WO2022107309A1 - 送風機およびこれを備えた空気調和装置 - Google Patents

送風機およびこれを備えた空気調和装置 Download PDF

Info

Publication number
WO2022107309A1
WO2022107309A1 PCT/JP2020/043388 JP2020043388W WO2022107309A1 WO 2022107309 A1 WO2022107309 A1 WO 2022107309A1 JP 2020043388 W JP2020043388 W JP 2020043388W WO 2022107309 A1 WO2022107309 A1 WO 2022107309A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
blower
main plate
suction
impeller
Prior art date
Application number
PCT/JP2020/043388
Other languages
English (en)
French (fr)
Inventor
皓亮 宮脇
智哉 福井
健一 迫田
美優 中野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021527078A priority Critical patent/JP6942294B1/ja
Priority to PCT/JP2020/043388 priority patent/WO2022107309A1/ja
Publication of WO2022107309A1 publication Critical patent/WO2022107309A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes

Definitions

  • the present disclosure relates to a blower arranged in a housing such as an air conditioner and an air conditioner equipped with the blower.
  • a centrifugal blower equipped with an impeller and a scroll casing for accommodating the impeller.
  • the impeller includes a disk-shaped rotating main plate, a plurality of blades, and a ring-shaped retaining ring.
  • one end of a plurality of blades is fixed to the outer peripheral portion of the rotating main plate, and the other ends of the plurality of blades are connected by a retaining ring.
  • this type of blower there is one in which a plurality of blades are composed of two types of blades, a first blade and a second blade having different chord lengths except for one end side connected to the rotating main plate. (See, for example, Patent Document 1).
  • the airflow flowing into the blower is affected by the position of the blower in the housing of the air conditioner.
  • a suction port for sucking air in the housing may be formed on the upper surface of the housing, and the blower may be arranged in the housing so that the suction port of the blower faces the right side surface or the left side surface of the housing. ..
  • the airflow flowing in from the suction port of the housing flows into the blower, the airflow does not uniformly flow from the entire surface of the suction port of the blower, but is on the upper side where the suction port of the housing is located. The airflow is biased.
  • Patent Document 1 the bias of the airflow flowing into the blower when the blower is arranged in the housing of the air conditioner is not examined, and there is a possibility of causing noise and a decrease in air volume.
  • the present disclosure is for solving the above-mentioned problems, and an object of the present invention is to provide a blower capable of reducing noise and increasing the air volume, and an air conditioner equipped with the blower.
  • the blower according to the present disclosure is a blower provided with an impeller, and the impeller has one end on one surface of a rotating main plate that rotates about a rotating shaft and one surface of the rotating main plate so as to extend in the radial direction of the rotating shaft.
  • the first blade is provided with a first blade to which the blade is fixed and a second blade to which one end is fixed to one surface of the rotation main plate so as to extend in the radial direction of the rotation shaft.
  • Inside the rotation axis of the blade in the radial direction there is a first inclined surface whose chord length increases from the end opposite to the rotation main plate toward the rotation main plate side, and the second blade has a second blade.
  • the blade has a second inclined surface whose chord length increases toward the rotation main plate side from the end opposite to the rotation main plate on the radial inside of the rotation axis of the blade, and the first of the first blades.
  • the suction downstream side of the second blade is defined.
  • the chord length is longer than the chord length on the suction downstream side of the first blade, and the first inclined surface of the first blade and the second inclined surface of the second blade are on the suction upstream side.
  • the first blade and the second blade are aligned with each other when viewed in the meridional cross section of the impeller.
  • the air conditioner according to the present disclosure includes the above-mentioned blower and a housing for accommodating the blower.
  • the second blade whose chord length on the downstream side of suction is longer than that of the first blade is provided, the generation of eddy current can be suppressed and noise reduction can be realized. Further, since the second inclined surface of the second blade and the first inclined surface of the first blade are along each other on the suction upstream side, it is possible to suppress the obstruction of the air flow flowing into the impeller and blow out. Therefore, it is possible to realize a high air volume.
  • FIG. 1 shows the refrigerant circuit structure of the air conditioner which concerns on Embodiment 1.
  • FIG. It is a schematic perspective view which shows the structure of the indoor unit of the air conditioner which concerns on Embodiment 1.
  • FIG. It is a perspective view of the blower which concerns on Embodiment 1.
  • FIG. It is a perspective view of the impeller 9 of the blower which concerns on Embodiment 1.
  • FIG. It is sectional drawing which cut the impeller 9 of the blower which concerns on Embodiment 1 in the direction perpendicular to the rotation axis 20. It is sectional drawing which cut the impeller 9 of the blower which concerns on Embodiment 1 in the direction perpendicular to the rotation axis 20.
  • FIG. 6 is a schematic cross-sectional view taken along the line AA of FIG.
  • FIG. 6 is a schematic cross-sectional view taken along the line BB of FIG.
  • FIG. 7 is explanatory drawing of the air flow in the indoor unit of the air conditioner which concerns on Embodiment 1.
  • FIG. It is explanatory drawing of the air flow in the blower which concerns on Embodiment 1.
  • FIG. It is a figure which shows the comparative example, and is the schematic cross-sectional view of the blower at the CC position of FIG. 11 which shows the air flow by a blower.
  • FIG. 5 is a schematic cross-sectional view of the blower at the CC position in FIG. 11, showing the airflow from the blower according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view of the inner wall of the blower at the CC position in FIG. 11 and the housing adjacent to the blower, showing the airflow generated by the blower according to the first embodiment. It is a figure which shows the test result which confirmed the flow rate improvement effect in the case of the arrangement configuration of FIG.
  • FIG. 1 is a diagram showing a refrigerant circuit configuration of the air conditioner 200 according to the first embodiment.
  • the white arrow indicates the flow of air
  • the solid arrow indicates the flow of the refrigerant.
  • the air conditioner 200 includes an indoor unit 201 arranged in the indoor space 300 and an outdoor unit 202 arranged in the outdoor space 301.
  • the indoor unit 201 and the outdoor unit 202 are connected by a refrigerant pipe 400 to form a refrigerant circuit in which the refrigerant circulates.
  • the outdoor unit 202 has a configuration including a compressor 100, a four-way valve 101, an outdoor heat exchanger 102, a decompression device 103, and a blower 104 in a housing 202a.
  • the indoor unit 201 has a configuration including an indoor heat exchanger 17 and a blower 10 in the housing 201a.
  • the indoor heat exchanger 17 is composed of a fin tube heat exchanger including a plurality of heat transfer tubes and a plurality of fins.
  • the heat transfer tube may have a circular cross-sectional shape or a flat cross-sectional shape.
  • the indoor heat exchanger 17 is not limited to the fin tube heat exchanger, but may be another type of heat exchanger.
  • the flow direction of the refrigerant in the indoor heat exchanger 17 may be a direction along the rotation axis 20 of the blower 10 or a direction orthogonal to the rotation axis 20.
  • the indoor unit 201 in FIG. 1 shows a wall-mounted type, the form is not limited, and the indoor unit 201 may be a floor-standing type, a ceiling-hung type, or a ceiling-embedded type.
  • the refrigerant that has become a high-temperature high-pressure gas in the compressor 100 flows to the outdoor heat exchanger 102 via the four-way valve 101, dissipates heat to the outdoor air from the blower 104, and becomes a liquid phase refrigerant or a liquid-based refrigerant.
  • the refrigerant flowing out of the outdoor heat exchanger 102 as a liquid phase refrigerant or a liquid-based refrigerant is decompressed by the decompression device 103 to become a low-temperature low-pressure two-phase refrigerant, and flows into the indoor heat exchanger 17 of the indoor unit 201.
  • the low-temperature low-pressure two-phase refrigerant flowing into the indoor heat exchanger 17 exchanges heat with the indoor air from the blower 10, and then returns to the compressor 100 via the four-way valve 101 again.
  • the cooling operation is performed by circulating the refrigerant in the refrigerant circuit.
  • FIG. 2 is a schematic perspective view showing the configuration of the indoor unit 201 of the air conditioner 200 according to the first embodiment.
  • Two blowers 10 are arranged in the housing 201a of the indoor unit 201.
  • the number of blowers 10 is limited to two here in order to improve the performance, but the number is not limited to two, and may be one or three or more.
  • a motor (FIG. 11 described later) for driving the blower 10 is arranged in the housing 201a.
  • a suction port 201aa is formed on the upper surface of the housing 201a, and an air outlet 201ab is formed on the front surface of the housing 201a.
  • Inside the housing 201a an air passage is formed in which the airflow AF that has flowed into the housing 201a from the suction port 201a is blown out of the housing 201a from the air outlet 201ab.
  • the indoor heat exchanger 17 is arranged upstream of the air in the air passage from the suction port 201aa to the air outlet 201ab.
  • a blower 10 is arranged downstream of the air in the air passage.
  • the blowers 10 are arranged side by side in the housing 201a in a direction orthogonal to the air flow. In FIG. 2, the blower 10 is arranged downstream of the air of the indoor heat exchanger 17, but may be arranged upstream of the air of the indoor heat exchanger 17.
  • Each blower 10 is connected to a rotary shaft 20 of a motor 13 and is driven by the motor 13.
  • FIG. 3 is a perspective view of the blower 10 according to the first embodiment.
  • FIG. 4 is a perspective view of the impeller 9 of the blower 10 according to the first embodiment.
  • FIG. 5 is a cross-sectional view of the impeller 9 of the blower 10 according to the first embodiment cut in a direction perpendicular to the rotation axis 20.
  • the direction in which the rotating shaft 20 extends is referred to as an axial direction
  • the direction perpendicular to the axial direction is referred to as a radial direction
  • the direction around the rotating shaft 20 is referred to as a circumferential direction.
  • the blower 10 is a centrifugal blower having an impeller 9 for generating an air flow and a casing 8 for accommodating the impeller 9.
  • the impeller 9 includes a disk-shaped rotating main plate 1, a plurality of first blades 31 and second blades 32, and a ring-shaped retaining ring 71.
  • One end of the plurality of first blades 31 and the second blade 32 is fixed to the outer peripheral portion of one surface of the rotating main plate 1, and the other end is fixed to the holding ring 71.
  • the plurality of first blades 31 and the second blade 32 are formed, for example, in the shape of a curved rectangular plate, and are fixed to one surface of the rotating main plate 1 so as to extend in the radial direction of the rotating shaft 20. ing.
  • extending in the radial direction means that one end in the longitudinal direction of the fixed portion of the blade fixed to the rotating main plate 1 is located radially inward from the other end in the longitudinal direction.
  • the plurality of first blades 31 and the second blade 32 are arranged in an annular shape with the rotation shaft 20 as the center.
  • the second blades 32 are arranged at equal intervals in the circumferential direction about the rotation shaft 20 of the impeller 9.
  • One first blade 31 is arranged between the second blades 32.
  • the number of the first blades 31 arranged between the second blades 32 is not limited to one, and may be two or more.
  • the first blade 31 is arranged so that the distance from the adjacent first blade 31 or the second blade 32 is equal.
  • the impeller 9 has a plurality of first blades 31 and second blades 32 arranged and fixed not only on one surface side of the rotating main plate 1 but also on the other surface side (see FIG. 12 described later). ). Then, similarly to the above, the other ends of the first blade 31 and the second blade 32 on the opposite side of the rotating main plate 1 are fixed to the holding ring 71.
  • the impeller 9 is not limited to a configuration in which a plurality of first blades 31 and second blades 32 are arranged on both sides of the rotating main plate 1, and as shown in FIG. 4, one surface side of the rotating main plate 1 A configuration in which a plurality of first blades 31 and second blades 32 are arranged only may be used.
  • the casing 8 rectifies the airflow blown out from the impeller 9.
  • the casing 8 includes a scroll portion 8a that spirally guides the airflow generated by the impeller 9, and a discharge portion 8b having a discharge port 8b1 that discharges the airflow.
  • the scroll portion 8a has two side walls 8aa that cover the impeller 9 from both sides in the rotation shaft 20 direction, and a peripheral wall 8ab that surrounds the impeller 9 from the radial direction of the rotation shaft 20.
  • a suction port 8a1 for sucking air is formed in each of the two side walls 8aa.
  • the peripheral wall 8ab constitutes a curved surface that smoothly curves along the circumferential direction of the impeller 9.
  • FIG. 6 is a cross-sectional view of the impeller 9 of the blower 10 according to the first embodiment cut in a direction perpendicular to the rotation axis 20.
  • FIG. 6 shows the cross-sectional positions AA and the cross-sectional positions BB.
  • FIG. 6 is a cross-sectional view of the impeller 9 cut at a position in the axial direction different from that of FIG. 5 in a direction perpendicular to the rotation axis 20.
  • FIG. 7 is a schematic cross-sectional view taken along the line AA of FIG.
  • FIG. 8 is a schematic cross-sectional view taken along the line BB of FIG.
  • FIG. 9 is a conceptual diagram in which FIGS. 7 and 8 are superimposed.
  • FIG. 9 corresponds to a meridional cross section in which the shapes of the first blade 31 and the second blade 32 are vertically projected along the rotation axis 20.
  • the first blade 31 has a chord length that increases in the radial direction of the rotating shaft 20 from the end opposite to the rotating main plate 1 toward the rotating main plate 1. It has one inclined surface 31a.
  • the radial inner surface 31b on the rotation main plate 1 side of the first inclined surface 31a is parallel to the rotation shaft 20 configured so that the chord length is constant. It is a flat surface.
  • the radial inner surface 31b is not limited to a flat surface, but may be an inclined surface configured so that the chord length changes.
  • the axial rotation main plate 1 side is defined as the suction downstream side, and the side opposite to the rotation main plate 1 is defined as the suction upstream side, with the end portion 31aa on the rotation main plate 1 side of the first inclined surface 31a of the first blade 31 as a boundary. do.
  • the second blade 32 has a structure in which the chord length on the suction downstream side is longer than the chord length on the suction downstream side of the first blade 31. Further, the chord length of the second blade 32 increases in the radial direction of the rotation shaft 20 of the second blade 32 from the end opposite to the rotation main plate 1 toward the rotation main plate 1. It has a second inclined surface 32a. Of the radial inner surfaces of the second blade 32, the radial inner surface 32b on the rotation main plate 1 side of the second inclined surface 32a is parallel to the rotation shaft 20 configured so that the chord length is constant. It is a flat surface. The radial inner surface 32b is not limited to a flat surface, but may be an inclined surface configured so that the chord length changes.
  • the second inclined surface 32a of the second blade 32 and the first inclined surface 31a of the first blade 31 are aligned with each other when viewed in the meridional cross section.
  • the blade height direction (axial direction) is the z direction and the position of the rotating main plate 1 in the z direction is the height 0, the inner diameter D1 described later and the inner diameter D2 described later at a certain blade height z
  • the difference, D2-D1 is within 5% of the inner diameter D1.
  • the inner diameter D1 is the inner diameter of the first virtual circle Ca in which the radially inner ends of the first blades 31 are connected at the same blade height position.
  • the first virtual circle Ca is a circle centered on the rotation axis 20 passing through the radial inner end of the first blade 31.
  • the inner diameter D2 is the inner diameter of the second virtual circle Cb in which the radially inner ends of the second blades 32 are connected at the same blade height position.
  • the second virtual circle Cb is a circle centered on the rotation axis 20 passing through the radial inner end of the second blade 32.
  • the rate of change in the inner diameter of the first virtual circle Ca on the first inclined surface 31a and the rate of change in the inner diameter of the second virtual circle Cb on the second inclined surface 32a are equal.
  • the inner diameter change rate is dD / dz when the blade height is dz and the change in the inner diameter at the blade height dz is dD as shown in FIG.
  • the number of blades, the height of the blades, the inlet angle of the blades, and the outlet angle of the blades, which are the specifications of the blades, are not limited and may be freely designed according to the operating point of the blower.
  • the surface shape of the blade it is desirable to form a concave surface in which the blade is recessed rearward in the rotation direction of the impeller 9. This is because the effect of increasing the air volume and the effect of reducing noise can be obtained in the operating range of low static pressure.
  • the motor 13 and the like are convex in the blade height direction in order to mount the motor 13 and the like in the housing 201a of the indoor unit 201 in a highly airtight manner.
  • a convex surface may or may not be formed.
  • the holding ring 71 may be provided on the outer peripheral side of the first blade 31 and the second blade 32 as long as it is on the other end side of the first blade 31 and the second blade 32, or the holding ring 71 may be provided on the outer peripheral side of the first blade 31 and the first blade 31. And may be provided on the end face of the second blade 32 on the side opposite to the rotating main plate 1 in the blade height direction.
  • FIG. 10 is an explanatory diagram of the air flow in the indoor unit 201 of the air conditioner 200 according to the first embodiment.
  • FIG. 11 is an explanatory diagram of the air flow in the blower 10 according to the first embodiment.
  • the cross-sectional positions CC of FIG. 11 are referred to later in FIGS. 12 and 13.
  • the airflow AF1 that flows into the housing 201a and passes through the indoor heat exchanger 17 flows into the space between the two blowers 10 and then separates in the opposite directions in the axial direction, and the suction port of each blower 10 It flows into each blower 10 from 8a1.
  • the airflow AF2 passing through both ends in the axial direction in the housing 201a flows along the inner walls of both ends in the axial direction of the housing 201a. , It flows into the blower 10 from the suction port 8a1 of each blower 10.
  • the airflow flowing into the blower 10 is accelerated by the impeller 9 and blown out toward the radial outside of the impeller 9 as shown in FIG.
  • the airflow blown out from the impeller 9 flows in the scroll portion 8a along the peripheral wall 8ab, and is discharged from the discharge port 8b1 of the discharge portion 8b.
  • the airflow blown out from the impeller 9 toward the outside in the radial direction becomes a speed-increasing airflow 111 and a pressure-increasing airflow 112, and is discharged from the discharge port 8b1.
  • the speed-increasing airflow 111 is an airflow accelerated by the impeller 9 and directly directed to the discharge port 8b1.
  • the pressure-increasing airflow 112 is an airflow in which the velocity component is converted from dynamic pressure to static pressure by the scroll portion 8a and heads toward the discharge port 8b1.
  • the airflow discharged from the discharge port 8b1 of the blower 10 is discharged from the outlet 201ab of the housing 201a to the interior space 300.
  • the airflow discharged from each blower 10 may be discharged from the interior space 300 after merging in the housing 201a.
  • the airflow flowing into the blower 10 is the airflow from the suction port 201aa formed on the upper surface of the housing 201a as shown in FIG. Therefore, the airflow flowing into the blower 10 does not flow in a uniform state from the entire surface of the suction port 8a1 formed in the casing 8, but flows in a biased state from the upper region in the suction port 8a1. That is, the air flow is not uniform in the circumferential direction of the suction port 8a1 and flows into the casing 8 from the suction port 8a1 in a state of being biased to a part of the circumferential direction.
  • Such an airflow bias is caused by the positional relationship between the suction port 201aa of the housing 201a and the suction port 8a1 of the blower 10, and also occurs in the following cases. That is, when a plurality of blowers 10 are arranged adjacent to each other in the housing 201a and there is not enough space around the suction port 8a1, the airflow flowing into the blower 10 is biased. Similarly, when the distance between the suction port 8a1 of the blower 10 and the inner wall of the housing 201a is short and there is not enough space around the suction port 8a1 of the blower 10, the airflow flowing into the blower 10 is biased. ..
  • the blower 10 of the first embodiment adopts the above-mentioned configuration in order to reduce noise and increase the air volume even if the blower 10 is arranged under such an arrangement condition that the air flow is biased.
  • FIG. 12 is a diagram showing a comparative example, and is a schematic cross-sectional view of the blower 1010 at the CC position of FIG. 11 showing the air flow by the blower 1010.
  • FIG. 12 is an explanatory diagram of an air flow in a case where a plurality of blowers 1010 are arranged adjacent to each other in the housing 201a and there is no sufficient space around the suction port 80a1 of the blowers 1010.
  • the plurality of blowers 1010 are arranged side by side in the axial direction so that the suction ports 80a1 face each other.
  • the distance L in the axial direction between the side walls 80a1 on which the suction ports 80a1 of the adjacent blower 1010 are formed is arranged to be within 2Din when the opening diameter of the suction port 80a1 is Din. ..
  • the airflow 110 from the suction port 201aa (see FIG. 2) of the housing 201a does not uniformly flow in from the entire suction port 80a1, but as shown in FIG.
  • the inflow is biased toward a part of the direction (here, the upper side).
  • the shape and size of the blades 310 are the same for all the blades 310. Therefore, when the airflow is viewed in the meridional direction as shown in FIG. 12, the pressure-increasing airflow 112 that flows unevenly into the impeller 90 and blows out from the impeller 90 in the bias direction (upward) is from the rotating main plate 1001. The peeling becomes large.
  • the vortex flow 113 generated between the rotating main plate 1 and the side wall 80aa of the scroll portion 8a becomes large, and the noise value becomes large.
  • the chord length of the entire blades of all the blades 310 is uniformly extended, the vortex flow 113 can be reduced due to the development of the airflow between the blades, but on the other hand, the ventilation of the accelerated airflow 111 is hindered. , The air volume decreases.
  • FIG. 13 is a schematic cross-sectional view of the blower 10 at the CC position of FIG. 11 showing the airflow by the blower 10 according to the first embodiment.
  • FIG. 13 is an explanatory view of the air flow in the case where a plurality of blowers 10 are arranged adjacent to each other in the housing 201a and there is no sufficient space around the suction port 8a1 of the blower 10, as in FIG. Is.
  • the plurality of blowers 10 are arranged side by side in the axial direction so that the suction ports 8a1 face each other.
  • the distance L in the axial direction between the side walls 8aa on which the suction ports 8a1 of the adjacent blower 10 are formed is arranged to be within 2Din when the opening diameter of the suction port 8a1 is Din. ..
  • the side walls 8aa of the adjacent blowers 10 are parallel to each other and extend in a direction orthogonal to the rotation axis 20.
  • the distance L refers to the distance between the suction port 8a1 forming portions in each side wall 8aa.
  • chord lengths of all the blades of all the blades 310 are uniformly extended, the vortex flow 113 can be reduced, but the air volume is reduced. Therefore, in the first embodiment, the chord length is extended for some of the blades to reduce the eddy current and improve the air volume.
  • the chord length of the second blade 32 is made longer than the chord length of the first blade 31.
  • the chord length on the suction downstream side of the second blade 32 is made longer than the chord length on the suction downstream side of the first blade 31.
  • the generation of the eddy current 113 can be suppressed without significantly obstructing the ventilation of the accelerated airflow 111 on the downstream side of the suction, as compared with the case where the chord length of the entire blades of all the blades 310 is uniformly extended.
  • the pressure-increasing airflow 112 that flows into the impeller 9 in a biased direction and blows out from the impeller 9 in the biased direction (upward direction) is the second.
  • the chord length on the suction downstream side of the blade 32 is longer than the chord length on the suction downstream side of the first blade 31, and the peeling from the rotating main plate 1 is reduced.
  • the vortex flow 113 becomes smaller and the noise level is reduced. That is, even if the blower 10 is arranged under the arrangement condition that causes the bias of the air flow, the noise value can be reduced by the action of the second blade 32.
  • the first inclined surface 31a of the first blade 31 and the second inclined surface 32a of the second blade 32 are along each other with respect to the suction upstream side, so that the air flow can be flown. Even if the blower 10 is arranged under the arrangement condition that causes bias, the air volume can be increased. This point will be described below.
  • the accelerated airflow 111 is a flow having a large velocity component among the velocity component and the pressure component of the airflow, and the energy loss due to the contraction when the flow path is narrowed is large. Specifically, the energy loss is proportional to the square of the flow velocity.
  • the energy dissipation becomes large as described below.
  • the second inclined surface 32a of the second blade 32 and the first inclined surface 31a of the first blade 31 are aligned with each other, so that the energy loss of the air flow can be suppressed. That is, it is possible to suppress the obstruction of the airflow flowing into the impeller 9 and blow it out, and it is possible to achieve both low noise and high air volume.
  • FIG. 14 is a diagram showing test results confirming the noise reduction effect of the blower 10 according to the first embodiment.
  • the horizontal axis of FIG. 14 is the flow coefficient ⁇
  • the vertical axis is the specific noise [dBA].
  • FIG. 15 is a diagram showing test results confirming the effect of increasing the air volume by the blower 10 according to the first embodiment.
  • the horizontal axis of FIG. 15 is the flow coefficient ⁇
  • the vertical axis is the pressure coefficient ⁇ . From FIG. 14, it can be seen that in the first embodiment, the noise reduction is realized as compared with the configuration of the comparative example. Further, from FIG. 15, it can be seen that in the first embodiment, a higher air volume is realized as compared with the configuration of the comparative example.
  • the specific distance is calculated by (L / Din) ⁇ 100. See FIG. 13 for L and Din.
  • FIG. 16 is a diagram showing test results confirming the flow rate improvement effect of the blower 10 according to the first embodiment.
  • the horizontal axis of FIG. 16 is the specific distance.
  • the vertical axis of FIG. 16 is the flow rate improvement effect [%], which is the ratio of the flow rate improvement effect of the configuration of the first embodiment to the maximum flow rate improvement effect of the configuration of the comparative example at a certain pressure.
  • the flow rate improvement effect [%] is specifically calculated using the flow rate blown out from the blower 10. When the flow rate improvement effect is 0%, it is shown that the flow rate improvement effect of the configuration of the first embodiment is the same as the maximum performance improvement effect of the configuration of the comparative example.
  • the specific distance When the specific distance is relatively large, the eddy current caused by the drift of the airflow becomes small even in the configuration of the comparative example. Therefore, the effect of reducing the eddy current in the configuration of the embodiment with respect to the comparative example is reduced. Therefore, when the specific distance exceeds 200%, the flow rate improving effect is less than 30%. Further, when the specific distance is relatively small, the blowout flow rate from the blower 10 decreases. Therefore, as the specific distance becomes smaller, the flow rate improving effect decreases and gradually approaches 0%. When the specific distance is less than 75%, the flow rate improvement effect is less than 30%.
  • FIGS. 13 to 16 a plurality of (here, two) blowers 10 are arranged adjacent to each other in the housing 201a, and the flow rate is improved when there is not enough space around the suction port 8a1 of the blowers 10.
  • the effect was explained.
  • FIGS. 17 and 18 when the distance between the suction port 8a1 of the blower 10 and the inner wall of the housing 201a is short and there is not sufficient space around the suction port 8a1 of the blower 10, a sufficient flow rate improvement effect can be obtained. Consider the specific distance to be achieved.
  • FIG. 17 is a schematic cross-sectional view of the blower 10 at the CC position of FIG. 11 and the inner wall 24 of the housing 201a adjacent to the blower 10, showing the airflow by the blower 10 according to the first embodiment.
  • FIG. 17 is an explanatory diagram of an air flow when the distance between the suction port of the blower 10 and the inner wall of the housing 201a is short and there is not enough space around the suction port 8a1 of the blower 10.
  • FIG. 18 is a diagram showing test results confirming the flow rate improvement effect in the case of the arrangement configuration of FIG. The horizontal axis of FIG. 18 shows the specific distance L0 / Din ⁇ 100.
  • L0 is the axial distance between the side wall 8aa on which the suction port 8a1 of the blower 10 is formed and the inner wall 24 of the housing 201a.
  • Din is the opening diameter of the suction port 8a1.
  • the vertical axis of FIG. 18 is the flow rate improvement effect [%], which is the ratio of the flow rate improvement effect of the configuration of the first embodiment to the maximum flow rate improvement effect of the configuration of the comparative example at a certain pressure. When the flow rate improvement effect is 0%, it is shown that the flow rate improvement effect of the configuration of the first embodiment is the same as the maximum performance improvement effect of the configuration of the comparative example.
  • the blower 10 of the first embodiment includes an impeller 9.
  • the impeller 9 rotates with a rotating main plate 1 that rotates about a rotating shaft 20 and a first blade 31 whose one end is fixed to one surface of the rotating main plate 1 so as to extend in the radial direction of the rotating shaft 20.
  • One surface of the main plate 1 is provided with a second blade 32 having one end fixed so as to extend in the radial direction of the rotating shaft 20.
  • the chord length of the first blade 31 becomes longer in the radial direction of the rotation shaft 20 of the first blade 31 from the end portion 31aa on the opposite side of the rotation main plate 1 toward the rotation main plate 1 side. It has one inclined surface 31a.
  • the second blade 32 has a chord length that increases in the radial direction of the rotation shaft 20 of the second blade 32 from the end 31aa on the side opposite to the rotation main plate 1 toward the rotation main plate 1. It has two inclined surfaces 32a.
  • the end portion 31aa on the rotation main plate 1 side of the first inclined surface 31a of the first blade 31 as a boundary, the rotation main plate 1 side in the axial direction of the rotation shaft 20 is sucked downstream, and the side opposite to the rotation main plate 1 is set.
  • the suction upstream side defined as the suction upstream side.
  • the chord length on the suction downstream side of the second blade 32 is longer than the chord length on the suction downstream side of the first blade 31.
  • the first inclined surface 31a of the first blade 31 and the second inclined surface 32a of the second blade 32 see the first blade 31 and the second blade 32 in a meridional cross section. Along each other.
  • the second blade 32 having a chord length on the downstream side of suction longer than that of the first blade 31 is provided, the airflow on the downstream side of suction is not significantly obstructed and the airflow is developed to generate a vortex. It can be suppressed and noise reduction can be realized. Further, on the suction upstream side, the second inclined surface 32a of the second blade 32 and the first inclined surface 31a of the first blade 31 are along each other, so that the obstruction of the air flow flowing into the impeller 9 is suppressed. It is possible to blow out, and it is possible to realize a high air volume.
  • the air conditioner 200 of the first embodiment includes a plurality of blowers 10.
  • the plurality of blowers 10 are arranged side by side so as to face each other so that the suction ports 8a1 of the blowers 10 face each other and are separated from each other in the axial direction.
  • the opening diameter of the suction port 8a1 of the blower 10 is Din and the axial distance between the side walls 8aa on which the suction ports 8a1 of the adjacent blower 10 are formed is L, 0.75Din ⁇ L ⁇ 2Din is established.
  • Embodiment 2 refers to the first blade 31 and the second blade 32 of the first embodiment. Other configurations are the same as those in the first embodiment. Hereinafter, the configuration in which the second embodiment is different from the first embodiment will be mainly described, and the configurations not described in the second embodiment are the same as those in the first embodiment.
  • FIG. 19 is a cross-sectional view of the impeller 9A according to the second embodiment cut in a direction perpendicular to the rotation axis 20.
  • FIG. 20 shows a meridional cross section in which the shapes of the first blades 31 and the second blades 32 of the impeller 9A according to the second embodiment are rotated and projected along the rotation axis 20. It is a figure.
  • the impeller 9A according to the second embodiment has the following configurations (1) and (2).
  • Inner / outer diameter ratio (D1 / D0) ⁇ 100 which is the ratio of the inner diameter D1 of the first virtual circle Ca to the outer diameter D0 of the impeller 9A, and the inner diameter of the second virtual circle Cb with respect to the outer diameter D0 of the impeller 9.
  • the inner / outer diameter ratio (D2 / D0) ⁇ 100 which is the ratio of D2, is both larger than 65%.
  • the configuration of (1) means that the first virtual circle Ca and the second virtual circle Cb are located radially outside the dotted line circle of "0.65D0", which will be described with reference to FIG. do. Further, the configuration of (1) will be described with reference to FIG. 20 in the radial direction of the first blade 31 and the second blade 32 on the side away from the rotation axis 20 from the dotted line of "0.65D0". It means that the inner surface is located.
  • the inner / outer diameter ratio (D2 / D0) ⁇ 100 of the second virtual circle Cb is smaller than 80% on the suction downstream side.
  • the radial inner side surface 32b on the suction downstream side of the second blade 32 is located closer to the rotation shaft 20 than the dotted line of "0.8D0". means.
  • FIG. 21 is a diagram showing test results confirming the performance improvement effect of the blower 10 provided with the impeller 9A according to the second embodiment.
  • FIG. 21 shows the performance improvement effect organized under the condition of D2 ⁇ D1 and the inner / outer diameter ratio (D1 / D0) ⁇ 100> 65% of the first virtual circle Ca. The performance improvement effect is shown in the graph of the fan efficiency ratio.
  • the horizontal axis of FIG. 21 is the inner / outer diameter ratio (D2 / D0) ⁇ 100 of the second virtual circle Cb, and the vertical axis is the ratio of the fan efficiency of the configuration of the second embodiment to the maximum fan efficiency of the configuration of the comparative example. When the vertical axis is 0%, it is shown that the fan efficiency of the configuration of the second embodiment is the same as the maximum fan efficiency of the configuration of the comparative example.
  • the graph showing the performance improvement effect is an upward convex graph, and a high performance improvement effect can be obtained in the range where the inner / outer diameter ratio of the second virtual circle Cb is larger than 65% and smaller than 80%. ing.
  • the inner-outer diameter ratio of the second virtual circle Cb which is the peak in the graph of FIG. 21, is larger than 65% and less than 80%, although it changes due to the change of the operating point of the air volume-static pressure of the blower 10.
  • the fan efficiency ratio decreases as the inner / outer diameter ratio of the second virtual circle Cb approaches from 65% to 50%. This is because the chord length of the second blade 32 is longer than the proper chord length, which causes a performance loss due to a decrease in the air volume of the accelerated airflow 111. Further, as the inner / outer diameter ratio of the second virtual circle Cb approaches 90% to 90%, the fan efficiency ratio decreases. This is because the chord length of the second blade 32 is too short than the proper chord length, which causes a performance loss due to the vortex flow 113 of the boosted airflow 112.
  • the same effect as that of the first embodiment can be obtained, and the following effects can be obtained. That is, by having the above configurations (1) and (2), the performance of the blower 10 is improved, and the air volume per equivalent input is improved.
  • Embodiment 3 refers to the second blade 32 of the first embodiment and the second embodiment. Other configurations are the same as those of the first embodiment and the second embodiment.
  • the configuration in which the third embodiment is different from the first and second embodiments will be mainly described, and the configurations not described in the third embodiment are the same as those in the first and second embodiments. be.
  • FIG. 22 is a cross-sectional view of the impeller 9B according to the third embodiment cut in a direction perpendicular to the rotation axis 20, and is a view showing the cross-sectional positions DD and the cross-sectional positions EE.
  • FIG. 23 is a conceptual diagram showing an air flow between the first blade 31 and the second blade 32 of the impeller 9B according to the third embodiment.
  • FIG. 24 is a diagram showing a comparison of the shapes of the first blade 31 and the second blade 32 of the impeller 9B according to the third embodiment, and is a cross-sectional view taken along the line DD and EE of FIG. 22. It is a conceptual diagram which shows the airflow by superimposing.
  • the impeller 9B according to the third embodiment has the following relationship. As shown in FIG. 23, (D1-D2) / 2, which is half the difference between the inner diameter D1 of the first virtual circle Ca and the inner diameter D2 of the second virtual circle Cb, is the second between the adjacent second blades 32. It is shorter than the distance ⁇ (D2) / (n2) on the virtual circle Cb. n2 is the number of the second blades 32. It should be noted that ⁇ (D2) / (n2) is calculated here ignoring the thickness of the blade.
  • the inner diameter D1 of the first virtual circle Ca and the inner diameter D2 of the second virtual circle Cb differ depending on the blade height position, but the above relationship is that the chord length of the second blade 32 is the first as well as the suction upstream side. It is established at the blade height position on the downstream side of suction, which is longer than the chord length of the blade 31.
  • FIG. 23 shows that the development of the turbulent boundary layer 50 on the blade surface 42 of the second blade 32 is suppressed by the blade surface 41 of the first blade 31.
  • Reference numeral 51 in FIG. 23 indicates a portion where the development of the turbulent boundary layer 50 is suppressed.
  • (D1-D2) / 2 is shorter than ⁇ (D2) / (n2), but this relationship can be expressed as 0 ⁇ (D1-D2) ⁇ 2 ⁇ (D2) / (n2). .. That is, when 0 ⁇ (D1-D2) ⁇ 2 ⁇ (D2) / (n2) holds, noise reduction becomes possible.
  • the airflow 62 passing through the suction upstream side of the second blade has a larger axial velocity component in the meridional cross section, which is a cross section passing through the rotation axis 20, than the airflow 61 passing through the suction downstream side. .. Therefore, the airflow 62 has a longer reach than the airflow 61 from flowing in between the blade surfaces of the adjacent second blades 32 to reaching the blade surface 41 of the first blade 31.
  • the length of the portion shown by the thick line in FIG. 24 indicates the reach of each air flow. The longer this reach is relative to the distance between the blades, the more the development of the turbulent boundary layer 50 is promoted and noise is caused.
  • the chord length on the suction upstream side is the same as the chord length on the suction downstream side without providing the inclined surface.
  • the reach distance from the inflow of the airflow between the blade surfaces of the second blade 32 to the arrival at the blade surface 41 of the first blade 31 is shortened.
  • the impeller 9B of the third embodiment has the relationship described below.
  • ⁇ 1 (D1-D2) / (2 ⁇ (D2) / (n2))
  • ⁇ 2 is the blade height position on the upstream side of suction.
  • ⁇ 1> ⁇ 2 By having this relationship, the development of the boundary layer on the upstream side of suction is further suppressed, and a high noise reduction effect can be obtained.
  • the speed-increasing airflow 111 by the second blade 32 is particularly high. It is possible to suppress the reduction of the air flow amount and increase the air volume.
  • the left side of this inequality corresponds to the distance on the second virtual circle Cb between the adjacent second blades 32.
  • the right side of this inequality corresponds to a value obtained by averaging the distances of adjacent blades in the circumferential direction without distinguishing between the first blade 31 and the second blade 32.
  • the airflow flows between the blade surfaces 42 of the second blade 32 and blows out outward in the radial direction.
  • the cross-sectional area of the flow path on the upstream side which is the inlet of the air flow, can be secured wider than the cross-sectional area of the flow path on the downstream side.
  • the impeller has the first blade 31 and the second blade 32.
  • a third blade 33 having a different chord length from the first blade 31 may be provided.
  • the blower 10 is described as being mounted on the indoor unit 201, but it may be mounted on the outdoor unit 202. The same effect can be obtained in this case as well.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

送風機の羽根車は、回転主板と、第1の羽根と、第2の羽根と、を備える。第1の羽根は、第1の羽根の回転軸の径方向内側に、回転主板とは反対側の端部から回転主板側に向かうに連れて翼弦長が長くなる第1傾斜面を有する。第2の羽根は、第2の羽根の回転軸の径方向内側に、回転主板とは反対側の端部から回転主板側に向かうに連れて翼弦長が長くなる第2傾斜面を有する。第2の羽根の吸込下流側の翼弦長は、第1の羽根の吸込下流側の翼弦長よりも長く、かつ、吸込上流側において第1の羽根の第1傾斜面と第2の羽根の第2傾斜面とが、第1の羽根および第2の羽根を羽根車の子午面断面で見て互いに沿っている。

Description

送風機およびこれを備えた空気調和装置
 本開示は、空気調和装置等の筐体内に配置される送風機およびこれを備えた空気調和装置に関する。
 空気調和装置等の筐体内に配置される送風機として、羽根車と、羽根車を収納するスクロールケーシングと、を備えた遠心送風機がある。羽根車は、円板状の回転主板と、複数の羽根と、リング状の保持リングと、を備えている。羽根車は、回転主板の外周部に複数の羽根の一端が固定され、複数の羽根の他端が保持リングで連結されている。この種の送風機において、複数の羽根を、回転主板と繋がっている一端側を除いて翼弦長を異ならせた第1の羽根と第2の羽根との2種類の羽根から構成したものがある(例えば、特許文献1参照)。
特開2002-155895号公報
 送風機に流入する気流は、空気調和装置の筐体内における送風機の配置位置の影響を受ける。例えば、筐体内に空気を吸入する吸入口が筐体の上面に形成され、送風機の吸込口が筐体の右側面または左側面に対向する向きで送風機が筐体内に配置されている場合がある。この場合、筐体の吸入口から流入した気流は、送風機内に流入する際、送風機の吸込口の面全体から一様に気流が流入するのではなく、筐体の吸入口が位置する上側に偏って気流が流入する。
 特許文献1では、送風機を空気調和装置の筐体内に配置した場合の送風機に流入する気流の偏りについて検討されておらず、騒音および風量低下を招く可能性があった。
 本開示は、上記課題を解決するためのものであり、低騒音化および高風量化を図ることが可能な送風機およびこれを備えた空気調和装置を提供することを目的とする。
 本開示に係る送風機は、羽根車を備えた送風機であって、羽根車は、回転軸を中心として回転する回転主板と、回転主板の一方の面に、回転軸の径方向に延びるように一端が固定された第1の羽根と、回転主板の一方の面に、回転軸の径方向に延びるように一端が固定された第2の羽根と、を備え、第1の羽根は、第1の羽根の回転軸の径方向内側に、回転主板とは反対側の端部から回転主板側に向かうに連れて翼弦長が長くなる第1傾斜面を有し、第2の羽根は、第2の羽根の回転軸の径方向内側に、回転主板とは反対側の端部から回転主板側に向かうに連れて翼弦長が長くなる第2傾斜面を有し、第1の羽根の第1傾斜面の回転主板側の端部を境に、回転軸の軸方向の回転主板側を吸込下流側、回転主板と反対側を吸込上流側と定義するとき、第2の羽根の吸込下流側の翼弦長は、第1の羽根の吸込下流側の翼弦長よりも長く、かつ、吸込上流側において第1の羽根の第1傾斜面と第2の羽根の第2傾斜面とが、第1の羽根および第2の羽根を羽根車の子午面断面で見て互いに沿っているものである。
 本開示に係る空気調和装置は、上記の送風機と、送風機を収容する筐体と、を備えたものである。
 本開示によれば、吸込下流側の翼弦長が第1の羽根よりも長い第2の羽根を備えたので、渦流の発生を抑制でき、低騒音化を実現できる。また、吸込上流側において、第2の羽根の第2傾斜面と第1の羽根の第1傾斜面とが互いに沿っているので、羽根車に流入した気流の阻害を抑制して吹き出すことが可能であり、高風量化を実現できる。
実施の形態1に係る空気調和装置の冷媒回路構成を示す図である。 実施の形態1に係る空気調和装置の室内機の構成を示す概略斜視図である。 実施の形態1に係る送風機の斜視図である。 実施の形態1に係る送風機の羽根車9の斜視図である。 実施の形態1に係る送風機の羽根車9を回転軸20に垂直な方向で切断した断面図である。 実施の形態1に係る送風機の羽根車9を回転軸20に垂直な方向で切断した断面図である。 図6のA-A概略断面図である。 図6のB-B概略断面図である。 図7と図8とを重ねた概念図である。 実施の形態1に係る空気調和装置の室内機における気流の説明図である。 実施の形態1に係る送風機内の気流の説明図である。 比較例を示す図であって、送風機による気流を示す、図11のC-C位置での送風機の概略断面図である。 実施の形態1に係る送風機による気流を示す、図11のC-C位置での送風機の概略断面図である。 実施の形態1に係る送風機による低騒音化効果を確認した試験結果を示す図である。 実施の形態1に係る送風機による高風量化効果を確認した試験結果を示す図である。 実施の形態1に係る送風機による流量改善効果を確認した試験結果を示す図である。 実施の形態1に係る送風機による気流を示す、図11のC-C位置での送風機および送風機に隣接する筐体の内壁の概略断面図である。 図17の配置構成の場合における流量改善効果を確認した試験結果を示す図である。 実施の形態2に係る羽根車を回転軸に垂直な方向で切断した断面図である。 実施の形態2に係る羽根車の第1の羽根および重ね合わせた子午面断面を示す図である。 実施の形態2に係る羽根車を備えた送風機の性能改善効果を確認した試験結果を示す図である。 実施の形態3に係る羽根車を回転軸に垂直な方向で切断した断面図である。 実施の形態3に係る羽根車の第1の羽根と第2の羽根との間の気流を示す概念図である。 実施の形態3に係る羽根車の第1の羽根および第2の羽根の形状を比較して示す図である。
 以下に、本開示に係る空気調和装置の実施の形態について説明する。なお、図面の形態は一例であり、本開示を限定するものではない。また、各図において同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。さらに、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
実施の形態1.
 図1は、実施の形態1に係る空気調和装置200の冷媒回路構成を示す図である。図1において、白抜き矢印は空気の流れ、実線矢印は冷媒の流れを示している。
 空気調和装置200は、室内空間300に配置される室内機201と、屋外空間301に配置される室外機202とを備えている。室内機201と室外機202とは、冷媒配管400によって繋がれて、冷媒が循環する冷媒回路を構成している。
 室外機202は、筐体202a内に、圧縮機100と、四方弁101と、室外熱交換器102と、減圧装置103と、送風機104と、を備えた構成を有する。
 室内機201は、筐体201a内に、室内熱交換器17と、送風機10と、を備えた構成を有する。室内熱交換器17は、複数の伝熱管と複数のフィンとを備えたフィンチューブ熱交換器で構成されている。伝熱管は、断面形状が円形状のものでもよいし、扁平形状のものでもよい。室内熱交換器17は、フィンチューブ熱交換器に限られたものではなく、他の形式の熱交換器でもよい。室内熱交換器17における冷媒の流れ方向は、送風機10の回転軸20に沿う方向でもよいし、回転軸20に直交する方向でもよい。また、図1中の室内機201は、壁掛け型を示しているが、形態を限定するものではなく、床置き型、天井吊り下げ型または天井埋め込み型でもよい。
 次に、空気調和装置200の動作を冷房運転を例に説明する。圧縮機100にて高温高圧ガスとなった冷媒は、四方弁101を介して室外熱交換器102に流れ、送風機104からの室外の空気へ放熱して液相冷媒または液主体冷媒となる。液相冷媒または液主体冷媒となって室外熱交換器102から流出した冷媒は、減圧装置103にて減圧されて低温低圧の二相冷媒となり、室内機201の室内熱交換器17に流入する。室内熱交換器17へ流入した低温低圧の二相冷媒は、送風機10からの室内の空気と熱交換を行った後、再度四方弁101を介して圧縮機100へ戻る。以上のように冷媒が冷媒回路を循環することにより冷房運転を行う。
 図2は、実施の形態1に係る空気調和装置200の室内機201の構成を示す概略斜視図である。
[室内機の全体構成]
 室内機201の筐体201a内には、送風機10が2台配置されている。送風機10の台数は、ここでは高性能化のため2台としたが、2台に限定されるものではなく1台でもよいし、3台以上でもよい。また、筐体201a内には、送風機10を駆動するモータ(後述の図11)が配置されている。
 筐体201aの上面には吸入口201aaが形成され、筐体201aの前面には吹出口201abが形成されている。筐体201a内には、吸入口201aaから筐体201a内に流入した気流AFが、吹出口201abから筐体201a外に吹き出される風路が形成されている。室内熱交換器17は、吸入口201aaから吹出口201abに至る風路内の空気上流に配置されている。風路内の空気下流には送風機10が配置されている。各送風機10は、筐体201a内における気流に直交する方向に並んで配置されている。図2では、送風機10が室内熱交換器17の空気下流に配置されているが、室内熱交換器17の空気上流に配置されてもよい。各送風機10は、モータ13の回転軸20に接続され、モータ13により駆動される。
[送風機]
 図3は、実施の形態1に係る送風機10の斜視図である。図4は、実施の形態1に係る送風機10の羽根車9の斜視図である。図5は、実施の形態1に係る送風機10の羽根車9を回転軸20に垂直な方向で切断した断面図である。なお、以下の説明において、回転軸20が延びる方向を軸方向、軸方向に垂直な方向を径方向、回転軸20周りの方向を周方向という。
 送風機10は、気流を発生させる羽根車9と、羽根車9を収容するケーシング8と、を有する遠心送風機である。羽根車9は、図4に示すように円板状の回転主板1と、複数の第1の羽根31および第2の羽根32と、リング状の保持リング71と、を備えている。複数の第1の羽根31および第2の羽根32は、回転主板1の一方の面の外周部に一端が固定され、他端が保持リング71に固定されている。複数の第1の羽根31および第2の羽根32は、例えば湾曲した長方形の板状に構成されており、回転主板1の一方の面に、回転軸20の径方向に延びるようにして固定されている。ここで、径方向に延びるとは、回転主板1に固定された羽根の固定部分の長手方向の一端が、長手方向の他端よりも径方向内側に位置することを指す。また、複数の第1の羽根31および第2の羽根32は、回転軸20を中心として環状に配置されている。
 図4および図5に示すように、第2の羽根32は、羽根車9の回転軸20を中心とする周方向に等間隔に配置されている。第1の羽根31は、第2の羽根32同士の間に1枚配置されている。第2の羽根32同士の間に配置される第1の羽根31の枚数は1枚に限られず2枚以上でも良い。第1の羽根31は、隣接する第1の羽根31または第2の羽根32との間隔が等しくなるように配置されている。
 羽根車9は、回転主板1の一方の面側だけでなく、他方の面側にも複数の第1の羽根31および第2の羽根32が配置されて固定されている(後述の図12参照)。そして、上記と同様に、第1の羽根31および第2の羽根32の回転主板1と反対側の他端が保持リング71に固定されている。なお、羽根車9は、回転主板1の両面に複数の第1の羽根31および第2の羽根32が配置された構成に限らず、図4に示したように回転主板1の一方の面側のみに複数の第1の羽根31および第2の羽根32が配置された構成でもよい。
 ケーシング8は、羽根車9から吹き出された気流を整流するものである。ケーシング8は、図3に示すように羽根車9が発生させた気流を渦巻状に導くスクロール部8aと、気流を吐出する吐出口8b1を有する吐出部8bと、を備える。スクロール部8aは、回転軸20方向の両側から羽根車9を覆う2つの側壁8aaと、回転軸20の径方向から羽根車9を囲む周壁8abと、を有する。2つの側壁8aaのそれぞれには、空気を吸い込むための吸込口8a1が形成されている。周壁8abは、羽根車9の周方向に沿って滑らかに湾曲する曲面を構成している。
 次に、羽根車9の詳細について説明する。
 図6は、実施の形態1に係る送風機10の羽根車9を回転軸20に垂直な方向で切断した断面図である。図6には、断面位置A-Aおよび断面位置B-Bを示している。なお、図6は図5とは異なる軸方向位置で羽根車9を回転軸20に垂直な方向で切断した断面図である。図7は、図6のA-A概略断面図である。図8は、図6のB-B概略断面図である。図9は、図7と図8とを重ねた概念図である。図9は、第1の羽根31および第2の羽根32のそれぞれの羽根形状を回転軸20に沿って回転投影した形状を重ね合わせた子午面断面に相当する。
 第1の羽根31は、図7に示すように、回転軸20の径方向内側に、回転主板1とは反対側の端部から回転主板1側に向かうに連れて翼弦長が長くなる第1傾斜面31aを有する。第1の羽根31の径方向内側面のうち第1傾斜面31aよりも回転主板1側の径方向内側面31bは、翼弦長が一定になるように構成された、回転軸20に平行な平面となっている。なお、径方向内側面31bは、平面に限られたものではなく、翼弦長が変化するように構成された傾斜面でもよい。以下、第1の羽根31の第1傾斜面31aの回転主板1側の端部31aaを境に、軸方向の回転主板1側を吸込下流側、回転主板1と反対側を吸込上流側と定義する。
 第2の羽根32は、図8および図9に示すように吸込下流側の翼弦長が、第1の羽根31の吸込下流側の翼弦長よりも長い構成を有する。また、第2の羽根32は、第2の羽根32の回転軸20の径方向内側に、回転主板1とは反対側の端部から回転主板1側に向かうに連れて翼弦長が長くなる第2傾斜面32aを有する。第2の羽根32の径方向内側面のうち第2傾斜面32aよりも回転主板1側の径方向内側面32bは、翼弦長が一定になるように構成された、回転軸20に平行な平面となっている。なお、径方向内側面32bは、平面に限られたものではなく、翼弦長が変化するように構成された傾斜面でもよい。
 そして、図9に示すように第2の羽根32の第2傾斜面32aと第1の羽根31の第1傾斜面31aとは、子午面断面で見て互いに沿っている。
 ここで、「沿っている」についてさらに詳しく説明すると、以下の(1)および(2)の両方を満足する状態を指す。
(1)羽根高さ方向(軸方向)をz方向とし、回転主板1のz方向の位置を高さ0とするとき、ある羽根高さzにおける、後述の内径D1と後述の内径D2との差であるD2-D1が、内径D1に対し5%以内である。なお、内径D1とは、図6に示すように、各第1の羽根31の径方向内側の端部を同じ羽根高さ位置で繋いだ第1仮想円Caの内径である。第1仮想円Caは、第1の羽根31の径方向内側の端部を通る回転軸20を中心とした円である。内径D2とは、図6に示すように、各第2の羽根32の径方向内側の端部を同じ羽根高さ位置で繋いだ第2仮想円Cbの内径である。第2仮想円Cbは、第2の羽根32の径方向内側の端部を通る回転軸20を中心とした円である。
(2)第1傾斜面31aにおける第1仮想円Caの内径変化率と第2傾斜面32aにおける第2仮想円Cbの内径変化率とが等しい。なお、内径変化率とは、図9に示すようにある羽根高さをdz、その羽根高さdzにおける内径の変化分をdDとしたとき、dD/dzである。
 羽根の諸元である羽根枚数、羽根高さ、羽根の入口角および羽根の出口角は、限定するものではなく、送風機の動作点に合わせて自由に設計すればよい。羽根の面形状は、羽根を羽根車9の回転方向後方に凹む凹面を形成することが望ましい。これは、低静圧の動作域における高風量化効果および低騒音化効果が得られるためである。また、回転主板1の回転軸20近傍、つまり回転主板1の径方向内側には、モータ13等を室内機201の筐体201a内に高気密に実装するために、羽根高さ方向に凸の凸面を形成してもよいし、しなくてもよい。保持リング71は、第1の羽根31および第2の羽根32の他端側であれば、第1の羽根31および第2の羽根32の外周側に設けてもよいし、第1の羽根31および第2の羽根32の羽根高さ方向の回転主板1と反対側の端面に設けてもよい。
 図10は、実施の形態1に係る空気調和装置200の室内機201における気流の説明図である。図11は、実施の形態1に係る送風機10内の気流の説明図である。図11の断面位置C-Cは、後述の図12および図13にて参照される。
 筐体201a内に流入して室内熱交換器17を通過した気流AF1は、2台の送風機10の間の空間に流入した後、軸方向に互いに逆方向に分離し、各送風機10の吸込口8a1から各送風機10内に流入する。また、筐体201a内に流入して室内熱交換器17を通過後、筐体201a内の軸方向両端部を通過した気流AF2は、筐体201aの軸方向両端の内壁に沿って流れた後、各送風機10の吸込口8a1から送風機10内に流入する。
 送風機10内に流入した気流は、羽根車9にて加速されて、図11に示すように羽根車9の径方向外側に向かって吹き出される。羽根車9から吹き出された気流は、スクロール部8a内を周壁8abに沿って流れ、吐出部8bの吐出口8b1から吐出される。ここで、羽根車9から径方向外側に向かって吹き出された気流は、増速気流111および増圧気流112となって吐出口8b1から吐出される。増速気流111とは、羽根車9で加速されて直接吐出口8b1に向かう気流である。増圧気流112とは、スクロール部8aにて速度成分が動圧から静圧に変換されて吐出口8b1に向かう気流である。
 図10に戻り、送風機10の吐出口8b1から吐出された気流は、筐体201aの吹出口201abから室内空間300へ吐出される。各送風機10から吐出された気流は、筐体201a内にて合流後に室内空間300から吐出されるようにしてもよい。
 ここで、送風機10内に流入する気流は、図1に示すように筐体201aの上面に形成された吸入口201aaからの気流である。このため、送風機10内に流入する気流は、ケーシング8に形成された吸込口8a1の面全体から均一な状態で流入するのではなく、吸込口8a1内の上側領域から偏った状態で流入する。つまり、気流は、吸込口8a1の周方向に一様ではなく、周方向の一部に偏った状態で吸込口8a1からケーシング8内に流入する。このような気流の偏りは、筐体201aの吸入口201aaと送風機10の吸込口8a1との位置関係に起因して生じる他、以下の場合に生じる。すなわち、筐体201a内に複数の送風機10が隣接して配置されていて、吸込口8a1周囲に十分な空間が無い場合に送風機10内に流入する気流に偏りが生じる。また、送風機10の吸込口8a1と筐体201aの内壁との距離が近く、送風機10の吸込口8a1周囲に十分な空間が無い場合なども同様に、送風機10内に流入する気流に偏りが生じる。
 実施の形態1の送風機10は、このような気流の偏りが生じるような配置条件下に配置されても、低騒音化および高風量化を図るために、上記した構成を採用している。
 次に、上記した構成の送風機10における性能改善効果について説明する。
 まず、比較例の送風機を、図1の室内機201の筐体201a内に配置した例について説明する。
 図12は、比較例を示す図であって、送風機1010による気流を示す、図11のC-C位置での送風機1010の概略断面図である。図12は特に、筐体201a内に複数台の送風機1010が隣接して配置されていて、送風機1010の吸込口80a1周囲に十分な空間が無い配置構成の場合の気流の説明図である。複数台の送風機1010は、吸込口80a1同士が対向するようにして軸方向に並んで配置されている。具体的には、隣接する送風機1010の吸込口80a1が形成された側壁80aa同士の軸方向の距離Lが、吸込口80a1の開口径をDinとしたとき、2Din以内となるように配置されている。
 このような配置構成では、上述したように、筐体201aの吸入口201aa(図2参照)からの気流110は、吸込口80a1の全体から均一に流入せずに、図12に示すように周方向の一部(ここでは上側)に偏って流入する。また、比較例の送風機1010では、羽根310の形状および大きさが全ての羽根310で同じ構成を有する。このため、図12示すように子午面方向に気流を見たとき、羽根車90内に偏って流入して羽根車90から偏り方向(上方向)に吹き出す増圧気流112は、回転主板1001からの剥離が大きくなる。したがって、回転主板1とスクロール部8aの側壁80aaとの間に発生する渦流113が大きくなり、騒音値が大きくなる。ここで、全ての羽根310の羽根全体の翼弦長を一様に延伸すると、翼間の気流の発達により渦流113の縮小を図ることはできるが、一方で増速気流111の通風を阻害し、風量が低下する。
 図13は、実施の形態1に係る送風機10による気流を示す、図11のC-C位置での送風機10の概略断面図である。図13は、図12と同様に、筐体201a内に複数の送風機10が隣接して配置されていて、送風機10の吸込口8a1周囲に十分な空間が無い配置構成の場合の気流の説明図である。複数台の送風機10は、吸込口8a1同士が対向するようにして軸方向に並んで配置されている。具体的には、隣接する送風機10の吸込口8a1が形成された側壁8aa同士の軸方向の距離Lが、吸込口8a1の開口径をDinとしたとき、2Din以内となるように配置されている。ここで、隣接する送風機10の各側壁8aaは、互いに平行で、かつ回転軸20に直交する方向に延びているものとする。しかし、隣接する送風機10の各側壁8aaが互いに平行でない場合等の構造の場合、距離Lは、各側壁8aaにおける吸込口8a1形成部分同士の距離を指すものとする。
 上述したように、全ての羽根310の羽根全体の翼弦長を一様に延伸すると、渦流113の縮小を図ることができる一方で風量が低下する。そこで、実施の形態1では、一部の羽根について翼弦長を延伸し、渦流の縮小と風量の向上を図っている。具体的には、第2の羽根32の翼弦長を、第1の羽根31の翼弦長よりも長くしている。特に、第2の羽根32の吸込下流側の翼弦長を、第1の羽根31の吸込下流側の翼弦長よりも長くしている。これにより、全ての羽根310の羽根全体の翼弦長を一様に延伸した場合に比べて、吸込下流側の増速気流111の通風を大きく阻害することなく、渦流113の発生を抑制できる。
 図13に示すように気流を子午面方向に見たとき、羽根車9内に偏って流入した気流であって、羽根車9から偏り方向(上方向)に吹き出す増圧気流112は、第2の羽根32の吸込下流側の翼弦長が第1の羽根31の吸込下流側の翼弦長より長いことで発達し、回転主板1からの剥離が小さくなる。増圧気流112の回転主板1からの剥離が小さくなることで、渦流113が小さくなり、騒音値が低減される。つまり、気流の偏りが生じるような配置条件下に送風機10が配置されても、第2の羽根32の作用により、騒音値を低減できる。
 また、実施の形態1の構成においては、吸込上流側に関し、第1の羽根31の第1傾斜面31aと第2の羽根32の第2傾斜面32aとが互いに沿っていることで、気流の偏りが生じるような配置条件下に送風機10が配置されても、高風量化が可能となる。この点について以下に説明する。
 ここで、増速気流111は、気流の速度成分と圧力成分のうち、速度成分が大きい流れであり、流路が狭くなる時の縮流によるエネルギー損失が大きい。具体的には、エネルギー損失は、流速の2乗に比例する。第1の羽根31の第1傾斜面31aと第2の羽根32の第2傾斜面32aとが互いに沿っていない場合、以下に説明するようにエネルギーの散逸が大きくなる。
 2つの羽根の傾斜面同士が沿っていないということは、ある羽根高さ位置における一方の羽根の翼弦長と他方の羽根の翼弦長とに、長短があるということである。よって、羽根車9に流入した気流は、翼弦長が長い方の羽根の傾斜面で第1回の縮流を発生させ、続いて翼弦長が短い方の羽根の傾斜面で第2回の縮流を発生させ、エネルギーの散逸が大きくなる。一方、2つの羽根の傾斜面同士が沿っている場合には、羽根車9に流入した気流により縮流が発生するのは1回のみとなり、エネルギーの散逸を小さくできる。このように第2の羽根32の第2傾斜面32aと第1の羽根31の第1傾斜面31aとが沿っていることで、気流のエネルギー損失を抑えることができる。つまり、羽根車9に流入した気流の阻害を抑制して吹き出すことが可能であり、低騒音化と高風量化の両立が可能である。
 図14は、実施の形態1に係る送風機10による低騒音化効果を確認した試験結果を示す図である。図14の横軸は流量係数φ、縦軸は比騒音[dBA]である。図15は、実施の形態1に係る送風機10による高風量化効果を確認した試験結果を示す図である。図15の横軸は流量係数φ、縦軸は圧力係数ψである。
 図14より、実施の形態1は、比較例の構成に比べて低騒音化が実現されていることが分かる。また、図15より、実施の形態1は、比較例の構成に比べて高風量化が実現されていることが分かる。
 次に、比距離と流量改善効果との関係について検討する。比距離は、(L/Din)×100により算出される。LおよびDinについては図13を参照されたい。
 図16は、実施の形態1に係る送風機10による流量改善効果を確認した試験結果を示す図である。図16の横軸は比距離である。図16の縦軸は流量改善効果[%]であって、ある圧力における比較例の構成の最大流量改善効果に対する、実施の形態1の構成の流量改善効果の比率である。流量改善効果[%]は、具体的には送風機10からの吹出流量を用いて算出している。流量改善効果が0%のとき、実施の形態1の構成の流量改善効果が、比較例の構成における最大性能改善効果と同じであることを示す。
 図16に示すように、比距離を75%から200%とすることで、言い換えれば、0.75Din<L<2Dinとすることで、比較例よりも30%以上増の十分な流量改善効果を得ることができる。
 なお、比距離が比較的大きい場合には、比較例の構成においても、気流の偏流に起因する渦流が小さくなる。このため、比較例に対する実施の形態の構成の渦流低減効果は低下する。よって、比距離が200%を超えると、流量改善効果が30%を切った結果となっている。また、比距離が比較的小さい場合には、送風機10からの吹出流量が低下する。このため、比距離が小さくなるに連れて流量改善効果は低下し、0%に漸近する。比距離が75%未満となると、流量改善効果が30%を切った結果となっている。
 なお、図13~図16では、筐体201a内に複数(ここでは2台)の送風機10が隣接して配置されていて、送風機10の吸込口8a1周囲に十分な空間が無い場合の流量改善効果について説明した。次の図17および図18では、送風機10の吸込口8a1と筐体201aの内壁との距離が近く、送風機10の吸込口8a1周囲に十分な空間が無い場合に、十分な流量改善効果が得られる比距離について検討する。
 図17は、実施の形態1に係る送風機10による気流を示す、図11のC-C位置での送風機10および送風機10に隣接する筐体201aの内壁24の概略断面図である。図17は特に、送風機10の吸込口と筐体201aの内壁との距離が近く、送風機10の吸込口8a1周囲に十分な空間が無い場合の気流の説明図である。図18は、図17の配置構成の場合における流量改善効果を確認した試験結果を示す図である。図18の横軸は比距離L0/Din×100を示している。L0は、送風機10の吸込口8a1が形成された側壁8aaと筐体201aの内壁24との軸方向の距離である。Dinは、吸込口8a1の開口径である。図18の縦軸は流量改善効果[%]であって、ある圧力における比較例の構成の最大流量改善効果に対する、実施の形態1の構成の流量改善効果の比率である。流量改善効果が0%のとき、実施の形態1の構成の流量改善効果が、比較例の構成における最大性能改善効果と同じであることを示す。
 この構成では、比距離を37%から100%とすることで、言い換えれば、0.37Din<L<Dinとすることで、比較例よりも30%以上増の十分な流量改善効果を得ることができる。
 以上説明したように実施の形態1の送風機10は、羽根車9を備えている。羽根車9は、回転軸20を中心として回転する回転主板1と、回転主板1の一方の面に、回転軸20の径方向に延びるように一端が固定された第1の羽根31と、回転主板1の一方の面に、回転軸20の径方向に延びるように一端が固定された第2の羽根32と、を備える。第1の羽根31は、第1の羽根31の回転軸20の径方向内側に、回転主板1とは反対側の端部31aaから回転主板1側に向かうに連れて翼弦長が長くなる第1傾斜面31aを有する。第2の羽根32は、第2の羽根32の回転軸20の径方向内側に、回転主板1とは反対側の端部31aaから回転主板1側に向かうに連れて翼弦長が長くなる第2傾斜面32aを有する。ここで、第1の羽根31の第1傾斜面31aの回転主板1側の端部31aaを境に、回転軸20の軸方向の回転主板1側を吸込下流側、回転主板1と反対側を吸込上流側と定義する。この定義を用いると、第2の羽根32の吸込下流側の翼弦長は、第1の羽根31の吸込下流側の翼弦長よりも長い。かつ、吸込上流側において第1の羽根31の第1傾斜面31aと第2の羽根32の第2傾斜面32aとが、第1の羽根31および第2の羽根32を子午面断面で見て互いに沿っている。
 このように、吸込下流側の翼弦長が第1の羽根31よりも長い第2の羽根32を備えたので、吸込下流側の気流を大きく阻害することなく気流を発達させて渦流の発生を抑制でき、低騒音化を実現できる。また、吸込上流側において、第2の羽根32の第2傾斜面32aと第1の羽根31の第1傾斜面31aとが互いに沿っているので、羽根車9に流入した気流の阻害を抑制して吹き出すことが可能であり、高風量化を実現できる。
 実施の形態1の空気調和装置200は、送風機10を複数台備える。複数台の送風機10は、送風機10の吸込口8a1同士が対向するようにして軸方向に離間して並んで配置されている。送風機10の吸込口8a1の開口径をDin、隣接する送風機10の吸込口8a1が形成された側壁8aa同士の軸方向の距離をLとしたとき、0.75Din<L<2Dinが成り立つ。
 また、実施の形態1の空気調和装置200は、送風機10の吸込口8a1が形成された側壁8aaと吸込口8a1に対向する筐体201aの内壁24との軸方向の距離をL0としたとき、0.37Din<L0<Dinが成り立つ。
 これにより、十分な流量改善効果を得ることができる。
実施の形態2.
 実施の形態2は、実施の形態1の第1の羽根31および第2の羽根32に関して言及したものである。その他の構成は実施の形態1と同様である。以下、実施の形態2が実施の形態1と異なる構成を中心に説明するものとし、実施の形態2で説明されていない構成は実施の形態1と同様である。
 図19は、実施の形態2に係る羽根車9Aを回転軸20に垂直な方向で切断した断面図である。図20は、実施の形態2に係る羽根車9Aの第1の羽根31および第2の羽根32のそれぞれの羽根形状を回転軸20に沿って回転投影した形状を重ね合わせた子午面断面を示す図である。
 実施の形態2に係る羽根車9Aは、以下の(1)および(2)の構成を有する。
(1)羽根車9Aの外径D0に対する第1仮想円Caの内径D1の比率である内外径比率(D1/D0)×100と、羽根車9の外径D0に対する第2仮想円Cbの内径D2の比率である内外径比率(D2/D0)×100とが、共に65%より大きい。(1)の構成は、図19を用いて説明すると、第1仮想円Caおよび第2仮想円Cbが、「0.65D0」の点線円よりも径方向外側に位置する構成であることを意味する。また、(1)の構成は、図20を用いて説明すると、「0.65D0」の点線よりも回転軸20から離れる側に、第1の羽根31および第2の羽根32のそれぞれの径方向内側面が位置することを意味する。
(2)第2仮想円Cbの内外径比率(D2/D0)×100が、吸込下流側において80%より小さい。(2)の構成は、図20を用いて説明すると、第2の羽根32の吸込下流側の径方向内側面32bが、「0.8D0」の点線よりも回転軸20側に位置することを意味する。
 図21は、実施の形態2に係る羽根車9Aを備えた送風機10の性能改善効果を確認した試験結果を示す図である。図21には、D2<D1かつ第1仮想円Caの内外径比率(D1/D0)×100>65%の条件で整理した性能改善効果を示している。性能改善効果は、ファン効率比のグラフで示している。図21の横軸は第2仮想円Cbの内外径比率(D2/D0)×100、縦軸は比較例の構成の最大ファン効率に対する実施の形態2の構成のファン効率の比である。縦軸が0%のとき、実施の形態2の構成のファン効率が、比較例の構成における最大ファン効率と同じであることを示す。
 図21に示すように、性能改善効果を示すグラフは上に凸のグラフとなり、第2仮想円Cbの内外径比率が65%より大きく、80%より小さい範囲で、高い性能改善効果が得られている。なお、図21のグラフにおいてピークとなる第2仮想円Cbの内外径比率は、送風機10の風量-静圧の動作点変更により変化するものの、65%より大きく、80%より小さい範囲に収まる。
 なお、図21において、第2仮想円Cbの内外径比率が65%から50%に近づくに連れ、ファン効率比が低下している。これは、第2の羽根32の翼弦長が適正な翼弦長よりも長すぎることで、増速気流111の風量低下による性能ロスが生じることに因る。また、第2仮想円Cbの内外径比率が80%から90%に近づくに連れ、ファン効率比が低下している。これは、第2の羽根32の翼弦長が適正な翼弦長よりも短かすぎることで、増圧気流112の渦流113による性能ロスが生じることに因る。
 以上、実施の形態2によれば、実施の形態1と同様の効果が得られるとともに、以下の効果が得られる。すなわち、上記(1)および(2)の構成を有することで、送風機10の性能が向上し、同等入力当たりの風量が向上する。
実施の形態3.
 実施の形態3は、実施の形態1および実施の形態2の第2の羽根32について言及したものである。その他の構成は実施の形態1および実施の形態2と同様である。以下、実施の形態3が実施の形態1および実施の形態2と異なる構成を中心に説明するものとし、実施の形態3で説明されていない構成は実施の形態1および実施の形態2と同様である。
 図22は、実施の形態3に係る羽根車9Bを回転軸20に垂直な方向で切断した断面図であって、断面位置D-Dおよび断面位置E-Eを表す図である。図23は、実施の形態3に係る羽根車9Bの第1の羽根31と第2の羽根32との間の気流を示す概念図である。図24は、実施の形態3に係る羽根車9Bの第1の羽根31および第2の羽根32の形状を比較して示す図で、図22のD-D断面図とE-E断面図とを重ねて気流を示した概念図である。
実施の形態3に係る羽根車9Bは、以下の関係を有する。図23に示すように第1仮想円Caの内径D1と第2仮想円Cbの内径D2との差の半分である(D1-D2)/2が、隣接する第2の羽根32間の第2仮想円Cb上の距離π(D2)/(n2)よりも短い。n2は、第2の羽根32の枚数である。なお、π(D2)/(n2)は、ここでは羽根の厚みは無視して算出されたものである。第1仮想円Caの内径D1および第2仮想円Cbの内径D2は羽根高さ位置によって異なるが、上記の関係は、吸込上流側はもとより、第2の羽根32の翼弦長を第1の羽根31の翼弦長よりも長くした、吸込下流側の羽根高さ位置において成り立つ。
 ここで、配管内に流体が流れる状態を想定すると、配管の長さが長くなるに連れて、配管の内周面に流れる乱流の境界層の発達が促進され、騒音を招く。この関係を、π(D2)/(n2)と(D1-D2)/2とを用いた関係に置き換えて想定する。この場合、直径がπ(D2)/(n2)、配管の長さが(D1-D2)/2の配管が想定され、(D1-D2)/2の長さが長くなるに連れ、第2の羽根32の翼面42における乱流の境界層の発達が促進されることになる。
 そこで、実施の形態3では、(D1-D2)/2をπ(D2)/(n2)よりも短くすることで、第2の羽根32の翼面42における乱流の境界層50の発達を抑制する。図23には、第2の羽根32の翼面42における乱流の境界層50の発達が、第1の羽根31の翼面41によって抑制されていることが示されている。図23の符号51は、乱流の境界層50の発達が抑制された部分を示している。乱流の境界層50の発達が抑制されることで、低騒音化が可能となる。なお、上記では、(D1-D2)/2がπ(D2)/(n2)よりも短いとしたが、この関係は0<(D1-D2)<2π(D2)/(n2)と表現できる。つまり、0<(D1-D2)<2π(D2)/(n2)が成り立つことで、低騒音化が可能となる。
 図24において第2の羽根の吸込上流側を通過する気流62は、吸込下流側を通過する気流61に比べて、回転軸20を通る断面である子午面断面でみて軸方向の速度成分が大きい。このため、気流62は、気流61に比べて、隣接する各第2の羽根32の翼面間に流入してから第1の羽根31の翼面41に到達するまでの到達距離が長い。図24において太線で示した部分の長さが、各気流の到達距離を示している。この到達距離が羽根間距離に対して長くなるほど、乱流の境界層50の発達が促進されて騒音を招く。
 しかし、第2の羽根32は、吸込上流側に第2傾斜面32aを有しているので、傾斜面を備えずに吸込上流側の翼弦長を吸込下流側の翼弦長と同じ長さとした場合と比較して、気流が第2の羽根32の翼面間に流入してから第1の羽根31の翼面41に到達するまでの到達距離の短尺化が図られている。さらに、本実施の形態3の羽根車9Bは、以下に説明する関係を有する。
 Δ=(D1-D2)/(2π(D2)/(n2))と定義すると、吸込下流側の羽根高さ位置のΔであるΔ1と、吸込上流側の羽根高さ位置のΔであるΔ2とが、Δ1>Δ2の関係を有する。この関係を有することで、吸込上流側の境界層の発達がより抑制され、高い低騒音化効果を得ることができる。
 なお、第1の羽根31の枚数をn1として、特にπ(D2)/(n2)>π(D1+D2)/{2(n1+n2)}とすることで、第2の羽根32による特に増速気流111の送風量の低減を抑制でき、高風量化が可能となる。この不等式の左辺は、隣接する第2の羽根32間の第2仮想円Cb上の距離に相当する。この不等式の右辺は、第1の羽根31と第2の羽根32を区別せずに、隣接する羽根同士の周方向の各距離の平均を取った値に相当する。
 つまり、π(D2)/(n2)>π(D1+D2)/{2(n1+n2)}とすることで、気流が第2の羽根32の翼面42間に流入して径方向外側に向かって吹き出される流れにおいて、いわば気流の流入口となる上流側の流路断面積を、下流側の流路断面積よりも広く確保できる。これにより、上流側の流路断面積を下流側の流路断面積よりも狭くした逆の構成の場合に生じる気流流入時の圧力損失を避けることができ、増速気流111の送風量の低減を抑制できて高風量化が可能となる。
 なお、上記実施の形態1~3では、羽根車が第1の羽根31と第2の羽根32とを有する構成を説明したが、第2の羽根32よりも全体的に翼弦長が小さければ、第1の羽根31と翼弦長が異なる第3の羽根33を設けてもよい。
 また、上記実施の形態1~3では、送風機10が室内機201に搭載されるものとして説明したが、室外機202に搭載されてもよい。この場合も同様の効果が得られる。
 1 回転主板、8 ケーシング、8a スクロール部、8a1 吸込口、8aa 側壁、8ab 周壁、8b 吐出部、8b1 吐出口、9 羽根車、9A 羽根車、9B 羽根車、10 送風機、13 モータ、17 室内熱交換器、20 回転軸、24 内壁、31 第1の羽根、31a 第1傾斜面、31aa 端部、31b 径方向内側面、32 第2の羽根、32a 第2傾斜面、32b 径方向内側面、33 第3の羽根、41 翼面、42 翼面、50 境界層、61 気流、62 気流、71 保持リング、80a1 吸込口、80aa 側壁、90 羽根車、100 圧縮機、101 四方弁、102 室外熱交換器、103 減圧装置、104 送風機、110 気流、111 増速気流、112 増圧気流、113 渦流、200 空気調和装置、201 室内機、201a 筐体、201aa 吸入口、201ab 吹出口、202 室外機、202a 筐体、300 室内空間、301 屋外空間、310 羽根、400 冷媒配管、1001 回転主板、1010 送風機。

Claims (8)

  1.  羽根車を備えた送風機であって、
     前記羽根車は、
     回転軸を中心として回転する回転主板と、
     前記回転主板の一方の面に、前記回転軸の径方向に延びるように一端が固定された第1の羽根と、
     前記回転主板の一方の面に、前記回転軸の径方向に延びるように一端が固定された第2の羽根と、を備え、
     前記第1の羽根は、前記第1の羽根の前記回転軸の径方向内側に、前記回転主板とは反対側の端部から前記回転主板側に向かうに連れて翼弦長が長くなる第1傾斜面を有し、
     前記第2の羽根は、前記第2の羽根の前記回転軸の径方向内側に、前記回転主板とは反対側の端部から前記回転主板側に向かうに連れて翼弦長が長くなる第2傾斜面を有し、
     前記第1の羽根の前記第1傾斜面の前記回転主板側の端部を境に、前記回転軸の軸方向の前記回転主板側を吸込下流側、前記回転主板と反対側を吸込上流側と定義するとき、
     前記第2の羽根の前記吸込下流側の翼弦長は、前記第1の羽根の前記吸込下流側の翼弦長よりも長く、かつ、前記吸込上流側において前記第1の羽根の前記第1傾斜面と前記第2の羽根の前記第2傾斜面とが、前記第1の羽根および前記第2の羽根を前記羽根車の子午面断面で見て互いに沿っている送風機。
  2.  前記羽根車は、前記羽根車の外径をD0、前記第1の羽根の前記径方向内側の端部を通る前記回転軸を中心とした仮想円の内径をD1、前記第2の羽根の前記径方向内側の端部を通る前記回転軸を中心とした仮想円の内径をD2としたとき、
     (D1/D0)×100および(D2/D0)×100が共に65%より大きく、かつ、前記吸込下流側において(D2/D0)×100が80%より小さい請求項1記載の送風機。
  3.  前記第1の羽根の前記径方向内側の端部を通る前記回転軸を中心とした仮想円の内径をD1、前記第2の羽根の前記径方向内側の端部を通る前記回転軸を中心とした仮想円の内径をD2、前記第2の羽根の枚数をn2としたとき、前記吸込下流側において、
     0<(D1-D2)<2π(D2)/(n2)が成り立つ請求項1または請求項2記載の送風機。
  4.  (D1-D2)/(2π(D2)/(n2))とΔと定義したとき、前記吸込下流側の羽根高さ位置のΔであるΔ1と、前記吸込上流側の羽根高さ位置のΔであるΔ2とが、Δ1>Δ2の関係を有する請求項3記載の送風機。
  5.  前記第1の羽根の枚数をn1としたとき、
     (D2)/(n2)>(D1+D2)/{2(n1+n2)}が成り立つ請求項3または請求項4記載の送風機。
  6.  請求項1~請求項5のいずれか一項に記載の送風機と、
     前記送風機を収容する筐体と、を備えた空気調和装置。
  7.  前記送風機を複数台備え、
     複数台の前記送風機は、前記送風機の吸込口同士が対向するようにして前記軸方向に離間して並んで配置されており、
     前記送風機の前記吸込口の開口径をDinとし、隣接する前記送風機の前記吸込口が形成された側壁同士の前記軸方向の距離をLとしたとき、
     0.75Din<L<2Dinが成り立つ請求項6記載の空気調和装置。
  8.  前記送風機の吸込口が形成された側壁と前記吸込口に対向する前記筐体の内壁との前記軸方向の距離をL0としたとき、
     0.37Din<L0<Dinが成り立つ請求項6記載の空気調和装置。
PCT/JP2020/043388 2020-11-20 2020-11-20 送風機およびこれを備えた空気調和装置 WO2022107309A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021527078A JP6942294B1 (ja) 2020-11-20 2020-11-20 送風機およびこれを備えた空気調和装置
PCT/JP2020/043388 WO2022107309A1 (ja) 2020-11-20 2020-11-20 送風機およびこれを備えた空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/043388 WO2022107309A1 (ja) 2020-11-20 2020-11-20 送風機およびこれを備えた空気調和装置

Publications (1)

Publication Number Publication Date
WO2022107309A1 true WO2022107309A1 (ja) 2022-05-27

Family

ID=77847060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043388 WO2022107309A1 (ja) 2020-11-20 2020-11-20 送風機およびこれを備えた空気調和装置

Country Status (2)

Country Link
JP (1) JP6942294B1 (ja)
WO (1) WO2022107309A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0252019A (ja) * 1988-08-11 1990-02-21 Matsushita Electric Ind Co Ltd 空気清浄器
JPH05321891A (ja) * 1992-05-21 1993-12-07 Matsushita Seiko Co Ltd 多翼ファン
JPH07279892A (ja) * 1994-04-06 1995-10-27 Matsushita Seiko Co Ltd 多翼ファン
WO2006035586A1 (ja) * 2004-09-28 2006-04-06 Daikin Industries, Ltd. 空気調和装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58193099U (ja) * 1982-06-18 1983-12-22 株式会社日立製作所 多翼フアン
CN201284757Y (zh) * 2008-10-28 2009-08-05 珠海格力电器股份有限公司 离心式送风机以及使用该送风机的空调器
CN101975188B (zh) * 2010-10-30 2012-10-03 芜湖博耐尔汽车电气系统有限公司 一种汽车空调用离心风机叶轮

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0252019A (ja) * 1988-08-11 1990-02-21 Matsushita Electric Ind Co Ltd 空気清浄器
JPH05321891A (ja) * 1992-05-21 1993-12-07 Matsushita Seiko Co Ltd 多翼ファン
JPH07279892A (ja) * 1994-04-06 1995-10-27 Matsushita Seiko Co Ltd 多翼ファン
WO2006035586A1 (ja) * 2004-09-28 2006-04-06 Daikin Industries, Ltd. 空気調和装置

Also Published As

Publication number Publication date
JP6942294B1 (ja) 2021-09-29
JPWO2022107309A1 (ja) 2022-05-27

Similar Documents

Publication Publication Date Title
EP3626974B1 (en) Outdoor unit for an air conditioner
WO2017022115A1 (ja) 遠心送風機、空気調和装置および冷凍サイクル装置
JP4690682B2 (ja) 空調機
US11808270B2 (en) Impeller, multi-blade air-sending device, and air-conditioning apparatus
US9970454B2 (en) Propeller fan, blower device, and outdoor equipment
JP6719641B2 (ja) プロペラファン、送風機及び空気調和機
CN106481574B (zh) 离心式风机和包括其的空调机
US12038017B2 (en) Centrifugal air-sending device, air-sending apparatus, air-conditioning apparatus, and refrigeration cycle apparatus
US20190040873A1 (en) Air-sending device and air-conditioning apparatus using the same
CN112352108B (zh) 多叶片送风机以及空调装置
KR101870365B1 (ko) 선회유동 저감 구조를 갖는 냉각팬 장치
JP2009287427A (ja) 遠心送風機
JP2017223173A (ja) 送風機および冷凍サイクル装置の室外機
WO2022107309A1 (ja) 送風機およびこれを備えた空気調和装置
WO2018092262A1 (ja) プロペラファン及び冷凍サイクル装置
JP7130061B2 (ja) 遠心送風機、送風装置、空気調和装置及び冷凍サイクル装置
JP6695403B2 (ja) 遠心送風機および空気調和装置
US11635089B2 (en) Propeller fan, outdoor unit, and refrigeration cycle apparatus
WO2023084652A1 (ja) クロスフローファン、送風装置及び冷凍サイクル装置
WO2024214237A1 (ja) 遠心送風機、空気調和機及び冷凍サイクル装置
WO2024214244A1 (ja) 遠心送風機、空気調和機及び冷凍サイクル装置
EP4400777A1 (en) Ceiling-embedded air conditioner
JP7282215B2 (ja) 送風機及び空気調和装置
WO2017085889A1 (ja) 遠心ファン、空気調和装置および冷凍サイクル装置
JPWO2018096658A1 (ja) 送風機、室外機及び冷凍サイクル装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021527078

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20962471

Country of ref document: EP

Kind code of ref document: A1