WO2022104803A1 - 相变存储器的制备方法和相变存储器 - Google Patents

相变存储器的制备方法和相变存储器 Download PDF

Info

Publication number
WO2022104803A1
WO2022104803A1 PCT/CN2020/130935 CN2020130935W WO2022104803A1 WO 2022104803 A1 WO2022104803 A1 WO 2022104803A1 CN 2020130935 W CN2020130935 W CN 2020130935W WO 2022104803 A1 WO2022104803 A1 WO 2022104803A1
Authority
WO
WIPO (PCT)
Prior art keywords
fin
layer
heater
nitride layer
substrate
Prior art date
Application number
PCT/CN2020/130935
Other languages
English (en)
French (fr)
Inventor
黄仕璋
李宜政
刘育宏
Original Assignee
江苏时代全芯存储科技股份有限公司
江苏时代芯存半导体有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏时代全芯存储科技股份有限公司, 江苏时代芯存半导体有限公司 filed Critical 江苏时代全芯存储科技股份有限公司
Priority to CN202080099901.4A priority Critical patent/CN115428159A/zh
Priority to PCT/CN2020/130935 priority patent/WO2022104803A1/zh
Publication of WO2022104803A1 publication Critical patent/WO2022104803A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • H10N70/8413Electrodes adapted for resistive heating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/861Thermal details
    • H10N70/8616Thermal insulation means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe

Definitions

  • the invention relates to the field of semiconductors, and in particular, to a preparation method of a phase change memory and a phase change memory.
  • the 1T-1R mushroom phase change memory is a common low-density memory.
  • the technical problem to be solved by the present invention is to provide a preparation method of a phase change memory and a phase change memory, so as to solve the problem of low thermal efficiency of the phase change memory.
  • the present invention provides a method for preparing a phase change memory, including the following steps: providing a substrate, the substrate comprising a substrate, a bottom electrode, a nitride layer, a heater, and the heater In the nitride layer, and the fin-shaped sacrificial layer on both sides of the heater, the fin-shaped sacrificial layer can be selectively etched; the fin-shaped sacrificial layer is selectively etched to form fins on both sides of the heater depositing an oxide layer at the fin-like groove and forming an air gap surrounding the heater; depositing a patterned phase change material layer and a top electrode.
  • the present invention also provides a phase change memory, the phase change memory includes: a substrate; a bottom electrode, the bottom electrode is located on the substrate; a nitride layer, the nitride layer covers the substrate and on the bottom electrode; a heater located in the nitride layer and connected to the bottom electrode; an air gap and oxide layer surrounding the heater, the air gap and oxide layer in the within the nitride layer; a phase change material layer above the nitride layer and connected to the heater; and a top electrode on the phase change material above the layer.
  • the thermal insulation performance of the air gap is better than that of the nitride layer or the oxide layer, the heater is surrounded by the air gap, the lateral heat dissipation is reduced, the thermal efficiency will be higher, and the performance of the phase change memory is improved.
  • FIG. 1 is a schematic diagram of the steps described in a specific embodiment of the present invention.
  • 2A-2D are schematic diagrams of the processes of steps S10-S13 in FIG. 1 .
  • FIG. 3 is a schematic diagram showing the steps of forming the structure shown in FIG. 2A according to an embodiment of the present invention.
  • Figures 4A-4J are schematic diagrams of processes in steps S300-S309 of Figure 3 .
  • FIG. 1 is a schematic diagram of the steps described in a specific embodiment of the present invention, including:
  • Step S10 providing a substrate, providing a substrate, the substrate includes a substrate, a bottom electrode, a nitride layer, a heater, the heater is located in the nitride layer, and two sides of the heater
  • the fin-shaped sacrificial layer, the fin-shaped sacrificial layer can be selectively etched; step S11, the fin-shaped sacrificial layer is selectively etched to form fin-shaped grooves on both sides of the heater; step S12, in the fin An oxide layer is deposited at the shaped groove and an air gap surrounding the heater is formed; step S13, a patterned phase change material layer and a top electrode are deposited.
  • a substrate is provided, the substrate includes a substrate 200, a bottom electrode 201, a nitride layer 203, and a heater 207, and the heater 207 is located in the nitride layer 203, and the sidewall nitride layer 203 and the fin sacrificial layer 206 on both sides of the heater 207, the fin sacrificial layer 206 can be selectively etched.
  • Step 300 a substrate is provided, and the substrate surface has a bottom electrode 201;
  • Step 301 forming a fin-shaped oxide on the surface of the bottom electrode;
  • Step 302 forming a first nitride layer around the fin-shaped oxide;
  • Step 303 continuing to form a patterned nitride layer on the surface of the first nitride layer an oxide layer and a second nitride layer, and the fin-shaped oxide is exposed to the patterned oxide layer and the hollows of the second nitride layer;
  • step 304 selectively etching the fin-shaped oxide to form a fin-shaped groove ;
  • Step 305 deposit a sacrificial layer in the fin-shaped groove to fill the groove to form a fin-shaped sacrificial layer;
  • Step 306 form a key hole in the middle of the fin-shaped s
  • a substrate is provided, and the surface of the substrate 200 has a bottom electrode 201 .
  • the substrate 200 is made of silicon material, and the bottom electrode 201 is made of metal material.
  • the material of the substrate 200 may also be common substrate materials in the semiconductor field, such as sapphire, silicon carbide, and gallium nitride.
  • a fin-shaped oxide 202 is formed on the surface of the bottom electrode 201 .
  • the formation method of the fin-shaped oxide 202 is to deposit an oxide layer, and then go through patterning and etching to finally form a symmetrical structure arranged in a fish-fin shape.
  • a first nitride layer 203 is formed around the fin-shaped oxide 202 .
  • the thickness of the first nitride layer 203 is the same as that of the fin oxide 202 .
  • the above-mentioned structure uses physical vapor deposition or chemical vapor deposition method to deposit an oxide layer and a nitride layer on the surface of the structure shown in FIG. 4C, and perform patterning and etching to remove The structure above the fin oxide 202 is formed.
  • the fin-shaped oxide 202 is selectively etched to form fin-shaped grooves.
  • the selective etching process uses hydrofluoric acid as an etchant.
  • a sacrificial layer is deposited in the fin-shaped groove to fill the groove to form the fin-shaped sacrificial layer 206 .
  • the fin-shaped sacrificial layer 206 is made of polysilicon material.
  • a key hole is formed in the middle of the fin sacrificial layer 206 to expose the bottom electrode 201 , and sidewall nitride layers 203 are left on both sides of the key hole.
  • thinning to the oxide layer 204 is shown in FIG. 4H.
  • the thinning method employs chemical mechanical polishing.
  • a heater 207 is deposited at the key hole.
  • the heater 207 adopts TiN or TaN material; and the deposition method adopts physical vapor deposition or chemical vapor deposition.
  • the first nitride layer 203 is thinned to form a substrate 200 , a bottom electrode 201 , a nitride layer 203 , and a heater 207 on the nitride layer 203 . , and the sidewall nitride layer 203 on both sides of the heater 207 and the base of the fin sacrificial layer 206 .
  • the thinning method employs chemical mechanical polishing.
  • step S11 the fin-shaped sacrificial layer 206 is selectively etched to form fin-shaped grooves on both sides of the heater 207 , which has sidewall nitride layers 203 on both sides of the heater 207 .
  • an oxide layer 208 is deposited at the fin-shaped recess and an air gap 208 a surrounding the heater 207 is formed.
  • the deposition method adopts physical vapor deposition or chemical vapor deposition. Due to the limitation of the filling capacity of the deposition method, the air gap 208a surrounding the heater 207 is generated during the deposition process.
  • chemical mechanical polishing is performed on the oxide layer 208 beyond the height of the first nitride layer 203 until it is flush with the first nitride layer 203 .
  • phase change material layer 209 adopts GST material.
  • FIG. 2D is a schematic structural diagram of a specific implementation of a phase change memory obtained after the above steps are completed, including: a substrate 200 ; a bottom electrode 201 , and the bottom electrode 201 is located on the substrate 200 ; a nitride layer 203, which covers the substrate 200 and the bottom electrode 201; a heater 207, which is located in the nitride layer 203, and the bottom electrode 201 is connected, and the heater 207 is made of TiN or TaN material; an air gap 208a and an oxide layer 208 surrounding the heater 207, the air gap 208a and the oxide layer 208 are located in the nitride layer 203; a A phase change material layer 209, the phase change material layer 209 is located above the nitride layer 203 and connected to the heater 207, the phase change material layer adopts GST material; and a top electrode 210, the top The electrode 210 is located above the phase change material layer 209 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Abstract

一种相变存储器的制备方法和相变存储器,包括如下步骤:提供一基底,所述基底包括一衬底(200),一底部电极(201),一氮化物层(203),一加热器(207),所述加热器(207)位于所述氮化物层(203)内,以及所述加热器(207)两边的鳍状牺牲层(206),所述鳍状牺牲层(206)可以被选择性腐蚀;选择性腐蚀所述鳍状牺牲层(206),形成所述加热器(207)两边的鳍状凹槽;在所述鳍状凹槽处沉积氧化物层(208)并形成包围加热器的气隙(208a);沉积图形化的相变材料层(209)和顶部电极(210)。由于气隙(208a)隔热性能比氮化物层或氧化物层更好,加热器(207)被气隙(208a)包围,横向热能耗散减少,热效率会更高,提升了相变存储器的性能。

Description

相变存储器的制备方法和相变存储器 技术领域
本发明涉及半导体领域,尤其涉及一种相变存储器的制备方法和相变存储器。
背景技术
现有技术中,1T-1R蘑菇型相变存储器为常见的低密度存储器,相变存储器的加热器的尺寸越小,热效率越高,所以业界普遍采用缩小加热器尺寸的方式提高热效率。若制备15~25um的小尺寸加热器,则超出了当前业界后道工序的可行范围,因此当前技术加热器的热效率存在局限。
发明内容
本发明所要解决的技术问题是提供一种相变存储器的制备方法和相变存储器,解决相变存储器热效率低的问题。
为了解决上述问题,本发明提供一种相变存储器的制备方法,包括如下步骤:提供一基底,所述基底包括一衬底,一底部电极,一氮化物层,一加热器,所述加热器位于所述氮化物层内,以及所述加热器两边的鳍状牺牲层,所述鳍状牺牲层可以被选择性腐蚀;选择性腐蚀所述鳍状牺牲层,形成所述加热器两边的鳍状凹槽;在所述鳍状凹槽处沉积氧化物层并形成包围加热器的气隙;沉积图形化的相变材料层和顶部电极。
本发明还提供一种相变存储器,所述相变存储器包括:一衬底;一底部电极,所述底部电极位于衬底上;一氮化物层,所述氮化物层覆盖在所述衬底和底部电极上;一加热器,所述加热器位于所述氮化物层内,与所述底部电极相连接;一包裹加热器的气隙和氧化物层,所述气隙和氧化物层位于所述氮化物层内;一相变材料层,所述相变材料层位于所述氮化物层上方,与所述加热器相连接;以及一顶部电极,所述顶部电极位于所述相变材料层的上方。
由于气隙隔热性能比氮化物层或氧化物层更好,加热器被气隙包围,横向热能耗散减少,热效率会更高,提升了相变存储器的性能。
附图说明
附图1所示是本发明一具体实施方式所述步骤示意图。
附图2A-2D所示是附图1中步骤S10-S13工艺示意图。
附图3所示是本发明一具体实施方式所述形成附图2A所示结构的步骤示意图。
附图4A-4J所示是附图3步骤S300-S309工艺示意图。
具体实施方式
下面结合附图对本发明提供的一种相变存储器的制备方法的具体实施方式做详细说明。
附图1所示是本发明一具体实施方式所述步骤示意图,包括:
步骤S10,提供一基底,提供一基底,所述基底包括一衬底,一底部电极,一氮化物层,一加热器,所述加热器位于所述氮化物层内,以及所述加热器两边的鳍状牺牲层,所述鳍状牺牲层可以被选择性腐蚀;步骤S11,选择性腐蚀所述鳍状牺牲层,形成所述加热器两边的鳍状凹槽;步骤S12,在所述鳍状凹槽处沉积氧化物层并形成包围所述加热器的气隙;步骤S13,沉积图形化的相变材料层和顶部电极。
附图2A所示,参考步骤S10,提供一基底,所述基底包括一衬底200,一底部电极201,一氮化物层203,一加热器207,所述加热器207位于所述氮化物层203内,以及所述加热器207两边的侧壁氮化物层203以及鳍状牺牲层206,所述鳍状牺牲层206可以被选择性腐蚀。
在本发明的一个具体实施方式中,上述结构的形成可以采用如下方法,并参考附图3所示为下述步骤的实施示意图:步骤300,提供一衬底,所述衬底表面具有底部电极201;步骤301,在底部电极表面形成鳍状氧化物;步骤302,在所述鳍状氧化物的周围形成第一氮化物层;步骤303,继续在第一氮化物层的表面形成图形化的氧化物层和第二氮化物层,所述鳍状氧化物暴露于图形化的氧化物层和第二氮化物层的镂空处;步骤304,选择性腐蚀鳍状氧化物,形成鳍状凹槽;步骤305,在鳍状凹槽内沉积牺牲层以填充凹槽,形成鳍状牺牲层;步骤306,在所述鳍状牺牲层的中部形成键孔,所述键孔至暴露出底部电极;步骤307,减薄至氧化物层;步骤308,在键孔处沉积加热器;步骤309,减薄至第一氮化物层,以形成包括底部电极、覆盖底部电极的氮化物层、氮化物层上的加热器、以及加热器两边的鳍状牺牲层的结构。
附图4A所示,参考步骤300,提供一衬底,所述衬底200表面具有底部电极201。在本发明的一个具体实施方式中,所述衬底200采用硅材料,所述底部电极201采用金属材料。在其他的具体实施方式中,所述衬底200的材料也可以是蓝宝石、碳化硅、以及氮化镓等半导体领域中常见的衬底材料。
附图4B所示,参考步骤301,在底部电极201表面形成鳍状氧化物202。所述鳍状氧化物202的形成方法具体是沉积氧化物层,再经过图形化和刻蚀,最终形成鱼鳍状排列的对称结构。
附图4C所示,参考步骤302,在所述鳍状氧化物202的周围形成第一氮化物层203。所述第一氮化物层203与所述鳍状氧化物202的厚度相同。
附图4D所示,参考步骤303,继续在第一氮化物层203的表面形成图形化的氧化物层204和第二氮化物层205,所述鳍状氧化物202暴露于图形化的氧化物层204和第二氮化物层205的镂空处。在一个具体的实施方式中,上述结构通过物理气相沉积或化学气相沉积的方法,在附图4C所示的结构表面沉积一氧化物层和一氮化物层,并进行图形化和刻蚀,去除所述鳍状氧化物202上方的结构而形成。
附图4E所示,参考步骤304,选择性腐蚀鳍状氧化物202,形成鳍状凹槽。在本发明的一个具体实施方式中,所述选择性腐蚀过程采用氢氟酸做腐蚀剂。
附图4F所示,参考步骤305,在鳍状凹槽内沉积牺牲层以填充凹槽,形成鳍状牺牲层206。在一个具体的实施方式中,所述鳍状牺牲层206采用多晶硅材料。
附图4G所示,参考步骤306,在所述鳍状牺牲层206的中部形成键孔,所述键孔至暴露出底部电极201,所述键孔两侧留有侧壁氮化物层203。
附图4H所示,参考步骤307,减薄至氧化物层204。在一个具体的实施方式中,所述减薄方法采用化学机械抛光。
附图4I所示,参考步骤308,在键孔处沉积加热器207。在一个具体的实施方式中,所述加热器207采用TiN或TaN材料;所述沉积方法采用物理气相沉积或化学气相沉积。
附图4J所示,参考步骤309,减薄至第一氮化物层203,以形成包括一衬底200,一底部电极201,一氮化物层203,所述氮化物层203上的加热器207, 以及加热器207两边的侧壁氮化物层203以及鳍状牺牲层206的基底。在一个具体的实施方式中,所述减薄方法采用化学机械抛光。
上述步骤实施完毕后,即获得了附图2A所示的结构,在此基础上,继续实施如下步骤。
附图2B所示,步骤S11,选择性腐蚀鳍状牺牲层206,形成加热器207两边的鳍状凹槽,所述加热器207两边有侧壁氮化物层203。
附图2C所示,参考步骤S12,在鳍状凹槽处沉积氧化物层208并形成包围加热器207的气隙208a。在一个具体的实施方式中,所述沉积方法采用物理气相沉积或化学气相沉积,由于上述沉积方法填充能力的限制,在沉积过程中产生所述包围加热器207的气隙208a。在又一个具体的实施方式中,对超出第一氮化物层203高度的所述氧化物层208进行化学机械抛光,直至与第一氮化物层203齐平。
附图2D所示,参考步骤S13,沉积图形化的相变材料层209和顶部电极210。所述相变材料层209采用GST材料。
附图2D所示即为上述步骤实施完毕后所获得的一种相变存储器的具体实施方式的结构示意图,包括:一衬底200;一底部电极201,所述底部电极201位于衬底200上;一氮化物层203,所述氮化物层203覆盖在所述衬底200和底部电极201上;一加热器207,所述加热器207位于所述氮化物203层内,与所述底部电极201相连接,所述加热器207采用TiN或TaN材料;一包裹加热器207的气隙208a和氧化物层208,所述气隙208a和氧化物层208位于所述氮化物层203内;一相变材料层209,所述相变材料层209位于所述氮化物层203上方,与所述加热器207相连接,所述相变材料层采用GST材料;以及一顶部电极210,所述顶部电极210位于所述相变材料层209的上方。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种相变存储器的制备方法,其特征在于,包括如下步骤:
    提供一基底,所述基底包括一衬底,一底部电极,一氮化物层,一加热器,所述加热器位于所述氮化物层内,以及所述加热器两边的鳍状牺牲层,所述鳍状牺牲层可以被选择性腐蚀;
    选择所述性腐蚀鳍状牺牲层,形成所述加热器两边的鳍状凹槽;
    在所述鳍状凹槽处沉积氧化物层并形成包围加热器的气隙;
    沉积图形化的相变材料层和顶部电极。
  2. 根据权利要求1中所述的方法,其特征在于,所述基底的形成进一步是:
    提供一衬底,所述衬底表面具有底部电极;
    在底部电极表面形成鳍状氧化物;
    在所述鳍状氧化物的周围形成第一氮化物层;
    继续在第一氮化物层的表面形成图形化的氧化物层和第二氮化物层,所述鳍状氧化物暴露于图形化的氧化物层和第二氮化物层的镂空处;
    选择性腐蚀鳍状氧化物,形成鳍状凹槽;
    在鳍状凹槽内沉积牺牲层以填充凹槽,形成鳍状牺牲层;
    在所述鳍状牺牲层的中部形成键孔,所述键孔至暴露出底部电极;
    减薄至氧化物层;
    在键孔处沉积加热器;
    减薄至第一氮化物层,以形成包括衬底、底部电极、覆盖底部电极的氮化物层、氮化物层上的加热器、以及加热器两边的鳍状牺牲层的结构。
  3. 根据权利要求2中所述的方法,其特征在于,所述选择性腐蚀鳍状氧化物层采用氢氟酸做腐蚀剂。
  4. 根据权利要求1中所述的方法,其特征在于,所述鳍状牺牲层采用多晶硅材料。
  5. 根据权利要求1中所述的方法,其特征在于,所述加热器采用TiN或TaN材料。
  6. 根据权利要求1中所述的方法,其特征在于,所述沉积方法采用物理气相 沉积或化学气相沉积,所述包围加热器的气隙在沉积过程中产生。
  7. 根据权利要求1中所述的方法,其特征在于,所述相变材料层采用GST材料。
  8. 一种相变存储器,其特征在于,所述相变存储器包括:
    一衬底;
    一底部电极,所述底部电极位于衬底上;
    一氮化物层,所述氮化物层覆盖在所述衬底和底部电极上;
    一加热器,所述加热器位于所述氮化物层内,与所述底部电极相连接;
    一包裹加热器的气隙和氧化物层,所述气隙和氧化物层位于所述氮化物层内;
    一相变材料层,所述相变材料层位于所述氮化物层上方,与所述加热器相连接;以及
    一顶部电极,所述顶部电极位于所述相变材料层的上方。
  9. 根据权利要求8中所述的相变存储器,其特征在于,所述加热器采用TiN或TaN材料。
  10. 根据权利要求8中所述的相变存储器,其特征在于,所述相变材料层采用GST材料。
PCT/CN2020/130935 2020-11-23 2020-11-23 相变存储器的制备方法和相变存储器 WO2022104803A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080099901.4A CN115428159A (zh) 2020-11-23 2020-11-23 相变存储器的制备方法和相变存储器
PCT/CN2020/130935 WO2022104803A1 (zh) 2020-11-23 2020-11-23 相变存储器的制备方法和相变存储器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/130935 WO2022104803A1 (zh) 2020-11-23 2020-11-23 相变存储器的制备方法和相变存储器

Publications (1)

Publication Number Publication Date
WO2022104803A1 true WO2022104803A1 (zh) 2022-05-27

Family

ID=81708244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130935 WO2022104803A1 (zh) 2020-11-23 2020-11-23 相变存储器的制备方法和相变存储器

Country Status (2)

Country Link
CN (1) CN115428159A (zh)
WO (1) WO2022104803A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1933207A (zh) * 2006-10-13 2007-03-21 中国科学院上海微系统与信息技术研究所 相变存储器存储单元及其制备方法
CN101930989A (zh) * 2009-06-23 2010-12-29 南亚科技股份有限公司 相变存储器及其制作方法
CN102237390A (zh) * 2010-04-29 2011-11-09 台湾积体电路制造股份有限公司 半导体装置及其制造方法
CN102544356A (zh) * 2010-12-17 2012-07-04 中芯国际集成电路制造(北京)有限公司 相变存储器的加热层制备方法
CN104300081A (zh) * 2013-07-15 2015-01-21 中国科学院苏州纳米技术与纳米仿生研究所 相变存储器的加热电极及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1933207A (zh) * 2006-10-13 2007-03-21 中国科学院上海微系统与信息技术研究所 相变存储器存储单元及其制备方法
CN101930989A (zh) * 2009-06-23 2010-12-29 南亚科技股份有限公司 相变存储器及其制作方法
CN102237390A (zh) * 2010-04-29 2011-11-09 台湾积体电路制造股份有限公司 半导体装置及其制造方法
CN102544356A (zh) * 2010-12-17 2012-07-04 中芯国际集成电路制造(北京)有限公司 相变存储器的加热层制备方法
CN104300081A (zh) * 2013-07-15 2015-01-21 中国科学院苏州纳米技术与纳米仿生研究所 相变存储器的加热电极及其制备方法

Also Published As

Publication number Publication date
CN115428159A (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
TWI776070B (zh) 半導體裝置與其形成方法
CN109585296A (zh) 半导体装置的形成方法
CN108231893A (zh) 半导体装置及其制造方法
CN108231585A (zh) 半导体装置的形成方法
TW201816895A (zh) 半導體結構的形成方法
TW202137518A (zh) 三維記憶體元件及其製造方法
TWI397974B (zh) 分離式字元線之製程
US9076733B2 (en) Self-aligned trench over fin
US9059043B1 (en) Fin field effect transistor with self-aligned source/drain regions
TWI741412B (zh) 具有環狀半導體鰭片之半導體元件結構的製備方法
TW201806158A (zh) 位在矽覆絕緣層上的鰭狀場效電晶體及其形成方法
TW201917823A (zh) 半導體裝置結構的製造方法
TW202017180A (zh) 積體電路裝置
US9508790B2 (en) Trench capacitors and methods of forming the same
JP2007531259A (ja) 半導体装置の製造方法及びこの方法により得られる半導体装置
WO2022104803A1 (zh) 相变存储器的制备方法和相变存储器
WO2023040071A1 (zh) 半导体结构及其制造方法
US10978335B2 (en) Method for producing a gate cut structure on an array of semiconductor fins
TW202013454A (zh) 半導體裝置
CN110797346A (zh) 三维存储器及其制作方法
TWI805336B (zh) 半導體結構及其形成方法
US20230005817A1 (en) Method of manufacturing a semiconductor device and a semiconductor device
TWI828309B (zh) 半導體裝置及其形成方法
WO2023184571A1 (zh) 半导体结构及其制备方法
CN113327985B (zh) 一种半导体器件制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962094

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20962094

Country of ref document: EP

Kind code of ref document: A1