WO2022099831A1 - 手持云台 - Google Patents

手持云台 Download PDF

Info

Publication number
WO2022099831A1
WO2022099831A1 PCT/CN2020/133920 CN2020133920W WO2022099831A1 WO 2022099831 A1 WO2022099831 A1 WO 2022099831A1 CN 2020133920 W CN2020133920 W CN 2020133920W WO 2022099831 A1 WO2022099831 A1 WO 2022099831A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
value
desired attitude
attitude angle
operating
Prior art date
Application number
PCT/CN2020/133920
Other languages
English (en)
French (fr)
Inventor
赖雪聪
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Publication of WO2022099831A1 publication Critical patent/WO2022099831A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback

Definitions

  • the embodiments of the present application relate to the technical field of gimbal, and in particular, to a handheld gimbal.
  • the handheld gimbal can be used to carry loads, and the attitude angle of the load can be adjusted by controlling different attitudes of the gimbal. For example, when the load is a photographing device, different shooting angles of the photographing device can be adjusted.
  • the control method of the hand-held PTZ used to control the PTZ is that operating the operation structure once can only control the rotation of the PTZ around one axis. Cumbersome, inflexible control and other problems, it is easy to reduce the user experience.
  • an embodiment of the present application proposes a handheld pan/tilt head, which includes: a pan/tilt mechanism for carrying a load, the pan/tilt mechanism includes a plurality of rotating shaft mechanisms, each of the rotating shaft mechanisms includes a bracket and a mechanism for driving The motor for the rotation of the bracket is used to adjust the attitude angle of the load through the motor, and each of the rotating shaft mechanisms is used to adjust an attitude angle of the load, and the attitude angle is the pitch angle, the yaw angle, the horizontal a roll angle; a handle, mechanically coupled and connected with the pan-tilt mechanism; an operating structure, set on the handle, for the user to input operating instructions; a sensor, installed in the handle, used for sensing the operation of the operating structure operating state and generating a sensing signal; a controller connected in communication with the sensor, the sensor transmits the sensing signal to the controller, and the controller calculates according to the sensing signal and a preset mapping relationship a plurality of desired attitude angles corresponding to the operating state
  • the controller is configured to simultaneously control the motors of a plurality of the rotating shaft mechanisms to rotate in response to the same sensing signal, so as to simultaneously change a plurality of attitude angles of the load; or, the The controller is configured to successively control the motors of the plurality of rotating shaft mechanisms to rotate successively in response to the same sensing signal, so as to successively change the plurality of attitude angles of the load.
  • the senor is used to sense the speed or acceleration at which the operating structure is operated
  • the controller is configured to control the motor of the rotating shaft mechanism in response to the speed or acceleration at which the operating structure is operated The speed or acceleration of rotation.
  • the senor is used to sense the displacement or the force or the time when the operating structure is operated
  • the controller is configured to control the rotating shaft mechanism in response to the displacement or the force or the time when the operating structure is operated.
  • the angle of rotation of the motor is used to control the rotating shaft mechanism in response to the displacement or the force or the time when the operating structure is operated.
  • the plurality of desired attitude angles include a first desired attitude angle and a second desired attitude angle
  • the plurality of rotation shaft mechanisms include: a pitch rotation shaft mechanism for adjusting the pitch angle of the load, the pitch a rotating shaft mechanism includes a pitch motor; a yaw rotating shaft mechanism for adjusting the yaw angle of the load, the yaw rotating shaft mechanism includes a yaw motor; the controller is configured to control the pitch motor around a pitch axis The rotation is performed at the first desired attitude angle, while the yaw motor rotates around the yaw axis at the second desired attitude angle.
  • a plurality of the desired attitude angles include a first desired attitude angle and a second desired attitude angle
  • the operation state of the operation structure includes an operation direction
  • the preset mapping relationship includes a steering mapping relationship
  • the first desired attitude The direction of the attitude angle and the direction of the second desired attitude angle and the operation direction conform to the steering mapping relationship.
  • a plane rectangular coordinate system is established with a point on the operating structure as the origin, the plane rectangular coordinate system is divided into four quadrants, the operation direction is based on the origin as a starting point, and the steering mapping relationship includes:
  • the operation direction is toward the first quadrant, the direction of the first desired attitude angle is upward around the pitch axis, and the direction of the second desired attitude angle is toward the right side around the yaw axis;
  • the operation direction is toward the first In two quadrants, the direction of the first desired attitude angle is upward around the pitch axis, and the direction of the second desired attitude angle is towards the left around the yaw axis;
  • the operation direction is towards the third quadrant, all The direction of the first desired attitude angle is downward around the pitch axis, and the direction of the second desired attitude angle is towards the left around the yaw axis;
  • the operation direction is towards the fourth quadrant, the first desired attitude
  • the direction of the angles is downward around the pitch axis, and the direction of the second
  • the senor is configured to sense the operating direction of the operating structure and generate a sensing signal
  • the controller is configured to calculate a value of the direction angle according to the sensing signal, wherein, with the One point on the operating structure is the origin to establish a plane rectangular coordinate system, the operating direction takes the origin as the starting point, and the direction angle is the acute angle formed between the vertical axis of the plane rectangular coordinate system and the operating direction.
  • the preset mapping relationship includes an angle-value mapping relationship, and the numerical value of the first desired attitude angle, the numerical value of the second desired attitude angle and the numerical value of the direction angle or the remaining angles conform to the angle-value mapping relationship.
  • the angle-value mapping relationship includes at least one of the following: the numerical value of the first desired attitude angle and the numerical value of the second desired attitude angle are linearly mapped with the numerical value of the direction angle or the remaining angles;
  • the numerical value of the first desired attitude angle and the numerical value of the second desired attitude angle are non-linear mappings with the numerical value of the orientation angle or the remaining angles;
  • the numerical value of the first desired attitude angle is related to the orientation angle or other
  • the numerical value of the angle is linearly mapped, and the numerical value of the second desired attitude angle is nonlinearly mapped to the numerical value of the orientation angle or the remaining angle;
  • the numerical value of the first desired attitude angle is related to the numerical value of the orientation angle or the remaining angle.
  • the value of the second desired attitude angle and the value of the direction angle or the remaining angles are linearly mapped.
  • the operating structure is a button, and the operating direction is the pressing direction of the button; or the operating structure is a rolling ball, and the operating direction is the rolling direction of the rolling ball; or the operating structure is A rocker, wherein the operation direction is an offset direction of the rocker.
  • the operating state of the operating structure also includes operating displacement or operating strength or operating time
  • the preset mapping relationship also includes an angle-value mapping relationship, the numerical value of the first desired attitude angle and the second desired attitude. The value of the angle and the value of the operation displacement or the operation force or the operation time conform to the angle value mapping relationship.
  • the angle-value mapping relationship includes: the numerical value of the first desired attitude angle and the numerical value of the second desired attitude angle increase with the increase of the operation displacement, and the operation displacement is preset with a Displacement threshold, when the operation displacement exceeds the displacement threshold, the value of the first desired attitude angle and the value of the second desired attitude angle remain constant; or the value of the first desired attitude angle and the The value of the second desired attitude angle increases with the increase of the operation force.
  • the operation force is preset with a force threshold.
  • the first desired attitude angle When the operation force exceeds the force threshold, the first desired attitude angle The numerical value and the numerical value of the second desired attitude angle remain constant; or the numerical value of the first desired attitude angle and the numerical value of the second desired attitude angle increase as the operation time increases, and the operation The time is preset with a time threshold, and when the operation time exceeds the time threshold, the value of the first desired attitude angle and the value of the second desired attitude angle remain constant.
  • the operating structure is a rolling ball
  • the operating state of the operating structure further includes the rolling angle of the rolling ball
  • the preset mapping relationship also includes an angle-value mapping relationship
  • the value of the first desired attitude angle is and the numerical value of the second desired attitude angle and the numerical value of the rolling angle conform to the angle numerical value mapping relationship.
  • the angle-value mapping relationship includes at least one of the following: the numerical value of the first desired attitude angle and the numerical value of the second desired attitude angle are linearly mapped with the numerical value of the roll angle; the first desired attitude angle is linearly mapped; The value of the desired attitude angle and the value of the second desired attitude angle are nonlinearly mapped with the value of the roll angle; the value of the first desired attitude angle and the value of the roll angle are linearly mapped, and the The value of the second desired attitude angle and the value of the roll angle are nonlinearly mapped; the value of the first desired attitude angle and the value of the roll angle are nonlinearly mapped, and the value of the second desired attitude angle is The numerical values of the roll angle are linearly mapped.
  • the operating structure is a rocker
  • the operating state of the operating structure further includes an offset angle of the rocker
  • the preset mapping relationship further includes an angle-value mapping relationship
  • the first desired attitude angle is The numerical value and the numerical value of the second desired attitude angle and the numerical value of the offset angle conform to the angle numerical value mapping relationship.
  • the angle-value mapping relationship includes at least one of the following: the numerical value of the first desired attitude angle and the numerical value of the second desired attitude angle are linearly mapped with the numerical value of the offset angle; The value of a desired attitude angle and the value of the second desired attitude angle are both non-linearly mapped to the value of the offset angle; the value of the first desired attitude angle and the value of the offset angle are linearly mapped , the numerical value of the second desired attitude angle and the numerical value of the offset angle are nonlinearly mapped; the numerical value of the first desired attitude angle and the numerical value of the offset angle are nonlinearly mapped, and the second desired attitude angle is nonlinearly mapped.
  • the value of the attitude angle maps linearly to the value of the offset angle.
  • the controller can control the rotation of motors corresponding to at least two rotating shaft mechanisms of the pan/tilt according to the same sensing signal of the operation structure, so as to change multiple attitude angles of the load.
  • the user can adjust multiple attitude angles of the load by inputting an operation instruction once.
  • the operation is simple, and it is convenient for the load to quickly reach the attitude expected by the user, improving the shooting efficiency and enhancing the user experience.
  • FIG. 1 is a schematic structural diagram of a handheld gimbal according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a control principle of the handheld pan/tilt in FIG. 1 .
  • FIG. 3 is a schematic diagram of a load rotation control process of the handheld gimbal of FIG. 1 .
  • FIG. 4 is a schematic view of the operation direction of the operation structure of the handheld pan/tilt head shown in FIG. 1 .
  • FIG. 5 is a schematic diagram of the operation direction and direction angle of the operation structure of the handheld pan/tilt head shown in FIG. 1 .
  • FIG. 6 is a schematic diagram of the type of the operation structure and the corresponding operation state of the handheld pan/tilt head shown in FIG. 1 .
  • FIG. 7 is a schematic view of the rotation of the pan-tilt mechanism and buttons of the handheld pan-tilt of FIG. 1 .
  • FIG. 8 is another rotational schematic diagram of the pan-tilt mechanism and buttons of the handheld pan-tilt of FIG. 1 .
  • Hand-held head 100 head mechanism 10; handle 20; shaft mechanism 11; bracket 111; motor 112; operating structure 30; sensor 40; controller 50; electronic governor 60, 60a, 60b; 11a; pitch motor 112a; pitch bracket 111a; yaw shaft mechanism 11b; yaw motor 112b; yaw bracket 111b; operating directions 301, 301a-301d; Four-quadrant S4; direction angle 302; button 30a; pressing direction 3011; ball 30b; scroll direction 3012; rocker 30c;
  • a and/or B includes scheme A, scheme B, or scheme that A and B satisfy at the same time.
  • spatially relative terms such as “above,” “below,” “top,” “bottom,” etc., may be used herein to describe only one device or feature as shown in the figure versus other devices or features.
  • the spatial relationship of features should be understood to also encompass different orientations in use or operation in addition to the orientation shown in the figures.
  • the handheld gimbal of the embodiment of the present application can be used to carry a load, and the multi-attitude angle of the load can be adjusted for shooting by controlling the rotation of the gimbal mechanism.
  • the embodiment of the present application provides a method for improving the rotation control of the handheld pan/tilt head, so as to improve the flexible control of the load carried by the handheld pan/tilt head.
  • the control function of the miniaturized handheld PTZ is expanded without increasing its volume, thereby maintaining the convenience of storage and carrying.
  • the handheld gimbal of the embodiment of the present application can simplify the operation mode of the operation structure, and on the premise of simplifying the operation, realize the multi-axis control of the gimbal, so as to realize the control of the multi-attitude angle of the load, which greatly improves the user experience.
  • the handheld pan/tilt 100 includes a pan/tilt mechanism 10 and a handle 20 .
  • the pan-tilt mechanism 10 is used for carrying the load 70, and includes a plurality of rotating shaft mechanisms 11, each rotating shaft mechanism 11 includes a bracket 111 and a motor 112 for driving the bracket 111 to rotate, so as to adjust the attitude angle of the load 70 through the motor 112, the attitude angle For the pitch angle, yaw angle, roll angle.
  • the pan-tilt mechanism 10 may include two, three or more rotating shaft mechanisms 11 .
  • the three rotating shaft mechanisms 11 respectively control the load 70 to rotate around The pitch, yaw, and roll axes are rotated to adjust the pitch, yaw, and roll attitudes of the payload 70 .
  • Each pivot mechanism 11 includes a bracket 111 mechanically coupled to a motor 112 for driving the bracket 111 to rotate.
  • it may include a pitch bracket 111a, a yaw bracket 111b and a roll bracket 111c.
  • the pitch motor 112a is used to drive the pitch bracket 111a to drive the load 70 to rotate around the pitch axis
  • the yaw motor 112b is used to drive
  • the yaw bracket 111b drives the load 70 to rotate around the yaw axis
  • the roll motor 112c is used to drive the roll bracket 111c to drive the load 70 to rotate around the roll axis.
  • the load 70 may be, for example, a photographing device, and the photographing device may be, for example, a camera or a small camera mounted on the roll support 111c.
  • the photographing device may also be an electronic device with a photographing function, such as a mobile phone, etc., mounted on the pan/tilt mechanism 10 .
  • the handle 20 is mechanically coupled and connected to the pan-tilt mechanism 10, and the handle 20 is provided with an operating structure 30 for the user to input operating instructions; a sensor 40 installed in the handle 20 is used to sense the operating state of the operating structure 30 and generate a sense of
  • the controller 50 is connected in communication with the sensor 40, the sensor 40 transmits the sensing signal to the controller 50, and the controller 50 calculates a plurality of a desired attitude angle, and generate a control signal; and an electronic governor 60 communicatively connected with the controller 50, the electronic governor 60 is electrically connected to the motor 112, and used to control the rotation of the motor 112 according to the control signal; wherein, the controller 50 according to The same sensing signal of the operating structure 30 controls the rotation of the motors 112 of the at least two rotating shaft mechanisms 11 to change a plurality of attitude angles of the load 70 .
  • the handle 20 is used to support the pan-tilt mechanism 10 and provide a user with a main structure that is easy to hold.
  • the handheld pan/tilt 100 including the handle 20 and the pan/tilt mechanism 10 has a small size, is easy to operate, and is easy to store/carry.
  • the handle 20 and the pan/tilt mechanism 10 are detachably connected, for example, the handle 20 may be connected to the pan/tilt mechanism 10 by rotating the handle 20, or the pan/tilt mechanism 10 may be connected to the handle 20 by rotating the handle 20, or by a card The connection between the handle 20 and the pan-tilt mechanism 10 is realized.
  • the handle 20 may be foldable relative to the pan/tilt mechanism 10 to facilitate storage and/or portability of the handle pan/tilt. In these embodiments, the handle 20 can be unfolded from the folded position and reconnected to the head mechanism 10 so that the handle head can be reused.
  • electronic components such as the sensor 40 , the controller 50 and the electronic governor 60 are all provided on the handle 20 , including but not limited to the housing, the inner chamber or the extension extending from the housing. superior.
  • the controller 50 and/or the electronic speed governor 60 are provided on the pan-tilt mechanism 10 to control the rotation of the motor 112 under the condition of receiving the sensing signal and/or the control signal.
  • the number of electronic governors 60 is different from the number of motors 112, for example, the number of electronic governors 60 is less than the number of motors 112, optionally, in a three-axis pan/tilt head, Three motors 112 can be controlled by one electronic governor 60 .
  • the number of electronic governors 60 is equal to the number of motors 112 , for example, one electronic governor 60 is configured for each motor 112 .
  • the configuration relationship between the electronic governor and the motor can be adjusted according to the actual situation, which is not limited here.
  • the controller 50 is configured to simultaneously control the motors 112 of the plurality of rotating shaft mechanisms 11 to rotate in response to the same sensing signal, so as to simultaneously change the plurality of attitude angles of the load 70 .
  • it is complicated for the user to adjust the attitude angle of the load 70 which usually involves multi-angle rotation of the load 70 around multiple axes.
  • the amount of operation makes the operation cumbersome.
  • the user only needs to input an operation command once, and the controller can control the movement of multiple rotating shaft mechanisms at the same time, so as to realize the coupling control of the load rotating at multiple angles around multiple axes. At this time, the load can be quickly Reach the user's desired posture, so as to meet the user's shooting needs.
  • the controller 50 is configured to successively control the motors 112 of the plurality of rotating shaft mechanisms 11 to rotate successively in response to the same sensing signal, so as to successively change the plurality of attitude angles of the load 70 .
  • the controller successively controls the movement of multiple rotating shaft mechanisms, so that the load can rotate at various angles successively around multiple rotating shafts, and finally reaches the posture desired by the user.
  • controller controls the movement of multiple rotating shaft mechanisms simultaneously or successively, it is possible to input an operation command and control the change of multiple attitude angles of the load, thereby simplifying the user operation and improving the user experience.
  • the senor 40 is used to sense the speed or acceleration at which the operating structure 30 is operated, and the controller 50 is configured to control the speed at which the motor 112 of the shaft mechanism 11 rotates in response to the speed or acceleration of the operating structure 30 being operated. or acceleration.
  • the sensor 40 is used to sense the speed at which the operating structure 30 is operated and generate a sensing signal. After receiving the sensing signal, the controller 50 further sends it to the electronic governor 60, and the electronic governor 60 can control the corresponding The motor 112 rotates.
  • the speed at which the motor 112 rotates is proportional to the speed at which the operating structure 30 is operated. For example, the speed at which the motor 112 rotates increases as the speed at which the operating structure 30 is operated increases. , the operating speed of the operating structure 30 is preset with a speed threshold. When the operating speed of the operating structure 30 exceeds the speed threshold, the rotating speed of the motor 112 remains constant.
  • the sensor 40 is used to sense the operating acceleration of the operating structure 30 and generate a sensing signal. After receiving the sensing signal, the controller 50 further sends it to the electronic governor 60, and the electronic governor 60 can control the corresponding The motor 112 rotates.
  • the acceleration of the rotation of the motor 112 is proportional to the acceleration at which the operation structure 30 is operated. For example, the acceleration of the rotation of the motor 112 increases with the increase of the acceleration at which the operation structure 30 is operated.
  • the operating acceleration of the operating structure 30 is preset with an acceleration threshold. When the operating acceleration of the operating structure 30 exceeds the acceleration threshold, the rotational acceleration of the motor 112 remains constant.
  • the load 70 can be quickly adjusted to the posture desired by the user, thereby avoiding missed shooting opportunities.
  • it is beneficial to protect the use of the motor avoid the loss caused by the excessive rotation speed/acceleration, thereby prolonging its working life.
  • the plurality of desired attitude angles include a first desired attitude angle and a second desired attitude angle.
  • the pan/tilt mechanism 10 includes a pitch axis mechanism 11a for adjusting the pitch angle of the payload 70 and a yaw axis mechanism 11b for adjusting the yaw angle of the payload 70;
  • the pitch axis mechanism 11a includes a pitch motor 112a, and
  • the yaw shaft mechanism 11b includes a yaw motor 112b.
  • Controller 50 is configured to simultaneously control pitch motor 112a and yaw motor 112b to rotate, wherein pitch motor 112a rotates at a first desired attitude angle and yaw motor 112b rotates at a second desired attitude angle.
  • the controller can realize the coupled control of the pitch attitude angle and the yaw attitude angle of the control load.
  • the electronic governor 60a is used to drive the pitch motor 112a, and the electronic governor 60b is used to drive the yaw motor 112b.
  • the electronic governor and the motor are set in one-to-one correspondence to improve control accuracy.
  • the same electronic governor may be used to drive multiple motors.
  • the controller 50 may also control the pitch motor 112a and the yaw motor 112b to rotate successively, wherein the pitch motor 112a rotates at the first desired attitude angle, and the yaw motor 112b rotates at the second desired attitude angle. Desired attitude angle for rotation.
  • the payload adjusts a pitch attitude angle first, and then adjusts a yaw attitude angle.
  • the payload first adjusts a yaw attitude angle, and then adjusts a pitch attitude angle.
  • the rotation of the pan/tilt can correspond to the operation of the operating structure by the user.
  • the operation of the operating structure by the user includes the direction of the operation.
  • the operating state of the operating structure includes the operating direction, and the operating direction can roughly reflect the direction the user expects the load to reach. Control can be performed based on this operating direction.
  • the angle of the attitude angle rotated by the load may correspond to other operating states of the operating structure, such as the displacement, angle, force or time of the operating structure sensed by the sensor.
  • the operation state of the operation structure 30 includes the operation direction 301
  • the preset mapping relationship includes the steering mapping relationship, the direction of the first desired attitude angle and the direction and operation of the second desired attitude angle
  • the direction 301 conforms to the steering mapping relationship.
  • the plane rectangular coordinate system and quadrants are used for description. Taking a point on the operation structure 30 as the origin to establish a plane rectangular coordinate system, the plane rectangular coordinate system is divided into four quadrants, and the operation direction 301 can fall into any quadrant, as shown in FIG. The position of the drawn line. It is set that the direction of the X axis of the operation structure 30 corresponds to the pitch axis of the gimbal, and the direction of the Y axis of the operation structure 30 corresponds to the yaw axis of the gimbal.
  • the steering mapping relationship is as follows: the direction of the first desired attitude angle is toward the upper side around the pitch axis, and the direction of the second desired attitude angle is toward the left side around the yaw axis, Wherein, the first desired attitude angle correspondingly adjusts the pitch attitude angle of the load, and the second desired attitude angle correspondingly adjusts the yaw attitude angle of the load.
  • the operation direction 301 faces other quadrants, such as the first quadrant S1, the third quadrant S3 or the fourth quadrant S4, the direction of the first desired attitude angle and the direction of the second desired attitude angle conform to the corresponding steering mapping relation. I won't go into details here.
  • the direction of rotation of the load is roughly the same as the direction of operation, which can further simplify the user operation.
  • the user does not need to remember the complicated steering correspondence, but when the load is expected to rotate in a certain direction, it only needs to move in that direction. It is enough to operate the operation structure, especially for users who use the gimbal for the first time and are not very skilled in using the gimbal, they can also easily operate the gimbal to control the load to obtain the desired shooting posture.
  • the rotation direction of the load may be substantially opposite to the operation direction.
  • the set direction angle 302 is an acute included angle formed between the vertical axis of the plane rectangular coordinate system and the operation direction 301 .
  • the direction angle 302 is calculated by the controller according to the operation direction 301 , so as to adjust the angle of the attitude angle of the load according to the value of the direction angle 302 .
  • the preset mapping relationship may further include an angle-value mapping relationship, and the values of the first desired attitude angle and the second desired attitude angle and the values of the direction angle 302 or other angles conform to the angle-value mapping relationship.
  • the value of the first desired attitude angle and/or the value of the second desired attitude angle and the value of the direction angle 302 conform to the angle value mapping relationship.
  • the value of the first desired attitude angle and/or the value of the second desired attitude angle and the value of the complementary angle of the direction angle 302 conform to the angle-value mapping relationship.
  • the value of the first desired attitude angle, the value of the second desired attitude angle and the value of the bearing angle 302 or the remaining angles are linearly mapped or non-linearly mapped.
  • the value of the direction angle 302 is ⁇ (acute angle)
  • the preset angle and the preset multiple may be a single value or a range of values.
  • a pitch angle threshold is preset for the pitch angle that can be adjusted by the load, and the value of the first desired attitude angle may be less than or equal to the pitch angle threshold.
  • a yaw angle threshold is preset for the yaw angle that can be adjusted by the load, and the value of the second desired attitude angle may be less than or equal to the yaw angle threshold.
  • angle-value mapping relationship may also be other corresponding manners, which are not limited in this embodiment of the present application.
  • the operation structure 30 is a button 30a, and the operation direction 301 is the pressing direction 3011 of the button 30a at this time.
  • the sensor 40 may be, for example, a pressure sensor for sensing the operating state of the button 30a.
  • the embodiment of the present application may provide a corresponding control relationship between the pan-tilt mechanism 10 and the button 30a.
  • the X-axis of the button 30 a corresponds to the pitch axis of the pan-tilt mechanism 10
  • the Y-axis of the button 30 a corresponds to the yaw axis of the pan-tilt mechanism 10 .
  • the user operates the button 30a so that the pressing direction of the button 30a faces the fourth quadrant S4, then the sensor 40 senses the pressing direction of the button 30a and generates a sensing signal, and the controller 50 receives the sensing After the signal, the direction angle is further calculated, and then the controller 50 controls the gimbal mechanism 10 to drive the load 70 to rotate based on the pressing direction and the direction angle: Specifically, the electronic governor 60 controls the pitch motor 112a to rotate downward around the pitch axis by a pitch attitude angle , at the same time, the electronic governor 60 controls the yaw motor 112b to rotate a yaw attitude angle to the right around the yaw axis, and at this time the load 70 is adjusted to the attitude desired by the user.
  • the load 70 in FIG. 7 may also be rotated by a pitch attitude angle first, and then rotated by a yaw attitude angle.
  • the payload 70 is rotated one yaw attitude angle and then one pitch attitude angle.
  • the user adjusts the load 70 , which may be, for example, a photographing device, to perform multi-position adjustment according to the requirements, so as to perform multi-angle photographing.
  • FIG. 8 shows other attitude adjustments than the payload 70 of FIG. 7 .
  • the user operates the button 30a so that the pressing direction of the button 30a faces the second quadrant S2, then the sensor 40 senses the pressing direction of the button 30a and generates a sensing signal, and the controller 50 further calculates the direction angle after receiving the sensing signal, Then the controller 50 controls the pan-tilt mechanism 10 to drive the load 70 to rotate based on the pressing direction and the direction angle: Specifically, the electronic governor 60 controls the pitch motor 112a to rotate upwards by a pitch attitude angle around the pitch axis, while the electronic governor 60 controls The yaw motor 112b rotates a yaw attitude angle to the left around the yaw axis, and at this time, the load 70 is adjusted to the attitude desired by the user.
  • the load 70 in FIG. 8 may also be rotated by a pitch attitude angle first, and then rotated by a yaw attitude angle.
  • the payload 70 is rotated one yaw attitude angle and then one pitch attitude angle.
  • the user can control the load to rotate around multiple axes only by pressing a button, so that the load can be quickly adjusted to the user's desired posture.
  • the handheld gimbal can be used to control the coupled rotation of the load around the pitch axis and the roll axis.
  • the handheld gimbal can also be used to control the coupled rotation of the load around the yaw and roll axes.
  • the handheld gimbal can also be used to control the coupled rotation of the payload around the pitch, yaw and roll axes.
  • the above coupling control method can reduce the amount of user operation, simplify the operation, and improve the convenience of the handheld PTZ operation.
  • the operating structure 30 is a rolling ball 30b
  • the operating direction 301 is the rolling direction 3012 of the rolling ball 30b.
  • the operating state of the operating structure 30 further includes the rolling angle 303 of the rolling ball 30b.
  • the rolling direction 3012 of the ball 30b may correspond to the rotation direction of the load
  • the rolling angle 303 of the ball 30b may correspond to the attitude angle of the rotation of the load.
  • the preset mapping relationship may include a steering mapping relationship and an angle value mapping relationship.
  • the steering mapping relationship reference may be made to the description of the foregoing related content, which will not be repeated here.
  • the angle-value mapping relationship the value of the first desired attitude angle, the value of the second desired attitude angle and the value of the roll angle 303 conform to the angle-value mapping relationship.
  • the sensor 40 may include an attitude sensor and an angle sensor, for example, the attitude sensor is used to sense the rolling direction 3012 of the rolling ball 30b, and the angle sensor is used to measure the rolling angle 303 of the rolling ball 30b
  • the sensor 40 includes a plurality of pressure sensors, the plurality of pressure sensors are evenly arranged around the rolling ball 30b, and the rolling direction 3012 and the rolling angle 303 of the rolling ball 30b can be indirectly obtained through the pressure signals sensed by the plurality of pressure sensors .
  • the angle value mapping relationship includes at least one of the following: the value of the first desired attitude angle and the value of the second desired attitude angle are linearly mapped to the value of the roll angle 303; the value of the first desired attitude angle and The value of the second desired attitude angle is nonlinearly mapped to the value of the roll angle 303 ; the value of the first desired attitude angle and the value of the roll angle 303 are linearly mapped, and the value of the second desired attitude angle and the value of the roll angle 303 are linearly mapped Nonlinear mapping; the value of the first desired attitude angle and the value of the roll angle 303 are nonlinearly mapped, and the value of the second desired attitude angle and the value of the roll angle 303 are linearly mapped.
  • the operation structure 30 is a rocker 30c
  • the operation direction 301 is the offset direction 3013 of the rocker 30c.
  • the operating state of the operating structure 30 further includes an offset angle 304 of the rocker 30c.
  • the offset direction 3013 of the rocker 30c may correspond to the rotation direction of the load
  • the offset angle 304 of the rocker 30c may correspond to the attitude angle of the rotation of the load.
  • the preset mapping relationship may include a steering mapping relationship and an angle value mapping relationship.
  • the steering mapping relationship reference may be made to the description of the foregoing related content, which will not be repeated here.
  • the angle value mapping relationship the value of the first desired attitude angle, the value of the second desired attitude angle and the value of the offset angle 304 conform to the angle value mapping relationship.
  • the sensor 40 may include, for example, a posture sensor and an angle sensor, the posture sensor is used to sense the deflection direction 3013 of the rocker 30c, and the angle sensor is used to measure the deflection of the rocker 30c angle 304; or, the sensor 40 includes a joystick potentiometer, and the deflection direction 3013 and the deflection angle 304 of the joystick 30c are sensed by the joystick potentiometer.
  • the angle value mapping relationship includes at least one of the following: the value of the first desired attitude angle and the value of the second desired attitude angle are linearly mapped to the value of the offset angle 304; the value of the first desired attitude angle and the value of the second desired attitude angle are nonlinearly mapped with the value of the offset angle 304; the value of the first desired attitude angle and the value of the offset angle 304 are linearly mapped, and the value of the second desired attitude angle and the offset angle
  • the value of 304 is a nonlinear mapping; the value of the first desired attitude angle and the value of the offset angle 304 are nonlinearly mapped, and the value of the second desired attitude angle and the value of the offset angle 304 are linearly mapped.
  • the senor 40 is used to sense the displacement or force or time of the operating structure 30 being operated, and the controller 50 is configured to control the motor of the shaft mechanism 11 in response to the displacement or force or time of the operating structure 30 being operated. 112 angle of rotation.
  • the operation state of the operation structure 30 further includes the operation displacement, the operation force or the operation time
  • the preset mapping relationship also includes the angle value mapping relationship, the numerical value of the first desired attitude angle and the numerical value of the second desired attitude angle and the operation displacement, The value of the operation force or operation time conforms to the angle value mapping relationship.
  • the angle value mapping relationship includes: the value of the first desired attitude angle and the value of the second desired attitude angle increase with the increase of the operation displacement, and the operation displacement is preset with a displacement threshold, when the operation displacement exceeds After shifting the threshold, the value of the first desired attitude angle and the value of the second desired attitude angle remain constant; or the value of the first desired attitude angle and the value of the second desired attitude angle
  • the strength is preset with a strength threshold. When the operation strength exceeds the strength threshold, the value of the first desired attitude angle and the value of the second desired attitude angle remain constant; or the value of the first desired attitude angle and the value of the second desired attitude angle vary with It increases as the operation time increases, and the operation time is preset with a time threshold. When the operation time exceeds the time threshold, the value of the first desired attitude angle and the value of the second desired attitude angle remain constant.
  • the motor By presetting the force threshold or time threshold, the motor can be prevented from over-rotating and the operation reliability of the gimbal can be improved.
  • the sensor type can be set according to the operating state of the operating structure, including one or more combined sensors.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Accessories Of Cameras (AREA)

Abstract

一种手持云台,包括:云台机构(10),其包括多个转轴机构(11),每个转轴机构(11)包括电机(112);手柄(20)与云台机构(10)机械耦合连接;操作结构(30);传感器(40)感测操作结构(30)的操作状态并生成感测信号;控制器(50)根据感测信号和预设映射关系计算出与操作结构(30)的操作状态对应的多个期望姿态角度并生成控制信号;电子调速器(60)根据控制信号控制电机(112)转动;控制器(50)根据操作结构(30)的同一感测信号控制至少两个转轴机构的电机(112)转动以改变负载(70)的多个姿态角。该手持云台允许用户输入一次操作指令以调节负载的多个姿态角,增强了用户体验。

Description

手持云台 技术领域
本申请实施例涉及云台技术领域,具体涉及一种手持云台。
背景技术
手持云台可用于搭载负载,通过控制云台的不同姿态以调节负载的姿态角,例如当负载为拍摄装置时,可调节拍摄装置的不同拍摄角度。目前,手持云台用于控制云台的控制方式为,操作一次操作结构只能控制云台绕一个轴转动,若想要云台绕另外一个轴转动,则需要再次操作操作结构,从而造成操作繁琐、控制不灵活等问题,容易降低用户体验。
发明内容
有鉴于此,本申请实施例提出一种手持云台,其包括:云台机构,用于承载负载,所述云台机构包括多个转轴机构,每个所述转轴机构包括支架和用于驱动所述支架转动的电机,以通过所述电机调节所述负载的姿态角,每个所述转轴机构用于调节所述负载的一个姿态角,所述姿态角为俯仰角,偏航角,横滚角;手柄,与所述云台机构机械耦合连接;操作结构,设于所述手柄,用于供用户输入操作指令;传感器,安装在所述手柄内,用于感测所述操作结构的操作状态并生成感测信号;与所述传感器通信连接的控制器,所述传感器将所述感测信号传送给所述控制器,所述控制器根据所述感测信号和预设映射关系计算出与所述操作结构的操作状态对应的多个期望姿态角度,并生成控制信号;以及与所述控制器通信连接的电子调速器,所述电子调速器与所述电机电连接,用于根据所述控制信号控制所述电机转动;其中,所述控制器根据所述操作结构的同一所述感测信号,控制至少两个所述转轴机构的所述电机转动,以改变所述负载的多个姿态角。
进一步地,所述控制器被配置为响应于同一所述感测信号,同时控制多个所述转轴机构的所述电机进行转动,以同时改变所述负载的多个姿态角;或者,所述控制器被配置为响应于同一所述感测信号,先后分别控制多个所述转轴机构的所述电机进行转动,以先后改变所述负载的多个姿态角。
进一步地,所述传感器用于感测所述操作结构被操作的速度或加速度,所述控制器被配置为响应于所述操作结构被操作的速度或加速度,控制所述转轴机构的所述电机转动的速度或加速度。
进一步地,所述传感器用于感测所述操作结构被操作的位移或力度或时间,所述控制器被配置为响应于所述操作结构被操作的位移或力度或时间,控制所述转轴机构的所述电机转动的角度。
进一步地,多个所述期望姿态角度包括第一期望姿态角度以及第二期望姿态角度,多个所述转轴机构包括:用于调节所述负载的所述俯仰角的俯仰转轴机构,所述俯仰转轴机构包括俯仰电机;用于调节所述负载的所述偏航角的偏航转轴机构,所述偏航转轴机构包括偏航电机;所述控制器被配置为控制所述俯仰电机绕俯仰轴以所述第一期望姿态角度进行转动、同时所述偏航电机绕偏航轴以所述第二期望姿态角度进行转动。
进一步地,多个所述期望姿态角度包括第一期望姿态角度以及第二期望姿态角度,所述操作结构的操作状态包括操作方向,所述预设映射关系包括转向映射关系,所述第一期望姿态角度的方向和所述第二期望姿态角度的方向与所述操作方向符合所述转向映射关系。
进一步地,以所述操作结构上一点为原点建立平面直角坐标系,所述平面直角坐标系被划分为四个象限,所述操作方向以所述原点作为起点,所述转向映射关系包括:所述操作方向朝向第一象限时,所述第一期望姿态角度的方向为绕俯仰轴朝向上方,并且所述第二期望姿态角度的方向为绕偏航轴朝向右侧;所述操作方向朝向第二象限时,所述第一期望姿态角度的方向为绕俯仰轴朝向上方,并且所述第二期望姿态角度的方向为绕偏航轴朝向左侧;所述操作方向朝向第三象限时,所述第一期望姿态角度的方向为绕俯仰轴朝向下方,并且所述第二期望姿态角度的方向为绕偏航轴朝向左侧;所述操作方向朝向第四象限时,所述第一期望姿态角度的方向为绕俯仰轴朝向下方,并且所述第二期望姿态角度的方向为绕偏航轴朝向右侧。
进一步地,所述传感器被配置为感测所述操作结构的所述操作方向并生成感测信号,所述控制器被配置为根据所述感测信号计算出方向角的数值,其中,以所述操作结构上一点为原点建立平面直角坐标系,所述操作 方向以所述原点作为起点,所述方向角为所述平面直角坐标系的纵轴与所述操作方向之间形成的锐角夹角,所述预设映射关系包括角度数值映射关系,所述第一期望姿态角度的数值和所述第二期望姿态角度的数值与所述方向角或其余角的数值符合所述角度数值映射关系。
进一步地,所述角度数值映射关系包括以下至少之一:所述第一期望姿态角度的数值和所述第二期望姿态角度的数值均与所述方向角或其余角的数值呈线性映射;所述第一期望姿态角度的数值和所述第二期望姿态角度的数值均与所述方向角或其余角的数值呈非线性映射;所述第一期望姿态角度的数值与所述方向角或其余角的数值呈线性映射,所述第二期望姿态角度的数值与所述方向角或其余角的数值呈非线性映射;所述第一期望姿态角度的数值与所述方向角或其余角的数值呈非线性映射,所述第二期望姿态角度的数值与所述方向角或其余角的数值呈线性映射。
进一步地,所述操作结构为按钮,所述操作方向为所述按钮的按压方向;或者所述操作结构为滚球,所述操作方向为所述滚球的滚动方向;或者所述操作结构为摇杆,所述操作方向为所述摇杆的偏移方向。
进一步地,所述操作结构的操作状态还包括操作位移或操作力度或操作时间,所述预设映射关系还包括角度数值映射关系,所述第一期望姿态角度的数值和所述第二期望姿态角度的数值与所述操作位移或所述操作力度或所述操作时间的数值符合所述角度数值映射关系。
进一步地,所述角度数值映射关系包括:所述第一期望姿态角度的数值和所述第二期望姿态角度的数值随着所述操作位移的增大而增大,所述操作位移预设有一位移阈值,当所述操作位移超过所述位移阈值后,所述第一期望姿态角度的数值和所述第二期望姿态角度的数值保持恒定;或者所述第一期望姿态角度的数值和所述第二期望姿态角度的数值随着所述操作力度的增大而增大,所述操作力度预设有一力度阈值,当所述操作力度超过所述力度阈值后,所述第一期望姿态角度的数值和所述第二期望姿态角度的数值保持恒定;或者所述第一期望姿态角度的数值和所述第二期望姿态角度的数值随着所述操作时间的增大而增大,所述操作时间预设有一时间阈值,当所述操作时间超过所述时间阈值后,所述第一期望姿态角度的数值和所述第二期望姿态角度的数值保持恒定。
进一步地,所述操作结构为滚球,所述操作结构的操作状态还包括所述滚球的滚动角度,所述预设映射关系还包括角度数值映射关系,所述第一期望姿态角度的数值和所述第二期望姿态角度的数值与所述滚动角度的数值符合所述角度数值映射关系。
进一步地,所述角度数值映射关系包括以下至少之一:所述第一期望姿态角度的数值和所述第二期望姿态角度的数值均与所述滚动角度的数值呈线性映射;所述第一期望姿态角度的数值和所述第二期望姿态角度的数值均与所述滚动角度的数值呈非线性映射;所述第一期望姿态角度的数值与所述滚动角度的数值呈线性映射,所述第二期望姿态角度的数值与所述滚动角度的数值呈非线性映射;所述第一期望姿态角度的数值与所述滚动角度的数值呈非线性映射,所述第二期望姿态角度的数值与所述滚动角度的数值呈线性映射。
进一步地,所述操作结构为摇杆,所述操作结构的操作状态还包括所述摇杆的偏移角度,所述预设映射关系还包括角度数值映射关系,所述第一期望姿态角度的数值和所述第二期望姿态角度的数值与所述偏移角度的数值符合所述角度数值映射关系。
进一步地,所述角度数值映射关系包括以下至少之一:所述第一期望姿态角度的数值和所述第二期望姿态角度的数值均与所述偏移角度的数值呈线性映射;所述第一期望姿态角度的数值和所述第二期望姿态角度的数值均与所述偏移角度的数值呈非线性映射;所述第一期望姿态角度的数值与所述偏移角度的数值呈线性映射,所述第二期望姿态角度的数值与所述偏移角度的数值呈非线性映射;所述第一期望姿态角度的数值与所述偏移角度的数值呈非线性映射,所述第二期望姿态角度的数值与所述偏移角度的数值呈线性映射。
本申请实施例的手持云台,控制器能够根据操作结构的同一感测信号,控制云台的至少两个转轴机构所对应的电机转动,以改变负载的多个姿态角。用户在输入一次操作指令的情况下,就能够调节负载的多个姿态角,操作简单,便于使负载快速达到用户所期望的姿态,提高拍摄效率、以及增强用户体验。
附图说明
图1是根据本申请一个实施例的手持云台的结构示意图。
图2是图1的手持云台的控制原理示意图。
图3是图1的手持云台的负载转动控制过程示意图。
图4是图1的手持云台的操作结构的操作方向示意图。
图5是图1的手持云台的操作结构的操作方向及方向角示意图。
图6是图1的手持云台的操作结构的类型及相应操作状态示意图。
图7是图1的手持云台的云台机构和按钮的转动示意图。
图8是图1的手持云台的云台机构和按钮的另一转动示意图。
附图标记说明:
手持云台100;云台机构10;手柄20;转轴机构11;支架111;电机112;操作结构30;传感器40;控制器50;电子调速器60、60a、60b;负载70;俯仰转轴机构11a;俯仰电机112a;俯仰支架111a;偏航转轴机构11b;偏航电机112b;偏航支架111b;操作方向301、301a-301d;第一象限S1;第二象限S2;第三象限S3;第四象限S4;方向角302;按钮30a;按压方向3011;滚球30b;滚动方向3012;摇杆30c;偏移方向3013;滚动角度303;偏移角度304。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请实施例的附图,对本申请的技术方案进行清楚、完整地描述。显然,所描述的实施例是本申请的一个实施例,而不是全部的实施例。基于所描述的本申请的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,除非另外定义,本申请使用的技术术语或者科学术语应当为本申请所属领域内具有一般技能的人士所理解的通常意义。若全文中涉及“第一”、“第二”等描述,则该“第一”、“第二”等描述仅用于区别类似的对象,而不能理解为指示或暗示其相对重要性、先后次序或者隐含指明所指示的技术特征的数量,应该理解为“第一”、“第二”等描述的数据在适当情况下可以互换。若全文中出现“和/或”,其含义为包括三个并列方案,以“A和/或B”为例,包括A方案,或B方案,或A和B同时满足的方案。此外,为了便于描述,在这里可以使用空间相对术语,如 “上方”、“下方”、“顶部”、“底部”等,仅用来描述如图中所示的一个器件或特征与其他器件或特征的空间位置关系,应当理解为也包含除了图中所示的方位之外的在使用或操作中的不同方位。
本申请实施例的手持云台可用于搭载负载,通过控制云台机构转动,以调节负载的多姿态角度拍摄。本申请实施例则提供了一种改善手持云台转动控制的方式,以改善其搭载的负载的灵活控制。一方面,扩展小型化手持云台的控制功能,无需增加其体积,从而保持其收纳、携带的便利性。另一方面,本申请实施例的手持云台能够简化对操作结构的操作方式,以及在简化操作的前提下,实现云台的多转轴控制,从而实现负载的多姿态角的控制,极大提高了用户体验。
如图1和图2所示,手持云台100包括云台机构10和手柄20。云台机构10用于承载负载70,其包括多个转轴机构11,每个转轴机构11包括支架111和用于驱动支架111转动的电机112,以通过电机112调节负载70的姿态角,姿态角为俯仰角,偏航角,横滚角。
在一些实施例中,云台机构10可以包括两个、三个或更多数量的转轴机构11,例如当云台机构10包括三个转轴机构11时,三个转轴机构11分别控制负载70绕俯仰轴、偏航轴和横滚轴转动,以调节负载70的俯仰角、偏航角和横滚角姿态。每个转轴机构11包括支架111,支架111机械耦合连接至电机112,电机112用于驱动支架111转动。对于三轴云台,其可以包括俯仰支架111a、偏航支架111b和横滚支架111c,对应的,俯仰电机112a用于驱动俯仰支架111a带动负载70绕俯仰轴转动,偏航电机112b用于驱动偏航支架111b带动负载70绕偏航轴转动,以及横滚电机112c用于驱动横滚支架111c带动负载70绕横滚轴转动。
其中,负载70例如可以是拍摄装置,拍摄装置例如可以是装配在横滚支架111c上的摄像头或小型相机。当然,在其他实施例中,拍摄装置还可以是装配于云台机构10上具有拍摄功能的电子设备,例如:手机等。
手柄20与云台机构10机械耦合连接,手柄20上设有操作结构30,用于供用户输入操作指令;安装在手柄20内的传感器40,用于感测操作结构30的操作状态并生成感测信号;与传感器40通信连接的控制器50,传感器40将感测信号传送给控制器50,控制器50根据感测信号和预设映 射关系计算出与操作结构30的操作状态对应的多个期望姿态角度,并生成控制信号;以及与控制器50通信连接的电子调速器60,电子调速器60与电机112电连接,用于根据控制信号控制电机112转动;其中,控制器50根据操作结构30的同一所述感测信号,控制至少两个转轴机构11的电机112转动,以改变负载70的多个姿态角。
手柄20用于支撑云台机构10并且为用户提供一便于手持的主体结构。包括该手柄20和云台机构10的手持云台100的体积小,便于操作,并且便于收纳/携带。在一些实施例中,手柄20和云台机构10为可拆卸连接,例如可通过旋转手柄20将其连接至云台机构10,或者通过旋转云台机构10将其连接至手柄20,或者通过卡接实现手柄20和云台机构10的连接。在一些实施例中,手柄20可相对于云台机构10是可折叠的,从而方便手柄云台的收纳及/或携带。在这些实施例中,手柄20可以从折叠位置展开并重新连接至云台机构10,以使手柄云台可被再度使用。
在一些实施例中,传感器40、控制器50和电子调速器60等电子元件均设于手柄20,包括但不限于设置在手柄20的壳体、内部腔室或自壳体延伸的延伸件上。在其他一些实施例中,控制器50和/或电子调速器60设置在云台机构10,以在接收到感测信号和/或控制信号的情况下控制电机112转动。
需要说明的是,在一些实施例中,电子调速器60的数量和电机112的数量不同,例如电子调速器60的数量少于电机112的数量,可选地,在三轴云台中,可通过一台电子调速器60控制三台电机112。在一些可替换的实施例中,电子调速器60的数量和电机112的数量相等,例如每台电机112配置一台电子调速器60。电子调速器与电机之间的配置关系可根据实际情况进行调整,在此不作限定。
在一些实施例中,控制器50被配置为响应于同一感测信号,同时控制多个转轴机构11的电机112进行转动,以同时改变负载70的多个姿态角。在实际应用场景中,用户所期望调节负载70的姿态角是复杂的,通常涉及负载70绕多个轴的多角度转动,若每次只能控制云台的一个转轴机构运动,势必会增加用户操作量,使操作变得繁琐。而应用本申请实施例的手持云台,用户只需输入一次操作指令,控制器能够同时控制多个转 轴机构运动,以实现负载绕多个轴转动多个角度的耦合控制,此时负载可快速到达用户所期望的姿态,从而满足用户拍摄需求。
在其他一些实施例中,控制器50被配置为响应于同一感测信号,先后分别控制多个转轴机构11的电机112进行转动,以先后改变负载70的多个姿态角。通过预设控制机制,控制器先后分别控制多个转轴机构运动,从而负载可绕多个转轴先后转动各个角度,最终到达用户所期望的姿态。
可以理解的是,无论是控制器同时控制还是先后分别控制多个转轴机构运动,均可实现输入一次操作指令、控制负载的多姿态角的变化,从而简化了用户操作,有利于提升用户体验。
在一些实施例中,传感器40用于感测操作结构30被操作的速度或加速度,控制器50被配置为响应于操作结构30被操作的速度或加速度,控制转轴机构11的电机112转动的速度或加速度。
具体地,传感器40用于感测操作结构30被操作的速度并生成感测信号,控制器50接收到感测信号后将其进一步发送给电子调速器60,电子调速器60可控制相应的电机112转动,在一些实施例中,电机112转动的速度与操作结构30被操作的速度成正比对应关系,例如电机112转动的速度随着操作结构30被操作的速度的增大而增大,操作结构30被操作的速度预设有一速度阈值,当操作结构30被操作的速度超过速度阈值后,电机112转动的速度保持恒定。
或者,传感器40用于感测操作结构30被操作的加速度并生成感测信号,控制器50接收到感测信号后将其进一步发送给电子调速器60,电子调速器60可控制相应的电机112转动,在一些实施例中,电机112转动的加速度与操作结构30被操作的加速度成正比对应关系,例如电机112转动的加速度随着操作结构30被操作的加速度的增大而增大,操作结构30被操作的加速度预设有一加速度阈值,当操作结构30被操作的加速度超过加速度阈值后,电机112转动的加速度保持恒定。
或者,电机112转动的速度或加速度与操作结构30被操作的速度或加速度之间具有其他的对应关系,在此不作限定。
通过预设电机112转动的速度或加速度与操作结构30被操作的速度或加速度之间的对应关系,一方面,有助于提高用户操作云台的操作效率, 例如当用户期望捕捉一些时刻的画面或图像,此时可通过提高操作结构30被操作的速度或加速度,使负载70快速被调节成用户所期望的姿态,从而可避免错失拍摄时机。另一方面,有利于保护电机使用,避免其转动速度/加速度过快造成损耗,从而延长其工作寿命。
如图3至图5所示,在本申请一些实施例中,多个期望姿态角度包括第一期望姿态角度以及第二期望姿态角度。如图3中,云台机构10包括用于调节负载70的俯仰角的俯仰转轴机构11a和用于调节负载70的偏航角的偏航转轴机构11b;俯仰转轴机构11a包括俯仰电机112a,以及偏航转轴机构11b包括偏航电机112b。控制器50被配置为同时控制俯仰电机112a和偏航电机112b转动,其中,俯仰电机112a以第一期望姿态角度进行转动,偏航电机112b以第二期望姿态角度进行转动。在图3所示的实施例中,控制器可实现控制负载的俯仰姿态角和偏航姿态角的耦合控制。
如图3所示,电子调速器60a用于驱动俯仰电机112a,电子调速器60b用于驱动偏航电机112b,通过电子调速器与电机一一对应设置,提高控制精度。当然,在其他实施例中,可使用同一电子调速器驱动多台电机。
当然,在本申请另一些实施例中,控制器50也可先后分别控制俯仰电机112a和偏航电机112b转动,其中,俯仰电机112a以第一期望姿态角度进行转动,偏航电机112b以第二期望姿态角度进行转动。例如,负载先调节一个俯仰姿态角度,再调节一个偏航姿态角度。或者,负载先调节一个偏航姿态角度,再调节一个俯仰姿态角度。
根据本申请实施例的手持云台,云台/负载的转动可与用户对操作结构的操作相对应。例如,用户对操作结构的操作包括操作的方向,与之对应的,操作结构的操作状态包括操作方向,该操作方向可大致反映用户所期望负载到达的方向,因此,控制器对各转轴机构的控制可基于该操作方向进行。进一步,在方向确定的前提下,负载所转动的姿态角的角度可以是对应于操作结构的其他操作状态,例如传感器感测的操作结构被操作的位移、角度、力度或时间等。通过这些对应关系,用户的操作是简便的,同时能够更直观控制负载的拍摄姿态,可操作性较强。
如图4至图5所示的实施例中,操作结构30的操作状态包括操作方向301,预设映射关系包括转向映射关系,第一期望姿态角度的方向和第 二期望姿态角度的方向与操作方向301符合转向映射关系。
为了便于理解操作结构的操作状态与负载控制的对应关系,使用平面直角坐标系及象限来进行描述。以操作结构30上一点为原点建立平面直角坐标系,平面直角坐标系被划分为四个象限,操作方向301可落入任意一个象限,如图4所示,操作方向301为以原点作为起点所引出的直线所在的位置。设定操作结构30的X轴所在方向对应于云台的俯仰轴,操作结构30的Y轴所在方向对应于云台的偏航轴。以操作方向301b朝向第二象限S2为例,此时转向映射关系为:第一期望姿态角度的方向为绕俯仰轴朝向上方,并且第二期望姿态角度的方向为绕偏航轴朝向左侧,其中,第一期望姿态角对应调节的是负载的俯仰姿态角,第二期望姿态角对应调节的是负载的偏航姿态角。
类似的,当操作方向301朝向其他象限例如第一象限S1、第三象限S3或第四象限S4时,其与第一期望姿态角度的方向和第二期望姿态角度的方向均符合对应的转向映射关系。在此不再一一赘述。
通过上述转向映射关系,负载转动的方向与操作方向大致相同,可实现进一步简化用户操作,用户无需记住复杂的转向对应关系,而是当期望负载朝某个方向转动时,只需要朝该方向操作操作结构即可,尤其是对于初次使用云台、对云台使用不太熟练的用户来说,也可轻松操作云台,以控制负载获得期望的拍摄姿态。
需要说明的是,在本申请另一些实施例中,负载转动方向与操作方向可以是大致相反的。
如图5所示,基于上述平面直角坐标系,设定方向角302为平面直角坐标系的纵轴与操作方向301之间形成的锐角夹角。该方向角302为控制器根据操作方向301所计算出的,以便根据方向角302的数值,调节负载的姿态角的角度。可以理解,预设映射关系可进一步包括角度数值映射关系,第一期望姿态角度的数值和第二期望姿态角度的数值与方向角302或其余角的数值符合角度数值映射关系。
以图5所示方向角302为例,第一期望姿态角度的数值和/或第二期望姿态角度的数值与方向角302的数值符合角度数值映射关系。或者,第一期望姿态角度的数值和/或第二期望姿态角度的数值与方向角302的余角 的数值符合角度数值映射关系。
在一些实施例中,第一期望姿态角度的数值、第二期望姿态角度的数值与方向角302或其余角的数值呈线性映射或非线性映射。例如,在一些实施例中,方向角302的数值为α(锐角),可设置第一期望姿态角度的数值=α+预设角度,第二期望姿态角度的数值=α*预设倍数。又例如,方向角302的数值为β(锐角),可设置第一期望姿态角度的数值=(β) 2,第二期望姿态角度的数值=(90°-β)+预设角度。其中,预设角度、预设倍数可以是单一的数值,也可以是数值范围。
在一些实施例中,对负载所能够调节的俯仰角度预设俯仰角度阈值,第一期望姿态角度的数值可以是小于或等于俯仰角度阈值。对负载所能够调节的偏航角度预设偏航角度阈值,第二期望姿态角度的数值可以是小于或等于偏航角阈值。通过设置俯仰角度阈值和/或偏航角度阈值,可避免对应的电机过转动,提高云台操作可靠性。
可以理解的是,角度数值映射关系还可以是其他对应方式,本申请实施例对此不做限定。
如图6所示,在一些实施例中,操作结构30为按钮30a,此时操作方向301为按钮30a的按压方向3011。在这些实施例中,传感器40例如可以是压力传感器,用于感测按钮30a的操作状态。
结合图7和图8,本申请实施例可提供云台机构10与按钮30a之间的对应控制关系。如图4-5和图7所示,以按钮30a的X轴对应云台机构10的俯仰轴,以按钮30a的Y轴对应云台机构10的偏航轴。在图7的实施例中,用户操作按钮30a使按钮30a的按压方向朝向第四象限S4,接下来传感器40感测到按钮30a的按压方向并生成感测信号,控制器50在接收到感测信号后进一步计算出方向角,然后控制器50基于按压方向和方向角控制云台机构10带动负载70转动:具体的,电子调速器60控制俯仰电机112a绕俯仰轴朝下转动一个俯仰姿态角度,同时电子调速器60控制偏航电机112b绕偏航轴朝右转动一个偏航姿态角度,此时负载70被调节成用户所期望的姿态。
当然,在另一些实施例中,图7中的负载70也可以是先转动一个俯仰姿态角度,再转动一个偏航姿态角度。或者,负载70先转动一个偏航 姿态角度,再转动一个俯仰姿态角度。
在实际应用中,用户根据需求,对负载70,该负载70例如可以是拍摄装置,进行多姿态调节,以进行多角度拍摄。图8示出了不同于图7的负载70的其他的姿态调节。用户操作按钮30a使按钮30a的按压方向朝向第二象限S2,接下来传感器40感测到按钮30a的按压方向并生成感测信号,控制器50在接收到感测信号后进一步计算出方向角,然后控制器50基于按压方向和方向角控制云台机构10带动负载70转动:具体的,电子调速器60控制俯仰电机112a绕俯仰轴朝上转动一个俯仰姿态角度,同时电子调速器60控制偏航电机112b绕偏航轴朝左转动一个偏航姿态角度,此时负载70被调节成用户所期望的姿态。
当然,在另一些实施例中,图8中的负载70也可以是先转动一个俯仰姿态角度,再转动一个偏航姿态角度。或者,负载70先转动一个偏航姿态角度,再转动一个俯仰姿态角度。
根据上述实施例的手持云台,用户只需按压一次按钮,就能控制负载绕多个轴转动,从而使负载快速调节至用户所期望的姿态。
可以理解的是,在本申请另一些实施例中,手持云台可用于控制负载绕俯仰轴和横滚轴的耦合转动。手持云台还可用于控制负载绕偏航轴和横滚轴的耦合转动。手持云台还可用于控制负载绕俯仰轴、偏航轴和横滚轴的耦合转动。
上述耦合控制方式可减少用户操作量、简化操作,提高了手持云台操作的便利性。
如图6所示,在另一些实施例中,操作结构30为滚球30b,操作方向301为滚球30b的滚动方向3012。
当操作结构30为滚球30b时,操作结构30的操作状态还包括滚球30b的滚动角度303。在该实施例中,滚球30b的滚动方向3012可对应于负载的转动方向,滚球30b的滚动角度303可对应于负载转动的姿态角度。预设映射关系可包括转向映射关系以及角度数值映射关系,关于转向映射关系,可参考前述相关内容的描述,在此不再赘述。关于角度数值映射关系,第一期望姿态角度的数值和第二期望姿态角度的数值与滚动角度303的数值符合角度数值映射关系。
当操作结构30为滚球30b时,对应的,传感器40例如可以包括姿态传感器和角度传感器,姿态传感器用于感测滚球30b的滚动方向3012,角度传感器用于测量滚球30b的滚动角度303;或者,传感器40包括多个压力传感器,多个压力传感器均匀设置于滚球30b的周围,通过多个压力传感器感测到的压力信号可间接得出滚球30b的滚动方向3012和滚动角度303。
在一些实施例中,角度数值映射关系包括以下至少之一:第一期望姿态角度的数值和第二期望姿态角度的数值均与滚动角度303的数值呈线性映射;第一期望姿态角度的数值和第二期望姿态角度的数值均与滚动角度303的数值呈非线性映射;第一期望姿态角度的数值与滚动角度303的数值呈线性映射,第二期望姿态角度的数值与滚动角度303的数值呈非线性映射;第一期望姿态角度的数值与滚动角度303的数值呈非线性映射,第二期望姿态角度的数值与滚动角度303的数值呈线性映射。
如图6所示,在另一些实施例中,操作结构30为摇杆30c,操作方向301为摇杆30c的偏移方向3013。
当操作结构30为摇杆30c时,操作结构30的操作状态还包括摇杆30c的偏移角度304。在该实施例中,摇杆30c的偏移方向3013可对应于负载的转动方向,摇杆30c的偏移角度304可对应于负载转动的姿态角度。预设映射关系可包括转向映射关系以及角度数值映射关系,关于转向映射关系,可参考前述相关内容的描述,在此不再赘述。关于角度数值映射关系,第一期望姿态角度的数值和第二期望姿态角度的数值与偏移角度304的数值符合角度数值映射关系。
当操作结构30为摇杆30c时,对应的,传感器40例如可以包括姿态传感器和角度传感器,姿态传感器用于感测摇杆30c的偏移方向3013,角度传感器用于测量摇杆30c的偏移角度304;或者,传感器40包括摇杆电位器,通过摇杆电位器感测摇杆30c的偏移方向3013和偏移角度304。
在一些实施例中,角度数值映射关系包括以下至少之一:第一期望姿态角度的数值和第二期望姿态角度的数值均与偏移角度304的数值呈线性映射;第一期望姿态角度的数值和第二期望姿态角度的数值均与偏移角度304的数值呈非线性映射;第一期望姿态角度的数值与偏移角度304的数 值呈线性映射,第二期望姿态角度的数值与偏移角度304的数值呈非线性映射;第一期望姿态角度的数值与偏移角度304的数值呈非线性映射,第二期望姿态角度的数值与偏移角度304的数值呈线性映射。
在一些实施例中,传感器40用于感测操作结构30被操作的位移或力度或时间,控制器50被配置为响应于操作结构30被操作的位移或力度或时间,控制转轴机构11的电机112转动的角度。
具体地,操作结构30的操作状态还包括操作位移、操作力度或操作时间,预设映射关系还包括角度数值映射关系,第一期望姿态角度的数值和第二期望姿态角度的数值与操作位移、操作力度或操作时间的数值符合角度数值映射关系。
在一些实施例中,角度数值映射关系包括:第一期望姿态角度的数值和第二期望姿态角度的数值随着操作位移的增大而增大,操作位移预设有一位移阈值,当操作位移超过位移阈值后,第一期望姿态角度的数值和第二期望姿态角度的数值保持恒定;或者第一期望姿态角度的数值和第二期望姿态角度的数值随着操作力度的增大而增大,操作力度预设有一力度阈值,当操作力度超过力度阈值后,第一期望姿态角度的数值和第二期望姿态角度的数值保持恒定;或者第一期望姿态角度的数值和第二期望姿态角度的数值随着操作时间的增大而增大,操作时间预设有一时间阈值,当操作时间超过时间阈值后,第一期望姿态角度的数值和第二期望姿态角度的数值保持恒定。
通过预设力度阈值或时间阈值,可防止电机过转动,提高云台运行可靠性。
根据本申请实施例的操作结构,还可以是不同于上述实施例所列举的其他结构或者部件,通过设置在手持云台的一定位置,以提高操作便利性。相应的,传感器类型可以根据操作结构的操作状态进行设置,包括一个或多个组合的传感器。
对于本申请的实施例,还需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,本申请的保护范围应以权利要求的保护范围为准。

Claims (16)

  1. 一种手持云台,其特征在于,包括:
    云台机构(10),用于承载负载(70),所述云台机构(10)包括多个转轴机构(11),每个所述转轴机构(11)包括支架(111)和用于驱动所述支架(111)转动的电机(112),以通过所述电机(112)调节所述负载(70)的姿态角,每个所述转轴机构(11)用于调节所述负载(70)的一个姿态角,所述姿态角为俯仰角,偏航角,横滚角;
    手柄(20),与所述云台机构(10)机械耦合连接;
    操作结构(30),设于所述手柄(20),用于供用户输入操作指令;
    传感器(40),安装在所述手柄(20)内,用于感测所述操作结构(30)的操作状态并生成感测信号;
    与所述传感器(40)通信连接的控制器(50),所述传感器(40)将所述感测信号传送给所述控制器(50),所述控制器(50)根据所述感测信号和预设映射关系计算出与所述操作结构(30)的操作状态对应的多个期望姿态角度,并生成控制信号;以及
    与所述控制器(50)通信连接的电子调速器(60),所述电子调速器(60)与所述电机(112)电连接,用于根据所述控制信号控制所述电机(112)转动;
    其中,所述控制器(50)根据所述操作结构(30)的同一所述感测信号,控制至少两个所述转轴机构(11)的所述电机(112)转动,以改变所述负载(70)的多个姿态角。
  2. 根据权利要求1所述的手持云台,其特征在于,
    所述控制器(50)被配置为响应于同一所述感测信号,同时控制多个所述转轴机构(11)的所述电机(112)进行转动,以同时改变所述负载(70)的多个姿态角;或者,
    所述控制器(50)被配置为响应于同一所述感测信号,先后分别控制多个所述转轴机构(11)的所述电机(112)进行转动,以先后改变所述负载(70)的多个姿态角。
  3. 根据权利要求1所述的手持云台,其特征在于,
    所述传感器(40)用于感测所述操作结构(30)被操作的速度或加速度,所述控制器(50)被配置为响应于所述操作结构(30)被操作的速度或加速度,控制所述转轴机构(11)的所述电机(112)转动的速度或加速度。
  4. 根据权利要求1所述的手持云台,其特征在于,
    所述传感器(40)用于感测所述操作结构(30)被操作的位移或力度或时间,所述控制器(50)被配置为响应于所述操作结构(30)被操作的位移或力度或时间,控制所述转轴机构(11)的所述电机(112)转动的角度。
  5. 根据权利要求1所述的手持云台,其特征在于,
    多个所述期望姿态角度包括第一期望姿态角度以及第二期望姿态角度,
    多个所述转轴机构(11)包括:
    用于调节所述负载(70)的所述俯仰角的俯仰转轴机构(11a),所述俯仰转轴机构(11a)包括俯仰电机(112a);
    用于调节所述负载(70)的所述偏航角的偏航转轴机构(11b),所述偏航转轴机构(11b)包括偏航电机(112b);
    所述控制器(50)被配置为控制所述俯仰电机(112a)绕俯仰轴以所述第一期望姿态角度进行转动、同时所述偏航电机(112b)绕偏航轴以所述第二期望姿态角度进行转动。
  6. 根据权利要求1所述的手持云台,其特征在于,
    多个所述期望姿态角度包括第一期望姿态角度以及第二期望姿态角度,
    所述操作结构(30)的操作状态包括操作方向(301),
    所述预设映射关系包括转向映射关系,所述第一期望姿态角度的方向和所述第二期望姿态角度的方向与所述操作方向(301)符合所述转向映射关系。
  7. 根据权利要求6所述的手持云台,其特征在于,
    以所述操作结构(30)上一点为原点建立平面直角坐标系,所述 平面直角坐标系被划分为四个象限,所述操作方向(301)以所述原点作为起点,所述转向映射关系包括:
    所述操作方向(301a)朝向第一象限(S1)时,所述第一期望姿态角度的方向为绕俯仰轴朝向上方,并且所述第二期望姿态角度的方向为绕偏航轴朝向右侧;
    所述操作方向(301b)朝向第二象限(S2)时,所述第一期望姿态角度的方向为绕俯仰轴朝向上方,并且所述第二期望姿态角度的方向为绕偏航轴朝向左侧;
    所述操作方向(301c)朝向第三象限(S3)时,所述第一期望姿态角度的方向为绕俯仰轴朝向下方,并且所述第二期望姿态角度的方向为绕偏航轴朝向左侧;
    所述操作方向(301d)朝向第四象限(S4)时,所述第一期望姿态角度的方向为绕俯仰轴朝向下方,并且所述第二期望姿态角度的方向为绕偏航轴朝向右侧。
  8. 根据权利要求6或7所述的手持云台,其特征在于,
    所述传感器(40)被配置为感测所述操作结构(30)的所述操作方向(301)并生成感测信号,所述控制器(50)被配置为根据所述感测信号计算出方向角(302)的数值,
    其中,以所述操作结构(30)上一点为原点建立平面直角坐标系,所述操作方向(301)以所述原点作为起点,所述方向角(302)为所述平面直角坐标系的纵轴与所述操作方向(301)之间形成的锐角夹角,
    所述预设映射关系包括角度数值映射关系,所述第一期望姿态角度的数值和所述第二期望姿态角度的数值与所述方向角(302)或其余角的数值符合所述角度数值映射关系。
  9. 根据权利要求8所述的手持云台,其特征在于,
    所述角度数值映射关系包括以下至少之一:
    所述第一期望姿态角度的数值和所述第二期望姿态角度的数值均与所述方向角(302)或其余角的数值呈线性映射;
    所述第一期望姿态角度的数值和所述第二期望姿态角度的数值 均与所述方向角(302)或其余角的数值呈非线性映射;
    所述第一期望姿态角度的数值与所述方向角(302)或其余角的数值呈线性映射,所述第二期望姿态角度的数值与所述方向角(302)或其余角的数值呈非线性映射;
    所述第一期望姿态角度的数值与所述方向角(302)或其余角的数值呈非线性映射,所述第二期望姿态角度的数值与所述方向角(302)或其余角的数值呈线性映射。
  10. 根据权利要求6所述的手持云台,其特征在于,
    所述操作结构(30)为按钮(30a),所述操作方向(301)为所述按钮(30a)的按压方向(3011);或者
    所述操作结构(30)为滚球(30b),所述操作方向(301)为所述滚球(30b)的滚动方向(3012);或者
    所述操作结构(30)为摇杆(30c),所述操作方向(301)为所述摇杆(30c)的偏移方向(3013)。
  11. 根据权利要求6所述的手持云台,其特征在于,
    所述操作结构(30)的操作状态还包括操作位移或操作力度或操作时间,
    所述预设映射关系还包括角度数值映射关系,所述第一期望姿态角度的数值和所述第二期望姿态角度的数值与所述操作位移或所述操作力度或所述操作时间的数值符合所述角度数值映射关系。
  12. 根据权利要求11所述的手持云台,其特征在于,
    所述角度数值映射关系包括:
    所述第一期望姿态角度的数值和所述第二期望姿态角度的数值随着所述操作位移的增大而增大,所述操作位移预设有一位移阈值,当所述操作位移超过所述位移阈值后,所述第一期望姿态角度的数值和所述第二期望姿态角度的数值保持恒定;或者
    所述第一期望姿态角度的数值和所述第二期望姿态角度的数值随着所述操作力度的增大而增大,所述操作力度预设有一力度阈值,当所述操作力度超过所述力度阈值后,所述第一期望姿态角度的数值和所述第二期望姿态角度的数值保持恒定;或者
    所述第一期望姿态角度的数值和所述第二期望姿态角度的数值随着所述操作时间的增大而增大,所述操作时间预设有一时间阈值,当所述操作时间超过所述时间阈值后,所述第一期望姿态角度的数值和所述第二期望姿态角度的数值保持恒定。
  13. 根据权利要求6所述的手持云台,其特征在于,
    所述操作结构(30)为滚球(30b),所述操作结构(30)的操作状态还包括所述滚球(30b)的滚动角度(303),
    所述预设映射关系还包括角度数值映射关系,所述第一期望姿态角度的数值和所述第二期望姿态角度的数值与所述滚动角度(303)的数值符合所述角度数值映射关系。
  14. 根据权利要求13所述的手持云台,其特征在于,
    所述角度数值映射关系包括以下至少之一:
    所述第一期望姿态角度的数值和所述第二期望姿态角度的数值均与所述滚动角度(303)的数值呈线性映射;
    所述第一期望姿态角度的数值和所述第二期望姿态角度的数值均与所述滚动角度(303)的数值呈非线性映射;
    所述第一期望姿态角度的数值与所述滚动角度(303)的数值呈线性映射,所述第二期望姿态角度的数值与所述滚动角度(303)的数值呈非线性映射;
    所述第一期望姿态角度的数值与所述滚动角度(303)的数值呈非线性映射,所述第二期望姿态角度的数值与所述滚动角度(303)的数值呈线性映射。
  15. 根据权利要求6所述的手持云台,其特征在于,
    所述操作结构(30)为摇杆(30c),所述操作结构(30)的操作状态还包括所述摇杆(30c)的偏移角度(304),
    所述预设映射关系还包括角度数值映射关系,所述第一期望姿态角度的数值和所述第二期望姿态角度的数值与所述偏移角度(304)的数值符合所述角度数值映射关系。
  16. 根据权利要求15所述的手持云台,其特征在于,
    所述角度数值映射关系包括以下至少之一:
    所述第一期望姿态角度的数值和所述第二期望姿态角度的数值均与所述偏移角度(304)的数值呈线性映射;
    所述第一期望姿态角度的数值和所述第二期望姿态角度的数值均与所述偏移角度(304)的数值呈非线性映射;
    所述第一期望姿态角度的数值与所述偏移角度(304)的数值呈线性映射,所述第二期望姿态角度的数值与所述偏移角度(304)的数值呈非线性映射;
    所述第一期望姿态角度的数值与所述偏移角度(304)的数值呈非线性映射,所述第二期望姿态角度的数值与所述偏移角度(304)的数值呈线性映射。
PCT/CN2020/133920 2020-11-10 2020-12-04 手持云台 WO2022099831A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202022582586.0 2020-11-10
CN202022582586.0U CN213302862U (zh) 2020-11-10 2020-11-10 手持云台

Publications (1)

Publication Number Publication Date
WO2022099831A1 true WO2022099831A1 (zh) 2022-05-19

Family

ID=76014285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133920 WO2022099831A1 (zh) 2020-11-10 2020-12-04 手持云台

Country Status (2)

Country Link
CN (1) CN213302862U (zh)
WO (1) WO2022099831A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012257124A (ja) * 2011-06-09 2012-12-27 Canon Inc 制御装置、制御装置の制御方法
CN103336534A (zh) * 2013-06-07 2013-10-02 浙江宇视科技有限公司 一种在监控终端的触摸屏上进行云台摄像机控制的方法
CN104486543A (zh) * 2014-12-09 2015-04-01 北京时代沃林科技发展有限公司 智能终端触控方式控制云台摄像头的设备和方法
CN105090695A (zh) * 2015-09-29 2015-11-25 深圳市大疆创新科技有限公司 手柄云台及其控制方法
CN105898228A (zh) * 2016-04-29 2016-08-24 北京小米移动软件有限公司 用于摄像设备的控制方法及装置
CN108323192A (zh) * 2018-01-05 2018-07-24 深圳市大疆创新科技有限公司 手持云台的控制方法和手持云台

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012257124A (ja) * 2011-06-09 2012-12-27 Canon Inc 制御装置、制御装置の制御方法
CN103336534A (zh) * 2013-06-07 2013-10-02 浙江宇视科技有限公司 一种在监控终端的触摸屏上进行云台摄像机控制的方法
CN104486543A (zh) * 2014-12-09 2015-04-01 北京时代沃林科技发展有限公司 智能终端触控方式控制云台摄像头的设备和方法
CN105090695A (zh) * 2015-09-29 2015-11-25 深圳市大疆创新科技有限公司 手柄云台及其控制方法
CN105898228A (zh) * 2016-04-29 2016-08-24 北京小米移动软件有限公司 用于摄像设备的控制方法及装置
CN108323192A (zh) * 2018-01-05 2018-07-24 深圳市大疆创新科技有限公司 手持云台的控制方法和手持云台

Also Published As

Publication number Publication date
CN213302862U (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
CN107925713B (zh) 摄像系统及摄像控制方法
US11930273B2 (en) Vibration damping gimbal sleeve for an aerial vehicle
EP3316567B1 (en) User interface aspects for a motorized monopod jib for cameras
CN110770492B (zh) 手持云台的控制方法、手持云台及图像获取设备
CN111699341B (zh) 云台系统的控制方法及云台系统
WO2020097890A1 (zh) 手持云台的控制方法和手持云台
WO2018233330A1 (zh) 一种云台及具有此云台的摄像组件
WO2016154996A1 (zh) 稳定平台及其跟随控制系统及方法
CN114502870A (zh) 云台及其控制方法
WO2018191971A1 (zh) 一种云台的控制方法以及云台
WO2022099831A1 (zh) 手持云台
JP7244639B2 (ja) 手持ち雲台の制御方法および手持ち雲台
CN110352315B (zh) 云台、手持云台和手持拍摄装置
KR102399007B1 (ko) 휴대 단말기용 짐벌 장치
WO2019205125A1 (zh) 增稳装置和手持云台装置
CN110785726A (zh) 云台的控制方法及手持云台、手持设备
WO2020217715A1 (ja) 移動体、操縦システム、制御方法及びプログラム
CN109243595B (zh) 校正控制系统、控制装置及驱动端
CN216202364U (zh) 云台和云台系统
WO2023092556A1 (zh) 控制方法及控制系统
TWM465585U (zh) 可攜式數位穩定器
KR20190143172A (ko) 팬틸트-짐벌 일체형 시스템 및 그 제어 방법
WO2023178521A1 (zh) 云台控制装置和云台设备
WO2024060105A1 (zh) 控制方法、云台、云台系统
US20240114232A1 (en) Photographing device and system, carrier apparatus, control system, and expansion component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20961385

Country of ref document: EP

Kind code of ref document: A1