WO2022102791A1 - 新規抗原検出用リンカー及びそれを用いた抗原検出方法 - Google Patents

新規抗原検出用リンカー及びそれを用いた抗原検出方法 Download PDF

Info

Publication number
WO2022102791A1
WO2022102791A1 PCT/JP2021/042138 JP2021042138W WO2022102791A1 WO 2022102791 A1 WO2022102791 A1 WO 2022102791A1 JP 2021042138 W JP2021042138 W JP 2021042138W WO 2022102791 A1 WO2022102791 A1 WO 2022102791A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
mrna
linker
fluorescence
peptide
Prior art date
Application number
PCT/JP2021/042138
Other languages
English (en)
French (fr)
Inventor
直人 根本
壮 東出
Original Assignee
国立大学法人埼玉大学
株式会社Epsilon Molecular Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人埼玉大学, 株式会社Epsilon Molecular Engineering filed Critical 国立大学法人埼玉大学
Publication of WO2022102791A1 publication Critical patent/WO2022102791A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6804Nucleic acid analysis using immunogens

Definitions

  • the present invention relates to an antigen detection linker using a fluorescence-enhanced RNA aptamer and an antigen detection method using the same. More specifically, the present invention relates to a novel linker for detecting an antigen without performing PCR using a fluorescence-enhanced aptamer, and an antigen detection method using the linker.
  • an immuno-PCR As a method for detecting an antigen, an immuno-PCR, an ELISA, an immunochromatography method and the like are known. Among these, immuno-PCR is widely used for various tests, diagnoses, etc. because it can detect with high sensitivity (see Non-Patent Document 1, hereinafter referred to as "Prior Technique 1"). As shown in FIG. 1, the immuno-PCR method requires the following steps, and in immuno-PCR, the DNA to be detected is amplified by PCR: (1) The first antibody (monoclonal antibody 1) is immobilized on the solid phase, and the first antibody and the antigen are bound to each other;
  • the second antibody (monoclonal antibody 2) is bound to the antigen bound to the first antibody; (3) The biotinylated third antibody (monoclonal antibody 3) is bound to the second antibody; (4) The biotin bound to the third antibody and the biotinylated DNA to be detected are bound via streptavidin for detection.
  • a technique that enables a one-to-one correspondence between a genotype (DNA or RNA, a nucleotide sequence that encodes information) and a phenotype (a peptide having a function) (hereinafter referred to as "corresponding technique").
  • corresponding technique a technique that enables a one-to-one correspondence between a genotype (DNA or RNA, a nucleotide sequence that encodes information) and a phenotype (a peptide having a function)
  • corresponding technique There are known techniques such as a phage display method, a cell surface layer display method, a ribosome display method, an mRNA display method, and a cDNA display method.
  • the phage display method using cells and the cell surface display method are suitable for producing proteins.
  • the mRNA display method and the cDNA display method which perform translation in a cell-free translation system without using cells, are suitable for producing cDNA and peptides corresponding to cDNA using mRNA (Patent Document 1).
  • Patent Document 1 Non-Patent Document 2
  • Patent Document 3 Non-Patent Document 3
  • DNA when DNA is used in the above-mentioned display method, it is preferable to use a DNA strand having a protruding end in terms of binding to a linker that plays a role of connecting the DNA and the peptide.
  • a method for producing such a protruding end a method using an enzymatic reaction using inosine, which is a special base, and endonuclease V, which is a repair enzyme derived from Escherichia coli, is known (see Non-Patent Document 4, hereinafter "conventional". Technology 5 ").
  • Endonuclease V recognizes inosine (indicated as "I” in the sequence) that has a structure different from A, T, G, and C contained in DNA, and 1) on the 3'side of inosine. Cleaves the phosphodiester bond between an adjacent base and its neighbor (second base), or 2) between the second and third bases. The probability of cleavage is 95% for 1) and 5% for 2), respectively, and it is known that a phosphate group remains in the truncated 3'side fragment (hereinafter referred to as "conventional technique 6"). See FIG. 2).
  • the cDNA display method of the prior art 2 uses a linker
  • the cDNA and the peptide encoded by the linker (hereinafter, may be referred to as “peptide having the corresponding amino acid sequence”) are 1: 1. It is an excellent invention in that it can be linked via a linker. However, there is a problem that the antigen cannot be detected with high sensitivity only by the cDNA display method.
  • An object of the present invention is to provide an antigen measuring system capable of highly sensitive and rapid detection without using PCR.
  • one aspect of the present invention is a novel linker for antigen detection having a main chain and a side chain, (1) the main chain is an mRNA containing a side chain binding site and a first cross-linking compound. A binding region, a fluorescence detection DNA binding region containing a second cross-linking compound, a solid phase cleavage site located on the 5'side of the fluorescence detection DNA binding region, and a 5'end of the backbone. It comprises a solid phase binding site; (2) the side chain comprises a backbone binding site and a peptide presenting site; a novel linker for antigen detection.
  • the main chain binding site is composed of NH and the peptide presentation site is composed of puromycin or an analog thereof.
  • the puromycin analog may be any compound selected from the group consisting of 3'-N-aminoacyl puromycin (PANS-amino acid) and the 3'-N-aminoacyl adenosine amino acid nucleoside (AANS-amino acid).
  • PANS-amino acid 3'-N-aminoacyl puromycin
  • AANS-amino acid 3'-N-aminoacyl adenosine amino acid nucleoside
  • the solid phase cleavage site is composed of riboguanine and the binding site is composed of biotin.
  • the first cross-linking compound covalently binds mRNA complementaryly bound to the mRNA binding region to the main chain
  • the second cross-linking compound is used for fluorescence detection in the fluorescence detection DNA binding region. It is preferable to covalently bind the double-stranded DNA encoding the RNA aptamer, and the first and second cross-linking compounds are preferably photocrosslinking bases.
  • the photocrosslinking base is preferably any compound selected from the group consisting of cyanovinylcarbazole and its derivatives.
  • the first and second cross-linking compounds may be the same compound or different compounds.
  • the cyanovinylcarbazole is 3-cyanovinylcarbazole, and the cyanovinyl derivative is 5'-O- (4,4'-dimethoxytrityl) -1'-(3-cyanovinylcarbazole-9-yl) -2'.
  • the DNA for fluorescence detection corresponds to the RNA aptamer for enhancing fluorescence. It is preferably a double-stranded DNA having a nucleotide sequence.
  • the fluorescence detection DNA preferably has a 5'protruding end
  • the fluorescence enhancing RNA aptamer is preferably an RNA Mango aptamer.
  • the fluorescence detection DNA is preferably a double-stranded DNA having a nucleotide sequence corresponding to the fluorescence enhancing RNA aptamer, and the fluorescence detection DNA binds complementarily to the fluorescence detection DNA binding region 5'. It is preferably provided with a protruding end. Moreover, it is preferable that the RNA aptamer for enhancing fluorescence is an RNA Mango aptamer.
  • Another aspect of the present invention is a backbone comprising an mRNA binding region, a DNA binding region for fluorescence detection, a solid phase binding site and a solid phase cleavage site; a peptide corresponding to the mRNA bound to the main chain.
  • a method for detecting an antigen using a linker composed of a side chain containing a peptide presentation site for presentation (1) DNA of an antigen-binding peptide or protein (hereinafter, may be simply referred to as "peptide").
  • the DNA display molecule forming step of linking the DNA for fluorescence detection with the second cross-linking compound (6) the DNA display molecule is transcribed to form an RNA aptamer from the DNA for fluorescence detection, and the fluorescence of the RNA aptamer is formed. It is an antigen detection method comprising a measurement step for measuring intensity;
  • the mRNA binding region contains the first cross-linking compound for binding mRNA
  • the fluorescence detection DNA binding region contains the DNA encoding an RNA aptamer for fluorescence amplification.
  • the solid phase cleavage site is composed of riboguanine
  • the solid phase binding site is composed of biotin
  • the peptide presentation site is composed of puromycin or an analog thereof.
  • the cross-linking compound is preferably a photo-crosslinking base.
  • the photocrosslinking base is preferably any compound selected from the group consisting of cyanovinylcarbazole and its derivatives, and the derivatives are 5'-O- (4,4'-dimethoxytrityl) -1'-.
  • the DNA for fluorescence detection is preferably a double-stranded DNA having a nucleotide sequence corresponding to the RNA aptamer for enhancing fluorescence, and the DNA for fluorescence detection complementarily binds to the DNA binding region for fluorescence detection of the main chain. It is preferably provided with a 5'protruding end. Moreover, it is preferable that the RNA aptamer for enhancing fluorescence is an RNA Mango aptamer.
  • the novel linker for antigen detection of the present invention can bind the mRNA encoding the peptide to the main chain in a short time, the risk of the mRNA being degraded during cell-free translation can be reduced. Then, an mRNA-linker-peptide conjugate in which the peptide encoded by the above mRNA is presented at the peptide presentation site of the linker can be obtained.
  • the linker contains a solid phase binding site, the mRNA-linker-peptide linkage can be purified by binding to the solid phase, and reverse transcription from mRNA or modification of the presented peptide can be easily performed. It can be carried out.
  • the fluorescence detection DNA can be bound to the main chain of the new antigen detection linker in a short time, high-sensitivity rapid measurement can be performed by a simple operation without using PCR.
  • FIG. 1 is a diagram schematically showing an outline of the immuno-PCR method.
  • FIG. 2 is a schematic diagram showing the cleavage mode of endonuclease V.
  • FIG. 3 is a schematic diagram showing a conventional linker for cDNA display.
  • rG represents riboguanine (solid phase cleavage site) and K represents 3-cyanovinylcarbazole (photocrosslinking site).
  • P peptide presentation site
  • F labeleled site
  • B biotin (solid phase binding site).
  • FIG. 4 is a schematic showing the antigen detection linker of the present invention.
  • the linker of the present invention contains biotin and two cnvKs (hereinafter, may be referred to as “two photobridge compound linkers”), and the DNA of an RNA aptamer for enhancing fluorescence is linked to the main chain.
  • P, F, B, rG and K are the same as in FIG. 3 above.
  • FIG. 5 is a diagram showing the emission of RNA Mango.
  • A shows the binding mode of a complex of RNA mango, a thiazole orange derivative and biotin (hereinafter, may be referred to as "TO1-Biotin”) and its product.
  • (B) is a diagram showing a photograph of the above product of (A) in a schematic diagram.
  • FIG. 6 is a diagram showing the composition of a construct as an antigen.
  • A shows a nucleotide sequence
  • B shows its composition.
  • FIG. 7 is a diagram schematically showing the binding between the linker of the present invention shown in FIG. 4 and mRNA or Mango DNA (double strand). It should be noted that although these are described as being bound at the same time for convenience to show the binding mode with the linker, in reality, these two molecules do not bind to the linker at the same time.
  • FIG. 8 is a gel electrophoresis image showing the results of subjecting the synthesized Biotin-2cnv K-Linker to electrophoresis. From left, 10 bp ladder, Biotin-2cnvK-fragment (including 2 molecules of cnvK, backbone portion of the linker shown in FIG. 4), Biotin-2cnvK-Linker (containing 2 molecules of cnvK, main chain of FIG. 4). A linker consisting of a chain and a side chain) is shown.
  • FIG. 9 is a gel electrophoresis image showing that a template DNA with a protruding end of RNA Mango was formed. From the left, the 100bp ladder, the template DNA before EndoV treatment, and the template DNA after EndoV treatment (template DNA with protruding ends) are shown.
  • FIG. 10 is a diagram schematically showing the preparation of a T-DNA display molecule, which comprises a link between a linker and a B domain and a bond between the DNA display molecule and a Mango DNA sequence.
  • Pu represents puromycin.
  • F, rG and B are as shown in FIGS. 3 and 4.
  • FIG. 11 is a gel electrophoresis image showing the result of forming the T-DNA display.
  • A) is a photograph of the actual gel electrophoresis result, and (B) is a diagram thereof.
  • FIG. 12 is a diagram schematically showing the antigen detection method of the present invention using an ELISA plate.
  • FIG. 13 is a diagram showing fluorescence detection by RNA Mango and formation of a conjugate with a linker.
  • A is a photograph showing fluorescence detection when RNA Mango is used
  • B is a diagram showing the photograph in a schematic diagram.
  • C is an image showing the gel electrophoresis results of the mRNA-linker conjugate and the peptide (BDA) -linker-Mango DNA sequence complex (T-DNA display).
  • the band detected in lane 1 is an mRNA-linker complex
  • the band detected in lane 2 is a peptide (BDA) -linker-Mango DNA sequence complex.
  • FIG. 14 is a diagram showing changes in fluorescence intensity due to changes in T-DNA display concentration and changes in fluorescence intensity due to changes in IgG concentration.
  • A is a graph showing the relationship between the T-DNA display concentration and the relative fluorescence intensity
  • B is a graph showing the relationship between the IgG concentration of the test molecule and the relative fluorescence intensity.
  • FIG. 15 is a diagram showing a comparison of blocking agents with respect to an ELISA plate and the results.
  • A is a graph showing the adsorption amount of display molecules when blocking with each blocking agent (skimmed milk, BSA (bovine serum albumin), gelatin).
  • B is a graph showing the difference in blocking effect depending on the presence or absence of tRNA.
  • C is a graph showing the change in fluorescence intensity of the T-DNA display depending on the IgG concentration depending on the presence or absence of the blocking agent (skimmed milk & tRNA).
  • FIG. 16 is a graph showing the results of examining the effect of the solid phase on the relative fluorescence intensity.
  • FIG. 17 is a diagram schematically showing the antigen detection method of the present invention using CA beads.
  • the linker is composed of a main chain (b) and a side chain (s), as schematically shown in FIG.
  • the backbone (s) comprises a backbone binding site and a peptide-presenting site
  • the backbone (b) comprises a backbone binding site, an mRNA binding region, a DNA binding region for fluorescence detection, and solid phase cleavage. It has a site and a solid phase binding site.
  • the main chain and the side chain are connected to the side chain binding site at the main chain binding site composed of NH.
  • the side chain (s) has a spacer (s1), and the peptide presentation site (s2) is located at the 3'end (free end) that is not bound to the main chain (b). ) Is formed.
  • the side chain contains a fluorescent dye (indicated as “F” in FIG. 4), but it may not be contained.
  • the peptide presentation site (s2) located at the 3'end presents a peptide or protein having a DNA sequence corresponding to the mRNA bound to the backbone (b) of this linker during cell-free translation. It is a site.
  • the peptide presentation site is composed of any molecule selected from the group consisting of puromycin and its analogs.
  • Puromycin is a type of antibiotic and has a structure similar to the 3'end of aminoacyl-tRNA. Therefore, when it binds to the C-terminus of the peptide being synthesized on the ribosome, protein synthesis stops. Utilizing this property, it is used as a peptide presentation site (indicated as "P" in FIG. 4; the same applies in other figures) to which a peptide (or protein) having a DNA sequence corresponding to the above mRNA is bound. Can be done.
  • puromycin analogs examples include 3'-N-aminoacyl-puromycin (PANS-amino acid) and nucleoside (AANS-amino acid) of 3'-N-aminoacyl-adenosine amino acid.
  • PANS-amino acid 3'-N-aminoacyl-puromycin
  • AANS-amino acid nucleoside
  • amino acid portion of PANS-amino acid is glycine
  • PANS-Gly, valine PANS-Val alanine PANS-Ala
  • AANS-Val, AANS-Ala which is alanine, etc. can also be used.
  • the main chain (b) is composed of single-stranded DNA, and as described above, a side chain binding site, an mRNA binding region, a DNA binding region for fluorescence detection, and solid-phase cleavage. It contains a site and a solid phase binding site (SEQ ID NO: 1).
  • the main chain (b) is a first cross-linking compound for binding mRNA into the mRNA binding region and a second cross-linking for binding fluorescence detection DNA into the fluorescence detection DNA binding region. Includes compounds for use. If only one cross-linking compound is contained, it is possible to bind mRNA but not DNA for fluorescence detection (see FIG. 3), so a second cross-linking compound is introduced. (See Figure 4).
  • Table 1 below shows the difference between the main chain of the conventional linker (SEQ ID NO: 2) and the main chain of the linker of the present invention (SEQ ID NO: 1) as a nucleotide sequence.
  • K indicates 3-cyanovinylcarbazole.
  • a solid phase cleavage site (indicated as rG in FIGS. 3 and 4) is linked to the 5'side of the nucleotide sequence represented by SEQ ID NOs: 1 and 2 below.
  • Solid phase binding site (b1) The solid phase binding site (b1) is located at the 5'end of the linker of the present invention and is selected from the group consisting of a sequence consisting of 1 to about 5 nucleotides and biotin, avidin, and their analogs. It is a site composed of the molecule of the above, and the above linker is bound to the solid phase.
  • biotin analog examples include oxybiotin, desbiotin and the like
  • examples of the avidin analog include streptavidin and the like.
  • the solid phase binding site is linked to the solid phase cleavage site of the main chain via a sequence composed of the above 1 to about 5 nucleotides, for example, adenine.
  • solid phase examples include various sensor chips or various substrates used in equipment for molecular interaction analysis, magnetic beads, and the like.
  • the solid phase binding site is configured so as not to hybridize with the mRNA that hybridizes to the linker of the present invention.
  • Solid phase cleavage site (b2)
  • the backbone (b) comprises a solid phase cleavage site for binding the linker to any of the solid phases described above to bind the desired molecule and then releasing the desired molecule from the solid phase.
  • the release of the desired molecule from the solid phase is preferably carried out using an enzyme because it can be cleaved at a desired position by utilizing the high substrate specificity of the enzyme.
  • an enzyme it is preferable to use an endonuclease, and examples thereof include RNase T1 and endonuclease V.
  • the solid phase cleavage site is composed of 1 to 10 bases that can be cleaved by the above-mentioned endonuclease.
  • riboguanine hereinafter, may be abbreviated as "rG"
  • rG riboguanine
  • the mRNA binding region of the linker of the present invention is located between the side chain binding site and the solid phase binding site, and is 3'side from the fluorescence detection DNA binding region located between them.
  • the binding region has a nucleotide sequence encoding a desired protein as a template DNA, and has a sequence capable of hybridizing with the sequence contained in the mRNA sequence obtained by transcribing the template DNA.
  • the mRNA binding region contains a first photocrosslinking compound for photocrosslinking with mRNA under desired conditions.
  • a compound for photocrosslinking include photocrosslinkable artificial nucleic acids, for example, 3-cyanovinylcarbazole (hereinafter, may be referred to as “cnvK”), and the basic skeleton of 3-cyanovinylcarbazole is D.
  • CNV-D phosphoramidite Examples of cnvK related compounds manufactured by Nichika Kagaku Co., Ltd. can be mentioned. It is preferable to use these compounds because they can be crosslinked in a short time, and thus damage to the DNA constituting the main chain of the linker can be suppressed.
  • the first photocrosslinking compound can be placed at any location in the mRNA binding region.
  • cnvK when used as the compound for photocrosslinking, if adenine is placed on the 5'side of cnvK, it efficiently binds to uracil in mRNA which is a complementary strand, so that there is an advantage that the efficiency of photocrosslinking is increased.
  • the main chain of the linker of the present invention is composed of 10 to 50 bases, it is preferable that the mRNA binding region is also composed of 10 to 20 nucleotides.
  • the mRNA binding region is located at a site where the linker itself is easy to synthesize, does not cause an intramolecular interaction with a peptide synthesized by a cell-free translation system, and contains a second photocrosslinking compound described later. This is because it is necessary not to combine them.
  • the linker of the present invention has the DNA binding region for fluorescence detection between the solid phase cleavage site of the main chain (b) and the mRNA binding site.
  • the fluorescence detection DNA binding region is a region for binding double-stranded DNA having a nucleotide sequence corresponding to the fluorescence-enhancing RNA aptamer.
  • aptamer means "synthetic DNA / RNA molecule having the ability to specifically bind to a target substance", and is a protein of a cell or tissue by a three-dimensional structure formed by single-stranded RNA or DNA. The function can be specifically knocked down. Since 1990, aptamers such as growth factors, enzymes, receptors, membrane proteins, and viral proteins have been discovered, and those that bind to metal ions, low molecular weight organic compounds, viruses, and the like are also known.
  • the above aptamers have the advantages of being able to be chemically synthesized in vitro in a short time, having a simple mechanism of action, and having almost no immunogenicity.
  • a method for producing a nucleic acid aptamer an in vitro selection method, a SELEX method, or the like is known. There is no essential difference between RNA aptamers and DNA aptamers, but DNA aptamers are characterized by being chemically more stable.
  • a double-stranded DNA having a nucleotide sequence corresponding to an RNA aptamer for enhancing fluorescence can be used as a molecule for detecting an antigen (hereinafter, may be referred to as “fluorescent group” or “fluorofore”).
  • fluorescent group or “fluorofore”.
  • RNA itself does not have its own strong fluorescence, and it is difficult to detect a small amount of RNA either in vitro or in vivo.
  • a fluorescent reporter molecule is covalently bound to a matching tag region integrated into the target RNA and introduced into the RNA.
  • the matching tag region include suitable sequences, tertiary structure, and the like.
  • the fluorescent reporter molecule include a fluorescent dye, and when a fluorescent dye is bound as the fluorescent reporter molecule, a dye-bound RNA aptamer can be obtained.
  • Spinach, Corn, Mango and the like can be mentioned as a typical dye-binding RNA aptamer.
  • Mango aptamers bind to a series of thiazole orange (fluorofores, sometimes referred to as "TO1") derivatives with an affinity of the nM order, and the fluorescence of this fluorophore is enhanced up to 1,100-fold.
  • TO1 thiazole orange
  • FIG. 5 when RNA Mango and TO1-biotin are mixed, TO-1 biotin is incorporated into RNA Mango to form an RNA-TO1-biotin complex and emit strong fluorescence (Fig. 5). 5 (A) and (B)).
  • the DNA sequence (SEQ ID NO: 3) containing the Mango DNA sequence encoding RNA Mango is shown below. In the following sequences, base numbers 18 to 111 correspond to the Mango DNA sequence.
  • the fluorescence detection DNA is preferably double-stranded DNA having a 5'protruding end (see FIG. 2). It is possible to anneal to the fluorescence detection DNA binding region in the main chain (b) of the linker of the present invention and form a covalent bond with the above-mentioned second photocrosslinking compound, enabling highly sensitive detection described later. Because it becomes.
  • the DNA encoded by the above mRNA binds to the desired promoter, Cap sequence, desired translation enhancer sequence, desired translation initiation sequence, and target protein at the 5'end. It has a sequence encoding a peptide or protein to be used, a sequence that hybridizes with the mRNA linking portion, and can contain a desired purification tag sequence at the 3'end.
  • the desired promoter for example, it is preferable to use universal primers such as T7 promoter and T3 promoter because of their high versatility.
  • the translation enhancer sequence for example, it is preferable to use an ⁇ sequence which is a translation enhancer for tobacco mosaic virus.
  • the translation initiation sequence for example, it is preferable to use a Kozak sequence, a Shine Dalgarno sequence, or the like because it promotes the initiation of translation.
  • an antigen binding sequence a sequence of a peptide that binds to a desired antigen (hereinafter, may be referred to as an "antigen binding sequence" can be linked to the 3'side of these sequences.
  • the following sequence SEQ ID NO: 4 was designed (see FIG. 6 (A)).
  • a x6 histidine tag (hereinafter, may be referred to as “His-tag”), a glutathione-S-transferase tag, or the like
  • His-tag a x6 histidine tag
  • glutathione-S-transferase tag or the like
  • it is preferable because it can be purified.
  • the protein that binds to the above antigen is presented by puromycin constituting the peptide presentation site of the side chain of the linker of the present invention.
  • a sequence encoding the B domain of the A protein that binds to the Fc region of IgG (hereinafter, may be referred to as “BDA”) is incorporated into DNA as an antigen-binding sequence. Can be done.
  • the linker of the present invention may contain a main chain (b) segment (a segment containing two photocrosslinking compounds) and a side chain (s) segment (a peptide presentation site and FITC which is a fluorescent substance). It is composed of good segments), and these two are bound by NH via EMCS (see FIG. 4), but can be produced, for example, by the following experimental method.
  • a cross-linking agent-containing solution having a desired concentration is prepared, and the main chain (b) segment thereof is placed in a desired concentration in a sodium phosphate buffer so as to have a desired concentration.
  • N, N-dimethylformamide solution of about 50 to about 150 mM EMCS as a cross-linking agent and place it in about 25 to about 75 ⁇ L of about 0.1 to about 0.5 M sodium phosphate buffer (pH about 7.0 to about 7.5).
  • disodium hydrogen phosphate buffer and a reducing agent are added to the above side chain (s) segment, and the mixture is shaken and stirred at room temperature for a desired time. Then, the buffer is exchanged, the fluorescent fraction is taken, and the EMCS solution containing the above main chain segment (b) is added and reacted to obtain the linker of the present invention.
  • a disodium hydrogen phosphate buffer pH about 8.5 to about 9.5
  • a reducing agent about 0.5 to about 1.5 M DTT
  • buffer exchange is performed with a NAP5 column filled with about 15 to about 30 mM sodium phosphate buffer, and the fluorescent fraction is separated.
  • an EMCS solution containing the main chain segment (b) prepared as described above is added, and the mixture is reacted at about 2 to about 6 ° C. overnight.
  • the linker of the present invention can be obtained by cutting and purifying the gel after migration. For example, add about 0.5 to about 1.5 M DTT in an amount of about 1/15 to about 1/25 of the total liquid volume, shake and stir at room temperature for about 15 to about 45 minutes, and concentrate by ethanol precipitation. Then, measure up to about 20 to about 40 ⁇ L with ultrapure water such as Ultrapure water, and perform electrophoresis using 10% polyacrylamide gel under the conditions of 60 ° C, 200 V, and 30 minutes.
  • ultrapure water such as Ultrapure water
  • the gel after completion of electrophoresis is placed on a glass plate, the gel is stained with a staining solution having a desired dilution factor, and the gel is read by an imager.
  • Print the image on paper at full size place the paper under the glass plate, align it with the gel, and cut out the desired band using a scalpel and tweezers.
  • the cut band is placed in a tube, chopped, added with a desired solvent in a desired amount, and eluted with shaking overnight. Then, the filtrate obtained by centrifuging this eluate is collected, and the concentration and volume are adjusted according to the next experiment.
  • the gel after electrophoresis is stained with SYBR-Gold diluted about 8,000 to 12,000 times, read with an imager, and the image is printed on paper at the actual size. Place this paper under a glass plate, align it, then disinfect the sterile scalpel and tweezers with 70% ethanol, use them to cut off the band at the desired location, and use a tube of about 1 to about 2 mL. Put it in and crush it finely. About 350 to about 450 ⁇ L of MilliQ water is added thereto, and the mixture is shaken overnight using a shaker or the like to elute.
  • All of this eluate is transferred to, for example, Costar Spin-X Centrifuge Tube Filter or the like, centrifuged at about 10,000 to about 20,000 xg for about 10 to about 20 minutes, and the obtained filtrate is collected. Then, for example, ethanol precipitation is performed and concentrated, and the concentration and volume are adjusted for the next experiment.
  • Each segment of the linker of the present invention may be produced as described above, or may be outsourced to a company that synthesizes such molecules.
  • RNA aptamer when Mango RNA aptamer is used as a fluorescent group, double-stranded DNA is synthesized from the RNA according to a conventional method. Then, when inosine for forming a protruding end enters at a desired position from the 5'end, and when this protruding end is annealed with the fluorescence detection DNA binding region, the above-mentioned second light is used.
  • the nucleotide sequence of this aptamer is designed so that the cross-linking compound and thymine are annealed.
  • the Mango DNA sequence is amplified by PCR using, for example, the Mango primer set (SEQ ID NOs: 17 and 18) in order to obtain a sufficient amount of fluorophore.
  • the PCR solution to be used is about 2 to about 6 x PCR solution
  • the reaction scale is about 40 to about 60 ⁇ L, about 5 x prime star buffer, about 2.5 mM dNTP mixture, about 0.5 to 1.5 ⁇ L plus and minus.
  • PCR can be performed as a composition containing a Mango primer set (about 5 to about 15 ⁇ M; SEQ ID NOs: 17 and 18), about 1 to 4 ⁇ L of Mango DNA sequence (about 0.005 to about 0.015 ⁇ M), Prime Star, and Ultrapure water. can.
  • the PCR program is, for example, (t1) about 94 ° C for about 1 minute, (t2) about 98 ° C for about 10 seconds, (t3) about 59 ° C for about 5 seconds, (t4) about 72 ° C for about 6 seconds,
  • the temperature can be lowered to (t5) about 72 ° C for about 1 minute and (t6) to about 10 ° C for 1 minute, and (t2) to (t5) can be performed for 20 to 30 cycles.
  • the obtained Mango sequence (PCR product 1) is concentrated by ethanol precipitation or the like and eluted with ultrapure water.
  • PCR is performed using the PCR product 1 obtained as described above as a template and the inosine primer (SEQ ID NO: 19) and the minus Mango primer (SEQ ID NO: 18) to obtain PCR product 2 containing inosine. Can be done.
  • PCR solution 2 is on a scale of about 40 to about 60 ⁇ L, about 25 ⁇ L of 2x PCR buffer for KOD Multi & Epi, about 0.5 to about 1.5 ⁇ L of inosin primer and minus Mango primer set (both about 5 to about 15 ⁇ M; SEQ ID NO: 19 and
  • the composition can include 18), about 1 to about 3 ⁇ L of template DNA (PCR product 1, about 0.005 to about 0.015 ⁇ M), about 0.5 to about 1.5 ⁇ L of KOD Multi & Epi, and Ultrapure water.
  • PCR product 2 (containing inosin) can be obtained by subjecting it to a PCR program in which the temperature is lowered to about 3 seconds at (t5) and about 1 minute to about 10 ° C, and (t2) to (t4) are performed for 20 to 40 cycles. ..
  • the obtained PCR product 2 is subjected to electrophoresis, and after confirming the band, column purification can be performed to obtain double-stranded DNA.
  • the obtained purified product 2 can be obtained by cutting and purifying in the same manner as described above.
  • the linker includes a first cross-linking compound for binding mRNA, a second cross-linking compound for binding fluorescence detection DNA, and a solid-phase binding site and a solid-phase cleavage site. It is composed of a main chain and a side chain containing a peptide presentation site for presenting a peptide corresponding to the mRNA bound to the main chain (FIG. 7).
  • the method for detecting an antigen of the present invention comprises the following steps (1) to (6): (1) an mRNA acquisition step for obtaining mRNA from the DNA of an antigen-binding peptide; (2) complementary to the mRNA-binding region. An mRNA binding step in which the previously bound mRNA is ligated to the main strand with a first cross-linking compound to obtain an mRNA-linker conjugate; (3) the mRNA of the mRNA-linker conjugate is translated into an mRNA.
  • -A step of forming a peptide linkage to obtain a linker-peptide linkage (4) The peptide linkage is bound to a solid phase at a solid phase binding site to perform buffer exchange, and then decomposition of the mRNA and from the solid phase are performed.
  • a purification step of cleaving at the solid phase cleavage site to obtain a peptide-linker complex (5) a DNA display in which the purified peptide-linker complex is ligated with RNA for fluorescence detection and a second cross-linking compound.
  • Molecular formation step (6) A measurement step of transcribing the DNA display molecule to form an RNA peptider from DNA for fluorescence detection, and measuring the fluorescence intensity of the RNA peptider.
  • the DNA of a desired antigen-binding peptide (for example, an antibody) is selected from a desired DNA library, and the DNA of the peptide is reverse transcribed to obtain mRNA.
  • the obtained mRNA is annealed with the mRNA binding site of the linker of the present invention prepared as described above in the above step (2), and irradiated with light of a desired wavelength to obtain the above-mentioned first photocrosslinking compound and mRNA. And are photobridged.
  • the obtained mRNA and the above linker are annealed in a reaction solution for photocrosslinking. For example, after reacting at about 88-92 ° C for about 1.5-about 2.5 minutes, the temperature is lowered to about 65-about 75 ° C in about 1 minute, then maintained at the lowered temperature for about 1 minute, and then about 10-about. The temperature is lowered to about 20 to about 30 ° C. over 20 minutes for annealing, and then UV irradiation with a wavelength of 350 to 380 nm is performed for about 0.5 to about 1.5 minutes to obtain an mRNA-linker conjugate.
  • the mRNA-linker conjugate obtained as described above is introduced into, for example, a cell-free translation system to translate the mRNA in the conjugate, and the peptide presenting site of the linker is used.
  • An mRNA-linker-peptide conjugate (mRNA-peptide conjugate) to which the peptide corresponding to this mRNA is bound can be obtained.
  • a rabbit reticulocyte lysate-based in vitro translation system or the like can be used as the cell-free translation system.
  • the peptide conjugate obtained as described above is bound to the solid phase at the solid phase binding site, buffer exchange is performed, and then the mRNA is degraded and cleaved from the solid phase.
  • a purified peptide-linker complex can be obtained.
  • SA streptavidin
  • magnetic beads Dynabeads MyOne Streptavidin C1, hereinafter, ". It may be abbreviated as "magnetic beads”).
  • the peptide conjugate bound to the solid phase is washed with a buffer to remove impurities. Then, by adding an enzyme, mRNA is decomposed and released from the solid phase.
  • an enzyme for example, RNase H can be used for mRNA degradation, and RNase T1 can be used for cleavage from the solid phase when the solid phase cleavage site is composed of rG. It is preferable because the cutting efficiency at the site is high.
  • the peptide-linker complex purified as described above is linked with the fluorescence detection DNA sequence and the fluorescence detection DNA binding region with the other cross-linking compound.
  • the fluorescence detection DNA sequence include those corresponding to the fluorescence RNA aptamer sequence described above.
  • the linkage between the fluorescence detection DNA sequence and the peptide-linker complex can be carried out in the same manner as in the case of cross-linking the above-mentioned mRNA and the linker of the present invention.
  • a T-DNA display molecule can be formed, and if necessary, purification can be performed using the sequence incorporated in the main chain (b) of the linker of the present invention. For example, if a His tag sequence is incorporated, it can be used to purify a T-DNA display molecule.
  • the T-DNA display molecule is transcribed to form an RNA aptamer from the fluorescence detection DNA sequence, and the fluorescence intensity with the RNA aptamer is measured.
  • the desired plate or magnetic beads are coated with the antigen.
  • SA beads a solution containing an antigen bound to biotin is dispensed into each well of a 96-well plate or streptavidin beads (hereinafter referred to as "SA beads") which are magnetic beads to bind the biotinylated antigen.
  • SA beads streptavidin beads
  • CA beads Carboxylic acid beads
  • the T-DNA display molecule obtained as described above is added to each well or the like and incubated.
  • An aptamer eg, RNA Mango
  • TO1-biotin is added to each well and the fluorescence intensity is measured.
  • the antigen can be fluorescently detected by the antigen detection method of the present invention.
  • Example 1 Design and preparation of a new linker (1) Reagents, etc.
  • the reagents used in this example were purchased and used as follows.
  • Tris (hydroxymethyl) aminomethane, boric acid, N, N-methylene-bis (acrylamide) for electrophoresis are grades for molecular biology, acrylamide is for electrophoresis, sodium acetate, EDTA, Urea, N, N, N, N-tetramethyl-ethylenediamine [TEMED], ammonium persulfate [APS], bromophenol blue, xylene CyanolFF, 2-mercaptoethanol, sucrose and hydrochloric acid are of special grade, and sodium dodecylsulfate [SDS]. ] Purchased the first grade from Fuji Film Wako Junyaku Co., Ltd. The 100 bp DNA ladder and 10 bp DNA step ladder were purchased from Promega. SYBR Nuleic Acid Stains was purchased from Molecular Probes, and Spin-X Centrifuge Tube Filter was purchased from Costar.
  • PCR cleanup mini kit for PCR was purchased from FAVORGEN.
  • PrimeSTAR, 5 x PrimeSTAR buffer and dNTP mixture (2.5 mM each) were purchased from Takara Bio Inc.
  • 2 x PCR Buffer for KOD Multi & Epi and KOD Multi & Epi were purchased from Toyobo Co., Ltd.
  • ethanol for molecular biology was purchased from Fuji Film Wako Junyaku Co., Ltd., and Quick-Precip Plus Solution was purchased from Edge Bio.
  • Retic Lysate IVT in Vitro Translation Kit for in vitro translation was purchased from Thermo Fischer, and Ultra Pure 0.5 M EDTA (pH 8.0) was purchased from Invitrogen.
  • Potassium chloride and magnesium chloride hexahydrate were purchased from Fuji Film Wako Pure Chemical Industries, Ltd. for molecular biology.
  • RNase H Tekara Bio Inc.
  • NE buffer BioLabs
  • Rnase T1 was purchased from Ambion.
  • His tag purification His Mag sepharose Ni was purchased from Invtrogen, and imidazole was purchased from GE Helthcare. 20 mM sodium phosphate (pH 7.4) containing 0.5 M NaCl, 5 mM Imidazole, and 0.05% Tween 20 as His tag wash buffer, and 0.5 M NaCl, 250 mM Imidazole, and 0.05% Tween 20 as Histag elution buffer. The contained 20 mM sodium phosphate (pH 7.4) was prepared.
  • Binding of RNA Mango and Dye TO1-3PEG-Biotin Fluorophore was purchased from Cosmo Bio Co., Ltd. as a dye. Wash / Binding buffer containing 10 mM sodium phosphate, 140 mM KCl, 1 mM MgCl 2 , 0.05% Tween-20, dimethylsulfoxide, disodium hydrogen phosphate, sodium dihydrogen phosphate, potassium dihydrogen phosphate, and Tween 20. WB buffer) was prepared. Biotinylated IgG was used as a model antigen. IgG from rabbit serum and Tween 20 were purchased from Sigma, 10 x PBS (-) from Fuji Film Wako Pure Chemical Industries, Ltd., and Bio-Spin 6 columns from Bio RAD.
  • biotin-2cnvK-linker (2) Preparation of novel linker (biotin-2cnvK-linker) (2-1) Design of biotin-2cnvK-linker
  • the conventional puromycin linker containing cnvK has a main chain containing cnvK as shown in FIG. It is composed of (biotin-cnvK segment) and a side chain containing puromycin and the fluorescent substance FITC (Puro-FS segment), and these two segments are designed to be bound by NH (Fig.). 3).
  • cnvK which is a photocrosslinking base
  • cnvK is a photocrosslinking base
  • the paper on which this electrophoresis image was printed was placed under the glass plate, the positions of the bands were aligned, and the target band was cut out from the gel.
  • the band was cut out from the gel using a scalpel and tweezers that had been sterilized by heating with an alcohol lamp in advance and then sprinkled with 70% ethanol.
  • the gel containing the band in the desired position was cut out, transferred to a 1.5 mL tube, and the gel was crushed into small pieces.
  • the gel after cutting was read again with the above imager, and it was confirmed whether or not the gel containing the target band could be cut out accurately.
  • 400 ⁇ L of Milli Q water was added to the above tube containing the gel and eluted with a shaker overnight.
  • the eluate containing the gel fragments was transferred to a Spin-X Centrifuge Tube Filter (manufactured by Costar) and centrifuged at 1,5000 x g for 15 minutes at 25 ° C., and the obtained filtrate was recovered. Ethanol was added to this filtrate to precipitate it, and the concentration and volume were adjusted to be used in the next experiment to obtain purified product 1.
  • RNA Mango which has a very large E value among typical dye-bound RNA aptamers, was used because it was considered to be the most suitable as a fluorescent probe.
  • PCR of the Mango DNA sequence was performed under the following conditions.
  • a Mango sequence was used as a template, and plus Mango primers and minus Mango primers (SEQ ID NOs: 17 and 18) were used as primers.
  • PCR solution (4 x PCR solution) on a 50 ⁇ L scale, 10 ⁇ L 5 x prime star buffer, 4 ⁇ L 2.5 mM dNTP mixture, 1 ⁇ L 10 ⁇ M plus Mango primer, 1 ⁇ L 10 ⁇ M minus Mango primer, 2 ⁇ L 0.01 ⁇ M Mango sequence, And 0.5 ⁇ L of Prime Star and 31.5 ⁇ L of Ultrapure water.
  • This PCR solution was placed in TreffLab PCR-SINGE TUBE, PP, CLEAR 0.2 ml.
  • the PCR program is (t1) 94 ° C for 1 minute, (t2) 98 ° C for 10 seconds, (t3) 59 ° C for 5 seconds, (t4) 72 ° C for 6 seconds, (t5) 72 ° C for 1 minute, (t5) t6)
  • the temperature was lowered to 10 ° C. in 1 minute, and (t2) to (t5) were carried out for 25 cycles to obtain a Mango sequence as PCR product 1.
  • the obtained PCR product 1 was precipitated with ethanol, concentrated, and eluted with 30 ⁇ L of Ultrapure water.
  • the PCR program takes 2 minutes at (t1) 94 ° C, 10 seconds at (t2) 98 ° C, 10 seconds at (t3) 63 ° C, 3 seconds at (t4) 68 ° C, and 1 minute at (t5) 10 ° C. Then, 30 cycles of (t2) to (t4) were carried out to obtain PCR product 2 (containing inosin). The obtained PCR product was subjected to 4% polyacrylamide gel electrophoresis and electrophoresed at 60 ° C., 200 V for 20 minutes to confirm the band. Then, purification by ethanol precipitation was performed.
  • RNA Mango a protruding end is formed in the template DNA of RNA Mango, which is a double-stranded DNA. I needed to let you. Endonuclease V was used to make this protruding end. Since cytosine has the highest probability of entering as a base forming a complementary strand with inosine recognized by this enzyme, the DNA construct was designed in consideration of this point (see FIG. 7).
  • the purified product 2 was obtained by cutting and purifying in the same manner as in (2-3) above.
  • the purified product was then annealed at 37 ° C. for 1 hour in a 20 ⁇ L solution containing 2 ⁇ L of 10xNE buffer, 1 ⁇ L of purified product (equivalent to 10 pmol), and 1 ⁇ L of endonuclease V.
  • electrophoresis conditions: 60 ° C., 200 V, 20 minutes
  • the product was confirmed using an imager.
  • dsDNA having a protruding end could be produced by the above steps (Fig. 9).
  • Example 2 Formation of BDA-linker-Mango DNA sequence complex (T-DNA display molecule) (1) Amplification of BDA (template DNA) PCR was performed on a 50 ⁇ L scale using the BDA DNA as a template to amplify the DNA. .. PCR was performed with 10 ⁇ L of 5 x PrimeSTAR buffer (containing Mg 2+ ), 4 ⁇ L of dNTP mixture (2.5 mM each), 1 ⁇ L of 20 ⁇ M primer (New Y tag for Poly A & cnvK linker), 20 ⁇ L of 20 ⁇ M primer 2 (New left). ), 2 ⁇ L of template DNA (approximately 1 nM), 0.5 ⁇ L of PrimeSTAR HS DNA polymerase (2.5 U / ⁇ L, manufactured by Takara), and 31.5 ⁇ L of Ultrapure water.
  • BDA template DNA
  • the PCR program is (t1) 98 ° C for 2 minutes, (t2) 98 ° C for 10 seconds, (t3) 68 ° C for 5 seconds, (t4) 72 ° C for 24 seconds, and (t5) 72 ° C for 1 minute. Then, 25 cycles of (t2) to (t5) were carried out to obtain PCR product 3.
  • the obtained PCR product 3 was purified using PCR Clean-Up Mini Kit (manufactured by Favorgen).
  • PCR product 3 was transcribed into mRNA using RiboMAX Large Scale RNA production Systems. Transcription reaction solution on a 20 ⁇ L scale, 4 ⁇ L T7 Transcription 5x Buffer, 6 ⁇ L rNTPs (25 mM ATP, CTP, GTP, UTP), 1.5 ⁇ L template DNA (PCR product 3), 6.5 ⁇ L plus nuclease-free water, The composition contained 2 ⁇ L of an enzyme mix (manufactured by Promega).
  • the transfer reaction solution having the above composition was incubated at 37 ° C for 3 hours, 1 ⁇ L of RQ1RNase-FreeDNase (manufactured by Promega) was added, and the mixture was incubated at 37 ° C for another 15 minutes. Then, using AfterTri-ReagentRNAClean-upKit, mRNA was purified according to the attached protocol.
  • 365 nm ultraviolet irradiation (405 mJ / cm 2 ) was performed for 1 minute using a CL-1000 Ultraviolet Crosslinker to photocrosslink mRNA and biotin-2cnvK-linker to obtain an mRNA-linker conjugate. rice field.
  • mRNA-linker-peptide linkage was translated by the cell-free translation system to form an mRNA-linker-peptide linkage.
  • This cell-free translation is performed on a 50 ⁇ L scale and contains 1 ⁇ L of Translation Mix, 6 ⁇ L of mRNA-linker conjugate (6 pmol), 35 ⁇ L of Retic Lysate, 1 ⁇ L of RNase inhibitor (Promega), and 7 ⁇ L of Ultrapure water. And said.
  • the translation solution having the above composition was incubated at 30 ° C. for 20 minutes, then 12 ⁇ L of 3M KCl and 3 ⁇ L of 1M MgCl 2 were added, and the mixture was further incubated at 37 ° C. for 60 minutes. Subsequently, 10 ⁇ L of 0.5 M EDTA solution (pH 8.0) was added, incubated at 37 ° C. for 10 minutes, and then 50 ⁇ L of 2 x binding buffer was added. As described above, the mRNA-linker-peptide linkage was formed by binding the mRNA-encoded peptide (BDA) to the puromycin of the biotin-2cnvK-linker (see FIG. 10).
  • BDA mRNA-encoded peptide
  • SA Streptavidin Magnetic Beads Streptavidin
  • magnetic beads Dynabeads MyOne Streptavidin C1
  • Place the magnetic beads for example, 100 ⁇ L of beads for 10 ⁇ L of the conjugate
  • a protein LoBind Tube in a liquid volume 10 times the concentration of the mRNA-linker-peptide conjugate (10 pmol / ⁇ L) and place it in a magnetic stand. I put it down and threw away the supernatant.
  • 1x binding buffer was added to this tube to resuspend the beads, the beads were allowed to stand on a magnetic stand, the supernatant was discarded, and the magnetic beads were washed to make them RNase-free.
  • the above-mentioned mRNA-linker-peptide conjugate was added to this tube, and the mixture was incubated at 25 ° C. for 60 minutes with stirring with a rotator to bind the above-mentioned mRNA-linker-peptide conjugate and the above-mentioned magnetic beads.
  • Annealing was carried out at 70 ° C. for 2 minutes, lowered to 50 ° C. in 1 minute, maintained at 50 ° C. for 1 minute, and then lowered to 25 ° C. over 15 minutes.
  • UV irradiation (405 mJ / cm 2 ) at 366 nm was performed for 1 minute using a CL-1000 Ultraviolet Crosslinker to form a photocrosslink between the peptide-linker complex and the protruding end-bearing Mango DNA sequence.
  • Peptide-linker-Mango DNA sequence linkage was obtained.
  • T-DNA display molecule His tag Purified peptide-linker-Mango DNA sequence linkage is presented as a display molecule (hereinafter, may be referred to as “T-DNA display molecule”) that presents the B domain which is a peptide. Purification was performed to contain no display molecules. Here, purification was performed using the His tag sequence previously bound to the B domain to obtain a T-DNA display molecule. This His tag purification was performed using a buffer containing a high concentration of imidazole (His tag elution buffer).
  • His Mag Sepharose Ni is added to a tube containing the solution containing the peptide-linker-Mango DNA sequence conjugate obtained as described above, and the mixture is stirred at 25 ° C for 1 hour or overnight at 4 ° C using a shaker. Incubated while incubating. The tube was then allowed to stand on a magnetic stand to remove the supernatant and washed once with 100 ⁇ L of 1 x His tag buffer. Then, 20 ⁇ L of His tag elution buffer was added, and the mixture was incubated at room temperature for 15 minutes while infiltrating with a shaker, and then allowed to stand on a magnetic stand to collect the supernatant. The formation of the T-DNA display presented with BDA was confirmed using electrophoresis. The formation efficiency was calculated to be about 2% based on the mRNA-linker (Fig. 11).
  • Example 3 Detection of target molecule (IgG) (1) Biotinization of IgG IgG obtained from rabbit serum was reacted with EZ-Link Sulfo-NHS-SS-Biotin, and this IgG was biotinylated. A 240 ⁇ L reaction solution containing 0.3 mg / 200 ⁇ L of the above IgG (PBS-T) and 0.04 mg / 40 ⁇ L of EZ-Link Sulfo-NHS-SS-Biotin solution (PBS-T) was placed in a Protein LoBind Tube and this tube was placed. Was mixed by inversion with a rotator at 25 ° C. for 30 minutes to obtain biotinylated IgG.
  • PBS-T Protein LoBind Tube
  • T-DNA display molecule (Mango DNA sequence) was ligated to each well of the plate on which IgG was immobilized in (3-1). , BDA-linker-Mango DNA sequence complex) was added and incubated for 30 minutes at room temperature. Then, it was washed twice with PBS-T. Then, in each well to which the display molecule was added, 4 ⁇ L of T7 Transcription 5 x buffer, 6 ⁇ L of rNTPs (25 mM ATP, CTP, GTP, and UTP), 8 ⁇ L of Plus Nuclease-Free water, and 2 ⁇ L of enzyme mix (Promega). 20 ⁇ L of the transcription reaction solution containing (manufactured by the company) was added, and the mixture was incubated at 37 ° C. for 3 hours.
  • RNA Mango and TO1-biotin were added to each well containing this transcription reaction solution, and the mixture was incubated at 37 ° C for 30 minutes. Then, the fluorescence of the reaction solution was measured by Nanodrop 3300 (see FIG. 12). The results are shown in Fig. 13 (A). Fluorescence enhancement due to the binding of RNA Mango and TO1-biotin was observed. In addition, SDS polyacrylamide gel electrophoresis (4% stacking gel, 6% running gel) was performed on the above reaction solution under the conditions of 25 ° C, 0.02 A, and 2 hours, and the appearance of the band was detected by the fluorescence emitted by FITC. The results are shown in Fig. 13 (C). The band detected in lane 1 of FIG. 13 (C) was an mRNA-linker complex. The band detected in lane 2 was a T-DNA display molecule (BDA-linker-Mango DNA sequence complex).
  • T-DNA display molecule required to enhance the fluorescence of RNA Mango was investigated.
  • the detection concentration range of the target molecule (here, IgG) by the T-DNA display was investigated.
  • Each concentration of IgG was immobilized on an ELISA plate by the method described above, and a T-DNA display was added.
  • the fluorescence intensity was measured using Nanodrop 3300.
  • fluorescence due to the binding between RNA Mango and TO1-biotin was observed depending on the concentration of IgG.
  • the results are shown in Fig. 14 (B). From this result, it was calculated that the quantification limit of IgG was 10 nM and the detection limit was 3.3 nM.
  • Example 4 Improvement of target molecule (IgG) detection limit by studying blocking agent and immobilized carrier (4-1) Study of blocking agent Skim milk, BSA, and gelatin are used as blocking agents to improve the detection limit. And examined. Skim milk and BSA were purchased from Fuji Film Wako Pure Chemical Industries, Ltd., and gelatin (fish gelatin) was purchased from Nacalai Tesque. Prepare 2% skim milk solution (w / v, final concentration), 3% BSA solution (w / v, final concentration), and 2% gelatin solution (w / v, final concentration) by dissolving in PBS-T. , A blocking agent.
  • TRNA was added to a 2% skim milk solution to prevent non-specific adhesion of nucleic acids.
  • a blocking agent was prepared by mixing 2% tRNA with a final concentration in a 2% skim milk solution, and the plate was blocked by the above method.
  • Table 5 the results are shown in Table 5 below.
  • the adsorption amount of the display molecule was significantly reduced in the blocking agent containing 2% tRNA than in the case of using the blocking agent composed only of the 2% skim milk solution.
  • the background was greatly reduced, and it was considered that non-specific adsorption was reduced. From the above, it was shown that the blocking effect was high when a 2% skim milk solution containing 2% tRNA was used as a blocking agent (Fig. 15 (B)).
  • the detection limit of T-DNA display molecule (here, the molecule displaying IgG) was verified using the ELISA plate with and without blocking. ..
  • the limit of IgG quantification was 10 nM (10000 pM) and the detection limit was 1.3 nM (1300 pM) without blocking.
  • the quantification limit of IgG was improved to 0.63 nM (629 pM) and the detection limit was improved to 0.21 nM (207 pM) when the above blocking agent was used (Fig. 15C). From the above, it was shown that blocking improves both the quantification limit and the detection limit of the T-DNA display molecule.
  • T-DNA display molecules non-specifically adsorbed on each carrier were eluted, and the supernatant was recovered.
  • the recovered T-DNA display molecule was neutralized by mixing 1.5 M Tris-HCl (pH 8.8) with 60 ⁇ L and purified using PCR Clean-UP Mini Kit. Finally, this non-specifically adsorbed T-DNA display molecule was measured using quantitative PCR. Quantitative PCR was performed using StepOnePlus Real-time PCR system (manufactured by Applied Biosystems).
  • the PCR mixture is, for example, 10 ⁇ L THUNDERBIRD SYBR qPCR Mix (manufactured by TOYOBO), 0.6 ⁇ L 10 ⁇ M BDAqPCR primer (forward (SEQ ID NO: 20) and reverse (SEQ ID NO: 21)), 0.4 ⁇ L ROX reference dye (reference dye), 2 ⁇ L.
  • the above carrier and 6.4 ⁇ L Ultrapure water were included in the final volume of about 20 ⁇ L.
  • the PCR step program was (t1) 95 ° C for 1 minute, (t2) 95 ° C for 15 seconds, (t3) 62 ° C for 30 seconds, and (t2) to (t3) were performed for 40 cycles. As a result, it was clarified that the non-specific adsorption to CA beads was the least (Fig. 16 (A)).
  • N-Hydroxysuccinimide 2.5 mg, EDC (1-ethyl-3- (3-dimethylaminopropyl) carbodiimide) and HCl 2.5 mg to 100 ⁇ L of MES buffer at pH 6.0, and stir with a rotator for 30 minutes at room temperature. Overturned and mixed. The supernatant was removed after allowing to stand on a magnetic stand for 4 minutes, and then washed twice with 100 ⁇ L of MES buffer and once with PBS-T.
  • the beads are washed once with Selection buffer (10 mM sodium phosphate pH7.2, 140 mM KCl, 1 mM MgCl 2 , 0.05% Tween 20) to obtain unreacted IgG. Was removed.
  • Selection buffer 10 mM sodium phosphate pH7.2, 140 mM KCl, 1 mM MgCl 2 , 0.05% Tween 20
  • 40 ⁇ L of Selection buffer was added and mixed by inversion at 25 ° C. for 1 hour to inactivate unreacted activated CA.
  • blocking was performed with the above-mentioned blocking agent (mixture of skim milk and tRNA).
  • IgG was detected according to the above-mentioned method for measuring the binding and fluorescence intensity of the T-DNA display.
  • the quantification limit of IgG was improved to 0.033 nM (133 pM) and the detection limit was improved to 0.044 nM (44 pM) (Fig. 16 (B)).
  • the antigen can be detected with high sensitivity by using the method using the novel linker of the present invention without using PCR.
  • the present invention is useful in the field of a test agent or a diagnostic agent that detects a desired gene.
  • SEQ ID NO: 1 Main chain SEQ ID NO: of the linker of the present invention 2: Main chain SEQ ID NO: 3: DNA sequence containing the Mango DNA sequence corresponding to RNA Mango SEQ ID NO: 4: DNA construct linked to the mRNA linkage part SEQ ID NO: 5: Nucleotide sequence of T7 promoter SEQ ID NO: 6: Nucleotide sequence of ⁇ sequence Nucleotide sequence No.
  • SEQ ID NO: 7 Nucleotide sequence of B domain of A protein
  • SEQ ID NO: 8 Nucleotide sequence of GGGS
  • SEQ ID NO: 10 Nucleotide sequence of His Tag : Nucleotide sequence of Y-tag Nucleotide sequence of GGGS
  • 11 Example of DNA library that forms a protruding end when end nuclease V is applied-1
  • SEQ ID NO: 12 Complementary strand of SEQ ID NO: 13
  • SEQ ID NO: 13 SEQ ID NO: 15 of the complementary strand of the protruding end obtained at a rate of 5% when end nuclease V is applied
  • SEQ ID NO: 14 SEQ ID NO: 15 of the complementary strand of SEQ ID NO: 13.
  • New left Primer SEQ ID NO: 16 NewYtag_for_PolyA & cnvK-Linker SEQ ID NO: 17: + Mango Primer (35mer) SEQ ID NO: 18: -Mango primer (24mer) SEQ ID NO: 19: Inosine primer SEQ ID NO: 20: BDAqPCR (+) SEQ ID NO: 21: BDAqPCR (-)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本発明は、高感度かつ迅速な検出が可能な抗原の測定系を提供することを目的とする。具体的には、主鎖と側鎖とを有する抗原検出用新規リンカーであって、主鎖と側鎖とを有する抗原検出用新規リンカーであって、(1)前記主鎖は、側鎖結合部位と、第1の架橋用化合物を含むmRNA結合領域と、第2の架橋用化合物を含む蛍光検出用DNA結合領域と、前記蛍光検出用DNA結合領域の5'側に位置する固相切断部位と、主鎖の5'末端に位置する固相結合部位とを備え;(2)前記側鎖は、主鎖結合部位と、ペプチド提示部位と、を備える;抗原検出用新規リンカー、及びこのリンカーを用いた抗原検出方法を提供する。 [選択図] 図4

Description

新規抗原検出用リンカー及びそれを用いた抗原検出方法
 本発明は、蛍光増強RNAアプタマーを用いる抗原検出用リンカー及びそれを用いた抗原検出方法に関する。より詳細には、蛍光増強アプタマーを用いてPCRを行うことなく、抗原を検出するための新規リンカー、及びそのリンカーを用いた抗原検出方法に関する。
 従来、抗原を検出するための方法として、イムノPCR、ELISA、イムノクロマト法等が知られている。これらの中でも、イムノPCRは、高感度検出ができることから、各種の検査、診断などに広く利用されている(非特許文献1参照、以下、「従来技術1」という。)。イムノPCR法は、図1に示すように、以下の工程を要する方法であり、イムノPCRでは、検出対象となるDNAはPCRで増幅されている:
(1)固相に第1抗体(モノクローナル抗体1)を固定し、この第1抗体と抗原とを結合させる;
(2)上記第1抗体に結合した上記抗原に、第2抗体(モノクローナル抗体2)を結合させる;
(3)上記第2抗体にビオチン化した第3抗体(モノクローナル抗体3)を結合させる;
(4)上記第3抗体に結合したビオチンと、検出しようとするビオチン化したDNAとをストレプトアビジンを介して結合させて検出する。
 また、遺伝型(DNA又はRNA、情報をコードするヌクレオチド配列)と表現型(機能を有するペプチド)とを1対1で対応付けをすることができる技術(以下、「対応付技術」ということがある。)として、ファージディスプレイ法、細胞表層ディスプレイ法、リボソームディスプレイ法、mRNAディスプレイ法、cDNAディスプレイ法等の技術が知られている。これらの対応付技術のうち、細胞を用いるファージディスプレイ法と細胞表層ディスプレイ法とは、タンパク質を産生させるのに適している。一方、細胞を使用せず、無細胞翻訳系での翻訳を行うmRNAディスプレイ法とcDNAディスプレイ法とは、mRNAを用いてcDNA及びcDNAに対応するペプチドを産生するのに適している(特許文献1及び非特許文献2参照、以下、「従来技術2」及び「従来技術3」という。)。
 ところで、固有の強い蛍光を持たないRNAは、試験管内または生体内で、少量では検出できないことが知られており、RNAをイメージングするための蛍光プローブに関する多くの研究が為されてきた(非特許文献3参照、以下「従来技術4」という。)。色素結合RNAアプタマーを蛍光プローブとして用いる上で重要なパラメータとなるのは、蛍光効率であり、解離定数をKD、結合時と非結合時の間で生じる蛍光増強をFEとすると、蛍光効率EはE = FE/KDとして定義され、E値が大きいほど、蛍光プローブとして適したものであることが知られている。
 さらに、上記のディスプレイ法でDNAを使用する場合、DNAとペプチドとを繋げる役割を果たすリンカーとの結合上、突出末端を有するDNA鎖を使用することが好ましい。こうした突出末端の作製法としては、特殊塩基であるイノシンと大腸菌由来の修復酵素であるエンドヌクレアーゼVとを用いた酵素反応を利用する方法が知られている(非特許文献4参照、以下「従来技術5」という。)。
 エンドヌクレアーゼVは、DNA中に含まれるA、T、G、及びCとは異なる構造を有するイノシン(配列中では「I」と表示される。)を認識し、1)イノシンの3’側に隣接する塩基とその隣(2番目の塩基)との間、又は2)2番目の塩基と3番目塩基との間のホスホジエステル結合を切断する。切断の確率は、それぞれ1)が95%、2)が5%であり、切断された3’側の断片にはリン酸基を残すことが知られている(以下「従来技術6」という。図2参照。)。
特開2011-087573
Anzai, H. , Terai, T. , Suzuki, T., Chathuni, Jayathilake, Nemoto, N A novel immuno-PCR method using cDNA display, Analytical Biochemistry, volume 578 2019,08,1-6
Mochizuki, Y., Suzuki, T., Fujimoto, K., Nemoto, N., A versatile puromycin-linker using cnvK for high-throughput in vitro selection by cDNA display, J. Biotechnol, 212, 174-180. (2015) Yoshimura, Y., Ohtake, T., Okada, H., Fujimoto, K., A new approach for RNA selection, Chembiochem. 2009, 10, 1473-1476. https://www.nebj.jp/products/detail/289
 従来技術1は、抗原抗体反応を利用するために特異性が高いこと、及びPCRを行って検出するDNAを指数関数的に増加させることができることから、それに伴って高感度検出が可能であるという点では優れた発明である。しかし、図1に示すように、イムノPCR法で高感度測定を行うためには、DNAをPCRで増幅させる工程が必須であり、時間と手間とがかかるという問題があった。
 また、イムノPCRでの高感度検出を可能にするためには、検出に使用する抗体と検出対象であるDNAとを1:1で結合させることが必要となる。なぜなら、ここで検出抗体に結合されるDNAはこの後に行われるシグナル増幅に用いられるため、1:1で結合していないと定量性に影響が出るからである。しかし、非特異結合が生じるために、上記抗体と上記DNAとを1:1で反応させること自体が難しいという問題があった。
 一方で、従来技術2のcDNAディスプレイ法は、リンカーを使用するため、cDNAとそれがコードしているペプチド(以下、「対応するアミノ酸配列を有するペプチド」ということがある。)とを1:1でリンカーを介して連結させることができるという点では優れた発明である。しかし、cDNAディスプレイ法のみでは、抗原を高感度に検出することができないという問題があった。
 また、抗原の迅速な検出を行う上で、抗原(被検体)の量が十分でないと測定感度が不足し、適切な検出を行えないという問題があった。この問題を解決するには、上記被検体の量を増加させる必要があり、一般的にはPCRを行って、被検体としてのDNAの量を増加させる。しかし、PCRを行って検出に十分な量のDNAを得るには、プライマー等を準備する必要があり、これらの調製に時間がかかるため、迅速な検出ができないという問題があった。
 このため、PCRを行うことなく高感度で迅速な検出が可能な測定系に対する強い社会的要請があった。そして、検出される抗原と検出に使用する抗体とを1:1で結合させることができるリンカーは、この測定系に必須であるため、こうしたリンカーに対する強い社会的要請があった。
 本発明の発明者等は、上記のような状況の下で鋭意努力を重ねた結果、本発明を完成したものである。本発明は、PCRを使用することなく高感度かつ迅速な検出が可能な抗原の測定系を提供することを目的とする。
 すなわち、本発明の一の態様は、主鎖と側鎖とを有する抗原検出用新規リンカーであって、(1)前記主鎖は、側鎖結合部位と、第1の架橋用化合物を含むmRNA結合領域と、第2の架橋用化合物を含む蛍光検出用DNA結合領域と、前記蛍光検出用DNA結合領域の5’側に位置する固相切断部位と、前記主鎖の5’末端に位置する固相結合部位とを備え;(2)前記側鎖は、主鎖結合部位と、ペプチド提示部位と、を備える;抗原検出用新規リンカーである。
 また、前記主鎖結合部位はNHで構成され、前記ペプチド提示部位はピューロマイシン又はその類縁体で構成されることが好ましい。前記ピューロマイシン類縁体は、3'-N-アミノアシルピューロマイシン(PANS-アミノ酸)及び3'-N-アミノアシルアデノシンアミノ酸のヌクレオシド(AANS-アミノ酸)からなる群から選ばれるいずれかの化合物であることが好ましい。前記固相切断部位はリボグアニンで構成され、結合部位はビオチンで構成されることが好ましい。
 前記第1の架橋用化合物は、前記mRNA結合領域に相補的に結合したmRNAを前記主鎖に共有結合させ、前記第2の架橋用化合物は、前記蛍光検出用DNA結合領域に、蛍光検出用RNAアプタマーをコードする二本鎖DNAを共有結合させることが好ましく、前記第1及び第2の架橋用化合物は光架橋塩基であることが好ましい。前記光架橋塩基は、シアノビニルカルバゾール及びその誘導体からなる群から選ばれるいずれかの化合物であることが好ましい。前記第1及び第2の架橋用化合物は同一の化合物であってもよく、異なる化合物であってもよい。
 前記シアノビニルカルバゾールは3-シアノビニルカルバゾールであり、前記シアノビニル誘導体は、5'-O-(4,4'-ジメトキシトリチル) -1'-(3-シアノビニルカルバゾール-9-イル) -2'-デオキシ-β-D-リボフラノシル-3'-[(2-シアノエチル) -(N,N-ジイソプロピル)] -ホスホロアミダイトであることが好ましく、蛍光検出用DNAは、蛍光増強用RNAアプタマーに対応するヌクレオチド配列を有する二本鎖DNAであることが好ましい。また、前記蛍光検出用DNAは、5’突出末端を備えることが好ましく、前記蛍光増強用RNAアプタマーはRNA Mangoアプタマーであることが好ましい。
 蛍光検出用DNAは、蛍光増強用RNAアプタマーに対応するヌクレオチド配列を有する二本鎖DNAであることが好ましく、前記蛍光検出用DNAは、前記蛍光検出用DNA結合領域と相補的に結合する5’突出末端を備えるものであることが好ましい。また、前記蛍光増強用RNAアプタマーは、RNA Mangoアプタマーであることが好ましい。
 本発明の別の態様は、mRNA結合領域と、蛍光検出用DNA結合領域と、固相結合部位と固相切断部位とを含む主鎖と;前記主鎖に結合されたmRNAに対応するペプチドを提示するためのペプチド提示部位を含む側鎖とで構成されるリンカーを用いる抗原検出方法であって:(1)抗原結合性ペプチド又はタンパク質(以下、単に「ペプチド」ということがある。)のDNAからmRNAを得るmRNA取得工程と;(2)前記mRNA結合領域に相補的に結合した前記mRNAを第1の架橋用化合物で前記主鎖と連結させてmRNA-リンカー連結体を得るmRNA結合工程と;(3)前記mRNA-リンカー連結体のmRNAを翻訳して、mRNA-リンカー-ペプチド連結体を得るペプチド連結体形成工程と;(4)前記ペプチド連結体を固相結合部位で固相に結合させてバッファー交換を行い、その後、前記mRNAの分解及び前記固相から前記固相切断部位で切断してペプチド-リンカー複合体を得る精製工程と;(5)精製された前記ペプチド-リンカー複合体を、蛍光検出用DNAと第2の架橋用化合物で連結させるDNAディスプレイ分子形成工程と;(6)前記DNAディスプレイ分子を転写して蛍光検出用DNAからRNAアプタマーを形成し、前記RNAアプタマーの蛍光強度を測定する測定工程と;を備える抗原検出方法である。
 前記リンカーは、前記mRNA結合領域はmRNAを結合するための前記第1の架橋用化合物を含み、前記蛍光検出用DNA結合領域は、蛍光増幅用RNAアプタマーをコードするDNAを結合するための前記第2の架橋用化合物を含み、前記固相切断部位はリボグアニンで構成され、前記固相結合部位はビオチンで構成され、前記ペプチド提示部位は、ピューロマイシン又はその類縁体で構成されることが好ましい。前記架橋用化合物は、光架橋塩基であることが好ましい。前記光架橋塩基は、シアノビニルカルバゾール及びその誘導体からなる群から選ばれるいずれかの化合物であることが好ましく、前記誘導体は、5'-O-(4,4'-ジメトキシトリチル) -1'-(3-シアノビニルカルバゾール-9-イル) -2'-デオキシ-β-D-リボフラノシル-3'-[(2-シアノエチル) -(N,N-ジイソプロピル)] -ホスホロアミダイトであることが好ましい。
 蛍光検出用DNAは、蛍光増強用RNAアプタマーに対応するヌクレオチド配列を有する二本鎖DNAであることが好ましく、前記蛍光検出用DNAは、前記主鎖の蛍光検出用DNA結合領域と相補的に結合する5’突出末端を備えるものであることが好ましい。また、前記蛍光増強用RNAアプタマーは、RNA Mangoアプタマーであることが好ましい。
 本発明の抗原検出用新規リンカーは、ペプチドをコードしたmRNAを短時間で主鎖と結合させることができるため、mRNAが無細胞系翻訳中に分解されるリスクを低下させることができる。そして、リンカーのペプチド提示部位に上記mRNAでコードされたペプチドを提示させたmRNA-リンカー-ペプチド連結体を得ることができる。
 また、上記リンカーは固相結合部位を含むため、上記mRNA-リンカー-ペプチド連結体を固相と結合させて精製することができ、mRNAからの逆転写又は提示されたペプチドの修飾などを容易に行うことができる。
 さらに、上記抗原検出用新規リンカーの主鎖に蛍光検出用DNAを短時間で結合させることができるため、PCRを使用せず、簡便な操作で、高感度迅速測定を行ことができる。
図1は、イムノPCR法の概要を模式的に示した図である。 図2は、エンドヌクレアーゼVの切断様式を示す模式図である。 図3は、従来のcDNAディスプレイ用リンカーを示す模式図である。図中、rGはリボグアニン(固相切断部位)を、Kは3-シアノビニルカルバゾール(光架橋部位)をそれぞれ表す。また、P(ペプチド提示部位)はピューロマイシン又はピューロマイシンの類縁体を、F(標識部位)は蛍光色素を、Bはビオチン(固相結合部位)をそれぞれ表す。
図4は、本発明の抗原検出用リンカーを示す模式である。本発明のリンカーは、ビオチンと2つのcnvKとを含み(以下、「2光架橋化合物リンカー」ということがある。)、蛍光増強用RNAアプタマーのDNAを主鎖に連結する。図中、P、F、B、rG及びKは、上記図3と同様である。 図5は、RNA Mangoの発光を示す図である。(A)はRNA mangoとチアゾールオレンジ誘導体とビオチンとの複合体(以下、「TO1-Biotin」ということがある。)の結合様式とその産物とを示す。(B)は、(A)の上記産物の写真を線図で表した図である。
図6は、抗原としてのコンストラクトの構成を示す図である。(A)はヌクレオチド配列を、また、(B)はその構成を示す。 図7は、図4に示す本発明のリンカーとmRNA又はMango DNA(二本鎖)との結合を模式的に示す図である。なお、これらは、リンカーとの結合様式を示すために便宜的に同時に結合したように記載しているが、実際には、同時にこれら2つの分子がリンカーに結合することはない。
図8は、合成されたBiotin-2cnvK-Linkerを電気泳動に供した結果を示すゲル電気泳動像である。左から、10bpラダー、Biotin-2cnvK-fragment(2分子のcnvKを含む、図4に記載のリンカーの主鎖部分)、Biotin-2cnvK-Linker(2分子のcnvKを含む、図4に記載の主鎖及び側鎖から成るリンカー)を示す。 図9は、RNA Mangoの突出末端付き鋳型DNAが形成されたことを示すゲル電気泳動像である。左から、100bpラダー、EndoV処理前の鋳型DNA、EndoV処後の鋳型DNA(突出末端付き鋳型DNA)を示す。
図10は、リンカーとBドメインとの結合及び上記DNAディスプレイ分子とMango DNA配列との結合を含む、T-DNAディスプレイ分子の作製を模式的に示す図である。図中、Puはピューロマイシンを表す。また、F、rG及びBは図3及び4に示す通りである。 図11は、T-DNAディスプレイの形成を行った結果を示すゲル電気泳動像である。(A)は実際のゲル電気泳動結果の写真、(B)はその線図である。 図12は、ELISA用プレートを用いた、本発明の抗原検出方法を模式的に示す図である。
図13は、RNA Mangoによる蛍光検出及びリンカーとの結合体の形成を示す図である。(A)はRNA Mangoを使用したときの蛍光検出を示す写真であり、(B)はその写真を線図で表した図である。また、(C)はmRNA-リンカー結合体及びペプチド(BDA)-リンカー-Mango DNA配列複合体(T-DNAディスプレイ)のゲル電気泳動結果を示す像である。レーン1で検出されたバンドはmRNA-リンカー複合体であり、レーン2で検出されたバンドはペプチド(BDA)-リンカー-Mango DNA配列複合体である。 図14は、T-DNAディスプレイの濃度による蛍光強度の変化、及びIgG濃度の変化による蛍光強度の変化を示す図である。(A)はT-DNAディスプレイ濃度と相対蛍光強度との関係を示すグラフであり、(B)は被検分子であるIgG濃度と相対蛍光強度との関係を示すグラフである。
図15は、ELISA用プレートに対するブロッキング剤の比較と、その結果を示す図である。(A)は、各ブロッキング剤(スキムミルク、BSA(ウシ血清アルブミン)、ゼラチン)を用いてブロッキングしたときのディスプレイ分子の吸着量を示すグラフである。(B)は、tRNAの有無によるブロッキング効果の違いを示すグラフである。(C)は、ブロッキング剤(スキムミルク & tRNA)の有無による、IgG濃度依存的なT-DNAディスプレイの蛍光強度変化を示すグラフである。 図16は、固相が相対蛍光強度に与える影響を検討した結果を示すグラフである。(A)は、使用する固相による増幅効率の相違を示すグラフであり、(B)は、固相によるIgGの固定化量と相対蛍光強度との相違とを示すグラフである。 図17は、CAビーズを用いた、本発明の抗原検出方法を模式的に示す図である。
 以下に、図面を参照しつつ、本発明をより詳細に説明する。
 本発明は、上述したように、蛍光増強アプタマーを用いてPCRを行うことなく、抗原を検出するための新規リンカーである。最初に、上記リンカーの構造について説明する。
 上記リンカーは、図4に模式的に示すように、主鎖(b)と側鎖(s)とで構成されている。上記側鎖(s)は主鎖結合部位と、ペプチド提示部位とを備え、上記主鎖(b)は、側鎖結合部位と、mRNA結合領域と、蛍光検出用DNA結合領域と、固相切断部位と、固相結合部位とを備えている。そして、上記主鎖と上記側鎖は、NHで構成される上記主鎖結合部位で上記側鎖結合部位と連結されている。
(1)側鎖(s)の構造
 上記側鎖(s)はスペーサー(s1)を有し、上記主鎖(b)と結合していない3’末端(自由末端)にはペプチド提示部位(s2)が形成されている。図4では、上記側鎖に蛍光色素(図4中、「F」と示している。)を含むように記載しているが、含まなくてもよい。
 上記3’末端に位置するペプチド提示部位(s2)は、無細胞翻訳を行う際に、このリンカーの上記主鎖(b)に結合されたmRNAに対応するDNA配列を有するペプチド又はタンパク質を提示する部位である。上記ペプチド提示部位は、ピューロマイシン及びその類縁体からなる群から選ばれるいずれかの分子で構成されている。
 ピューロマイシンは抗生物質の一種であり、アミノアシルtRNAの3’末端と類似した構造を有している。このため、リボソーム上で合成途中のペプチドのC末端に結合すると、タンパク質の合成は停止する。この性質を利用して、上記mRNAに対応するDNA配列を有するペプチド(又はタンパク質)を結合するペプチド提示部位(図4中、「P」と示す。他の図においても同様。)として利用することができる。
 ピューロマイシンの類縁体としては、例えば、3'-N-アミノアシルピューロマイシン(PANS-アミノ酸)及び3'-N-アミノアシルアデノシンアミノ酸のヌクレオシド(AANS-アミノ酸)等を挙げることができる。PANS-アミノ酸のアミノ酸部分がグリシンである場合、PANS-Gly、バリンであるPANS-Val、アラニンであるPANS-Ala、PANSアミノ酸の混合物、AANSのアミノ酸部分がグリシンであるAANS-Gly、バリンであるAANS-Val、アラニンであるAANS-Ala等を使用することもできる。
(2)主鎖(b)の構造
 上記主鎖(b)は一本鎖DNAで構成されており、上述したように側鎖結合部位、mRNA結合領域、蛍光検出用DNA結合領域、固相切断部位、及び固相結合部位を含んでいる(配列番号1)。上記主鎖(b)は、前記mRNA結合領域中にmRNAを結合するための第1の架橋用化合物と、前記蛍光検出用DNA結合領域中に蛍光検出用DNAを結合するための第2の架橋用化合物とを含む。架橋用化合物が1つしか含まれていないと、mRNAを結合することはできても、蛍光検出用DNAと結合することができない(図3参照)ため、第2の架橋用化合物が導入されている(図4参照)。
 下記表1に、従来のリンカーの主鎖(配列番号2)と本発明のリンカーの主鎖(配列番号1)との相違を、ヌクレオチド配列として示す。表中、Kは3-シアノビニルカルバゾールを示す。下記の配列番号1及び2で表されるヌクレオチド配列の5’側に固相切断部位(図3及び4中、rGと示す。)が連結される。
Figure JPOXMLDOC01-appb-T000001

(2-1)固相結合部位(b1)
 上記固相結合部位(b1)は、本発明のリンカーの5’末端に位置し、1~約5ヌクレオチドで構成される配列とビオチン、アビジン、及びそれらの類縁体からなる群から選ばれるいずれかの分子で構成される部位であり、固相に上記リンカーを結合させる。ビオチンの類縁体としては、例えば、オキシビオチン、デスビオチン等を挙げることができ、アビジンの類縁体としては、例えば、ストレプトアビジン等を挙げることができる。
 上記固相と上記リンカーとの結合には、上述したビオチン、アビジン、及びそれらの類縁体に加えて、例えば、アルキン、アジ化物、アミノ基、N-ヒドロキシスクシンイミドエステル(NHS)、SH基、及びAu等を使用することができる。なお、上記固相結合部位は、上記主鎖の固相切断部位に、上記1~約5ヌクレオチド、例えばアデニン、で構成される配列を介して連結されている。
 上記固相としては、例えば、分子相互作用解析用の機器で使用する各種センサーチップ又は各種基材、及び磁気ビーズ等を挙げることができる。なお、上記固相結合部位は、本発明のリンカーにハイブリダイズするmRNAとはハイブリダイズしないように構成されている。
(2-2)固相切断部位(b2)
 上記主鎖(b)は、上記リンカーを上述したいずれかの固相と結合させて所望の分子を結合させ、その後上記所望の分子を上記固相から遊離させるための固相切断部位を備えている。上記固相からの上記所望の分子の遊離は、酵素を用いて行うことが酵素の高い基質特異性を利用して所望の位置で切断できることから好ましい。こうした酵素としては、エンドヌクレアーゼを使用することが好ましく、例えば、RNase T1、エンドヌクレアーゼV等を例示することができる。これに伴って、上記固相切断部位は、上記のようなエンドヌクレアーゼで切断できる1~10塩基で構成されることになる。例えば、固相との結合を切断するための酵素としてRNase T1を使用する場合には、リボグアニン(以下、「rG」と略すことがある。)を使用することが、rGが存在する位置で固相から切り離すことができることから好ましい。
(2-3)mRNA結合部位(b3)
 本発明のリンカーのmRNA結合領域は、前記側鎖結合結合部位と前記固相結合部位との間に位置し、これらの間に位置する蛍光検出用DNA結合領域よりも3’側にある。そして、この結合領域は、所望のタンパク質をコードするヌクレオチド配列を鋳型DNAとし、上記鋳型DNAを転写して得られたmRNAの配列に含まれる配列とハイブリダイズ可能な配列を有している。
 当該mRNA結合領域には、所望の条件でmRNAと光架橋を行うための第1の光架橋用化合物が含まれる。こうした光架橋用化合物としては、光架橋性人工核酸等を挙げることができ、例えば、3-シアノビニルカルバゾール(以下、「cnvK」ということがある。)、3-シアノビニルカルバゾールの基本骨格をD-トレオニノールに変更した5'-O-(4,4'-Dimethoxytrityl) -1'-(3-cyanovinylcarbazol-9-yl) -2'-deoxy-β-D-ribofuranosyl-3'-[(2-cyanoethyl) -(N,N-diisopropyl)] -phosphoramidite(以下、「CNV-Dホスホロアミダイド」ということがある。)日華化学(株)製等のcnvKの類縁化合物を挙げることができる。これらの化合物を使用することが、短時間での架橋が可能であることから、リンカーの主鎖を構成するDNAの損傷を抑えることができる点で好ましい。
 当該第1の光架橋用化合物は、mRNA結合領域の任意の場所に配置することができる。ここで、光架橋用化合物としてcnvKを用いた場合、cnvKの5’側にアデニンを配置すると、相補鎖であるmRNA中のウラシルと効率よく結合するため、光架橋の効率が高くなるという利点がある。なお、本発明のリンカーの主鎖は10~50塩基で構成されるため、上記mRNA結合領域も10~20ヌクレオチドで構成されるものであることが好ましい。上記mRNA結合領域は、リンカー自体の合成が容易であり、無細胞翻訳系で合成されたペプチドとの分子間相互作用を生じさせず、そして後述する第2の光架橋用化合物が含まれる部位に結合しないようにする必要があるからである。
(2-4)蛍光検出用DNA結合領域
 本発明のリンカーは、上記蛍光検出用DNA結合領域を、上記主鎖(b)の上記固相切断部位と上記mRNA結合部位との間に有している。そして、上記蛍光検出用DNA結合領域は、蛍光増強用RNAアプタマーに対応するヌクレオチド配列を有する二本鎖DNAを結合させるための領域である。ここで、「アプタマー」とは、「特異的に標的物質に結合する能力を持った合成DNA/RNA分子」をいい、一本鎖RNA又はDNAなどが作る立体構造によって、細胞や組織のタンパク質の機能を特異的にノックダウンすることができる。1990年以降、増殖因子、酵素、受容体、膜タンパク質、ウイルスタンパク質等のアプタマーが発見されており、さらに金属イオン、低分子量有機化合物、ウイルス等と結合するものも知られている。
 上記アプタマーには、抗体とは異なり、試験管内で化学的に短時間のうちに合成できる、作用機序が単純である、免疫原性がほとんどない、といった利点がある。核酸アプタマーの製造方法としては、in vitro selection法又はSELEX法等が知られている。RNAアプタマーとDNAアプタマーとの間には本質的な違いは存在しないが、DNAアプタマーの方が化学的に安定だという特徴がある。
 本発明においては、抗原の検出用分子(以下、「蛍光団」又は「フルオロフォア」ということがある。)として、蛍光増強用RNAアプタマーに対応するヌクレオチド配列を有する二本鎖DNAを用いることが、以下の理由から好ましい。mRNA内に蛍光増強用RNAアプタマーを組み込むと、単独では蛍光を発しない蛍光体に結合することにより、蛍光を発生するようになるからである。
 すなわち、RNA自身は固有の強い蛍光を持たず、試験管内又は生体内のいずれにおいても、少量のRNAを検出することは難しい。このため、一般的には、標的RNAに組み込まれた適合するタグ領域に蛍光レポーター分子を共有結合させてRNA中に導入する。上記適合するタグ領域としては、例えば、適切な配列又は三次構造等を挙げることができる。上記蛍光レポーター分子としては、蛍光色素等を挙げることができ、上記の蛍光レポーター分子として蛍光色素を結合させた場合には、色素結合RNAアプタマーが得られる。また、代表的な色素結合RNAアプタマーとしては、Spinach、Corn、Mango等を挙げることができる。
 ここで、こうした色素結合RNAアプタマーを蛍光プローブとして用いる場合には、蛍光効率が重要なパラメータとなる。解離定数をKD、結合時と非結合時の間で生じる蛍光増強をFEとすると、蛍光効率EはE = FE/ KDと定義され、E値が大きいほど蛍光プローブとして好適である。これらの中でE値が非常に大きいため、RNA Mangoを使用することが好ましい。
 Mangoアプタマーは、一連のチアゾールオレンジ(フルオロフォア、以下、「TO1」ということがある。)誘導体とnMオーダーの親和性で結合し、このフルオロフォアの蛍光は最大1,100倍まで増強される。図5に示すように、RNA MangoとTO1-ビオチンとを混合すると、TO-1ビオチンがRNA Mango中に取り込まれ、RNA-TO1-ビオチン複合体を形成して強い蛍光を発するからである(図5(A)及び(B)参照)。
 以下に、RNA MangoをコードするMango DNA配列を含むDNA配列(配列番号3)を示す。下記の配列中、塩基番号18~111がMango DNA配列に相当する。
(配列番号3)
5'-GGATGCGTAA CCCTCAAGGA ACCCGCAAGC CATCGGGACT CAAGCCGCCG GTACCTCCGA
    AGGGACGGTG CGGAGAGGAG AGGGGGCACT GGGCGGCTGT GTGAGATTCT GCCAAATAGA
    CAGCCGAA-3'
 また、前記蛍光検出用DNAは、5’突出末端を備える二本鎖DNAであることが好ましい(図2参照)。本発明のリンカーの主鎖(b)中の前記蛍光検出用DNA結合領域とアニールし、上述した第2の光架橋用化合物で共有結合を形成させることができ、後述する高感度検出が可能となるからである。
(2-5)mRNA結合領域と連結するmRNAの設計
 上記mRNAがコードするDNAは、5’末端に所望のプロモーター、Cap配列、所望の翻訳エンハンサー配列、所望の翻訳開始用配列、標的タンパク質と結合するペプチド又はタンパク質をコードする配列、当該mRNA連結部とハイブリダイズする配列を有し、3’末端に所望の精製用タグの配列を含むものとすることができる。
 上記所望のプロモーターとしては、例えば、T7プロモーター、T3プロモーター等のユニバーサルプライマーを使用することが、それらの汎用性の高さから好ましい。上記翻訳エンハンサー配列としては、例えば、タバコモザイクウィルスの翻訳エンハンサーであるΩ配列等を使用することが好ましい。上記翻訳開始用配列は、例えば、Kozak配列やShine Dalgarno配列等を使用することが、翻訳の開始を促進することから好ましい。そして、これらの配列3’側に、所望の抗原と結合するペプチドの配列(以下、「抗原結合配列」ということがある。)を連結させることができる。
 こうした配列を含むコンストラクトとして、例えば、以下の配列(配列番号4)を設計した(図6参照(A))。
(配列番号4)
5’-GATCCCGCGA AATTAATACG ACTCACTATA GGGGAAGTAT TTTTACAACA
     ATTACCAACA ACAACAACAA ACAACAACAA CATTACATTT TACATTCTAC
     AACTACAAGC CACCATGGAT AACAAATTCA ACAAAGAACA ACAAAATGCT
     TTCTATGAAA TCTTACATTT ACCTAACTTA AACGAAGAAC AACGCAATGG
     TTTCATCCAA AGCCTAAAAG ATGACCCAAG CCAAAGCGCT AACCTTTTAG
     CAGAAGCTAA AAAGCTAAAT GATGCTCAAG CACCAAAAGC TGACAACAAA
     TTCAACGGGG GAGGCAGCCA TCATCATCAT CATCACGGCG GAAGCAGGAC
     GGGGGGCGGC GTGGAAA -3’
 上記配列中の塩基番号、配列の名称及び配列番号を下記表2に示す(図6(B)参照)。
Figure JPOXMLDOC01-appb-T000002
 上述した精製用タグとしては、例えば、x6ヒスチジンタグ(以下、「His-tag」ということがある。)、グルタチオン-S-トランスフェラーゼタグ等を使用することが、市販の精製キットを用いて簡便に精製できる点で好ましい。
 上記抗原と結合するタンパク質は、本発明のリンカーの側鎖のペプチド提示部位を構成するピューロマイシンに提示させる。例えば、抗原としてIgGを選択した場合には、IgGのFc領域と結合するAタンパク質のBドメイン(以下、「BDA」ということがある。)をコードする配列を、抗原結合配列としてDNAに組み込むことができる。
 本発明のリンカーは、上述したように、主鎖(b)セグメント(2つの光架橋用化合物を含むセグメント)と、側鎖(s)セグメント(ペプチド提示部位、及び蛍光物質であるFITCを含んでもよいセグメント)から構成されており、これら2つがEMCSを介してNHで結合されている(図4参照)が、例えば、以下の実験方法により作製することができる。
(3)本発明のリンカーの作製
 まず、所望の濃度の架橋剤含有溶液を調製し、これと上記主鎖(b)セグメントとを所望の濃度となるようにリン酸ナトリウムバッファー中で、所望の温度で所望の時間混合して架橋させ、濃縮する。例えば、架橋剤として約50~約150 mM EMCSのN,N-ジメチルホルムアミド溶液を調製し、約25~約75μLの約0.1~約0.5 M リン酸ナトリウムバッファー (pH 約7.0~約7.5)に、約3~約8 nmol 主鎖(b)セグメントと約5~約15μLの上記EMCS溶液を加えて、約35~約39℃にて約15~約45分間インキュベートし、その後、エタノール沈殿等によって濃縮することができる。
 次いで、上記の側鎖(s)セグメントに、リン酸水素二ナトリウムバッファーと還元剤とを加えて室温で所望の時間、振盪撹拌する。その後、バッファー交換を行い、蛍光を発している画分を取り、上記の主鎖セグメント(b)を含むEMCS溶液を加えて反応させ、本発明のリンカーを得ることができる。例えば、約5~約15 nmolの上記側鎖(s)セグメントにリン酸水素二ナトリウムバッファー(pH 約8.5~約9.5)と還元剤(約0.5~約1.5 M DTT)とを加えて約0.5~約1.5時間室温で振盪撹拌する。その後、約15~約30 mM リン酸ナトリウムバッファーを満たしたNAP5カラムでバッファー交換を行い、蛍光を発している画分を分取する。得られた画分に、上記のようにして調製した主鎖セグメント(b)を含むEMCS溶液を加え、約2~約6℃で終夜反応させる。
 引き続き、還元剤を所望の量加え、所望の温度にて所望の時間、振盪撹拌した後に濃縮する。その後、所定の溶液で調整し、ゲル電気泳動に供する。泳動後のゲルから、切り出し精製を行って本発明のリンカーを得ることができる。例えば、約0.5~約1.5M DTTを全液量の約1/15~約1/25量加え、室温にて約15~約45分間振とう攪拌し、エタノール沈殿により濃縮する。その後、Ultrapure water等の超純水にて約20~約40μLにメスアップし、60℃、200 V、30分の条件にて10%ポリアクリルアミドゲルを用いた電気泳動を行う。
 その後、電気泳動終了後のゲルをガラス板の上に置き、所望の希釈倍数の染色液でゲルを染色してイメージャーにて読み取る。原寸大で画像を紙に印刷し、その紙を上記ガラス板の下に置いてゲルと位置を合わせ、メスとピンセットとを用いて目的のバンドを切り出す。切り出したバンドをチューブに入れて細切し、所望の溶媒を所望の量で加えて終夜振盪しながら溶出させる。その後、この溶出液を遠心して得られたろ液を回収し、次の実験に合わせて濃度及び体積を調整する。
 例えば、電気泳動後のゲルを、約8,000~12,000倍希釈したSYBR-Goldで染色し、イメージャーで読み取り、原寸大でその画像を紙に印刷する。この紙をガラス板の下に置き、位置を合わせた後に、滅菌したメスとピンセットをさらに70%エタノールで消毒し、これらを用いて目的の位置のバンドを切り取り、約1~約2 mLのチューブに入れて細かく潰す。ここに約350~約450μLのMilli Q水を加えて、終夜、シェーカー等を用いて振盪し、溶出させる。この溶出液をすべて、例えば、Costar Spin-X Centrifuge Tube Filter等に移し、約10,000~約20,000 x gにて約10~約20分間遠心し、得られたろ液を回収する。次いで、例えば、エタノール沈殿を行って濃縮し、次の実験用に濃度及び体積を調整する。
 本発明のリンカーの各セグメントは、以上のようにして作製してもよく、又は、こうした分子の合成を行なう企業に製造を委託してもよい。
(4)蛍光検出用DNA配列の調製
 突出末端を有する上記蛍光検出用DNA配列は、エンドヌクレアーゼで二本鎖DNAの一方の鎖を消化するため、その切断点となるヌクレオチドを組み込んでおく必要がある。部位特異的にDNAを分解する上では、例えば、イノシンとエンドヌクレアーゼVとを使用することが好ましい。この場合を例に挙げて、以下に説明する。
 例えば、図2に示すような二本鎖DNA配列(配列番号11)を設計し、この配列に対してエンドヌクレアーゼVを作用させると、7塩基で構成される突出末端を有する二本鎖DNAが95%の確率で得られ、8塩基で構成される突出末端を有する二本鎖DNAが5%の確率で得られる(配列番号11~14、下記表3参照)。
Figure JPOXMLDOC01-appb-T000003
 例えば、蛍光団としてMango RNAアプタマーを用いる場合には、常法に従ってそのRNAから二本鎖DNAを合成する。そして、その5’末端から所望の位置に、突出末端を形成するためのイノシンが入るように、また、この突出末端が上記蛍光検出用DNA結合領域とアニールしたときに、上述した第2の光架橋等化合物と、チミンとがアニールするようにこのアプタマーのヌクレオチド配列を設計する。
 次いで、十分な量の蛍光団を得るために、例えば、Mangoプライマーセット(配列番号17及び18)を用いてMango DNA配列をPCRによって増幅させる。例えば、使用するPCR溶液を、約2~約6 x PCR溶液とし、反応スケールを約40~約60μLとして、約5 x プライムスターバッファー、約2.5 mM dNTP混合物、約0.5~1.5μLのプラス及びマイナスMangoプライマーセット(約5~約15μM;配列番号17及び18)、約1~4μLのMango DNA配列(約0.005~約0.015μM)、プライムスター、及びUltrapure waterを含む組成として、PCRを行うことができる。
 PCRプログラムは、例えば、(t1)約94℃で約1分、(t2)約98℃で約10秒、(t3)約59℃で約5秒、(t4)約72℃で約6秒、(t5)約72℃で約1分、(t6)約10℃まで1分間で降温とし、(t2)~(t5)を20~30サイクル行うようにすることができる。得られたMango配列(PCR産物1)を、エタノール沈殿などによって濃縮し、超純水で溶出する。
 次いで、上記のようにして得られたPCR産物1をテンプレートとし、イノシンプライマー(配列番号19)及びマイナスMangoプライマー(配列番号18)を用いてPCRを行うと、イノシンを含むPCR産物2を得ることができる。PCR溶液2は約40~約60μLスケールとし、約25μLのKOD Multi&Epi用2 x PCRバッファー、約0.5~約1.5μLのイノシンプライマー及びマイナスMangoプライマーセット(いずれも約5~約15μM;配列番号19及び18)、約1~約3μLの鋳型DNA(上記PCR産物1、約0.005~約0.015μM)、約0.5~約1.5μLのKOD Multi&Epi、及びUltrapure waterを含む組成とすることができる。
 上記のPCR溶液2を入れたチューブを、(t1)約94℃で約2分、(t2)約98℃で約10秒、(t3)約63℃で約10秒、(t4)約68℃で約3秒、(t5)約10℃まで約1分間で降温とし、(t2)~(t4)を20~40サイクル行うというPCRプログラムに供し、PCR産物2(イノシン含有)を得ることができる。得られた上記PCR産物2を電気泳動に供し、バンドを確認した後に、カラム精製を行って二本鎖DNAを得ることができる。
 引き続き、エンドヌクレアーゼVを約80~約100U加え、約36~約38℃にて約0.5~約1.5時間インキュベートし、その後ゲル電気泳動に供する。上記と同様にして切り出し精製を行い、得られた精製産物2を得ることができる。
(5)抗原検出方法
 次に、以上のようにして得られた上記リンカー及び蛍光検出用DNAを用いた、抗原検出方法を示す。ここで、上記リンカーは、mRNAを結合するための第1の架橋用化合物と、蛍光検出用DNAを結合するための第2の架橋用化合物と、固相結合部位と固相切断部位とを含む主鎖と;前記主鎖に結合されたmRNAに対応するペプチドを提示するためのペプチド提示部位を含む側鎖とで構成されている(図7)。
 そして、本発明の抗原検出方法は、以下の工程(1)~(6)を含む:(1)抗原結合性ペプチドのDNAからmRNAを得るmRNA取得工程と;(2)前記mRNA結合領域に相補的に結合した前記mRNAを第1の架橋用化合物で前記主鎖と連結させてmRNA-リンカー連結体を得るmRNA結合工程と;(3)前記mRNA-リンカー連結体のmRNAを翻訳して、mRNA-リンカー-ペプチド連結体を得るペプチド連結体形成工程と;(4)前記ペプチド連結体を固相結合部位で固相に結合させてバッファー交換を行い、その後、前記mRNAの分解及び前記固相から前記固相切断部位で切断してペプチド-リンカー複合体を得る精製工程と;(5)精製された前記ペプチド-リンカー複合体を、蛍光検出用DNAと第2の架橋用化合物で連結させるDNAディスプレイ分子形成工程と;(6)前記DNAディスプレイ分子を転写して蛍光検出用DNAからRNAアプタマーを形成し、前記RNAアプタマーの蛍光強度を測定する測定工程。
 上記工程(1)では、所望の抗原結合性ペプチド(例えば、抗体)のDNAを所望のDNAライブラリから選択し、そのペプチドのDNAを逆転写してmRNAを取得する。得られたmRNAを、上記工程(2)において上述のようにして作製した本発明のリンカーのmRNA結合部位とアニールさせ、所望の波長の光を照射して上記第1の光架橋用化合物とmRNAとを光架橋させる。
 まず、得られたmRNAと上記リンカーとを光架橋用反応液中でアニーリングさせる。例えば、約88~92℃で約1.5~約2.5分反応させた後に、約1分間で約65~約75℃まで降温し、その後降温した温度で約1分間維持し、その後さらに約10~約20分かけて約20~約30℃まで降温させてアニールさせ、次いで、350~380nmの波長の紫外線照射を約0.5~約1.5分間行って、mRNA-リンカー連結体を得ることができる。
 引き続き、上記工程(3)において、上記のようにして得られたmRNA-リンカー連結体を、例えば、無細胞翻訳系に投入して上記連結体中のmRNAを翻訳し、上記リンカーのペプチド提示部位にこのmRNAに対応するペプチドが結合されたmRNA-リンカー-ペプチド連結体(mRNA-ペプチド結合体)を得ることができる。無細胞翻訳系としては、ウサギ網状赤血球ライセートベースの in vitro 翻訳系等を使用することができる。
 次いで、上記工程(4)において、以上のようにして得られた前記ペプチド連結体を固相結合部位で固相に結合させ、バッファー交換を行い、その後mRNAを分解及び固相から切断することで精製されたペプチド-リンカー複合体を得ることができる。以下、その説明である。上記固相としては、上記リンカーの固相結合部位がビオチンで構成されている場合にはストレプトアビジン(以下、「SA」と略すことがある。)磁性体ビーズ(Dynabeads MyOne Streptavidin C1、以下、「磁性体ビーズ」と略すことがある。)を使用することができる。
 固相に結合した上記前記ペプチド連結体をバッファーで洗浄して夾雑物を除く。次いで酵素を加えることにより、mRNAの分解及び固相からの遊離を行う。ここで使用する酵素としては、例えば、mRNAの分解にはRNase H、固相からの切断には、固相切断部位がrGで構成されている場合には、RNase T1を用いることが固相切断部位での切断効率が高いことから好ましい。
 次に、上記工程(5)において、以上のようにして精製された前記ペプチド-リンカー複合体を、上記蛍光検出用DNA配列と上記蛍光検出用DNA結合領域で、他方の前記架橋用化合物で連結させる。ここで、上記蛍光検出用DNA配列としては、上述した蛍光RNAアプタマーの配列に対応するものを挙げることができる。これらの中でも、上述したE値が高い、RNA Mangoに対応するDNA配列を含む二本鎖DNA配列を使用することが、検出感度の点から好ましい。上記蛍光検出用DNA配列と前記ペプチド-リンカー複合体との連結は、上述したmRNAと本発明のリンカーとを架橋させる場合と同様に行うことができる。
 この工程(5)において、T-DNAディスプレイ分子を形成させることができ、必要に応じて、本発明のリンカーの主鎖(b)に組み込まれた配列を利用して精製を行うことができる。例えば、Hisタグの配列を組み込んでおけば、これを利用してT-DNAディスプレイ分子を精製することができる。
 次いで、工程(6)において、前記T-DNAディスプレイ分子を転写して蛍光検出用DNA配列からRNAアプタマーを形成し、前記RNAアプタマーとの蛍光強度を測定する。まず、抗原で所望のプレート若しくは磁性体ビーズをコーティングする。例えば、ビオチンと結合させた抗原を含む溶液を、96ウェルプレートの各ウェル、若しくは磁性体ビーズであるストレプトアビジンビーズ(以下、「SAビーズ」という。)に分注して、ビオチン化抗原を結合させ、スキムミルク、tRNA等を用いてブロッキングを行う。上記抗原のコーティングには、カルボン酸ビーズ(以下、「CAビーズ」という。)を使用してもよい。次いで、上記のようにして得たT-DNAディスプレイ分子を各ウェル等に加え、インキュベートする。
 その後、上記の各ウェル等に転写バッファー、rNTPs等を含む転写反応溶液を加えて約2~約4時間インキュベートし、上記T-DNAディスプレイ分子に結合している蛍光検出用二本鎖DNAからRNAアプタマー(例えば、RNA Mango)を得ることができる。インキュベート終了後に、各ウェルにTO1-ビオチンを加え、蛍光強度を測定する。以上のようにして、本発明の抗原検出方法によって、抗原を蛍光検出することができる。
 以下に本発明を、実施例を用いてさらに詳細に説明するが、本発明は以下の実施例の記載に限定されるものではない。
(実施例1)新規リンカーの設計と作製
(1)試薬等
 本実施例で使用した試薬は、下記の通りのものを購入して使用した。
(1-1)電気泳動用
 トリス(ヒドロキシメチル)アミノメタン、ホウ酸、N,N-メチレン-ビス(アクリルアミド)は、分子生物学用グレードを、アクリルアミドは電気泳動用を、酢酸ナトリウム、EDTA、尿素、N,N,N,N-テトラメチル-エチレンジアミン[TEMED]、過硫酸アンモニウム[APS]、ブロモフェノールブルー、キシレンCyanolFF、2-メルカプトエタノール、スクロース及び塩酸は特級を、また、ドデシル硫酸ナトリウム[SDS]は一級を、それぞれ富士フィルム和光純薬(株)から購入した。
 また、100 bp DNAラダー、10 bp DNAステップラダーはPromega社より購入した。SYBR Nuleic Acid StainsはMolecular Probesより購入し、スピン・エックス(Spin-X Centrifuge Tube Filter)はCostar社よりそれぞれ購入した。
(1-2)ビオチン-2cnvK-リンカーの合成用
 Na2HPO4(分子生物学用)、ジチオスレイトール(DTT)及びEMCSは富士フィルム和光純薬(株)より購入した。また、Nap-5 Columns Sephadex G-25 DNA GradeはGE Healthcare社より購入した。
(1-3)PCR用
 PCRクリーンアップミニキットはFAVORGEN社より購入した。PrimeSTAR、5 x PrimeSTAR バッファー及びdNTP混合物(各2.5 mM)はタカラバイオ(株)より、2 x PCR Buffer for KOD Multi&Epi及びKOD Multi&Epiは東洋紡(株)よりそれぞれ購入した。エタノール沈殿には、エタノール(分子生物学用)を富士フィルム和光純薬(株)より、また、Quick-Precip Plus SolutionをEdge Bio社より購入した。
(1-4)転写反応用
 Ribo Max Large ScaleRNA Production SysteinsをPromega社より、また、After-Tri-Reagent RNA Clean-up KitをFAVORGEN社より購入した。
(1-5)インビトロ翻訳用
 Retic Lysate IVT in Vitro Translation KitはThermoFischer社より、また、Ultra Pure 0.5 M EDTA (pH 8.0)をInvitrogen社よりそれぞれ購入した。塩化カリウム及び塩化マグネシウム6水塩は分子生物学用を富士フィルム和光純薬(株)より購入した。mRNAの消化には、RNase H(タカラバイオ(株))及びNEバッファー(BioLabs社)を使用した。また、SA磁性体ビーズからのmRNA/cDNA融合タンパクの遊離には、Rnase T1をAmbion社より購入した。
(1-6)His tag精製
 His Mag sepharose NiをInvtrogen社より購入し、また、イミダゾールはGE Helthcare 社より購入した。His tag 洗浄バッファーとして、0.5 M NaCl, 5mM Imidazole, 及び0.05% Tween20を含有する20 mM sodium phosphate(pH 7.4)を、また、Histag溶出バッファーとして、0.5 M NaCl, 250 mM Imidazole, 及び0.05% Tween20を含有する20 mM sodium phosphate(pH 7.4)を調製した。
(1-7)RNA Mangoと色素の結合
 色素として、TO1-3PEG-Biotin Fluorophoreをコスモバイオ(株)より、購入した。また、10mM リン酸ナトリウム、140mM KCl、1mM MgCl2、0.05% Tween-20、ジメチルスルホキシド、リン酸水素二ナトリウム、リン酸二水素ナトリウム、リン酸二水素カリウム、及びTween20を含むWash/Binding buffer (WBバッファー)を調製した。
 モデル抗原として、ビオチン化IgGを使用した。IgG from rabbit serum及びTween20をSigma社より、10 x PBS(-)を富士フィルム和光純薬(株)より、Bio-Spin 6 columnsをBioRAD社よりそれぞれ購入した。
(2)新規リンカー(ビオチン-2cnvK-リンカー)の作製
(2-1)ビオチン-2cnvK-リンカーの設計
 cnvKを含んだ従来型のピューロマイシンリンカーは、図3に示すように、cnvKを含む主鎖(ビオチン-cnvKセグメント)と、ピューロマイシン及び蛍光物質であるFITCを含む側鎖(Puro-F-Sセグメント)とで構成され、そしてこれら2つのセグメントはNHで結合されるように設計した(図3参照)。
 従来型リンカーの主鎖の2ヶ所に光架橋塩基であるcnvKを組み込むように、改変した。従来のリンカーにおいては主鎖の一か所のみにcnvKを組み込んでいたため、ペプチド提示部位にディスプレイするペプチドをコードするmRNAを主鎖に結合できるだけであった。しかし、上記改変により、抗原検出時に使用する蛍光団となるDNA配列をコードした二本鎖DNAをも本発明のリンカーの主鎖に結合できるようになった。上記蛍光団となるDNA配列については後述する。以下の実験方法により、ビオチン-2cnvK-リンカーを作成した。
(2-2)ビオチン-2cnvK-リンカーの合成
 主鎖となるビオチン-2cnvKセグメントは、北海道システム・サイエンス株式会社に、また、側鎖となるPuro-F-Sセグメントは、つくばオリゴサービス株式会社にそれぞれ合成を依頼した。
 架橋剤であるEMCSを2mg取って65μLのN,N-ジメチルホルムアミドに溶解させ、100 mM EMCS溶液を調製した。40μLの0.2 M リン酸ナトリウムバッファー (pH 7.2)に、5 nmol のビオチン-cnvKセグメントと10μLの100 mM EMCSとを加え、37℃で30分間インキュベートした。その後、エタノールを加えてエタノール沈殿させ、ビオチン-2cnvKセグメントを含むEMCS溶液を濃縮した。
 引き続き、10 nmol Puro-F-Sセグメントに、8.5μLの1 M Na2HPO4(pH 9.0)と、1.5μLの1 M DTTとを加え、この混合物を室温で1時間、振盪しつつ撹拌した。撹拌終了後に、上記混合物を20 mM リン酸ナトリウムバッファーを満たしたNAP5カラムに通してバッファー交換を行い、蛍光色の溶液(Puro-F-Sセグメントを含む画分)だけを分取した。分取したPuro-F-Sセグメントを含む画分に、上記のように濃縮したEMCS溶液を全量加え、4℃にて終夜反応させた。
 反応終了後に、1M DTTを全量の1/20加え、室温で30分間、振盪撹拌し、エタノールを加えて沈殿させ濃縮した。濃縮後、Ultrapure waterを加えて30μLにメスアップし、以下のように切り出し精製を行った。
(2-3)切り出し精製
 PCRなどで得られたDNAに夾雑物が混じっているときに、ゲル電気泳動を行い、泳動後のゲルから目的のバンドを得るために、切り出し精製を行った。まず、試料を60℃、200V、40分の条件で10%ポリアクリルアミドゲルを用いる電気泳動に供し、泳動後のゲルをガラス板上に置いた。次いで、10,000倍希釈したSYBR-Gold溶液をこのゲルを覆うようにかけてゲルを染色した。染色したゲルをイメージャーで読み取り、この画像を原寸大で紙に印刷した。
 この泳動像を印刷した紙をガラス板の下に置き、バンドの位置を合わせ、ゲルから目的のバンドの切り出し操作を行った。予め、アルコールランプの火であぶり、その後70 %エタノールをかけて滅菌したメスとピンセットを用いて、ゲルからの上記バンドの切り出しを行った。
 滅菌したメスとピンセットとを用いて目的の位置にあるバンドを含むゲルを切り出し、1.5 mLチューブに移して、ゲルを細かく潰した。切り出し後のゲルは上記イメージャーで再度読み取り、目的のバンドを含むゲルを正確に切りだせているか否かを確認した。
 ゲルを含む上記のチューブに400 μLのMilli Q水を加えて、一晩シェーカーを用いて溶出させた。ゲルの欠片が混じっている溶出液をSpin-X Centrifuge Tube Filter(Costar社製)に移して、1,5000 x gで15分間25℃にて遠心し、得られたろ液を回収した。このろ液にエタノールを加えて沈殿させ、次の実験で使用する濃度及び体積となるように調整し、精製産物1とした。
 上記の条件でゲル電気泳動を行った結果、Biotin-2cnvK fragmentとpuromycin-fluorescein fragmentが連結したことに起因するバンドの上方シフトが確認できた(図8)。また、合成されたBiotin-2cnvK-LinkerはmRNAと問題なくライゲーションすることが確認された。以上から、今後のT-DNAディスプレイ形成にはこのリンカーを使用した。
(3)蛍光団の調製
 代表的な色素結合RNAアプタマーの中ではE値が非常に大きいRNA Mangoを、蛍光プローブとして最適であると考えて使用した。
(3-1)Mango DNA配列のPCR
 RNAの蛍光団として使用するために、Mango DNA配列のPCRを以下の条件で行った。鋳型にはMango配列を使用し、プライマーとして、プラスMangoプライマー及びマイナスMangoプライマー(配列番号17及び18)を用いた。PCR溶液(4 x PCR溶液)は50μLスケールとし、10μLの5 x プライムスターバッファー、4μLの2.5 mM dNTP混合物、1μLの10μM プラスMangoプライマー、1μLの10μM マイナスMangoプライマー、2μLの0.01μMのMango配列、及び0.5μLのプライムスター、31.5μLのUltrapure waterを含む組成とした。このPCR溶液をTreffLab PCR-SINGE TUBE, PP, CLEAR 0.2ml に入れた。
 PCRプログラムは、(t1)94℃で1分、(t2)98℃で10秒、(t3)59℃で5秒、(t4)72℃で6秒、(t5)72℃で1分、(t6)10℃まで1分間で降温とし、(t2)~(t5)を25サイクル行い、PCR産物1としてMango配列を得た。得られた上記PCR産物1をエタノール沈殿させて濃縮し、Ultrapure water 30μLで溶出させた。
(3-2)イノシンプライマーを用いたPCRとPCR産物の精製
 上記のようにして得られたPCR産物1をテンプレートとし、イノシンプライマー(配列番号19)及びマイナスMangoプライマー(配列番号18)を用いてPCRを行った。PCR溶液は50μLスケールとし、25μLのKOD Multi&Epi用2 x PCRバッファー、1μLの10μMイノシンプライマー、1μLの10μMマイナスMangoプライマー、2μLの0.01μM鋳型DNA(上記PCR産物1)、1μLのKOD Multi&Epi、及び20μLのUltrapure waterを含む組成とした。この全量をTreffLab PCR-SINGE TUBE, PP, CLEAR 0.2mlに入れた。
 PCRプログラムは、(t1)94℃で2分、(t2)98℃で10秒、(t3)63℃で10秒、(t4)68℃で3秒、(t5)10℃まで1分間で降温とし、(t2)~(t4)を30サイクル行い、PCR産物2(イノシン含有)を得た。得られた上記PCR産物を4%ポリアクリルアミドゲル電気泳動に供し、60℃、200V、20分の条件で泳動してバンドを確認した。その後、エタノール沈殿による精製を行った。
(4)突出末端の作製
 上述のようにして得たBiotin-2cnvK-Linkerと、RNA Mangoの鋳型DNAとを連結させるためには、二本鎖DNAであるRNA Mangoの鋳型DNAに突出末端を形成させる必要があった。この突出末端の作製には、エンドヌクレアーゼVを使用した。この酵素が認識するイノシンと相補鎖を形成する塩基として、シトシンが入る確率が一番高いため、その点を考慮してDNAコンストラクトを設計した(図7参照)。
(4-1)エンドヌクレアーゼV処理による突出末端の作製と精製
 上記(3-2)で得られた上記PCR産物2に、エンドヌクレアーゼVを100 U加えて37℃にて1時間インキュベートし、酵素処理を行った。引き続き、エンドヌクレアーゼV処理後のDNAを、4%ポリアクリルアミドゲルを用いるゲル電気泳動に供し、60℃、200V、20分の条件で泳動させた。
 上記のように泳動させたゲルから、上記(2-3)と同様に、切り出し精製を行って精製産物2を得た。次いで、上記精製産物のアニーリングを、37℃にて1時間、2μLの 10 x NEバッファー、1μLの精製産物(10 pmol相当)、1μLのエンドヌクレアーゼVを含む20μLの溶液中で行った。その後、電気泳動(条件:60℃、200V、20分)を行い、イメージャーを用いて生成物を確認した。その結果、以上の工程によって突出末端を持つdsDNAが作製できたことを確認した(図9)。
(実施例2)BDA-リンカー-Mango DNA配列 複合体(T-DNAディスプレイ分子)の形成
(1)BDA(鋳型DNA)の増幅
 BDAのDNAをテンプレートとして50μLスケールでPCRを行い、DNAを増幅した。PCRは、10μLの5 x PrimeSTARバッファー (Mg2+含有)、4μLのdNTP混合物(各2.5 mM)、1μLの20μM プライマー(Poly A & cnvKリンカー用New Yタグ)、20μLの20μMプライマー2 (New left)、2μLの鋳型DNA (約1 nM)、0.5μLのPrimeSTAR HS DNAポリメラーゼ(2.5 U/μL、Takara製)、及び31.5μLのUltrapure waterを含む組成とした。
 また、PCRプログラムは、(t1)98℃で2分、(t2)98℃で10秒、(t3)68℃で5秒、(t4)72℃で24秒、(t5)72℃で1分とし、(t2)~(t5)を25サイクル行い、PCR産物3を得た。得られたPCR産物3はPCR Clean-Up Mini Kit (Favorgen社製)を用いて精製した。
(2)mRNAへの転写
 得られたPCR産物3を、RiboMAX Large Scale RNA production Systemsを用いてmRNAに転写した。転写用反応溶液は20μLスケールとし、4μLのT7 Transcription 5x Buffer、6μLのrNTPs (25 mM ATP, CTP, GTP, UTP)、1.5μLの鋳型DNA(PCR産物3)、6.5μLのプラスヌクレアーゼフリー水、2μLの酵素ミックス(Promega社製)を含む組成とした。
 上記の組成の転写用反応溶液を37℃で3時間インキュベートし、1μL のRQ1 RNase-Free DNase(Promega社製)を加え、37℃でさらに15分間インキュベートした。その後、After Tri-Reagent RNA Clean-up Kitを用いて、付属のプロトコルに従ってmRNAを精製した。
(3)mRNAとビオチン-2cnvK-リンカーとの連結
 上記(2)で精製したmRNAとビオチン-2cnvK-リンカーとが、反応液中に等モルで含まれるようにして光架橋により連結した。光架橋用反応液は20μLスケールとし、20 pmolのmRNA及びビオチン-cnvKリンカー、4μLの1M NaCl及び0.25Mトリス塩酸を含む組成とした。
 アニーリングは、90℃で2分、1分間で70℃に降温して1分間70℃で維持し、その後15分かけて25℃まで降温させて行った。アニーリング終了後、CL-1000 Ultraviolet Crosslinkerを用いて、365nmの紫外線照射(405 mJ/cm2)を1分間行って、mRNAとビオチン-2cnvK-リンカーとを光架橋させ、mRNA-リンカー連結体を得た。
(3)無細胞翻訳系によるmRNA-リンカー-ペプチド連結体の形成
 次いで、mRNA-リンカー連結体を無細胞翻訳系で翻訳し、mRNA-リンカー-ペプチド連結体を形成した。この無細胞翻訳は50μLスケールで行い、1μLのTranslation Mix、6μLのmRNA-リンカー連結体 (6 pmol)、35μLのRetic Lysate、1μLのRNaseインヒビター(Promega社製)、及び7μLのUltrapure waterを含む組成とした。
 無細胞翻訳は、上記の組成の翻訳溶液を30℃で20分間インキュベートし、その後、12μLの3M KClと3μLの1M MgCl2とを加え、さらに37℃で60分間インキュベートした。引き続き、10μLの0.5 M EDTA溶液 (pH 8.0)を加え、37℃で10分間インキュベートし、次いで、ここに50μLの2 x 結合バッファーを加えた。
 以上のようにして、上記ビオチン-2cnvK-リンカーのピューロマイシンに、mRNAがコードするペプチド(BDA)を結合させることで、mRNA-リンカー-ペプチド連結体を形成させた(図10参照)。
(4)ストレプトアビジン磁性体ビーズへの固定化
 上記mRNA-リンカー-ペプチド連結体を結合させる固相として、ストレプトアビジン(以下、「SA」と略すことがある。)磁性体ビーズ(Dynabeads MyOne Streptavidin C1、以下、「磁性体ビーズ」と略すことがある。)を使用した。上記mRNA-リンカー-ペプチド連結体の濃度(10 pmol/μL)の10倍の液量の上記磁性体ビーズ(例えば、連結体10μLに対してビーズ100μL)をProtein LoBind Tubeに入れ、磁気スタンドに静置して上澄を捨てた。
 次いで、1 x 結合バッファーをこのチューブに加えてビーズを再懸濁させ、磁気スタンドに静置して上澄を捨て、磁性体ビーズを洗浄してRNaseフリーとした。このチューブに上記mRNA-リンカー-ペプチド連結体を加え、25℃で60分間、ローテーターで攪拌しながらインキュベートし、上記mRNA-リンカー-ペプチド連結体と上記磁性体ビーズとを結合させた。
(5)RNase処理による磁性体ビーズからの分離及びペプチド-リンカー複合体の形成
 次に、RNase T1を用いて上記mRNA-リンカー-ペプチド連結体中のリボGを切断し、上記磁性体ビーズからmRNA-リンカー-ペプチド連結体を遊離させた。同時にRNase H処理を行ってmRNA-ペプチド連結体からmRNAを切り離し、ペプチド-リンカー複合体を形成させた。
 上記磁性体ビーズを200μLの1 x 結合バッファーで3回洗浄し、さらに0.25M トリス塩酸バッファー(pH 7.4)で1回洗浄した。その後、17.6μLの0.25M トリス塩酸バッファー(pH 7.4)、2μLの10 x NE バッファー2、0.2μLのRNase H (1,000 U/μL)及び0.2μLのRNase T1 (1,000 U/μL)を含む酵素処理溶液を加え、37℃にて30分間、ローテーターで攪拌しながらインキュベートした。反応後、上記酵素処理反応液を含むProtein LoBind Tubeを磁気スタンドに静置し、上澄みを回収した。
(6)ペプチド-リンカー複合体と突出末端保有Mango DNA配列との連結
 次いで、突出末端保有Mango DNA配列と上記ペプチド-リンカー複合体とをアニーリングさせ、その後光架橋を形成させて連結した。この連結反応は50μLスケールとし、使用する連結反応溶液は、10μLの突出末端保有Mango DNA配列 (dsDNA, 約1μM)、20μLのペプチド-リンカー複合体、10μLの1M NaCl及び10μLの0.25M トリス塩酸バッファー (pH 7.4)を含む組成とした。
 また、アニーリングは、70℃で2分、1分間で50℃に降温して1分間50℃で維持し、その後15分かけて25℃まで降温させて行った。アニーリング終了後、CL-1000 Ultraviolet Crosslinkerを用いて、366nmの紫外線照射(405 mJ/cm2)を1分間行って、ペプチド-リンカー複合体と突出末端保有Mango DNA配列とを光架橋形成させることで、ペプチド-リンカー-Mango DNA配列連結体を得た。
(7)His tag 精製
 ペプチド-リンカー-Mango DNA配列連結体は、ペプチドであるBドメインを提示しているディスプレイ分子(以下、「T-DNAディスプレイ分子」ということがある。)と、提示していないディスプレイ分子とを含むため、精製を行った。
 ここで、Bドメインにあらかじめ結合させておいたHisタグ配列を用いて、精製を行い、T-DNAディスプレイ分子を得た。このHisタグ精製は、高濃度のイミダゾールを含むバッファー(His タグ溶出バッファー)を用いて行った。
 先ず、上記のようにして得られたペプチド-リンカー-Mango DNA配列連結体を含む溶液を含むチューブに、His Mag セファロースNi を加え、シェーカーを用いて25℃で1時間又は4℃で終夜振盪撹拌しながらインキュベートした。その後、このチューブを磁気スタンド上で静置して上澄を除き、100μLの1 x Hisタグバッファーで1回洗浄した。次いで、20μLのHisタグ溶出バッファーを加え、室温で15分間、シェーカーで浸透しながらインキュベートし、その後、磁気スタンド上で静置して上澄を回収した。
 BDAを提示したT-DNAディスプレイの形成を電気泳動を用いて確認した。mRNA-linkerを基準として、形成効率は約2%と算出された(図11)。
(実施例3)標的分子(IgG)の検出
(1)IgGのビオチン化
 ウサギ血清から得られたIgGとEZ-Link Sulfo-NHS-SS-Biotinとを反応させ、このIgGをビオチン化した。0.3mg/200 μLの上記IgG(PBS-T)及び0.04 mg/40μLのEZ-Link Sulfo-NHS-SS-Biotin溶液(PBS-T)を含む240μLの反応溶液をProtein LoBind Tubeに入れ、このチューブを25℃で30分間、ローテーターで転倒混和し、ビオチン化IgGを得た。
(2)カラムによるバッファー交換
 上記(1)で得たビオチン-IgGを含む反応液のバッファー交換を行った。
 Micro Bio-Spin 6 カラム(BIO-RAD社製)の蓋を開けた状態で、1,000 x gで2分間、室温にて遠心した。次いで、500μLの結合バッファーを加え、1,000 x gで1分間、室温にて遠心した。この操作を4回行い、最後の遠心の時間を3分間とした。その後、上記(1)で調製したビオチン-IgG反応液を加え、1,000 x gで4分間室温にて遠心し、バッファー交換したビオチン化IgGを回収した。
(3)ビオチン化IgGのプレートへの固定化
(3-1)ビオチン化IgGのプレートへの固定化
 96ウェルプレート(QnE Streptavidin Coated Plates CLEAR)に、上記(2)で得たビオチン化IgG含有溶液(100 nM、10 nM、1 nM、0.1 nM)及びビオチン化IgG不含溶液(0 nM)をそれぞれ、各ウェルに10μLずつ添加し、室温で1時間インキュベートした。その後、200μLのPBS-Tで各ウェルを3回洗浄した。
(3-2)IgGとT-DNAディスプレイ分子との結合及び蛍光測定
 上記(3-1)でIgGを固定化したプレートの各ウェルに、上記T-DNAディスプレイ分子(Mango DNA配列を連結させた、BDA-リンカー-Mango DNA配列複合体)を約0.1 pmol加え、室温で30分インキュベートした。その後、PBS-Tで2回洗浄した。次いで、上記ディスプレイ分子を添加した各ウェルに、4μLのT7 Transcription 5 xバッファー、6μLのrNTPs (25 mM ATP, CTP, GTP, 及びUTP)、8μLのPlus Nuclease -Free水、2μLの酵素ミックス(Promega社製)を含む20μLの転写反応溶液を加え、37℃で3時間インキュベートした。
 この転写反応溶液が入った各ウェルに、5μLの10μM TO1-ビオチンを加え、37℃で30分間インキュベートした。その後、反応溶液の蛍光をNanodrop 3300によって測定した(図12参照)。結果を図13(A)に示す。RNA MangoとTO1-ビオチンの結合による蛍光増強が観測された。また、25℃, 0.02 A, 2時間の条件で上記の反応液についてSDSポリアクリルアミドゲル電気泳動(4%スタッキングゲル、6%ランニングゲル)を行い、バンドの出現をFITCが発する蛍光で検出した。結果を図13(C)に示す。図13(C)のレーン1で検出されたバンドは、mRNA-リンカー複合体であった。また、レーン2で検出されたバンドは、T-DNAディスプレイ分子(BDA-リンカー-Mango DNA配列複合体)であった。
 次に、RNA Mangoの蛍光増強に必要なT-DNAディスプレイ分子の量を調べた。1 nMから0.1 aMまでの10倍希釈系列のT-DNAディスプレイを用意し、上記転写反応及び上記TO1-ビオチン添加を行った。その後、Nanodrop3300を用いて蛍光計測した結果を図14(A)に示す。T-DNAディスプレイの濃度と蛍光強度には相関性があり、1nMから1fMあたりまで強い蛍光増強が生じることがわかった。またaMの濃度範囲でもわずかに蛍光増強が生じていることを確認した。
 最後に、T-DNAディスプレイによる標的分子(ここではIgG)の検出濃度範囲を調べた。上述した方法で、各濃度のIgGをELISA用プレートに固定化し、T-DNAディスプレイを添加した。蛍光増強を行った後、Nanodrop 3300を用いて蛍光強度を測定した。その結果、RNA MangoとTO1-ビオチンとの結合による蛍光が、IgGの濃度依存的に観測された。結果を図14(B)に示す。この結果より、IgGの定量限界は10 nM、検出限界は3.3 nMと算出された。
(実施例4)ブロッキング剤及び固定化担体の検討による標的分子(IgG)検出限界の改善
(4-1)ブロッキング剤の検討
 検出限界を改善するために、スキムミルク、BSA、ゼラチンをブロッキング剤として使用し、検討を行った。スキムミルク及びBSAは富士フィルム和光純薬(株)より、またゼラチン(フィッシュゼラチン)は、ナカライテスクよりそれぞれ購入した。PBS-Tに溶かすことで、2%スキムミルク溶液(w/v、終濃度)、3%BSA溶液(w/v、終濃度)、及び2%ゼラチン溶液(w/v、終濃度)を調製し、ブロッキング剤とした。
 96ウェルELISAプレートの各ウェルに、上記各ブロッキング剤のうち1つを加え、室温で約2時間時間インキュベートした。上澄を捨て、各ウェルをPBS-Tで3回洗浄した。その後、上述した通りにT-DNAディスプレイとの結合を、蛍光測定を行った。結果を下記表4に示す。表4に示すように、上記スキムミルク溶液の吸着量の比が0.25と最も低く、上記スキムミルク溶液のブロッキング効果が最も優れていることがわかった(図15(A))。
Figure JPOXMLDOC01-appb-T000004

 *1:上記表4中、陰性対照の吸着量を1としたときの比
 核酸の非特異付着を防ぐために、2% スキムミルク溶液にtRNAを添加した。終濃度2%のtRNAを2% スキムミルク溶液に混合したブロッキング剤を調製し、上述の方法でプレートをブロッキングした。結果を下記表5に示す。表5に示すように、2%スキムミルク溶液のみで構成されるブロッキング剤を使用した場合よりも、2%tRNAを加えたブロッキング剤の方が、ディスプレイ分子の吸着量が大幅に減少した。特に、バックグラウンドが大きく減少しており、非特異的吸着が低減されていると考えられた。以上より、2%tRNAを加えた2%スキムミルク溶液をブロッキング剤として使用すると、ブロッキング効果が高いことが示された(図15(B))。
Figure JPOXMLDOC01-appb-T000005

 *2:スキムミルクのみを含むブロッキング剤を使用した場合のディスプレイ分子吸着量を1としたときの比
(4-2)固定化担体の検討
 ELISAプレートを用いて、ブロッキングを行った場合と行っていない場合とにおけるT-DNAディスプレイ分子(ここではIgGをディスプレイしている分子)の検出限界を検証した。ブロッキングを行わなかった場合のIgGの定量限界は10 nM(10000 pM)、検出限界は1.3 nM(1300 pM)であった。これに対し、上記ブロッキング剤を用いた場合のIgGの定量限界は0.63 nM(629 pM)、検出限界は0.21 nM(207 pM)に改善された(図15C)。
 以上より、ブロッキングを行うことによって、T-DNAディスプレイ分子の定量限界及び検出限界共に改善されることが示された。
 さらに定量限界及び検出限界を改善するために、標的分子を固定化する担体の検討を行った。ここではELISA用プレートに加えて、磁性体ビーズであるSAビーズ及びCAビーズ(Dynabeads MyOne Carboxylic acid、Invitrogen社)を使用した。まず、各担体を上記スキムミルクとtRNAのブロッキング剤を用いてブロッキングした。PBS-Tで3回洗浄した後に、T-DNAディスプレイ分子を0.6 pmol相当加え、室温で約1時間インキュベートした。その後、担体をPBS-Tで2回洗浄した。
 0.2 M Glycine-HCl (pH 2.2)を加えて20分間振盪することで、各担体に非特異的に吸着したT-DNAディスプレイ分子を溶出し、その上清を回収した。回収したT-DNAディスプレイ分子を1.5 M Tris-HCl (pH 8.8)を60μLと混合することで中和し、PCR Clean-UP Mini Kitを用いて精製した。最後にこの非特異的吸着T-DNAディスプレイ分子を、定量PCRを用いて測定した。定量PCRはStepOnePlus Real-time PCR system(Applied Biosystems社製)を用いて行った。PCR混合液は、例えば10μL THUNDERBIRD SYBR qPCR Mix (TOYOBO社製)、0.6μLの10μM BDAqPCRプライマー(フォワード(配列番号20)及びリバース(配列番号21))、0.4μL ROX参照色素(reference dye)、2μLの上記担体および6.4μL Ultrapure waterを、最終容量約20μL中に含むようにした。PCR用ステッププログラムは、(t1)95℃で1分、 (t2)95℃で15秒、(t3)62℃で30秒とし、(t2) ~(t3)を40サイクル行った。その結果、CAビーズに対する非特異的吸着が一番少ないことが明らかになった(図16(A))。
 最後に、CAビーズを用いたIgG検出の検証を行った(図17)。CAビーズ110μLを1.5 mLチューブに取り、そのチューブを磁気スタンド上に静置し上清を捨てた。IgGをCAビーズに結合させるため、CAビーズを約pH6.0の25 mM MES(2-[N-morpholino]ethane sulfonic acid)緩衝液100μLで懸濁する作業を2回行った。次に、pH 6.0のMES緩衝液100μLに 、N-Hydroxysuccinimide 2.5 mg、EDC(1-ethyl-3-(3-dimethylaminopropyl) carbodiimide)・HCl 2.5 mgを加えて、ローテーターで撹拌しながら室温で30分間転倒混和した。磁気スタンドに4分間静置してから上清を取り除き、その後、100μLのMES緩衝液で2回、PBS-Tで1回洗浄した。PBS-Tで調製した、40μLの各濃度のIgG(1000 nM、100 nM、10 nM、1 nM、0.1 nM、及び0 nM)をそれぞれ20μLのCAビーズを入れたチューブに加え、25℃で1時間転倒混和した。
 磁気スタンドに静置して上清を取り除いた後、ビーズをSelection buffer(10mM sodium phosphate pH7.2, 140mM KCl, 1mM MgCl2, 0.05% Tween 20)で1回洗浄することで、未反応のIgGを取り除いた。次に、40μLのSelection bufferを加えて25℃で1時間転倒混和することで、未反応の活性化CAを不活性化させた。その後、上記ブロッキング剤(スキムミルクとtRNAとの混合物)でブロッキングを行った。最後に、上述のT-DNAディスプレイの結合及び蛍光強度の測定方法に従って、IgGの検出を行った。その結果、CAビーズを用いることにより、IgGの定量限界が0.033 nM (133 pM)、検出限界が0.044 nM (44 pM)まで改善された(図16(B))。
 以上より、本発明の新規リンカーを使用した方法を用いることにより、PCRを使用することなく、高感度で抗原を検出できることが示された。
 本発明は、所望の遺伝子を検出する検査薬、又は診断薬の分野で有用である。
配列番号1:本発明のリンカーの主鎖
配列番号2:従来例のリンカーの主鎖
配列番号3:RNA Mangoに対応するMango DNA配列を含むDNA配列
配列番号4:mRNA連結部と連結するDNAコンストラクト
配列番号5:T7プロモーターの塩基配列
配列番号6:Ω配列の塩基配列
配列番号7:AタンパクのBドメインの塩基配列
配列番号8:GGGSの塩基配列
配列番号9:His Tagの塩基配列
配列番号10:Y-tagの塩基配列GGGSの塩基配列
配列番号11:エンドヌクレアーゼVを作用させたときに突出末端を形成するDNAライブラリの例-1
配列番号12:配列11の相補鎖
配列番号13:エンドヌクレアーゼVを作用させたときに5%の割合で得られる突出末端の相補鎖の配列
配列番号14:配列13の相補鎖の配列
配列番号15:New left プライマー
配列番号16:NewYtag_for_PolyA&cnvK-リンカー
配列番号17:+Mango プライマー(35mer)
配列番号18:-Mango プライマー(24mer)
配列番号19:イノシンプライマー
配列番号20:BDAqPCR(+)
配列番号21:BDAqPCR(-)

Claims (19)

  1.  主鎖と側鎖とを有する抗原検出用新規リンカーであって、
    (1)前記主鎖は、
     側鎖結合部位と、
     第1の架橋用化合物を含むmRNA結合領域と、
     第2の架橋用化合物を含む蛍光検出用DNA結合領域と、
     前記蛍光検出用DNA結合領域の5’側に位置する固相切断部位と、
     前記主鎖の5’末端に位置する固相結合部位と
    を備え;
    (2)前記側鎖は、
     主鎖結合部位と、
     ペプチド提示部位と、
    を備える;抗原検出用新規リンカー。
  2.  前記側鎖中の前記主鎖結合部位はNHで構成され、前記ペプチド提示部位はピューロマイシン又はその類縁体で構成されることを特徴とする、請求項1に記載の新規リンカー。
  3.  前記ピューロマイシン類縁体は、3'-N-アミノアシルピューロマイシン(PANS-アミノ酸)及び3'-N-アミノアシルアデノシンアミノ酸のヌクレオシド(AANS-アミノ酸)からなる群から選ばれるいずれかの化合物であることを特徴とする、請求項2に記載の新規リンカー。
  4.  前記固相切断部位はリボグアニンで構成され、前記固相結合部位はビオチンで構成されることを特徴とする、請求項1に記載の新規リンカー。
  5.  前記第1の架橋用化合物は、前記mRNA結合領域に相補的に結合したmRNAを前記主鎖に共有結合させ、前記第2の架橋用化合物は、前記蛍光検出用DNA結合領域に、蛍光検出用RNAアプタマーをコードする二本鎖DNAを共有結合させることを特徴とする、請求項1に記載の新規リンカー。
  6.  前記第1及び第2の架橋用化合物は光架橋塩基であることを特徴とする、請求項5に記載の新規リンカー。
  7.  前記光架橋塩基は、シアノビニルカルバゾール及びその誘導体からなる群から選ばれるいずれかの化合物であることを特徴とする、請求項6に記載の新規リンカー。
  8.  前記シアノビニルカルバゾールは3-シアノビニルカルバゾールであり、前記シアノビニル誘導体は、5'-O-(4,4'-ジメトキシトリチル)-1'-(3-シアノビニルカルバゾール-9-イル)-2'-デオキシ-β-D-リボフラノシル-3'-[(2-シアノエチル)-(N,N-ジイソプロピル)]-ホスホロアミダイトであることを特徴とする、請求項7に記載の新規リンカー。
  9.  蛍光検出用DNAは、蛍光増強用RNAアプタマーに対応するヌクレオチド配列を有する二本鎖DNAであることを特徴とする、請求項5~8のいずれかに記載の新規リンカー。
  10.  前記蛍光検出用DNAは、前記蛍光検出用DNA結合領域と相補的に結合する5’突出末端を備えることを特徴とする、請求項9に記載の新規リンカー。
  11.  前記蛍光増強用RNAアプタマーはRNA Mangoアプタマーであることを特徴とする、請求項10に記載の新規リンカー。
  12.  mRNA結合領域と、蛍光検出用DNA結合領域と、固相結合部位と固相切断部位とを含む主鎖と;前記主鎖に結合されたmRNAがコードしているペプチドを提示するためのペプチド提示部位を含む側鎖とで構成されるリンカーを用いる抗原検出方法であって:
    (1)抗原結合性ペプチド又はタンパク質(以下、「ペプチド」ということがある。)のDNAからmRNAを得るmRNA取得工程と;
    (2)前記mRNA結合領域に相補的に結合した前記mRNAを第1の架橋用化合物で前記主鎖と連結させてmRNA-リンカー連結体を得るmRNA結合工程と;
    (3)前記mRNA-リンカー連結体のmRNAを翻訳して、mRNA-リンカー-ペプチド連結体を得るペプチド連結体形成工程と;
    (4)前記ペプチド連結体を固相結合部位で固相に結合させてバッファー交換を行い、その後、前記mRNAを分解し、次いで前記固相から前記固相切断部位で切断してペプチド-リンカー複合体を得る精製工程と;
    (5)精製された前記ペプチド-リンカー複合体を、蛍光検出用DNAと第2の架橋用化合物で連結させるDNAディスプレイ分子形成工程と;
    (6)前記DNAディスプレイ分子を転写して蛍光検出用DNAからRNAアプタマーを形成し、前記RNAアプタマーの蛍光強度を測定する測定工程と;
    を備える抗原検出方法。
  13.  前記リンカーは、前記mRNA結合領域はmRNAを結合するための前記第1の架橋用化合物を含み、前記蛍光検出用DNA結合領域は、蛍光増幅用RNAアプタマーをコードするDNAを結合するための前記第2の架橋用化合物を含み、前記固相切断部b位はリボグアニンで構成され、前記固相結合部位はビオチンで構成され、前記ペプチド提示部位は、ピューロマイシン又はその類縁体で構成されることを特徴とする、請求項12に記載の抗原検出方法。
  14.  前記架橋用化合物は、光架橋塩基であることを特徴とする、請求項13に記載の抗原検出方法。
  15.  前記光架橋塩基は、シアノビニルカルバゾール及びその誘導体からなる群から選ばれるいずれかの化合物であることを特徴とする、請求項14に記載の抗原検出方法。
  16.  前記誘導体は、5'-O-(4,4'-ジメトキシトリチル)-1'-(3-シアノビニルカルバゾール-9-イル)-2'-デオキシ-β-D-リボフラノシル-3'-[(2-シアノエチル)-(N,N-ジイソプロピル)]-ホスホロアミダイトであることを特徴とする、請求項15に記載の抗原検出方法。
  17.  蛍光検出用DNAは、蛍光増強用RNAアプタマーに対応するヌクレオチド配列を有する二本鎖DNAであることを特徴とする、請求項12~16のいずれかに記載の抗原検出方法。
  18.  前記蛍光検出用DNAは、前記主鎖の蛍光検出用DNA結合領域と相補的に結合する5’突出末端を備えることを特徴とする、請求項16に記載の抗原検出方法。
  19.  前記蛍光増強用RNAアプタマーはRNA Mangoアプタマーであることを特徴とする、請求項17に記載の抗原検出方法。
PCT/JP2021/042138 2020-11-16 2021-11-16 新規抗原検出用リンカー及びそれを用いた抗原検出方法 WO2022102791A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020190186 2020-11-16
JP2020-190186 2020-11-16

Publications (1)

Publication Number Publication Date
WO2022102791A1 true WO2022102791A1 (ja) 2022-05-19

Family

ID=81601408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042138 WO2022102791A1 (ja) 2020-11-16 2021-11-16 新規抗原検出用リンカー及びそれを用いた抗原検出方法

Country Status (1)

Country Link
WO (1) WO2022102791A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159211A1 (ja) * 2015-03-31 2016-10-06 国立大学法人埼玉大学 試験管内淘汰及び分子間相互作用解析用高速光架橋型共用リンカー、そのリンカーを用いた試験管内淘汰方法
JP2017035063A (ja) * 2015-08-14 2017-02-16 国立研究開発法人産業技術総合研究所 任意の標的物質と共有結合可能な(ポリ)ペプチド/タンパク質タグの選択方法及び選択されて得られた(ポリ)ペプチド/タンパク質タグ
WO2017170776A1 (ja) * 2016-03-30 2017-10-05 株式会社Epsilon Molecular Engineering 高速試験管内スクリーニング法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159211A1 (ja) * 2015-03-31 2016-10-06 国立大学法人埼玉大学 試験管内淘汰及び分子間相互作用解析用高速光架橋型共用リンカー、そのリンカーを用いた試験管内淘汰方法
JP2017035063A (ja) * 2015-08-14 2017-02-16 国立研究開発法人産業技術総合研究所 任意の標的物質と共有結合可能な(ポリ)ペプチド/タンパク質タグの選択方法及び選択されて得られた(ポリ)ペプチド/タンパク質タグ
WO2017170776A1 (ja) * 2016-03-30 2017-10-05 株式会社Epsilon Molecular Engineering 高速試験管内スクリーニング法

Similar Documents

Publication Publication Date Title
JP7100680B2 (ja) ゲノム適用および治療適用のための、核酸分子のクローン複製および増幅のためのシステムおよび方法
US20080293051A1 (en) proximity ligation assay
US20240002838A1 (en) High-speed photo-cross-linking linker for molecular interaction analysis and in vitro selection, and in vitro selection method using linker
JP6995367B2 (ja) 高速試験管内スクリーニング法
JP2008520963A (ja) サンプル中の分析物を検出する方法
JP6057185B2 (ja) 核酸リンカー
EP3995575A1 (en) Aptamer selection method and immunity analysis method using aptamer
JP5733784B2 (ja) cDNA/mRNA−タンパク質連結体の効率的合成法
JP2008253176A (ja) 高親和性分子取得のためのリンカー
WO2022102791A1 (ja) 新規抗原検出用リンカー及びそれを用いた抗原検出方法
JP2004097213A (ja) 核酸および/またはタンパク質の選択方法
WO2003062417A1 (fr) Produit de ligation arn-adn, et utilisation correspondante
WO2013065782A1 (ja) タンパク質固定化固相、及びポリヌクレオチド固定化固相、並びに、核酸回収方法
JP2011217708A (ja) 核酸リンカー
JPWO2007046520A1 (ja) 固定化ピューロマイシン・リンカーを用いたタンパク質のスクリーニング方法
JP2020007309A (ja) 化学架橋ペプチドの作製方法、その方法を用いて作製した化学架橋ペプチド及びそのペプチドを用いて構築したcDNAディスプレイ法によるペプチドライブラリ
JPWO2005001086A1 (ja) 固定化mRNA−ピューロマイシン連結体及びその用途
WO2020171236A1 (en) A NOVEL IMMUNO-PCR METHOD USING cDNA DISPLAY
WO2021182587A1 (ja) 光架橋塩基を活用した、新規ペプチドアプタマー探索用標的モジュール、新規ペプチドアプタマー探索用リンカー及びそれらを用いる新規ペプチドアプタマーの探索方法
US11634705B2 (en) High-speed in vitro screening method
JP6194894B2 (ja) 核酸リンカー
WO2013073706A1 (ja) スリーフィンガー構造を有するリガンド、及びそれを用いた分子の検出方法
AU2015249082A1 (en) Method for generating aptamers with improved off-rates
JP6590474B2 (ja) 化学架橋ペプチドの作製方法、その方法を用いて作製した化学架橋ペプチド及びそのペプチドを用いて構築したcDNAディスプレイ法によるペプチドライブラリ
JP2005013073A (ja) 輸送ポリペプチドのスクリーニング方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21892036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21892036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP