WO2022103243A1 - 납 또는 납-비스무스 공융물 내의 내부식성 알루미나 산화막 형성 오스테나이트계 스테인리스 강 및 이의 제조 방법 - Google Patents

납 또는 납-비스무스 공융물 내의 내부식성 알루미나 산화막 형성 오스테나이트계 스테인리스 강 및 이의 제조 방법 Download PDF

Info

Publication number
WO2022103243A1
WO2022103243A1 PCT/KR2021/016806 KR2021016806W WO2022103243A1 WO 2022103243 A1 WO2022103243 A1 WO 2022103243A1 KR 2021016806 W KR2021016806 W KR 2021016806W WO 2022103243 A1 WO2022103243 A1 WO 2022103243A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
austenitic stainless
lead
oxide film
present
Prior art date
Application number
PCT/KR2021/016806
Other languages
English (en)
French (fr)
Inventor
김지현
황일순
김태용
Original Assignee
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210155995A external-priority patent/KR102670439B1/ko
Application filed by 울산과학기술원 filed Critical 울산과학기술원
Publication of WO2022103243A1 publication Critical patent/WO2022103243A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to an austenitic stainless steel used as a structural material for accommodating lead or lead-bismuth eutectic and a method for manufacturing the same.
  • a high-speed neutron reactor requires a coolant to transfer fission energy to the energy conversion system, and is largely divided into liquid metal-cooled high-speed reactors and gas-cooled high-speed reactors depending on the type of coolant.
  • liquid metal-cooled high-speed reactors materials such as sodium (Na), lead (Pb), and lead-bismuth alloy (Pb-Bi) that have excellent heat transfer ability in the liquid state and have a small neutron deceleration effect due to their high mass number are used as coolants.
  • materials such as helium (He) with a small mass number but low density and low neutron deceleration effect are used as coolants.
  • lead-bismuth has a low melting point, and excellent chemical stability and heat transfer ability, so it is attracting attention as a coolant for next-generation liquid metal-cooled high-speed reactors.
  • metallic materials are easily corroded at a high temperature of 500° C. or higher, so there is a problem in that it is difficult to utilize the materials used in the existing high-speed neutron reactor as it is.
  • austenitic stainless steel or ferritic FeCr alloy has been mainly used as the material of the existing high-speed neutron reactor.
  • Korean Patent Application Laid-Open No. 10-2010-0035727 relates to "Iron-chromium-aluminum alloy for use as a nuclear fuel cladding and structural material of a lead-and-lead-bismuth alloy cooling reactor", and has a temperature of 300 o C to 700 o C.
  • austenitic steel or ferritic-austenitic steel has a problem in that intergranular corrosion occurs as a chromium-deficient layer is formed at the grain boundary due to neutron irradiation. Accordingly, there have been efforts to improve intergranular corrosion resistance against neutron irradiation by precipitating Ti-based compounds in Korean Patent Laid-Open Publication No. 1991-0004833 and Korean Patent Application Laid-Open No. 10-2009-0130331. However, there is a problem that the corrosion resistance problem cannot be solved at the same time by adding an aluminum oxide film.
  • An object of the present invention is to provide an austenitic stainless steel capable of improving corrosion resistance and self-healing by forming a stable oxide film on the surface without eluting elemental elements in a lead and lead-bismuth eutectic environment.
  • An object of the present invention is to provide an austenitic stainless steel capable of preventing the penetration of oxygen and preventing the elution of Fe, Cr and Ni elements by providing an alumina oxide film more dense than the conventional Fe and Cr oxide films by adding Al.
  • Another object of the present invention is to provide an austenitic stainless steel in which a fine TiC precipitated phase is formed at the grain boundary so that the grain boundary density is increased and the irradiation swelling rate is decreased.
  • An object of the present invention is to provide an austenitic stainless steel in which an alumina oxide film is rapidly formed on a surface in contact with lead and a lead-bismuth eutectic by rapidly diffusing Al through grain boundaries.
  • An object of the present invention is to provide an austenitic stainless steel in which voids and helium atoms are generated when irradiated in a nuclear reactor environment and reduced irradiation swelling (swelling).
  • the present invention was made under project number 1711132591 (2021) under the support of the Ministry of Science and ICT Research on development of core technology for conceptual design of marine reactors”, the research period is “2021-01-01 ⁇ 2021-12-31”.
  • the present invention was made by project number 1415167890 (2020) under the support of the Ministry of Trade, Industry and Energy. Advanced Track”, the research period is “2020-01-01 ⁇ 2020-12-31”.
  • the present invention is by weight%, Cr 13-20%, Ni 16-20%, Mo 0 more than 2%, Mn 0 more than 2%, Si 0 more than 1%, Al 1-4%, Ti 0.1-1 %, C 0.05 to 0.4%, P 0 and more than 0.03 wt%, and the balance is Fe and impurities.
  • the austenitic stainless steel of the present invention may contain more than 0 and less than 0.5% by weight of fine TiC precipitated phase.
  • the austenitic stainless steel may be in the shape of a rod, and the shape of the rod may be filled with flux.
  • the present invention is a method for manufacturing an austenitic stainless steel, in weight%, Cr 13-20%, Ni 16-20%, Mo 0 more than 2%, Mn 0 more than 2%, Si 0 more than 1%, Preparing an austenitic stainless steel base material containing 1 to 4% Al, 0.1 to 1% Ti, 0.05 to 0.4% C, 0.03 wt% more than P 0 and the balance being Fe and impurities; shaping the austenitic stainless steel base material by vacuum induction melting or vacuum arc remelting; and precipitating a fine TiC precipitation phase by subjecting the shaped austenitic stainless steel base material to constant temperature heat treatment at a temperature of 600 to 1100 ° C. for 1 to 20 hours and air cooling.
  • the austenitic stainless steel according to the present invention can form an alumina oxide film without dissolution of elemental elements even under an environment in contact with lead or lead-bismuth eutectic, and can be used as a structural material such as a nuclear fuel cladding tube of a nuclear reactor due to its excellent corrosion resistance. there is.
  • an austenitic stainless steel capable of self-healing by rapidly diffusing Ni, Cr, and Al from the internal grain boundary to form an oxide film on the surface.
  • the fine TiC precipitated phase formed at the grain boundary can reduce swelling due to irradiation, it can be used for a long time without deformation even in an environment irradiated with neutrons such as a nuclear reactor.
  • FIG. 1 is a diagram showing a schematic diagram of an austenitic stainless steel according to the present invention in a lead or lead-bismuth eutectic environment.
  • FIG. 2 is a diagram showing a schematic diagram of an austenitic stainless steel according to the present invention in a lead or lead-bismuth eutectic environment in a further enlarged view.
  • FIG 3 is a photograph taken with a scanning electron microscope of the microstructure of a conventional austenitic steel (SS316L).
  • FIG. 4 is a photograph taken with a scanning electron microscope of the microstructure of the austenitic stainless steel according to an embodiment of the present invention.
  • the present invention relates to an austenitic stainless steel for forming an alumina oxide film under a lead or lead-bismuth eutectic environment, and a method for manufacturing the same. is referred to as “austenitic stainless steel”.
  • the austenitic stainless steel according to the present invention is, by weight, 13-20% Cr, 16-20% Ni, 2% or less more than Mo 0, 2% or less more than Mn 0, 1% or less more than Si 0, 1% or less Al 1-4 %, Ti 0.1 ⁇ 1%, C 0.05 ⁇ 0.4%, P 0 more than 0.03 wt%, and the balance is Fe and impurities.
  • FIG. 1 and 2 are diagrams showing a schematic diagram of an austenitic stainless steel according to the present invention in a lead or lead-bismuth eutectic environment
  • FIG. 4 is a microstructure of austenitic stainless steel according to an embodiment of the present invention. This is a picture taken with a scanning electron microscope.
  • the austenitic stainless steel according to the present invention has corrosion resistance by forming a dense alumina oxide film in a lead or lead-bismuth eutectic environment, and by precipitating TiC fine particles Increase the grain boundary density, more effectively improve the formation of the self-healing film filling the alumina oxide film and nickel and chromium-deficient layer, and reduce the neutron irradiation swelling of the material.
  • the addition of Al element is characterized in that a more dense alumina oxide film than the conventional Fe and Cr oxide film is formed.
  • a dense alumina oxide film Through the formation of a dense alumina oxide film, the penetration of oxygen diffused from the lead-bismuth eutectic to the structural material can be prevented, and the elution of Fe, Cr, and Ni alloy elements contained in the structural material can be prevented. Therefore, it is possible to prevent wall-thinning of the structural material to a greater extent than general stainless steel, thereby securing soundness.
  • the fine TiC precipitated phase increases the grain boundary density of the structural material to efficiently form an alumina oxide film on the surface in contact with lead or lead-bismuth eutectic, and reduces the neutron irradiation damage in the metal for the high-speed neutrons in the high-speed reactor.
  • the Al element In the alumina oxide film, the Al element must be diffused to the surface through the grains or grain boundaries of the material surface to be properly formed on the surface in contact with lead and lead-bismuth eutectic to prevent corrosion of the structural material.
  • the Al element diffuses more rapidly through the grain boundary than within the grain, and the higher the grain boundary density, the more passageways through which the Al element diffuses to the surface, thereby increasing the amount of diffusion to the surface.
  • the fine TiC precipitated phase can reduce the irradiation swelling (swelling) of the material to maintain the numerical stability and mechanical strength of the structural material. More specifically, when a material is irradiated with neutrons in a nuclear reactor environment, voids and helium atoms are generated, causing irradiation swelling of the material. to reduce the swelling rate.
  • Chromium (Cr) forms a Cr oxide film on the surface in a lead or lead-bismuth eutectic environment before the alumina oxide film is formed, thereby helping the alumina oxide film to be stably formed under the Cr oxide film.
  • Cr serves to improve the corrosion resistance of the grain boundary. Irradiation depletion is formed in the matrix due to neutron irradiation, and the diffusion of Cr from the vicinity of the grain boundary into the grain according to the diffusion occurs, and a Cr depletion layer is formed in the vicinity of the grain boundary. At this time, in the vicinity of the grain boundary, the Cr content is reduced to 12% or less of the lower limit as a weight% showing corrosion resistance, causing intergranular corrosion.
  • Nickel (Ni) is a stabilizing element for austenitic steel, and it is necessary to contain at least 16% by weight in order to obtain austenitic stainless steel. However, if it exceeds 20%, it should be lower than the above value because an intermetallic compound phase occurs and causes deterioration of the mechanical properties of the material. Therefore, the Ni content is set to 16 to 20% by weight or less.
  • Molybdenum (Mo) increases high temperature creep strength and reduces brittleness by solid solution strengthening. However, when it exceeds 2% by weight, a coarse Laves phase is formed, and also ferrite is stabilized from austenite. Therefore, Mo is 2 wt% or less.
  • Mn manganese
  • the atomic volume of manganese (Mn) is larger than that of iron, nickel and chromium, it increases the average atomic volume of the matrix. Therefore, manganese stabilizes austenitic stainless steel by preventing leakage of chromium occurring at grain boundaries due to irradiation, increases high-temperature creep strength as a solid solution, and reduces brittleness. However, when it exceeds 2% by weight, it may cause precipitation of an intermetallic compound, thereby weakening mechanical properties. Therefore, Mn is set to 2 wt% or less.
  • Si increases strength and hardness by solid solution strengthening.
  • Si when Si is contained in an amount exceeding 1% by weight, a phase such as a Laves phase is formed, thereby reducing the mechanical properties and radiation resistance properties of the material. Therefore, Si is made into more than 0 and 1 weight% or less.
  • Si helps precipitation of the fine TiC phase, and the weight ratio of Si to Ti may be 0.8 to 1.2.
  • the weight ratio of Si to Ti is lower than 0.8, it is difficult to help the formation of the TiC fine precipitated phase, and when the weight ratio of Si to Ti is higher than 1.2, the fine TiC precipitated phase is coarsened and brittleness may be increased.
  • Aluminum (Al) needs to be contained at least 1% by weight in order to form a dense alumina oxide film of less than 10 ⁇ m per year in an environment of 200 to 650° C. in a lead or lead-bismuth environment.
  • Al content exceeds 4%, an intermetallic compound phase is formed, which deteriorates mechanical strength and welding properties. Therefore, Al is made into 1-4 wt% or less.
  • Titanium (Ti) forms a fine TiC precipitation phase at the grain boundary of the base material together with carbon (C) to prevent the precipitation of chromium carbide and maintain the Cr content near the grain boundary.
  • Ti is added in an amount of 0.1 wt % or more in consideration of the solid solution limit of the iron-nickel-chromium-manganese alloy and at the same time, sufficient addition effect can be obtained.
  • the fine TiC precipitation phase coarsens, oxygen permeation through grain boundaries and elution of alloying elements increase, thereby lowering corrosion resistance.
  • the coarsened fine TiC precipitated phase reduces the mechanical strength. Even in the grain, a fine TiC precipitation phase is formed, causing voids and interstitial atoms to grow in the grain, and can cause irradiation swelling. Therefore, Ti is 0.1 to 1% by weight or less.
  • Carbon (C) reacts with Cr by neutron irradiation to precipitate chromium carbide in the vicinity of the grain boundary, and reduces chromium at the grain boundary. Since the formation of chromium carbide lowers the corrosion resistance of grain boundaries to initiate stress corrosion failure, the C content is set to 0.4% or less by weight. However, since the strength decreases when the C content is decreased, it is set to 0.05% or more.
  • C is characterized in that the content of C is relatively higher than that of conventional austenitic stainless steel to form a fine TiC precipitated phase by combining with Ti.
  • a suitable ratio of Ti to C is 0.8 to 3.2 by weight.
  • the austenitic stainless steel according to the present invention contains a fine TiC precipitated phase, and the content of the fine TiC precipitated phase may be greater than 0 and less than 0.5% by weight to ensure irradiation resistance.
  • constant temperature heat treatment is performed at 600 to 1100° C. for 1 to 20 hours, followed by air cooling or fast cooling.
  • Phosphorus (P) reduces strain due to irradiation swelling and irradiation creep.
  • the upper limit for the content has not been studied, and in the present invention, it is limited to 0.03% by weight.
  • the austenitic stainless steel according to the present invention when exposed to a high temperature of 500 degrees or more, an oxide layer including an alumina oxide film is formed on the surface, and the alumina oxide film is formed at the boundary between lead and lead-bismuth eutectic to prevent corrosion.
  • the oxide layer may further include chromia (Cr2O3) or Fe-Cr oxide, and the chromia oxide layer and the Fe-Cr oxide layer may be formed on a layer different from the alumina oxide layer.
  • a method for manufacturing an austenitic stainless steel according to the present invention comprises the steps of: preparing a base material having the above-described composition; Forming the austenitic stainless steel base material by rapidly cooling the base material after vacuum induction melting or vacuum arc remelting treatment, and constant temperature for 1 to 20 hours by heating the shaped austenitic stainless steel base material at a temperature of 600 to 1100 ° C. It may consist of a step of precipitating a fine TiC precipitated phase at the grain boundary by heat treatment and air cooling or rapid cooling.
  • secondary remelting techniques such as vacuum induction melting or vacuum arc remelting and other refining techniques
  • the base material may be filled with flux in the shape of a rod.
  • the shaped austenitic stainless steel base material is first maintained at a high temperature of 1000 to 1200 °C for more than 5 minutes for solution treatment, and then slowly cooled at a rate of 1 to 15 °C/min to the aging treatment temperature (600 to 800 °C). .
  • the solution treatment time refers to the time for which the homogenization treatment takes place sufficiently in the shaped austenitic stainless steel base material.
  • the aging treatment time is sufficient to ensure that the fine TiC precipitated phase of the austenitic stainless steel of the present invention is uniformly precipitated at the grain boundary so that there is no change in the texture even when exposed to the same aging treatment temperature range (600 ⁇ 800 °C). it's time to wake up
  • the reason that the slow cooling to the aging treatment temperature immediately after the solution treatment is limited to 1 to 15 °C/min is that when the cooling rate is less than 1 °C/min, the exposure time at high temperature becomes longer, so that the crystal grains are coarsened and the basic There is a possibility that mechanical properties may be deteriorated.
  • the cooling rate exceeds 15 °C/min, there is not enough time to form a TiC precipitated phase.
  • a separate aging treatment is required, which increases the burden of time and cost.
  • Comparative Example 1 shows the composition of each element constituting the conventional austenitic stainless steel (SS316L), and Example 1 shows the composition of each element constituting the austenitic stainless steel according to an embodiment of the present invention.
  • the microstructure of the austenitic stainless steel according to Example 1 and Comparative Example 1 was photographed with a scanning electron microscope and shown in FIGS. 3 and 4 .
  • FIG. 3 is a photograph taken with a scanning electron microscope of the microstructure of a conventional austenitic steel (SS316L), and FIG. 4 is a photograph taken with a scanning electron microscope of the microstructure of the austenitic stainless steel according to an embodiment of the present invention.
  • SS316L conventional austenitic steel
  • FIG. 4 is a photograph taken with a scanning electron microscope of the microstructure of the austenitic stainless steel according to an embodiment of the present invention.
  • am. 3 and 4 each (a) is 500 times
  • FIGS. 3 and 4 (b) is a photograph magnified by 2000 times.
  • FIG. 4(a) small dots indicating a fine TiC precipitated phase can be seen in FIG. 4(a).
  • the fine TiC precipitated phase distributed at the grain boundary in FIG. 4(b), magnified by 2000 times.
  • the austenitic stainless steel according to the present invention contains a fine TiC precipitated phase, and in particular, the fine TiC precipitated phase is distributed at the grain boundary, thereby increasing the grain boundary density and suppressing the neutron irradiation damage in the metal.
  • the austenitic stainless steel according to the present invention can form an alumina oxide film without dissolution of elemental elements even under an environment in contact with lead or lead-bismuth eutectic, and can be used as a structural material such as a nuclear fuel cladding tube of a nuclear reactor due to its excellent corrosion resistance. there is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

본 발명은 중량%로, Cr 13~20%, Ni 16~20%, Mo 0 초과 2% 이하, Mn 0 초과 2% 이하, Si 0 초과 1% 이하, Al 1~4%, Ti 0.1~1%, C 0.05~0.4%, P 0 초과 0.03 중량% 를 함유하고 잔부가 Fe 및 불순물인 오스테나이트계 스테인리스 강 모재로 제조된 오스테나이트계 스테인리스 강을 제공한다. 본 발명을 통하여 납 또는 납-비스무스 공융물의 구조재료로써, 알루미나 산화막을 형성함으로써 내부식성을 갖춘 오스테나이트계 스테인리스 강을 제공하여 원자로의 핵연료피복관 및 재료의 건전성 및 수명증대를 통해 경제성을 확보할 수 있다. 또한 본 발명은 미세 TiC 석출상을 통하여 납 또는 납-비스무스 공융물의 구조재료로 사용되는 내부식성 알루미나 산화막 형성 오스테나이트계 스테인리스 강의 입계 밀도를 증가 시킬 수 있다. 이를 통하여 기존의 납 및 납-비스무스 공융물의 구조재료로 사용되는 오스테나이트계 스테인리스 강보다 향상된 알루미나 산화막의 내부식성을 갖는 오스테나이트계 스테인리스 강을 제공한다. 또한 본 발명은 원자로 환경에서 중성사 조사 팽윤을 미세 TiC 석출상을 통하여 감소시켜 수치안전성 및 기계적 강도를 향상시킨 납 또는 납-비스무스 공융물의 구조재료로 사용되는 내부식성 알루미나 산화막 형성 오스테나이트계 스테인리스 강을 제공한다. 뿐만 아니라, 납 또는 납-비스무스 공융물 부식 내성 알루미나 산화막 형성 오스테나이트계 스테인리스 강은 향후 우수한 부식 저항성을 통해 여타 고온을 사용하는 발전 분야에도 직, 간접적으로 활용될 수 있다.

Description

납 또는 납-비스무스 공융물 내의 내부식성 알루미나 산화막 형성 오스테나이트계 스테인리스 강 및 이의 제조 방법
본 발명은 납 또는 납-비스무스 공융물을 수용하는 구조재료로서 사용되는 오스테나이트계 스테인리스 강 및 이의 제조방법에 관한 것이다.
최근 핵연료의 폐기물을 감축시키기 위해 고속중성자원자로들이 많이 개발되고 있는 추세이다. 고속중성자원자로는 핵분열 에너지를 에너지 전환계통에 전달하기 위한 냉각재가 필요하며, 냉각재의 종류에 따라 크게 액체금속냉각고속로와 가스냉각고속로로 구분된다. 액체금속냉각고속로에는 소듐(Na), 납(Pb), 납-비스무스 합금(Pb-Bi)과 같이 액체 상태에서 열전달 능력이 우수하면서 질량수가 높아 중성자 감속효과가 작은 물질들이 냉각재로 사용되며, 가스냉각고속로에는 헬륨(He)과 같이 질량수는 작지만 밀도가 작아 중성자 감속효과가 작은 물질을 냉각재로 사용된다. 이 중, 납-비스무스는 용융점이 낮고, 화학적인 안정성과 열전달 능력이 뛰어나 차세대 액체금속냉각고속로의 냉각재로 주목받고 있다. 그러나 납 및 납-비스무스 공융물 환경에서 금속성 재료들은 500℃ 이상의 고온에서 부식되기 쉬우므로 기존 고속중성자원자로에 사용되는 재료들을 그대로 활용하기 어렵다는 문제점이 있다. 기존 고속중성자원자로의 재료는 주로 오스테나이트계 스테인리스 강이나 페라이트계 FeCr 합금을 주로 사용해 왔다. 그러나 높은 니켈(Ni) 함량의 오스테나이트계 스테인리스 강의 경우 납 및 납-비스무스 공융물 환경에서 니켈(Ni)의 높은 용해도로 인해 부식이 매우 쉽게 일어난다. 이러한 재료의 부식성 문제를 해결하기 위해 보호성 표면 피막으로 알루미나 산화막(Al2O3)를 형성할 수 있는 FeCrAl 합금강을 납 및 납-비스무스 환경에 적용하고자 하는 노력이 있어왔으나, 대부분의 FeCrAl 강은 대부분 900 oC 이상에서 전열선으로 활용하기 위한 목적으로 개발되어 300 oC ~ 700 oC의 납 및 납-비스무스 합금 환경에서 구조재료로 사용하기 적합하지 않다.
이에 대한민국공개특허공보 제10-2010-0035727호는 "납 및 납-비스무스 합금 냉각 원자로의 핵연료 피복관 및 구조재료로 사용하기 위한 철-크롬-알루미늄 합금"에 관한 것으로 300 oC ~ 700 oC의 납 및 납-비스무스 합금 냉각 원자로의 핵연료 피복관 및 구조재료로서 내부식성을 향상시키기 위해, 0.02 중량% 이하의 탄소, 0.5 중량% 이하의 실리콘, 0.2 중량% 이하의 망간, 15.0 내지 25.0 중량%의 크롬, 0.5 중량% 이하의 니켈, 0.01 중량% 이하의 하프늄(Hf), 4.0 내지 7.0 중량%의 알루미늄, Y, La, Ce, Ti와 같은 다른 반응성 성분의 그룹 중 하나 이상 0.3 내지 1.0 중량%, 잔량의 철 및 불가피한 불순물을 포함하는 조성물을 제공한다. 그러나 낮은 Ni 함량의 페라이트계 FeCr 합금의 경우 높은 산화막 성장속도로 인하여 장기적으로 열전달 능력의 저하를 초래한다는 문제점이 있다.
또한 오스테나이트 강 또는 페라이트-오스테나이트 강은 중성자조사로 인해 입계에 크롬결핍층이 생기면서 입계부식이 일어나는 문제가 있다. 이에 대한민국공개특허공보 제1991-0004833호, 대한민국공개특허공보 제10-2009-0130331호 에서 Ti계 화합물을 석출시켜서 중성자조사에 대한 내입계 부식성을 향상 시키고자 하는 노력이 있어왔다. 그러나 이는 알루미늄 산화막을 가미하여 내부식성 문제를 동시에 해결하지 못하였다는 문제점이 있다.
본 발명은 납 및 납-비스무스 공융물 환경에서 구성원소가 용출되지 않고 표면에 안정적인 산화막이 형성되어 부식 저항성을 향상시키고 자가치유가 가능한 오스테나이트계 스테인리스 강을 제공하는 것이다.
본 발명은 Al의 첨가로 기존의 Fe 및 Cr 산화막보다 더욱 치밀한 알루미나 산화막을 제공함으로써 산소의 침투를 막고 구성원소 Fe, Cr 및 Ni들의 용출을 방지할 수 있는 오스테나이트계 스테인리스 강을 제공하는 것이다.
또한 본 발명은 입계 밀도는 증가되고 조사 팽윤율은 감소되도록 입계에 미세 TiC 석출상이 형성된 오스테나이트계 스테인리스 강을 제공하는 것이다.
입계를 통해 Al을 빠르게 확산시킴으로써 납 및 납-비스무스 공융물과 접하는 표면에 알루미나 산화막이 신속히 형성되는 오스테나이트계 스테인리스 강을 제공하는 것이다.
원자로 환경에서 조사(radiation) 되었을 때 공극(vacancy)과 헬륨 원자가 생성되면서 발생하는 조사 팽윤(swelling)이 감소된 오스테나이트계 스테인리스 강을 제공하는 것이다.
본 발명은 과학기술정보통신부의 지원 하에서 과제번호 1711132591(2021년)에 의해 이루어진 것으로서, 상기 과제의 연구관리전문기관은 “한국연구재단”, 연구사업명 내지 연구과제명은 “핵연료-무교체 전수명 초소형 해양용 원자로 개념설계 핵심기술 개발연구”, 연구기간은 "2021-01-01 ~ 2021-12-31”이다.
본 발명은 산업통상자원부의 지원 하에서 과제번호 1415167890(2020년)에 의해 이루어진 것으로서, 상기 과제의 연구관리전문기관은 “한국에너지기술평가원”, 연구사업명 내지 연구과제명은 “원전 주요 설비 건전성 평가 관리기술 고급트랙”, 연구기간은 "2020-01-01 ~ 2020-12-31”이다.
본 발명은 중량%로, Cr 13~20%, Ni 16~20%, Mo 0 초과 2% 이하, Mn 0 초과 2% 이하, Si 0 초과 1% 이하, Al 1~4%, Ti 0.1~1%, C 0.05~0.4%, P 0 초과 0.03 중량% 를 함유하고, 잔부가 Fe 및 불순물인 오스테나이트계 스테인리스 강 모재로 제조된 오스테나이트계 스테인리스 강을 제공한다.
본 발명의 오스테나이트계 스테인리스 강은 미세 TiC 석출상을 0 초과 0.5 중량% 미만 함유할 수 있다.
본 발명에서 오스테나이트계 스테인리스 강은 봉의 형상일 수 있고 봉의 형상은 내부에 플럭스가 채워질 수 있다.
또한 본 발명은 오스테나이트계 스테인리스 강의 제조방법으로서, 중량%로, Cr 13~20%, Ni 16~20%, Mo 0 초과 2% 이하, Mn 0 초과 2% 이하, Si 0 초과 1% 이하, Al 1~4%, Ti 0.1~1%, C 0.05~0.4%, P 0 초과 0.03 중량% 를 함유하고 잔부가 Fe 및 불순물인 오스테나이트계 스테인리스 강 모재를 준비하는 단계; 진공 유도 용융 또는 진공 아크 재용해 처리하여 오스테나이트계 스테인리스 강 모재를 형상화하는 단계; 상기 형상화된 오스테나이트계 스테인리스 강 모재를 600~1100 ℃의 온도에서 1~20 시간 동안 항온 열처리하고 공랭하여 미세 TiC 석출상을 석출하는 단계;를 포함한다.
본 발명의 따른 오스테나이트계 스테인리스 강은 납 또는 납-비스무스 공융물과 접촉하는 환경 하에서도 구성원소 용출이 일어나지 않고 알루미나 산화막의 형성이 가능하며 우수한 내부식성으로 원자로의 핵연료피복관 등 구조재료로서 사용될 수 있다.
또한 내부 입계로부터 빠르게 Ni, Cr, Al 이 확산되어 표면에 산화막을 생성함으로써 자가치유가 가능한 오스테나이트계 스테인리스 강을 제공할 수 있다. 또한 입계에 미세 TiC 석출상을 함유하여 입계 밀도를 증가시키고 따라서 기계적 강도를 향상시킬 수 있다.
본 발명은 입계에 형성된 미세 TiC 석출상이 조사로 인한 팽윤을 감소시킬 수 있으므로 원자로처럼 중성자가 조사되는 환경에서도 변형되지 않고 장기간 사용할 수 있다.
도 1 은 납 또는 납-비스무스 공융물 환경에서 본 발명에 따른 오스테나이트계 스테인리스 강의 모식도를 도시한 도면이다.
도 2는 납 또는 납-비스무스 공융물 환경에서 본 발명에 따른 오스테나이트계 스테인리스 강의 모식도를 더욱 확대하여 도시한 도면이다.
도 3은 종래 오스테나이트 강(SS316L)의 미세조직을 주사전자현미경으로 촬영한 사진이다.
도 4는 본 발명의 일 실시예에 따른 오스테나이트계 스테인리스 강의 미세조직을 주사전자현미경으로 촬영한 사진이다.
이하에서는 도면을 참조하여 본 발명을 상세히 설명한다. 본 발명은 납 또는 납-비스무스 공융물 환경 하에서 알루미나 산화막을 형성하는 오스테나이트계 스테인리스 강 및 이의 제조 방법에 관한 것으로, 이하에서는 납 또는 납-비스무스 공융물 내의 내부식성 알루미나 산화막 형성 오스테나이트계 스테인리스 강을 “오스테나이트계 스테인리스 강”이라 지칭한다.
본 발명에 따른 오스테나이트계 스테인리스 강은 중량%로서 Cr 13~20%, Ni 16~20%, Mo 0 초과 2% 이하, Mn 0 초과 2% 이하, Si 0 초과 1% 이하, Al 1~4%, Ti 0.1~1%, C 0.05~0.4%, P 0 초과 0.03 중량% 를 함유하고 잔부가 Fe 및 불순물인 오스테나이트계 스테인리스 강 모재로 제조된다.
도 1 및 도 2는 납 또는 납-비스무스 공융물 환경에서 본 발명에 따른 오스테나이트계 스테인리스 강의 모식도를 도시한 도면이고, 도 4는 본 발명의 일 실시예에 따른 오스테나이트계 스테인리스 강의 미세조직을 주사전자현미경으로 촬영한 사진이다. 도 1, 도 2 및 도 4를 참고하여 살펴보면, 본 발명에 따른 오스테나이트계 스테인리스 강은 납 또는 납-비스무스 공융물 환경 내에서 치밀한 알루미나 산화막을 형성하여 부식 저항성을 가지고, TiC 미세입자를 석출하여 입계 밀도를 증가 시키고, 알루미나 산화막 및 니켈, 크롬 결핍층을 채우는 자가치유막 형성을 보다 효과적으로 향상시키고 재료의 중성자 조사 팽윤을 감소시킨다.
보다 자세하게는, Al 원소의 첨가로 기존의 Fe 및 Cr 산화막보다 더욱 치밀한 알루미나 산화막을 형성시키는 특징으로 한다. 치밀한 알루미나 산화막 형성을 통하여 납-비스무스 공융물에서 구조재료로 확산되는 산소의 침투를 막을 수 있으며, 구조재료에 포함된 Fe, Cr 및 Ni의 합금 원소의 용출을 방지할 수 있다. 따라서, 구조재료의 감육(wall-thinning)을 일반적인 스테인리스 강보다 월등하게 방지하여 건전성을 확보할 수 있다.
또한 본 발명에 따르면, Ti 및 C 원소를 첨가하여 미세 TiC 석출상을 형성시키는 효과가 있다. 보다 자세하게는, 미세 TiC 석출상은 구조 재료의 입계 밀도를 높여 알루미나 산화막을 납 또는 납-비스무스 공융물과 접하는 표면에 효율적으로 형성시키고 고속 원자로 내의 고속 중성자에 대한 금속 내 중성자 조사 손상을 감소시킨다. 알루미나 산화막은 Al 원소가 재료 표면의 입내 또는 입계를 통하여 표면까지 확산되어야 납 및 납-비스무스 공융물과 접하는 표면에 알맞게 형성되어 구조재료의 부식을 방지할 수 있다. 이 때, Al 원소는 입내보다 입계를 통해 더욱 빠르게 확산되며, 입계밀도가 높을수록 Al 원소가 표면으로 확산되는 통로가 많아져 표면으로 확산되는 양이 증가된다. 또한, 미세 TiC 석출상은 재료의 조사 팽윤(swelling)을 감소시켜 구조재료의 수치안전성 및 기계적 강도를 유지시킬 수 있다. 보다 자세하게는, 원자로 환경에서 재료가 중성자 조사 되었을 때 공극(Vacancy) 과 헬륨원자가 생성되어 재료의 조사 팽윤을 야기하는데, 상기 미세 TiC 석출상은 자기 주변으로 공극과 격자간 원자를 재결합시키고 헬륨원자를 포집하여 팽윤율을 감소시킨다.
이하에서, 본 발명에 따른 오스테나이트 스테인리스 강을 구성하는 각 원소에 대한 설명을 제시한다.
크롬(Cr)은 알루미나 산화막이 형성되기 전 납 또는 납-비스무스 공융물 환경에서 표면에 Cr 산화막을 형성함으로써 이후 알루미나 산화막이 Cr 산화막 아래에서 안정적으로 형성될 수 있도록 돕는다. 또한 Cr은 입계의 내식성을 향상하는 역할을 한다. 중성자조사로 인해 매트릭스 내에 조사결핍이 형성되고, 그 확산에 따른 Cr의 입계근방으로부터 입자내로의 확산이 생기면서 입계근방에 Cr 결핍층이 형성된다. 이 때, 입계근방에서 Cr 함유량이 내식성을 나타내는 중량%로서 하한치 12% 이하로 감소되어, 입계 부식을 야기한다. Cr 함량이 13%에서 높을수록 알루미나 산화막 형성이 잘된다. 기존의 오스테나이트 스테인리스 강은 중성자 조사 하에서 입계의 내부식성을 유지하기 위하여 Cr 함유량이 12 내지 26%이다. 그러나 Cr은 오스테나이트 스테인리스 강의 조직을 불안정하게 하고 20%를 초과할 경우 α’상이 생겨 재료의 취성을 높이기 때문에 상기 값보다 적어야 한다. 따라서 본 발명에서 Cr은 13 내지 20 중량%로 한다.
니켈(Ni)은 오스테나이트계 강의 안정화 원소로 중량%로서 16% 이상 함유해야 오스테나이트계 스테인리스 강을 얻을 수 있다. 그러나 20%를 초과할 경우 금속간 화합물 상이 생겨 재료의 기계적 특성의 저하를 일으키기 때문에 상기 값보다 낮아야 한다. 따라서 Ni 함량은 16 내지 20 중량% 이하로 한다.
몰리브덴(Mo)는 고용 강화로 고온 크리프 강도를 증가시키고 취성을 감소시킨다. 그러나 중량%로서 2%를 초과할 경우 조대한 Laves 상을 형성시키며, 또한 오스테나이트에서 벗어나 페라이트를 안정화시킨다. 따라서 Mo은 2 중량% 이하로 한다.
망간(Mn)의 원자체적은 철, 니켈 및 크롬의 원자체적보다 크므로, 매트릭스의 평균원자체적을 증가시킨다. 따라서 망간은 조사로 인하여 입계에서 발생하는 크롬의 유출을 방지하여 오스테나이트 스테인리스 강을 안정화시키며 고용체로 고온 크리프 강도를 증가시키고 취성을 감소시킨다. 하지만 중량%로서 2%를 넘길 경우 금속간 화합물 상의 석출을 야기하여 기계적 물성을 약화시킬 수 있다. 따라서 Mn은 2 중량% 이하로 한다.
실리콘(Si)은 고용 강화로 강도 및 경도를 증가시킨다. 그러나 Si을 중량%로서 1% 초과하여 함유하는 경우 Laves 상과 같은 상을 형성시켜 재료의 기계적 특성과 조사 저항성 특성을 감소시킨다. 따라서 Si는 0 초과 1 중량% 이하로 한다. 또한 Si는 미세 TiC 상의 석출을 도우며 Si 대 Ti의 중량비는 0.8 내지 1.2 일 수 있다. Si 대 Ti의 중량비가 0.8보다 낮으면 TiC 미세 석출상 형성을 돕기 어렵고, Si 대 Ti의 중량비가 1.2 보다 높으면 미세 TiC 석출상이 조대화가 되어 취성이 증가되는 문제가 생길 수 있다.
알루미늄(Al)은 납 또는 납-비스무스 환경에서 200 ~ 650 ℃ 환경에서 연간 10 μm 미만의 치밀한 알루미나 산화막을 형성하기 위하여 중량%로서 최소 1% 이상 함유시킬 필요가 있다. 그러나 Al 함유량이 4%를 초과하면 금속간 화합물 상이 형성되어, 기계적 강도 및 용접 특성을 떨어뜨린다. 따라서 Al은 1~4 중량% 이하로 한다.
티타늄(Ti)은 탄소(C)와 함께 모재의 입계에서 미세 TiC 석출상을 형성하여 크롬탄화물의 석출을 방지하고, 입계근방의 Cr 함유량을 유지시킨다. Ti은 철-니켈-크롬-망간 합금에의 고용한계를 고려하고 동시에 충분한 첨가효과를 얻을 수 있는 첨가량으로써 0.1 중량% 이상의 함량이 필요하다. 그러나 Ti 함량이 1 중량%를 초과할 경우, 미세 TiC 석출상의 조대화로 입계를 통한 산소 침투 및 합금 원소의 용출이 증가하여 부식 저항성을 떨어뜨린다. 또한 조대화된 미세 TiC 석출상은 기계적 강도를 감소시킨다. 입내에서도 미세 TiC 석출상을 형성하여 공극 및 격자간 원자를 입내에서 성장하게 하고 조사 팽윤을 야기할 수 있다. 따라서 Ti은 0.1~1 중량%이하로 한다.
탄소(C)는 중성자 조사에 의하여 Cr과 반응하여 입계근방에 크롬탄화물을 석출하고, 입계의 크롬을 감소시킨다. 크롬탄화물의 형성은 입계의 내식성을 낮추어 응력부식파괴를 초기화하기 때문에, C 함량은 중량%로서 0.4% 이하로 한다. 그러나 C 함량이 감소할 경우 강도가 줄어들기 때문에, 0.05% 이상으로 한다. 특히 본 발명에서 C는 Ti와 결합하여 미세 TiC 석출상을 형성하도록 종래 오스테나이트 스테인리스 강에 비하여 C의 함량이 비교적 높은 특징이 있다. Ti 대 C의 비율은 0.8 내지 3.2 중량비가 적절하다. Ti 대 C의 중량비가 0.8보다 낮으면 미세 TiC 석출상이 충분히 형성되지 않는 문제가 있고, Ti 대 C의 중량비가 3.2 보다 높으면 상대적으로 높아진 C의 함량으로 인해 오스테나이트계 스테인리스 강의 강도가 낮아질 수 있다.
본 발명에 따른 오스테나이트계 스테인리스 강은 미세 TiC 석출상을 함유하는데 미세 TiC 석출상의 함량은 조사 저항성을 확보하기 위해 0 초과 0.5 중량% 미만일 수 있다. 해당 함량을 함유하기 위해, 600~1100℃, 1~20 시간 동안 항온 열처리를 수행하고 공랭(Air Cooling) 혹은 급랭(Fast cooling)을 수행한다.
인(P)는 조사 팽윤과 조사 크리프로 인한 변형률을 감소시킨다. 상기 함량에 대한 상한선은 연구된 바가 없으며, 본 발명에서는 중량%로서 0.03%로 제한한다.
한편, 본 발명에 따른 오스테나이트계 스테인리스 강을 500도 이상의 고온에 노출시키면 표면에 알루미나 산화막을 포함하는 산화물 층이 형성되며, 알루미나 산화막은 납 및 납-비스무스 공융물과의 경계에 형성되어 부식으로부터 보호한다. 또한 상기 산화물 층은 크로미아(Cr2O3) 또는 Fe-Cr 산화물을 더 포함할 수 있는데, 크로미아 산화막 및 Fe-Cr 산화물은 알루미나 산화막과 다른 층에 형성될 수 있다.
본 발명에 따른 오스테나이트계 스테인리스 강의 제조방법은 전술한 조성을 갖는 모재를 마련하는 단계; 상기 모재를 진공 유도 용융 또는 진공 아크 재용해 처리 후 급속 냉각하여 오스테나이트계 스테인리스 강 모재를 형상화하는 단계 및 상기 형상화된 오스테나이트계 스테인리스 강 모재를 600~1100 ℃의 온도에서 1~20 시간 동안 항온 열처리하고 공랭 혹은 급랭하여 입계에 미세 TiC 석출상을 석출하는 단계로 구성될 수 있다.
특정 수준에서 산소는 오스테나이트계 스테인리스 강 캐스팅에서 공극(porosity)를 일으킬 수 있는데, 이는 높은 주기적 부하(High cyclic loads)를 일으키는 캐스트 구성요소 내의 잠재적 균열을 발생시킬 수 있다. 진공 유도 용융(Vacuum induction melting) 또는 진공 아크 재용해(Vacuum Arc Remelting) 와 같은 2차 재용해 기술(Secondary remelting techniques) 및 다른 미세화 기술(refining techniques)와 조합된 진공 산소 탈탄 또는 아르곤 산소 탈탄(Decarburization)을 통하여 오스테나이트계 스테인리스 강의 열간 가공성을 개선하며, 용접물의 용접금속 및 캐스팅 내에서의 공극율 및 열 균열에 대한 민감도를 줄일 수 있다. 진공 유도 용융 또는 진공 아크 재용해 처리를 통하여, 기지 조직을 완전히 오스테나이트화하며(full austenitization), 미세조직 중의 화학 성분 분포를 균질화(homogenization)하고, 미처 용해되지 않은 화합물을 최대한 용해할 수 있다. 이는 오스테나이트계 스테인리스 강의 청결, 연성, 인성 및 전반적인 부식거동을 개선할 수 있다.
먼저 O,N,S,P 및 불순물 원소를 줄이기 위해 순수한 원소들이 진공에서 유도 용융된다. 그 후, 진공 아크 재용해 과정을 거쳐 보다 미세화된 주조 미세조직을 얻을 수 있으며, 최종 형상으로 정밀 주조 할 수 있다. 이 때 모재는 봉의 형상으로서 내부에 플럭스가 채워질 수 있다. 형상화된 오스테나이트계 스테인리스 강 모재를 먼저 용체화 처리를 위하여 고온영역인 1000~1200 ℃ 에서 5분 이상 유지한 뒤 시효처리온도(600~800 ℃)까지 1 내지 15 ℃/분의 속도로 서랭한다. 이 후, 시효처리온도(600~800 ℃)에서 1~20 시간 동안 항온 열처리를 한 후 공랭 혹은 급랭하여 열처리를 종결한다. 여기서 용체화 처리시간은 형상화된 오스테나이트계 스테인리스 강 모재에서 균질화 처리가 충분하게 일어나는 시간을 말하며, 보다 자세하게는 모재 내의 탄화물 및 미세 TiC 석출상을 충분히 용해, 고용시키지만 결정립의 성장은 발생하지 않을 정도의 시간을 말한다. 또한, 시효처리시간은 본 발명의 오스테나이트계 스테인리스 강의 미세 TiC 석출상을 입계에 균일하게 석출시켜 동일 시효처리 온도 구간(600~800 ℃) 노출을 해도 조직상의 변화가 없을 정도로 시효처리가 충분하게 일어나는 시간이다.
본 발명에 있어서, 용체화 처리 후 곧바로 시효처리 온도까지 서랭함에 있어 1~15℃/분으로 한정한 이유는 냉각속도가 1 ℃/분 미만일 경우 고온에서 노출시간이 길어지므로 결정립이 조대화되어 기본적인 기계적 특성이 저하될 우려가 있다. 또한, 냉각속도가 15 ℃/분 초과할 경우 TiC 석출상을 형성시킬 충분한 시간적 여유가 없다. 한편, 용체화 처리 후 그 온도에서 실온까지의 온도영역의 전 범위에서 1~15 ℃/분으로 서랭할 경우, 별도의 시효처리를 해야 하므로 시간 및 비용의 부담이 크다.
오스테나이트계 스테인리스 강의 제조.
하기 표 1에서 비교예 1은 종래 오스테나이트계 스테인리스 강(SS316L)을 이루는 각 원소들의 조성을, 실시예 1은 본 발명의 일 실시예에 따른 오스테나이트계 스테인리스 강을 이루는 각 원소들의 조성을 나타내었다. 또한 실시예 1 및 비교예 1에 따른 오스테나이트계 스테인리스 강의 미세조직을 주사전자현미경으로 촬영하여 도 3 및 도 4에 도시하였다.
도 3은 종래 오스테나이트계 강(SS316L)의 미세조직을 주사전자현미경으로 촬영한 사진이고, 도 4는 본 발명의 일 실시예에 따른 오스테나이트계 스테인리스 강의 미세조직을 주사전자현미경으로 촬영한 사진이다. 도 3 및 도 4 모두 각각(a)는 500배, 도 3 및 도 4의(b)는 2000배 확대한 사진이다.
단위 Fe C Al Si Mo Ti Cr Mn Ni P
비교예1 wt.% Bal. 0.03 0.8 0.75 2.5 - 17 2 12 -
실시예1 wt.% Bal. 0.1 3.36 0.35 1.10 0.42 14.62 1.57 17.63 0.02
도 3과 도 4를 비교하여 살펴보면, 도 4의(a)에서 미세 TiC 석출상을 나타내는 작은 점들을 확인할 수 있다. 특히 2000배 확대한 도 4의(b)에서 입계에 분포된 미세 TiC 석출상을 확인할 수 있다. 본 발명에 따른 오스테나이트계 스테인리스 강은 미세 TiC 석출상을 함유하는 것을 확인할 수 있는데 특히 미세 TiC 석출상이 입계에 분포함으로써 입계 밀도를 높이고 금속 내 중성자 조사 손상을 억제할 수 있다.
이제까지 본 발명에 대하여 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.
본 발명의 따른 오스테나이트계 스테인리스 강은 납 또는 납-비스무스 공융물과 접촉하는 환경 하에서도 구성원소 용출이 일어나지 않고 알루미나 산화막의 형성이 가능하며 우수한 내부식성으로 원자로의 핵연료피복관 등 구조재료로서 사용될 수 있다.

Claims (8)

  1. 중량%로, Cr 13~20%, Ni 16~20%, Mo 0 초과 2% 이하, Mn 0 초과 2% 이하, Si 0 초과 1% 이하, Al 1~4%, Ti 0.1~1%, C 0.05~0.4%, P 0 초과 0.03 중량% 를 함유하고 잔부가 Fe 및 불순물인 오스테나이트계 스테인리스 강 모재로 제조된 오스테나이트계 스테인리스 강.
  2. 제 1 항에 있어서,
    상기 Ti 대 상기 C의 중량비는 0.8 내지 3.2 인 것을 특징으로 하는 오스테나이트계 스테인리스 강.
  3. 제 1 항에 있어서,
    상기 Si 대 상기 Ti의 중량비는 0.8 내지 1.2 인 것을 특징으로 하는 오스테나이트계 스테인리스 강.
  4. 제 1 항에 있어서,
    미세 TiC 석출상을 0 초과 0.5 중량% 미만 함유하는 것을 특징으로 하는 오스테나이트계 스테인리스 강.
  5. 제 1 항에 있어서,
    상기 오스테나이트계 스테인리스 강 모재는 봉의 형상인 것을 특징으로 하는 오스테나이트계 스테인리스 강.
  6. 제 5 항에 있어서,
    상기 봉의 형상은 내부에 플럭스가 채워진 것을 특징으로 하는 오스테나이트계 스테인리스 강.
  7. 중량%로, Cr 13~20%, Ni 16~20%, Mo 0 초과 2% 이하, Mn 0 초과 2% 이하, Si 0 초과 1% 이하, Al 1~4%, Ti 0.1~1%, C 0.05~0.4%, P 0 초과 0.03 중량% 를 함유하고 잔부가 Fe 및 불순물인 오스테나이트계 스테인리스 강 모재를 준비하는 단계;
    진공 유도 용융(Vacuum induction melting) 또는 진공 아크 재용해(Vacuum Arc Remelting) 처리하여 오스테나이트계 스테인리스 강 모재를 형상화하는 단계;
    상기 형상화된 오스테나이트계 스테인리스 강 모재를 600~1100 ℃의 온도에서 1~20 시간 동안 항온 열처리하고 공랭 혹은 급랭하여 미세 TiC 석출상을 석출하는 단계;를 포함하는 오스테나이트계 스테인리스 강의 제조방법.
  8. 제 7 항에 있어서, 상기 오스테나이트계 스테인리스 강 모재를 형상화하는 단계는 진공 유도 용융(Vacuum induction melting) 또는 진공 아크 재용해(Vacuum Arc Remelting) 처리 후 상온에서 급속 냉각하는 응고단계;
    열간 가공 또는 냉간 가공 또는 용접 중에서 가공하는 단계;를 더 포함하는 것을 특징으로 하는 오스테나이트계 스테인리스 강의 제조방법.
PCT/KR2021/016806 2020-11-16 2021-11-16 납 또는 납-비스무스 공융물 내의 내부식성 알루미나 산화막 형성 오스테나이트계 스테인리스 강 및 이의 제조 방법 WO2022103243A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200152892 2020-11-16
KR10-2020-0152892 2020-11-16
KR1020210155995A KR102670439B1 (ko) 2020-11-16 2021-11-12 납 또는 납-비스무스 공융물 내의 내부식성 알루미나 산화막 형성 오스테나이트계 스테인리스 강 및 이의 제조 방법
KR10-2021-0155995 2021-11-12

Publications (1)

Publication Number Publication Date
WO2022103243A1 true WO2022103243A1 (ko) 2022-05-19

Family

ID=81602571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/016806 WO2022103243A1 (ko) 2020-11-16 2021-11-16 납 또는 납-비스무스 공융물 내의 내부식성 알루미나 산화막 형성 오스테나이트계 스테인리스 강 및 이의 제조 방법

Country Status (1)

Country Link
WO (1) WO2022103243A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115838913A (zh) * 2022-12-06 2023-03-24 西安交通大学 耦合温控和辐照效应提高材料耐高温铅/铅铋腐蚀的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06248393A (ja) * 1993-02-26 1994-09-06 Nippon Steel Corp 耐高温腐食特性に優れたオーステナイト系ステンレス鋼
JPH10140296A (ja) * 1996-09-11 1998-05-26 Sumitomo Metal Ind Ltd 熱間加工性に優れるAl含有オーステナイト系ステンレス鋼
JPH11279714A (ja) * 1998-03-31 1999-10-12 Nippon Steel Corp 耐スケール剥離性に優れた水素発生器用オーステナイト系ステンレス鋼
KR100294354B1 (ko) * 1995-08-09 2001-07-12 고지마 마타오 열중성자 흡수능이 우수한 오스테나이트계 스테인레스강
US20100062279A1 (en) * 2007-01-15 2010-03-11 Takahiro Osuki Austenitic stainless steel welded joint and austenitic stainless steel welding material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06248393A (ja) * 1993-02-26 1994-09-06 Nippon Steel Corp 耐高温腐食特性に優れたオーステナイト系ステンレス鋼
KR100294354B1 (ko) * 1995-08-09 2001-07-12 고지마 마타오 열중성자 흡수능이 우수한 오스테나이트계 스테인레스강
JPH10140296A (ja) * 1996-09-11 1998-05-26 Sumitomo Metal Ind Ltd 熱間加工性に優れるAl含有オーステナイト系ステンレス鋼
JPH11279714A (ja) * 1998-03-31 1999-10-12 Nippon Steel Corp 耐スケール剥離性に優れた水素発生器用オーステナイト系ステンレス鋼
US20100062279A1 (en) * 2007-01-15 2010-03-11 Takahiro Osuki Austenitic stainless steel welded joint and austenitic stainless steel welding material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115838913A (zh) * 2022-12-06 2023-03-24 西安交通大学 耦合温控和辐照效应提高材料耐高温铅/铅铋腐蚀的方法
CN115838913B (zh) * 2022-12-06 2023-11-17 西安交通大学 耦合温控和辐照效应提高材料耐高温铅/铅铋腐蚀的方法

Similar Documents

Publication Publication Date Title
WO2018074743A1 (ko) 고강도 Fe-Cr-Ni-Al 멀티플렉스 스테인리스강 및 이의 제조방법
KR100261666B1 (ko) 저 부식성과 고강도를 갖는 지르코늄합금 조성물
EP1930454A1 (en) Zirconium alloy composition having excellent corrosion resistance for nuclear applications and method of preparing the same
KR930009415B1 (ko) 내식성 지르코늄 합금
KR20010047592A (ko) 니오븀이 첨가된 핵연료피복관용 지르코늄 합금의 조성물
CN109652628A (zh) 一种核燃料包壳用FeCrAl合金及其制备和晶粒尺寸控制方法
WO2022103243A1 (ko) 납 또는 납-비스무스 공융물 내의 내부식성 알루미나 산화막 형성 오스테나이트계 스테인리스 강 및 이의 제조 방법
KR20130098618A (ko) 사고조건 하의 원자로 내에서 우수한 내산화성을 나타내는 핵연료 피복관용 지르코늄 합금 조성물, 이를 이용하여 제조한 지르코늄 합금 핵연료 피복관 및 이의 제조방법
KR100261665B1 (ko) 우수한 부식저항성과 고강도를 갖는 지르코늄 합금조성물
CN106957971A (zh) 一种压水堆核电厂用锆合金及其制备方法
EP0106426B1 (en) Austenitic alloys and reactor components made thereof
KR101378066B1 (ko) 합금원소의 첨가량을 낮추어 부식저항성을 향상시킨 핵연료 피복관용 지르코늄 합금 조성물 및 이를 이용한 지르코늄 합금 핵연료 피복관의 제조방법
KR102670439B1 (ko) 납 또는 납-비스무스 공융물 내의 내부식성 알루미나 산화막 형성 오스테나이트계 스테인리스 강 및 이의 제조 방법
CN116970873B (zh) 一种含铍铁素体耐热钢及其制造方法
KR101833404B1 (ko) 고강도 Fe―Cr―Ni―Al 멀티플렉스 스테인리스강 및 이의 제조방법
WO2024045939A1 (zh) 一种核屏蔽用富镝镍钨合金材料及其制备方法
US5278881A (en) Fe-Cr-Mn Alloy
KR101779128B1 (ko) 경수로 사고저항성이 우수한 듀플렉스 조직을 갖는 스테인리스강 핵연료 피복관 및 이의 제조방법
CN110629128A (zh) 一种FeCrAlZr包壳材料及制备方法
CN115478220A (zh) 一种铅铋堆用铁素体/马氏体耐热钢及其制备方法
CN106222577A (zh) 不锈钢合金及其制备方法、燃料组件的不锈钢包壳
US4299625A (en) Niobium-base alloy
KR100754477B1 (ko) 크립저항성이 우수한 지르코늄 합금 조성물
JP2726299B2 (ja) 原子炉用高耐食性ジルコニウム合金
WO2024019408A1 (ko) 우수한 중성자흡수능과 인장특성을 갖는 티타늄-가돌리늄계 합금의 합금조성 및 이를 통해 제조한 중성자흡수 구조재

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21892410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21892410

Country of ref document: EP

Kind code of ref document: A1