, and more preferably 1 time or more and 1.5 times or less.
  • the length L6 of the through hole 6 in the vertical direction P is preferably 1 mm or more, more preferably 1.5 mm or more, preferably 5 mm or less, more preferably 4.5 mm or less, and preferably 1 mm or more and 5 mm. Below, it is more preferably 1.5 mm or more and 4.5 mm or less.
  • the length W6 of the through hole 6 in the lateral direction Q is preferably 1 mm or more, more preferably 1.5 mm or more, preferably 9 mm or less, more preferably 3 mm or less, and preferably 1 mm or more and 9 mm or less. It is preferably 1.5 mm or more and 3 mm or less.
  • the dimensions of the through holes 6 are obtained as an average value of the dimensions (area, etc.) of 10 arbitrarily selected through holes 6 in a measuring piece (10 cm square) cut out from an arbitrary portion of the surface sheet 10.
  • the surface sheet 10 is a fiber (fiber 21 in the region) located in the fiber orientation region 20, and the outer portion is melted and the fiber diameter is smaller than that of other fibers. It is preferable to have fibers.
  • the fiber 21 in the region has a smaller fiber diameter than the other constituent fibers in the surface sheet 10, and the outer portion is melted to form an indefinite shape. Therefore, the fiber sheet in contact with the fiber 21 in the region is configured. It becomes easy to be entangled with the fiber, and the engagement between the fiber in the region and the constituent fiber can be further improved.
  • fine fibers in the region 22 fibers whose outer portion is melted and whose fiber diameter is smaller than that of other fibers.
  • the fine fibers 22 in the region can be confirmed by the following method.
  • the through hole 6 is cut out together with the peripheral portion so as to include the fiber orientation region 20, and this is used as a sample.
  • the sample is attached to the sample table using a paper double-sided tape (Nichiban Co., Ltd. Nystack NW-15).
  • the sample is then platinum coated.
  • an ion sputtering device E-1030 (trade name) manufactured by Hitachi Naka Seiki Co., Ltd. is used, and the sputtering time is 30 seconds.
  • the fiber orientation region 20 in the sample was observed at a magnification of 1000 times using an S-4000 type electric field radiation scanning electron microscope manufactured by Hitachi, Ltd., and the fiber diameter with the fiber located in the peripheral portion of the through hole 6 was observed. From the difference, the fine fibers 22 in the region are discriminated. In such an observation, a melted portion can be confirmed on the surface of the fine fiber 22 in the region.
  • the surface sheet 10 contains a core-sheath type composite fiber as a constituent fiber thereof, the core-sheath type composite fiber tends to become a fine fiber 22 in the region. Since the sheath component of the fine fiber 22 in such a region is melted and the core component is exposed, the fiber diameter is smaller than that of other constituent fibers.
  • the fiber diameter of the intra-regional fine fiber 22 in the surface sheet 10 is relative to the fiber diameter of the fiber located in a portion other than the fiber orientation region 20 in the surface sheet 10. It is preferably 40% or more, more preferably 50% or more, preferably 80% or less, more preferably 70% or less, and preferably 40% or more and 80% or less, more preferably 50% or more and 70% or less. Is. From the same viewpoint as above, the fiber diameter of the in-region fine fibers 22 in the surface sheet 10 is preferably 3 ⁇ m or more, more preferably 4 ⁇ m or more, preferably 7 ⁇ m or less, more preferably 6 ⁇ m or less, and more preferably.
  • the fiber diameter of the in-region fine fiber 22 is the length in the width direction orthogonal to the longitudinal direction of the in-region fine fiber 22 by observing the in-region fine fiber 22 by the same method as the above [method for confirming the in-region fine fiber 22]. Let be the average value when 10 fibers are measured. For the fiber diameter of the fiber located in the portion other than the fiber orientation region 20, 10 fibers located in the peripheral portion of the through hole 6 observed in the above [method for confirming the fine fiber 22 in the region] were selected and the fiber diameter thereof was selected. It is the average value of the length in the width direction with respect to the longitudinal direction of the selected fiber.
  • the intra-regional fine fibers 22 and the intra-regional fibers 21 having a larger fiber diameter than the intra-regional fine fibers 22 may coexist in one fiber orientation region 20, and all the fibers in the fiber orientation region 20 may coexist. It may be the fine fiber 22 in the region.
  • the number of fine fibers 22 in the region in one through hole 6 is one or more, preferably two or more, in the observation field of the through hole 6 in a plan view. It is preferably 5 or more, preferably 30 or less, more preferably 20 or less, preferably 2 or more and 30 or less, and more preferably 5 or more and 20 or less.
  • the fiber orientation region 20 may be formed in all the through holes 6 in the surface sheet 10, or may be formed in a part of the through holes 6. From the viewpoint of further improving the permeability of the excrement in the surface sheet 10 and further suppressing the contact of the excrement with the skin, the through hole in which the fiber alignment region 20 is formed in a part of the opening end 6e in the surface sheet 10.
  • the number of 6 per unit area is preferably 10% or more, more preferably 40% or more, and the total number of through holes 6 per unit area. It is more preferable that the fiber orientation region 20 is formed in the through hole 6.
  • the number of through holes 6 in which the fiber orientation region 20 is formed in a part of the opening end 6e in the surface sheet 10 is preferably the number per unit area (area of a region of 10 mm square in a plan view).
  • the number is 2 or more, more preferably 4 or more, preferably 20 or less, and more preferably 15 or less.
  • the surface sheet 10 of the present embodiment preferably has the following configuration.
  • the height H of the convex portion 5 is preferably 1 mm or more, more preferably 3 mm or more, preferably 10 mm or less, more preferably 6 mm or less, and preferably 1 mm or more and 10 mm or less. It is preferably 3 mm or more and 6 mm or less.
  • the number of convex portions 5 per unit area (1 cm 2 ) in the surface sheet 10 is preferably 1 or more, more preferably 6 or more, and preferably 20 or less, more preferably 15 or less. Further, it is preferably 1 or more and 20 or less, and more preferably 6 or more and 15 or less.
  • the bottom area of the convex portion 5 is preferably 0.5 mm 2 or more, more preferably 2 mm 2 or more, preferably 50 mm 2 or less, more preferably 20 mm 2 or less, and preferably 0.5 mm 2 or more and 50 mm. It is 2 or less, more preferably 2 mm 2 or more and 20 mm 2 or less.
  • the fiber sheet arranged adjacent to the surface sheet 10 is a sublayer 15 arranged between the surface sheet 10 and the absorber 14, but is not limited thereto.
  • the fiber sheet may be a core wrap sheet 141 forming the surface of the absorber.
  • the diaper 11 does not include the sub-layer 15, and the core wrap sheet 141, which is a fiber sheet, is arranged adjacent to the surface sheet 10.
  • the sub-layer 15 of the present embodiment has a plurality of concave portions 151 and convex portions 152. Specifically, the sub-layer 15 has a plurality of convex portions 152 projecting toward the skin facing surface and having a hollow inside, and a concave portion 151 located between the plurality of convex objects 152.
  • the plurality of concave portions 151 and the convex portions 152 are arranged alternately and continuously along the vertical direction P and the horizontal direction Q.
  • the sub-layer 15 has a plurality of convex portions 152 protruding toward the skin facing surface side and having an internal space S1, and concave portions 151 located between the plurality of convex portions 152, and further projecting toward the non-skin facing surface side and inside. It has a plurality of non-skin side convex portions 155 having a space S2 and a non-skin side concave portion 154 located between the plurality of non-skin side convex portions 155 (see FIG. 8).
  • the uneven shape on the skin facing surface side formed by the convex portion 152 and the concave portion 151 in the sub layer 15 is the non-skin facing surface side formed by the non-skin side convex portion 155 and the non-skin side concave portion 154 in the sub layer 15. It corresponds to the uneven shape. That is, on the non-skin facing surface of the sub-layer 15, the plurality of non-skin side concave portions 154 and the non-skin side convex portions 155 are arranged alternately and continuously along the vertical direction P and the horizontal direction Q. As the sub-layer 15 having such a configuration, the intermediate sheet described in JP-A-2019-97678 can be used.
  • the fibers located in the convex portions of the fiber sheet having a plurality of concave portions and convex portions are oriented in the vertical direction P. ..
  • the fibers located at the convex portions form an angle within ⁇ 30 degrees with P in the longitudinal direction.
  • the fibers forming the surface of the convex portion that can come into contact with the surface sheet 10 are oriented in the vertical direction P.
  • the fibers of the convex portion are oriented in the longitudinal direction P. It is preferable to have.
  • the orientation of the fibers in the convex portion of the fiber sheet can be confirmed by the following method.
  • a measuring piece having a length of 10 cm in the vertical direction and a length of 10 cm in the horizontal direction is cut out from the fiber sheet. This measuring piece is cut out so as to include a plurality of protrusions.
  • a microscope for example, a digital microscope VHX-1000 manufactured by KEYENCE CORPORATION
  • the convex portion of the measuring piece is observed at a magnification of 60 to 200 times. Such observation is performed on the convex portion formed on the surface facing the surface sheet 10.
  • the angle formed by the straight line connecting both ends and the vertical direction P is measured. This measurement is performed for at least three observation regions, and the fiber orientation direction is obtained from the arithmetic mean value of the angles measured for a total of 30 or more fibers. In the measurement of fiber orientation, it is preferable to observe 10 or more fibers in the observation region at a magnification that can be confirmed.
  • one or more convex portions in the fiber sheet overlap with the through hole 6 of the surface sheet 10.
  • the convex portion and the through hole 6 need only partially overlap each other.
  • two or more convex portions 152 overlap with the through hole 6 of the surface sheet 10 (see FIG. 7).
  • the dimension of the convex portion 152 in the sublayer 15 (fiber sheet) is preferably within the following range.
  • the dimensions of the convex portion 152 are measured under no load by observing the cross section of the sublayer 15 in the thickness direction under a microscope.
  • the length L7 (see FIG. 7) of the convex portion 152 in the vertical direction P is preferably 50% or more, more preferably 100% or more, with respect to the length L6 (see FIG. 5) of the through hole 6 in the vertical direction P. It is preferably 400% or less, more preferably 200% or less, preferably 50% or more and 400% or less, and more preferably 100% or more and 200% or less.
  • the length L7 see FIG.
  • the convex portion 152 in the vertical direction P is preferably 2 mm or more, more preferably 4 mm or more, preferably 10 mm or less, more preferably 8 mm or less, and preferably 2 mm or more. It is 10 mm or less, more preferably 4 mm or more and 8 mm or less.
  • the height H1 (see FIG. 7) of the convex portion 152 is preferably 1 mm or more, more preferably 3 mm or more, preferably 10 mm or less, more preferably 6 mm or less, and preferably 1 mm or more and 10 mm or less. It is preferably 3 mm or more and 6 mm or less.
  • the top of the convex portion 152 is in contact with the surface sheet 10 on the skin-facing surface of the sublayer 15 (see FIG. 7). Further, on the skin-facing surface of the sub-layer 15, the recess 151 is not in contact with the surface sheet 10. As described above, the sub-layer 15 has a skin-side contact portion that contacts the surface sheet 10 and a skin-side non-contact portion that does not contact the surface sheet 10 on the skin-facing surface. As described above, on the skin-facing surface of the sub-layer 15, the plurality of concave portions 151 and the convex portions 152 are alternately and continuously arranged along the vertical direction P and the horizontal direction Q, so that the skin-side contact portion is formed. They are arranged apart from each other in two directions, the vertical direction P and the horizontal direction Q (see FIG. 8).
  • the top of the non-skin side convex portion 155 is in contact with the absorber 14 on the non-skin facing surface of the sublayer 15 (see FIG. 7). Further, on the non-skin facing surface of the sub-layer 15, the non-skin side recess 154 is not in contact with the absorber 14. As described above, the sublayer 15 has a non-skin side contact portion that comes into contact with the absorber 14 and a non-skin side non-contact portion that does not come into contact with the absorber 14 on the non-skin facing surface thereof.
  • the non-skin side contact portion is arranged so as to be separated from each other in two directions, the vertical direction P and the horizontal direction Q.
  • each skin-side contact portion is preferably arranged so as to be surrounded by the skin-side non-contact portion (see FIG. 8).
  • a continuous space in which the spaces S2 of the recess 151, which is the non-contact portion on the skin side, are connected to each other is formed in the plane direction. This continuous space is effective in improving the diffusivity of loose stools.
  • the space S2 of the concave portion 151 is also the internal space S2 of the non-skin side convex portion 155.
  • each non-skin side contact portion is preferably arranged so as to be surrounded by the non-skin side non-contact portion (see FIG. 8).
  • a continuous space in which the spaces S1 of the non-skin side concave portion 154, which is the non-skin side non-contact portion, are connected to each other is formed in the plane direction.
  • This continuous space is also effective in improving the diffusivity of loose stools.
  • the space S1 of the non-skin side concave portion 154 is also the internal space S1 of the convex portion 152.
  • the space S2 between the sublayer 15 and the surface sheet 10 and the space S1 between the sublayer 15 and the absorber 14 do not include gaps between the constituent fibers constituting the sublayer 15. Specifically, it does not include fine gaps having a fiber-to-fiber distance of about 0.01 mm to 0.2 mm.
  • the distance between the adjacent non-skin side contact portions closest to each other is determined. It is preferably 0.5 mm or more, more preferably 1 mm or more, preferably 10 mm or less, more preferably 8 mm or less, and preferably 0.5 mm or more and 10 mm or less, more preferably 1 mm or more and 8 mm or less. From the same viewpoint as above, when the sublayer 15 is viewed in a plan view from the surface sheet 10 side which is the skin facing surface side, the distance between the adjacent skin side contact portions which are the closest positions is the closest position. It is preferable that the distance is the same as the distance between adjacent non-skin side contact portions. The distance between the adjacent skin-side contact portions and the distance between the adjacent non-skin-side contact portions are measured by the following method.
  • a size of 50 mm (horizontal direction Q) ⁇ 50 mm (vertical direction P) is cut out from the sublayer 15, and this is used as a measurement sample. Then, in a non-pressurized state, the measurement sample is placed with the non-skin facing surface facing up, a transparent acrylic plate weighing 50 g is placed on the measurement supplement, and a weight of 700 g is further placed on the acrylic plate. Is placed. Then, with a load of 30 gf / cm 2 applied, the surface shape of the measurement sample is measured using a high-precision shape measurement system KS-1100 manufactured by Keyence Corporation.
  • the measurement conditions are a measurement pitch of 50 ⁇ m and a moving speed of 10 cm / s, and an image is acquired by measuring a range of 40 mm (CD direction) ⁇ 40 mm (MD direction).
  • the image is analyzed using a shape analysis application KS-Analyzer manufactured by Keyence Corporation, and a position where the maximum thickness is obtained and a position where the thickness difference from the maximum thickness is 500 ⁇ m or less are extracted.
  • the region extracted by this is referred to as a non-skin side contact portion.
  • a region other than the extracted region is defined as a non-skin side non-contact portion.
  • non-skin side contact parts and non-skin side non-contact parts are binarized. Specifically, the image is taken into Image-Pro Plus (manufactured by Nippon Roper Co., Ltd.), the black-and-white contrast is set to 100 for contrast enhancement, and noise is generated by filtering (median, 5x5 5 times). To remove. Next, for the binarized image, a line connecting the centers of gravity of the adjacent non-skin side contact portions is drawn.
  • the center of gravity of the non-skin side contact portion draws a perpendicular line perpendicular to the ferret diameter at the center of the ferret diameter length of one non-skin side contact portion, and is set as the center of two points where the perpendicular line and the interface of the contact portion intersect. Then, a line connecting the closest centers of gravity is drawn, the distance between the lines is measured, and the obtained measured value is taken as the distance between the adjacent non-skin side contact portions.
  • the distance between the adjacent skin-side contact portions is placed with the skin-facing surface of the measurement sample facing up, and thereafter, the measurement is performed by the same operation as the distance between the adjacent non-skin-side contact portions.
  • the load of 30 gf / cm 2 is the pressure applied to the dorsal part of the diaper when the young child is wearing the diaper and the young child is lying on his back when the young child is wearing the diaper 1. (Withstand voltage) is assumed.
  • the fiber sheet such as the sublayer 15
  • a hydrophilic and liquid permeable sheet can be used, and specific examples thereof include paper, woven fabric, and non-woven fabric, but the strength is relatively strong and the flexibility is also high. Nonwoven fabrics are particularly preferred in terms of excellence.
  • the non-woven fabric the above-mentioned non-woven fabric can be used without particular limitation.
  • the fiber sheet preferably contains an air-through nonwoven fabric.
  • the fiber sheet may be made of an air-through nonwoven fabric, or may be a laminated nonwoven fabric in which an air-through nonwoven fabric and another nonwoven fabric are laminated.
  • the sub-layer 15 (fiber sheet) of the present embodiment has a single-layer structure, but instead of this, it may have a multi-layer structure in which a plurality of layers are laminated. Further, as the uneven shape in the sublayer 15, for example, a cone shape such as a cone, a cone, a pyramid, a pyramid, an oblique cone, or the like can be adopted. Examples of the method for producing such a sublayer 15 include the methods described in JP2013-133574A, JP2012-149370A, JP2012-149371A, and the like.
  • FIG. 9 shows a manufacturing apparatus 100, which is an embodiment of the surface sheet manufacturing apparatus according to the present invention.
  • the manufacturing apparatus 100 includes a concavo-convex shaping unit 30 and an ultrasonic processing unit 40.
  • the unevenness shaping portion 30 includes an unevenness roll 31 having an unevenness on the peripheral surface portion.
  • the first sheet 1 is made to follow the peripheral surface portion of the rotating unevenness roll 31, so that the first sheet 1 is deformed into an uneven shape along the uneven shape of the peripheral surface portion.
  • the unevenness shaping portion 30 includes, in addition to the unevenness roll 31, another unevenness roll 32 having an unevenness that meshes with the unevenness of the unevenness roll 31 on the peripheral surface portion.
  • the uneven roll 31 is also referred to as a “first roll”
  • the uneven roll 32 is also referred to as a “second roll”.
  • both rolls 31 and 32 are used, and both rolls 31 and 32 are rotated so that the meshing portion 33 between the irregularities of both rolls 31 and 32 is formed, and the meshing portion 33 is formed.
  • the first sheet 1 is deformed into a concavo-convex shape along the concavo-convex shape of the peripheral surface portion of the concavo-convex roll 31.
  • FIG. 10 shows a part of the peripheral surface portion of the concave-convex roll 31 (first roll).
  • the uneven roll 31 is formed by combining a plurality of spur gears 31a, 31b, ... With a predetermined tooth width into a roll shape.
  • the teeth of each gear form a convex portion 35 having an uneven shape on the peripheral surface portion of the concave-convex roll 31, and the tip surface 35c of the convex portion 35 is the tip of the ultrasonic horn 42 of the ultrasonic fusion machine 41 described later.
  • It is a pressure surface that pressurizes the first and second sheets 1 and 2 to be fused with the vibration application surface 42t, which is a surface.
  • the tooth width (length in the axial direction of the gear) of each gear constituting the concave-convex roll 31 determines the dimension in the X direction of the convex portion 5 of the surface sheet 10, and the length of the tooth of each gear (direction of rotation of the gear). Length) determines the dimension in the Y direction of the convex portion 5 of the surface sheet 10. Adjacent gears are combined so that the pitch of their teeth is offset by half a pitch. As a result, the concave-convex roll 31 has a concave-convex shape on its peripheral surface.
  • the tip surface 35c of each convex portion 35 has a rectangular shape with a long side in the rotation direction of the concave-convex roll 31 and a short side in the axial direction.
  • the contact time of the tip portion of the ultrasonic horn 42 with the vibration application surface 42t of one of the convex portions 35 of the concave-convex roll 31 is lengthened to facilitate the temperature rise. It is preferable because it can be used.
  • the recesses of the gears in the concave-convex roll 31 form the concave-convex recesses on the peripheral surface of the concave-convex roll 31.
  • a suction hole 34 is formed in the tooth bottom portion (bottom portion of the recess) of each gear.
  • the suction hole 34 communicates with a suction source (not shown) such as a blower or a vacuum pump, and extends from the meshing portion 33 between the concave-convex roll 31 and the concave-convex roll 32 to the confluence portion between the first sheet 1 and the second sheet 2. It is controlled so that suction is performed between them.
  • the first sheet 1 deformed into a concavo-convex shape by the engagement between the concavo-convex roll 31 and the concavo-convex roll 32 is deformed into a shape along the concavo-convex shape of the peripheral surface portion of the concavo-convex roll 31 by the suction force of the suction hole 34.
  • it is conveyed to the confluence portion of the first sheet 1 and the second sheet 2 and the application portion 36 of the ultrasonic vibration by the ultrasonic fusion machine 41.
  • a predetermined gap G is provided between the adjacent gears, so that an unreasonable stretching force is applied to the first sheet 1 or the meshing portion 33 of both rolls 31 and 32 is the second. Since the inconvenience of cutting the 1 sheet 1 is suppressed, the 1st sheet 1 is likely to be deformed into an uneven shape along the shape of the peripheral surface portion of the uneven roll 31.
  • the concavo-convex roll 32 (second roll) has a concavo-convex shape on its peripheral surface that meshes with the concavo-convex on the peripheral surface of the concavo-convex roll 31.
  • the concavo-convex roll 32 has the same configuration as the concavo-convex roll 31 except that it does not have a suction hole 34.
  • the diameter of the concave-convex roll 31 and the diameter of the concave-convex roll 32 may be different on the premise that the uneven portions of both rolls 31 and 32 mesh with each other.
  • the first sheet 1 can be deformed into an uneven shape by introducing the first sheet 1 into the meshing portion 33 of both rolls 31 and 32 while rotating both rolls 31 and 32 having irregularities that mesh with each other. can.
  • the meshing portion 33 a plurality of portions of the first sheet 1 are pushed into the concave portions of the peripheral surface portion of the concave-convex roll 31 by the convex portions of the concave-convex roll 32, and the pushed portions are the convex portions of the manufactured surface sheet 10. It becomes 5.
  • a plurality of convex portions to be inserted into the concave portions of the concave-convex roll 31 are formed on the peripheral surface portion of the concave-convex roll 32, but the concave-convex roll 32 is formed with convex portions corresponding to all the concave portions of the concave-convex roll 31. It is not essential to be there.
  • the uneven shape shaping portion 30 shown in FIG. 9 is provided with two uneven rolls having irregularities on the peripheral surface portion, and the meshing portions 33 between the irregularities of the two uneven rolls 31 and 32 are formed.
  • the concavo-convex roll to be provided may be only the concavo-convex roll 31 capable of sucking the first sheet 1 introduced into the peripheral surface portion, that is, the concavo-convex roll 32 may not be provided.
  • the first sheet 1 becomes uneven due to the suction force of the suction holes 34 (see FIG. 10) arranged in the peripheral surface portion. It deforms to follow the shape of.
  • Such follow-up / deformation of the first sheet 1 by suction on the peripheral surface portion of the concave-convex roll 31 can be realized by appropriately adjusting the suction force and the arrangement of the suction holes 34.
  • the ultrasonic processing unit 40 includes an ultrasonic fusion machine 41 equipped with an ultrasonic horn 42, and a second sheet 2 is superposed on the first sheet 1 in a state of being deformed into an uneven shape, and both sheets are superposed. 1 and 2 are sandwiched between the convex portion 35 of the concave-convex roll 31 and the vibration application surface 42t at the tip of the ultrasonic horn 42, and ultrasonic vibration is applied to form the through hole 6 and the first. The sheet 1 and the second sheet 2 are fused. Further, a fiber orientation region 20 is formed in a part of the opening end 6e of the through hole 6.
  • the ultrasonic fusion splicer 41 includes an ultrasonic oscillator (not shown), a converter 43, a booster 44, and an ultrasonic horn 42.
  • the ultrasonic oscillator (not shown) is electrically connected to the converter 43, and a high voltage electric signal having a wavelength of about 15 to 50 kHz generated by the ultrasonic oscillator is input to the converter 43.
  • the ultrasonic oscillator (not shown) is installed on the movable table 45 or outside the movable table 45.
  • the converter 43 has a built-in piezoelectric element such as a piezo piezoelectric element, and converts an electric signal input from an ultrasonic oscillator into mechanical vibration by the piezoelectric element.
  • the booster 44 adjusts, preferably amplifies, and transmits the amplitude of the mechanical vibration generated from the converter 43 to the ultrasonic horn 42.
  • the ultrasonic horn 42 is made of a lump of metal such as an aluminum alloy or a titanium alloy, and is designed to resonate correctly at the frequency used.
  • the ultrasonic vibration transmitted from the booster 44 to the ultrasonic horn 42 is also amplified or attenuated inside the ultrasonic horn 42, and is applied to the first and second sheets 1 and 2 to be fused.
  • a commercially available ultrasonic horn, converter, booster, and ultrasonic oscillator can be used in combination.
  • the ultrasonic fusion machine 41 is fixed on the movable table 45, and the position of the movable table 45 is moved back and forth along the direction approaching the peripheral surface portion of the concave-convex roll 31, so that the tip surface of the ultrasonic horn 42 can be used.
  • the clearance between a certain vibration application surface 42t and the tip surface 35c of the convex portion 35 of the first roll 31 and the pressing force on the laminated first and second sheets 1 and 2 can be adjusted.
  • the first and second sheets 1 and 2 to be fused are formed with the tip surface 35c of the convex portion 35 of the concave-convex roll 31 and the vibration application surface 42t of the tip portion of the ultrasonic horn 42 in the ultrasonic fusion machine 41.
  • the vibration application surface 42t at the tip of the ultrasonic horn 42 is formed of the tip surface of the main body 420 (see FIG. 11) of the ultrasonic horn 42 made of a metal such as an aluminum alloy or a titanium alloy, and is more specific than the object to be fused. Is in contact with the second sheet 2.
  • the manufacturing apparatus 100 includes a preheating means 51 that preheats at least one of the first sheet 1 and the second sheet 2 before applying ultrasonic vibration.
  • the preheating means 51 is arranged inside the concave-convex roll 31 (first roll) and extends parallel to the rotation axis (CD) of the concave-convex roll 31. Further, a plurality of preheating means 51 are arranged in the vicinity of the outer peripheral portion around the rotation axis of the concave-convex roll 31 with an interval in the circumferential direction.
  • the preheating means 51 one that can heat the object to be heated (first sheet 1, second sheet 2) by applying heat energy from the outside can be used, and examples thereof include a cartridge heater using a heating wire.
  • the present invention is not limited to this, and various known heating means can be used without particular limitation.
  • the preheating means 51 is a part of the preheating mechanism 50.
  • the preheating mechanism 50 includes a temperature measuring means (not shown) capable of measuring the temperature of the fused object before applying ultrasonic vibration, and preheating based on the measured values of the temperature measuring means.
  • a temperature control unit (not shown) for controlling the temperature of the means 51 is provided.
  • the heating temperature of the peripheral surface portion of the uneven roll 31 by the preheating means 51 is controlled by the temperature control unit.
  • the preheating mechanism 50 can maintain the temperature of the first sheet 1 introduced into the ultrasonic vibration application unit 36 within a predetermined range during the operation of the manufacturing apparatus 100.
  • the manufacturing apparatus 100 includes a horn heating means 61 for heating the ultrasonic horn 42 including the vibration application surface 42t.
  • the horn heating means 61 is not arranged on the vibration application surface 42t, but is fixed in the vicinity of the vibration application surface 42t, specifically, on the side surface of the tip portion of the ultrasonic horn 42.
  • various known heating means such as a heater can be used without particular limitation.
  • the horn heating means 61 is a part of the horn heating mechanism 60.
  • the horn heating mechanism 60 measures the temperature of the horn heating means 61 based on the temperature measuring means (not shown) capable of measuring the temperature of the vibration application surface 42t and the measured values of the temperature measuring means. It is equipped with a temperature control unit (not shown) to control.
  • the heating temperature of the vibration application surface 42t by the horn heating means 61 is controlled by the temperature control unit.
  • the horn heating mechanism 60 can maintain the temperature of the vibration application surface 42t within a predetermined range during the operation of the manufacturing apparatus 100.
  • the ultrasonic fusion machine 41 applies ultrasonic vibration to the fusion target to generate heat and melt the fusion target to fuse it, and the preheating means 51 and the horn heating means described above are used. It is clearly distinguished from 61.
  • a groove-shaped recess 46 is formed on the vibration application surface 42t of the ultrasonic horn 42.
  • FIG. 13 shows a schematic cross-sectional view of the tip of the ultrasonic horn 42 along the MD
  • FIG. 14 shows a schematic plan view of the vibration application surface 42t of the ultrasonic horn 42.
  • FIG. 13 is an enlarged cross-sectional view of the tip of the ultrasonic horn 42 shown in FIG.
  • the groove-shaped recess 46 extends along the rotation axis (CD) of the concave-convex roll 31 (first roll).
  • the term "extending along the rotation axis (CD)" as used herein means that the angle formed by the groove-shaped recess 46 and the rotation axis (CD) of the concave-convex roll 31 is less than 45 degrees.
  • the groove-shaped recess 46 shown in FIG. 14 extends parallel to the rotation axis (CD), and the angle formed with the rotation axis (CD) is zero.
  • one groove-shaped recess 46 is formed on the vibration application surface 42t. As shown in FIG. 14, this one groove-shaped recess 46 is located at the center of the length along the MD of the vibration application surface 42t, and extends over the entire length along the CD.
  • the groove-shaped recess 46 is defined by a pair of recess side surfaces 46a and 46a and a recess bottom surface 46b in a cross-sectional view along a direction (that is, MD) orthogonal to the rotation axis of the concave-convex roll 31 as shown in FIG.
  • the pair of concave side surfaces 46a and 46a intersect the vibration application surface 42t, and more specifically, are connected to the vibration application surface 42t and extend in a direction away from the vibration application surface 42t.
  • the recess bottom surface 46b is connected to each of the pair of recess side surfaces 46a and 46a in the longitudinal direction and faces the opening 46d of the groove-shaped recess 46.
  • FIG. 12 In the ultrasonic horn 42 shown in FIG. 12 (FIG.
  • the corner portion 46c where the recess side surface 46a and the vibration application surface 42t intersect is sharp, and the recess bottom surface 46b is seen from the opening 46d in a cross-sectional view along the MD. It has an arc shape that is recessed toward the distance.
  • the angle formed by the concave side surface 46a and the vibration application surface 42t is 90 degrees. That is, the angle formed by the corner portion 46c is 90 degrees.
  • the first sheet 1 is made to follow the peripheral surface portion while rotating the concave-convex roll 31 (first roll) having irregularities on the peripheral surface portion. It has a shaping step of transforming it into an uneven shape. Further, in the method of manufacturing the surface sheet 10 using the manufacturing apparatus 100, the first sheet 1 deformed into an uneven shape is conveyed while being held on the concave-convex roll 31, and the second sheet is transferred to the first sheet 1 being conveyed. It has a superposition step of superimposing two.
  • both the sheets 1 and 2 that are overlapped are mounted on the convex portion 35 of the concave-convex roll 31 and the tip portion of the ultrasonic horn 42 provided in the ultrasonic fusion machine 41. It has an ultrasonic processing step of applying ultrasonic vibration by sandwiching it between the vibration application surface 42t and the vibration application surface 42t.
  • the first sheet 1 is introduced into the meshing portion 33 between the irregularities of the two concave-convex rolls 31 and 32, and the first sheet 1 is deformed into the concave-convex shape.
  • the angle ⁇ 35 (see FIG. 12) at the corner of the tip is preferably 90 degrees or more, more preferably 105 degrees or more, and preferably less than 135 degrees, more preferably less than 120 degrees.
  • the ultrasonic horn As the ultrasonic horn, the above-mentioned specific ultrasonic horn, that is, a groove-shaped recess extending along the rotation axis (CD) of the concave-convex roll 31 (first roll) on the vibration application surface 42t.
  • a through hole 6 is formed in the laminated product (fused object) of the first sheet 1 and the second sheet 2 which are overlapped with each other.
  • the fiber orientation region 20 is formed in the fused portion where the first sheet 1 and the second sheet 2 are fused and a part of the open end 6e of the through hole 6.
  • the tip surface of the convex portion 35 of the concave-convex roll 31 is conveyed to the MD while the fusion target (a laminate of the first sheet 1 and the second sheet 2) is conveyed to the MD.
  • Ultrasonic vibration is applied by sandwiching it between 35c and the vibration application surface 42t in which the groove-shaped recess 46 of the ultrasonic horn 42 is formed.
  • the vibration application surface 42t that presses the fusion target toward the convex portion 35 has a pair of corner portions located in front of and behind the MD with the opening 46d of the groove-shaped concave portion 46 interposed therebetween.
  • the stress generated when pressing the fusion target is concentrated on the corner 46c, and the shearing force applied to the fusion target via the corner 46c is applied to the corner 46c (groove-shaped recess). 46) is improved as compared with the case where it is not formed. Therefore, in the ultrasonic treatment step, in addition to the heat generated by the fusion target due to the ultrasonic vibration, a strong shearing force due to the groove-shaped recess 46 acts on the fusion target, and as a result, the fusion target is subjected to a strong shearing force.
  • a fused portion, a through hole 6, and a fiber alignment region 20 can be simultaneously formed in a portion of the fusion target to be sandwiched between the tip surface 35c of the convex portion 35 and the vibration application surface 42t of the ultrasonic horn 42.
  • the ultrasonic treatment step even if the resin forming the first sheet 1 and / or the second sheet 2 has a high melting point exceeding 200 ° C. (for example, PET), the fused portion and the penetration portion are penetrated. It is possible to perform the hole 6 and the fiber orientation region 20 at the same time.
  • an ultrasonic horn (see FIGS. 12 to 14) having a groove-shaped recess extending along the rotation axis of the concave-convex roll is used on the vibration application surface to open the through hole 6. It is considered that the fiber orientation region 20 is easily formed in a part of the end 6e. The inventor's consideration of the method of forming the fiber orientation region 20 will be described below.
  • the tip surface 35c of the convex portion 35 of the concave-convex roll 31 and the ultrasonic horn 42 are conveyed to the MD while the fusion target (the laminate of the first sheet 1 and the second sheet 2) is conveyed to the MD.
  • Ultrasonic vibration is applied by sandwiching it between the vibration application surface 42t in which the groove-shaped recess 46 is formed. As a result, a melted portion in which the first sheet 1 and the second sheet 2 are melted is formed.
  • the stress generated when the object to be fused is pressed is applied to the front side (downstream side) of the MD among the pair of corner portions 46c and 46c located in the front and back of the MD with the opening 46d of the groove-shaped recess 46 interposed therebetween. Since it concentrates on the corner portion 46c located, a shearing force acts along the MD on the peripheral edge of the formation position of the fusion target, particularly the through hole 6, via the corner portion 46c.
  • the contact portions of the front and rear corners 46c and 46c of the MD in the fusion target are broken to form the through hole 6 and the side of the through hole 6 along the MD. It is presumed that when the portion is pulled, the fibers located on the side portion are oriented along the MD, and the fiber alignment region 20 is formed. Further, when the fusion target is broken by the shearing force, it is pulled in the direction away from the first sheet 1 in the thickness direction of the fusion target, so that it is along the direction away from the first sheet 1 in the same thickness direction. It is presumed that the fibers 21 in the region are oriented. In this way, the fiber orientation region 20 is formed on the side portion of the through hole 6 along the longitudinal direction by the shearing force along the MD.
  • the pressing force applied to the first and second sheets 1 and 2 by sandwiching the mixture is preferably 20 N / mm or more, and more preferably 30 N / mm or more.
  • the pressing force is preferably 80 N / mm or less, more preferably 70 N / mm or less.
  • the “pressurizing pressure” here is a so-called linear pressure, which is the tooth width of the convex portion 35 (the length of the convex portion 35 along the CD) that contacts the pressing force (N) of the ultrasonic horn 42 with the ultrasonic horn 42. It is shown by the value (pressurization per unit length) divided by the total length (excluding the concave portion of the concave-convex roll 31).
  • the frequency of the applied ultrasonic vibration is preferably 15 kHz or higher, more preferably 20 kHz or higher.
  • the frequency is preferably 50 kHz or less, more preferably 40 kHz or less.
  • the amplitude of the applied ultrasonic vibration is preferably 20 ⁇ m or more, more preferably 25 ⁇ m or more.
  • the amplitude is preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less.
  • the transport speed of the fusion target (layered product of the first sheet 1 and the second sheet 2) in the ultrasonic treatment step is preferably 200 m / min or more, more preferably 250 m / min.
  • the above is more preferably 400 m / min or less, and more preferably 350 m / min or less.
  • the tension applied to the fusion target (the laminate of the first sheet 1 and the second sheet 2) during transportation in the ultrasonic treatment step is preferably 20 N / m or more, more preferably 20 N / m or more. Is 30 N / m or more, preferably 90 N / m or less, and more preferably 60 N / m or less.
  • the tension can be adjusted by changing the transport speed of the fused object up to the ultrasonic treatment step.
  • the corner portion 46c defining the opening 46d of the groove-shaped recess 46 is sharp, the corner portion 46c is not sharp but rounded.
  • the shearing force applied to the object to be fused (the laminate of the first sheet 1 and the second sheet 2) is improved, and therefore the fused portion and the penetration portion are penetrated. Simultaneous formation of the pore 6 and the fiber orientation region 20 can be performed more reliably.
  • the angle formed by the concave side surface 46a and the vibration application surface 42t in the corner portion 46c is preferably 45 degrees or more, more preferably 60 degrees or more. preferable.
  • the angle is preferably 135 degrees or less, more preferably 120 degrees or less.
  • the groove-shaped recess 46 is formed on the vibration application surface 42t of the ultrasonic horn 42, the durability of the ultrasonic horn 42 (particularly the main body 420) is lowered, and the main body portion starts from the groove-shaped recess 46 during ultrasonic vibration. There is a concern that cracks will occur in 420 and the like.
  • the concave bottom surface 46b defining the groove-shaped concave portion 46 is recessed in the direction away from the opening 46d in the cross-sectional view along the MD of the ultrasonic horn 42 as shown in FIG. By making it an elliptical shape, such concerns are dispelled.
  • the curvature of the recess bottom surface 46b is preferably 1 or more, and more preferably 2 or more.
  • the curvature of the bottom surface 46b of the recess is preferably 10 or less, more preferably 5 or less.
  • the width W (see FIGS. 13 and 14) of the groove-shaped recess 46 is preferably 0.2 mm or more, more preferably 0.5 mm or more.
  • the width W is preferably 2 mm or less, more preferably 1 mm or less.
  • the width W0 (see FIG. 14) of the vibration application surface 42t is preferably 5 mm or more, and more preferably 10 mm or more.
  • the width W0 is preferably 20 mm or less, more preferably 15 mm or less.
  • the length of the groove-shaped recess 46 along the CD that is, the length L along the rotation axis of the concave-convex roll 31 (first roll) (see FIG. 14) and the length L0 along the same direction of the vibration application surface 42t (see FIG. 14).
  • the length L / length L0 is preferably 0.2 or more, and more preferably 0.3 or more.
  • the ratio (length L / length L0) is preferably 1 or less.
  • the groove-shaped recess 46 extends over the entire length of the CD of the vibration application surface 42t, and the length L and the length L0 are the same, and the ratio is 1.
  • the length L0 of the vibration application surface 42t along the CD is preferably 30 mm or more, more preferably 50 mm or more.
  • the length L0 is preferably 200 mm or less, more preferably 150 mm or less.
  • the depth D of the groove-shaped recess 46 is preferably 0.3 mm or more. 5 mm or more is more preferable. The depth D is preferably 5 mm or less, more preferably 2 mm or less.
  • the groove-shaped recess 46 is preferably formed in the central portion of the MD of the vibration application surface 42t, and is particularly preferably within 5 mm, more preferably within 3 mm from the center of the MD of the vibration application surface 42t to the upstream side of the MD. It is preferably formed in the region. In the form shown in FIG. 14, the groove-shaped recess 46 is formed in the center of the MD of the vibration application surface 42t.
  • the manufacturing apparatus 100 includes the preheating means 51 (preheating mechanism 50), and in the method for manufacturing the surface sheet 10 using the manufacturing apparatus 100, the first sheet before being subjected to the ultrasonic treatment step. Since at least one of the first sheet and the second sheet 2 is preheated by the preheating means 51, the simultaneous formation of the fused portion, the through hole 6, and the fiber alignment region 20 is further ensured in combination with the action and effect of the groove-shaped recess 46. Can be done.
  • the conditions for preheating the fusion target by the preheating means 51 are not particularly limited and may be appropriately adjusted according to the type of the fusion target, etc., but at least one of the first sheet 1 and the second sheet 2 may be used. It is preferable to heat the sheet to a temperature lower than the melting point, which is 50 ° C. lower than the melting point. That is, it is preferable to perform either or both of the following (1) and (2) prior to the application of ultrasonic vibration. (1) The first sheet 1 is heated to a temperature lower than the melting point of the first sheet and 50 ° C. lower than the melting point. (2) The second sheet 2 is heated to a temperature lower than the melting point of the second sheet and 50 ° C. lower than the melting point.
  • the first sheet 1 is heated to a temperature lower than the melting point of the first sheet and 50 ° C. lower than the melting point, and the second sheet 2 is heated below the melting point of the second sheet and 50 from the melting point. °C Heat above a low temperature.
  • a method of the method (1) that is, a method of setting the first sheet 1 to a temperature lower than the melting point of the first sheet 1 and 50 ° C. lower than the melting point, for example, a first roll 31 (first roll) is provided.
  • the temperature of 1 sheet 1 is measured between the meshing portion 33 of the uneven rolls 31 and 32 and the ultrasonic vibration applying portion 36 by the ultrasonic fusion machine 41, and the measured value is within the above-mentioned specific range.
  • the temperature of the preheating means 51 is controlled so as to be.
  • the temperature of the peripheral surface of the uneven roll 31 is arranged in the uneven roll 31 so that the first sheet 1 has a temperature in the specific range.
  • a variety of methods can be used in place of the method controlled by the heater.
  • a heater, a hot air outlet, and a far-infrared irradiation device are provided in the vicinity of the peripheral surface portion of the concave-convex roll 31, and the temperature of the peripheral surface portion of the uneven roll 31 before or after the first sheet 1 is placed is controlled by these.
  • a method of heating the uneven roll 32 (second roll) in contact with the first sheet 1 in the meshing portion 33 and controlling the temperature of the first sheet 1 by controlling the temperature of the peripheral surface portion thereof can be mentioned.
  • a method of contacting the first sheet 1 before being placed along the uneven roll 31 with a heated roller, passing through a space maintained at a high temperature, blowing hot air, and the like can be mentioned.
  • the second sheet 2 before merging with the first sheet 1 is used.
  • a temperature measuring means arranged in the transport path of the second sheet 2
  • the measured value was arranged in the transport path of the second sheet 2 so as to be within the above-mentioned specific range. 2 It is preferable to control the temperature of the heating means (not shown) of the sheet 2.
  • the heating means of the second sheet 2 may be a contact method such as contacting a heated roller or the like, or a non-contact method such as passing through a space maintained at a high temperature, blowing or penetrating hot air, or irradiating infrared rays. It may be an expression.
  • the melting points of the first sheet 1 and the second sheet 2 can be measured using, for example, a differential scanning calorimetry device (DSC) PYRIS Diamond DSC manufactured by Perkin-Elmer.
  • DSC differential scanning calorimetry device
  • the melting point of the measurement target is determined from the peak value of the measurement data.
  • the first sheet 1 or the second sheet 2 is a fiber sheet such as a non-woven fabric and the constituent fibers are composite fibers composed of a plurality of components such as a core sheath type and a side-by-side type
  • the melting point of the sheet Is the melting point of the lowest temperature among the plurality of melting points measured by DSC as the melting point of the composite fiber sheet.
  • the manufacturing apparatus 100 includes a horn heating means 61 (horn heating mechanism 60), and in the ultrasonic treatment step, the vibration application surface 42t heated by the horn heating means 61 is a fusion target (the first).
  • the fusion portion, the through hole 6 and the fiber alignment region 20 are further simultaneously formed in combination with the action and effect of the groove-shaped recess 46. You can do it for sure.
  • the conditions for heating by the horn heating means 61 are not particularly limited, and may be appropriately adjusted according to the type of the object to be fused and the like.
  • the method (2) may be carried out by using the horn heating means 61 instead of the preheating means 51. That is, by controlling the temperature of the ultrasonic horn 42 (vibration application surface 42t) heated by the horn heating means 61, the temperature of the second sheet 2 immediately before the ultrasonic vibration is applied is set to the second sheet 2.
  • only one of the preheating means 51 and the horn heating means 61 may be used, or both may be used in combination.
  • each of the first sheet 1 and the second sheet 2 is a spunbond containing a core-sheath type composite fiber as a constituent fiber. It is preferably a non-woven fabric.
  • the core-sheath type composite fiber it is preferable to use a fiber having polyethylene terephthalate (PET) as a core portion and polyethylene (PE) as a sheath portion.
  • 15 to 18 show a main part (tip part) of another embodiment of the ultrasonic horn.
  • the embodiments described later will mainly be described with components different from those of the ultrasonic horn 42 described above, and the same components will be designated by the same reference numerals and description thereof will be omitted.
  • the description of the ultrasonic horn 42 is appropriately applied to the components not particularly described.
  • the concave bottom surface 46b of the groove-shaped concave portion 46 is a straight line, and the groove-shaped concave portion 46 is viewed in the same cross section.
  • the shape of the concave bottom surface 46b in a cross-sectional view is separated from the opening 46d as shown in FIG.
  • An arc shape recessed in the direction is preferable.
  • the vibration application surface 42t is directed toward a direction away from the rotation axis in a cross-sectional view along a direction (MD) orthogonal to the rotation axis of the concave-convex roll 31 (first roll). It has a concave arc shape.
  • the vibration application surface 42t referred to here is based on the assumption that the groove-shaped recess 46 does not exist, and more specifically, in the cross-sectional view along the MD as shown in FIG. 16, the groove-shaped recess 46 is formed. This is a case where the vibration application surface 42t is virtually extended from the corner portion 46c on one side of the MD to the corner portion 46c on the other side with the opening portion 46d interposed therebetween.
  • the cross-sectional shape of the vibration application surface 42t along the MD is arcuate in this way, the shearing force applied to the fusion target (the laminate of the first sheet 1 and the second sheet 2) in the ultrasonic treatment step.
  • simultaneous formation of the fused portion, the through hole 6, and the fiber alignment region 20 can be performed more reliably.
  • the arc-shaped vibration application surface 42t is curved along a circular trajectory (not shown) through which the tip of the convex portion 35 of the concave-convex roll 31 (first roll) passes. It is preferable to do. As a result, the time for sandwiching the fusion target (the laminate of the first sheet 1 and the second sheet 2) between the tip surface 35c of the convex portion 35 and the vibration application surface 42t becomes longer, and the fusion portion, the through hole 6 And the simultaneous formation of the fiber orientation region 20 can be performed more reliably.
  • the tip surface 35c of each of the plurality of convex portions 35 of the corresponding concave-convex roll 31 is in the same cross-sectional view. It is preferable that the concave-convex roll 31 has a convex shape in a direction away from the rotation axis, and the direction of the curve coincides with the vibration application surface 42t.
  • the radius of curvature of the vibration application surface 42t of the ultrasonic horn 42B is preferably 100% or more with respect to the radius of curvature of the tip surface 35c of the convex portion 35 of the concave-convex roll 31.
  • the radius of curvature of the vibration application surface 42t is preferably 500% or less, more preferably 200% or less.
  • the vibration application surface 42t has an arcuate cross-sectional shape along the MD over the entire area in the direction parallel to the rotation axis of the concave-convex roll 31.
  • a portion having a different cross-sectional shape may be provided in a portion that does not face the convex portion 35 in the direction parallel to the above.
  • the arc-shaped vibration application surface 42t protrudes from the portion of the vibration application surface 42t facing the gap G.
  • a flat portion or the like may be provided.
  • the tip portion of the ultrasonic horn 42 is configured to include a heat storage portion 421 fixed to the metal main body portion 420 of the ultrasonic horn 42C, and the vibration application surface 42t is formed. It is formed from a heat storage unit 421.
  • the groove-shaped recess 46 is formed in at least the heat storage portion 421.
  • the groove-shaped recess 46 is formed only in the heat storage portion 421, but may penetrate the heat storage portion 421 in the thickness direction and extend to the main body portion 420.
  • the vibration application surface 42t including the heat storage portion 421 shown in FIG. 17 has an arc shape in a cross-sectional view along the MD, like the vibration application surface 42t of the ultrasonic horn 42B described above, but does not have an arc shape. It may be flat without.
  • the heat storage unit 421 is made of a heat storage material which is a material having a lower thermal conductivity than the metal constituting the main body portion 420.
  • the thermal conductivity of the heat storage material constituting the heat storage unit 421 is preferably 2.0 W / mK or less, and more preferably 1.0 W / mK or less, from the viewpoint of making it difficult to dissipate heat to the ultrasonic horn or the atmosphere. Further, the thermal conductivity of the heat storage material is preferably 0.1 W / mK or more, more preferably 0.5 W / mK or more, from the viewpoint of efficiently heating the sheet.
  • the thermal conductivity of the heat storage material can be measured according to a conventional method using a thermal conductivity measuring device.
  • the vibration application surface 42t When the vibration application surface 42t is formed from the heat storage unit 421, the heat of the first and second sheets 1 and 2 generated by the ultrasonic vibration is stored in the heat storage unit 421, and as a result, the temperature of the heat storage unit 421 rises. The first sheet 1 and the second sheet 2 can be heated. Therefore, in combination with the action and effect of the groove-shaped recess 46 formed on the vibration application surface 42t, the fusion portion, the through hole 6 and the fiber alignment region 20 can be formed more reliably at the same time. Further, if the vibration application surface 42t is formed from the heat storage portion 421, there are inconveniences such as adhesion of the molten resin generated by melting of the first and second sheets 1 and 2 to the transport means, winding of the sheet around the transport roll, and the like.
  • the thickness Th (see FIG. 17) of the heat storage unit 421 is not particularly limited, but is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, from the viewpoint of more reliably achieving the action and effect of the heat storage unit 421.
  • the thickness Th is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less.
  • the heat storage material constituting the heat storage unit 421 it is preferable to use a synthetic resin having excellent wear resistance and heat resistance on the premise that the thermal conductivity is lower than that of the metal constituting the main body portion 420.
  • a synthetic resin having a rockwell hardness of R120 or more and R140 or less and a heat resistant temperature of 150 ° C. or more and 500 ° C. or less such as polyimide, polybenzoimidazole, polyether ethyl ketone, polyphenylene sulfide, polyetherimide, and polyamideimide. Can be mentioned.
  • a synthetic resin such as polyimide or polybenzimidazole having a rockwell hardness of R125 or more and R140 or less and a heat resistant temperature of 280 ° C. or more and 400 ° C. or less is particularly preferable.
  • the rockwell hardness is a value measured according to ASTM D-785
  • the heat resistant temperature is a value measured according to ASTM D-648.
  • the means for fixing the heat storage portion 421 made of synthetic resin to the metal main body portion 420 is not particularly limited, and known fixing means can be adopted.
  • the heat storage portion 421 made of synthetic resin can be formed on, for example, a metal main body portion 420 by thermal spraying and fixed to the main body portion 420.
  • thermal spraying as used herein means that particles of a thermal spraying material such as metal or ceramics, which have been melted or brought into a state close to it by heating, are accelerated and collided with the substrate surface at high speed to form a coating film on the substrate surface. It is a known surface treatment method for forming.
  • the spraying material a material that can be sprayed and can contribute to the improvement of the fixing strength of the heat storage portion 421 made of synthetic resin can be used without particular limitation, but the bonding force to the main body portion 420 made of a metal such as a titanium alloy can be used.
  • a metal such as a titanium alloy
  • ceramics such as tungsten carbide, zirconia, and chrome carbide, alloys such as aluminum magnesium and zinc aluminum, metals such as aluminum, stainless steel, titanium, and molybdenum, and composites of metal and ceramics.
  • a material such as thermite is preferably used.
  • the uneven portion 48 is formed on the groove-shaped concave portion non-forming portion 47 on the vibration application surface 42t. More specifically, as shown in FIG. 18A, a part of the groove-shaped concave portion non-forming portion 47 is a concave-convex portion 48, and the remaining portion of the groove-shaped concave portion non-forming portion 47 is smooth without unevenness. The smooth portion 49.
  • the uneven portion 48 has a larger surface roughness than the smooth portion 49, and therefore has a strong frictional force.
  • a shearing force acts on a portion of the fusion target (a laminate of the first sheet 1 and the second sheet 2) pressed by the uneven portion 48, so that the groove-shaped recess 46 acts. Combined with the effect, the simultaneous formation of the fused portion, the through hole 6 and the fiber alignment region 20 can be performed more reliably.
  • the uneven portion 48 has a plurality of convex portions 481 and a plurality of concave portions 482.
  • the convex portion 481 has a triangular shape in a cross-sectional view along the MD as shown in the figure, but the shape of the convex portion 481 in the same cross-sectional view is not particularly limited, and may be, for example, a quadrangle, a trapezoid, or the like.
  • the convex portion rows in which the convex portions 481 are arranged at equal intervals on the CD are evenly spaced in the MD.
  • the arrangement pattern arranged in is mentioned.
  • the convex rows in which the convex portions 481 are arranged at equal intervals on the CD are arranged at equal intervals on the MD, and the convex portions rows adjacent to the MD are arranged.
  • An arrangement pattern shifted by half a pitch can be mentioned.
  • the uneven portion 48 can be formed by subjecting the groove-shaped concave portion non-forming portion 47 on the vibration application surface 42t to knurling or thermal spraying.
  • the smooth portion 49 exists between the groove-shaped recess 46 and the uneven portion 48, but the smooth portion 49 does not exist between the groove-shaped recess 46 and the uneven portion 48, and the groove is formed.
  • the concave portion 46, the uneven portion 48, and the MD may be adjacent to each other. Further, the smooth portion 49 may not exist on the vibration application surface 42t, and the entire groove-shaped recess non-forming portion 47 may be the uneven portion 48.
  • the surface roughness of the uneven portion 48 is preferably an arithmetic average roughness Ra of 3.2 ⁇ m or more, and more preferably 6.3 ⁇ m or more.
  • the surface roughness of the uneven portion 48 is preferably an arithmetic average roughness Ra of 12.5 ⁇ m or less, more preferably 25 ⁇ m or less.
  • the arithmetic average roughness Ra can be measured by various surface roughness measuring machines, for example, using a surface roughness measuring machine manufactured by Mitutoyo Co., Ltd.
  • the ratio of the area (48S) of the uneven portion 48 to the area (47S) of the groove-shaped concave portion non-forming portion 47 of the vibration application surface 42t, that is, the ratio calculated by (48S / 47S) ⁇ 100 is preferably 15% or more. 30% or more is more preferable.
  • the ratio is preferably 100% or less, more preferably 80% or less.
  • the number of convex portions 481 constituting the uneven portion 48 per unit area (1 cm 2 ) is preferably 1 or more, and more preferably 100 or more.
  • the number of convex portions 481 per unit area (1 cm 2 ) is preferably 1,000,000 or less, and more preferably 10,000 or less.
  • the area of one convex portion 481 is preferably 0.0001 mm 2 or more, and more preferably 0.01 mm 2 or more.
  • the area of one convex portion 481 is preferably 100 mm 2 or less, and more preferably 1 mm 2 or less.
  • the present invention has been described above based on the preferred embodiment thereof, the present invention is not limited to the above embodiment and can be appropriately modified without departing from the spirit of the present invention.
  • the surface sheet 10 of the above-described embodiment has a plurality of convex portions 5 and concave portions 3, but may be a flat sheet having no convex portions 5 and concave portions 3.
  • the above-mentioned surface sheet 10 has a laminated structure in which the first sheet 1 and the second sheet 2 are laminated, the surface sheet 10 may have a single-layer structure.
  • the surface sheet 10 has the convex portion 5
  • the surface sheet 10 has the laminated structure from the viewpoint of further improving the strength of the convex portion 5 and further increasing the resistance to the body pressure of the wearer.
  • a plurality of groove-shaped recesses 46 may be formed.
  • a plurality of groove-shaped recesses 46 extending to the CD may be intermittently arranged in the MD, or a plurality of groove-shaped recesses 46 extending to the CD may be intermittently arranged in the CD.
  • the configuration provided in one of the above-described embodiments can be applied to other embodiments. For example, as shown in FIG. 16, the vibration application surface 42t (see FIG.
  • the ultrasonic horn 42D on which the uneven portion 48 is formed has a cross-sectional view (along the MD) along the direction orthogonal to the rotation axis of the uneven roll 31. In cross-sectional view), it may have an arc shape that is recessed toward the direction away from the rotation axis. Further, when the vibration application surface 42t is formed from the heat storage portion 421 as shown in FIG. 17, the uneven portion 48 may be formed on the vibration application surface 42t formed of the heat storage portion 421.
  • a fiber sheet arranged adjacent to the surface sheet on the non-skin facing surface side of the surface sheet is provided.
  • An absorbent article in which the fibers located in the fiber orientation region of the surface sheet and the constituent fibers of the fiber sheet are engaged with each other.
  • the number of fibers located in the fiber orientation region in one through hole is 1 or more and 100 or less, preferably 5 or more and 100 or less, and more preferably 20 or more and 50 or less.
  • the absorbent article described in. ⁇ 3> In one through hole, the number of fibers located in the fiber orientation region and having the tip facing the non-skin facing surface side in the thickness direction of the surface sheet is 1 or more and 100 or less, preferably 20 or more.
  • ⁇ 4> The absorbent article according to any one of ⁇ 1> to ⁇ 3>, wherein the area ratio of the through hole in the surface sheet is 4% or more and 30% or less, preferably 8% or more and 20% or less.
  • ⁇ 5> The absorbent article according to any one of ⁇ 1> to ⁇ 4>, wherein the area of the through hole per piece is 1 mm 2 or more and 30 mm 2 or less, more preferably 3 mm 2 or more and 20 mm 2 or less.
  • ⁇ 6> The number of holes per unit area (area of a 10 mm square region in a plan view) on which the fiber orientation region is formed on the surface sheet is 2 or more and 20 or less, preferably 4 or more and 15 or less.
  • the fiber sheet contains an air-through nonwoven fabric.
  • It has a vertical direction corresponding to the front-back direction of the wearer and a horizontal direction orthogonal to the vertical direction.
  • the through hole has a long shape in the vertical direction and has a long shape.
  • the surface sheet has the fiber orientation regions on both sides along the longitudinal direction of the through holes.
  • the surface sheet is any one of ⁇ 1> to ⁇ 14>, wherein the surface sheet has fibers whose outer portions are melted and whose fiber diameter is smaller than that of other fibers as fibers located in the fiber orientation region.
  • the fiber diameter of the fiber located in the fiber orientation region of the surface sheet is 40% or more and 80% or less, preferably 50% with respect to the fiber diameter of the fiber located in the portion other than the fiber orientation region of the surface sheet.
  • the absorbent article according to ⁇ 15> which is 70% or more and is 70% or less.
  • the absorbent article of the present invention it is possible to suppress the misalignment of the surface sheet while maintaining the permeability of excrement.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Abstract

本発明の吸収性物品(11)は、繊維材料からなり、複数の貫通孔(6)を有し、該貫通孔(6)の開口端(6e)の一部に、繊維が一方向に配向した繊維配向領域(20)を有する表面シート(10)を備えており、さらに該表面シート(10)の非肌対向面側で該表面シート(10)に隣接して配置された繊維シートを備えている。表面シート(10)における繊維配向領域(20)に位置する繊維(21)と、繊維シートの構成繊維とは係合している。繊維シートは、表面シート(10)及び吸収体(14)間に配されたサブレイヤー(15)、又は吸収体(14)の表面を形成するコアラップシートであることが好ましい。

Description

吸収性物品
 本発明は、吸収性物品に関する。
 使い捨ておむつ等の吸収性物品は、一般的に、液保持性の吸収体の肌対向面側に、着用者の肌に当接される表面シートを具備している。また、吸収性物品において、表面シートの非肌対向面側に、繊維からなるシート部材が該表面シートに直接積層されることが多い。例えば、本出願人は先に、第1不織布及び第2不織布を備え、これら2枚の不織布が部分的に熱融着されて接合した融着部に貫通孔が形成された表面シートと、液透過性のサブレイヤーとが積層しており、前記融着部が、前記サブレイヤーに向かって突出する突起部を有している、吸収性物品を開示した(特許文献1)。
特開2018-088997号公報
 本発明は、繊維材料からなる表面シートと繊維シートとを備える、吸収性物品に関する。
 前記繊維シートは、前記表面シートの非肌対向面側で、該表面シートと隣接して配置されていることが好ましい。
 前記表面シートは、複数の貫通孔を有し、該貫通孔の開口端の一部に、繊維が一方向に配向した繊維配向領域を有することが好ましい。
 前記表面シートにおける前記繊維配向領域に位置する繊維と、前記繊維シートの構成繊維とが係合していることが好ましい。
図1は、本発明の吸収性物品の一実施形態である展開型使い捨ておむつの展開且つ伸長状態における肌対向面側(表面シート側)を模式的に示す展開平面図である。 図2は、図1のII-II線断面を模式的に示す横断面図である。 図3は、図2に示す表面シートを模式的に示した平面図である。 図4は、図3に示す表面シートの縦方向に沿う断面図である。 図5は、図3に示す貫通孔の拡大平面図である。 図6は、図4に示す表面シートの凸部及び貫通孔を示す斜視図である。 図7は、図2に示す表面シート及びサブレイヤーの縦方向に沿う断面図である。 図8は、図7に示すサブレイヤーの斜視図である。 図9は、表面シートの製造装置の一実施形態を示す概略図である。 図10は、図9に示す凹凸ロール(第1ロール)の要部を拡大して示す斜視図である。 図11は、図9に示す超音波溶着機の要部を第2シートの搬送方向上流側から視た状態を示す正面図である。 図12は、図9に示す製造装置の要部(超音波ホーンの先端部及びその近傍)を示す図である。 図13は、図12に示す超音波ホーンの先端部の、凹凸ロールの回転軸に直交する方向(MD)に沿う断面を拡大して模式的に示した拡大断面図である。 図14は、図12に示す超音波ホーンの振動印加面(先端面)の平面図である。 図15は、超音波ホーンの他の実施形態を示す図13相当図である。 図16は、超音波ホーンのさらに他の実施形態の図13相当図である。 図17は、超音波ホーンのさらに他の実施形態の図13相当図である。 図18(a)は、超音波ホーンのさらに他の実施形態の図13相当図、図18(b)は、図18(a)に示す凹凸部及びその近傍を拡大して模式的に示した図である。
発明の詳細な説明
 表面シートに複数の貫通孔を設けることは、尿や軟便等の透過性を高める点で有効である。しかしながら、表面シートに貫通孔を設けると、該表面シートとこれに隣接して配置される繊維シートとの接触面積が小さくなり、表面シートと繊維シートとの接合性が低下する虞がある。そして、これにより表面シートの位置がずれて、着用感等を損なう場合がある。一方、前記接合性の問題を解決するために貫通孔を小さくすると、排泄物の透過性を損なう虞がある。特許文献1に記載の吸収性物品は、排泄物の透過性を維持しつつ、表面シートの位置ずれを抑制する点で改善の余地があった。
 したがって本発明は、排泄物の透過性を維持しつつ、表面シートの位置ずれを抑制し得る吸収性物品に関する。
 以下本発明を、その好ましい実施形態に基づき図面を参照しながら説明する。以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。図面は基本的に模式的なものであり、各寸法の比率などは現実のものとは異なる場合がある。
 図1及び図2には、本発明の吸収性物品の一実施形態である展開型使い捨ておむつ11が示されている。おむつ11は、上述した実施形態の表面シート10を具備するものである。おむつ11は、着用者の前後方向に対応する縦方向P及びこれに直交する横方向Qを有し、液保持性の吸収体14と、吸収体14よりも着用者の肌から近い側に配された表面シート10とを具備する。
 おむつ11は、図1に示すように、着用者の股間部に配される股下部B並びにその前後に延在する腹側部A及び背側部Cを有する。腹側部A、股下部B及び背側部Cは、おむつ11を縦方向Xに三等分した場合の各領域に相当し得る。股下部Bは、おむつ11の着用時に着用者のペニス、肛門等の排泄部に対向配置される排泄部対向部を有しており、該排泄部対向部は通常、おむつ11の縦方向Pの中央部又はその近傍に位置している。縦方向Xは、おむつ1の腹側部Aから股下部Bを介して背側部Cに延びる方向に対応している。
 おむつ11においては、図2に示すように、着用者の肌に近い順に、表面シート10と、液透過性のサブレイヤー15と、液保持性の吸収体14とが、この順で積層されている。より具体的には、おむつ11は、その主たる吸液部位である吸収体14と、吸収体14の肌対向面側に配され、吸収体14よりも着用者の肌から近い位置で吸収体14と重なる表面シート10と、吸収体14の非肌対向面側に配され、吸収体14よりも着用者の肌から遠い位置で吸収体14と重なる裏面シート13と、表面シート10と吸収体14との間に介在配置されたサブレイヤー15とを具備する。
 本明細書において、「肌対向面」は、使い捨ておむつ等の吸収性物品又はその構成部材(例えば吸収体)における、吸収性物品の着用時に着用者の肌側に向けられる面、すなわち相対的に着用者の肌から近い側であり、「非肌対向面」は、吸収性物品又はその構成部材における、吸収性物品の着用時に肌側とは反対側(着衣側)に向けられる面、すなわち相対的に着用者の肌から遠い側である。なお、ここでいう「着用時」は、通常の適正な着用位置が維持された状態を意味し、吸収性物品が適正な着用位置からずれた状態にある場合は含まない。
 表面シート10及び裏面シート13は、それぞれ、両シート10,13間に介在配置されたサブレイヤー15及び吸収体14よりも大きな寸法を有し、図1に示す如き展開且つ伸長状態のおむつ11の外形を形成している。
 吸収体14は、縦方向Pに長い形状を有し、腹側部Aから背側部Cにかけて延在している。吸収体14は、液保持性の吸収性コア140と、該吸収性コア140の外面を被覆するコアラップシート141とを含んで構成されている。吸収性コア140は、典型的には、木材パルプ等の親水性繊維を主体とする繊維集合体からなり、さらに、該繊維集合体又はシートに吸水性ポリマー粒子を担持させたものであり得る。コアラップシート141は、典型的には、紙、不織布等からなる。
 裏面シート13としては、この種の吸収性物品に従来用いられている各種のものを特に制限なく用いることができ、樹脂製フィルム、樹脂製フィルムと不織布等とのラミネート等を用いることができる。
 本実施形態のおむつ11は、表面シート10に隣接して配置された繊維シートとして、サブレイヤー15を備えている。サブレイヤー15は、表面シート10の非肌対向面側に配されており、表面シート10から吸収体14への液の透過性の向上、吸収体14に吸収された液の表面シート10への液戻りの低減などの役割を担うもので、吸収体14の肌対向面の略全域を被覆している。
 表面シート10、サブレイヤー15、吸収体14(吸収性コア140、コアラップシート141)及び裏面シート13どうしは、互いに接着剤等の公知の接合手段により接合されている。
 おむつ11は、図1及び図2に示すように、吸収体14の横方向Qの両端部に沿って配され、おむつ11の着用時に少なくとも股下部Bにおいて着用者の肌に向かって起立する一対の防漏カフ16,16を具備する。各防漏カフ16は、液抵抗性又は撥水性で且つ通気性の防漏シート160を含み、該防漏シート160は、横方向Qの一端側が他の部材(例えば表面シートや裏面シート)に固定されて固定端部とされ、横方向Qの他端側が他の部材に非固定の自由端部とされている。防漏シート160の前記自由端部には、防漏カフ形成用弾性部材161が、縦方向Pに伸長状態で固定されることで同方向に伸縮可能に配置されている。おむつ11の着用時には、弾性部材161の収縮力により、少なくとも股下部Bにおいて、防漏シート160の前記自由端部側が、前記固定端部を起立基端として着用者側に起立することで一対の防漏カフ16,16が起立し、これにより尿等の排泄物の横方向Q外方への流出が阻止される。防漏シート160としては、この種の吸収性物品において防漏カフの素材として用いられているものを特に制限なく用いることができ、液抵抗性又は撥水性で且つ通気性を有するものが好ましく、例えば、単層又は多層の撥水性不織布、樹脂製フィルムと不織布等とのラミネート材等を用いることができる。
 図1に示すように、着用者の脚周りに配される左右のレッグ部における防漏シート160と裏面シート13との間には、糸状の弾性部材17が縦方向Pに沿って伸長状態で固定されており、これにより、おむつ11の着用時におけるレッグ部には、弾性部材17の収縮により一対のレッグギャザーが形成される。表面シート10、サブレイヤー15、裏面シート13、吸収体14、防漏シート160及び弾性部材161は、ホットメルト型接着剤等の公知の接合手段により互いに接合されている。
 図1に示すように、おむつ11の背側部Cの縦方向Pに沿う両側縁部には、一対のファスニングテープ18,18が設けられている。ファスニングテープ18には、機械的面ファスナーのオス部材からなる止着部が取り付けられている。また、おむつ11の腹側部Aの非肌対向面には、機械的面ファスナーのメス部材からなる被止着領域19が形成されている。被止着領域19は、腹側部Aの非肌対向面を形成する裏面シート13の非肌対向面に、機械的面ファスナーのメス部材を公知の接合手段、例えば接着剤やヒートシール等で接合固定して形成されており、ファスニングテープ18の前記止着部を着脱自在に止着可能になされている。
 図3~図6には、本実施形態の表面シートが示されている。本実施形態の表面シート10は、繊維材料からなる繊維シートであり、該シートを貫通する貫通孔6を複数有している。
 表面シート10は、繊維材料からなる第1シート1及び第2シート2が積層した積層構造を有している。これら第1シート1及び第2シート2は、互いに融着した融着部(図示せず)を介して接合されている。
 第1シート1及び第2シート2は、繊維材料からなるシートで構成されている。斯かるシートとしては、例えば不織布、織布及び編み地等を用いることができる。肌触り等の観点から、不織布を用いることが好ましい。第1シート1と第2シート2を構成するシートの種類は同じでもよく、あるいは異なっていてもよい。
 不織布としては、例えば、エアスルー不織布、スパンボンド不織布、スパンレース不織布、メルトブローン不織布、レジンボンド不織布、ニードルパンチ不織布などが挙げられる。これらの不織布を2種以上組み合わせた積層体を用いることもできる。
 第1シート1及び第2シート2の各坪量は、好ましくは10g/m以上、より好ましくは15g/m以上であり、また好ましくは40g/m以下、より好ましくは35g/m以下であり、また好ましくは10g/m以上40g/m以下、より好ましくは15g/m以上35g/m以下である。
 不織布を構成する繊維としては、各種の熱可塑性樹脂からなる繊維を用いることができる。
 熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリブデン等のポリオレフィン、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル、ナイロン6、ナイロン66等のポリアミド、ポリアクリル酸、ポリメタクリル酸アルキルエステル、ポリ塩化ビニル、ポリ塩化ビニリデン等が挙げられる。これらの樹脂は1種を単独で又は2種以上のブレンド物として用いることができる。また、芯鞘型やサイド・バイ・サイド型などの複合繊維の形態で用いることができる。
 本実施形態の表面シート10は、図3に示すように、貫通孔6に隣接した部位に、表面シート10の一方の面側に突出する凸部5を複数有している。具体的には、図4に示すように、第1シート1における貫通孔6以外の部分の少なくとも一部が、第2シート2側とは反対側に突出した凸部5を複数形成している。
 凸部5及び貫通孔6それぞれは、縦方向Pに、交互に且つ一列をなすように配置されており、そのような列が、表面シート10の面と平行で且つ縦方向Pに直交する方向である横方向Qに、多列に形成されている。互いに隣接する列における凸部5及び貫通孔6は、それぞれ、縦方向Pにずれて配置されており、より具体的には、半ピッチずれて配置されている。
 本実施形態において、縦方向Pは、表面シート10の製造時における流れ方向(機械方向、以下「MD」ともいう。)と平行な方向であり、横方向Qは、表面シート10の製造時におけるMDに直交する方向(以下、「CD」ともいう。)と平行な方向である。また、後述する凹凸ロール31(第1ロール)及び凹凸ロール32(第2ロール)それぞれの回転軸は、CDに平行で、MDに直交している。
 本実施形態の表面シート10は、第1シート1側の面に、X方向及びY方向の両方向において凸部5に挟まれた多数の凹部3を有しており、個々の凹部3の底部に、貫通孔6が形成されている。
 表面シート10は、全体として見ると、第1シート1側の面に、前記の凹部3と前記の凸部5とからなる起伏の大きな凹凸を有し、第2シート2側の面は、平坦であるか、第1シート1側の面に対して相対的に起伏が小さい略平坦面となっている。
 本実施形態の表面シート10は、平面視において凸部5及び貫通孔6それぞれが、縦方向Pに長い平面視形状を有している(図3参照)。
 個々の貫通孔6は、縦方向Pに長い形状、より具体的には略長方形形状の平面視形状を有している。表面シート10は、貫通孔6の開口端6eの一部に、第1シート1及び第2シート2が互いに融着した融着部を有している(図示せず)。斯かる融着部では、第1シート1及び第2シート2の少なくとも一方における構成繊維の熱融着性樹脂が溶融固化しており、これによって第1シート1と第2シート2とが接合されている。
 表面シート10は、平面視において貫通孔6の開口端6eの一部に、繊維が一方向に配向した繊維配向領域20を備えている。本実施形態の貫通孔6は、図5に示すように、貫通孔6の長手方向(縦方向P)に沿う両側部それぞれに位置する一対の繊維配向領域20,20を有している。これに代えて、表面シート10は、貫通孔6の長手方向に沿う両側部のうち、何れか一方のみに繊維配向領域20を有していてもよく、貫通孔6の短手方向に沿う一対の両端部の一方又は双方に繊維配向領域20を有していてもよい。
 繊維配向領域20は、貫通孔6の開口端6eの一部に沿った領域であり、該領域では第1シート1及び第2シート2の構成繊維がフィルム化しておらず、繊維形態を維持している。繊維配向領域20において、該領域20に位置する繊維21は、貫通孔6内に位置している。以下、「繊維配向領域20において貫通孔6内に位置する繊維21」を「領域内繊維21」ともいう。
 繊維配向領域20では、図5及び図6に示すように、表面シート10の構成繊維が一方向に配向している。具体的には、繊維配向領域20において、各領域内繊維21の延在方向が概ね一致している。本実施形態の領域内繊維21は、平面視において貫通孔6の長手方向(縦方向P)に対して角度を有するように配向している(図5参照)。また、表面シート10をその厚み方向に沿って視たとき、領域内繊維21の内、該表面シート10の主面(平面方向)に対して、一定の角度で傾斜している繊維も存在する。より具体的には、領域内繊維21の内、表面シート10の厚み方向において、先端が非肌対向面側に向いた状態で配向している繊維が存在する。
 繊維配向領域20における領域内繊維21の配向方向は特に制限されない。例えば、貫通孔6の平面視において、領域内繊維21は、縦方向Pに沿って腹側部A側に配向していてもよく、縦方向Pに沿って背側部C側に配向してもよく、横方向Qに沿って配向していてもよい。また、領域内繊維21は、表面シート10の主面(平面方向)において二次元的に配向していてもよく、表面シート10の厚み方向において三次元的に配向していてもよい。
 説明の便宜上、図3及び図4では領域内繊維21の配向状態を図示しておらず、繊維配向領域20の位置を図示している。
 前述したように、表面シート10は、その非肌対向面側に配されたサブレイヤー15と隣接している。この表面シート10とサブレイヤー15との積層状態において、表面シート10の繊維配向領域20における領域内繊維21が、サブレイヤー15の構成繊維と係合している。本実施形態では、表面シート10の貫通孔6と、サブレイヤー15の凸部152とが重なっており、繊維配向領域20に位置する繊維21が、該凸部152に位置する繊維153と係合している(図7参照)。
 このように、繊維配向領域20に位置する繊維21が、サブレイヤー15等の表面シート10に隣接して配置された繊維シートの構成繊維と係合することによって、表面シート10と該繊維シートとが強固に接合されて、表面シート10の位置ずれを効果的に抑制できる。すなわち、表面シート10に貫通孔6を形成したことで該表面シート10と前記繊維シートとの接触面積が小さくなったとしても、前記係合によって表面シート10と前記繊維シートとの接合強度を担保できるので、貫通孔6による排泄物の透過性を維持しつつ、表面シート10の位置ずれを抑制できる。
 繊維配向領域20は、表面シート10の構成繊維であって、貫通孔6内に位置する繊維21を観察したとき、これら各繊維の配向方向が略同じになっている領域であり、以下の方法により特定される。
〔繊維配向領域の観察方法〕
 表面シート10について、鋭利な剃刀(例えばフェザー安全剃刃株式会社製片刃)を用いて、平面視50mm×50mmの領域を切り出し、これをサンプルとする。次いで、電子顕微鏡(例えば、日本電子株式会社製、型番:JCM-6000Plus)又はマイクロスコープ(例えば、株式会社キーエンス製、型番:VHX-1000)を用いて、サンプルの肌対向面及び非肌対向面の何れか一方の面側から貫通孔6を観察する。表面シート10がどちらか一方の面側に突出する凸部5を有している場合、該凸部5が突出した側とは反対側から貫通孔6を観察する。例えば表面シート10の肌対向面側に凸部5が形成されている場合は、非肌対向面側から貫通孔6を観察する。この平面視における貫通孔6の観察時の倍率は100倍とする。そして、観察視野において3mm×3mmの領域を撮影する。得られた画像を二値化処理する。具体的には、前記画像をImage-Pro Plus(株式会社日本ローパー社製)に取り込み、コントラストの強調で、黒白コントラストを100に設定し、フィルタ処理(メディアン、5×5を5回)によりノイズを除去する。この二値化処理した画像において、貫通孔6内に位置する繊維を観察対象とする。この観察対象の各繊維に関し、該繊維の基端が位置する開口端6eとのなす角度を配向角とし、該配向角を測定する。そして、繊維の先端が概ね同じ方向に向いており且つ繊維の配向角の平均値が0~60度以内である領域を特定し、これを繊維配向領域20とする。繊維配向領域20が位置する部分において、貫通孔6の開口端6eは、繊維が一方向に配向した領域(繊維配向領域20)と、繊維がランダムに配向した領域との境界とする。「繊維がランダムに配向した領域」は、後述する表面シート10の製造方法において貫通孔6を形成する前の不織布と同程度の配向状態を有する領域である。また、「繊維がランダムに配向した領域」には、繊維がフィルム化等して繊維の配向状態が特定できない領域が含まれる。斯かる領域は、前述の二値化処理した画像において繊維の配向状態が把握できない程、白くなった部分として観察される領域である。
 あるいは、貫通孔6の短手方向全長を二等分するように、該貫通孔6の長手方向に沿って該貫通孔6ごと表面シート10を切断し、その断面について上記と同様の方法で二値化処理した画像を取得する。斯かる画像において、先端(自由端)が非肌対向面側に向いた繊維が存在する領域を特定し、これを繊維配向領域20とする。斯かる繊維配向領域20では、繊維が、表面シート10の主面(平面方向)に対して、一定の角度で傾斜している。具体的には、当該繊維は、該繊維と貫通孔6の長手方向(本実施形態では縦方向P)とのなす角度の平均値が0度超~90度以内となる。
 繊維配向領域20及び領域内繊維21の寸法等(長さや角度、後述する存在本数等)を測定する場合は、特に断らない限り、以上の観察方法が適用される。
 前述の〔繊維配向領域の観察方法〕は、本発明の表面シート10の構成を具備する不織布全般に適用できる。より具体的には、表面シート10がエアスルー不織布である場合、繊維配向領域20は以下の方法により特定できる。
 平面視における表面シート10について、前述の〔繊維配向領域の観察方法〕と同様の方法により、二値化処理した画像を取得する。この画像中の貫通孔6とその近傍を観察すると、該貫通孔6内に存在するフィルム部分と、繊維形態を維持した構成繊維が存在するエアスルー部分とが確認できる。フィルム部分は、繊維形態を維持した構成繊維が観察されず、該構成繊維が溶融した部分であり、エアスルー部分に比して極端に厚みが小さくなっている。フィルム部分は、厚みが50μm以下の膜状部分である。表面シート10がエアスルー不織布により形成される場合、後述する製造方法において貫通孔6を形成する際、前記フィルム部分が貫通孔6の開口端6eから該貫通孔6の内方に向かって延出するように形成される。表面シート10では、貫通孔6内においてフィルム部分からさらに該貫通孔6の内方側に突出し且つ該内方側に自由端を有する繊維が存在しており、該繊維が領域内繊維21となって、繊維配向領域20を構成している。斯かる表面シート10の前記画像において、フィルム部分とエアスルー部分との境界を、貫通孔6の開口端6eとする。また、前記表面シート10における繊維配向領域20を構成する繊維(領域内繊維21)の配向は、該繊維21の基端側に位置する開口端e1(貫通孔6の端縁)と、該繊維21の基端と自由端とを結ぶ仮想線とがなす角度で表される。当該角度は、0~90度の鋭角である。この繊維配向領域20における領域内繊維21は、該繊維21の基端側に位置する開口端e1(貫通孔6の端縁)と、前記仮想線とがなす角度の平均値が0度超~90度以内となる。領域内繊維21の基端は、フィルム部分から突出する該繊維21におけるフィルム部分との連結部である。エアスルー不織布からなる表面シート10において、繊維配向領域20は、領域内繊維21を1本以上、好ましくは2本以上有する。
 表面シート10がエアスルー不織布により形成される場合、貫通孔6の長手方向(本実施形態ではP方向)におけるフィルム部分の長さは、フィルム部分の厚みに対して、好ましくは5倍以上450倍未満である。斯かる構成により、領域内繊維21と、前記繊維シートの構成繊維とをより強固に係合できる。
 上記と同様の観点から、貫通孔6の短手方向(本実施形態ではQ方向)におけるフィルム部分の長さは、フィルム部分の厚みに対して、好ましくは5倍以上250倍未満である。
 以下、繊維配向領域20や表面シート10の構成について詳述するが、以下の説明は、本発明の表面シート10の構成を具備する不織布全般に適用できる。
 繊維配向領域20に位置する繊維21と、サブレイヤー15等の表面シート10に隣接して配置された繊維シートの構成繊維とが係合しているか否かは、以下の方法により確認することができる。
 おむつ11から、表面シート10及びこれと隣接して配置された繊維シートを、これらシートが積層した状態で、且つ貫通孔6における繊維配向領域20の厚み方向全体が含まれるように、平面視50mm×50mmのサンプルを切り出す。次いで、サンプルの断面を、電子顕微鏡(例えば、日本電子株式会社製、型番:JCM-6000Plus)又はマイクロスコープ(例えば、株式会社キーエンス製、型番:VHX-1000)を用いて、倍率100倍で観察する。観察視野において、繊維配向領域20に位置する1本以上の領域内繊維21が、繊維シートの構成繊維どうしの間に入り込んでいる、又は該構成繊維と交絡している場合、繊維配向領域20に位置する繊維21と、繊維シートの構成繊維とが係合していると判断する。領域内繊維21が係合する前記構成繊維の繊維シートにおける位置は特に限定されない。
 サブレイヤー15等の繊維シートとの係合性をより向上させる観点から、領域内繊維21の平均長さは、好ましくは0.3mm以上、より好ましくは0.5mm以上であり、また好ましくは4mm以下、より好ましくは1.5mm以下であり、また好ましくは0.3mm以上4mm以下、より好ましくは0.5mm以上1.5mm以下である。
 領域内繊維21の平均長さの測定は、平面視における貫通孔6の観察視野において、貫通孔6の開口端6eからの長さ、すなわち該繊維21の基端から自由端までの長さが0.2mm以上の繊維を測定対象とする。例えば、表面シート10がエアスルー不織布により形成されている場合、領域内繊維21の平均長さは、フィルム部分から突出する基端から自由端までの長さが測定対象となる。測定は、表面シート10における任意の10箇所の貫通孔6について行い、これらの平均を領域内繊維21の平均長さとする。
 上記と同様の観点から、平面視における貫通孔6の観察視野において、1個の貫通孔6における領域内繊維21の本数は1本以上、好ましくは2本以上、より好ましくは5本以上、さらに好ましくは20本以上であり、また好ましくは100本以下、より好ましくは50本以下であり、また好ましくは2本以上100本以下、より好ましくは5本以上100本以下、さらに好ましくは20本以上50本以下である。
 また、上記と同様の観点から、平面視における貫通孔6の観察視野において、繊維配向領域20の一定視野面積(9mm)当たりの領域内繊維21の存在本数は、好ましくは1本以上、より好ましくは5本以上、さらに好ましくは10本以上であり、また好ましくは50本以下、より好ましくは30本以下であり、また好ましくは1本以上50本以下、より好ましくは5本以上50本以下、さらに好ましくは10本以上30本以下である。
 上記と同様の観点から、1個の貫通孔6における領域内繊維21の内、表面シート10の厚み方向において先端が非肌対向面側に向いている繊維の本数は、好ましくは1本以上、より好ましくは20本以上であり、また好ましくは100本以下、より好ましくは50本以下であり、また好ましくは1本以上100本以下、より好ましく20本以上100本以下である。
 また、上記と同様の観点から、繊維配向領域20の一定視野面積(9mm)当たりの領域内繊維21の内、非肌対向面側に向いている繊維の存在本数は、好ましくは1本以上、より好ましくは10本以上であり、また好ましくは50本以下、より好ましくは30本以下であり、また好ましくは1本以上50本以下、より好ましくは10本以上30本以下である。
 上記の領域内繊維21の本数又は存在本数の測定は、表面シート10における任意の10箇所の繊維配向領域20を含む貫通孔6について行い、これらの平均を、1個の貫通孔6における領域内繊維21の本数、又は繊維配向領域20の一定視野面積(9mm)当たりの領域内繊維21の存在本数とする。「繊維配向領域20の一定視野面積(9mm)」は、貫通孔6の観察視野における繊維配向領域20の任意の位置に設定した3mm×3mmの領域であり、該領域内に存在する領域内繊維21の存在本数をカウントして、前記「繊維配向領域20の一定視野面積(9mm)当たりの領域内繊維21の存在本数」の測定を行う。
 また、「非肌対向面側に向いている繊維」は、前述の〔繊維配向領域の観察方法〕おける、貫通孔6ごと表面シート10を切断した断面を観察することにより特定できる。
 表面シート10は、貫通孔6の開口端6eの一部に繊維配向領域20を有している。上述した表面シート10の位置ずれをより抑制する観点から、平面視において貫通孔6の開口端6eに沿う繊維配向領域20の長さは、貫通孔6の開口端6eの全周に対し、好ましくは10%以上、より好ましくは25%以上であり、また好ましくは60%以下、より好ましくは50%以下であり、また好ましくは10%以上60%以下、より好ましくは25%以上50%以下である。貫通孔6の開口端6eに沿う繊維配向領域20の長さ、及び貫通孔6の開口端6eの全周は、貫通孔6の電子顕微鏡画像に対し、画像処理を行うことで測定される。斯かる画像処理には、ソフト名「キーエンスVHX-1000」にデフォルトで実装された多点間距離の測長メニューが用いられる。例えば、電子顕微鏡画像(倍率:100倍)において、開口端6eをなぞる操作を行うことにより、該開口端6eの全周を測定できる。
 表面シート10は縦方向Pの腹側部A側にずれると、便が股下部Bに溜まって漏れる虞がある。このような漏れをより抑制する観点から、繊維配向領域20に位置する繊維21は、縦方向Pに沿うように配向していることが好ましい(図5参照)。これにより、腹側部A側に表面シート10がよりずれ難くなり、股下部Bに便が溜まることをより抑制できる。「領域内繊維21が縦方向Pに配向する」とは、繊維配向領域20に位置する繊維21のうち、領域内繊維21の50%以上が、貫通孔6の平面視において縦方向Pと±45度以内の角度をなしていることを意味する。本実施形態の貫通孔6の長手方向は、縦方向Pと一致しているので、該貫通孔6の長手方向に沿う側部と領域内繊維21とのなす角度が±45度以内になるか否かで、「領域内繊維21が縦方向Pに配向する」か否かを判断してもよい。
 表面シート10が腹側部A側へのずれることをより抑制する観点から、領域内繊維21は、その先端を腹側部A側に向けた状態で、縦方向Pに沿うように配向していることが好ましい。図5に示す実施形態を例にとると、A側が腹側部A側であり、且つB側が背側部C側であることが好ましい。また、図6に示す実施形態を例にとると、A側(図6の左側)が腹側部A側であり、且つB側(図6の右側)が背側部C側であることが好ましい。
 本実施形態の表面シート10は、貫通孔6の長手方向(縦方向P)に沿う両側部に繊維配向領域20を有している。縦方向Pにおける表面シート10のずれをより抑制する観点から、斯かる繊維配向領域20に位置する繊維、すなわち領域内繊維21は、貫通孔6の短手方向に沿う基準線Laに対する角度θ(図5参照)が、好ましくは0度超、より好ましくは30度以上、さらに好ましくは45度以上であり、また好ましくは90度未満、より好ましくは80度以下であり、また好ましくは0度超90度未満、より好ましくは30度以上90度未満、より好ましくは45度以上80度以下である。基準線Laは、貫通孔6の短辺部に沿った平行な直線である。貫通孔6の側部が、該貫通孔6の開口端6e(輪郭)のうち、該貫通孔6の長手方向に沿う部分であるのに対し、短辺部は、領域内繊維21と連結する貫通孔6の側部と隣り合い、矩形状の貫通孔6の輪郭において短辺をなす部分である。
 領域内繊維21の基準線Laに対する角度θは、領域内繊維21の両端部を結ぶ直線(自由端と基端とを結ぶ直線)と基準線Laとがなす角度を意味する。測定対象の繊維において、貫通孔6内に位置する端部(自由端)とは反対側の端部(基端)が観察されない場合、該繊維と貫通孔6の開口端6eとの交点を、該反対側の端部とする。
 領域内繊維21は、その先端(自由端)が貫通孔6の内方側を向いていることが好ましい。斯かる構成により、表面シート10と隣接する繊維シートとより強固に係合できる。上述した構成において、例えば、領域内繊維21の先端が貫通孔6の内方側に向かっており、且つ該繊維21が直線状に延びていることが好ましい。
 貫通孔6による透過性をより向上させるとともに、表面シート10の位置ずれをより抑制する観点から、貫通孔6の寸法は以下の範囲内であることが好ましい。
 表面シート10における貫通孔6の面積率(貫通孔6の面積/表面シート10の面積)は、好ましくは4%以上、より好ましくは8%以上であり、また好ましくは30%以下、より好ましくは20%以下であり、また好ましくは4%以上30%以下、より好ましくは8%以上20%以下である。
 1個当たりの貫通孔6の面積は、好ましくは1mm以上、より好ましくは3mm以上であり、また好ましくは30mm以下、より好ましくは20mm以下であり、また好ましくは1mm以上30mm以下、より好ましくは3mm以上20mm以下である。
 本実施形態の貫通孔6は縦方向Pに長い形状を有しているが、横方向Qに長い形状を有していてもよい。上記と同様の観点から、貫通孔6の寸法は以下の範囲内であることが好ましい。
 貫通孔6は、縦方向Pの長さL6が、横方向Qの長さW6に対して好ましくは0.1倍以上、より好ましくは1倍以上であり、また好ましくは5倍以下、より好ましくは1.5倍以下であり、また好ましくは0.1倍以上5倍以下、より好ましくは1倍以上1.5倍以下である。
 貫通孔6は縦方向Pの長さL6が、好ましくは1mm以上、より好ましくは1.5mm以上であり、また好ましくは5mm以下、より好ましくは4.5mm以下であり、また好ましくは1mm以上5mm以下、より好ましくは1.5mm以上4.5mm以下である。
 貫通孔6は横方向Qの長さW6が、好ましくは1mm以上、より好ましくは1.5mm以上であり、また好ましくは9mm以下、より好ましく3mm以下であり、また好ましくは1mm以上9mm以下、より好ましくは1.5mm以上3mm以下である。
 貫通孔6の寸法は、表面シート10の任意の箇所から切り出した測定片(10cm四方)における、任意に選択された10個の貫通孔6の寸法(面積等)の平均値として求められる。
 表面シート10の位置ずれをより抑制する観点から、表面シート10は、繊維配向領域20に位置する繊維(領域内繊維21)として、外側部分が溶融して他の繊維よりも繊維径が小さくなった繊維を有していることが好ましい。斯かる領域内繊維21は、表面シート10における他の構成繊維よりも繊維径が小さい上、外側部分が溶融して不定形状となっているので、該領域内繊維21と接触した繊維シートの構成繊維と絡まり易くなり、該領域内繊維と該構成繊維との係合性をより向上させることができる。
 領域内繊維21のうち、「外側部分が溶融して他の繊維よりも繊維径が小さくなった繊維」を、以下、「領域内細繊維22」ともいう。
 領域内細繊維22は、以下の方法により確認することができる。
〔領域内細繊維22の確認方法〕
 繊維配向領域20を含むように、貫通孔6をその周辺部分ごと切り出し、これをサンプルとする。次いで、紙両面テープ(ニチバン株式会社製ナイスタックNW-15)を用いて、サンプルを試料台に貼り付ける。次いでサンプルを白金コーティングする。コーティングには日立那珂精器株式会社製イオンスパッタ装置E-1030型(商品名)を用い、スパッタ時間は30秒とする。次いで、サンプルにおける繊維配向領域20を、株式会社日立製作所製S-4000型電界放射型走査電子顕微鏡を用いて倍率1000倍で観察し、貫通孔6の周辺部分に位置する繊維との繊維径の違いから、領域内細繊維22を判別する。斯かる観察において、領域内細繊維22の表面に溶融部分を確認することができる。特に、表面シート10がその構成繊維として、芯鞘型複合繊維を含んでいる場合、該芯鞘型複合繊維が領域内細繊維22になり易い。斯かる領域内細繊維22は、鞘成分が溶融して、芯成分が剥き出しの状態となるので、他の構成繊維よりも繊維径が小さくなる。
 繊維シートの構成繊維とより絡まり易くする観点から、表面シート10における領域内細繊維22の繊維径は、該表面シート10における繊維配向領域20以外の部分に位置する繊維の繊維径に対して、好ましくは40%以上、より好ましくは50%以上であり、また好ましくは80%以下、より好ましくは70%以下であり、また好ましくは40%以上80%以下、より好ましくは50%以上70%以下である。
 上記と同様の観点から、表面シート10における領域内細繊維22の繊維径は、好ましくは3μm以上、より好ましくは4μm以上であり、また好ましくは7μm以下、より好ましくは6μm以下であり、また好ましくは3μm以上7μm以下、より好ましくは4μm以上6μm以下である。
 領域内細繊維22の繊維径は、前記〔領域内細繊維22の確認方法〕と同様の方法により、領域内細繊維22を観察し、該繊維22の長手方向に直交する幅方向の長さを10本測定したときの平均値とする。また、繊維配向領域20以外の部分に位置する繊維の繊維径は、前記〔領域内細繊維22の確認方法〕で観察した、貫通孔6の周辺部分に位置する繊維を10本選択し、その選択した繊維の長手方向に対する幅方向の長さの平均値とする。
 1つの繊維配向領域20に、領域内細繊維22と、該領域内細繊維22よりも繊維径が大きい領域内繊維21とが併存していてもよく、繊維配向領域20内の全ての繊維が領域内細繊維22であってもよい。
 繊維シートの構成繊維とより絡まり易くする観点から、平面視における貫通孔6の観察視野において、1個の貫通孔6における領域内細繊維22の本数は1本以上、好ましくは2本以上、より好ましくは5本以上であり、また好ましくは30本以下、より好ましくは20本以下であり、また好ましくは2本以上30本以下、より好ましくは5本以上20本以下である。
 繊維配向領域20は、表面シート10における全ての貫通孔6に形成されていてもよく、一部の貫通孔6に形成されていてもよい。
 表面シート10における排泄物の透過性をより向上させ、且つ排泄物の肌への接触をより抑制する観点から、表面シート10において開口端6eの一部に繊維配向領域20が形成された貫通孔6の単位面積(平面視で10mm四方の領域の面積)当たりの数は、該単位面積当たりの貫通孔6の全個数のうち、好ましくは10%以上、より好ましくは40%以上であり、全貫通孔6に繊維配向領域20が形成されていることがさらに好ましい。
 上記と同様の観点から、表面シート10において開口端6eの一部に繊維配向領域20が形成された貫通孔6の単位面積(平面視で10mm四方の領域の面積)当たりの数は、好ましくは2個以上、より好ましくは4個以上、そして、好ましくは20個以下、より好ましくは15個以下である。
 肌触りやクッション性の観点から、本実施形態の表面シート10は、以下の構成を有することが好ましい。
 凸部5の高さH(図4参照)は、好ましくは1mm以上、より好ましくは3mm以上であり、また好ましくは10mm以下、より好ましくは6mm以下であり、また好ましくは1mm以上10mm以下、より好ましくは3mm以上6mm以下である。
 表面シート10における単位面積(1cm)当たりの凸部5の数は、好ましくは1個以上、より好ましくは6個以上であり、また好ましくは20個以下、より好ましくは15個以下であり、また好ましくは1個以上20個以下、より好ましくは6個以上15個以下である。
 凸部5の底部面積は、好ましくは0.5mm以上、より好ましくは2mm以上であり、また好ましくは50mm以下、より好ましくは20mm以下であり、また好ましくは0.5mm以上50mm以下、より好ましくは2mm以上20mm以下である。
 次に、本発明に係る繊維シートについて詳述する。
 本実施形態のおむつ11において、表面シート10に隣接して配置される繊維シートは、表面シート10及び吸収体14間に配されたサブレイヤー15であるが、これに限定されない。例えば、繊維シートは、吸収体の表面を形成するコアラップシート141であってもよい。この場合、おむつ11は、サブレイヤー15を具備せず、表面シート10に、繊維シートであるコアラップシート141が隣接して配置される。
 表面シート10と隣接して配置される繊維シートが、複数の凹部及び凸部を有していることは、繊維シートの構成繊維と領域内繊維21とをより絡まり易くして、繊維配向領域20における係合性をより向上させる点で好ましい。本実施形態のサブレイヤー15は、複数の凹部151及び凸部152を有している。具体的には、サブレイヤー15は、肌対向面側に突出し且つ内部が中空である複数の凸部152と、該複数の凸物152間に位置する凹部151とを有している。これら複数の凹部151及び凸部152は、縦方向P及び横方向Qに沿って交互に連続して配されている。サブレイヤー15は、肌対向面側に突出し内部空間S1を有する複数の凸部152と、複数の該凸部152の間に位置する凹部151とを有し、さらに非肌対向面側に突出し内部空間S2を有する複数の非肌側凸部155と、複数の該非肌側凸部155の間に位置する非肌側凹部154とを有している(図8参照)。サブレイヤー15における凸部152及び凹部151によって形成される肌対向面側の凹凸形状は、該サブレイヤー15における非肌側凸部155及び非肌側凹部154によって形成される非肌対向面側の凹凸形状に対応している。すなわち、サブレイヤー15の非肌対向面において、複数の非肌側凹部154及び非肌側凸部155は、縦方向P及び横方向Qに沿って交互に連続して配されている。斯かる構成を具備するサブレイヤー15としては、特開2019-97678号公報に記載の中間シートを用いることができる。
 繊維シートの構成繊維と領域内繊維21とをより絡まり易くする観点から、複数の凹部及び凸部を有する繊維シートは、凸部に位置する繊維が、縦方向Pに配向していることが好ましい。斯かる構成において凸部に位置する繊維は、縦方向Pと±30度以内の角度をなしている。また、表面シート10と接触し得る凸部の表面を形成する繊維が、縦方向Pに配向していることが好ましい。すなわち、凸部の表面であって、該凸部の頂部、底部、並びに該頂部及び該底部間の中間部の一又は二以上の箇所で、該凸部の繊維が縦方向Pに配向していることが好ましい。
 繊維シートの凸部における繊維の配向、すなわち該繊維と縦方向Pとのなす角度は、以下の方法により確認できる。先ず、繊維シートから縦方向の長さ10cm、横方向の長さ10cmの測定片を切り出す。この測定片は、複数の凸部が含まれるように切り出す。次いで、顕微鏡(例えばキーエンス社製、デジタルマイクロスコープVHX-1000)を用いて、測定片における凸部を倍率60~200倍で観察する。斯かる観察は、表面シート10との対向面に形成された凸部に対して行う。次いで、一定の観察領域内(例えば5cm四方)において観察される任意の繊維それぞれについて、該領域内において繊維の長さが最大となるような二点を定める。次いで、この両端間を結ぶ直線と、縦方向Pとのなす角度を測定する。この測定を少なくとも3つの観察領域について行い、計30本以上の繊維について測定した角度の算術平均値から、繊維配向方向を求める。繊維配向の測定においては、観察領域内において10本以上の繊維を確認できる倍率で観察することが好ましい。
 凸部の繊維と領域内繊維21とを接触し易くして、表面シート10の位置ずれをより抑制する観点から、繊維シートにおける1個以上の凸部が、表面シート10の貫通孔6と重なっていることが好ましい。この場合、凸部と貫通孔6は少なくとも部分的に重なっていればよい。本実施形態のサブレイヤー15は、2個以上の複数の凸部152が、表面シート10の貫通孔6と重なっている(図7参照)。
 上記の効果をより向上させる観点から、サブレイヤー15(繊維シート)における凸部152の寸法は以下の範囲内であることが好ましい。凸部152の寸法は、サブレイヤー15の厚み方向の断面を顕微鏡観察し、無荷重下にて測定する。
 縦方向Pにおける凸部152の長さL7(図7参照)は、縦方向Pにおける貫通孔6の長さL6(図5参照)に対して、好ましくは50%以上、より好ましくは100%以上であり、また好ましくは400%以下、より好ましくは200%以下であり、また好ましくは50%以上400%以下、より好ましくは100%以上200%以下である。
 縦方向Pにおける凸部152の長さL7(図7参照)は、好ましくは2mm以上、より好ましくは4mm以上であり、また好ましくは10mm以下、より好ましくは8mm以下であり、また好ましくは2mm以上10mm以下、より好ましくは4mm以上8mm以下である。
 凸部152の高さH1(図7参照)は、好ましくは1mm以上、より好ましくは3mm以上であり、また好ましくは10mm以下、より好ましくは6mm以下であり、また好ましくは1mm以上10mm以下、より好ましくは3mm以上6mm以下である。
 本実施形態のおむつ11は、サブレイヤー15の肌対向面において、凸部152の頂部が表面シート10に接触している(図7参照)。また、前記サブレイヤー15の肌対向面において、凹部151が表面シート10と接触していない。このように、サブレイヤー15は、その肌対向面において、表面シート10と接触する肌側接触部と、該表面シート10と接触しない肌側非接触部とを有している。前述したように、サブレイヤー15の肌対向面において、複数の凹部151及び凸部152は、縦方向P及び横方向Qに沿って交互に連続して配されているので、肌側接触部は縦方向P及び横方向Qの二方向に離間して配置されている(図8参照)。
 本実施形態のおむつ11は、サブレイヤー15の非肌対向面において、非肌側凸部155の頂部が吸収体14に接触している(図7参照)。また、前記サブレイヤー15の非肌対向面において、非肌側凹部154が吸収体14と接触していない。このように、サブレイヤー15は、その非肌対向面において、吸収体14と接触する非肌側接触部と、該吸収体14と接触しない非肌側非接触部とを有している。前述したように、サブレイヤー15の非肌対向面において、複数の非肌側凹部154及び非肌側凸部155は、縦方向P及び横方向Qに沿って交互に連続して配されているので、非肌側接触部は縦方向P及び横方向Qの二方向に離間して配置されている。
 サブレイヤー15において、各肌側接触部は、肌側非接触部に囲まれて配されていることが好ましい(図8参照)。斯かる構成により、肌側非接触部である凹部151の空間S2どうしが繋がった連続空間が平面方向に形成される。この連続空間は、軟便の拡散性の向上に有効である。凹部151の空間S2は、非肌側凸部155の内部空間S2でもある。
 サブレイヤー15において、各非肌側接触部は、非肌側非接触部に囲まれて配されていることが好ましい(図8参照)。斯かる構成により、非肌側非接触部である非肌側凹部154の空間S1どうしが繋がった連続空間が平面方向に形成される。この連続空間も、軟便の拡散性の向上に有効である。非肌側凹部154の空間S1は、凸部152の内部空間S1でもある。
 サブレイヤー15と表面シート10との間の空間S2、及びサブレイヤー15と吸収体14との間の空間S1それぞれには、サブレイヤー15を構成する構成繊維間の隙間は含まれない。具体的には繊維間距離が0.01mm~0.2mm程度の微細な隙間は含まれない。
 軟便の拡散性をより向上させる観点から、サブレイヤー15を非肌対向面側である吸収体14側から平面視したときに、最も近い位置にある隣り合う非肌側接触部どうしの距離は、好ましくは0.5mm以上、より好ましくは1mm以上であり、また好ましくは10mm以下、より好ましくは8mm以下であり、また好ましくは0.5mm以上10mm以下、より好ましくは1mm以上8mm以下である。
 上記と同様の観点から、サブレイヤー15を肌対向面側である表面シート10側から平面視したときに、最も近い位置にある隣り合う肌側接触部どうしの距離は、前記の最も近い位置にある隣り合う非肌側接触部どうしの距離と同じ範囲とすることが好ましい。隣り合う肌側接触部どうしの距離、及び隣り合う非肌側接触部どうしの距離は、以下の方法により測定する。
 先ず、サブレイヤー15から、50mm(横方向Q)×50mm(縦方向P)の大きさを切り出し、これを測定サンプルとする。そして、無加圧の状態で、該測定サンプルの非肌対向面を上にした状態で置き、該測定サプルの上に透明の重さ50gのアクリル板を置き、さらにアクリル板上に700gの錘を載置する。そして、30gf/cmの荷重を掛けた状態で、測定サンプルの表面形状をKeyence社製、高精度形状計測システムKS-1100を用いて測定する。測定条件は、測定ピッチ50μm、移動速度10cm/sとし、40mm(CD方向)×40mm(MD方向)の範囲を測定して、画像を取得する。次に、前記画像をKeyence社製、形状解析アプリケーションKS-Analyzerを用いて解析し、最大厚みとなる位置、及び該最大厚みとの厚み差が500μm以下となる位置を抽出する。これにより抽出された領域を、非肌側接触部とする。また、前記抽出された領域以外の領域(最大厚みとの厚み差が500μm超となる位置)を非肌側非接触部とする。これら非肌側接触部及び非肌側非接触部を二値化処理する。具体的には、前記画像をImage-Pro Plus(株式会社日本ローパー社製)に取り込み、コントラストの強調で、黒白コントラストを100に設定し、フィルタ処理(メディアン、5×5を5回)によりノイズを除去する。次いで二値化処理した画像について、隣り合う非肌側接触部の重心同士を結ぶ線を引く。非肌側接触部の重心は、一つの非肌側接触部のフェレー径長さの中心にフェレー径と垂直となる垂線を引き、垂線と接触部界面が交わる二点の中心とする。そして、最も近接する重心どうしを結ぶ線を引き、当該線の距離を測定して、得られた測定値を隣り合う非肌側接触部どうしの距離とする。
 隣り合う肌側接触部どうしの距離は、測定サンプルの肌対向面を上にした状態で置き、以降は、隣り合う非肌側接触部どうしの距離と同様の操作で測定する。30gf/cmの荷重は、低月齢児におむつ1を着用させたときに、低月齢児がおむつ着用中の低月齢児が仰向けに寝ている場合に、そのおむつの背側部にかかる圧力(耐圧)を想定したものである。
 サブレイヤー15等の繊維シートとしては、親水性且つ液透過性のシートを用いることができ、具体的には例えば、紙、織布、不織布を例示できるが、強度が比較的強く柔軟性にも優れる点で不織布が特に好ましい。不織布としては、前述したものを特に制限なく用いることができる。領域内繊維21とより絡まり易くする観点から、繊維シートは、エアスルー不織布を含むことが好ましい。この場合、繊維シートは、エアスルー不織布からなるものであってもよく、エアスルー不織布と他の不織布とが積層した積層不織布であってもよい。
 本実施形態のサブレイヤー15(繊維シート)は、単層構造であるが、これに代えて複数の層が積層されてなる多層構造であってもよい。また、サブレイヤー15における凹凸形状は、例えば、円錐、円錐台、角錐、角錐台、斜円錐等の錐体形状等を採用することができる。斯かるサブレイヤー15の製造方法としては、特開2013-133574号公報、特開2012-149370号公報、特開2012-149371号公報等に記載の方法が挙げられる。
 次に、本発明の表面シートの製造方法について、上述した実施形態の表面シート10の製造方法を例に説明する。図9には、本発明に係る表面シートの製造装置の一実施形態である製造装置100が示されている。製造装置100は、凹凸賦形部30と超音波処理部40とを具備する。
 凹凸賦形部30は、周面部に凹凸を有する凹凸ロール31を備える。凹凸賦形部30では、回転中の凹凸ロール31の周面部に第1シート1を追従させることで、第1シート1を該周面部の凹凸の形状に沿った凹凸形状に変形させる。
 凹凸賦形部30は、凹凸ロール31に加えてさらに、該凹凸ロール31の凹凸と噛み合う凹凸を周面部に有する、他の凹凸ロール32を備える。
 以下、凹凸ロール31を「第1ロール」、凹凸ロール32を「第2ロール」ともいう。
 図9に示す凹凸賦形部30では、これら両ロール31,32を用い、両ロール31,32の凹凸どうしの噛み合い部33が形成されるように両ロール31,32を回転させ、噛み合い部33に第1シート1を導入することで、第1シート1を、凹凸ロール31の周面部の凹凸に沿った凹凸形状に変形させる。
 図10には、凹凸ロール31(第1ロール)の周面部の一部が示されている。
 凹凸ロール31は、所定の歯幅を有する平歯車31a,31b,・・を複数枚組み合わせてロール状に形成したものである。各歯車の歯が、凹凸ロール31の周面部における凹凸形状の凸部35を形成しており、該凸部35の先端面35cが、後述する超音波融着機41の超音波ホーン42の先端面である振動印加面42tとの間で、融着対象である第1及び第2シート1,2を加圧する加圧面となっている。
 凹凸ロール31を構成する各歯車の歯幅(歯車の軸方向の長さ)は、表面シート10の凸部5におけるX方向の寸法を決定し、各歯車の歯の長さ(歯車の回転方向の長さ)は、表面シート10の凸部5におけるY方向の寸法を決定する。
 隣り合う歯車は、その歯のピッチが半ピッチずつずれるように組み合わされている。その結果、凹凸ロール31は、その周面部が凹凸形状となっている。
 図示の形態では、各凸部35の先端面35cは、凹凸ロール31の回転方向が長辺で、軸方向が短辺の矩形状となっている。
 先端面35cは回転方向の方が長い形状であると、凹凸ロール31の凸部35一つにおける超音波ホーン42の先端部の振動印加面42tとの接触時間を長くして温度を上げやすくすることができるので好ましい。
 凹凸ロール31における各歯車の窪みは、凹凸ロール31の周面部における凹凸の凹部を形成している。
 各歯車の歯底部(窪みの底部)には、吸引孔34が形成されている。吸引孔34は、ブロワや真空ポンプなどの吸引源(図示せず)に通じ、凹凸ロール31と凹凸ロール32との噛み合い部33から、第1シート1と第2シート2との合流部までの間で吸引が行われる様に制御されている。
 したがって、凹凸ロール31と凹凸ロール32との噛み合いによって凹凸形状に変形された第1シート1は、吸引孔34による吸引力によって、凹凸ロール31の周面部の凹凸に沿った形状に変形した状態に維持された状態で、第1シート1と第2シート2との合流部及び超音波融着機41による超音波振動の印加部36に搬送される。
 図10に示す凹凸ロール31では、隣り合う歯車間に所定の空隙Gが設けられていることにより、第1シート1に無理な伸長力を加えたり、両ロール31,32の噛み合い部33で第1シート1を切断したりする不都合が抑制されるため、第1シート1が凹凸ロール31の周面部の形状に沿った凹凸形状に変形しやすい。
 凹凸ロール32(第2ロール)は、その周面部に、凹凸ロール31の周面部の凹凸と互いに噛み合う凹凸形状を有している。凹凸ロール32は、吸引孔34を有しない以外は、凹凸ロール31と同様の構成を有している。
 なお、両ロール31、32の凹凸部が互いに噛み合うことを前提として、凹凸ロール31の径と凹凸ロール32の径とは異なっていてもよい。そして、互いに噛み合う凹凸を有する両ロール31,32を回転させながら、両ロール31,32の噛み合い部33に、第1シート1を導入することにより、第1シート1を凹凸形状に変形させることができる。
 噛み合い部33においては、第1シート1の複数個所が、凹凸ロール32の凸部によって凹凸ロール31の周面部の凹部に押し込まれ、その押し込まれた部分が、製造される表面シート10の凸部5となる。
 凹凸ロール32の周面部には、凹凸ロール31の凹部に挿入される複数の凸部が形成されているが、凹凸ロール32に、凹凸ロール31の凹部の全てに対応する凸部が形成されていることは必須ではない。
 なお、図9に示す凹凸賦形部30は、前述したとおり、周面部に凹凸を有する凹凸ロールを2個備え、その2個の凹凸ロール31,32の凹凸どうしの噛み合い部33が形成されるように両ロール31,32を回転させ、該噛み合い部33に第1シート1を導入することで、該第1シート1を凹凸形状に変形させるようになされているが、凹凸賦形部30が備える凹凸ロールは、周面部に導入された第1シート1を吸引可能な凹凸ロール31のみでもよく、つまり、凹凸ロール32は無くてもよい。その場合、凹凸ロール31の周面部に第1シート1を導入するだけで、該周面部に配された吸引孔34(図10参照)による吸引力によって、第1シート1が該周面部の凹凸の形状に追従するように変形する。このような、凹凸ロール31の周面部での吸引による第1シート1の追従・変形は、吸引力や吸引孔34の配置などを適宜調整することで実現可能である。
 超音波処理部40は、超音波ホーン42を備えた超音波融着機41を備えており、凹凸形状に変形させた状態の第1シート1上に第2シート2を重ね合わせ、それら両シート1,2を、凹凸ロール31の凸部35と超音波ホーン42の先端部の振動印加面42tとの間に挟んで超音波振動を印加することで、貫通孔6を形成するとともに、第1シート1と第2シート2とを融着させる。また、貫通孔6の開口端6eの一部に繊維配向領域20を形成する。
 超音波融着機41は、図9及び図11に示すように、超音波発振器(図示せず)、コンバーター43、ブースター44及び超音波ホーン42を備えている。
 超音波発振器(図示せず)は、コンバーター43と電気的に接続されており、超音波発振器により発生された周波数15~50kHz程度の波長の高電圧の電気信号が、コンバーター43に入力される。
 超音波発振器(図示せず)は、可動台45上又は可動台45外に設置されている。
 コンバーター43は、ピエゾ圧電素子等の圧電素子を内蔵し、超音波発振器から入力された電気信号を、圧電素子により機械的振動に変換する。ブースター44は、コンバーター43から発せられた機械的振動の振幅を調整、好ましくは増幅して超音波ホーン42に伝達する。
 超音波ホーン42は、アルミ合金やチタン合金などの金属の塊でできており、使用する周波数で正しく共振するように設計されている。
 ブースター44から超音波ホーン42に伝達された超音波振動は、超音波ホーン42の内部においても増幅、又は減衰されて、融着対象である第1及び第2シート1,2に印加される。斯かる超音波融着機41としては、市販の超音波ホーン、コンバーター、ブースター、超音波発振器を組み合わせて用いることができる。
 超音波融着機41は、可動台45上に固定されており、可動台45の位置を、凹凸ロール31の周面部に近づく方向に沿って進退させることで、超音波ホーン42の先端面である振動印加面42tと、第1ロール31の凸部35の先端面35cとの間のクリアランス、及び積層された第1及び第2シート1,2に対する加圧力を調節可能となっている。
 そして、融着対象である第1及び第2シート1,2を、凹凸ロール31の凸部35の先端面35cと超音波融着機41における超音波ホーン42の先端部の振動印加面42tとの間に挟んで加圧しつつ、両シート1,2に超音波振動を印加することにより、両シート1,2における、凸部35の先端面35c上に位置する部分が発熱し、第1シート1及び/又は第2シート2が溶融、再度固化する。これにより、両シート1,2を貫通する貫通孔6と、両シート1,2を接合する融着部が形成される。融着部は、貫通孔6の開口端6eに沿って形成される。
 超音波ホーン42の先端部の振動印加面42tは、アルミ合金やチタン合金等の金属からなる超音波ホーン42の本体部420(図11参照)の先端面からなり、融着対象物より具体的には第2シート2に当接する。
 製造装置100は、超音波振動を印加する前の第1シート1及び第2シート2の少なくとも一方を予熱する予熱手段51を備えている。
 予熱手段51は、凹凸ロール31(第1ロール)の内部に配置され、凹凸ロール31の回転軸(CD)に平行に延びている。
 また予熱手段51は、凹凸ロール31の回転軸の周囲における外周部の近傍に、周方向に間隔を設けて複数配置されている。
 予熱手段51としては、加熱対象物(第1シート1、第2シート2)に外部から熱エネルギーを加えて加熱し得るものを用いることができ、例えば、電熱線を用いたカートリッジヒーターが挙げられるが、これに限られず、各種公知の加熱手段を特に制限なく用いることができる。
 予熱手段51は、予熱機構50の一部である。
 予熱機構50は、予熱手段51の他に、超音波振動を印加する前の融着対象物の温度を計測可能な測温手段(図示せず)と、該測温手段の測定値に基づき予熱手段51の温度を制御する温度制御部(図示せず)とを備える。
 予熱手段51による凹凸ロール31の周面部の加熱温度は、前記温度制御部によって制御される。予熱機構50によって、製造装置100の運転中、超音波振動の印加部36に導入される第1シート1の温度を所定範囲に維持することができる。
 製造装置100は、図12に示すように、振動印加面42tを含め超音波ホーン42を加熱するホーン加熱手段61を備えている。
 ホーン加熱手段61は、振動印加面42tには配されておらず、振動印加面42tの近傍、具体的には、超音波ホーン42の先端部の側面に固定されている。
 ホーン加熱手段61としては、ヒーター等の各種公知の加熱手段を特に制限なく用いることができる。
 ホーン加熱手段61は、ホーン加熱機構60の一部である。
 ホーン加熱機構60は、ホーン加熱手段61の他に、振動印加面42tの温度を計測可能な測温手段(図示せず)と、該測温手段の測定値に基づきホーン加熱手段61の温度を制御する温度制御部(図示せず)とを備える。
 ホーン加熱手段61による振動印加面42tの加熱温度は、前記温度制御部によって制御される。ホーン加熱機構60によって、製造装置100の運転中、振動印加面42tの温度を所定範囲に維持することができる。
 なお、超音波融着機41は、融着対象物に超音波振動を印加し、それにより融着対象物を発熱及び溶融させて融着させるものであり、前述した予熱手段51及びホーン加熱手段61とは明確に区別される。
 製造装置100においては、超音波ホーン42の振動印加面42tに溝状凹部46が形成されている。図13には、超音波ホーン42の先端部のMDに沿う模式的な断面図、図14には、該超音波ホーン42の振動印加面42tの模式的な平面図が示されている。図13は、図12に示す超音波ホーン42の先端部の拡大断面図である。
 溝状凹部46は、凹凸ロール31(第1ロール)の回転軸(CD)に沿って延びている。ここでいう「回転軸(CD)に沿って延びる」とは、溝状凹部46と凹凸ロール31の回転軸(CD)とのなす角度が45度未満である場合を意味する。図14に示す溝状凹部46は、回転軸(CD)に平行に延びており、回転軸(CD)とのなす角度はゼロである。
 製造装置100においては、振動印加面42tに溝状凹部46が1本形成されている。この1本の溝状凹部46は、図14に示すように、振動印加面42tのMDに沿う長さの中央に位置し、CDに沿う長さの全長にわたって延在している。
 溝状凹部46は、図13に示す如き凹凸ロール31の回転軸に直交する方向(すなわちMD)に沿う断面視において、一対の凹部側面46a,46aと凹部底面46bとから画成されている。
 一対の凹部側面46a,46aは、振動印加面42tと交差しており、より具体的には、振動印加面42tに連接され且つ振動印加面42tから離れる方向に延びている。
 凹部底面46bは、一対の凹部側面46a,46aそれぞれの長手方向端に連接され、溝状凹部46の開口部46dと相対向している。
 図12(図13)に示す超音波ホーン42では、凹部側面46aと振動印加面42tとが交差する角部46cが先鋭であり、且つ凹部底面46bがMDに沿う断面視において、開口部46dから離れる方向に向かって凹んだ円弧状をなしている。
 図12(図13)に示す形態では、凹部側面46aと振動印加面42tとのなす角度は90度である。すなわち、角部46cのなす角度は90度である。
 前述の如く構成された製造装置100を用いた表面シート10の製造方法は、周面部に凹凸を有する凹凸ロール31(第1ロール)を回転させながら、該周面部に第1シート1を追従させて凹凸形状に変形させる賦形工程を有する。
 また、製造装置100を用いた表面シート10の製造方法は、凹凸形状に変形させた第1シート1を、凹凸ロール31上に保持しつつ搬送し、搬送中の第1シート1に第2シート2を重ね合わせる重ね合わせ工程を有する。
 また、製造装置100を用いた表面シート10の製造方法は、重ね合わせた両シート1,2を、凹凸ロール31の凸部35と超音波融着機41が備える超音波ホーン42の先端部の振動印加面42tとの間に挟んで超音波振動を印加する超音波処理工程を有する。
 前記賦形工程では、2個の凹凸ロール31,32の凹凸どうしの噛み合い部33に第1シート1を導入して、第1シート1を凹凸形状に変形させる。
 繊維配向領域20及び貫通孔6の形成をより容易にする観点から、凹凸ロール31(第1ロール)の回転軸に直交する方向に沿う断面視(MDに沿う断面視)における、凸部35の先端部の角部の角度θ35(図12参照)は、好ましくは90度以上、より好ましくは105度以上であり、また好ましくは135度未満、より好ましくは120度未満である。
 そして、前記超音波処理工程では、超音波ホーンとして、前述した特定の超音波ホーン、すなわち、振動印加面42tに凹凸ロール31(第1ロール)の回転軸(CD)に沿って延びる溝状凹部46が形成されている超音波ホーン42を用いて、超音波振動を印加することにより、重ね合わされた第1シート1と第2シート2との積層物(融着対象物)に貫通孔6を形成するとともに、第1シート1と第2シート2とが融着された融着部、及び該貫通孔6の開口端6eの一部に繊維配向領域20を形成する。
 前記超音波処理工程では、図12に示すように、融着対象物(第1シート1と第2シート2との積層物)をMDに搬送しつつ、凹凸ロール31の凸部35の先端面35cと超音波ホーン42の溝状凹部46が形成された振動印加面42tとの間に挟んで超音波振動を印加する。
 ここで、融着対象物を凸部35側に押圧する振動印加面42tには、図13に示すように、溝状凹部46の開口部46dを挟んでMDの前後に位置する一対の角部46c,46cが存在するため、融着対象物を押圧する際に生じる応力が角部46cに集中し、角部46cを介して融着対象物にかかるせん断力が、角部46c(溝状凹部46)が形成されていない場合に比して向上する。したがって前記超音波処理工程では、融着対象物に対して、超音波振動による融着対象物の発熱に加えてさらに、この溝状凹部46に起因する強力なせん断力が作用し、その結果、融着対象物における凸部35の先端面35cと超音波ホーン42の振動印加面42tとに挟まれた部分に、融着部、貫通孔6及び繊維配向領域20を同時に形成することができる。
 前記超音波処理工程によれば、第1シート1及び/又は第2シート2を形成する樹脂が融点200℃を超えるような高融点のもの(例えばPET)であっても、融着部、貫通孔6及び繊維配向領域20を同時に行うことが可能である。
 前記超音波処理工程において、振動印加面に凹凸ロールの回転軸に沿って延びる溝状凹部が形成されている超音波ホーン(図12~図14参照)を用いたことにより、貫通孔6の開口端6eの一部に繊維配向領域20が容易に形成されると考えられる。この繊維配向領域20の形成方法について、本発明者の考察を以下に説明する。前記超音波処理工程では、融着対象物(第1シート1と第2シート2との積層物)をMDに搬送しつつ、凹凸ロール31の凸部35の先端面35cと超音波ホーン42の溝状凹部46が形成された振動印加面42tとの間に挟んで超音波振動を印加する。これにより第1シート1及び第2シート2が溶融した溶融部分が形成される。一方、融着対象物を押圧する際に生じる応力は、溝状凹部46の開口部46dを挟んでMDの前後に位置する一対の角部46c,46cのうちMDの前方側(下流側)に位置する角部46cに集中するので、該角部46cを介して融着対象物、特に貫通孔6の形成位置周縁にMDに沿ってせん断力が作用する。このせん断力により、融着対象物におけるMDの前方側及び後方側の角部46c,46cとの接触部分が破断して、貫通孔6が形成されるとともに、MDに沿って貫通孔6の側部が引っ張られることで、該側部に位置する繊維が該MDに沿って配向し、繊維配向領域20が形成されると推察される。また、融着対象物が前記せん断力によって破断する際、融着対象物の厚み方向において、第1シート1から離れる方向に引っ張られることで、同厚み方向において第1シート1から離れる方向に沿って領域内繊維21が配向すると推察される。このようにして、前記MDに沿うせん断力によって、貫通孔6の長手方向に沿う側部に繊維配向領域20が形成される。
 繊維配向領域20をより容易に形成する観点から、前記超音波処理工程において、凹凸ロール31(第1ロール)の凸部35の先端面35cと超音波ホーン42の振動印加面42tとの間に挟んで第1及び第2シート1,2に加える加圧力は、20N/mm以上が好ましく、30N/mm以上がより好ましい。
 また前記加圧力は、80N/mm以下が好ましく、70N/mm以下がより好ましい。
 ここでいう「加圧力」は、いわゆる線圧であり、超音波ホーン42の加圧力(N)を超音波ホーン42と触れる凸部35の歯幅(凸部35のCDに沿う長さ)の合計(凹凸ロール31の凹部は含まない)の長さで除した値(単位長さあたりの加圧力)で示す。
 上記と同様の観点から、印加する超音波振動の周波数は、15kHz以上が好ましく、20kHz以上がより好ましい。
 また前記周波数は、50kHz以下が好ましく、40kHz以下がより好ましい。
 また同様の観点から、印加する超音波振動の振幅は、20μm以上が好ましく、25μm以上がより好ましい。
 また前記振幅は、50μm以下が好ましく、40μm以下がより好ましい。
 超音波振動の周波数、振幅の測定に際しては、レーザー変位計等で超音波ホーンの先端の変位を計測し、サンプリングレート200kHz以上、精度1μm以上にすることで、該周波数、振幅を測定する。
 上記と同様の観点から、前記超音波処理工程における融着対象物(第1シート1と第2シート2との積層物)の搬送速度は、好ましくは200m/分以上、より好ましくは250m/分以上であり、また好ましくは400m/分以下、より好ましくは350m/分以下である。
 上記と同様の観点から、前記超音波処理工程において、搬送中の融着対象物(第1シート1と第2シート2との積層物)にかかる張力は、好ましくは20N/m以上、より好ましくは30N/m以上であり、また好ましくは90N/m以下、より好ましくは60N/m以下である。本実施形態において前記張力は、前記超音波処理工程までの融着対象物の搬送速度を変更することにより調整することができる。
 本実施形態の超音波ホーン42によれば、図13に示すように、溝状凹部46の開口部46dを画成する角部46cが先鋭であるため、角部46cが先鋭ではなく丸みを帯びている場合に比して、前記超音波処理工程で融着対象物(第1シート1と第2シート2との積層物)にかかるせん断力が向上しており、このため融着部、貫通孔6及び繊維配向領域20の同時形成をより一層確実に行うことができる。
 斯かる角部46cによる作用効果をより一層確実に奏させるようにする観点から、角部46cにおける凹部側面46aと振動印加面42tとのなす角度は、45度以上が好ましく、60度以上がより好ましい。
 また前記角度は、135度以下が好ましく、120度以下がより好ましい。
 一方、超音波ホーン42の振動印加面42tに溝状凹部46を形成すると、超音波ホーン42(特に本体部420)の耐久性が低下し、超音波振動時に溝状凹部46を起点として本体部420などにクラック(割れ目)が入ることが懸念される。これに対し、超音波ホーン42では、溝状凹部46を画成する凹部底面46bを、図13に示す如き超音波ホーン42のMDに沿う断面視において、開口部46dから離れる方向に向かって凹んだ円弧状とすることで、斯かる懸念が払拭されている。
 斯かる凹部底面46bによる作用効果をより一層確実に奏させるようにする観点から、凹部底面46bの曲率は、1以上が好ましく、2以上がより好ましい。
 また凹部底面46bの曲率は、10以下が好ましく、5以下がより好ましい。
 前述した溝状凹部46による作用効果をより一層確実に奏させるようにする観点から、溝状凹部46の寸法等は以下のように設定することが好ましい。
 溝状凹部46の幅W(図13及び図14参照)は、0.2mm以上が好ましく、0.5mm以上がより好ましい。
 また幅Wは、2mm以下が好ましく、1mm以下がより好ましい。
 振動印加面42tの幅W0(図14参照)は、5mm以上が好ましく、10mm以上がより好ましい。
 また幅W0は、20mm以下が好ましく、15mm以下がより好ましい。
 溝状凹部46のCDに沿う長さすなわち凹凸ロール31(第1ロール)の回転軸に沿う長さL(図14参照)と、振動印加面42tの同方向に沿う長さL0(図14参照)との比率は、長さL/長さL0として、0.2以上が好ましく、0.3以上がより好ましい。
 また前記比率(長さL/長さL0)は、1以下が好ましい。
 図14に示す形態では、溝状凹部46は、振動印加面42tのCDの全長にわたって延びており、長さLと長さL0とが同じで前記比率は1である。
 振動印加面42tのCDに沿う長さL0は、30mm以上が好ましく、50mm以上がより好ましい。
 また長さL0は、200mm以下が好ましく、150mm以下がより好ましい。
 溝状凹部46の深さD(図13参照。振動印加面42tから、凹部底面46bにおける振動印加面42tから最も遠い離れた部位までの長さ。)は、0.3mm以上が好ましく、0.5mm以上がより好ましい。
 また深さDは、5mm以下が好ましく、2mm以下がより好ましい。
 溝状凹部46は、振動印加面42tのMDの中央部に形成されることが好ましく、特に、振動印加面42tのMDの中央からMDの上流側に好ましくは5mm以内、より好ましくは3mm以内の領域に形成されることが好ましい。
 図14に示す形態では、溝状凹部46は振動印加面42tのMDの中央に形成されている。
 前述したように、製造装置100は予熱手段51(予熱機構50)を具備し、該製造装置100を用いた表面シート10の製造方法では、前記超音波処理工程に供される前の第1シート1及び第2シート2の少なくとも一方を予熱手段51で予熱するため、溝状凹部46による作用効果と相俟って、融着部、貫通孔6及び繊維配向領域20の同時形成をより一層確実に行うことができる。
 予熱手段51による融着対象物の予熱の条件は特に制限されず、融着対象物の種類等に応じて適宜調整すればよいが、第1シート1及び第2シート2の少なくとも一方を、該シートの融点未満、該融点より50℃低い温度以上に加熱しておくことが好ましい。すなわち、超音波振動の印加に先立ち、以下の(1)及び(2)の何れか一方又は双方を行うことが好ましい。(1)第1シート1を、該第1シートの融点未満、該融点より50℃低い温度以上に加熱しておく。(2)第2シート2を、該第2シートの融点未満、該融点より50℃低い温度以上に加熱しておく。
 好ましくは、第1シート1を、該第1シートの融点未満、該融点より50℃低い温度以上に加熱しておくとともに、第2シート2を、該第2シートの融点未満、該融点より50℃低い温度以上に加熱しておく。
 前記(1)の方法、すなわち第1シート1を、該第1シート1の融点未満、該融点より50℃低い温度以上とする方法としては、例えば、凹凸ロール31(第1ロール)上の第1シート1の温度を、凹凸ロール31,32の噛み合い部33と、超音波融着機41による超音波振動の印加部36との間において測定し、その測定値が、前述した特定の範囲内となるように、予熱手段51の温度を制御する。
 第1シート1を、特定の範囲の温度に予熱する方法としては、第1シート1が、特定の範囲の温度となるように、凹凸ロール31の周面部の温度を該凹凸ロール31内に配したヒーターにより制御する方法に代えて、多様な方法を用いることができる。
 例えば、凹凸ロール31の周面部の近傍にヒーターや熱風の吹き出し口、遠赤外線の照射装置を設け、それらにより、第1シート1を沿わせる前又は後の凹凸ロール31の周面部の温度を制御する方法、噛み合い部33において第1シート1に接触する凹凸ロール32(第2ロール)を加熱し、その周面部の温度制御により第1シート1の温度を制御する方法が挙げられる。
 また、凹凸ロール31に沿わせる前の第1シート1に対して、加熱されたローラーに接触させたり、高温に維持した空間を通過させたり、熱風を吹き付けたりする方法等が挙げられる。
 前記(2)の方法、すなわち第2シート2を、該第2シート2の融点未満、該融点より50℃低い温度以上とする方法としては、第1シート1と合流させる前の第2シート2の温度を、第2シート2の搬送路中に配置した測温手段で計測し、その測定値が、前述した特定の範囲内となるように、第2シート2の搬送路中に配した第2シート2の加熱手段(図示せず)の温度を制御することが好ましい。
 第2シート2の加熱手段は、加熱されたローラー等を接触させる等の接触方式でもよいし、高温に維持した空間を通過させたり、熱風を吹き付けたり貫通させたり赤外線を照射する等の非接触式でもよい。
 第1シート1及び第2シート2の融点は、例えば、Perkin-Elmer社製の示差走査熱量測定装置(DSC)PYRIS Diamond DSCを用いて測定することができる。斯かる測定方法では、測定データのピーク値から測定対象(第1シート1、第2シート2)の融点を割り出す。
 第1シート1又は第2シート2が、不織布等の繊維シートであり、その構成繊維が、芯鞘型、サイド・バイ・サイド型等の複数成分からなる複合繊維である場合、そのシートの融点は、DSCにより測定した複数の融点の内、最低温度の融点を複合繊維シートの融点とする。
 また前述したように、製造装置100はホーン加熱手段61(ホーン加熱機構60)を具備し、前記超音波処理工程では、ホーン加熱手段61によって加熱された振動印加面42tを融着対象物(第1シート1と第2シート2との積層物)に当接させるため、溝状凹部46による作用効果と相俟って、融着部、貫通孔6及び繊維配向領域20の同時形成をより一層確実に行うことができる。
 ホーン加熱手段61による加熱の条件は特に制限されず、融着対象物の種類等に応じて適宜調整すればよい。
 例えば、予熱手段51に代えてホーン加熱手段61を用いることによって、前記(2)の方法を実施してもよい。すなわち、ホーン加熱手段61によって加熱される超音波ホーン42(振動印加面42t)の温度を制御することによって、超音波振動を印加される直前の第2シート2の温度を、該第2シート2の融点未満、該融点より50℃低い温度以上に加熱しておき、その状態で、凹凸ロール331の凸部35と振動印加面42tとの間に挟んだ、第1及び第2シート1,2に超音波振動を印加してもよい。
 また、予熱手段51及びホーン加熱手段61は、どちらか一方のみを用いてもよく、両者を併用してもよい。
 貫通孔6及び繊維配向領域20をより容易に形成する観点から、表面シート10の製造方法において、第1シート1及び第2シート2それぞれは、芯鞘型複合繊維を構成繊維として含む、スパンボンド不織布であることが好ましい。前記芯鞘型複合繊維としては、ポリエチレンテレフタレート(PET)を芯部、ポリエチレン(PE)を鞘部とするものを用いることが好ましい。
 図15~図18には、超音波ホーンの他の実施形態の要部(先端部)が示されている。
 後述する実施形態については、前述した超音波ホーン42と異なる構成部分を主として説明し、同様の構成部分は同一の符号を付して説明を省略する。特に説明しない構成部分は、超音波ホーン42についての説明が適宜適用される。
 図15に示す超音波ホーン42Aにおいては、同図に示す如き超音波ホーン42のMDに沿う断面視において、溝状凹部46の凹部底面46bが直線であり、溝状凹部46は、同断面視において長方形形状をなしている。つまり、超音波ホーン42Aにおける凹部底面46bは平坦である。
 超音波ホーン42Aを用いた場合でも、基本的には前述の超音波ホーン42を用いた場合と同様の効果が奏されるが、溝状凹部46を形成することで懸念される、前述した超音波ホーン42の耐久力の低下やそれに伴うクラックの発生などの不都合をより一層確実に抑制する観点から、凹部底面46bの前記断面視の形状は、図13に示すように、開口部46dから離れる方向に向かって凹んだ円弧状が好ましい。
 図16に示す超音波ホーン42Bにおいては、振動印加面42tが、凹凸ロール31(第1ロール)の回転軸に直交する方向(MD)に沿う断面視において、該回転軸から離れる方向に向かって凹んだ円弧状をなしている。
 なお、ここでいう振動印加面42tは、溝状凹部46が存在しないと仮定した場合のものであり、より具体的には、図16に示す如きMDに沿う断面視において、溝状凹部46の開口部46dを挟んでMDの一方側の角部46cから他方側の角部46cにわたって振動印加面42tを仮想的に延長した場合のものである。
 このように振動印加面42tのMDに沿う断面形状が円弧状であることにより、前記超音波処理工程において融着対象物(第1シート1と第2シート2との積層物)にかかるせん断力が向上するため、溝状凹部46による作用効果と相俟って、融着部、貫通孔6及び繊維配向領域20の同時形成をより一層確実に行うことができる。
 図16に示す如きMDに沿う断面視において、円弧状をなす振動印加面42tは、凹凸ロール31(第1ロール)の凸部35の先端が通る円形の軌道(図示せず)に沿って湾曲していることが好ましい。これにより、凸部35の先端面35cと振動印加面42tとで融着対象物(第1シート1と第2シート2との積層物)を挟む時間が長くなり、融着部、貫通孔6及び繊維配向領域20の同時形成をより一層確実に行うことができる。
 また、このように超音波ホーン42の振動印加面42tがMDに沿う断面視において円弧状をなす場合、これに対応する凹凸ロール31の複数の凸部35それぞれの先端面35cは、同断面視において凹凸ロール31の回転軸から離れる方向に向かって凸状をなし、振動印加面42tと湾曲の向きが一致していることが好ましい。
 超音波ホーン42Bの振動印加面42tの曲率半径は、凹凸ロール31の凸部35の先端面35cの曲率半径に対して、100%以上が好ましい。
 また振動印加面42tの曲率半径は、500%以下が好ましく、200%以下がより好ましい。
 なお、図16に示す超音波ホーン42Bにおいては、振動印加面42tは、凹凸ロール31の回転軸と平行な方向の全域にわたって、MDに沿う断面形状が円弧状をなしているが、該回転軸と平行な方向における凸部35と対向しない部位等に異なる、断面形状の部分を設けても良い。
 例えば、図10に示すように、凹凸ロール31を構成する隣り合う歯車間に空隙Gを設けた場合、振動印加面42tにおける該空隙Gと対向する部位に、円弧状の振動印加面42tから突出しない平坦な部分等を設けてもよい。
 図17に示す超音波ホーン42Cにおいては、超音波ホーン42の先端部が、該超音波ホーン42Cの金属製の本体部420に固定された蓄熱部421を含んで構成され、振動印加面42tが蓄熱部421から形成されている。
 溝状凹部46は、少なくとも蓄熱部421に形成される。
 図17では、溝状凹部46は蓄熱部421のみに形成されているが、蓄熱部421を厚み方向に貫通して本体部420に延出してもよい。
 また、図17に示す蓄熱部421からなる振動印加面42tは、前述の超音波ホーン42Bの振動印加面42tと同様に、MDに沿う断面視において円弧状をなしているが、円弧状をなさずに平坦でもよい。
 蓄熱部421は、本体部420を構成する金属に比べて、熱伝導率が低い材料である蓄熱材からなる。
 蓄熱部421を構成する蓄熱材の熱伝導率は、超音波ホーンや大気に放熱しにくくする観点から、2.0W/mK以下が好ましく、1.0W/mK以下がより好ましい。
 また前記蓄熱材の熱伝導率は、シートを効率的に加熱する観点から、0.1W/mK以上が好ましく、0.5W/mK以上がより好ましい。
 蓄熱材の熱伝導率は、熱伝導率測定装置を用いて常法に従って測定することができる。
 振動印加面42tが蓄熱部421から形成されていると、超音波振動により発熱した第1及び第2シート1,2の熱が蓄熱部421に蓄えられる結果、蓄熱部421の温度が上昇して第1シート1及び第2シート2を加熱することができる。そのため、振動印加面42tに形成された溝状凹部46による作用効果と相俟って、融着部、貫通孔6及び繊維配向領域20の同時形成をより一層確実に行うことができる。
 また、振動印加面42tが蓄熱部421から形成されていると、第1及び第2シート1,2の溶融により生じる溶融樹脂の搬送手段への付着、シートの搬送ロールへの巻き付き等の不都合の発生が抑制され、製造装置のメンテナンス負担が軽減されるというメリットがある。
 蓄熱部421の厚みTh(図17参照)は、特に制限されないが、蓄熱部421による作用効果をより確実に奏させるようにする観点から、5μm以上が好ましく、10μm以上がより好ましい。
 また厚みThは、100μm以下が好ましく、50μm以下がより好ましい。
 蓄熱部421を構成する蓄熱材としては、本体部420を構成する金属に比べて熱伝導率が低いことを前提として、耐摩耗性及び耐熱性に優れた合成樹脂を用いることが好ましく、該合成樹脂として、例えば、ポリイミドやポリベンゾイミダゾール、ポリエーテルエチルケトン、ポリフェニレンサルファイト、ポリエーテルイミド、ポリアミドイミド等の、ロックウエル硬度がR120以上R140以下で、耐熱温度が150℃以上500℃以下の合成樹脂が挙げられる。
 前記蓄熱材としては、ポリイミドやポリベンゾイミダゾール等の、ロックウエル硬度がR125以上R140以下で、耐熱温度が280℃以上400℃以下の合成樹脂が特に好ましい。
 ここで、ロックウエル硬度は、ASTM D-785に従って測定した値であり、耐熱温度は、ASTM D-648に従って測定した値である。
 合成樹脂製の蓄熱部421を金属製の本体部420に固定する手段は特に制限されず、公知の固定手段を採用できる。
 合成樹脂製の蓄熱部421は、例えば、金属製の本体部420に溶射により形成して、該本体部420に固定することができる。
 ここでいう「溶射」とは、加熱することで溶融又はそれに近い状態とした金属やセラミックスなどの溶射材料の粒子を、加速して基材面に高速で衝突させ、該基材面に被膜を形成する公知の表面処理法である。
 溶射材料としては、溶射可能で、合成樹脂製の蓄熱部421の固定強度の向上に寄与し得るものを特に制限なく用いることができるが、チタン合金等の金属からなる本体部420に対する結合力に優れ、耐摩耗性や耐熱性にも優れる観点から、タングステンカーバイド、ジルコニア、クロムカーバイド等のセラミックス、アルミマグネシウム、亜鉛アルミニウム等の合金、アルミニウム、ステンレス、チタン、モリブデン等の金属、金属とセラミックスの複合材であるサーミット等が好ましく用いられる。
 図18に示す超音波ホーン42Dにおいては、振動印加面42tにおける溝状凹部非形成部47に凹凸部48が形成されている。
 より具体的には図18(a)に示すように、溝状凹部非形成部47の一部が凹凸部48であり、溝状凹部非形成部47の残りの部分は、凹凸が無く平滑な平滑部49である。凹凸部48は、平滑部49に比べて表面粗さが大きく、それ故に強い摩擦力を有する。
 前記超音波処理工程において、融着対象物(第1シート1と第2シート2との積層物)における凹凸部48によって押圧された部分にはせん断力が作用するため、溝状凹部46による作用効果と相俟って、融着部、貫通孔6及び繊維配向領域20の同時形成をより一層確実に行うことができる。
 凹凸部48は、図18(b)に示すように、複数の凸部481及び複数の凹部482を有している。凸部481は、同図に示す如きMDに沿う断面視において三角形をなしているが、凸部481の同断面視における形状は特に限定されず、例えば、四角形、台形等でもよい。
 また、凹凸部48における複数の凸部481の配列パターンの一例として、凸部481がCD(凹凸ロール31の回転軸に沿う方向)に等間隔で配された凸部列が、MDに等間隔で配された配列パターンが挙げられる。
 前記配列パターンの他の一例として、凸部481がCDに等間隔を空けて配された凸部列が、MDに等間隔を空けて配されており、且つMDに隣り合う凸部列どうしが、半ピッチずれた配列パターンが挙げられる。
 凹凸部48は、振動印加面42tにおける溝状凹部非形成部47に、ローレット加工や溶射処理を施すことで形成することができる。
 図18に示す形態では、溝状凹部46と凹凸部48との間に平滑部49が存在しているが、溝状凹部46と凹凸部48との間に平滑部49が存在せず、溝状凹部46と凹凸部48とMDにおいて隣り合っていてもよい。
 また、振動印加面42tに平滑部49が存在せず、溝状凹部非形成部47の全体が凹凸部48であってもよい。
 凹凸部48による作用効果をより一層確実に奏させるようにする観点から、凹凸部48の表面粗さは、算術平均粗さRaが、3.2μm以上が好ましく、6.3μm以上がより好ましい。
 また凹凸部48の表面粗さは、算術平均粗さRaが、12.5μm以下が好ましく、25μm以下がより好ましい。
 算術平均粗さRaは、種々の表面粗さ測定機で測定可能であり、例えば、株式会社ミツトヨ製の表面粗さ測定機を用いて測定可能である。
 同様の観点から、凹凸部48の寸法等は以下のように設定することが好ましい。
 振動印加面42tの溝状凹部非形成部47の面積(47S)に対する凹凸部48の面積(48S)の割合、すなわち(48S/47S)×100によって算出される割合は、15%以上が好ましく、30%以上がより好ましい。
 また前記割合は、100%以下が好ましく、80%以下がより好ましい。
 凹凸部48を構成する凸部481の単位面積(1cm)当たりの数は、1個以上が好ましく、100個以上がより好ましい。
 また凸部481の単位面積(1cm)当たりの数は、1,000,000個以下が好ましく、10,000個以下がより好ましい。
 凹凸部48の平面視において、凸部481の1個の面積は、0.0001mm以上が好ましく、0.01mm以上がより好ましい。
 また凸部481の1個の面積は、100mm以下が好ましく、1mm以下がより好ましい。
 以上、本発明をその好ましい実施形態に基づき説明したが、本発明は前記実施形態に何ら制限されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。
 例えば、上述した実施形態の表面シート10は、複数の凸部5及び凹部3を有していたが、凸部5及び凹部3を有さない平坦なシートであってもよい。
 また、上述した表面シート10は、第1シート1及び第2シート2が積層した積層構造を有していたが、表面シート10は単層構造であってもよい。表面シート10が凸部5を有する場合、該凸部5の強度をより向上して、着用者の体圧に対する耐性をより高める観点から、表面シート10は、前記積層構造を有していることが好ましい。
 また、振動印加面42tに溝状凹部46が1本形成されていたが、複数本形成されていてもよい。その場合、例えば、CDに延びる複数の溝状凹部46がMDに間欠配置されていてもよく、あるいはCDに延びる複数の溝状凹部46がCDに間欠配置されていてもよい。
 また、前述の一の実施形態が具備する構成は、他の実施形態に適用することが可能である。
 例えば、凹凸部48が形成された超音波ホーン42Dの振動印加面42t(図18参照)は、図16に示すように、凹凸ロール31の回転軸に直交する方向に沿う断面視(MDに沿う断面視)において、該回転軸から離れる方向に向かって凹んだ円弧状をなしていてもよい。
 また、図17に示すように振動印加面42tが蓄熱部421から形成されている場合に、蓄熱部421からなる振動印加面42tに凹凸部48が形成されていてもよい。
 上述した本発明の実施形態に関し、さらに以下の吸収性物品を開示する。
<1>
 繊維材料からなり、複数の貫通孔を有し、該貫通孔の開口端の一部に、繊維が一方向に配向した繊維配向領域を有する表面シートと、
 前記表面シートの非肌対向面側で、該表面シートに隣接して配置された繊維シートとを備え、
 前記表面シートにおける前記繊維配向領域に位置する繊維と、前記繊維シートの構成繊維とが係合している、吸収性物品。
<2>
 1個の前記貫通孔における前記繊維配向領域に位置する繊維の本数は、1本以上100本以下、好ましくは5本以上100本以下、より好ましくは20本以上50本以下である、前記<1>に記載の吸収性物品。
<3>
 1個の前記貫通孔において、前記繊維配向領域に位置し且つ前記表面シートの厚み方向において先端が非肌対向面側に向いている繊維の本数は、1本以上100本以下、好ましく20本以上100本以下である、前記<1>又は<2>に記載の吸収性物品。
<4>
 前記表面シートにおける前記貫通孔の面積率は、4%以上30%以下、好ましくは8%以上20%以下である、前記<1>~<3>の何れか1に記載の吸収性物品。
<5>
 1個当たりの前記貫通孔の面積は、1mm以上30mm以下、より好ましくは3mm以上20mm以下である、前記<1>~<4>の何れか1に記載の吸収性物品。
<6>
 前記表面シートにおいて前記繊維配向領域が形成された前記貫通孔の単位面積(平面視で10mm四方の領域の面積)当たりの数は、2個以上20個以下、好ましくは4個以上15個以下である、前記<1>~<5>の何れか1に記載の吸収性物品。
<7>
 液保持性の吸収体を備えており、
 前記繊維シートが、前記表面シート及び前記吸収体間に配されたサブレイヤー、又は前記吸収体の表面を形成するコアラップシートである、前記<1>~<6>の何れか1に記載の吸収性物品。
<8>
 前記繊維シートが、複数の凹部及び凸部を有している、前記<1>~<7>の何れか1に記載の吸収性物品。
<9>
 着用者の前後方向に対応する縦方向及びこれに直交する横方向を有し、
 前記凸部に位置する繊維が、前記縦方向に配向している、前記<8>に記載の吸収性物品。
<10>
 前記繊維シートにおける1個以上の前記凸部が、前記貫通孔と重なっている、前記<8>又は<9>に記載の吸収性物品。
<11>
 前記繊維シートがエアスルー不織布を含む、前記<1>~<10>の何れか1に記載の吸収性物品。
<12>
 着用者の前後方向に対応する縦方向及びこれに直交する横方向を有し、
 前記繊維配向領域に位置する繊維が、前記縦方向に沿うように配向している、前記<1>~<11>の何れか1に記載の吸収性物品。
<13>
 前記貫通孔は、前記縦方向に長い形状を有しており、
 前記表面シートは、前記貫通孔の長手方向に沿う両側部に前記繊維配向領域を有しており、
 前記繊維配向領域に位置する繊維は、前記貫通孔の短手方向に沿う基準線に対する角度が0度超90度未満である、前記<12>に記載の吸収性物品。
<14>
 前記繊維配向領域に位置する繊維は、その先端が前記貫通孔の内方側を向いている、前記<13>に記載の吸収性物品。
<15>
 前記表面シートは、前記繊維配向領域に位置する繊維として、外側部分が溶融して他の繊維よりも繊維径が小さくなった繊維を有している、前記<1>~<14>の何れか1に記載の吸収性物品。
<16>
 前記表面シートにおける前記繊維配向領域に位置する繊維の繊維径は、該表面シートにおける該繊維配向領域以外の部分に位置する繊維の繊維径に対して、40%以上80%以下、好ましくは50%以上70%以下である、前記<15>に記載の吸収性物品。
 本発明の吸収性物品によれば、排泄物の透過性を維持しつつ、表面シートの位置ずれを抑制することができる。

Claims (16)

  1.  繊維材料からなり、複数の貫通孔を有し、該貫通孔の開口端の一部に、繊維が一方向に配向した繊維配向領域を有する表面シートと、
     前記表面シートの非肌対向面側で、該表面シートに隣接して配置された繊維シートとを備え、
     前記表面シートにおける前記繊維配向領域に位置する繊維と、前記繊維シートの構成繊維とが係合している、吸収性物品。
  2.  1個の前記貫通孔における前記繊維配向領域に位置する繊維の本数が、1本以上100本以下である、請求項1に記載の吸収性物品。
  3.  1個の前記貫通孔において、前記繊維配向領域に位置し且つ前記表面シートの厚み方向において先端が非肌対向面側に向いている繊維の本数が、1本以上100本以下である、請求項1又は2に記載の吸収性物品。
  4.  前記表面シートにおける前記貫通孔の面積率が、4%以上30%以下である、請求項1~3の何れか1項に記載の吸収性物品。
  5.  1個当たりの前記貫通孔の面積が、1mm以上30mm以下である、請求項1~4の何れか1項に記載の吸収性物品。
  6.  前記表面シートにおいて前記繊維配向領域が形成された前記貫通孔の単位面積(平面視で10mm四方の領域の面積)当たりの数が、2個以上20個以下である、請求項1~5の何れか1項に記載の吸収性物品。
  7.  液保持性の吸収体を備えており、
     前記繊維シートが、前記表面シート及び前記吸収体間に配されたサブレイヤー、又は前記吸収体の表面を形成するコアラップシートである、請求項1~6の何れか1項に記載の吸収性物品。
  8.  前記繊維シートが、複数の凹部及び凸部を有している、請求項1~7の何れか1項に記載の吸収性物品。
  9.  着用者の前後方向に対応する縦方向及びこれに直交する横方向を有し、
     前記凸部に位置する繊維が、前記縦方向に配向している、請求項8に記載の吸収性物品。
  10.  前記繊維シートにおける1個以上の前記凸部が、前記貫通孔と重なっている、請求項8又は9に記載の吸収性物品。
  11.  前記繊維シートがエアスルー不織布を含む、請求項1~10の何れか1項に記載の吸収性物品。
  12.  着用者の前後方向に対応する縦方向及びこれに直交する横方向を有し、
     前記繊維配向領域に位置する繊維が、前記縦方向に沿うように配向している、請求項1~11の何れか1項に記載の吸収性物品。
  13.  前記貫通孔は、前記縦方向に長い形状を有しており、
     前記表面シートは、前記貫通孔の長手方向に沿う両側部に前記繊維配向領域を有しており、
     前記繊維配向領域に位置する繊維は、前記貫通孔の短手方向に沿う基準線に対する角度が0度超90度未満である、請求項12に記載の吸収性物品。
  14.  前記繊維配向領域に位置する繊維は、その先端が前記貫通孔の内方側を向いている、請求項13に記載の吸収性物品。
  15.  前記表面シートは、前記繊維配向領域に位置する繊維として、外側部分が溶融して他の繊維よりも繊維径が小さくなった繊維を有している、請求項1~14の何れか1項に記載の吸収性物品。
  16.  前記表面シートにおける前記繊維配向領域に位置する繊維の繊維径は、該表面シートにおける該繊維配向領域以外の部分に位置する繊維の繊維径に対して、40%以上80%以下である、請求項15に記載の吸収性物品。
PCT/JP2021/042099 2020-11-19 2021-11-16 吸収性物品 WO2022107771A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180076539.3A CN116456946A (zh) 2020-11-19 2021-11-16 吸收性物品

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020192621 2020-11-19
JP2020-192621 2020-11-19
JP2021-084976 2021-05-19
JP2021084976A JP7554708B2 (ja) 2020-11-19 2021-05-19 吸収性物品

Publications (1)

Publication Number Publication Date
WO2022107771A1 true WO2022107771A1 (ja) 2022-05-27

Family

ID=81708003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042099 WO2022107771A1 (ja) 2020-11-19 2021-11-16 吸収性物品

Country Status (1)

Country Link
WO (1) WO2022107771A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0489054A (ja) * 1990-07-30 1992-03-23 Uni Charm Corp 吸収性物品の表面シート
JP2001521590A (ja) * 1997-03-21 2001-11-06 キンバリー クラーク ワールドワイド インコーポレイテッド デュアルゾーン化吸収性ウェブ
JP2001522700A (ja) * 1997-11-14 2001-11-20 ザ、プロクター、エンド、ギャンブル、カンパニー 大便管理層を有する使い捨て吸収体
JP2019093598A (ja) * 2017-11-21 2019-06-20 花王株式会社 複合シートの製造装置及び製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0489054A (ja) * 1990-07-30 1992-03-23 Uni Charm Corp 吸収性物品の表面シート
JP2001521590A (ja) * 1997-03-21 2001-11-06 キンバリー クラーク ワールドワイド インコーポレイテッド デュアルゾーン化吸収性ウェブ
JP2001522700A (ja) * 1997-11-14 2001-11-20 ザ、プロクター、エンド、ギャンブル、カンパニー 大便管理層を有する使い捨て吸収体
JP2019093598A (ja) * 2017-11-21 2019-06-20 花王株式会社 複合シートの製造装置及び製造方法

Similar Documents

Publication Publication Date Title
JP6592632B1 (ja) 複合シートの製造装置及び製造方法
CN109982832B (zh) 复合片的制造方法和制造装置
WO2017086076A1 (ja) 吸収性物品
JP6554250B2 (ja) 吸収性物品
CN110325679B (zh) 吸收性物品
JP6408194B1 (ja) 積層不織布及びその製造方法並びに吸収性物品及び吸汗シート
JP2022081383A (ja) 吸収性物品
WO2018100901A1 (ja) 吸収性物品及びそれに用いる立体開孔シートの製造方法
JP6914412B2 (ja) 複合シートの製造方法及び製造装置並びに複合シート及び吸収性物品
JP6934405B2 (ja) 複合シートの製造方法及び製造装置
WO2022107771A1 (ja) 吸収性物品
WO2014208651A1 (ja) パンツ型使い捨ておむつ
JP4727265B2 (ja) 使い捨てのパンツ型着用物品
JP6982101B2 (ja) 吸収性物品
WO2022107770A1 (ja) 吸収性物品用表面シート及びこれを備えた吸収性物品
CN114728475B (zh) 复合片的制造方法和制造装置以及复合片和吸收性物品
JP2022081382A (ja) 吸収性物品用表面シート及びこれを備えた吸収性物品
TWI742214B (zh) 複合片材之製造方法及製造裝置
WO2020110617A1 (ja) 吸収性物品
CN116456946A (zh) 吸收性物品
JP6753664B2 (ja) 不織布
JP6189109B2 (ja) パンツ型着用物品
CN116456945A (zh) 吸收性物品用正面片和具有它的吸收性物品
JP2022069291A (ja) 複合シートの製造方法及び製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894645

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180076539.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21894645

Country of ref document: EP

Kind code of ref document: A1