WO2022100574A1 - 一种牙槽骨增量支架系统 - Google Patents

一种牙槽骨增量支架系统 Download PDF

Info

Publication number
WO2022100574A1
WO2022100574A1 PCT/CN2021/129566 CN2021129566W WO2022100574A1 WO 2022100574 A1 WO2022100574 A1 WO 2022100574A1 CN 2021129566 W CN2021129566 W CN 2021129566W WO 2022100574 A1 WO2022100574 A1 WO 2022100574A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
alveolar bone
pcl
bone augmentation
stent
Prior art date
Application number
PCT/CN2021/129566
Other languages
English (en)
French (fr)
Inventor
柯东旭
杨熙
Original Assignee
苏州诺普再生医学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州诺普再生医学有限公司 filed Critical 苏州诺普再生医学有限公司
Publication of WO2022100574A1 publication Critical patent/WO2022100574A1/zh
Priority to US18/081,938 priority Critical patent/US20230119400A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C5/00Filling or capping teeth
    • A61C5/20Repairing attrition damage, e.g. facets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/24Collagen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/26Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/46Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/12Materials or treatment for tissue regeneration for dental implants or prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/222Gelatin

Definitions

  • the present disclosure belongs to the medical field, and in particular, the present disclosure relates to a 3D printing alveolar bone augmentation support system in the field of stomatology.
  • bone powder is usually used to fill the alveolar defect, and the traditional bone powder filling has the following defects: 1. High cost; 2. The shape of the bone powder is poorly maintained, and it is not easy to control the formation area of the new alveolar bone, and Due to the indeterminate nature of bone meal, the bone meal may overflow from the sutured part when it is unexpectedly squeezed after subsequent suture, resulting in loss of bone powder, which will eventually lead to a decrease in the filling effect; 3. The height of the new alveolar bone is insufficient, based on the shape of the bone meal itself.
  • the alveolar bone patch with porous structure can be prepared by 3D printing technology, which can form a patch with a specific structure for different patients. yuan.
  • the existing 3D patch often improves the repair effect of the patch by optimizing the material, but it is difficult to achieve a high match between the prepared alveolar bone patch and the growth of human bone tissue, which makes the final repair effect difficult to effectively control. not effectively.
  • the present disclosure provides an alveolar bone augmentation stent system, which includes the following structures:
  • the main body of the incremental stent is filled in the alveolar bone defect and has a three-dimensional porous structure formed by 3D printing of composite polymer materials; the mechanical baffle is wrapped outside the main body of the incremental stent and has the ability to restore the alveolar bone defect The bionic structure of the surface;
  • the main body of the incremental stent has a first region close to the dental pulp, a second region away from the dental pulp, and a third region surrounding the outer side of the second region, wherein the pore diameters in the three-dimensional porous structure of the three regions are are R1, R2 and R3 respectively, and satisfy R1 ⁇ R2>R3.
  • the R1, R2 and R3 satisfy R1>R2>R3.
  • the hole diameter R1 of the first region is not less than 0.4 mm
  • the hole diameter R2 of the second region is 0.2 mm-0.5 mm
  • the hole diameter R3 of the third region is not greater than 0.4 mm.
  • the hole diameter R1 of the first region is 0.4mm-0.6mm
  • the hole diameter R2 of the second region is 0.3mm-0.5mm
  • the hole diameter R3 of the third region is 0.2mm-0.4 mm.
  • the hole diameter R1 of the first region is 0.5 mm
  • the hole diameter R2 of the second region is 0.4 mm
  • the hole diameter R3 of the third region is 0.3 mm.
  • At least the channels of the first region and the second region are triangular holes, and the diameter of the holes is the diameter of the inscribed circle of the triangle.
  • the polymer material of the first region is PCL (polycaprolactone)-PLGA (polylactic acid-glycolic acid)-TCP (tricalcium phosphate)
  • the polymer material of the second region is PCL-TCP
  • the polymer material of the third region is PCL, wherein the average molecular weight Mn of PCL in the first region and/or the second region is 1w-5w, and the average molecular weight of PCL in the third region Mn is 5w-10w.
  • the polymer material of the first region is PCL-PLGA-TCP
  • the polymer material of the second and third regions is PCL-TCP
  • the first region and/or The average molecular weight Mn of PCL in the second region is 1w-5w
  • the average molecular weight Mn of PCL in the third region is 5w-10w
  • the first, second and third regions contain equal amounts of TCP.
  • the voids of the three-dimensional porous structure of the augmented stent body are filled with water-absorbing osteoinductive materials, including but not limited to sodium alginate, sodium methacrylated sodium alginate, sodium thiolated alginate, gelatin, Methacrylated gelatin, thiolated gelatin, hyaluronic acid, methacrylated hyaluronic acid, thiolated hyaluronic acid, collagen, methacrylated collagen, thiolated collagen, fibrin.
  • water-absorbing osteoinductive materials including but not limited to sodium alginate, sodium methacrylated sodium alginate, sodium thiolated alginate, gelatin, Methacrylated gelatin, thiolated gelatin, hyaluronic acid, methacrylated hyaluronic acid, thiolated hyaluronic acid, collagen, methacrylated collagen, thiolated collagen, fibrin.
  • the water-absorbent polymer material is formed to have a three-dimensional network structure by a photocrosslinking method.
  • the mechanical baffle is made of PCL-PLGA composite material by 3D printing, wherein the average molecular weight Mn of PCL is 1w-5w.
  • the mass ratio of PCL-PLGA in the composite material forming the mechanical baffle is 1:(0.25-4).
  • the mass ratio of PCL-PLGA in the composite material forming the mechanical baffle is 1:1.
  • the mechanical baffle has several through holes, and/or the side edge of the mechanical baffle has protruding fixed wings.
  • FIG. 1 is a schematic perspective view of the main body of the disclosed incremental stent
  • FIG. 2 is a schematic diagram of the pore structure of the main body of the incremental stent of the present disclosure
  • FIG. 3 is a schematic perspective view of filling the alveolar bone defect with the main body of the disclosed incremental stent
  • Example 4 is a schematic diagram of the repair process of the alveolar bone when using the mechanical baffle in Example 1;
  • Example 5 is a schematic diagram of the repair process of the alveolar bone when the mechanical baffle in Example 2 is used.
  • the alveolar bone augmentation support system includes an augmentation support body 1 as shown in Figures 1 and 3, and a mechanical baffle 2 as shown in Figures 4-5.
  • the incremental bracket body 1 is filled in the alveolar bone defect
  • the mechanical baffle 2 is wrapped outside the incremental bracket body 1, and has a bionic structure for restoring the alveolar bone defect surface.
  • the incremental stent body 1 is formed by 3D printing of composite polymer materials, and has a three-dimensional porous structure, wherein the incremental stent body 1 is divided into adjacent teeth according to the relative positions filled in the alveolar bone.
  • the diameter of the pores in the three-dimensional porous structure in the second region B is denoted as R2
  • the diameter of the pores in the three-dimensional porous structure in the third region C is denoted as R3.
  • the incremental stent body 1 with the porous structure satisfies R1 ⁇ R2>R3 or R1>R2> R3. Based on individual needs, when R2 in the 3D printed alveolar bone is close to the value of R1, the technical effect of guiding pulp blood into the stent to improve the healing speed can also be obtained, but when R1>R2, it may be more conducive to blood distribution and healing. The effect of the speed increase is even more pronounced.
  • the diameter of the hole in the present disclosure refers to the diameter of the largest inner circle in the cross section of the channel, wherein optionally the channels of the first region A, the second region B and the third region C are shown in the figure
  • Table 1 the specific test results can be found in Table 1 below.
  • the incremental stent body 1 By controlling the internal hole diameter of the incremental stent body 1 to meet the above-mentioned specific distribution pattern, the incremental stent body 1 with a relatively large hole diameter in the dental pulp area can promote the penetration of stem cells and blood in the dental pulp, and promote the regeneration of alveolar bone.
  • the scaffold in this area can be rapidly degraded, matching the characteristics of large blood supply and fast bone formation in the pulp area, so that the degradation rate of the first area A of the incremental scaffold body 1 matches the growth rate of the alveolar bone.
  • this structure Compared with the first region, this structure has a smaller specific surface area and slower degradation, which can match the relatively small blood supply and slow osteogenesis in this region.
  • the third area C surrounding the outer side of the second area B is a dense structure with a smaller pore diameter to achieve effective control of stem cells and blood flow , to ensure that the stem cells, blood, etc. in the bone tissue will not penetrate outside the scaffold, to ensure that the fluid tissue is effectively controlled in the bone growth area, and to achieve controllable growth of the alveolar bone.
  • the optional composite materials for each region of the incremental stent body 1 in the present disclosure are as follows: 1
  • PLGA degrades faster and has better biocompatibility.
  • PCL with low molecular weight and fast degradation rate, it just matches the growth rate of alveolar bone in the first area, and TCP can also promote osteogenesis
  • the average molecular weight of PCL in the third region is greater than the average molecular weight of PCL in the second region.
  • PCL stands for polycaprolactone
  • PLGA stands for polylactic acid PLA-glycolic acid PGA
  • TCP stands for tricalcium phosphate.
  • the longitudinal extension length refers to the shortest distance extending from the pulp area to the area away from the pulp area.
  • the depth of the third region is not greater than 1 mm.
  • the interior of the stent body 1 is filled with photocrosslinkable polymeric monoliths.
  • the polymerizable monomers in the internal channels of the incremental stent body 1 are photo-crosslinked to form a three-dimensional network structure with high water absorption, and the water absorption located in the channels of the stent body
  • the polymer can effectively promote the absorption of high-concentration platelet plasma, thereby further increasing the rate of osteogenesis and accelerating tissue healing.
  • the mechanical baffle 2 in the present disclosure has through holes 21, and the size of the through holes 21 is suitable for matching with degradable screws, Easy to nail in place.
  • the mechanical baffle 2 is bent from a plane configuration to a bending configuration that matches the shape of the alveolar bone. Bone fixation is more stable, a fixed wing 22 protruding from the side is formed on at least one side of the mechanical baffle 2, the through hole 21 is arranged on the fixed wing 22, and the fixed wing 22 is further fixed on the alveolar bone by screws
  • the outer surface extends the effective contact area between the mechanical baffle and the alveolar bone, and further improves the supporting effect of the mechanical baffle on the main body of the internal incremental bracket.
  • the incremental stent body 1 and the mechanical baffle 2 are combined to form an incremental stent system.
  • the incremental stent body 1 located at the bone tissue defect can effectively match the growth of bone tissue and promote tissue healing.
  • the mechanical baffle 2 wrapped around the incremental stent body 1 can be sutured to form support and protection for the stent body 1, which not only ensures that the stent mainly adheres closely to the bone tissue to promote growth, but also avoids external objects during the patient's eating process. Damage to the tissue at the treatment site to avoid secondary damage.
  • a shaping template 3 is used to assist the shaping of the mechanical baffle 2 .
  • a stereotyped template 3 is first prepared.
  • the surface of the stereotyped template 3 has evenly arranged protrusions, and the through holes on the mechanical baffle 2 match these protrusions accordingly.
  • the shaping template 3 is first bent to a curved configuration matching the alveolar bone defect surface, and then the mechanical baffle 2 to be shaped is placed on the curved shaping template 3 inside, and make the protrusions on the stereotyped template penetrate into the through holes on the mechanical baffle 2 to position the mechanical baffle 2, and then place the mechanical baffle 2 fixed on the stereotyped template 3 in warm water, under the action of heat
  • the mechanical baffle 2 is reshaped into the same curved configuration as the shaping template 3 and shaped.
  • the mechanical baffle 2 can obtain a bionic configuration matching the alveolar bone defect surface.
  • the shaped mechanical baffle 2 covers the alveolar bone defect surface and is fixed, and finally completes the mechanical fixation and support of the pre-filled incremental stent body 1 in the alveolar bone.
  • the present disclosure optimizes the diameter, size and shape of the inner holes in different regions of the stent, so as to achieve the technical effect of improving the growth of bone tissue.
  • the incremental stent body 1 with different hole diameter structures and sizes was applied to the alveolar bone defect of Beagle dogs for testing, and the data shown in Table 1 below were obtained.
  • the bone tissue healing was judged by X-ray imaging, the basic fusion of the scaffold and the bone tissue was used as the judgment standard for bone tissue healing, and the healing days were the statistical reference range due to individual differences. No less than 20 cases.
  • the longitudinal extension length L1 of the first region A is 1.5 mm
  • the longitudinal extension length L2 of the second region B is 7.5 mm.
  • the size of the internal pore structure of different stent bodies directly determines the bone healing time of the alveolar bone.
  • the shape of the hole diameter also affects the healing speed of the bone tissue.
  • the healing effect is the best, and the healing time of bone tissue can be shortened to less than 1/2 of the traditional 3D printing bracket, which greatly improves the healing time, shortens the overall treatment time of implants, and reduces the cost of treatment time for patients.
  • Test Examples 3-6 that within the range of R1-R3 values selected in the present disclosure, the healing time can be greatly shortened.
  • the 3D printing alveolar bone augmentation bracket system uses medical image modeling to restore the patient's alveolar bone defect at a ratio of 1:1, and then uses 3D printing to make the bracket, with low material cost and good shape retention,
  • the alveolar bone formation is highly controllable and has individualized advantages for the patient's alveolar bone augmentation.
  • the inventors of the present disclosure have found that the pore structure of the main body of the alveolar bone augmentation stent, such as the size of the pore diameter, the shape of the pore diameter, etc. Optimization can effectively improve the match between the scaffold system and alveolar bone growth, effectively promote the controllability of bone growth and growth, and greatly improve the effect of alveolar bone repair.
  • the stability of the main body of the incremental bracket is improved, so that the main body of the bracket is in firm contact with the bone tissue, improving and Ensure that the incremental scaffold can promote the healing and growth of bone tissue; on the other hand, the shaping effect on the shape of the alveolar bone ensures that the height of the new alveolar bone can achieve the desired effect, and improves the stability of the implant and the plastic effect of the alveolar bone. .
  • the alveolar bone augmentation scaffold system of the present disclosure fills the alveolar bone defect by using a 3D printed bone augmentation scaffold, and provides a bionic structure for restoring the alveolar bone defect surface by using a mechanical baffle wrapped around the bone augmentation scaffold It can effectively improve the high matching degree of alveolar bone and human bone tissue growth, improve the effect of bone tissue regeneration, and has great application prospects in the field of medical treatment and plastic surgery.

Abstract

一种牙槽骨增量支架系统,包括如下结构:增量支架主体(1),填充于牙槽骨缺损部位,并具有由复合高分子材料通过3D打印形成的三维多孔结构;力学挡板(2),包裹于增量支架主体(1)外,并具有复原牙槽骨缺损面的仿生结构;增量支架主体(1)具有靠近牙髓的第一区域(A),远离牙髓的第二区域(B),以及围绕包覆于第二区域(B)外侧的第三区域(C),其中,三个区(A、B、C)的三维多孔结构中孔直径分别为R1,R2以及R3,且满足R1≥R2>R3。牙槽骨增量支架系统具有与牙槽骨的生长速率高度匹配,有效促进牙槽骨再生的技术效果。

Description

一种牙槽骨增量支架系统
相关申请的交叉引用
本公开要求于2020年11月13日提交中国专利局的申请号为CN 202011268945.3、名称为“一种牙槽骨增量支架系统”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开属于医疗领域,具体而言,本公开涉口腔医学领域中的一种3D打印牙槽骨增量支架系统。
背景技术
现有种牙过程中,通常采用骨粉填充牙槽缺损部位,而传统的骨粉填充具有如下缺陷:1.成本高;2.骨粉的形态保持差,不容易控制新生牙槽骨的形成区域,而且由于骨粉的不定型特性,后续缝合后骨粉在受到不期望的挤压时可能有缝合部位溢出而造成骨粉流失,最终导致填充效果降低;3.形成新牙槽骨高度不足,基于骨粉本身的形态保持性不佳、支撑力不足,以及缝合面术后的萎缩等不稳定性,导致最终形成的填充区往往不能达到所期望的高度,最终影响种牙的稳固性和美观性;4.对病人特定的牙槽骨缺损不具有针对性,很难针对特定个体进行有针对的缺损面修复,达到的整形美容效果不佳。
针对上述不足,现已提出了通过3D打印增值材料作为牙槽缺损部补块的技术改进方式,通过3D打印技术制备具有多孔结构的牙槽骨补块,能够针对不同病人形成具有特定结构的补块。而现有的3D量补块往往通过从材料的优化来改善补块的修复效果,但制备牙槽骨补块与人体骨组织生长很难达到高度匹配,导致最终的修复效果难以有效控制,修复效果不佳。
因此,本领域亟需一种能够有效提升牙槽骨与人体骨组织生长高匹配度,提升骨组织再生效果的牙槽骨增量支架。
发明内容
本公开提供了一种牙槽骨增量支架系统,所述支架系统包括如下结构:
增量支架主体,填充于牙槽骨缺损部位,并具有由复合高分子材料通过3D打印形成的三维多孔结构;力学挡板,包裹于所述增量支架主体外,并具有复原牙槽骨缺损面的仿生结构;
所述增量支架主体具有靠近牙髓的第一区域,远离牙髓的第二区域,以及围绕包覆于第二区域外侧的第三区域,其中,上述三个区的三维多孔结构中孔直径分别为R1,R2以及R3,且满足R1≥R2>R3。
在一些实施方式中,所述R1,R2以及R3满足R1>R2>R3。
在一些实施方式中,所述第一区域的孔直径R1不小于0.4mm,所述第二区域的孔直径R2为0.2mm-0.5mm,所述第三区域的孔直径R3不大于0.4mm。
可选地,所述第一区域的孔直径R1为0.4mm-0.6mm,所述第二区域的孔直径R2为0.3mm-0.5mm,所述第三区域的孔直径R3为0.2mm-0.4mm。例如,所述第一区域的孔直径R1为0.5mm,所述第二区域的孔直径R2为0.4mm,所述第三区域的孔直径R3为0.3mm。
在一些实施方式中,至少所述第一区域和所述第二区域的孔道呈三角形孔,孔直径为三角形内切圆直径。
在一些实施方式中,所述第一区域纵向延伸长度L1与所述第二区域纵向延伸长度L2的比例L1:L2=1:3-1:8,并且所述第三区域厚度不大于1mm。
可选地,所述第一区域纵向延伸长度L1与所述第二区域纵向延伸长度L2的比例L1:L2=1:4-1:6.5,例如L1:L2=1:5,并且所述第三区域厚度不大于1mm。
在一些实施方式中,所述第一区域的高分子材料为PCL(聚己内酯)-PLGA(聚乳酸-羟基乙酸)-TCP(磷酸三钙),所述第二区域的高分子材料为PCL-TCP,所述第三区域的高分子材料为PCL,其中,所述第一区域和/或第二区域中PCL的平均分子量Mn为1w-5w,所述第三区域中PCL的平均分子量Mn为5w-10w。
在另外一些实施方式中,所述第一区域的高分子材料为PCL-PLGA-TCP,所述第二、第三区域的高分子材料为PCL-TCP,其中,所述第一区域和/或第二区域中PCL的平均分子量Mn为1w-5w,所述第三区域中PCL的平均分子量Mn为5w-10w。可选地,其中,所述第一、第二和第三区域中包含等量的TCP。
在一些实施方式中,所述增量支架主体三维多孔结构的空隙中填充有吸水性骨诱导材料,包括但不仅限于海藻酸钠,甲基丙烯酸化海藻酸钠,硫醇化海藻酸钠,明胶,甲基丙烯酸化明胶,硫醇化明胶,透明质酸,甲基丙烯酸化透明质酸,硫醇化透明质酸,胶原,甲基丙烯酸化胶原,硫醇化胶原,纤维蛋白。
可选地,所述吸水性高分子材料通过光交联法形成具有三维网络结构。
在一些实施方式中,所述力学挡板由PCL-PLGA复合材料通过3D打印制成,其中,PCL的平均分子量Mn为1w-5w。
可选地,形成所述力学挡板的复合材料中PCL-PLGA的质量比为1:(0.25-4)。例如,形成所述力学挡板的复合材料中PCL-PLGA的质量比为1:1。
可选地,所述力学挡板上具有若干通孔,和/或所述力学挡板侧边上具有凸出的固定翼。
附图说明
图1为本公开增量支架主体立体示意图;
图2为本公开增量支架主体孔道结构示意图;
图3为本公开增量支架主体填充牙槽骨缺损部位立体示意图;
图4为采用实施例1中力学挡板时牙槽骨修复过程示意图;
图5为采用实施例2中力学挡板时牙槽骨修复过程示意图。
附图标记说明:
A-增量支架主体中的第一区域,B-增量支架主体中的第二区域,C-增量支架主体中的第三区域,1-增量支架主体,2-力学挡板,21-通孔,22-固定翼,3-定型模板。
具体实施方式
下面将结合附图和实施例对本公开的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本公开,而不应视为限制本公开的范围。
一、牙槽骨增量支架系统结构研究
本实施例中牙槽骨增量支架系统包括如图1、3所示的增量支架主体1,以及如图4-5所示的力学挡板2。其中,增量支架主体1填充于牙槽骨缺损部位,力学挡板2包裹于所述增量支架主体1外,并具有复原牙槽骨缺损面的仿生结构。接下来对本实施例中增量支架主体1和力学挡板2的具体结构分别进行详述。
(1)增量支架主体1
如图1所示,增量支架主体1是由复合高分子材料通过3D打印形成的,具有三维多孔结构,其中按照填充在牙槽骨内的相对位置,将增量支架主体1划分为靠近牙髓的第一区域A、远离牙髓的第二区域B、以及围绕包覆于第二区域外侧的第三区域C,其中,将上述第一区域A三维多孔结构中孔直径记为R1,上述第二区域B三维多孔结构中孔直径记为R2,上述第三区域C三维多孔结构中孔直径记为R3,该具有多孔结构的增量支架主体1满足R1≥R2>R3或者R1>R2>R3。基于个性化需求,3D打印牙槽骨中R2接近于R1值时同样可以获得引导牙髓血液进入支架内部提升愈合速度的技术效果,但当R1>R2时,可能更有利于血液的分配,愈合速度提升的效果更为显著。
如图2中箭头指向所示,本公开中孔直径是指以孔道横截面内最大内圆的直径,其中可选地第一区域A、第二区域B以及第三区域C的孔道均呈图2中所示的三角形结构,具体试验结果可参见下述表1。
通过控制增量支架主体1内部孔直径满足上述特定的分布形态,实现牙髓区域内相对 较大孔直径的增量支架主体1可以促进牙髓中干细胞和血液的渗透,促进牙槽骨再生,同时由于比表面积大,能够使得该区域支架快速降解,匹配牙髓区域内供血大、成骨快这一特点,使得增量支架主体1第一区域A降解速率与牙槽骨的生长速率的匹配度更高;远离牙髓的第二区域采用孔直径相对较小的结构,相对于第一区域,这种结构比表面积较小,降解较慢,可以匹配这一区域供血相对小、成骨慢的特点,进而达到与这一区域中骨生长速率的匹配性;而围绕包覆于第二区域B外侧的第三区域C为孔直径较小的致密结构,实现对干细胞与血液流动的有效控制,确保骨组织中的干细胞、血液等不会渗透到支架之外,确保流体组织有效控制在骨生长区域,实现牙槽骨可控的生长。
本公开中增量支架主体1各个区域的可选的复合材料如下:①第一区域采用按质量计PCL(平均分子量Mn=2W):PLGA(PLA与PGA比例50:50):TCP=4:4:2的复合高分子材料。其中PLGA降解较快,也有较好的生物相容性,配合低分子量降解速率快的PCL,正好匹配第一区域中牙槽骨的生长速率,同时TCP也可以促进成骨;②第二、第三区域采用按质量计PCL:TCP=8:2的复合高分子材料。其中,可选地,第三区域中PCL的平均分子量大于第二区域中PCL的平均分子量。PCL表示聚己内酯,PLGA表示聚乳酸PLA-羟基乙酸PGA,TCP表示磷酸三钙。
通过大量的验证和改进,发明人对第一区域和第二区域的纵向延伸长度进行优化,基于对人体牙槽骨牙髓区域分布特点和实际血液供给、吸收、愈合的复杂因素的综合考虑和研究,第一区域A纵向延伸长度L1与所述第二区域B纵向延伸长度L2的比例L1:L2=1:3-1:8时,支架与骨组织愈合速率配备效果较好,能够明显提升骨组织愈合速度,并且,当所述第一区域纵向延伸长度L1与所述第二区域纵向延伸长度L2的比例L1:L2=1:4-1:6.5时,可以满足更好的骨组织愈合效率,并且基本匹配常规患者骨组织速率,具体临床试验结果可参见下述表2。其中,纵向延伸长度是指由牙髓区向远离牙髓区域延伸的最短距离。此外,为了确保支架结构中第三区域能够有效避免牙槽骨缺损处的流动性骨组织如血液、干细胞等溢出,可选地,所述第三区域的深度不大于1mm。通过控制第三区域的深度,结合第三区域的小孔直径结构,可以有效地将骨组织控制在支架内部,确保骨生长的良性环境,进一步促进骨组织愈合。
为了进一步提升所述增量支架主体1对于流体组织液的吸收,进而促进骨组织愈合,本公开中在3D打印增量支架主体1成型后,在支架主体1内部填充可光交联的聚合性单体,通过光照射填充单体的增量支架主体1,增量支架主体1内部孔道中聚合性单体光交联形成具有吸水性较高的三维网状结构,位于支架主体孔道内的吸水性聚合物能够有效促进高浓度血小板血浆的吸收,从而进一步提高成骨速度,加快组织愈合。
(2)力学挡板2
实施例1
如图4所示的力学挡板2,其可以采用3D打印的方法将复合材料PCL(分子量Mn=2W):PLGA(PLA与PGA比例为50:50)=1:1按照患者的缺损面打印并形成与缺损面相匹配的仿生结构,上述复合材料具有降解较快且在支架降解前期为支架提供足够的力学支撑的技术效果。为了进一步将上述力学挡板2固定于支架主体1外部以确保支撑的有效性,本公开中所述力学挡板2上具有通孔21,所述通孔21大小适于与可降解螺钉匹配,便于打钉固定。
如图4所示,力学挡板2在收到弯折力F的作用下,由平面构型被弯折至与牙槽骨外形匹配的弯折构型,为了使得力学挡板2与牙槽骨固定更加稳固,在力学挡板2至少一侧边形成凸出于侧边的固定翼22,所述通孔21设置在该固定翼上22,通过螺钉进一步将固定翼22固定在牙槽骨外表面,延长了力学挡板与牙槽骨的有效接触面积,进一步提升了力学挡板对内部增量支架主体的支撑作用。
本公开中,将增量支架主体1与力学挡板2配合形成增量支架系统,一方面位于骨组织缺损部位的增量支架主体1可以有效与骨组织生长匹配,促进组织愈合,另一方面,可通过缝合包裹在增量支架主体1周围的力学挡板2对支架主体1形成支撑和保护作用,不但确保支架主要与骨组织紧密贴合促进生长,同时还可以避免患者进食过程中外界物体对治疗部位组织的损伤,避免二次损伤。
实施例2
作为实施例1中力学挡板制备方式的可替换方式,本实施例中采用定型模板3辅助力学挡板2塑型。具体如图5所示,本实施例中首先准备一定型模板3,该定型模板3表面具有均匀排布的凸起,相应地力学挡板2上的通孔与这些凸起相匹配。在制备具有弯曲构型的力学挡板2的过程中,先将定型模板3弯折至与牙槽骨缺损面相匹配的弯曲构型,随后将待定型的力学挡板2置于弯曲的定型模板3内侧,并使得定型模板上的凸起穿入力学挡板2上的通孔进而定位该力学挡板2,随后将固定于定型模板3的力学挡板2放置于温水中,在热作用下力学挡板2被重塑成与定型模板3相同的弯曲构型并被定型。本实施例中,通过利用可弯曲金属定型模板3,使得力学挡板2获得与牙槽骨缺损面相匹配的仿生构型。最后将塑型后的力学挡板2覆盖牙槽骨缺损面并进行固定,最终完成对牙槽骨内预先填补的增量支架主体1的力学固定和支撑。
二、增量支架主体1各区域孔直径结构研究
为了进一步提升增量支架主体1与骨组织生长的匹配性和对组织生长的有效控制,本公开对支架不同区域内孔直径尺寸和形态进行优化,从而达到改善骨组织生长的技术效果。将不同孔直径结构以及尺寸的增量支架主体1应用于比格犬牙槽骨缺损进行试验,并获得如下表1所示数据。其中,通过X光影像学判断骨组织愈合情况,以支架基本与骨组织基本融合作为骨组织愈合的判断标准,因个体差异愈合天数为统计学参考范围,对比例及测 试例中的数据采集样本不少于20例。作为具体实施方式,本次试验中测试例2-6采用的增量支架主体中第一区域A纵向延伸长度L1为1.5mm,第二区域B纵向延伸长度L2为7.5mm。
表1
Figure PCTCN2021129566-appb-000001
通过上表可以看出,不同支架主体内部孔结构大小直接决定了牙槽骨的骨组织愈合时间。通过比较测试例1-3可以看出,在孔直径形状也会影响骨组织的愈合速度,在本公开所选的R1-R3数值的基础上,三角形孔(孔道横截面呈近似三角形结构)的愈合效果最佳,可以将骨组织愈合时间缩短至传统3D打印支架的1/2以下,极大提升了愈合时间,缩短种牙整体治疗时间,缩短患者治疗时间成本。同时,由测试例3-6可以看出,在本公开所选的R1-R3数值范围内,均可以实现愈合时间的大幅缩短。
对支架中第一区域和第二区域的纵向延伸长度L1、L2不同时支架对于骨组织愈合影响进行考察,其中除L1、L2长度进行变换外,其他参数均与测试例3相同。具体研究成果如表2所示。
表2
Figure PCTCN2021129566-appb-000002
通过上表可以看出,第一区域和第二区域的纵向延伸长度L1、L2的大小对骨组织愈合效果有一定影响,其中测试例3、9中当L1:L2的数值落入1:4-1:6.5这一范围内时,骨组织愈合时间略短于测试例7-8,可见当L1、L2的比例过大或过小时均会影响骨组织愈合效果。
本公开的技术方案具有如下优点:
1.本公开提供的3D打印牙槽骨增量支架系统采用医学影像建模的方式对病人的牙槽骨缺损做1:1还原,然后利用3D打印制作支架,材料成本低,形态保持好,牙槽骨形成高 度可控,对病人的牙槽骨增量具有个性化的优势。相对于传统3D打印支架,本公开的发明人发现通过针对不同牙骨部位的骨生长情况以及骨出血供血情况等,对牙槽骨增量支架主体的孔道结构如孔直径大小、孔直径形状等进行优化,可以有效提升支架系统与牙槽骨生长的匹配性,有效促进骨生长和生长的可控性,从而极大改善牙槽骨修复效果。
2.通过在牙槽骨增量支架主体设置与牙槽缺损面相贴合的具有仿生结构的力学挡板,一方面提升增量支架主体的稳定性,使得支架主体与骨组织牢固接触,提升和确保增量支架对骨组织愈合生长的促进作用;另一方面,对牙槽骨外形的定型效果,确保形成新牙槽骨高度达到预期效果,提升种牙的稳固性和牙槽骨的整形效果。
最后应说明的是:以上各实施例、测试例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,但本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。
工业实用性
本公开的牙槽骨增量支架系统,通过使用3D打印的骨增量支架填充牙槽骨缺损部位,并使用包裹于骨增量支架外的力学挡板提供复原牙槽骨缺损面的仿生结构,能够有效提升牙槽骨与人体骨组织生长高匹配度,提升骨组织再生效果,在医疗及整形领域具有极大的应用前景。

Claims (15)

  1. 一种牙槽骨增量支架系统,所述支架系统包括如下结构:
    增量支架主体,填充于牙槽骨缺损部位,并具有由复合高分子材料通过3D打印形成的三维多孔结构;
    力学挡板,包裹于所述增量支架主体外,并具有复原牙槽骨缺损面的仿生结构;
    其特征在于:
    所述增量支架主体具有靠近牙髓的第一区域,远离牙髓的第二区域,以及围绕包覆于第二区域外侧的第三区域,其中,上述三个区的三维多孔结构中孔直径分别为R1,R2以及R3,且满足R1≥R2>R3。
  2. 根据权利要求1所述的牙槽骨增量支架系统,其特征在于:所述R1、R2以及R3满足R1>R2>R3。
  3. 根据权利要求1或2所述的牙槽骨增量支架系统,其特征在于:所述第一区域的孔直径R1不小于0.4mm,所述第二区域的孔直径R2为0.2mm-0.5mm,所述第三区域的孔直径R3不大于0.4mm。
  4. 根据权利要求3所述的牙槽骨增量支架系统,其特征在于:所述第一区域的孔直径R1为0.4mm-0.6mm,所述第二区域的孔直径R2为0.3mm-0.5mm,所述第三区域的孔直径R3为0.2mm-0.4mm;优选地,所述第一区域的孔直径R1为0.5mm,所述第二区域的孔直径R2为0.4mm,所述第三区域的孔直径R3为0.3mm。
  5. 根据权利要求1-4任一项所述的牙槽骨增量支架系统,其特征在于:至少所述第一区域和所述第二区域的孔道呈三角形孔,孔直径为三角形内切圆直径。
  6. 根据权利要求1-5任一项所述的牙槽骨增量支架系统,其特征在于:所述第一区域纵向延伸长度L1与所述第二区域纵向延伸长度L2的比例L1:L2=1:3-1:8,并且所述第三区域厚度不大于1mm。
  7. 根据权利要求6所述的牙槽骨增量支架系统,其特征在于:所述第一区域纵向延伸长度L1与所述第二区域纵向延伸长度L2的比例L1:L2=1:4-1:6.5,优选L1:L2=1:5,并且所述第三区域厚度不大于1mm。
  8. 根据权利要求1-7任一项所述的牙槽骨增量支架系统,其特征在于:所述第一区域的高分子材料为PCL-PLGA-TCP,所述第二区域的高分子材料为PCL-TCP,所述第三区域的高分子材料为PCL,其中,所述第一区域和/或第二区域中PCL的平均分子量Mn为1w-5w,所述第三区域中PCL的平均分子量Mn为5w-10w。
  9. 根据权利要求1-7任一项所述的牙槽骨增量支架系统,其特征在于:所述第一区域的高分子材料为PCL-PLGA-TCP,所述第二、第三区域的高分子材料为PCL-TCP, 其中,所述第一区域和/或第二区域中PCL的平均分子量Mn为1w-5w,所述第三区域中PCL的平均分子量Mn为5w-10w。
  10. 根据权利要求9所述的牙槽骨增量支架系统,其特征在于:所述第一、第二和第三区域中包含等量的TCP。
  11. 根据权利要求1-10任一项所述的牙槽骨增量支架系统,其特征在于:所述增量支架主体三维多孔结构的空隙中填充有吸水性骨诱导材料,包括但不仅限于海藻酸钠,甲基丙烯酸化海藻酸钠,硫醇化海藻酸钠,明胶,甲基丙烯酸化明胶,硫醇化明胶,透明质酸,甲基丙烯酸化透明质酸,硫醇化透明质酸,胶原,甲基丙烯酸化胶原,硫醇化胶原,纤维蛋白。
  12. 根据权利要求11所述的牙槽骨增量支架系统,其特征在于:所述吸水性骨诱导材料通过光交联法形成具有三维网络结构。
  13. 根据权利要求1-12任一项所述的牙槽骨增量支架系统,其特征在于:所述力学挡板由PCL-PLGA复合材料通过3D打印制成,其中,PCL的平均分子量Mn为1w-5w。
  14. 根据权利要求13所述的牙槽骨增量支架系统,其特征在于:形成所述力学挡板的复合材料中PCL-PLGA的质量比为1:(0.25-4),优选地所述质量比为1:1。
  15. 根据权利要求13或14所述的牙槽骨增量支架系统,其特征在于:所述力学挡板上具有若干通孔,和/或所述力学挡板侧边上具有凸出的固定翼。
PCT/CN2021/129566 2020-11-13 2021-11-09 一种牙槽骨增量支架系统 WO2022100574A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/081,938 US20230119400A1 (en) 2020-11-13 2022-12-15 Alveolar Bone Augmentation Scaffold System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011268945.3 2020-11-13
CN202011268945.3A CN112386345B (zh) 2020-11-13 2020-11-13 一种牙槽骨增量支架系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/081,938 Continuation-In-Part US20230119400A1 (en) 2020-11-13 2022-12-15 Alveolar Bone Augmentation Scaffold System

Publications (1)

Publication Number Publication Date
WO2022100574A1 true WO2022100574A1 (zh) 2022-05-19

Family

ID=74600210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129566 WO2022100574A1 (zh) 2020-11-13 2021-11-09 一种牙槽骨增量支架系统

Country Status (3)

Country Link
US (1) US20230119400A1 (zh)
CN (1) CN112386345B (zh)
WO (1) WO2022100574A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112386345B (zh) * 2020-11-13 2021-07-13 苏州诺普再生医学有限公司 一种牙槽骨增量支架系统
CN114848905B (zh) * 2022-04-20 2023-01-20 中山大学附属口腔医院 一种盖髓材料及其制备方法与应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125760A1 (ja) * 2010-03-31 2011-10-13 日本メディカルマテリアル株式会社 骨誘導再生用支持体
US20120101535A1 (en) * 2002-07-31 2012-04-26 Atkinson Brent L Bone repair putty
CN105497981A (zh) * 2015-11-23 2016-04-20 杭州捷诺飞生物科技有限公司 一种基于三维打印技术的牙槽骨修复方法
CN111110404A (zh) * 2020-01-10 2020-05-08 苏州诺普再生医学有限公司 一种3d打印的多结构骨复合支架
CN111544139A (zh) * 2020-03-23 2020-08-18 浙江大学 一种同步修复牙齿及周围牙槽骨缺损的个性化仿生种植体及其成型方法
CN111545753A (zh) * 2020-05-27 2020-08-18 浙江省人民医院 一种用于牙种植骨增量的钛支架及其制作方法
CN111904666A (zh) * 2020-07-24 2020-11-10 南京医科大学附属口腔医院 一种口腔引导骨再生修复系统以及制备方法
CN112386345A (zh) * 2020-11-13 2021-02-23 苏州诺普再生医学有限公司 一种牙槽骨增量支架系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002087647A1 (en) * 2001-04-26 2002-11-07 Eija Pirhonen Bone grafting materials
AT513857B1 (de) * 2013-02-27 2014-08-15 Lampl Stephan Dentale Teilprothese
CN107496982A (zh) * 2016-06-14 2017-12-22 陈文正 促进受损骨质修复与微血管增生的衍生医材与其制作方法
CN106620882A (zh) * 2016-11-18 2017-05-10 北京积水潭医院 具有密度梯度的人工骨结构
CN109876184A (zh) * 2019-02-28 2019-06-14 广州迈普再生医学科技股份有限公司 一种弹性可形变颅底骨缺损修复支架及其制备方法
CN211271408U (zh) * 2019-09-23 2020-08-18 浙江工业大学 用于下颌骨体箱状缺损修复的pekk个性化植入体
CN111839771A (zh) * 2020-08-31 2020-10-30 上海交通大学医学院附属第九人民医院 一种用于垂直骨增量的修复系统及器械套装

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120101535A1 (en) * 2002-07-31 2012-04-26 Atkinson Brent L Bone repair putty
WO2011125760A1 (ja) * 2010-03-31 2011-10-13 日本メディカルマテリアル株式会社 骨誘導再生用支持体
CN105497981A (zh) * 2015-11-23 2016-04-20 杭州捷诺飞生物科技有限公司 一种基于三维打印技术的牙槽骨修复方法
CN111110404A (zh) * 2020-01-10 2020-05-08 苏州诺普再生医学有限公司 一种3d打印的多结构骨复合支架
CN111544139A (zh) * 2020-03-23 2020-08-18 浙江大学 一种同步修复牙齿及周围牙槽骨缺损的个性化仿生种植体及其成型方法
CN111545753A (zh) * 2020-05-27 2020-08-18 浙江省人民医院 一种用于牙种植骨增量的钛支架及其制作方法
CN111904666A (zh) * 2020-07-24 2020-11-10 南京医科大学附属口腔医院 一种口腔引导骨再生修复系统以及制备方法
CN112386345A (zh) * 2020-11-13 2021-02-23 苏州诺普再生医学有限公司 一种牙槽骨增量支架系统

Also Published As

Publication number Publication date
CN112386345A (zh) 2021-02-23
US20230119400A1 (en) 2023-04-20
CN112386345B (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
CN111070376B (zh) 一种3d打印仿生多孔生物陶瓷人工骨及其制备方法
WO2022100574A1 (zh) 一种牙槽骨增量支架系统
TWI436779B (zh) 齒槽骨修復用之生物可分解性填補物
CN204581484U (zh) 一种具有三维贯通多孔结构的3d打印骨螺钉
CN101032430A (zh) 一种制备含功能界面的组织工程骨软骨仿生一体化支架的方法
CN104758042A (zh) 一种具有三维贯通多孔结构的骨螺钉
CN113456302B (zh) 一种用于辅助种植体的钛网及其制作方法
TW201215369A (en) Spinal implant structure and method for manufacturing the same
EP2959862B1 (en) Perforated membrane for guided bone and tissue regeneration
CN111545753A (zh) 一种用于牙种植骨增量的钛支架及其制作方法
CN112754698A (zh) 一种3d打印外层梯度多孔短种植体及其制备方法
CN111297518A (zh) 一种基于3d打印热塑性材料/软组织共生骨植入物
CN111904666A (zh) 一种口腔引导骨再生修复系统以及制备方法
ES2955779T3 (es) Andamios de ingeniería tisular
CN111986310B (zh) 一种考虑软组织附着和骨生长的下颌骨多孔植入体的设计方法及多孔植入体
CN108853608A (zh) 一种生物可降解的医用镁合金补片及其制备方法和用途
CN219133250U (zh) 一种基于类骨器官的3d生物打印类骨组织工程支架
CN213525691U (zh) 一种基于3d打印多孔钛合金的仿真颌骨植入物
CN211561236U (zh) 一种骨缺损修复支架
CN214180649U (zh) 一种3d打印外层梯度多孔短种植体
CN215192628U (zh) 具有血管微循环通道和引导骨生长的下颌骨植入体
CN212438946U (zh) 一种用于牙槽骨植骨的修补钛网
CN112842623A (zh) 一种羟基磷灰石表面修饰3d生物打印可降解人工肋骨的方法
CN210962457U (zh) 一种用于颌面骨缺损修复的植入体
CN209136988U (zh) 胸骨假体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891094

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21891094

Country of ref document: EP

Kind code of ref document: A1