WO2022105769A1 - 一种无纺布材料 - Google Patents

一种无纺布材料 Download PDF

Info

Publication number
WO2022105769A1
WO2022105769A1 PCT/CN2021/131066 CN2021131066W WO2022105769A1 WO 2022105769 A1 WO2022105769 A1 WO 2022105769A1 CN 2021131066 W CN2021131066 W CN 2021131066W WO 2022105769 A1 WO2022105769 A1 WO 2022105769A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
woven material
fiber web
melting point
woven
Prior art date
Application number
PCT/CN2021/131066
Other languages
English (en)
French (fr)
Inventor
彭鹏
刘同娟
梶山宏史
蔡东照
Original Assignee
东丽纤维研究所(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东丽纤维研究所(中国)有限公司 filed Critical 东丽纤维研究所(中国)有限公司
Priority to CN202180076684.1A priority Critical patent/CN116601350A/zh
Priority to JP2023530036A priority patent/JP2024502397A/ja
Publication of WO2022105769A1 publication Critical patent/WO2022105769A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres

Definitions

  • the present invention relates to a non-woven material.
  • Chinese published patent CN107090175A discloses an injection-molded shoe upper material and its preparation method.
  • the patent is to process irregular-shaped shoe upper materials by injection molding. Because the injection molding process is used, the air permeability of the obtained shoe upper material is The flexibility and softness and durability are poor.
  • Non-woven fabric has thermal shrinkage, but because the material itself is limited by the thermal shrinkage rate, the material does not have good thermoformability.
  • the cloth composite material itself has the characteristics of poor fiber entanglement, poor wear resistance and short service life.
  • the purpose of the present invention is to provide a non-woven material with light weight, softness, wear resistance and excellent heat shrinkability.
  • the non-woven material of the present invention comprises a fiber web (1), a base fabric (2), and a fiber web (3), wherein the fiber web (1) and the fiber web (3) contain Thermal bonding fiber, the base fabric (2) is composed of a yarn formed by at least a block copolymer of polyester hard segment and polyether soft segment, and the yarn is a long fiber monofilament, a single long Fiber multifilament or single spun yarn.
  • the non-woven material of the present invention has the characteristics of light weight, softness, wear resistance, and excellent heat shrinkability, and can be applied to the fields of bags, pads of special shapes, and shoe upper materials.
  • the non-woven material of the present invention includes a fiber web (1), a base fabric (2), and a fiber web (3), wherein the fiber web (1) and the fiber web (3) contain thermally bonded fibers, and the base fabric (2) contains thermally bonded fibers.
  • the material fabric (2) is composed of a yarn formed by at least a block copolymer of a polyester hard segment and a polyether soft segment, and the yarn is a long fiber monofilament, a single long fiber multifilament or a single short fiber yarn.
  • the fiber web (1) and the fiber web (3), as the surface layers of the non-woven material may be in direct contact with human skin during use, so the two-layer fiber web must have a light and soft style. It can be formed by needle punching or by hydroentanglement.
  • the fiber web (1) and the fiber web (3) are preferably formed by hydroentanglement.
  • the fiber web (1) and the fiber web (3) are not particularly limited in the present invention as the surface layer or the inner layer.
  • the fiber webs (1) and the fiber webs (3) contain thermally bonded fibers. Since the thermally bonded fibers melt during heating and molding, the fibers are further strengthened. The entanglement force with the fibers makes the entanglement between the fibers more firm, and the obtained non-woven material will not have holes, fluff, etc. due to the weak entanglement between the fibers, thereby further improving the non-woven fabric. The strength and wear resistance of the material.
  • the base fabric (2) of the present invention is composed of a yarn formed by at least a block copolymer of a polyester hard segment and a polyether soft segment, and the yarn is a long fiber monofilament, a single long fiber multifilament or Single spun yarn.
  • the block copolymer of polyester hard segment and polyether soft segment (referred to as TPEE) refers to a polymer in which a flexible polymer segment material is embedded in the long segment of polyester.
  • the main component is thermoplastic polyester elastomer. Polyester elastomer not only has the general characteristics of polyester, but also has excellent elasticity and heat shrinkage.
  • the representative products of the block copolymer of polyester hard segment and polyether soft segment include Hytel resin material developed by Toray-DuPont.
  • the non-woven material formed by the long-fiber monofilament, single long-fiber multifilament or single-strand spun yarn prepared from the block copolymer containing the polyester hard segment and the polyether soft segment has excellent heat shrinkable molding properties . If the multi-plied yarn is used, it is composed of multi-plied yarn twisting, which has more hairiness and poor wear resistance, and it is very easy to cause untwisting due to wear and tear when the material is used, resulting in a sharp drop in performance.
  • the yarn in the non-woven material of the present invention is preferably long fiber monofilament, and the material made from the long fiber monofilament has the characteristics of light weight, good hand feeling, excellent wear resistance, etc., especially In the field of shoe upper materials, the requirements for wear resistance are more stringent.
  • the non-woven material of the present invention is a composite material formed by hydroentangling, and the fibers in the fiber web (1) and the fiber web (3) are entangled with each other through the pores of the base fabric (2).
  • the composite methods of non-woven fabrics mainly include needle punching, chemical adhesive, thermal bonding, and hydroentanglement.
  • Acupuncture composite reinforcement is punctured by a needle with needle teeth to make the material composite and reinforced. Although the acupuncture method can fully entangle the upper and lower fiber webs, and the peel strength is high, due to the repeated puncturing of the needle, it is inevitable.
  • the nonwoven material of the present invention is preferably a composite material formed by hydroentangling.
  • the fiber web (1) and the fiber web (3) preferably contain 10-50% by weight of the thermal bonding fiber.
  • the fiber web plays a role in bonding and fixing, which can improve the entanglement and wear resistance between fibers in the material. If the content of thermal bonding fibers is too low, the entanglement ability between fibers is weak.
  • the abrasion resistance of the fiber web as the surface layer or the inner layer will be poor; if the content of the thermal bonding fibers is too high, although the entanglement between fibers is sufficient, the modulus of the fiber web as the surface layer or the inner layer is abrasion resistant
  • the degree of entanglement between fibers is too sufficient, the overall hardness of the non-woven composite material will be greatly increased, which will bring discomfort and even thorns during use. Pain, and if the fiber web is too hard, the overall non-woven composite material is difficult to form, especially when processing more complex shapes, the overall non-woven composite material hardness is too large, and the finished product is difficult to form.
  • the fiber web (1) and the fiber web (3) more preferably contain 30 to 50% by weight of thermally bonded fibers.
  • the fiber web (1) and the fiber web (3) of the present invention may contain the same or different amounts of thermally bonded fibers, and the grammage of the fiber web (1) and the fiber web (3) may be the same or different. can be different.
  • the abrasion resistance of the fiber web is required to be high, the content of thermally bonded fibers can be appropriately increased, and when the feel of the entire non-woven composite material is required to be relatively soft, the thermally bonded fibers in the fiber web can be appropriately reduced. content.
  • the gram weight of the above-mentioned fiber web is preferably 20-100 g/m 2 . When the requirement for the abrasion resistance of the fiber web is high, the fiber web can be appropriately increased. gram weight, and when the requirement for the abrasion resistance of the fiber web is not high, the gram weight of the fiber web can be appropriately reduced.
  • fiber web (1) and fiber web (3) in addition to thermal bonding fibers, other fibers are also contained, and other fibers can be common fibers such as ordinary nylon, polyester, viscose, acrylic fiber, cotton, etc.; Sexual fibers, such as far-infrared fibers, crimped fibers, etc.; can also be fibers with special-shaped sections, such as hollow, triangular, pentagonal, flat, multi-lobal section fibers, etc., so that they have excellent moisture absorption and perspiration characteristics.
  • the fineness of the above-mentioned yarn is preferably 500-1500dtex, and the strength of the yarn formed by TPEE is not particularly outstanding. If the fineness of the yarn is too small, the long fiber monofilament, single long fiber multifilament or single short fiber The strength performance of the fiber yarn is bound to be low. Under the same weaving density, the strength performance of the intermediate base fabric is bound to be lower, resulting in poor strength of the non-woven composite material; When the net (1) and the fiber net (3) are compositely processed, the long-fiber monofilament, single long-fiber multifilament or single-strand spun yarn constituting the base fabric will be very susceptible to impact damage, resulting in the base fabric Powerful drop.
  • the dry heat shrinkage rate of the above-mentioned long fiber monofilament is preferably 15 to 40%.
  • the dry heat shrinkage rate of the long fiber monofilament here is an important indicator of the thermoforming ability of the reaction material.
  • the non-woven fabric material of the present invention is applied to shoes. When the surface material and luggage material are used, the non-woven material is put into the rough model, and the material shrinks by heating, so that the material is completely shrunk into the shape of the model, and then the model is taken out to form the desired complex shoe upper material shape.
  • the dry heat shrinkage rate of the long fiber monofilament constituting the material is preferably 15 to 40%.
  • the heat shrinkage rate of the long fiber monofilament is too low, the The thermal shrinkage rate of the base fabric composed of fiber monofilaments will also become lower, and after being compounded with the fiber web, the shrinkage rate of the non-woven composite material formed will be further reduced, which will lead to insufficient shrinkage of the formed material. , it cannot be heat-shrinked to the desired shape; if the heat shrinkage rate of the long fiber monofilament is too large, the heat shrinkage rate of the base fabric composed of monofilaments will also increase. The shrinkage rate of non-woven composite materials is also relatively large.
  • the conditional temperature for the thermal shrinkage is 150 degrees.
  • the heating shrinkage force of the above-mentioned long fiber monofilament is 50-80 cN, and the heating shrinkage force of the long fiber monofilament here is an important index of the thermoforming ability of the reaction material. Irregular materials, different parts of the material, the degree of shrinkage is different, so if the heating shrinkage force of the long fiber monofilament is too low, the heating shrinkage force of the formed base fabric will also become lower, and then composite with the fiber mesh After that, the shrinkage force of the material will be further reduced, and the shrinkage force of the material will be insufficient, which will cause the material to fail to shrink completely when it encounters a slight obstacle, which may lead to insufficient molding of the material, so that the material cannot meet the formability requirements; If the heating shrinkage force of the long fiber monofilament is too high, the shrinkage force of the formed base fabric will also be larger, and the shrinkage force of the material will also be larger after compounding with the fiber web, so the material will shrink too easily, causing the material to shrink
  • the Shore hardness of the above-mentioned long fiber monofilament is 40-63D.
  • the hardness is an important measure to characterize the elasticity of the material and the ability to absorb energy and resist puncture.
  • Hardness can be divided into relative and absolute hardness, usually characterized by relative hardness, commonly used are Shore, Rockwell, Brinell.
  • Shaw is a more commonly used measurement method.
  • the hardness of the long fiber monofilament is too low, the obtained non-woven material is relatively soft, and the material as a whole will be sticky like rubber, which will cause the long fiber monofilament or single long fiber multifilament to be ineffective.
  • the base fabric (2) of the present invention can be a woven fabric or a knitted fabric.
  • the interval between two adjacent yarns constituting the woven fabric is 0.5-2.0 mm
  • the distance between two adjacent loops constituting the knitted fabric is preferably 0.5-2.0 mm.
  • the spacing between the yarns refers to the distance between two adjacent yarns in the base woven fabric whose warp or weft directions are parallel to each other and adjacent to each other. If the interval between the two yarns is too small, the warp and weft yarns are intertwined too closely, and the inner pore in the middle of the obtained base fabric will be too small.
  • the air permeability of the resulting non-woven material will be greatly reduced; If the interval between the two yarns is too large, the warp and weft yarns are too loosely interwoven, that is, the warp and weft interlacing density of the base woven fabric is low, the strength and wear resistance of the base material will inevitably be reduced, and the movement space of the yarn will be large. , it is very easy for the yarn or yarn to deviate, resulting in uneven weight distribution and uneven strength.
  • the interval between two adjacent yarns constituting the woven fabric is more preferably 0.6-1.5 mm.
  • the intermediate base fabric of the present invention is preferably a woven fabric, and preferably the warp and weft yarns constituting the woven fabric are made of polyester hard segments and Yarn formed from block copolymer of polyester soft segment.
  • the above-mentioned thermal bonding fiber is a sheath-core composite short fiber
  • the sheath component of the sheath-core composite short fiber is low-melting polyethylene or polyester
  • the core component is a high-melting polyester material.
  • thermally bonded fibers there are two types of thermally bonded fibers, namely short fibers with a skin-core composite structure and full-melt hot-melt fibers. Because the full-melt hot-melt adhesive fibers have general web-forming processability, and after heating and melting, the resulting nonwoven The overall cloth material will become very hard, which will affect the comfort of use; while the short fibers of the skin-core composite structure have good web-forming processability.
  • the sheath component of the sheath-core composite staple fiber is required to have the characteristics of stability, low melting point, easy melting, and not easy to decompose when heated. Therefore, the sheath component of the thermal bonding fiber of the present invention is preferably low-melting PE or polyester.
  • the low melting point in the skin component means that the melting point is lower than the melting point of the core material, and considering the ease of processing, there is a certain melting point difference between the melting point of the skin component and the core component, and the melting point of the skin layer is preferably between 100 and 180 degrees.
  • the core layer material plays a major role.
  • the core layer material can be nylon or polyester. Considering fiber spinnability and economical practicability, the core component is preferably polyester.
  • the melting point of the sheath component in the above-mentioned sheath-core composite staple fiber is preferably 100 to 130 degrees. If the melting point of the sheath component in the sheath-core composite staple fiber is too low, when the obtained non-woven material encounters high temperature, it is easy to occur. Deformation, causing damage; if the melting point of the sheath component in the sheath-core composite staple fiber is too high, it is easy to cause insufficient melting of the hot-melt fiber, unable to fully entangle the fiber, resulting in a decrease in the wear resistance and durability of the material. .
  • the long fiber monofilament constituting the base fabric is preferably a sheath-core composite long fiber monofilament
  • the sheath component in the sheath-core composite long fiber monofilament is preferably a low-melting polyester hard segment
  • the block copolymer with polyether soft segment (referred to as low-melting TPFE)
  • the core component is preferably a block copolymer of high-melting polyester hard segment and polyether soft segment (referred to as high-melting TPFE).
  • the low-melting point TPEE of the cortex of the long fiber monofilaments in the base fabric will melt to form a consolidation point, so that the material will not be affected by the slippage of the yarn during use. Migration causes performance degradation and other issues.
  • the cross-sectional area ratio of the sheath component to the core component in the above-mentioned sheath-core composite long fiber monofilament is 1:9 to 5:5.
  • the cross-sectional area here refers to the cross-sectional area of the sheath layer in the sheath-core composite long fiber monofilament and the core layer. cross-sectional area. If the cross-sectional area ratio of the sheath component to the core component in the sheath-core composite long fiber monofilament is too small, that is, the content of the sheath layer is small, the consolidation effect after melting will be insufficient, and the contact point between the monofilament and the monofilament will be relatively small.
  • the strength of the cloth material is reduced, the mechanical properties are reduced, the durability is poor during use, and it is prone to damage.
  • the cross-sectional area ratio of the sheath component to the core component in the sheath-core composite long fiber monofilament is more preferably 3:7 to 5:5.
  • the melting point temperature of the low melting point TPEE is preferably 130 to 170 degrees, and the melting point temperature of the high melting point TPEE is preferably 200 to 230 degrees.
  • the melting point temperature of the skin layer should be lower than the melting point temperature of the core layer.
  • the melting temperature of the skin layer low melting point TPEE is preferably above 130 degrees.
  • the melting temperature of the skin layer low melting point TPEE must be lower than the melting temperature of the core layer material, and a certain temperature difference is required to ensure the processing performance of the material.
  • the melting point temperature of the low melting point TPEE is also preferably 170 degrees or lower.
  • the melting point of the high melting point TPEE of the core layer is preferably above 200 degrees.
  • the distribution amount of polyether must be within a certain range and cannot be too high. If the melting point is too high, it will inevitably lead to an increase in molecular weight and a decrease in the distribution of polyether soft segments, which will affect the style and heat shrinkage of the material. Therefore, the melting point of the core layer is preferably in Below 230 degrees.
  • the non-woven material of the present invention has excellent elastic recovery rate, and the elasticity rate under the condition of 10% elongation is preferably 90-100%, and the non-woven composite material will inevitably be impacted by a certain force during use , When subjected to force, a certain amount of deformation of the material will help absorb energy, thereby preventing injuries such as feet; if the elastic recovery rate of the non-woven composite material is too low, the material is not easy to recover after deformation, so Non-woven composite materials are prone to permanent deformation, resulting in loss of use value. Therefore, the elastic modulus of the nonwoven fabric composite material of the present invention under the condition of 10% elongation is more preferably 95 to 100%.
  • the non-woven material of the present invention has excellent air permeability, and the air permeability of the material is preferably 50-200 cm 3 /cm 2 /s.
  • the air permeability of the material is insufficient, the material is likely to feel uncomfortable during use. If the ventilation of the non-woven composite material is too low, the gram weight and density of the material will also increase accordingly, so that the material loses its light and thin characteristics; on the other hand, when the ventilation of the material is too large, although the non-woven composite material Good air permeability, but high air permeability will inevitably lead to a decrease in the gram weight and thickness of the material. Under the same conditions, if the gram weight and thickness are low, the strength, durability and wear resistance of the material will be poor. Considering the use of In terms of longevity and comfort, the air permeability of the composite material of the present invention is more preferably 80 to 180 cm 3 /cm 2 /s.
  • the dry heat shrinkage rate of at least one direction of the non-woven material of the present invention is preferably 15-40%. Since the molding of the non-woven composite material needs to be carried out at high temperature, considering the melting point of each component in the base fabric layer and the fiber web layer, and the material can be fully shrunk, the molding processing temperature of the material of the present invention is preferably 180 ° C , Under this condition, if the dry heat shrinkage rate of at least one direction of the non-woven composite material is too low, the formability of the material will be affected.
  • the thermal shrinkage of the present invention may be in any one direction in the warp and weft directions, or may be in two directions in the warp and weft directions.
  • the dry heat shrinkage rate in at least one direction of the non-woven fabric material of the present invention at 180° C. is more preferably 20 to 30%.
  • the monofilament of the present invention is obtained by taking a monofilament with a length of 100 m, and then calculating the linear density, randomly sampling and measuring 3 times, and taking the average value.
  • the size is 30cm ⁇ 30cm, peel off the fiber mesh layer in the non-woven material, then take out the long fiber monofilament in the middle fabric layer with a picking needle, measure its length as L 0 , and then Put the filament into the oven, treat it at 150 degrees for 15 minutes, measure its length after heat shrinkage again as L 1 , then use the following formula to calculate the heat shrinkage rate of the long fiber monofilament, randomly sample and measure 3 times, and take the average value.
  • Monofilament thermal shrinkage (L 0 -L 1 )/L 0 ⁇ 100%.
  • a DSC tester was used to test the melting points of the base fabric and the components in the fiber layer.
  • the sample to be tested was heated from room temperature at a heating rate of 2°C/min, raised to 100°C, maintained for 10 minutes, and then cooled to 100°C. room temperature; then the temperature is increased at a rate of 2 °C/min to 300 °C, and the endothermic peak peak value in the heating curve is recorded as the melting point of each component in the material.
  • Sample size 200mm ⁇ 200mm, sampling position: three places on the left, middle, and right of the width of the sample, take 3 samples respectively, and adjust the humidity in the laboratory at 20 ⁇ 2°C ⁇ 65 ⁇ 4% for 24 hours.
  • the balance is used to test the gram weight of the three samples respectively, and the average value is calculated as the gram weight value of the sample.
  • a tensile tester is used to test the elastic modulus.
  • the test steps are as follows: the sample size is 30cm ⁇ 5cm, stretch the sample, the clamp is 200mm, stop stretching when the elongation is 10%, and return to the origin; The sample was stretched again, and the stretch when the tensile force sensor showed the beginning of force was recorded and recorded as L 0 (mm).
  • the TEXTEST FX3300 air permeability tester was used for measurement, the test area was 38cm 2 , and the test pressure difference was 125Pa. Press the test sample on the test head, the instrument generates a continuous air flow through the sample, and generates a certain pressure difference on both sides of the sample, the system will automatically calculate the air flowing through the unit area of the non-woven material in the unit time. The volume was randomly sampled and measured 3 times, and the average value was taken.
  • Warp shrinkage 1-(100% ⁇ (L warp 1 /L warp )),
  • Weft shrinkage 1-(100% x (L weft 1 /L weft )).
  • Extract the monofilament or single yarn in the base fabric cut it into small pieces of 1-5 mm, and then melt and consolidate it, using a Shore hardness tester, according to the benchmark of ASTM D2240, to measure the monofilament or single yarn in the base fabric.
  • the hardness of the yarn was measured by randomly sampling and measuring 5 times, and taking the average value to obtain the hardness.
  • the fiber web (1) and the fiber web (3) were respectively prepared; the skin layer was a block copolymer of polyester hard segment with a melting point of 150 degrees and a polyether soft segment, and the core layer was a polyester hard segment with a melting point of 220 degrees and a polyether segment.
  • the block copolymer of the ether soft segment was melt-spun to obtain a fineness of 700dtex, a hardness of 63D, a dry heat shrinkage rate of 30%, a heating shrinkage force of 65cN, and a cross-sectional area ratio of the sheath component to the core component of 4:6.
  • the sheath-core composite long fiber monofilament formed by the block copolymer of polyester hard segment and polyether soft segment is used as warp yarn and weft yarn through warping, reed threading and weaving.
  • the woven fabric interwoven into warp and weft is used as the base fabric (2), and the interval between two adjacent long-fiber monofilaments in the base fabric is 1.5m, and then the obtained fiber web (1), base fabric (2) ), the fiber webs (3) are stacked in turn, and then by the hydroentanglement method, the fibers in the fiber webs (1) and the fiber webs (3) are entangled with each other through the pores of the base fabric and are integrally formed, and finally the present invention is obtained.
  • Non-woven material See Table 1 for the physical properties of the non-woven material.
  • the fiber web (1) and the fiber web (3) are respectively prepared; the block copolymer of the polyester hard segment and the polyether soft segment is melt-spun to obtain a fineness of 700 dtex, a hardness of 63D, and a dry heat shrinkage rate of 30 %, the long-fiber monofilament formed by the block copolymer of polyester hard segment and polyether soft segment with heating shrinkage force of 65cN, and then the obtained long-fiber monofilament is used as warp yarn and weft yarn through warping, harnessing Reed, weaving and processing into a woven fabric interwoven by warp and weft as a base fabric (2), the interval between two adjacent long-fiber monofilaments in the base fabric is 1.5m, and then the prepared fiber web (1), base fabric
  • the fiber web (1) and the fiber web (3) are respectively prepared; the skin layer is a block copolymer of polyester hard segment with a melting point of 150 degrees and a polyether soft segment, and the core layer is a polyester hard segment with a melting point of 220 degrees Melt spinning with the block copolymer of polyether soft segment to obtain a fineness of 1000dtex, a hardness of 63D, a dry heat shrinkage rate of 30%, a heating shrinkage force of 65cN, and a cross-sectional area ratio of the sheath component to the core component of 4:
  • the skin-core composite long fiber monofilament formed by the block copolymer of polyester hard segment and polyether soft segment of Weaving and processing into a warp and weft interwoven woven fabric is used as a base fabric (2), and the interval between two adjacent long-fiber monofila
  • the fiber web (1) and the fiber web (3) were respectively prepared; the skin layer was a block copolymer of polyester hard segment with a melting point of 150 degrees and a polyether soft segment, and the core layer was a polyester hard segment with a melting point of 220 degrees and a polyether segment.
  • the block copolymer of the ether soft segment was melt-spun to obtain a fineness of 700dtex, a hardness of 63D, a dry heat shrinkage rate of 30%, a heating shrinkage force of 65cN, and a cross-sectional area ratio of the sheath component to the core component of 4:6.
  • the sheath-core composite long fiber monofilament formed by the block copolymer of polyester hard segment and polyether soft segment is used as warp yarn and weft yarn through warping, reed threading and weaving.
  • the woven fabric interwoven into warp and weft is used as the base fabric (2), and the interval between two adjacent long-fiber monofilaments in the base fabric is 1.5m, and then the obtained fiber web (1), base fabric (2) ), the fiber webs (3) are stacked in turn, and then by the hydroentanglement method, the fibers in the fiber webs (1) and the fiber webs (3) are entangled with each other through the pores of the base fabric and are integrally formed, and finally the present invention is obtained.
  • Non-woven material See Table 1 for the physical properties of the non-woven material.
  • the fiber web (1) and the fiber web (3) were respectively prepared; the skin layer was a block copolymer of polyester hard segment with a melting point of 150 degrees and a polyether soft segment, and the core layer was a polyester hard segment with a melting point of 220 degrees and a polyether segment.
  • the block copolymer of the ether soft segment was melt-spun to obtain a fineness of 700dtex, a hardness of 30D, a dry heat shrinkage rate of 50%, a heating shrinkage force of 100cN, and a cross-sectional area ratio of the sheath component to the core component of 4:6.
  • the sheath-core composite long fiber monofilament formed by the block copolymer of polyester hard segment and polyether soft segment is used as warp yarn and weft yarn through warping, reed threading and weaving.
  • the woven fabric interwoven into warp and weft is used as the base fabric (2), and the interval between two adjacent long-fiber monofilaments in the base fabric is 1.5 mm, and then the obtained fiber web (1), base fabric (2) ), the fiber webs (3) are layered in turn, and then the fibers in the fiber webs (1) and the fiber webs (3) are entangled and integrally formed through the pores of the base fabric by the hydroentanglement method, and finally the fiber web of the present invention is obtained.
  • Non-woven material See Table 1 for the physical properties of the non-woven material.
  • the fiber web (1) and the fiber web (3) are respectively prepared; the skin layer is a block copolymer of polyester hard segment with a melting point of 150 degrees and a polyether soft segment, and the core layer is a polyester hard segment with a melting point of 220 degrees Melt spinning with the block copolymer of polyether soft segment to obtain a fineness of 1000dtex, a hardness of 63D, a dry heat shrinkage rate of 30%, a heating shrinkage force of 65cN, and a cross-sectional area ratio of the sheath component to the core component of 4:
  • the skin-core composite long fiber monofilament formed by the block copolymer of polyester hard segment and polyether soft segment of Weaving and processing into a warp and weft interwoven woven fabric is used as a base fabric (2), and the interval between two adjacent long-fiber monofila
  • the fiber web (1) and the fiber web (3) were respectively prepared; the skin layer was a block copolymer of polyester hard segment with a melting point of 150 degrees and a polyether soft segment, and the core layer was a polyester hard segment with a melting point of 220 degrees and a polyether segment.
  • the block copolymer of the ether soft segment was melt-spun to obtain a fineness of 700dtex, a hardness of 63D, a dry heat shrinkage rate of 30%, a heating shrinkage force of 65cN, and a cross-sectional area ratio of the sheath component to the core component of 0.5:9.5.
  • the sheath-core composite long fiber monofilament formed by the block copolymer of polyester hard segment and polyether soft segment is used as warp yarn and weft yarn through warping, reed threading and weaving.
  • the woven fabric interwoven into warp and weft is used as the base fabric (2), and the interval between two adjacent long-fiber monofilaments in the base fabric is 1.5m, and then the obtained fiber web (1), base fabric (2) ), the fiber webs (3) are stacked in turn, and then by the hydroentanglement method, the fibers in the fiber webs (1) and the fiber webs (3) are entangled with each other through the pores of the base fabric and are integrally formed, and finally the present invention is obtained.
  • Non-woven material See Table 1 for the physical properties of the non-woven material.
  • the fiber web (1) and the fiber web (3) are respectively prepared;
  • the skin layer is a block copolymer of polyester hard segment with a melting point of 170 degrees and a polyether soft segment, and
  • the core layer is a polyester hard segment with a melting point of 230 degrees and a polyether segment.
  • the block copolymer of the ether soft segment was melt-spun to obtain a fineness of 500dtex, a hardness of 63D, a dry heat shrinkage rate of 30%, a heating shrinkage force of 65cN, and a cross-sectional area ratio of the sheath component to the core component of 4:6.
  • the sheath-core composite long fiber monofilament formed by the block copolymer of polyester hard segment and polyether soft segment is used as warp yarn and weft yarn through warping, reed threading and weaving.
  • the woven fabric interwoven into warp and weft is used as the base fabric (2), and the interval between two adjacent long-fiber monofilaments in the base fabric is 0.5 mm, and then the obtained fiber web (1), base fabric (2) ), the fiber webs (3) are stacked in turn, and then by the hydroentanglement method, the fibers in the fiber webs (1) and the fiber webs (3) are entangled with each other through the pores of the base fabric and are integrally formed, and finally the present invention is obtained.
  • Non-woven material See Table 2 for the physical properties of the non-woven material.
  • the fiber web (1) and the fiber web (3) are respectively prepared;
  • the skin layer is a block copolymer of polyester hard segment with a melting point of 170 degrees and a polyether soft segment, and
  • the core layer is a polyester hard segment with a melting point of 230 degrees and a polyether segment.
  • the block copolymer of the ether soft segment was melt-spun to obtain a fineness of 500dtex, a hardness of 63D, a dry heat shrinkage rate of 30%, a heating shrinkage force of 65cN, and a cross-sectional area ratio of the sheath component to the core component of 4:6.
  • the sheath-core composite long fiber monofilament formed by the block copolymer of polyester hard segment and polyether soft segment is used as warp yarn and weft yarn through warping, reed threading and weaving.
  • the woven fabric interwoven into warp and weft is used as the base fabric (2), and the interval between two adjacent long-fiber monofilaments in the base fabric is 0.3 mm, and then the obtained fiber web (1), base fabric (2) ), the fiber webs (3) are stacked in turn, and then by the hydroentanglement method, the fibers in the fiber webs (1) and the fiber webs (3) are entangled with each other through the pores of the base fabric and are integrally formed, and finally the present invention is obtained.
  • Non-woven material See Table 2 for the physical properties of the non-woven material.
  • the fiber web (1) and the fiber web (3) were respectively prepared; the skin layer was a block copolymer of polyester hard segment with a melting point of 150 degrees and a polyether soft segment, and the core layer was a polyester hard segment with a melting point of 220 degrees and a polyether segment.
  • the block copolymer of the ether soft segment was melt-spun to obtain a fineness of 200dtex, a hardness of 63D, a dry heat shrinkage rate of 30%, a heating shrinkage force of 65cN, and a cross-sectional area ratio of the sheath component to the core component of 4:6.
  • the sheath-core composite long fiber monofilament formed by the block copolymer of polyester hard segment and polyether soft segment is used as warp yarn and weft yarn through warping, reed threading and weaving.
  • the woven fabric interwoven into warp and weft is used as the base fabric (2), and the interval between two adjacent long-fiber monofilaments in the base fabric is 1.5 mm, and then the obtained fiber web (1), base fabric (2) ), the fiber webs (3) are stacked in turn, and then by the hydroentanglement method, the fibers in the fiber webs (1) and the fiber webs (3) are entangled with each other through the pores of the base fabric and are integrally formed, and finally the present invention is obtained.
  • Non-woven material See Table 2 for the physical properties of the non-woven material.
  • the fiber web (1) and the fiber web (3) were respectively prepared; the skin layer was a block copolymer of polyester hard segment with a melting point of 150 degrees and a polyether soft segment, and the core layer was a polyester hard segment with a melting point of 220 degrees and a polyether segment.
  • the block copolymer of the ether soft segment was melt-spun to obtain a fineness of 1000dtex, a hardness of 63D, a dry heat shrinkage rate of 30%, a heating shrinkage force of 65cN, and a cross-sectional area ratio of the sheath component to the core component of 4:6.
  • the skin-core composite long-fiber monofilament formed by the block copolymer of polyester hard segment and polyether soft segment is processed into warp and weft as warp yarn and weft yarn by warping, drawing through reed, and weaving.
  • the interwoven woven fabric is used as the base fabric (2), and the interval between two adjacent long-fiber monofilaments in the base fabric is 2.5 mm, and then the obtained fiber web (1), base fabric (2), The fiber webs (3) are stacked in sequence, and then the fibers in the fiber web (1) and the fiber web (3) are entangled and integrally formed through the pores of the base fabric by a hydroentanglement method, and finally the nonwoven fabric of the present invention is obtained.
  • cloth material See Table 2 for the physical properties of the non-woven material.
  • polyester with a melting point of 130 degrees in the skin layer and the core layer is made of polyester with a melting point of 260 degrees, and 70% by weight of ordinary polyester fibers.
  • the fiber web (1) and the fiber web (3) were respectively prepared; the skin layer was a block copolymer of polyester hard segment with a melting point of 150 degrees and a polyether soft segment, and the core layer was a polyester hard segment with a melting point of 220 degrees and a polyether segment.
  • the block copolymer of the ether soft segment was melt-spun to obtain a fineness of 700dtex, a hardness of 72D, a dry heat shrinkage rate of 15%, a heating shrinkage force of 50cN, and a cross-sectional area ratio of the sheath component to the core component of 1:9.
  • the skin-core composite long fiber monofilament formed by the block copolymer of polyester hard segment and polyether soft segment is used as the warp yarn by passing through, warping, and drawing through the reed, and then using the fineness Ordinary polyester filament monofilament of 700 dtex is used as the weft yarn, and the woven fabric with warp and weft interwoven by warp weaving is used as the base fabric (2).
  • the interval between two adjacent filament monofilaments in the base fabric is 1.5 mm,
  • the obtained fiber web (1), the base fabric (2), and the fiber web (3) are stacked in sequence, and then the fibers in the fiber web (1) and the fiber web (3) are passed through the base fabric by a needle punching method.
  • the pores are entangled with each other and integrally formed, and finally the non-woven material of the present invention is obtained. See Table 2 for the physical properties of the non-woven material.
  • polyester with a melting point of 130 degrees in the skin layer and the core layer is made of polyester with a melting point of 260 degrees, and 70% by weight of ordinary polyester fibers.
  • the fiber web (1) and the fiber web (3) were respectively prepared; the skin layer was a block copolymer of polyester hard segment with a melting point of 150 degrees and a polyether soft segment, and the core layer was a polyester hard segment with a melting point of 220 degrees and a polyether segment.
  • the block copolymer of the ether soft segment is melt-spun to obtain a fineness of 700dtex/24f, a hardness of 72D, a dry heat shrinkage rate of 15%, a heating shrinkage force of 50cN, and the cross-sectional area ratio of the sheath component to the core component is 1:
  • the sheath-core composite single long fiber multifilament formed by the block copolymer of polyester hard segment and polyether soft segment of The reed is used as the warp yarn, and the ordinary polyester single long fiber multifilament with a fineness of 700dtex/24f is used as the weft yarn, and the warp-weaving woven fabric is processed into a warp and weft interwoven fabric as the base fabric (2).
  • the interval between the long-fiber multifilaments is 1.5 mm, and the prepared fiber web (1), the base fabric (2), and the fiber web (3) are stacked in sequence, and then the fiber web (1) is made by needle punching. ) and the fibers in the fiber web (3) are integrally formed by intertwining with each other through the pores of the base fabric, and finally the non-woven material of the present invention is obtained. See Table 2 for the physical properties of the non-woven material.
  • a fiber web (1) is prepared; 30% by weight of a skin-core composite staple fiber whose skin layer is a polyester with a melting point of 110 degrees and a core layer is a polyester with a melting point of 260 degrees is mixed with 70% by weight of ordinary polyester fibers.
  • the fiber web (3) is prepared by opening, carding and laying; the skin layer is a block copolymer of a polyester hard segment with a melting point of 150 degrees and a polyether soft segment, and the core layer is a polyester hard segment with a melting point of 220 degrees and a polyether soft segment.
  • the block copolymer of the soft polyether segment was melt-spun to obtain a fineness of 700dtex, a hardness of 63D, a dry heat shrinkage rate of 30%, a heating shrinkage force of 65cN, and a cross-sectional area ratio of the sheath component to the core component of 5:5.
  • the sheath-core composite long-fiber monofilament formed by the block copolymer of polyester hard segment and polyether soft segment is then warped, and then knitted by a Cretan warp knitting machine.
  • the obtained knitted fabric is used as the base fabric (2), and the interval between two adjacent loops in the base fabric is 1.5m, and then the obtained fiber web (1), base fabric (2), fiber web (3) layering in sequence, and then by spunlace method, the fibers in the fiber web (1) and the fiber web (3) are entangled and integrally formed through the pores of the base fabric, and finally the non-woven material of the present invention is obtained. . See Table 2 for the physical properties of the non-woven material.
  • the fiber web (1) and the fiber web (3) are respectively prepared; the ordinary polyester long fiber monofilament with a fineness of 700 dtex is processed into a warp and weft interwoven woven fabric as a base fabric (2) ), the interval between two adjacent long-fiber monofilaments in the base fabric is 1.5 mm, and then the obtained fiber web (1), base fabric (2), and fiber web (3) are stacked in turn, and then pass through In the hydroentanglement method, the fibers in the fiber web (1) and the fiber web (3) are entangled with each other through the pores of the base fabric and integrally formed, and finally a non-woven material is obtained. See Table 3 for the physical properties of the non-woven material.
  • the skin layer is a block copolymer of polyester hard segment and polyether soft segment with a melting point of 150 degrees
  • the core layer is a block copolymer of polyester hard segment and polyether soft segment with a melting point of 220 degrees. It is a block copolymer of polyester hard segment and polyether soft segment with a hardness of 700dtex, a hardness of 63D, a dry heat shrinkage rate of 30%, a heat shrinkage force of 65cN, and a cross-sectional area ratio of the sheath component to the core component of 4:6.
  • the composite long-fiber monofilament is made of skin-core composite type, and then the long-fiber monofilament obtained is processed into a warp and weft interwoven woven fabric through warping, reed threading, and weaving, and the interval between two adjacent single yarns is 1.5 mm.
  • the physical properties of this material are shown in Table 3.
  • the core layer is a block copolymer of polyester hard segment and polyether soft segment with a melting point of 220 degrees, and melt spinning to obtain a fineness of 700dtex, a hardness of 63D, a dry heat shrinkage rate of 30%, heating
  • the fiber monofilament is processed into a warp and weft interwoven woven fabric by warping, reeding and weaving as a base fabric (2), and the interval between two adjacent single yarns in the base fabric is 1.5 mm, and then the obtained
  • the fiber web (1), the base fabric (2), and the fiber web (3) are stacked in sequence, and then the fiber
  • the fiber web (1) and the fiber web (3) were respectively prepared; the skin layer was a block copolymer of polyester hard segment with a melting point of 150 degrees and a polyether soft segment, and the core layer was a polyester hard segment with a melting point of 220 degrees and a polyether segment.
  • the block copolymer of the ether soft segment is melt-spun, then the fiber is cut, and then the yarn is formed by spinning, and then four strands of yarn are twisted to obtain a fineness of 700dtex, a hardness of 63D, and a dry heat shrinkage rate.
  • the long fiber monofilament in the former base fabric is composed of a block copolymer long fiber monofilament of a skin-core composite polyester hard segment and a polyether soft segment.
  • Filament formation the long fiber monofilament in the latter's base fabric is formed by the block copolymer long fiber monofilament of the polyester hard segment and the polyether soft segment of the general structure.
  • the nonwoven obtained by the former is The cloth material is uniform in appearance, soft to the touch and good in style.
  • Example 2 From Example 1 and Example 4, it can be seen that under the same conditions, the content of thermal bonding fibers in the former fiber web (1) and fiber web (3) is within a more preferable range, and compared with the latter, the former The obtained nonwoven material has high abrasion resistance.
  • Example 1 and Example 5 It can be seen from Example 1 and Example 5 that under the same conditions, the dry heat shrinkage rate, heating shrinkage force and hardness of the long fiber monofilament of the former are all within the preferred range, and compared with the latter, the nonwoven obtained by the former The appearance and feel of the cloth material are good, and the wear resistance is good.
  • Example 3 It can be seen from Example 3 and Example 6 that under the same conditions and under the same conditions, the former non-woven material is a composite material formed by spunlace processing, and the latter non-woven material is a composite material formed by needle punching processing. Compared with the latter, the former's non-woven materials have good appearance and feel and good wear resistance.
  • Example 1 and Example 7 It can be seen from Example 1 and Example 7 that under the same conditions, the cross-sectional area ratio of the sheath component to the core component in the sheath-core composite filament monofilament in the former base fabric is within the preferred range, which is similar to the latter. Compared with the former, the non-woven material obtained by the former has better abrasion resistance.
  • Example 8 and Example 9 It can be seen from Example 8 and Example 9 that under the same conditions, the interval between the two adjacent long-fiber monofilaments constituting the woven fabric in the former is within the preferred range. Compared with the latter, the former obtains The air permeability of the non-woven material is high, that is, the air permeability of the non-woven material is better than the latter.
  • Example 3 and Example 11 It can be seen from Example 3 and Example 11 that under the same conditions, the interval between the two adjacent filament monofilaments constituting the woven fabric of the latter is too large. The abrasion resistance of the cloth material is reduced.
  • Example 1 It can be seen from Example 1 and Example 10 that under the same conditions, the fineness of the yarn in the former is within the preferred range, and the nonwoven fabric obtained in the former has higher abrasion resistance than the latter.
  • Example 12 It can be seen from Example 12 and Example 13 that under the same conditions, the yarns in the former base fabric are long fiber monofilaments, and the yarns in the latter base fabric are single long fiber multifilaments, which are similar to the latter. Compared with the former, the nonwoven material obtained by the former has higher abrasion resistance.
  • Example 1 It can be seen from Example 1 and Comparative Example 1 that, under the same conditions, the base fabric of Comparative Example 1 is a woven fabric formed by using ordinary polyester filament monofilament, and the obtained material has average appearance uniformity and no thermal shrinkage. Sex and flexibility are also poor.
  • both the fiber web (1) and the fiber layer (2) in Comparative Example 3 are formed of 100% by weight of ordinary polyester fibers, without thermal bonding Fibers, the resulting material has fair appearance uniformity and poor abrasion resistance.
  • Example 1 It can be seen from Example 1 and Comparative Example 4 that under the same conditions, the latter intermediate base fabric is composed of multiple plied yarns, and the resulting materials have poor abrasion resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Woven Fabrics (AREA)
  • Nonwoven Fabrics (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
  • Laminated Bodies (AREA)

Abstract

一种无纺布材料,所述无纺布材料包括纤维网(1)、基材织物(2)、纤维网(3),所述纤维网(1)和纤维网(3)中含有热粘合纤维,所述基材织物(2)为至少由聚酯硬段与聚醚软段的嵌段共聚物所形成的纱线构成,所述纱线为长纤维单丝、单根长纤维复丝或单股短纤纱。无纺布材料具有质轻柔软、耐磨、热收缩成型性优异的特点,可应用于箱包,特殊形状的衬垫以及鞋面材料等领域。

Description

一种无纺布材料 技术领域
本发明涉及一种无纺布材料。
背景技术
在日常生活中有很多不规则或者特殊形状的织物、无纺布复合材料,比如鞋面材以及特殊设计形状的箱包等。然而,这些特殊形状的材料对成型的要求都非常的严格,当该材料被应用于鞋面材时,由于人的脚面是有一定的弧度的,在制作鞋子时,很难制作出完美贴合脚面的鞋面材料,如果脚背与鞋面存在间隙,人在穿着走路的时候,会因为间隙,而导致滑移的问题。
现有的加工鞋面的方法大多都是采用拼接的方法,然而,通过缝制拼接所形成的弧度很难完全贴合脚面,为了尽可能的减小间隙,有些鞋材就会追加鞋带、鞋舌等部件,以防止脚面磨损,减少疲劳感。但是这些方法都无法彻底解决具有弧度的脚面与鞋面无间隙贴合的问题,同时这些鞋带、鞋舌等部件也会有对脚造成一定的不适感。
如中国公开专利CN107090175A中公开了一种注塑成型鞋面材料及其制备方法,该专利是通过注塑的方法加工不规则形状的鞋面材料,由于是采用注塑工艺,制得的鞋面材料的透气性以及柔软耐用性均较差。
为了解决材料的成型性以及透气柔软性等问题,研究人员也开发出了一种热收缩的织物或者无纺布,将其缝制好后,再装入人脚的模型中,经加热后通过材料的热收缩成型便可做出贴合脚面的鞋材料,但是有些热收缩织物由于热收缩率不够高,成型性存在一定的制约,另外高收缩的无纺布复合材料,由于其各向同性的特性,纤维之间的缠结勾连不紧密牢靠,因此材料的耐磨性存在着很大的缺陷。
又如中国公开专利CN207711502U中公开了一种加网无纺布,该无纺布具有热收缩性,但是由于材料本身受到热收缩率的限制,材料并非具有良好的热成型性,并且由于无纺布复合材料本身纤维缠结勾连较差的特性,材料的耐磨性差、使用寿命短。
发明内容
本发明的目的在于提供一种质轻柔软、耐磨、热收缩成型性优异的无纺布材料。
本发明的技术解决方案如下:本发明的无纺布材料包括纤维网(1)、基材织物(2)、纤维网(3),所述纤维网(1)和纤维网(3)中含有热粘合纤维,所述基材织物(2)为至少由聚酯硬段与聚醚软段的嵌段共聚物所形成的纱线构成,所述纱线为长纤维单丝、单根长纤维复丝或单股短纤纱。
本发明的有益效果:本发明的无纺布材料具有质轻柔软、耐磨、热收缩成型性优异的特点,可应用于箱包,特殊形状的衬垫以及鞋面材料等领域。
具体实施方式
本发明的无纺布材料包括纤维网(1)、基材织物(2)、纤维网(3),所述纤维网(1)和纤维网(3)中含有热粘合纤维,所述基材织物(2)为至少由聚酯硬段与聚醚软段的嵌段共聚物所形成的纱线构成,所述纱线为长纤维单丝、单根长纤维复丝或单股短纤纱。纤维网(1)和纤维网(3)作为无纺布材料的表面层,在使用过程中有与人体皮肤直接接触的可能,因此该两层纤维网必须具有轻质柔软的风格,该纤维网可以是通过针刺成网,也可以是通过水刺成网,考虑到材料需要质轻柔软,纤维网(1)和纤维网(3)优选是通过水刺成网。对于纤维网(1)和纤维网(3)作为表层或里层,本发明没有特别限定。为了提高无纺布材料的耐用性以及耐磨损性,纤维网(1)和纤维网(3)中含有热粘合纤维,由于热粘合纤维在加热成型时会发生熔融,进而增强了纤维与纤维之间的缠结力,使得纤维之间缠结更加牢固,所得无纺布材料不会由于纤维之间缠结不牢固而出现破洞、起毛发毛等情况,从而进一步提高了无纺布材料的强度以及耐磨性。
本发明的基材织物(2)为至少由聚酯硬段与聚醚软段的嵌段共聚物所形成的纱线构成,所述纱线为长纤维单丝、单根长纤维复丝或单股短纤纱。聚酯硬段与聚醚软段的嵌段共聚物(简称TPEE),是指聚酯的长链段中嵌入柔性高分子链段材料的聚合物,主要成分为热塑性聚酯弹性体,该热塑性聚酯弹性体不仅具有聚酯的一般特性,而且还具有优异的弹性以及热收缩性。目前,聚酯硬段与聚醚软段的嵌段共聚物的代表产品有东丽-杜邦公司开发的海翠(Hytel)树脂材料等。由含有该聚酯硬段与聚醚软段的嵌段共聚物制得的长纤维单丝、单根长纤维复丝或单股短纤纱形成的无纺布材料具有优异的热收缩成型性能。如果采用复股纱线的话,由于是采用多股纱线加捻构成,毛羽较多,耐磨性较差,且在材料使用时极容易因为发生磨耗,从而造成脱捻,导致性能急剧下降。考虑到材料的使用性和耐久性,本发明无纺布材料中纱线优选为长纤维单丝,由长纤维单丝制得的材料具有质量轻薄、手感良好、耐磨性优异等特性,尤其在鞋面材料领域,其对耐磨性能的要求更为严格。
本发明的无纺布材料为水刺加工形成的复合材料,所述纤维网(1)和纤维网(3)中的纤维通过基材织物(2)的孔隙相互缠结。无纺布的复合方法主要有针刺、化学粘合剂、热粘合、水刺四种形式。针刺复合加固是通过具有针齿的刺针进行穿刺,使得材料复合加固成型,虽然采用针刺法可以充分地将上下层纤维网进行缠结,剥离强度高,但是由于针的反复穿刺,不可避免地对中间基材织物造成损伤,从而就会使无纺布材料的强力等性能急剧下降;采用化学粘合剂的方法制得的无纺布材料的牢度低,且化学成分对人体也有影响;而热粘合工艺是将纤维大部熔融,使得其固结在一起,该加工方法会使得材料通气度急剧下降,影响材料的使用性能;水刺复合加固是通过高压水流,将上下层纤维网中的纤维穿过基材织物的孔隙相互缠结在一起,对中间基材织物基本不造成损伤,且无纺布材料中的纤维为柔性缠结结 构,手感柔软、风格优异。因此,本发明的无纺布材料优选为水刺加工形成的复合材料。
由于本发明的热粘合纤维可以提高无纺布材料的耐磨性能,在纤维网(1)和纤维网(3)中优选含有10~50重量%的热粘合纤维,热粘合纤维在纤维网中起到粘合固定的作用,可以提高材料中纤维之间的缠结性以及耐磨耗性能,如果热粘合纤维的含量过低的话,纤维与纤维之间的缠结能力弱,作为表层或里层的纤维网的耐磨性就会变差;如果热粘合纤维的含量过高的话,虽然纤维之间的缠结充分,作为表层或里层的纤维网的模量耐磨性就会提高,但是由于纤维之间缠结的程度过于充分,就会导致无纺布复合材料的整体手感硬度大幅度增加,在使用时,会给人带来不舒适感,甚至会产生刺痛感,而且纤维网过硬的话,整体的无纺布复合材料在成型时难度大,特别是在进行较复杂的形状加工时,整体的无纺布复合材料硬度过大,成品难于成型。考虑到整体的无纺布复合材料的强度及耐用性与成型性之间相平衡,纤维网(1)和纤维网(3)中更优选含有30~50重量%的热粘合纤维。
本发明的纤维网(1)和纤维网(3)中热粘合纤维所占的含量既可以相同也可以不同,且纤维网(1)和纤维网(3)的克重也是既可以相同也可以不同。当对纤维网的耐磨性要求较高时,可以适当提高热粘合纤维的含量,而当对整个无纺布复合材料的手感要求相对柔软时,则可以适当减少纤维网中热粘合纤维的含量。此外,考虑到加工性以及保证无纺布材料的舒适和透气性,上述纤维网的克重优选20~100g/m 2,对纤维网的耐磨性要求较高时,可以适当提高纤维网的克重,而当对纤维网的耐磨性要求不高时,则可以适当减少纤维网的克重。
上述纤维网(1)和纤维网(3)中,除了热粘合纤维以外,还含有其它纤维,其它纤维可以是普通的尼龙、涤纶、粘胶、腈纶、棉等常见纤维;也可以是功能性纤维,比如远红外纤维、卷缩纤维等;还可以是异形截面的纤维,比如中空、三角、五角、扁平、多叶型截面纤维等,使其具有优异的吸湿排汗特性。
上述纱线的纤度优选为500~1500dtex,由TPEE所形成的纱线的强力性能并不是特别突出,如果纱线的纤度过小的话,长纤维单丝、单根长纤维复丝或单股短纤纱的强力性能必然低下,相同织造密度情况下,中间基材织物的强力性能也势必会较低,从而导致无纺布复合材料的强力差;如果纱线的纤度过大的话,当与纤维网(1)和纤维网(3)进行复合加工时,构成基材织物中的长纤维单丝、单根长纤维复丝或单股短纤纱就会非常容易受到冲击损伤,导致基材织物强力下降。另外,在加工长纤维单丝、单根长纤维复丝或单股短纤纱时,纤度过大的话,在纺丝过程中,冷却定型的时间需要相应地延长,以确保纤维具有充分的定型结晶的时间,这样就会导致加工的效率大幅度降低,同时纤度过大,基材织物的硬挺度必然也会增加,导致整体的无纺布复合材料的手感差,舒适度降低。
上述长纤维单丝的干热收缩率优选为15~40%,这里的长纤维单丝的干热收缩率是反应材料热成型能力的一项重要指标,本发明无纺布材料被应用于鞋面材料、箱包材时,将无纺布材料放入粗模型中,通过加热,材料发生收缩,使得材料完全收缩成模型的形状,再将模型取出,便形成了想要的复杂的鞋面材料的形状。为了得到具备最佳的加热成型性的无纺布材料,构成材料的长纤维单丝的干热收缩率优选为15~40%,如果长纤维单丝的热收缩率过低的话,由该长纤维单丝构成的基材织物的热收缩率也会变低,再与纤维网复合后,所形成的无纺布复合材料的收缩率会进一步降低,从而会导致所形成的材料由于收缩性不足,无法热收缩到想要的形状;若长纤维单丝的热收缩率过大的话,由单丝构成的基材织物的热收缩率也会变大,当与纤维网复合后,所形成的无纺布复合材料的收缩率也较大,同时材料由于极其容易发生收缩,使用时材料的稳定性会急剧下降,材料的尺寸有可能会因为日常生活环境温度的变化而变化,从而丧失使用性能。为了使材料收缩成型时,对鞋子等其它装饰类材料不造成损伤,该热收缩形成的条件温度为在150度下进行。
上述长纤维单丝的加热收缩力为50~80cN,这里的长纤维单丝的加热收缩力是反应材料热成型能力的一项重要指标,由于采用本发明的无纺布材料时,都是形成不规则的材料,材料的不同部位,收缩的程度是不同的,所以若长纤维单丝的加热收缩力过低的话,所形成的基材织物的加热收缩力也会变低,再与纤维网复合后,材料的收缩力会进一步降低,材料的收缩力不足,会导致材料在遇到轻微阻碍时,无法完全收缩,从而有可能导致材料的成型不充分,使得材料无法达到成型性的要求;若长纤维单丝的加热收缩力过高的话,所形成的基材织物的收缩力也会较大,与纤维网复合后,材料的收缩力亦较大,从而材料会因为太容易发生收缩,造成材料的尺寸稳定性差等问题,使用性能下降。
上述长纤维单丝的邵氏硬度为40~63D,在高分子材料领域硬度是表征物质弹性和吸收能量、抗击穿刺能力的一种重要度量方式。硬度可分相对和绝对硬度,通常使用相对的硬度进行表征,常用的有邵氏、洛氏、布氏三种。而材高分子材料领域,邵氏是比较常用的度量方式。当长纤维单丝的硬度过低的情况下,所得的无纺布材料较为柔软,材料整体就会产生与橡胶一样发粘的现象,这样会导致长纤维单丝或单根长纤维复丝不容易退绕,从而造成无法进行织造加工,材料过软还会导致强力降低;而若长纤维单丝的硬度过高的话,所得的无纺布材料容易变硬、变脆,加工使用时,容易发生脆断,材料过硬还会制约其热收缩性能。
本发明的基材织物(2)可以为机织物,也可以为针织物,当基材织物为机织物时,构成所述机织物的两根相邻纱线之间的间隔为0.5~2.0mm,当基材织物为针织物时,构成所述针织物的相邻两个线圈之间的距离优选为0.5~2.0mm。纱线之间的间隔是指基材机织物中经向或纬向相互平行且相邻的两根纱线之间的距离。如果两根纱线之间的间隔过小的话,经纬纱交织过于紧密,所得基材织物中间内部 孔隙就过小,当与上下两层纤维网进行复合时,由于中间基材织物层孔隙过小或甚至没有孔隙,导致上下层中的纤维无法通过间隙有效缠结在一起,从而就会发生上下层分层以及容易剥离的现象,同时还会导致所得无纺布材料的通气性大幅度降低;如果两根纱线的间隔过大的话,经纬纱交织过于疏松,即基材机织物的经纬交织密度低,基材的强力以及耐磨特性势必就会降低,还会导致纱线的移动空间大,极容易发生丝或纱线偏离的情况,从而造成克重分布不均,强力不均等的问题。考虑到无纺布材料具有优异的强力和耐磨性,同时保证无纺布材料的复合加工效果,构成所述机织物的两根相邻纱线之间的间隔更优选为0.6~1.5mm。另外,考虑到材料在收缩后仍能保持形状均一性以及优异的热收缩性,本发明的中间基材织物优选机织物,且优选构成该机织物的经纱和纬纱均是由聚酯硬段与聚酯软段的嵌段共聚物形成的纱线。
上述热粘合纤维为皮芯复合型短纤维,所述皮芯复合型短纤维中皮成分为低熔点聚乙烯或聚酯,芯成分为高熔点聚酯材质。一般热粘合纤维有两种,分别是皮芯复合型结构的短纤维以及全熔型热熔纤维,由于全熔型热熔粘合纤维成网加工性一般,且加热熔融后,所得无纺布材料整体会变得非常坚硬,就会影响使用舒适感;而皮芯复合型结构的短纤维成网加工性好,加热后,只有皮层会熔融,然后与其它纤维结合,从而使无纺布材料中纤维的缠结能力强,而且无纺布材料的手感也不会过硬。皮芯复合型短纤维中要求皮成分具有稳定、低熔点、易熔融、加热不易分解等特点,因此本发明的热粘合纤维的皮成分优选低熔点PE或聚酯。皮成分中的低熔点是指熔点要低于芯材质的熔点,且考虑到易于加工性,皮成分的熔点与芯成分存在一定的熔点差,皮层的熔点最好在100~180度之间。熔融后,起主要作用的是芯层材料,芯层材料可以是尼龙,也可以是涤纶等材质,考虑到纤维可纺性和经济实用性,芯成分优选聚酯材质。
上述皮芯复合型短纤维中皮成分的熔点优选为100~130度,如果皮芯复合型短纤维中皮成分的熔点过低的话,当制得的无纺布材料遇到高温时,容易发生变形,造成损坏;如果皮芯复合型短纤维中皮成分的熔点过高的话,容易导致热熔纤维熔融不充分,无法起到充分缠结纤维的效果,造成材料的耐磨性和耐久性能下降。
为了解决纱线易滑移的问题,构成基材织物中的长纤维单丝优选为皮芯复合型长纤维单丝,皮芯复合型长纤维单丝中皮成分优选为低熔点聚酯硬段与聚醚软段的嵌段共聚物(简称低熔点TPFE),芯成分优选为高熔点聚酯硬段与聚醚软段的嵌段共聚物(简称高熔点TPFE)。当无纺布复合材料进行加热定型时,构成基材织物中的长纤维单丝的皮层低熔点TPEE会发生熔融,使其形成固结点,使得材料在使用过程中不会因为纱线的滑移造成性能下降等问题。
上述皮芯复合型长纤维单丝中皮成分与芯成分的截面面积比例为1:9~5:5,这里的截面面积是指皮芯复合型长纤维单丝中皮层的截面面积与芯层的截面面积。 如果皮芯复合型长纤维单丝中皮成分与芯成分的截面面积比例过小的话,即皮层的成分含量较少,熔融后的固结效果会不充分,单丝与单丝的接触点之间无法形成有效的固结,容易造成单丝或纱线滑移,所得无纺布材料在使用过程中不可避免的会受到摩擦拉伸等力的作用,此时若基材层单丝间的固结不够牢固,极易发生单丝或者纱线的滑移,形成破损或弱节,从而造成无纺布材料的性能下降甚至损坏;如果皮芯复合型长纤维单丝中皮成分与芯成分的截面面积过大的话,即芯层含量过多,制得的无纺布材料在加热之后,皮层材料会发生熔融,纤维整体的纤度会发生明显下降,从而导致材料在加热熔融后,无纺布材料强度降低,力学性能下降,使用时耐久性较差,容易发生损坏。上述皮芯复合型长纤维单丝中皮成分与芯成分的截面面积比例更优选为3:7~5:5。
上述低熔点TPEE的熔点温度优选为130~170度,高熔点TPEE的熔点温度优选为200~230度。皮芯结构想要达到熔融固结的作用,皮层的熔点温度要低于芯层的熔点温度,同时在日常使用过程中,皮层需要保证热稳定性,以防止材料在使用过程中发生劣化的问题,因此皮层低熔点TPEE的熔点温度优选在130度以上,同时,皮层低熔点TPEE的熔融温度必须低于芯层材料的熔融温度,且需要有一定的温度差,才能保证材料的加工性能,因此低熔点TPEE的熔点温度还优选在170度以下。此外由于芯层的熔融温度一定要高于皮层材料,因此芯层高熔点TPEE的熔点优选在200度以上,同时为了保证材料的柔软性和热收缩性,芯层材料的分子量以及聚醚软段的分布量都必须在一定的范围内,不能过高,若熔点过高的话,必然会导致分子量上升,聚醚软段分布减少,影响材料的风格和热收缩性,因此芯层的熔点优选在230度以下。
本发明的无纺布材料具有优异的弹性回复率,在10%伸长条件下的弹性率优选为90~100%,在使用过程中无纺布复合材料不可避免地会受到一定作用力的冲击,在受力时,材料发生一定量的形变会有助于吸收能量,从而防止脚部等受伤;如果无纺布复合材料的弹性回复率过低的话,材料在发生形变后,不易恢复,这样无纺布复合材料就会容易发生永久变形,导致丧失使用价值。因此,本发明的无纺布复合材料在10%伸长条件下的弹性率更优选95~100%。
本发明的无纺布材料具有优异的通气性,材料的通气度优选50~200cm 3/cm 2/s,当材料的通气度不足的情况下,材料在使用时容易产生不适感,如果无纺布复合材料的通气度过低的话,材料的克重和密度也会相应的增大,从而使材料失去轻薄的特点;另一方面当材料的通气度过大时,虽然无纺布复合材料的透气性良好,但是通气度较大必然会导致材料的克重和厚度降低,同等条件下,若克重、厚度较低的话,材料的强度、耐用性、耐磨性都会较差,考虑到使用寿命以及舒适性,本发明复合材料的通气度更优选为80~180cm 3/cm 2/s。
为了保证无纺布复合材料具有优异的成型性,在180℃条件下,本发明无纺布 材料的至少一个方向的干热收缩率优选为15~40%。由于无纺布复合材料的成型需要在高温条件下进行,考虑到基材织物层与纤维网层中各个成分的熔点,以及材料能得到充分地收缩,本发明材料的成型加工温度优选在180℃,在此条件下,如果无纺布复合材料的至少一个方向的干热收缩率过低时,材料的成型性会受到影响,对于比较复杂的形状,由于收缩率不足,无法达到很好的成型性;如果无纺布复合材料的至少一个方向的干热收缩率过高的话,材料在加热时会过分收缩,导致克重急剧增加,手感风格也会变差。根据需要,本发明的热收缩可以是经纬向中的任意一个方向,也可以是经纬向两个方向。考虑到成型性和产品的使用风格,本发明的无纺布材料在180℃条件下,至少一个方向上的干热收缩率更优选20~30%。
通过以下实施例,对本发明作进一步说明,但本发明的保护范围并不限于实施例,实施例中的各物性参数由下面方法测定。
【纤度】
根据GB/T 14343标准对长纤维单丝的纤度进行测量,在规定的测试条件下,测定已知长度试样的质量,计算其线密度。本发明的单丝一般情况下,取100m长度的单丝,然后计算线密度,随机取样测量3次,取平均值。
【热粘合纤维的重量比】
取少量纤维网(1)或纤维网(3)的样品(不含中间基材织物),进行红外测试,确认组成成分,测出各成分熔融热焓的标准值;再取少量纤维网(1)或纤维网(3)的样品对其进行DSC测试,得出各成分的熔融热焓值,通过实测熔融热焓的数值与标准熔融热焓的比例,算出纤维层中各成分的重量比。
【长纤维单丝的干热收缩率】
取无纺布材料试样,尺寸为30cm×30cm,将无纺布材料中的纤维网层进行剥离,然后用挑针取出中间织物层中的长纤维单丝,测量其长度为L 0,再将长丝放入烘箱,在150度条件下处理15分钟,再次测量其热收缩后的长度为L 1,然后用以下公式计算长纤维单丝的热收缩率,随机取样测量3次,取平均值。
单丝热收缩率=(L 0-L 1)/L 0×100%。
【长纤维单丝的加热收缩力】
取无纺布材料试样,将无纺布材料中的纤维网层进行剥离,然后用挑针取出中间织物层中的长纤维单丝,采用KE-2S-PC型长丝热应力测试仪,对长纤维单丝的热应力进行测试,测试温度范围为20~150度,整个测试过程中的最大收缩力即为单丝的热收缩力,随机取样测量3次,取平均值。
【皮芯复合型单丝中皮成分与芯成分的截面面积比例】
取无纺布材料试样,将无纺布材料中的纤维网层进行剥离,然后用挑针取出中间织物层中的长纤维单丝,将单丝切断成1mm左右的长度,然后采用扫描电子显微镜拍摄样品的截面,拍摄倍率为200倍,通过面积计算软件,分别测量单丝的截面 皮层和芯层的面积,计算出皮芯面积比例,随机取样测量5次,取平均值。
【机织物间隔距离】
将样品放在背光光源上,用带有刻度的放大镜对基材机织物中两根相邻纱线的间隔距离进行观察测量,分别测试30处两根相邻纱线之间的空隙距离,取其平均值。
【针织物间隔距离】
将样品放在背光光源上,用带有刻度的放大镜对基材针织物相邻两个线圈中心之间的距离进行观察测量,分别测试30处相邻的两个线圈之间的空隙距离,取其平均值。
【熔点】
采用DSC测试仪对基材织物以及纤维层中各成分的熔点进行测试,将被测样品从室温下开始升温,升温速度为2℃/min,升至100℃,维持10分钟,然后再降温至室温;随后再以2℃/min的速度进行升温,升至300度,升温曲线中的吸热峰峰值记为材料中各成分的熔点。
【克重】
取试样尺寸:200mm×200mm,取样位置:样品幅宽方向左、中、右各三处,分别取3枚,在20±2℃×65±4%的实验室调湿24h后,用电子天平分别测试这3枚试样的克重,计算出平均值,作为样品的克重值。
【弹性率】
采用拉伸试验仪进行弹性率测试,测试步骤如下:试样尺寸为30cm×5cm,将试样进行拉伸,夹具为200mm,在伸长10%时停止拉伸,并返回至原点;将试样再次进行拉伸,将拉力传感器显示开始有力时的伸长进行记录,记为L 0(mm)。弹性率的计算公式如下:弹性率=100%×(20-L 0)/20。随机取样测量3次,取平均值。【通气度】
采用TEXTEST FX3300透气性测试仪进行测定,测试面积38cm 2,测试压差125Pa。将测试样品压在测试头上,仪器产生持续的气流通过试样,并在试样两面产生一定的压差,系统将自动计算出试样在单位时间内流过无纺布材料单位面积的空气体积,随机取样测量3次,取平均值。
【无纺布材料的干热收缩率】
将试样剪成20cm×20cm的尺寸,并对经纬向长度进行测量记为L 、L ;然后将材料放入烘箱,150℃条件下处理15分钟,取出后再次对经纬向长度进行测量,记为L 经1、L 纬1,通过以下公式计算出材料经纬向的干热收缩率,随机取样测量3次,取平均值。
经向收缩率=1-(100%×(L 经1/L )),
纬向收缩率=1-(100%×(L 纬1/L ))。
【外观手感风格】
随机抽取5人,对材料的外观、手感、风格进行如下评价:优:外观均匀,手感非常柔软,风格良好;良好:外观均匀,手感柔软,风格良好;中:外观均匀性一般,手感柔软,风格良好;差:手感较差,风格较差。
【硬度】
抽取基材织物中的单丝或单纱,将其剪成1~5mm的小段,然后熔融固结之后,采用邵氏硬度计,根据ASTM D2240的基准,对基材织物中的单丝或单纱的硬度进行测定,随机取样测量5次,取平均值得到硬度。
【耐磨性】
取无纺布样品,剪成直径为13cm的圆形,通过Taber磨耗试验机进行材料的耐磨性实验,当材料出现完全破洞的时候,停止实验,记下此时已经摩擦的回数,作为材料的耐磨性数据记录,随机取样测量3次,取平均值。
实施例1
将50%重量的皮层为熔点110度的聚酯、芯层为熔点260度的聚酯的皮芯复合型短纤维与50%重量的普通涤纶纤维进行混棉、开松、梳理、铺网,分别制得纤维网(1)与纤维网(3);将皮层为熔点150度的聚酯硬段和聚醚软段的嵌段共聚物,芯层为熔点220度的聚酯硬段和聚醚软段的嵌段共聚物进行熔融纺丝,制得纤度为700dtex、硬度63D、干热收缩率为30%、加热收缩力为65cN、皮成分与芯成分的截面面积比例为4:6的聚酯硬段和聚醚软段的嵌段共聚物所形成的皮芯复合型长纤维单丝,再将制得的长纤维单丝作为经纱和纬纱通过整经、穿综穿筘、织造加工成经纬交织的机织物作为基材织物(2),基材织物中相邻两根长纤维单丝之间的间隔为1.5m,再将制得的纤维网(1)、基材织物(2)、纤维网(3)依次层叠,然后通过水刺法,使纤维网(1)和纤维网(3)中的纤维通过基材织物的孔隙相互缠结一体化成型,最后制得本发明的无纺布材料。该无纺布材料的各物性参见表1。
实施例2
将50%重量的皮层为熔点110度的聚酯、芯层为熔点260度的聚酯的皮芯复合型短纤维与50%重量的普通涤纶纤维进行混棉、开松、梳理、铺网,分别制得纤维网(1)与纤维网(3);将聚酯硬段和聚醚软段的嵌段共聚物进行熔融纺丝,制得纤度为700dtex、硬度63D、干热收缩率为30%、加热收缩力为65cN的聚酯硬段和聚醚软段的嵌段共聚物所形成的长纤维单丝,再将制得的长纤维单丝作为经纱和纬纱通过整经、穿综穿筘、织造加工成经纬交织的机织物作为基材织物(2),基材织物中相邻两根长纤维单丝之间的间隔为1.5m,再将制得的纤维网(1)、基材织物(2)、纤维网(3)依次层叠,然后通过水刺法,使纤维网(1)和纤维网(3)中的纤维通过基材织物的孔隙相互缠结一体化成型,最后制得本发明的无纺布材料。该无纺布材料的各物性参见表1。
实施例3
将55%重量的皮层为熔点100度的聚乙烯、芯层为熔点260度的聚酯的皮芯复合型短纤维与45%重量的扁平截面型涤纶纤维进行混棉、开松、梳理、铺网,分别制得纤维网(1)与纤维网(3);将皮层为熔点150度的聚酯硬段和聚醚软段的嵌段共聚物,芯层为熔点220度的聚酯硬段和聚醚软段的嵌段共聚物进行熔融纺丝,制得纤度为1000dtex、硬度63D、干热收缩率为30%、加热收缩力为65cN、皮成分与芯成分的截面面积比例为4:6的聚酯硬段和聚醚软段的嵌段共聚物所形成的皮芯复合型长纤维单丝,再将制得的长纤维单丝作为经纱和纬纱通过整经、穿综穿筘、织造加工成经纬交织的机织物作为基材织物(2),基材织物中相邻两根长纤维单丝之间的间隔为1.5m,再将制得的纤维网(1)、基材织物(2)、纤维网(3)依次层叠,然后通过水刺法,使纤维网(1)和纤维网(3)中的纤维通过基材织物的孔隙相互缠结一体化成型,最后制得本发明的无纺布材料。该无纺布材料的各物性参见表1。
实施例4
将10%重量的皮层为熔点110度的聚酯、芯层为熔点260度的聚酯的皮芯复合型短纤维与90%重量的普通涤纶纤维进行混棉、开松、梳理、铺网,分别制得纤维网(1)与纤维网(3);将皮层为熔点150度的聚酯硬段和聚醚软段的嵌段共聚物,芯层为熔点220度的聚酯硬段和聚醚软段的嵌段共聚物进行熔融纺丝,制得纤度为700dtex、硬度63D、干热收缩率为30%、加热收缩力为65cN、皮成分与芯成分的截面面积比例为4:6的聚酯硬段和聚醚软段的嵌段共聚物所形成的皮芯复合型长纤维单丝,再将制得的长纤维单丝作为经纱和纬纱通过整经、穿综穿筘、织造加工成经纬交织的机织物作为基材织物(2),基材织物中相邻两根长纤维单丝之间的间隔为1.5m,再将制得的纤维网(1)、基材织物(2)、纤维网(3)依次层叠,然后通过水刺法,使纤维网(1)和纤维网(3)中的纤维通过基材织物的孔隙相互缠结一体化成型,最后制得本发明的无纺布材料。该无纺布材料的各物性参见表1。
实施例5
将50%重量的皮层为熔点110度的聚酯、芯层为熔点260度的聚酯的皮芯复合型短纤维与50%重量的普通涤纶纤维进行混棉、开松、梳理、铺网,分别制得纤维网(1)与纤维网(3);将皮层为熔点150度的聚酯硬段和聚醚软段的嵌段共聚物,芯层为熔点220度的聚酯硬段和聚醚软段的嵌段共聚物进行熔融纺丝,制得纤度为700dtex、硬度30D、干热收缩率为50%、加热收缩力为100cN、皮成分与芯成分的截面面积比例为4:6的聚酯硬段和聚醚软段的嵌段共聚物所形成的皮芯复合型长纤维单丝,再将制得的长纤维单丝作为经纱和纬纱通过整经、穿综穿筘、织造加工成经纬交织的机织物作为基材织物(2),基材织物中相邻两根长纤维单丝之间的间隔为1.5mm,再将制得的纤维网(1)、基材织物(2)、纤维网(3)依次层叠, 然后通过水刺法,使纤维网(1)和纤维网(3)中的纤维通过基材织物的孔隙相互缠结一体化成型,最后制得本发明的无纺布材料。该无纺布材料的各物性参见表1。
实施例6
将55%重量的皮层为熔点100度的聚乙烯、芯层为熔点260度的聚酯的皮芯复合型短纤维与45%重量的扁平截面型涤纶纤维进行混棉、开松、梳理、铺网,分别制得纤维网(1)与纤维网(3);将皮层为熔点150度的聚酯硬段和聚醚软段的嵌段共聚物,芯层为熔点220度的聚酯硬段和聚醚软段的嵌段共聚物进行熔融纺丝,制得纤度为1000dtex、硬度63D、干热收缩率为30%、加热收缩力为65cN、皮成分与芯成分的截面面积比例为4:6的聚酯硬段和聚醚软段的嵌段共聚物所形成的皮芯复合型长纤维单丝,再将制得的长纤维单丝作为经纱和纬纱通过整经、穿综穿筘、织造加工成经纬交织的机织物作为基材织物(2),基材织物中相邻两根长纤维单丝之间的间隔为1.5m,再将制得的纤维网(1)、基材织物(2)、纤维网(3)依次层叠,然后通过针刺法,使纤维网(1)和纤维网(3)中的纤维通过基材织物的孔隙相互缠结一体化成型,最后制得本发明的无纺布材料。该无纺布材料的各物性参见表1。
实施例7
将50%重量的皮层为熔点110度的聚酯、芯层为熔点260度的聚酯的皮芯复合型短纤维与50%重量的普通涤纶纤维进行混棉、开松、梳理、铺网,分别制得纤维网(1)与纤维网(3);将皮层为熔点150度的聚酯硬段和聚醚软段的嵌段共聚物,芯层为熔点220度的聚酯硬段和聚醚软段的嵌段共聚物进行熔融纺丝,制得纤度为700dtex、硬度63D、干热收缩率为30%、加热收缩力为65cN、皮成分与芯成分的截面面积比例为0.5:9.5的聚酯硬段和聚醚软段的嵌段共聚物所形成的皮芯复合型长纤维单丝,再将制得的长纤维单丝作为经纱和纬纱通过整经、穿综穿筘、织造加工成经纬交织的机织物作为基材织物(2),基材织物中相邻两根长纤维单丝之间的间隔为1.5m,再将制得的纤维网(1)、基材织物(2)、纤维网(3)依次层叠,然后通过水刺法,使纤维网(1)和纤维网(3)中的纤维通过基材织物的孔隙相互缠结一体化成型,最后制得本发明的无纺布材料。该无纺布材料的各物性参见表1。
实施例8
将50%重量的皮层为熔点110度的聚酯、芯层为熔点260度的聚酯的皮芯复合型短纤维与50%重量的普通涤纶纤维进行混棉、开松、梳理、铺网,分别制得纤维网(1)与纤维网(3);将皮层为熔点170度的聚酯硬段和聚醚软段的嵌段共聚物,芯层为熔点230度的聚酯硬段和聚醚软段的嵌段共聚物进行熔融纺丝,制得纤度为500dtex、硬度63D、干热收缩率为30%、加热收缩力为65cN、皮成分与芯成分的截面面积比例为4:6的聚酯硬段和聚醚软段的嵌段共聚物所形成的皮芯复合型长 纤维单丝,再将制得的长纤维单丝作为经纱和纬纱通过整经、穿综穿筘、织造加工成经纬交织的机织物作为基材织物(2),基材织物中相邻两根长纤维单丝之间的间隔为0.5mm,再将制得的纤维网(1)、基材织物(2)、纤维网(3)依次层叠,然后通过水刺法,使纤维网(1)和纤维网(3)中的纤维通过基材织物的孔隙相互缠结一体化成型,最后制得本发明的无纺布材料。该无纺布材料的各物性参见表2。
实施例9
将50%重量的皮层为熔点110度的聚酯、芯层为熔点260度的聚酯的皮芯复合型短纤维与50%重量的普通涤纶纤维进行混棉、开松、梳理、铺网,分别制得纤维网(1)与纤维网(3);将皮层为熔点170度的聚酯硬段和聚醚软段的嵌段共聚物,芯层为熔点230度的聚酯硬段和聚醚软段的嵌段共聚物进行熔融纺丝,制得纤度为500dtex、硬度63D、干热收缩率为30%、加热收缩力为65cN、皮成分与芯成分的截面面积比例为4:6的聚酯硬段和聚醚软段的嵌段共聚物所形成的皮芯复合型长纤维单丝,再将制得的长纤维单丝作为经纱和纬纱通过整经、穿综穿筘、织造加工成经纬交织的机织物作为基材织物(2),基材织物中相邻两根长纤维单丝之间的间隔为0.3mm,再将制得的纤维网(1)、基材织物(2)、纤维网(3)依次层叠,然后通过水刺法,使纤维网(1)和纤维网(3)中的纤维通过基材织物的孔隙相互缠结一体化成型,最后制得本发明的无纺布材料。该无纺布材料的各物性参见表2。
实施例10
将50%重量的皮层为熔点110度的聚酯、芯层为熔点260度的聚酯的皮芯复合型短纤维与50%重量的普通涤纶纤维进行混棉、开松、梳理、铺网,分别制得纤维网(1)与纤维网(3);将皮层为熔点150度的聚酯硬段和聚醚软段的嵌段共聚物,芯层为熔点220度的聚酯硬段和聚醚软段的嵌段共聚物进行熔融纺丝,制得纤度为200dtex的、硬度63D、干热收缩率为30%、加热收缩力为65cN、皮成分与芯成分的截面面积比例为4:6聚酯硬段和聚醚软段的嵌段共聚物所形成的皮芯复合型长纤维单丝,再将制得的长纤维单丝作为经纱和纬纱通过整经、穿综穿筘、织造加工成经纬交织的机织物作为基材织物(2),基材织物中相邻两根长纤维单丝之间的间隔为1.5mm,再将制得的纤维网(1)、基材织物(2)、纤维网(3)依次层叠,然后通过水刺法,使纤维网(1)和纤维网(3)中的纤维通过基材织物的孔隙相互缠结一体化成型,最后制得本发明的无纺布材料。该无纺布材料的各物性参见表2。
实施例11
将55%重量的皮层为熔点100度的聚乙烯、芯层为熔点260度的聚酯的皮芯复合型短纤维与45%重量的普通涤纶纤维进行混棉、开松、梳理、铺网,分别制得纤维网(1)与纤维网(3);将皮层为熔点150度的聚酯硬段和聚醚软段的嵌段共聚物,芯层为熔点220度的聚酯硬段和聚醚软段的嵌段共聚物进行熔融纺丝,制得纤度为1000dtex、硬度63D、干热收缩率为30%、加热收缩力为65cN、皮成分与芯成 分的截面面积比例为4:6的聚酯硬段和聚醚软段的嵌段共聚物所形成的皮芯复合型长纤维单丝,再将制得的单丝作为经纱和纬纱通过整经、穿综穿筘、织造加工成经纬交织的机织物作为基材织物(2),基材织物中相邻两根长纤维单丝之间的间隔为2.5mm,再将制得的纤维网(1)、基材织物(2)、纤维网(3)依次层叠,然后通过水刺法,使纤维网(1)和纤维网(3)中的纤维通过基材织物的孔隙相互缠结一体化成型,最后制得本发明的无纺布材料。该无纺布材料的各物性参见表2。
实施例12
将30%重量的皮层为熔点130度的聚酯、芯层为熔点260度的聚酯的皮芯复合型短纤维与70%重量的普通涤纶纤维进行混棉、开松、梳理、铺网,分别制得纤维网(1)与纤维网(3);将皮层为熔点150度的聚酯硬段和聚醚软段的嵌段共聚物,芯层为熔点220度的聚酯硬段和聚醚软段的嵌段共聚物进行熔融纺丝,制得纤度为700dtex、硬度72D、干热收缩率为15%、加热收缩力为50cN、皮成分与芯成分的截面面积比例为1:9的聚酯硬段和聚醚软段的嵌段共聚物所形成的皮芯复合型长纤维单丝,再将制得的长纤维单丝通过、整经、穿综穿筘作为经纱,再采用纤度为700dtex的普通涤纶长纤维单丝作为纬纱,经织造加工成经纬交织的机织物作为基材织物(2),基材织物中相邻两根长纤维单丝之间的间隔为1.5mm,再将制得的纤维网(1)、基材织物(2)、纤维网(3)依次层叠,然后通过针刺法,使纤维网(1)和纤维网(3)中的纤维通过基材织物的孔隙相互缠结一体化成型,最后制得本发明的无纺布材料。该无纺布材料的各物性参见表2。
实施例13
将30%重量的皮层为熔点130度的聚酯、芯层为熔点260度的聚酯的皮芯复合型短纤维与70%重量的普通涤纶纤维进行混棉、开松、梳理、铺网,分别制得纤维网(1)与纤维网(3);将皮层为熔点150度的聚酯硬段和聚醚软段的嵌段共聚物,芯层为熔点220度的聚酯硬段和聚醚软段的嵌段共聚物进行熔融纺丝,制得纤度为700dtex/24f、硬度72D、干热收缩率为15%、加热收缩力为50cN、皮成分与芯成分的截面面积比例为1:9的聚酯硬段和聚醚软段的嵌段共聚物所形成的皮芯复合型单根长纤维复丝,再将制得的单根长纤维复丝通过加捻、整经、穿综穿筘作为经纱,再采用纤度为700dtex/24f的普通涤纶单根长纤维复丝作为纬纱,经织造加工成经纬交织的机织物作为基材织物(2),基材织物中相邻两根单根长纤维复丝之间的间隔为1.5mm,再将制得的纤维网(1)、基材织物(2)、纤维网(3)依次层叠,然后通过针刺法,使纤维网(1)和纤维网(3)中的纤维通过基材织物的孔隙相互缠结一体化成型,最后制得本发明的无纺布材料。该无纺布材料的各物性参见表2。
实施例14
将50%重量的皮层为熔点110度的聚酯、芯层为熔点260度的聚酯的皮芯复合 型短纤维与50%重量的普通涤纶纤维进行混棉、开松、梳理、铺网,制得纤维网(1);将30%重量的皮层为熔点110度的聚酯、芯层为熔点260度的聚酯的皮芯复合型短纤维与70%重量的普通涤纶纤维进行混棉、开松、梳理、铺网,制得纤维网(3);将皮层为熔点150度的聚酯硬段和聚醚软段的嵌段共聚物,芯层为熔点220度的聚酯硬段和聚醚软段的嵌段共聚物进行熔融纺丝,制得纤度为700dtex、硬度63D、干热收缩率为30%、加热收缩力为65cN、皮成分与芯成分的截面面积比例为5:5的聚酯硬段和聚醚软段的嵌段共聚物所形成的皮芯复合型长纤维单丝,再将制得的长纤维单丝整经之后,通过克里特经编机进行针织加工而成的针织物作为基材织物(2),基材织物中相邻两个线圈之间的间隔为1.5m,再将制得的纤维网(1)、基材织物(2)、纤维网(3)依次层叠,然后通过水刺法,使纤维网(1)和纤维网(3)中的纤维通过基材织物的孔隙相互缠结一体化成型,最后制得本发明的无纺布材料。该无纺布材料的各物性参见表2。
比较例1
将50%重量的皮层为熔点110度的聚酯、芯层为熔点260度的聚酯的皮芯复合型短纤维与50%重量的普通涤纶纤维进行混棉、开松、梳理、铺网,分别制得纤维网(1)与纤维网(3);将纤度为700dtex的普通聚酯长纤维单丝通过整经、穿综穿筘、织造加工成经纬交织的机织物作为基材织物(2),基材织物中相邻两根长纤维单丝之间的间隔为1.5mm,再将制得的纤维网(1)、基材织物(2)、纤维网(3)依次层叠,然后通过水刺法,使纤维网(1)和纤维网(3)中的纤维通过基材织物的孔隙相互缠结一体化成型,最后制得无纺布材料。该无纺布材料的各物性参见表3。
比较例2
将皮层为熔点150度的聚酯硬段和聚醚软段的嵌段共聚物,芯层为熔点220度的聚酯硬段和聚醚软段的嵌段共聚物进行熔融纺丝制得纤度为700dtex、硬度63D、干热收缩率为30%、加热收缩力为65cN、皮成分与芯成分的截面面积比例为4:6的聚酯硬段和聚醚软段的嵌段共聚物所形成的皮芯复合型长纤维单丝,再将制得的长纤维单丝通过整经、穿综穿筘、织造加工成经纬交织的机织物,且相邻两根单纱之间的间隔为1.5mm。该材料的各物性参见表3。
比较例3
将100%重量的普通涤纶纤维进行混棉、开松、梳理、铺网,分别制得纤维网(1)与纤维网(3);将皮层为熔点150度的聚酯硬段和聚醚软段的嵌段共聚物,芯层为熔点220度的聚酯硬段和聚醚软段的嵌段共聚物进行熔融纺丝制得纤度为700dtex、硬度63D、干热收缩率为30%、加热收缩力为65cN、皮成分与芯成分的截面面积比例为4:6的聚酯硬段和聚醚软段的嵌段共聚物所形成的皮芯复合型长纤维单丝,再将制得的纤维单丝通过整经、穿综穿筘、织造加工成经纬交织的机织 物作为基材织物(2),基材织物中相邻两根单纱之间的间隔为1.5mm,再将制得的纤维网(1)、基材织物(2)、纤维网(3)依次层叠,然后通过水刺法,使纤维网(1)和纤维网(3)中的纤维通过基材织物的孔隙相互缠结材料一体化成型,最后制得无纺布材料。该无纺布材料的各物性参见表3。
比较例4
将50%重量的皮层为熔点110度的聚酯、芯层为熔点260度的聚酯的皮芯复合型短纤维与50%重量的普通涤纶纤维进行混棉、开松、梳理、铺网,分别制得纤维网(1)与纤维网(3);将皮层为熔点150度的聚酯硬段和聚醚软段的嵌段共聚物,芯层为熔点220度的聚酯硬段和聚醚软段的嵌段共聚物进行熔融纺丝,然后对纤维进行切断,然后通过纺纱形成纱线,再将四股纱线进行加捻,制得纤度为700dtex、硬度63D、干热收缩率为30%、加热收缩力为65cN、皮成分与芯成分的截面面积比例为4:6的聚酯硬段和聚醚软段的嵌段共聚物所形成的皮芯复合型复股短纤维纱线,再将制得的复股纱线作为经纱和纬纱通过整经、穿综穿筘、织造加工成经纬交织的机织物作为基材织物(2),基材织物中相邻两根纱线之间的间隔为1.5m,再将制得的纤维网(1)、基材织物(2)、纤维网(3)依次层叠,然后通过水刺法,使纤维网(1)和纤维网(3)中的纤维通过基材织物的孔隙相互缠结一体化成型,最后制得无纺布材料。该无纺布材料的各物性参见表3。
表1
Figure PCTCN2021131066-appb-000001
表2
Figure PCTCN2021131066-appb-000002
表3
Figure PCTCN2021131066-appb-000003
根据上述表,
(1)由实施例1与实施例2可知,同等条件下,前者的基材织物中长纤维单丝是由皮芯复合型聚酯硬段和聚醚软段的嵌段共聚物长纤维单丝形成,后者的基材织物中长纤维单丝是由普通结构的聚酯硬段和聚醚软段的嵌段共聚物长纤维单丝形成,与后者相比,前者所得的无纺布材料的外观均匀、手感柔软、风格良好。
(2)由实施例1与实施例4可知,同等条件下,前者的纤维网(1)与纤维网(3)中热粘合纤维的含量在更优选范围内,与后者相比,前者所得无纺布材料的耐耐磨性高。
(3)由实施例1与实施例5可知,同等条件下,前者的长纤维单丝的干热收缩率、加热收缩力以及硬度都在优选范围内,与后者相比,前者所得无纺布材料的外观手感风格良好、耐磨耗性好。
(4)由实施例3与实施例6可知,同等条件下,同等条件下,前者的无纺布材料为水刺加工形成的复合材料,后者的无纺布材料为针刺加工形成的复合材料,与后者相比,前者的无纺布材料的外观手感风格良好、耐磨耗性好。
(5)由实施例1与实施例7可知,同等条件下,前者的基材织物中皮芯复合型长纤维单丝中皮成分与芯成分的截面面积比例在优选范围内,与后者相比,前者所得无纺布材料的耐磨耗性好。
(6)由实施例8与实施例9可知,同等条件下,前者中构成所述机织物的两根相邻长纤维单丝之间的间隔在优选范围内,与后者相比,前者所得无纺布材料的通气度高,即无纺布材料的透气性优于后者。
(7)由实施例3与实施例11可知,同等条件下,后者构成所述机织物的两根相邻长纤维单丝之间的间隔过大,与前者相比,后者所得无纺布材料的耐磨耗性降低。
(8)由实施例1与实施例10可知,同等条件下,前者中纱线的纤度在优选范围内,与后者相比,前者所得无纺布材料的耐磨耗性高。
(9)由实施例12与实施例13可知,同等条件下,前者基材织物中纱线为长纤维单丝,后者基材织物中纱线为单根长纤维复丝,与后者相比,前者所得无纺布材料的耐磨耗性高。
(10)由实施例1与比较例1可知,同等条件下,比较例1的基材织物中采用普通的聚酯长纤维单丝形成的机织物,所得材料的外观均匀性一般,无热收缩性,弹性也差。
(11)由实施例1与比较例2可知,同等条件下,比较例2中基材织物上下没有纤维网,所得材料的手感风格极差。
(12)由实施例1与比较例3可知,同等条件下,比较例3中纤维网(1)和纤维层(2)均是由100重量%的普通涤纶纤维形成的,不含有热粘合纤维,所得材料的外观均匀性一般且耐磨耗性差。
(13)由实施例1与比较例4可知,同等条件下,后者的中间基材织物是由复股纱线构成,所得材料的耐磨耗性差。

Claims (15)

  1. 一种无纺布材料,其特征在于:所述无纺布材料包括纤维网(1)、基材织物(2)、纤维网(3),所述纤维网(1)和纤维网(3)中含有热粘合纤维,所述基材织物(2)为至少由聚酯硬段与聚醚软段的嵌段共聚物所形成的纱线构成,所述纱线为长纤维单丝、单根长纤维复丝或单股短纤纱。
  2. 根据权利要求1所述无纺布材料,其特征在于:所述无纺布材料为水刺加工形成的复合材料,所述纤维网(1)和纤维网(3)中的纤维通过基材织物(2)的孔隙相互缠结。
  3. 根据权利要求1所述的无纺布材料,其特征在于:所述纤维网(1)和纤维网(3)中都含有10~50重量%的热粘合纤维。
  4. 根据权利要求1所述的无纺布材料,其特征在于:所述纱线的纤度为500~1500dtex。
  5. 根据权利要求1所述的无纺布材料,其特征在于:所述纱线为长纤维单丝。
  6. 根据权利要求5所述的无纺布材料,其特征在于:所述长纤维单丝的干热收缩率为15~40%。
  7. 根据权利要求6所述的无纺布材料,其特征在于:所述长纤维单丝的加热收缩力为50~80cN。
  8. 根据权利要求5所述的无纺布材料,其特征在于:所述长纤维单丝的邵氏硬度为40~63D。
  9. 根据权利要求1所述的无纺布材料,其特征在于:所述基材织物(2)为机织物,构成所述机织物的两根相邻纱线之间的间隔为0.5~2.0mm。
  10. 根据权利要求1所述的无纺布材料,其特征在于:所述基材织物(2)为针织物,构成所述针织物的相邻两个线圈之间的距离为0.5~2.0mm。
  11. 根据权利要求1所述的无纺布材料,其特征在于:所述热粘合纤维为皮芯复合型短纤维,所述皮芯复合型短纤维中皮成分为低熔点聚乙烯或聚酯,芯成分为高熔点聚酯材质。
  12. 根据权利要求11所述的无纺布材料,其特征在于:所述皮芯复合型短纤维中皮成分的熔点为100~130度。
  13. 根据权利要求1所述的无纺布材料,其特征在于:所述长纤维单丝为皮芯复合型长纤维单丝,所述皮芯复合型长纤维单丝中皮成分为低熔点聚酯硬段与聚醚软段的嵌段共聚物,芯成分为高熔点聚酯硬段与聚醚软段的嵌段共聚物。
  14. 根据权利要求13所述的无纺布材料,其特征在于:所述皮芯复合型长纤维单丝中皮成分与芯成分的截面面积比例为1:9~5:5。
  15. 根据权利要求13所述的无纺布材料,其特征在于:所述低熔点聚酯硬段与聚醚软段的嵌段共聚物的熔点温度为130~170度,所述高熔点聚酯硬段与聚醚软段的嵌段共聚物的熔点温度为200~230度。
PCT/CN2021/131066 2020-11-18 2021-11-17 一种无纺布材料 WO2022105769A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180076684.1A CN116601350A (zh) 2020-11-18 2021-11-17 一种无纺布材料
JP2023530036A JP2024502397A (ja) 2020-11-18 2021-11-17 不織布材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011289778.0 2020-11-18
CN202011289778 2020-11-18

Publications (1)

Publication Number Publication Date
WO2022105769A1 true WO2022105769A1 (zh) 2022-05-27

Family

ID=81708361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131066 WO2022105769A1 (zh) 2020-11-18 2021-11-17 一种无纺布材料

Country Status (4)

Country Link
JP (1) JP2024502397A (zh)
CN (1) CN116601350A (zh)
TW (1) TW202235717A (zh)
WO (1) WO2022105769A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116537472A (zh) * 2023-03-29 2023-08-04 山东泰鹏环保材料股份有限公司 具有无规三维结构的防水透气无纺布墙纸及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2132767Y (zh) * 1992-07-24 1993-05-12 石家庄市工业用呢厂 一种底网造纸毛毯
WO1995003443A1 (en) * 1992-01-24 1995-02-02 Fiberweb North America, Inc. Composite elastic nonwoven fabric
CN2493399Y (zh) * 2001-07-26 2002-05-29 杭州路先非织造股份有限公司 一种复合无纺布
CN1400096A (zh) * 2001-07-26 2003-03-05 杭州路先非织造股份有限公司 复合无纺布及其生产方法
CN101301549A (zh) * 2007-05-08 2008-11-12 东丽纤维研究所(中国)有限公司 无纺布过滤材料及其用途
CN106192067A (zh) * 2015-02-02 2016-12-07 新光合成纤维股份有限公司 具高卷缩性的双组份复合纤维、复合纱线、以及织物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995003443A1 (en) * 1992-01-24 1995-02-02 Fiberweb North America, Inc. Composite elastic nonwoven fabric
CN2132767Y (zh) * 1992-07-24 1993-05-12 石家庄市工业用呢厂 一种底网造纸毛毯
CN2493399Y (zh) * 2001-07-26 2002-05-29 杭州路先非织造股份有限公司 一种复合无纺布
CN1400096A (zh) * 2001-07-26 2003-03-05 杭州路先非织造股份有限公司 复合无纺布及其生产方法
CN101301549A (zh) * 2007-05-08 2008-11-12 东丽纤维研究所(中国)有限公司 无纺布过滤材料及其用途
CN106192067A (zh) * 2015-02-02 2016-12-07 新光合成纤维股份有限公司 具高卷缩性的双组份复合纤维、复合纱线、以及织物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116537472A (zh) * 2023-03-29 2023-08-04 山东泰鹏环保材料股份有限公司 具有无规三维结构的防水透气无纺布墙纸及其制备方法
CN116537472B (zh) * 2023-03-29 2024-04-16 山东泰鹏环保材料股份有限公司 具有无规三维结构的防水透气无纺布墙纸及其制备方法

Also Published As

Publication number Publication date
JP2024502397A (ja) 2024-01-19
TW202235717A (zh) 2022-09-16
CN116601350A (zh) 2023-08-15

Similar Documents

Publication Publication Date Title
Kumar Textiles for industrial applications
CN109714997B (zh) 包含羊毛的鞋及其鞋帮的制造方法
CN104522918B (zh) 水蒸气可透过的防风衣服
JP5213495B2 (ja) 医療用積層布帛、これを用いた医療用ドレープ、これを用いた医療用被服
JP2002503973A (ja) 熱可塑性三次元繊維網状組織を含む改良された医用ギプス及び他の矯正装置
JP3393551B2 (ja) 三次元織物構造に基づく複合材料と複合構造
JP5442074B2 (ja) 複合ファブリック
KR102059734B1 (ko) 정합성 저밀도 플루오로중합체 섬유 혼방을 함유하는 직물
TW201731412A (zh) 平面扣具及纖維製品
WO2008018122A1 (fr) Tricot extensible absorbant l'eau
WO2022105769A1 (zh) 一种无纺布材料
US20040214494A1 (en) Stretch fabric
WO2019223772A1 (zh) 一种单面针织面料
KR20200052817A (ko) 복합 원단 및 그 제조방법과 응용
CN117042956A (zh) 具有湿气管理功能的织物
JPH09195172A (ja) 湿潤時の運動性に優れた撥水性編物
CN210940824U (zh) 一种防水防透湿复合面料
JP2004149933A (ja) 伸縮性不織布
US20210267294A1 (en) Garment
CN220763747U (zh) 一种高弹性无纺布复合面料
CN218876494U (zh) 一种不易断裂的无纺布
CN214142721U (zh) 一种纤维复合织物
CN219427612U (zh) 一种透气型防静电拖鞋面料
JP4436911B2 (ja) 伸縮性、通気性を有する立体構造経編地
JP7299237B2 (ja) フック状係合素子を有する織物製面ファスナー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21893916

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180076684.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023530036

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21893916

Country of ref document: EP

Kind code of ref document: A1