WO2022099476A1 - 一种RGO/Al基复合材料的制备方法 - Google Patents
一种RGO/Al基复合材料的制备方法 Download PDFInfo
- Publication number
- WO2022099476A1 WO2022099476A1 PCT/CN2020/127865 CN2020127865W WO2022099476A1 WO 2022099476 A1 WO2022099476 A1 WO 2022099476A1 CN 2020127865 W CN2020127865 W CN 2020127865W WO 2022099476 A1 WO2022099476 A1 WO 2022099476A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- preparation
- mixed powder
- ball
- sample
- pressure
- Prior art date
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 29
- 239000002131 composite material Substances 0.000 title claims abstract description 23
- 239000011812 mixed powder Substances 0.000 claims abstract description 20
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 12
- 239000000843 powder Substances 0.000 claims abstract description 11
- 239000010935 stainless steel Substances 0.000 claims abstract description 11
- 229910001220 stainless steel Inorganic materials 0.000 claims abstract description 11
- 229910052786 argon Inorganic materials 0.000 claims abstract description 8
- 238000010304 firing Methods 0.000 claims abstract description 8
- 239000007789 gas Substances 0.000 claims abstract description 8
- 238000001035 drying Methods 0.000 claims abstract description 7
- 239000000203 mixture Substances 0.000 claims abstract description 7
- 239000002002 slurry Substances 0.000 claims abstract description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000011259 mixed solution Substances 0.000 claims abstract description 6
- 238000001291 vacuum drying Methods 0.000 claims abstract description 6
- 229910000997 High-speed steel Inorganic materials 0.000 claims abstract description 5
- 238000011068 loading method Methods 0.000 claims abstract description 5
- 238000000498 ball milling Methods 0.000 claims abstract description 4
- 238000001816 cooling Methods 0.000 claims abstract description 3
- 229910000831 Steel Inorganic materials 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 6
- 239000010959 steel Substances 0.000 claims description 6
- 239000002994 raw material Substances 0.000 claims description 5
- 230000010355 oscillation Effects 0.000 claims 1
- 238000009210 therapy by ultrasound Methods 0.000 abstract 1
- 239000011159 matrix material Substances 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 229910021389 graphene Inorganic materials 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000005245 sintering Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000002787 reinforcement Effects 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000010892 electric spark Methods 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000011156 metal matrix composite Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
Definitions
- the invention relates to a preparation method of an RGO/Al matrix composite material.
- Aluminum matrix composites have excellent properties such as low density, high strength, wear resistance and corrosion resistance, and are widely used in aerospace and automotive industries. Compared with traditional SiC, whisker, carbon fiber and other reinforcement phases, graphene has higher strength (125GPa), higher modulus (about 1.0TPa), larger specific surface area (about 2630m 2 /g) and Better ductility, which makes the preparation of aluminum matrix composites with graphene as a strengthening phase one of the research hotspots.
- graphene is easy to agglomerate, and the thermal expansion coefficient of graphene is quite different from that of aluminum. The wettability of the interface between the two is not good, and the interface reaction is difficult to control, which will lead to a decrease in the plasticity of the composite material.
- GO graphene oxide
- the thermal stability of GO is poor, and the oxygen-containing functional groups will decompose to form CO or CO 2 when the temperature is higher than 200 °C. If this process occurs completely during sintering, the generated gas will affect the density of the composite material, thereby reducing the density of the composite material. its enhanced effect.
- GO/aluminum matrix composites prepared by hot pressing sintering, electric spark sintering and hot isostatic pressing sintering have good reinforcement effect, but high equipment requirements and low sample preparation efficiency are not conducive to graphene/aluminum matrix composites wider application of materials. Therefore, it is of great significance to study new preparation methods of GO/Al matrix composites with simple process, low cost and high efficiency.
- the purpose of the present invention is to provide a preparation method of RGO/Al matrix composite material.
- a preparation method of an RGO/Al matrix composite material comprising the following steps: adding 5-15 parts of GO to 60-70 parts of absolute ethanol, ultrasonically oscillating for 2.5-3.5 hours to obtain a mixed solution, and adding 30-40 parts of aluminum alloy Powder, encapsulated in a stainless steel ball mill tank, ball milled for 11-13h under argon protection, the speed is 450r/min, the steel ball is made of quenched stainless steel, and the ball-to-material ratio is 10:1, and then the ball-milled slurry is poured into a beaker And transferred to a vacuum drying box, and dried at 85-95 °C for 14-16 h to obtain a GO/aluminum alloy mixed powder; the dried mixed powder was reduced in an Ar gas mixture with a H content of 5 %, Reduction at 285-295°C for 2.5-3.5h; put the reduced composite powder into a high-speed steel mold, and use a tablet press to load pressure to prepare a mixed powder compact, the pressure is 320-
- ultrasonic vibration is performed for 3h.
- ball milling is carried out under argon protection for 12 hours.
- drying is performed at 90° C. for 15 hours.
- reduction is performed at 290° C. for 3 hours.
- the mixed powder compact is prepared by loading pressure of a tablet press, and the pressure is 330 MPa.
- the compact is placed in a tube furnace for initial firing in a vacuum state at a temperature of 560°C.
- a tablet press is used to recompress the initially fired sample, and the pressure is 980 MPa.
- the re-pressed sample is re-fired in vacuum in a tube furnace at a temperature of 480°C.
- the method is simple, low in cost and high in efficiency, and the prepared RGO/Al matrix composite material has good performance and can be prepared on a large scale.
- a preparation method of an RGO/Al-based composite material comprising the following steps: adding 10 parts of GO to 65 parts of absolute ethanol, ultrasonically oscillating for 3 hours to obtain a mixed solution, adding 35 parts of aluminum alloy powder, and encapsulating it in a stainless steel ball mill jar, Ball milled for 12h under argon protection, the speed is 450r/min, the steel ball is made of quenched stainless steel, and the ball-to-material ratio is 10:1, then the ball-milled slurry is poured into a beaker and transferred to a vacuum drying oven, at 90 °C After drying for 15h, GO/aluminum alloy mixed powder was obtained; the dried mixed powder was reduced under an Ar gas mixture with a H 2 content of 5%, and reduced at 290 °C for 3h; the reduced composite powder was charged into a high-speed In the steel mold, the mixed powder compact is prepared by loading pressure of the tablet press, the pressure is 330MPa, and the compact is placed in a tube furnace
- the initially fired sample was re-pressed at a pressure of 980 MPa, and finally the re-pressed sample was re-fired in a tube furnace in a vacuum at a temperature of 480° C. and cooled to obtain; each raw material was in parts by weight.
- a preparation method of an RGO/Al-based composite material comprising the following steps: adding 5 parts of GO to 60 parts of anhydrous ethanol, ultrasonically oscillating for 2.5 hours to obtain a mixed solution, adding 30 parts of aluminum alloy powder, and encapsulating it in a stainless steel ball mill tank , ball milled for 11h under argon protection, the speed is 450r/min, the steel ball is made of quenched stainless steel, and the ball-to-material ratio is 10:1, then the ball-milled slurry is poured into a beaker and transferred to a vacuum drying oven.
- a preparation method of an RGO/Al-based composite material comprising the following steps: adding 15 parts of GO to 70 parts of anhydrous ethanol, ultrasonically oscillating for 3.5 hours to obtain a mixed solution, adding 40 parts of aluminum alloy powder, and encapsulating it in a stainless steel ball mill tank , ball milled for 13h under argon protection, the speed is 450r/min, the steel ball is made of quenched stainless steel, and the ball-to-material ratio is 10:1, then the ball-milled slurry is poured into a beaker and transferred to a vacuum drying oven.
- the GO/aluminum alloy mixed powder was obtained; the dried mixed powder was reduced under an Ar gas mixture with a H 2 content of 5%, and then reduced at 295 °C for 3.5 h; Put it into a high-speed steel mold, and use a tablet press to load the mixed powder compact with a pressure of 340 MPa.
- the machine re-presses the initially fired sample with a pressure of 990 MPa, and finally re-fires the re-pressed sample in a tube furnace at a temperature of 485 ° C and cools it down; each raw material is in parts by weight.
- the method is simple, low in cost and high in efficiency, and the prepared RGO/Al matrix composite material has good performance and can be prepared on a large scale.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
Abstract
一种RGO/Al基复合材料的制备方法,步骤如下:将GO添加到无水乙醇中,超声得到混合液,加入铝合金粉末,封装在不锈钢球磨罐中,在氩气保护下球磨11-13h,随后将球磨后的浆料倒入烧杯并转移到真空干燥箱中,在85-95℃下干燥14-16h后,得GO/铝合金混合粉末;将干燥后的混合粉末在H 2含量为5%的Ar气混合气下进行还原;将还原后复合粉体装入高速钢模具中,利用压片机加载压力制备出混合粉体压坯,将压坯置于管式炉中在真空状态下进行初烧,然后利用压片机对初烧试样进行复压,最后将复压后的试样在管式炉中真空复烧,冷却即得。
Description
本发明涉及一种RGO/Al基复合材料的制备方法。
铝基复合材料具有低密度、高强度、耐磨、耐腐蚀等优良性能,广泛应用于航空航天和汽车行业。与传统的SiC、晶须、碳纤维等增强相相比,石墨烯具有更高的强度(125GPa)、更高的模量(约1.0TPa)、更大的比表面积(约2630m
2/g)和更好的延展性能,这使得以石墨烯作为强化相制备铝基复合材料成为研究热点之一。然而石墨烯易团聚,与铝的热膨胀系数相差较大,两者间界面润湿性也不好,界面反应很难控制,这都会导致复合材料塑性下降。与石墨烯相比,氧化石墨烯(GO)表面存在大量羟基、羧基等亲水基团,如平面上含有-OH和C-O-,而在其片层边缘含有C=O和-COOH官能团。因此,GO能够在稀碱和纯水中更好地分散形成稳定的胶状悬浮液,具有良好的湿润性,使其成为一种潜在的制备高性能金属基复合材料的理想增强体。然而,GO的热稳定性较差,在高于200℃后含氧官能团会分解生成CO或CO
2,若此过程完全发生在烧结时,则生成的气体将会影响复合材料致密度,从而降低其增强效果。
目前,采用热压烧结、电火花烧结和热等静压烧结等方法制备的GO/铝基复合材料的增强效果较好,然而设备要求高,制样效率低,不利于石墨烯/铝基复合材料的更广泛应用。因此,研究工艺简单、成本低、效率高的GO/铝基复合材料的新型制备方法具有重要意义。
发明内容
本发明的目的在于提供一种RGO/Al基复合材料的制备方法。
本发明通过下面技术方案实现:
一种RGO/Al基复合材料的制备方法,包括如下步骤:将5-15份GO添加到60-70份无水乙醇中,超声振荡2.5-3.5h得到混合液,加入30-40份铝合金粉末,封装在不锈钢球磨罐中,在氩气保护下球磨11-13h,转速为450r/min,钢球材质为淬火不锈钢,球料比为10:1,随后将球磨后的浆料倒入烧杯并转移到真空干燥箱中,在85-95℃下干燥14-16h后,得GO/铝合金混合粉末;将干燥后的混合粉末在H
2含量为5%的Ar气混合气下进行还原,于285-295℃还原2.5-3.5h;将还原后复合粉体装入高速钢模具中,利用压片机加载压力制备出混合粉体压坯,压力为320-340MPa,将压坯置于管式炉中在真空状态下进行初烧,温度为550-570℃,然后利用压片机对初烧试样进行复压,压力为970-990MPa,最后将复压后的试样在管式炉中真空复烧,温度为475-485℃,冷却即得;各原料均为重量份。
优选地,所述的制备方法中,超声振荡3h。
优选地,所述的制备方法中,在氩气保护下球磨12h。
优选地,所述的制备方法中,在90℃下干燥15h。
优选地,所述的制备方法中,于290℃还原3h。
优选地,所述的制备方法中,利用压片机加载压力制备出混合粉体压坯,压力为330MPa。
优选地,所述的制备方法中,将压坯置于管式炉中在真空状态下进行初烧,温度为560℃。
优选地,所述的制备方法中,利用压片机对初烧试样进行复压,压力为980MPa。
优选地,所述的制备方法中,将复压后的试样在管式炉中真空复烧,温度为480℃。
本发明技术效果:
该方法简单、成本低、效率高,制备的RGO/Al基复合材料性能良好,可大规模制备。
下面结合实施例具体介绍本发明的实质性内容。
实施例1
一种RGO/Al基复合材料的制备方法,包括如下步骤:将10份GO添加到65份无水乙醇中,超声振荡3h得到混合液,加入35份铝合金粉末,封装在不锈钢球磨罐中,在氩气保护下球磨12h,转速为450r/min,钢球材质为淬火不锈钢,球料比为10:1,随后将球磨后的浆料倒入烧杯并转移到真空干燥箱中,在90℃下干燥15h后,得GO/铝合金混合粉末;将干燥后的混合粉末在H
2含量为5%的Ar气混合气下进行还原,于290℃还原3h;将还原后复合粉体装入高速钢模具中,利用压片机加载压力制备出混合粉体压坯,压力为330MPa,将压坯置于管式炉中在真空状态下进行初烧,温度为560℃,然后利用压片机对初烧试样进行复压,压力为980MPa,最后将复压后的试样在管式炉中真空复烧,温度为480℃,冷却即得;各原料均为重量份。
实施例2
一种RGO/Al基复合材料的制备方法,包括如下步骤:将5份GO添加到60份无水乙醇中,超声振荡2.5h得到混合液,加入30份铝合金粉末,封装在不锈钢球磨罐中,在氩气保护下球磨11h,转速为450r/min,钢球材质为淬火不锈钢,球料比为10:1,随后将球磨后的浆料倒入烧杯并转移到真空干燥箱中,在85℃下干燥14h后,得GO/铝合金混合粉末;将干燥后的混合粉末在H
2含量为5%的Ar气混合气下进行还原,于285℃还原2.5h;将还原后复合粉体装入高速钢模具中,利用压片机加载压力制备出混合粉体压坯,压力为320MPa,将压坯置于管式炉中在真空状态下进行初烧,温度为550℃,然后利用压片机对初烧试样进行复压,压力为970MPa,最后将复压后的试样在管式炉中真空复烧,温度为475℃,冷却即得; 各原料均为重量份。
实施例3
一种RGO/Al基复合材料的制备方法,包括如下步骤:将15份GO添加到70份无水乙醇中,超声振荡3.5h得到混合液,加入40份铝合金粉末,封装在不锈钢球磨罐中,在氩气保护下球磨13h,转速为450r/min,钢球材质为淬火不锈钢,球料比为10:1,随后将球磨后的浆料倒入烧杯并转移到真空干燥箱中,在95℃下干燥16h后,得GO/铝合金混合粉末;将干燥后的混合粉末在H
2含量为5%的Ar气混合气下进行还原,于295℃还原3.5h;将还原后复合粉体装入高速钢模具中,利用压片机加载压力制备出混合粉体压坯,压力为340MPa,将压坯置于管式炉中在真空状态下进行初烧,温度为570℃,然后利用压片机对初烧试样进行复压,压力为990MPa,最后将复压后的试样在管式炉中真空复烧,温度为485℃,冷却即得;各原料均为重量份。
该方法简单、成本低、效率高,制备的RGO/Al基复合材料性能良好,可大规模制备。
Claims (9)
- 一种RGO/Al基复合材料的制备方法,其特征在于包括如下步骤:将5-15份GO添加到60-70份无水乙醇中,超声振荡2.5-3.5h得到混合液,加入30-40份铝合金粉末,封装在不锈钢球磨罐中,在氩气保护下球磨11-13h,转速为450r/min,钢球材质为淬火不锈钢,球料比为10:1,随后将球磨后的浆料倒入烧杯并转移到真空干燥箱中,在85-95℃下干燥14-16h后,得GO/铝合金混合粉末;将干燥后的混合粉末在H 2含量为5%的Ar气混合气下进行还原,于285-295℃还原2.5-3.5h;将还原后复合粉体装入高速钢模具中,利用压片机加载压力制备出混合粉体压坯,压力为320-340MPa,将压坯置于管式炉中在真空状态下进行初烧,温度为550-570℃,然后利用压片机对初烧试样进行复压,压力为970-990MPa,最后将复压后的试样在管式炉中真空复烧,温度为475-485℃,冷却即得;各原料均为重量份。
- 根据权利要求1所述的制备方法,其特征在于:超声振荡3h。
- 根据权利要求1所述的制备方法,其特征在于:在氩气保护下球磨12h。
- 根据权利要求1所述的制备方法,其特征在于:在90℃下干燥15h。
- 根据权利要求1所述的制备方法,其特征在于:于290℃还原3h。
- 根据权利要求1所述的制备方法,其特征在于:利用压片机加载压力制备出混合粉体压坯,压力为330MPa。
- 根据权利要求1所述的制备方法,其特征在于:将压坯置于管式炉中在真空状态下进行初烧,温度为560℃。
- 根据权利要求1所述的制备方法,其特征在于:利用压片机对初烧试样进行复压,压力为980MPa。
- 根据权利要求1所述的制备方法,其特征在于:将复压后的试样在管式炉中真空复烧,温度为480℃。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/127865 WO2022099476A1 (zh) | 2020-11-10 | 2020-11-10 | 一种RGO/Al基复合材料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/127865 WO2022099476A1 (zh) | 2020-11-10 | 2020-11-10 | 一种RGO/Al基复合材料的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022099476A1 true WO2022099476A1 (zh) | 2022-05-19 |
Family
ID=81601906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/127865 WO2022099476A1 (zh) | 2020-11-10 | 2020-11-10 | 一种RGO/Al基复合材料的制备方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022099476A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115449672A (zh) * | 2022-10-17 | 2022-12-09 | 南昌航空大学 | 一种高强度高导电性石墨烯增强铝基导电线及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105506402A (zh) * | 2015-12-22 | 2016-04-20 | 中国航空工业集团公司北京航空材料研究院 | 一种电子封装材料 |
CN106914611A (zh) * | 2015-12-25 | 2017-07-04 | 北京有色金属研究总院 | 一种石墨烯与金属铝粉复合粉末制备方法 |
KR20190080529A (ko) * | 2017-12-28 | 2019-07-08 | 서울시립대학교 산학협력단 | 브레이징 합금 조성물 및 그 제조방법, 브레이징 합금 조성물을 이용한 접합방법 |
-
2020
- 2020-11-10 WO PCT/CN2020/127865 patent/WO2022099476A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105506402A (zh) * | 2015-12-22 | 2016-04-20 | 中国航空工业集团公司北京航空材料研究院 | 一种电子封装材料 |
CN106914611A (zh) * | 2015-12-25 | 2017-07-04 | 北京有色金属研究总院 | 一种石墨烯与金属铝粉复合粉末制备方法 |
KR20190080529A (ko) * | 2017-12-28 | 2019-07-08 | 서울시립대학교 산학협력단 | 브레이징 합금 조성물 및 그 제조방법, 브레이징 합금 조성물을 이용한 접합방법 |
Non-Patent Citations (1)
Title |
---|
HU LINLI, YU YANLI, HUANG LINLIAN, CAI RONGHUI, ZHENG KEFAN: "Repressing and Re-sintering Process Parameters Optimization for RGO/Al Matrix Composites", SPECIAL CASTING & NONFERROUS ALLOYS, vol. 38, no. 10, 20 October 2018 (2018-10-20), pages 1116 - 1120, XP055930966, DOI: 10.15980/j.tzzz.2018.10.020 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115449672A (zh) * | 2022-10-17 | 2022-12-09 | 南昌航空大学 | 一种高强度高导电性石墨烯增强铝基导电线及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108085528B (zh) | 一种原位内生纳米NbB2颗粒细化及强化铝合金的方法 | |
Yu et al. | Enhanced oxidation resistance of low-carbon MgO–C refractories with ternary carbides: a review | |
CN109053206B (zh) | 一种短纤维增强取向max相陶瓷基复合材料及制备方法 | |
WO2020042949A1 (zh) | 高度取向纳米max相陶瓷和max相原位自生氧化物纳米复相陶瓷的制备方法 | |
CN106800420B (zh) | 一种碳化硅晶须原位复合刚玉高温陶瓷材料及其制备方法 | |
CN105198443A (zh) | 氮化硼复相陶瓷的过渡相辅助低温烧结方法 | |
CN109554565A (zh) | 一种碳纳米管增强铝基复合材料的界面优化方法 | |
CN112830790B (zh) | 一种铪铌基三元固溶体硼化物的导电陶瓷及其制备方法和应用 | |
CN112725660A (zh) | 一种石墨烯增强铝基复合材料的粉末冶金制备方法 | |
CN112592188A (zh) | 一种石墨烯复合碳化硅陶瓷材料的制备方法 | |
CN112125680A (zh) | 碳化硼微粉提纯方法、碳化硼陶瓷及碳化硼陶瓷制备方法 | |
CN115074566B (zh) | 通过含氧石墨烯改性分散提高钛基复合材料性能的方法 | |
CN1699168A (zh) | 二硼化锆微粉的燃烧合成方法 | |
WO2022099476A1 (zh) | 一种RGO/Al基复合材料的制备方法 | |
CN113968724B (zh) | 一种金属改性镁砂、低碳转炉镁质滑板及它们的制备方法 | |
CN112062574B (zh) | 一种高性能纳米碳化硅陶瓷及其制备方法和应用 | |
CN111020264B (zh) | 一种三维堆积体增强钛基复合材料及其制备方法 | |
CN116716508A (zh) | 一种TiB2/TiC陶瓷增强铝合金基体复合材料活塞及其制备方法 | |
CN117721357A (zh) | MAX/MXene复合增强金属基复合材料及制备方法 | |
CN109400189B (zh) | 一种高炉炉缸氮复合浇注料及其制备方法 | |
CN109652679B (zh) | 纳米碳管和内生纳米TiC颗粒混杂增强铝基复合材料及其制备方法 | |
CN114959342B (zh) | 一种改善氧化铝弥散强化铜基复合材料加工性能的方法 | |
CN113957294A (zh) | 一种CrCoNi中熵合金增强Al基复合材料及其制备方法 | |
CN113149658A (zh) | 一种氮化钛基复合陶瓷材料及其制备方法 | |
CN111304482A (zh) | 一种提高颗粒增强铝基复合材料弹性模量的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20961035 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20961035 Country of ref document: EP Kind code of ref document: A1 |