WO2022097948A1 - 연속식 탄소나노튜브의 제조 방법 - Google Patents

연속식 탄소나노튜브의 제조 방법 Download PDF

Info

Publication number
WO2022097948A1
WO2022097948A1 PCT/KR2021/014227 KR2021014227W WO2022097948A1 WO 2022097948 A1 WO2022097948 A1 WO 2022097948A1 KR 2021014227 W KR2021014227 W KR 2021014227W WO 2022097948 A1 WO2022097948 A1 WO 2022097948A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixture
weight
carbon nanotubes
parts
mixing
Prior art date
Application number
PCT/KR2021/014227
Other languages
English (en)
French (fr)
Inventor
황희정
Original Assignee
주식회사 코본
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 코본 filed Critical 주식회사 코본
Priority to EP21889413.7A priority Critical patent/EP4242175A1/en
Priority to US18/250,700 priority patent/US20230406707A1/en
Priority to JP2023527714A priority patent/JP2023548407A/ja
Priority to CN202180074547.4A priority patent/CN116368097A/zh
Publication of WO2022097948A1 publication Critical patent/WO2022097948A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/164Preparation involving continuous processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts

Definitions

  • the present invention relates to a method for manufacturing a continuous carbon nanotube using a gas phase synthesis method, and more particularly, to a method for preparing catalytic metal nanoparticles of a uniform size and reacting with a carbon source in a gas phase to continuously produce carbon nanotubes It relates to a method for manufacturing a continuous carbon nanotube.
  • Thermoplastic resins particularly high-performance plastics with excellent mechanical properties and heat resistance, are used in various applications. These high-performance plastics require antistatic performance, such as anti-static and dust contamination, to prevent malfunction and contamination of parts depending on the field to which they are applied. In addition to existing physical properties, electrical conductivity is additionally required.
  • Conductive carbon black is commonly used as a carbon material having electrical conductivity.
  • a large amount of carbon black needs to be added, and the structure of carbon black is changed in the melt mixing process. Since decomposition also occurs, as a result, the processability of the resin deteriorates and thermal stability and physical properties may be remarkably deteriorated. Therefore, in order to improve electrical conductivity while reducing the amount of conductive filler added, conductive carbon black is replaced with conductive carbon black. Therefore, research on carbon nanotube-resin composites to which carbon nanotubes are added is being actively conducted.
  • Carbon nanotubes are a material discovered in Japan in 1991. Three carbon atoms are bonded to one carbon atom, and a hexagonal ring is formed by the bonds between these carbon atoms, and a plane in which these are repeated in a honeycomb shape is formed. It is a material that is rolled up and has the shape of a cylindrical tube.
  • Carbon nanotubes are a single-walled carbon nanotube (SW carbon nanotube) composed of a single layer and having a diameter of about 1 nm, and a double-walled carbon nanotube (DW) composed of two layers. carbon nanotube) and a multiwalled carbon nanotube (MW carbon nanotube) composed of a plurality of layers of three or more and having a diameter of about 5 to 100 nm.
  • SW carbon nanotube single-walled carbon nanotube
  • DW double-walled carbon nanotube
  • MW carbon nanotube multiwalled carbon nanotube
  • These carbon nanotubes can be synthesized through various methods such as arc discharge, laser vaporization, CVD (thermal chemical vapor deposition), catalytic synthesis, plasma synthesis, and the like. These are performed under vacuum or synthesizing carbon nanotubes under conditions of a high temperature range of hundreds to thousands of degrees.
  • the diameter of the carbon nanotube can be uniformly controlled and the carbon nanotube production yield can be increased. do.
  • a liquid mixture forming step of mixing and stirring a solvent, a metal salt, a surfactant, a reducing agent and a function improving agent to prepare an emulsion mixture forming a gaseous mixture by mixing the emulsion mixture with a carrier gas to prepare a gaseous mixture; and a reaction step of introducing the gaseous mixture into a heated reactor to form carbon nanotubes.
  • a carbon source may be further mixed.
  • the liquid mixture forming step may include: a first mixing step of mixing and stirring a solvent, a metal salt and a surfactant; and a second mixing step of adding a reducing agent and a function improving agent to the mixture obtained through the first mixing step and stirring.
  • the solvent may be at least one selected from the group consisting of aromatic hydrocarbons, aliphatic hydrocarbons, alcohol compounds, and water.
  • the emulsion mixture may include 001 to 5 parts by weight of a metal salt, 5 to 17 parts by weight of a surfactant, 002 to 10 parts by weight of a reducing agent, and 01 to 04 parts by weight of a function improving agent based on 100 parts by weight of the solvent.
  • the function improving agent may include at least any one or more of indole, imidazole, and hectorite compounds.
  • the function improving agent may be a mixture of at least one first compound selected from the group consisting of indole and imidazole and a second compound including a hectorite compound.
  • the continuous carbon nanotube manufacturing method of the present invention has the effect of uniformly controlling the diameter of the carbon nanotube and increasing the carbon nanotube production yield.
  • % used to indicate the concentration of a specific substance is (weight/weight) %, solid/liquid (weight/volume)%, and liquid, unless otherwise specified. /liquid means (volume/volume)%.
  • colloid refers to anything with a particle size smaller than 045 ⁇ m (or 02 ⁇ m) and larger than 1000 Da (Dalton, weight of one molecule). It refers to a solution containing particles having a size of several to several hundreds of nanometers, and is sometimes used to include even precursors thereof.
  • the present invention is a mixture preparation step of mixing and stirring a solvent, a metal salt, a surfactant, a reducing agent and a function improving agent to prepare an emulsion mixture; mixing the emulsion mixture with a carrier gas to form a gaseous mixture; and a reaction step of introducing the gaseous mixture into a heated reactor to form carbon nanotubes.
  • the step of preparing the mixture is a step of preparing an emulsion mixture which is a precursor for forming carbon nanotubes by mixing a solvent, a metal salt, a surfactant, a reducing agent, and a function improving agent.
  • the metal salt contained in the emulsion mixture functions as a catalyst for forming carbon nanotubes, and is formed into fine particles having a metal particle size of 300 nm or less through the mixture preparation step, performance will be different.
  • the surface area per unit mass is significantly increased to improve the function, and changes in physical properties such as a decrease in the melting point of the particles and a change in color occur.
  • nanometer-sized fine metal particles have high reactivity and can exist in a suspended state in a gas phase, so that they can be used as a catalyst for synthesizing carbon nanotubes in a gas phase.
  • the particle size of these metals is formed in a nanometer size and can be uniformly dispersed in a solvent.
  • the mixture preparation step is an emulsion mixture comprising 0.01 to 5 parts by weight of a metal salt, 5 to 17 parts by weight of a surfactant, 0.02 to 10 parts by weight of a reducing agent, and 0.1 to 0.4 parts by weight of a function improving agent with respect to 100 parts by weight of the solvent. This is the manufacturing step.
  • the solvent functions as a medium for uniformly dispersing the metal salt, and at the same time serves to provide a carbon source required for carbon nanotube synthesis, if necessary.
  • At least one selected from the group consisting of aromatic hydrocarbons, aliphatic hydrocarbons, alcohol compounds, and water may be used as the solvent.
  • aromatic hydrocarbons, aliphatic hydrocarbons, alcohol compounds, and water may be used as the solvent.
  • Benzene, toluene, xylene, etc. may be used as the aromatic hydrocarbon
  • hexane, heptane, octane, etc. may be used as the aliphatic hydrocarbon
  • ethanol, propyl alcohol, polyethylene glycol, etc. may be used as the alcohol compound, but is not limited thereto.
  • the metal salt functions as a catalyst in the carbon nanotube synthesis reaction.
  • metal salts iron (Fe), cobalt (Co), nickel (Ni), platinum (Pt), palladium (Pd), molybdenum ( Mo) and one or more metal salts of oxides, nitrides, borides, fluorides, bromides, sulfides, chlorides and carbonates of one or more metals selected from the group consisting of vanadium (V) may be used.
  • the metal salt may be included in an amount of 0.01 to 5 parts by weight based on 100 parts by weight of the solvent, and when the content of the metal salt is less than 0.01 parts by weight, the amount of catalyst required for carbon nanotube synthesis is insufficient, so carbon nanotube synthesis efficiency is lowered. occurs, and when it exceeds 5 parts by weight, additional carbon nanotubes are not obtained even if the process parameters are changed, but rather, a large amount of unreacted catalyst is generated, thereby reducing the purity of the carbon nanotubes. It is preferable to be included within the range.
  • the surfactant forms the metal salt or metal into nanometer-sized fine particles, and maintains the state of the metal salt or metal fine particle state until carbon nanotubes are formed by reacting with the carbon source, and uniformly and stably disperses the fine metal particles in the solvent. added to disperse.
  • At least one of a nonionic surfactant, an anionic surfactant, a cationic surfactant, and an amphoteric surfactant may be used as the surfactant.
  • nonionic surfactant polyoxyethylene, alkyl glucoside, alkyl polyglucoside, polyhydroxy fatty acid amide, alkoxylated fatty acid ester, sucrose ester, amine oxide, alcohol ethoxylate, amide ethoxylate
  • Nonionic surfactants such as amine oxide and alkyl glucoside may be used, for example, cocamide methyl, C8-C14 glucose amide, C8-C14 alkyl polyglucoside, sucrose cocoate, sucrose laurate, lauramine Oxide, cocoamine oxide, etc. may be used, but is not limited thereto.
  • alkyl sulfate, ethoxylated alkyl sulfate, alkylethoxy carboxylate, alkylglyceryl ether sulfonate, ethoxyether sulfonate, methylacyl taurate, alkylsulfo Succinate-based, alkylethoxysulfo succinate-based, alpha-sulfonated fatty acid-based, alkyl phosphate ester-based, ethoxylated alkyl phosphate ester-based, straight-chain alkylbenzene sulfonate-based, paraffin sulfonate-based, alpha-olefin sulfonate system, alkylalkoxy sulfate system, etc. may be used, for example, sodium lauryl sulfate, sodium laureth sulfate, sodium coco sulfate, etc. may be used, but is not limited thereto.
  • the present invention is not limited thereto.
  • amphoteric surfactant alkylbetaine, amidebetaine, sulfobetaine, hydroxysulfobetaine, amidosulfobetaine, phosphobetaine, imidazolinium betaine, aminopropionic acid and Amino acid-based surfactants may be used, but is not limited thereto.
  • the surfactant may be used in an amount of 5 to 17 parts by weight based on 100 parts by weight of the solvent. If the content of the surfactant is less than 5 parts by weight, the fine particle formation of the metal salt is not sufficiently achieved, and the fine particle metal salt is uniformly dispersed in the solvent. There is a problem in that it is difficult to synthesize carbon nanotubes of uniform size because they are not distributed and aggregated with each other.
  • the reducing agent is added to reduce the metal salt to form metal particles having a uniform size, and may be included in an amount of 0.02 to 10 parts by weight based on 100 parts by weight of the solvent, and when the content of the reducing agent is less than 0.02 parts by weight, the metal salt is sufficient.
  • the physical properties of the synthesized carbon nanotubes are non-uniform because they are not reduced, and when it exceeds 10 parts by weight, there is a problem in that the physical properties of the emulsion mixture are deteriorated by an excessive reducing agent and the carbon nanotube synthesis productivity is reduced accordingly. It is preferable to be
  • an inorganic compound such as hydrazine, LiBH 4 , NaBH 4 , or a compound including a functional group having a reducing power such as ethylene oxide may be used, but is not limited thereto.
  • the function improving agent is a component added to uniformly and stably form the size of metal particles, and to increase the phase stability of the colloidal solution, such as preventing aggregation of metal particles, and at the same time to increase the yield of carbon nanotubes by metal,
  • the function improving agent may include at least one or more of indole, imidazole, and hectorite compounds.
  • the function improving agent may be included in an amount of 0.1 to 0.4 parts by weight based on 100 parts by weight of the solvent.
  • content of the function improving agent is less than 0.1 parts by weight, it is difficult to obtain the above-described effect, and when it exceeds 0.4 parts by weight, the stability of the colloidal solution is rather reduced. It is lowered and thereafter, when synthesizing carbon nanotubes, there is a problem that the process efficiency and the synthesis efficiency are lowered, so it is preferable to be included within the above-mentioned weight range.
  • At least one of indole, imidazole, and hectorite compounds may be included as the function improving agent, and the hectorite compounds include dihydrogenated tallow benzylmonium hectorite, disteardimonium hectorite, and quaternium-18 hectorite. Alternatively, stearalkonium hectorite may be used.
  • At least one first compound selected from the group consisting of indole and imidazole and the second compound, which is a hectorite compound, may be used together.
  • the second compound physically inhibits the aggregation of the reduced metal particles during the reduction process and serves to stabilize, so that the first compound and the second compound are used together. It is preferable to use
  • the first compound and the second compound may be mixed and used in a weight ratio of 1: 0.3 to 0.7, and when the weight ratio of the second compound to the first compound is less than 0.3 parts by weight, the yield of carbon nanotubes by the metal catalyst It is difficult to obtain an improvement effect, and when used in a weight exceeding 0.7 parts by weight, the phase stability of the colloidal solution is lowered and there is a problem that process efficiency and synthesis efficiency are lowered. Do.
  • the step of preparing the mixture a first mixing step of mixing and stirring a solvent, a metal salt and a surfactant; and a second mixing step of adding a reducing agent and a function improving agent to the mixture obtained through the first mixing step and stirring.
  • the first mixing step is a step of mixing the metal salt after mixing the surfactant with the solvent, and the metal salt forms micelles or reverse micelles by the surfactant and may be dispersed in the solvent.
  • the solubilization of the metal salt is not completely and uniformly performed. Therefore, it is preferable to first mix the solvent and the surfactant and then add the metal salt for uniform solubilization of the metal salt.
  • the mixing in the first mixing step is preferably performed at a temperature of 40 to 70°C.
  • a surfactant is added to the solvent, and the temperature is increased, and the metal salt is preferably added while the temperature range is maintained.
  • the temperature increase is preferably limited to the above-mentioned temperature range. At this time, after the metal salt is added, mixing may be performed for 4 to 8 hours.
  • the mixture obtained through the first mixing step is preferably prepared by cooling to 10 to 30° C. for a stable reaction thereafter. If the second mixing step is performed while maintaining the temperature of the mixture at a high level without going through the cooling step, abnormal growth of the metal and consequent sedimentation of metal particles are caused. It is preferable to be prepared by cooling before input.
  • ultrasonic dispersion in water may be performed to form a metal salt of a more uniform and uniform size.
  • Ultrasonic dispersion can be performed by applying ultrasonic waves of 30 to 45 W output to the cooled mixture for 10 to 20 minutes. can occur
  • the second mixing step is a step of adding and stirring a reducing agent and a function improving agent to the mixture obtained through the first mixing step. Stirring can be performed for ⁇ 24 hours.
  • the metal salt is uniformly dispersed in the state of nano-sized particles in the solvent through the first mixing step, and then reduced through the second mixing step, and Since the catalytic performance improvement effect is uniformly imparted to individual metal particles, metal fine particles can be dispersed more uniformly and stably compared to the case of preparing an emulsion mixture by mixing each of these components at the same time, and the function of the function improving agent The improvement effect can be made more effectively.
  • a gaseous mixture forming step of mixing the emulsion mixture with a carrier gas to form a gaseous mixture is performed.
  • the metal particles dispersed in the emulsion mixture of the present invention have a small size on the order of nanometers, they can be formed as a gas by itself or mixed with other gases.
  • the emulsion mixture may be mixed with a carrier gas to form a gaseous phase through spraying or atomization, and the gaseous mixture formed as such is supplied to a reactor and used for carbon nanotube synthesis.
  • a carrier gas an inert gas such as argon, neon, helium, or nitrogen, or a hydrocarbon gas may be used, and preferably, a specialized gas such as hydrogen or hydrogen sulfide may be supplied together with these, but is not limited thereto.
  • the spray flow rate of the emulsion mixture is preferably 0.10 to 0.85 ml/min, and the flow rate of the carrier gas is preferably 30 to 450 sccm. It is difficult to uniformly disperse and diffuse carbon nanotubes, which may cause problems such as a decrease in the synthesis yield of carbon nanotubes, an increase in the amount of unreacted catalyst, or a decrease in economic efficiency and process efficiency due to excessive use of carrier gas.
  • a carbon source gas may be supplied together, and the supply flow rate of the carbon source gas to achieve effects such as improvement in yield of carbon nanotubes, minimization of unreacted materials, and improvement of economy and productivity It is preferable that it is 20-200 sccm.
  • the carbon source gas when water is used as a solvent and hydrocarbon gas, which is a carbon source, is not used as a carrier gas, the carbon source gas must be supplied together in the gaseous mixture forming step to form carbon nanotubes, and aromatic hydrocarbons, aliphatic hydrocarbons and When a solvent containing carbon, such as an alcohol compound, is used, a carbon source gas may or may not be additionally supplied in this step.
  • an organic compound selected from the group consisting of carbon monoxide, a saturated or unsaturated aliphatic hydrocarbon having 1 to 6 carbon atoms, or an aromatic hydrocarbon having 6 to 10 carbon atoms can be used as the carbon source gas.
  • the carbon source gas may contain 1 to 3 heteroatoms selected from the group consisting of oxygen, nitrogen, chlorine, fluorine, and sulfur.
  • a characteristic gas such as H 2 , H 2 S, NH 3 and the like may be supplied together with the carbon source gas.
  • This step is a step of forming carbon nanotubes by introducing the gaseous mixture into a heated reactor, since the catalyst particles were formed into nano-fine particles of uniform size in the previous step and dispersed in a stable and uniform gas phase. It is possible to continuously synthesize carbon nanotubes under mild reaction conditions compared to a general carbon nanotube vapor phase synthesis reaction.
  • the temperature of the reactor for synthesizing carbon nanotubes may be 600 to 1500° C., and when it is out of this temperature range, carbon nanotube selectivity decreases and carbon nanotubes are generated due to an increase in unreacted materials Since there is a problem in that the yield is reduced, it is preferable that the synthesis reaction is performed in the above-described temperature range.
  • the emulsion mixture was introduced into a reactor heated to 1200° C. at a rate of 0.40 ml/min, and argon (Ar), a carrier gas, was supplied at a flow rate of 100 sccm at the same time, and the reaction was performed for a total of 20 minutes to carbon nanotubes. was synthesized.
  • Ar argon
  • the content of the function improving agent As shown in Table 1 below, an emulsion mixture was prepared, carbon nanotubes were synthesized in the same manner as in Preparation Example using each emulsion mixture, and the synthesis yield and diameter distribution of carbon nanotubes were measured. The results are also shown in Table 1.
  • the synthesis yield was calculated according to the following formula (1), and the diameter distribution was obtained by taking a scanning electron microscope (SEM) and a transmission electron microscope (TEM) photograph of each synthesized carbon nanotube, and the carbon nanotube strands in the photographed photograph. The diameters of 10 random strands including the thinnest and thickest ones were measured, and the average values and standard deviations were calculated and listed in Table 1.
  • the content of the function improving agent means the weight based on 100 parts by weight of benzene.
  • Synthesis yield (%) [Amount of carbon nanotubes produced (g) / Amount of metal salt supplied (g)] ⁇ 100 (1)
  • Comparative Example 1 looking at Comparative Example 1 and Comparative Example 2 together, when the content of the function improving agent is not sufficient, it can be seen that the effect of improving the synthesis yield and the diameter distribution by the function improving agent does not appear. In addition, in the case of Comparative Example 3, the effect of the function improving agent does not appear, which is judged as a result of the fact that the amount of the function improving agent was excessive and rather caused phase instability of the emulsion mixture.
  • the content of the function improving agent for improving the carbon nanotube synthesis yield and diameter uniformity was 0.1 to 0.4 parts by weight based on 100 parts by weight of the solvent.
  • Example 5 Although the synthesis yield is high, there is a problem in that the diameter of carbon nanotubes is formed non-uniformly, and in the case of Example 6, there is a problem in that the synthesis yield is lowered, so that the function is improved It can be confirmed that it is preferable to use zero indole and disteardimonium hectorite together.
  • Example 7 Although both indole and disteardimonium hectorite were included, results similar to those of Example 5 were obtained, and in the case of Example 11, results similar to those of Example 6 were obtained. From these results, it was confirmed that when both indole and disteardimonium hectorite are used as the function improving agents, it is preferable to use them in a weight ratio of 1:0.3 to 0.7.
  • the method for manufacturing a continuous carbon nanotube using the vapor-phase synthesis method according to the present invention has the effect of uniformly controlling the diameter of the carbon nanotube and increasing the carbon nanotube production yield, so that the industrial applicability this exists

Abstract

본 발명은 용매, 금속염, 계면활성제, 환원제 및 기능 향상제를 혼합하고 교 반하여 에멀젼 혼합물을 제조하는 혼합물 제조 단계; 상기 에멀젼 혼합물을 운반 기체와 혼합하여 기상 혼합물을 형성하는, 기상 혼합물 형성 단계; 및 상기 기상 혼합물을 가열된 반응기 내로 도입하여 탄소나노튜브를 형성하는 반응 단계;를 포함하여, 탄소나노튜브의 직경을 균일하게 제어할 수 있고, 탄소나노튜브 생성 수율을 높일 수 있는 연속식 탄소나노튜브의 제조 방법에 관한 것이다.

Description

연속식 탄소나노튜브의 제조 방법
본 발명은 기상합성 방식을 이용한 연속식 탄소나노튜브의 제조 방법에 관한 것으로, 보다 상세하게는 균일한 크기의 촉매 금속 나노 입자를 제조하고, 기상에서 탄소원과 반응시켜 탄소나노튜브를 연속적으로 제조하는 연속식 탄소나노튜브의 제조 방법에 관한 것이다.
열가소성 수지, 특히 기계적 특성, 내열성이 우수한 고성능 플라스틱은 다양한 용도에서 사용되고 있다. 이러한 고성능 플라스틱은 적용되는 분야에 따라 부품의 오작동 및 오염방지를 위하여, 정전기 방지, 먼지 오염 방지 등과 같은 대전 방지성능이 필요하여, 기존의 물성에 더하여 전기 전도성(Electrical Conductivity)이 추가적으로 요구되고 있다.
고성능 플라스틱에 이와 같은 전기 전도성의 부여를 위해 기존에는 계면활성제, 금속분말, 금속섬유 등을 첨가하였으나, 이들 성분은 도전성이 낮거나, 기계적강도를 약화시키는 등 물성을 저하시키는 문제가 있어 전기 전도성을 갖는 탄소 소재에 대한 관심이 증대되고 있는 추세이다.
전기 전도성을 갖는 탄소 소재로써 일반적으로 흔히 도전성 카본블랙이 사용되는데, 도전성 카본블랙을 사용하여 높은 전기전도도를 달성하기 위해서는 다량의카본 블랙이 첨가될 필요가 있으며, 용융 혼합 과정에서 카본 블랙의 구조가 분해되는 경우도 발생하므로, 결과적으로 수지의 가공성이 악화되고, 열안정성 및 물성이 현저하게 저하되는 문제를 야기될 수 있어, 도전성 충전재의 첨가량을 저감시키면서 전기 전도성을 향상시키고자 도전성 카본 블랙을 대신하여 탄소나노튜브를 첨가한 탄소나노튜브-수지 복합재에 대한 연구가 활발하게 진행되고 있다.
탄소나노튜브는 1991년에 일본에서 발견된 물질로, 하나의 탄소 원자에 이웃하는 세 개의 탄소 원자가 결합되어 있으며, 이러한 탄소 원자간의 결합에 의해서 육각 환형이 이루어지고, 이들이 벌집형태로 반복된 평면이 말려 원통형 튜브 형태를 지니고 있는 물질이다.
탄소나노튜브는 한 겹으로 구성되고 직경이 약 1 nm인 단일벽 탄소나노튜브(single-walled carbon nanotube, SW 탄소나노튜브), 두 겹으로 구성되는 이중벽탄소나노튜브 (double-walled carbon nanotube, DW탄소나노튜브) 및 셋 이상의 복수의 겹으로 구성되고 직경이 약 5 내지 100 nm인 다중벽 탄소나노튜브 (multiwalled carbon nanotube, MW탄소나노튜브)로 구분된다.
이러한 탄소나노튜브는 아크 방전법(arc discharge), 레이저 기화법(laserevaporation), CVD(thermal chemical vapor deposition)법, 촉매적 합성법, 플라즈마(plasma) 합성법 등 다양한 방법들을 통해 합성될 수 있으며, 이러한 방법들은 수백 내지 수천 도의 높은 온도 범위 조건으로 탄소나노튜브를 합성하거나 또는 진공 하에서 수행된다.
그러나, 기존의 방법은 균일한 크기의 촉매를 형성하기 곤란하고, 이에 따라생성된 탄소나노튜브의 직경을 균일하게 제어하는 것이 곤란하며, 카본블랙 등과 같은 부산물 생성에 의해 탄소나노튜브 생성 수율이 저하되는 문제가 있어, 이러한문제를 해결할 수 있는 새로운 탄소나노튜브의 제조 방법이 요구되고 있다.
본 발명에서는 기상합성 방식을 이용한 연속식 탄소나노튜브의 제조 방법에 있어서, 탄소나노튜브의 직경을 균일하게 제어할 수 있고, 탄소나노튜브 생성 수율을 높일 수 있는 탄소나노튜브의 제조 방법을 제공하고자 한다.
상술한 바와 같은 목적을 달성하기 위한 본 발명의 일 실시예는, 용매, 금속염, 계면활성제, 환원제 및 기능 향상제를 혼합하고 교반하여 에멀젼 혼합물을 제조하는 액상 혼합물 형성 단계; 상기 에멀젼 혼합물을 운반 기체와 혼합하여 기상혼합물을 제조하는, 기상 혼합물 형성 단계; 및 상기 기상 혼합물을 가열된 반응기내로 도입하여, 탄소나노튜브를 형성하는 반응 단계;를 포함하는, 연속식 탄소나노튜브의 제조 방법에 관한 것이다.
상기 기상 혼합물 형성 단계에서, 탄소원이 추가로 더 혼합될 수 있다.
상기 액상 혼합물 형성 단계는, 용매, 금속염 및 계면활성제를 혼합하고 교반하는 제1 혼합 단계; 및 상기 제1 혼합 단계를 거쳐 얻어진 혼합물에 환원제 및 기능 향상제를 첨가하고 교반하는 제2 혼합 단계;를 포함할 수 있다.
상기 용매는, 방향족 탄화수소, 지방족 탄화수소, 알코올 화합물 및 물로 이루어진 군에서 선택되는 적어도 어느 하나 이상일 수 있다.
상기 에멀젼 혼합물은, 용매 100 중량부에 대하여, 금속염 001~5 중량부, 계면활성제 5~17 중량부, 환원제 002~10 중량부 및 기능 향상제 01~04 중량부를 포함할 수 있다.
상기 기능 향상제는, 인돌, 이미다졸 및 헥토라이트 화합물 중 적어도 어느 하나 이상을 포함할 수 있다.
상기 기능 향상제는, 인돌과 이미다졸로 이루어진 군에서 선택되는 적어도 어느 하나 이상의 제1 화합물과 헥토라이트 화합물을 포함하는 제2 화합물이 혼합된 혼합물일 수 있다.
본 발명의 연속식 탄소나노튜브의 제조 방법은, 탄소나노튜브의 직경을 균일하게 제어할 수 있고, 탄소나노튜브 생성 수율을 높일 수 있는 효과가 있다.
이하 본 발명의 바람직한 실시예를 통해 상세히 설명하기에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정하여 해석되어서는 아니 되며, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 함을 밝혀둔다.
본 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서 전체에서, 특정 물질의 농도를 나타내기 위하여 사용되는 "%"는 별도의 언급이 없는 경우, 고체/고체는 (중량/중량)%, 고체/액체는 (중량/부피)%, 그리고 액체/액체는 (부피/부피)% 를 의미한다.
일반적으로 콜로이드는 입자의 크기가 045㎛ (혹은 02㎛)보다 작고, 1000Da (Dalton, 분자 하나의 무게)보다는 큰 모든 것을 의미하나, 본 발명의 명세서에 있어서, " 콜로이드성 용액" 이란 포함된 입자크기가 수 ~ 수백 나노미터인 입자를 포함하는 용액을 의미하며, 때로는 이의 전구체까지도 포함하는 의미로 사용된다.
이하에서는, 본 발명의 실시예를 살펴본다. 그러나 본 발명의 범주가 이하의바람직한 실시예에 한정되는 것은 아니며, 당업자라면 본 발명의 권리범위 내에서 본 명세서에 기재된 내용의 여러 가지 변형된 형태를 실시할 수 있다.
먼저, 본 발명은 용매, 금속염, 계면활성제, 환원제 및 기능 향상제를 혼합하고 교반하여 에멀젼 혼합물을 제조하는 혼합물 제조 단계; 상기 에멀젼 혼합물을 운반 기체와 혼합하여 기상 혼합물을 형성하는, 기상 혼합물 형성 단계; 및 상기 기상 혼합물을 가열된 반응기 내로 도입하여 탄소나노튜브를 형성하는 반응 단계;를 포함하는, 연속식 탄소나노튜브의 제조 방법에 관한 것이다.
상기 혼합물 제조 단계는, 용매, 금속염, 계면활성제, 환원제 및 기능 향상제를 혼합하여 탄소나노튜브를 형성하기 위한 전구 물질인 에멀젼 혼합물을 제조하는 단계이다.
상기 에멀젼 혼합물에 포함되는 금속염은 탄소나노튜브를 형성하기 위한 촉매로써 기능하는 것으로, 혼합물 제조 단계를 통해 금속의 입자 크기가 300nm 이하인 미세 입자로 형성되어, 입자의 크기가 클 때와 입자의 물성 및 성능이 달라지게된다. 특히, 단위 질량 당 표면적이 현저히 증가하여 기능이 향상되고, 입자의 융점 감소, 색상 변화 등의 물성 변화가 나타나게 된다.
또한, 나노미터 크기의 미세 금속 입자는 반응성이 높고, 기상에서 부유 상태로 존재할 수 있어 기상에서의 탄소나노튜브 합성용 촉매로 사용될 수 있다. 상기 혼합물 제조 단계를 통해 이러한 금속의 입자 크기가 나노미터 크기로 형성되며 용매 중에 균일하게 분산될 수 있다.
보다 구체적으로, 상기 혼합물 제조 단계는 용매 100 중량부에 대하여, 금속염 0.01~5 중량부, 계면활성제 5~17 중량부, 환원제 0.02~10 중량부 및 기능 향상제 0.1~0.4 중량부를 포함하는 에멀젼 혼합물을 제조하는 단계이다.
상기 용매는 금속염을 균일하게 분산시키는 매질로써 기능하는 동시에 필요에 따라 탄소나노튜브 합성에 요구되는 탄소원을 제공하는 기능을 수행한다.
이러한 용매로 방향족 탄화수소, 지방족 탄화수소, 알코올 화합물 및 물로 이루어진 군에서 선택되는 적어도 어느 하나 이상이 사용될 수 있다. 방향족 탄화수소로 벤젠, 톨루엔, 자일렌 등이 사용될 수 있고, 지방족 탄화수소로 헥산, 헵탄, 옥탄 등이 사용될 수 있으며, 알코올 화합물로 에탄올, 프로필알코올, 폴리에틸렌글리콜 등이 사용될 수 있으나 이에 제한되는 것은 아니다.
상기 금속염은 앞서 설명한 바와 같이 탄소나노튜브 합성 반응에서의 촉매로기능하는 것으로, 이러한 금속염으로 철(Fe), 코발트(Co), 니켈(Ni), 백금(Pt), 팔라듐(Pd), 몰리브덴(Mo) 및 바나듐(V)으로 이루어진 군에서 선택되는 1종 이상의 금속의 산화물, 질화물, 붕소화물, 불화물, 브롬화물, 황화물, 염화물 및 카보네이트염 중 어느 하나 이상의 금속염이 사용될 수 있다.
상기 금속염은 용매 100 중량부에 대하여 0.01~5 중량부로 포함될 수 있으며, 금속염의 함량이 0.01 중량부 미만인 경우에는 탄소나노튜브 합성에 요구되는 촉매의 양이 부족하여 탄소나노튜브 합성 효율이 저하되는 문제가 발생하고, 5 중량부를 초과하는 경우에는 공정 변수를 변화시키더라도 추가적인 탄소나노튜브 수득이 이루어지지 않으며, 오히려 미반응 촉매가 다량 발생하여 탄소나노튜브의 순도가 저하되는 문제가 발생하므로 상술한 중량 범위 내에서 포함되는 것이 바람직하다.
상기 계면활성제는 금속염 혹은 금속을 나노미터 크기의 미세 입자로 형성시키고, 탄소원과 반응하여 탄소나노튜브가 형성될 때까지 금속염 혹은 금속의 미세입자 상태를 유지시키며 용매 내에 미세 금속 입자를 균일하고 안정적으로 분산시키기 위해 첨가된다.
이러한 계면활성제로 비이온성 계면활성제, 음이온성 계면활성제, 양이온성계면활성제, 양쪽성 계면활성제 중 적어도 어느 하나 이상이 사용될 수 있다.
일 예로, 상기 비이온성 계면활성제로 폴리옥시에틸렌, 알킬 글루코시드, 알킬 폴리글루코시드, 폴리히드록시 지방산 아미드, 알콕실화 지방산 에스테르, 수크로스 에스테르, 아민 옥시드, 알코올 에톡시레이트, 아마이드 에톡실레이트, 아민옥사이드 및 알킬 글루코사이드 등의 비이온성 계면활성제가 사용될 수 있으며, 일 예로 코카마이드메틸, C8-C14글루코스 아미드, C8-C14알킬 폴리글루코시드, 수크로스 코코에이트, 수크로스 라우레이트, 라우르아민 옥시드, 코코아민 옥시드 등이 사용될 수 있으나 이에 제한되는 것은 아니다.
일 예로, 상기 음이온성 계면활성제로 알킬설페이트계, 에톡실화 알킬설페이트계, 알킬에톡시 카르복실레이트계, 알킬글리세릴에테르 설포네이트계, 에톡시에테르 설포네이트계, 메틸아실 타우레이트계, 알킬설포 숙시네이트계, 알킬에톡시설포 숙시네이트계, 알파-설포네이트화 지방산계, 알킬포스페이트 에스테르계, 에톡실화알킬포스페이트 에스테르계, 직쇄알킬벤젠 설포네이트계, 파라핀설포네이트계, 알파-올레핀 설포네이트계, 알킬알콕시 설페이트계 등이 사용될 수 있으며, 예를 들어, 소듐 라우릴 설페이트, 소듐 라우레스 설페이트, 소듐 코코 설페이트 등이 사용될 수 있으나 이에 제한되는 것은 아니다.
일 예로, 상기 양이온성 계면활성제로 세틸 트리메틸암모늄 브로마이드, 데실 트리메틸암모늄 브로마이드, 도데실 트리메틸암모늄 브로마이드, 디데실 디메틸암모늄 브로마이드, 세틸 디메틸 암모늄 클로라이드, 라우릴 디메틸 암모늄 클로라이드, 스테아릴 디메틸 암모늄 클로라이드, 탈로우 디메틸 암모늄 클로라이드, 디탈로우 디메틸 암모늄 메틸 술페이트, 코코넛 암모늄 클로라이드, 스테아르아미로프로필 PG-디모늄 클로라이드 포스페이트 및 스테아르아미도프로필 에틸디모늄 에토술페이트로 이루어진 군에서 선택되는 적어도 어느 하나 이상이 사용될 수 있으나, 이에 제한되는 것은 아니다.
일 예로, 상기 양쪽성 계면활성제로 알킬베타인계, 아미드베타인계, 술포베타인계, 히드록시술포베타인계, 아미도술포베타인계, 포스포베타인계, 이미다졸리늄베타인계, 아미노프로피온산계 및 아미노산계 계면활성제 등이 사용될 수있으나 이에 제한되는 것은 아니다.
상기 계면활성제는 용매 100 중량부에 대하여 5~17 중량부로 사용될 수 있으며, 계면활성제의 함량이 5 중량부 미만인 경우에는 금속염의 미세 입자화가 충분히 이루어지지 않고, 미세 입자화 된 금속염이 용매 내에 균일하게 분포되지 못하고 서로 응집되어 균일한 크기의 탄소나노튜브를 합성하기 곤란한 문제가 있다. 반면 계면활성제의 함량이 17 중량부를 초과하는 경우에는 추가적인 금속염의 나노입자화, 분산성 향상 등의 효과가 얻어지지 않고 오히려 과도한 계면활성제에 의해 금속염의 촉매로써의 기능이 저하되어 탄소나노튜브 합성 수율이 저하되는 문제가 있으므로, 상술한 중량 범위 내에서 포함되는 것이 바람직하다.
상기 환원제는 금속염을 환원시켜 균일한 크기를 갖는 금속 입자로 형성시키기 위해 첨가되는 것으로, 용매 100 중량부에 대하여 0.02~10 중량부로 포함될 수 있으며, 환원제의 함량이 0.02 중량부 미만인 경우에는 금속염이 충분히 환원되지 않아 합성된 탄소나노튜브의 물성이 불균일해지고, 10 중량부를 초과하는 경우에는 과도한 환원제에 의해 에멀젼 혼합물의 물성 저하 및 이에 따른 탄소나노튜브 합성생산성이 떨어지는 문제가 있으므로 상술한 중량 범위 내에서 포함되는 것이 바람직하다.
상기 환원제로는 하이드라진(Hydrazine), LiBH4, NaBH4 등과 같은 무기 화합물, 에틸렌 옥사이드(Ethylene oxide)와 같이 환원력이 있는 작용기를 포함하는 화합물 등이 사용될 수 있으나, 이에 제한되는 것은 아니다.
상기 기능 향상제는, 금속 입자의 크기를 균일하고 안정적으로 형성하며, 금속 입자끼리의 응집을 방지하는 등 콜로이드 용액의 상 안정성을 높이는 동시에 금속에 의한 탄소나노튜브의 수득률을 높이기 위해 첨가되는 성분으로, 기능 향상제로는 인돌, 이미다졸 및 헥토라이트 화합물 중 적어도 어느 하나 이상이 포함될 수 있다.
기능 향상제는 용매 100 중량부에 대하여 0.1~0.4 중량부로 포함될 수 있으며, 기능 향상제의 함량이 0.1 중량부 미만인 경우에는 상술한 효과를 얻기 곤란하고, 0.4 중량부를 초과하는 경우에는 오히려 콜로이드 용액의 안정성이 저하되어 이후 탄소나노튜브 합성시 공정 효율 및 합성 효율이 저하되는 문제가 발생하므로, 상술한 중량 범위 내에서 포함되는 것이 바람직하다.
이러한 기능 향상제로 인돌, 이미다졸 및 헥토라이트 화합물 중 적어도 어느 하나 이상이 포함될 수 있으며, 헥토라이트 화합물로는 2수소첨가 탈로우 벤질모늄헥토라이트, 디스테아르디모늄 헥토라이트, 쿼터늄-18 헥토라이트 또는 스테아르알코늄 헥토라이트가 사용될 수 있다.
바람직하게는 인돌과 이미다졸로 이루어진 군에서 선택되는 적어도 어느 하나 이상의 제1 화합물과 헥토라이트 화합물인 제2 화합물이 함께 사용될 수 있다.
제1 화합물만 사용되는 경우에는 금속 촉매에 의한 탄소나노튜브의 수득률이 향상되는 효과를 얻을 수 있으나, 제1 화합물에 의해 콜로이드 용액의 상 안정성이 저하되어, 금속 이온이 금속 원자로 환원되는 과정에서 금속 원자들이 서로 응집하여 금속 응집체가 형성되는 문제가 있다. 이러한 응집체는 결과적으로 생성된 탄소나노튜브의 직경을 불균일하게 만들기 때문에 균일하고 일정한 직경의 탄소나노튜브 합성을 방해한다.
그러나, 제1 화합물과 제2 화합물이 함께 사용되는 경우, 제2 화합물이 환원 과정에서 환원된 금속 입자끼리의 응집을 물리적으로 억제하여 안정화시키는 역할을 수행하므로, 제1 화합물과 제2 화합물을 함께 사용하는 것이 바람직하다.
이 경우 제1 화합물과 제2 화합물은 1 : 0.3~0.7 중량비로 혼합되어 사용될 수 있으며, 제1 화합물에 대한 제2 화합물의 중량비가 0.3 중량부 미만으로 사용되면 금속 촉매에 의한 탄소나노튜브의 수득률 향상 효과를 얻기 곤란하고, 0.7 중량부를 초과하는 중량으로 사용되는 경우에는 콜로이드 용액의 상 안정성이 저하되어 공정 효율 및 합성 효율이 저하되는 문제가 있으므로, 상술한 중량 범위 내에서 혼합되어 사용되는 것이 바람직하다.
한편, 상기 혼합물 제조 단계는, 용매, 금속염 및 계면활성제를 혼합하고 교반하는 제1 혼합 단계; 및 상기 제1 혼합 단계를 거쳐 얻어진 혼합물에 환원제 및 기능 향상제를 첨가하고 교반하는 제2 혼합 단계;를 포함할 수 있다.
구체적으로, 제1 혼합 단계는, 용매에 계면활성제를 혼합한 후 금속염을 혼합하는 단계로, 계면활성제에 의해 금속염이 미셀 혹은 역미셀을 형성하며 용매 내에 분산될 수 있다. 이때 용매에 계면활성제와 금속염을 동시에 투입하고 혼합하는 경우 금속염의 가용화가 완전하고 균일하게 이루어지지 않으므로, 금속염의 균일한 가용화를 위해 먼저 용매와 계면활성제를 혼합한 뒤 금속염을 투입하는 것이 바람직하다.
또한, 이 혼합 단계가 상온에서 이루어지는 경우 혼합물의 상이 불안정해져 상분리가 일어나므로, 제1 혼합 단계에서 혼합은 40~70℃의 온도에서 수행되는 것이 바람직하다. 보다 안정적인 상을 형성하기 위해 용매에 계면활성제를 투입하고, 승온하여 상기 온도 범위가 유지된 상태에서 금속염이 투입되는 것이 바람직하다.
상기 온도보다 높은 경우에는 용매 휘발에 따른 금속염의 응집이 발생할 수 있기 때문에 승온 온도는 상술한 온도 범위 내로 한정되는 것이 바람직하다. 이때 금속염 투입 후 혼합은 4~8시간 동안 수행될 수 있다.
이와 같이 제1 혼합 단계를 거쳐 얻어진 혼합물은 이후의 안정적인 반응을 위해 10~30℃로 냉각되어 준비되는 것이 바람직하다. 냉각 단계를 거치지 않고 혼합물의 온도를 높게 유지시키면서 제2 혼합 단계가 수행되는 경우에는 금속의 비정상적인 성장 및 이에 따른 금속 입자 침강 문제가 야기되므로, 제1 혼합 단계를 거쳐 얻어진 혼합물은 제2 혼합 단계에 투입되기 전 냉각되어 준비되는 것이 바람직하다.
이때, 제1 혼합 단계에서 보다 균일하고 일정한 크기의 금속염 형성을 위해 수중 초음파 분산이 이루어질 수 있다. 초음파 분산은 냉각된 상태의 혼합물에 30~45W 출력의 초음파를 10~20분간 인가하여 수행될 수 있으며, 조사 출력이 상기 범위를 벗어나는 경우 분산 효율이 저하되거나 오히려 금속염 크기가 불균일하게 형성되는 문제가 발생할 수 있다.
다음으로, 제2 혼합 단계는 제1 혼합 단계를 거쳐 얻어진 혼합물에 환원제 및 기능 향상제를 첨가하고 교반하는 단계로 환원제에 의한 환원 및 기능 향상제에의한 성능 향상 효과를 얻기 위해 각 성분을 혼합하고 10~24시간 동안 교반이 수행될 수 있다.
이와 같이 혼합물 제조 단계가 두 단계를 거쳐 진행되면, 먼저 제1 혼합 단계를 통해 금속염이 용매 내에 나노 크기의 입자 상태로 균일하게 분산되고, 이후에 제2 혼합 단계를 통해 환원되며, 기능 향상제에 의한 촉매 성능 향상 효과가 개별 금속 입자에 균일하게 부여되므로, 이들 각 성분을 동시에 혼합하여 에멀젼 혼합물을 제조하는 경우와 비교하였을 때 금속 미세 입자를 보다 균일하고 안정적으로 분산시킬 수 있고, 기능 향상제에 의한 기능 향상 효과가 보다 효과적으로 이루어질 수 있다.
따라서, 상술한 바와 같이 금속염의 분산과 환원을 별도의 단계로 진행하고, 환원 단계에서 기능 향상제를 첨가하는 것이 합성된 탄소나노튜브의 균일화 및 수율 향상에 효과적이다.
다음으로, 상기 에멀젼 혼합물을 운반 기체와 혼합하여 기상 혼합물을 형성하는 기상 혼합물 형성 단계가 수행된다.
앞서 설명한 바와 같이 본 발명의 에멀젼 혼합물 내에 분산된 금속 입자는 그 크기가 나노미터 단위로 작기 때문에 그 자체로 혹은 다른 기체와 혼합되어 기상으로 형성될 수 있다.
구체적으로, 상기 에멀젼 혼합물은 운반 기체와 혼합되어 분무 혹은 분쇄(atomization) 방식을 통해 기상으로 형성될 수 있으며, 이와 같이 기상으로 형성된 기상 혼합물은 반응기로 공급되어 탄소나노튜브 합성에 사용된다. 이때 운반기체로는 아르곤, 네온, 헬륨, 질소와 같은 비활성 기체, 탄화수소 기체가 사용될 수 있으며, 바람직하게는 이들과 함께 수소, 황화수소와 같은 특성화된 기체가 함께 공급될 수 있으나, 이에 제한되는 것은 아니다.
이 단계에서 에멀젼 혼합물의 분무 유량은 0.10~0.85ml/min인 것이 바람직하고, 운반 기체의 유량은 30~450sccm인 것이 바람직하며, 이들의 공급 유량이 상기범위를 벗어나는 경우, 금속 미세 입자의 기상에서의 균일한 분산 및 확산이 곤란하여 탄소나노튜브의 합성 수율이 저하되거나, 미반응 촉매량이 증가하거나, 과도한 운반 기체 사용으로 인한 경제성 및 공정 효율 저하 등의 문제가 발생할 수 있다.
한편, 이 단계에서 에멀젼 혼합물 및 운반 기체에 더하여 탄소원 기체가 함께 공급될 수 있으며, 탄소나노튜브 수율 향상, 미반응 물질의 최소화, 경제성 및 생산성 향상 등의 효과를 달성하기 위해 탄소원 기체의 공급 유량은 20~200sccm인것이 바람직하다.
특히, 용매로 물이 사용되면서 운반 기체로 탄소원인 탄화수소 기체가 사용되지 않는 경우에는, 탄소나노튜브를 형성하기 위해 기상 혼합물 형성 단계에서 탄소원 기체가 함께 공급되어야 하며, 용매로 방향족 탄화수소, 지방족 탄화수소 및 알코올 화합물 등 탄소를 포함하는 용매가 사용되는 경우에는 이 단계에서 탄소원 기체가 추가로 공급될 수도 있고 추가로 공급되지 않을 수도 있다.
이와 같이 기상 혼합물 형성 단계에서 탄소원 기체가 함께 공급되는 경우, 탄소원 기체로 일산화탄소, 탄소수 1 내지 6의 포화 또는 불포화 지방족 탄화수소 또는 탄소원자수 6 내지 10의 방향족 탄화수소로 구성된 군에서 선택되는 유기 화합물이 사용될 수 있다. 이러한 탄소원 기체에는 산소, 질소, 염소, 불소, 황으로 구성된 군에서 선택되는 헤테로원자가 1~3개 포함될 수도 있다.
본 발명의 하나의 바람직한 실시예에 따르면, 탄소원 기체와 함께 H2, H2S, NH3 등과 같이 특성화된 기체가 함께 공급될 수도 있다.
다음으로, 상기 기상 혼합물 형성 단계에서 형성된 기상 혼합물을 반응 시켜탄소나노튜브를 수득하는 반응 단계가 수행된다.
이 단계는, 상기 기상 혼합물을 가열된 반응기 내로 도입하여 탄소나노튜브를 형성하는 단계로, 앞선 단계에서 촉매 입자를 균일한 크기의 나노 미세 입자로 형성하고, 이를 안정적이고 균일한 기상으로 분산시켰기 때문에 일반적인 탄소나노 튜브 기상 합성 반응에 비해 온화한 반응 조건에서 연속적으로 탄소 나노 튜브를 합성하는 것이 가능하다.
이 단계에서 탄소나노튜브를 합성하기 위한 반응기의 온도는 600~1500℃일 수 있으며, 이 온도 범위를 벗어나는 경우에는 탄소나노튜브의 선택도 저하, 미반응 반응 물질의 증가에 따른 탄소나노튜브의 생성 수율이 저하되는 문제가 있으므로, 상술한 온도 범위에서 합성 반응이 수행되는 것이 바람직하다.
이하, 본 발명의 일 실시예를 통해 본 발명의 구체적인 작용과 효과를 설명하고자 한다. 다만, 이는 본 발명의 바람직한 예시로서 제시된 것으로, 실시예에 따라 본 발명의 권리범위가 한정되는 것은 아니다.
[제조예]
먼저, 용매인 벤젠 100 중량부에 대하여, 세틸 트리메틸암모늄 브로마이드 8중량부를 혼합하고 45℃까지 승온한 뒤 금속염(FeCl3) 0.7 중량부를 투입하고 6시간 동안 혼합하였으며, 혼합 중 40W의 초음파를 15분간 인가하였다. 이후, 혼합물을 27℃까지 냉각하였다.
다음으로, 상기 혼합물에 용매 100 중량부에 대하여 환원제인 LiBH4 15 중량부 및 기능 향상제 0.19 중량부를 혼합하고 8시간 동안 교반하여 에멀젼 혼합물을 제조하였다. 이때, 기능 향상제로는 인돌과 디스테아르디모늄 헥토라이트가 1 : 0.5 중량비로 혼합된 혼합물을 사용하였다.
다음으로, 상기 에멀젼 혼합물을 0.40ml/min의 속도로 1200℃로 가열된 반응로에 도입하고, 동시에 운반기체인 아르곤(Ar)을 100sccm의 유량으로 공급하고, 총 20분간 반응을 진행하여 탄소나노튜브를 합성하였다.
[실험예 1]
기능 향상제의 함량을 하기 표 1과 같이 변화시켜가며 에멀젼 혼합물을 제조하고, 각 에멀젼 혼합물을 사용하여 제조예와 동일한 방법으로 탄소나노튜브를 합성하고, 탄소나노튜브의 합성 수율과 직경 분포도를 측정하여 그 결과를 표 1에 함께 기재하였다. 합성수율은 하기의 식 (1)에 따라 계산하였으며, 직경 분포도는 합성된 각 탄소나노튜브의 주사전자현미경(SEM)과 투과전자현미경(TEM) 사진을 촬영하고, 촬영된 사진 내의 탄소나노튜브 가닥 중 가장 얇은 것과 가장 두꺼운 것을 포함하여 무작위 10 가닥의 직경을 측정하고 그 평균값 및 표준편차를 계산하여 표 1에 기재하였다. 이때, 표 1에서 기능 향상제의 함량은 벤젠 100 중량부를 기준으로 한 중량을 의미한다.
합성수율(%)=[생성된 탄소나노튜브의 양(g)/공급된 금속염의 양(g)]×100 (1)
기능향상제
(중량부)
합성 수율(%) 직경 분포도
평균값(nm) 표준편차
비교예 1 - 85.8 2.9 1.08
비교예 2 0.07 94.3 2.5 0.85
실시예 1 0.11 174.3 2.0 0.27
실시예 2 0.19 185.6 1.8 0.25
실시예 3 0.28 204.9 2.3 0.21
실시예 4 0.38 221.9 1.9 0.22
비교예 3 0.42 125.6 3.1 1.22
상기 표 1의 실험 결과를 살펴보면, 실시예 1 내지 실시예 4의 경우에는 비교예 1 내지 비교예 3에 비해 합성 수율이 현저히 높게 나타났고, 수득된 탄소나노 튜브의 직경 표준편차값이 0.3 미만으로, 각 가닥별 탄소나노튜브의 직경이 균일하게 형성되는 것으로 나타났다.
구체적으로, 비교예 1과 비교예 2를 함께 살펴보면, 기능 향상제의 함량이 충분하지 않은 경우, 기능 향상제에 의한 합성 수율 향상 및 직경 분포도 균일화 효과가 나타나지 않는 것을 알 수 있다. 또한, 비교예 3의 경우에도 기능 향상제에 의한 효과가 나타나지 않는데, 이는 기능 향상제의 함량이 과도하여 오히려 에멀젼 혼합물의 상 불안정화를 야기하였기 때문에 나타난 결과로 판단된다.
따라서, 본 실험 결과로부터 탄소나노튜브 합성 수율 향상 및 직경 균일화를 도모하기 위한 기능 향상제의 함량은 용매 100 중량부에 대하여 0.1~0.4 중량부임을 확인할 수 있었다.
[실험예 2]
제조예와 동일한 방법을 이용하되, 기능 향상제로 사용되는 인돌(I)과 디스테아르디모늄 헥토라이트(D)의 함량을 하기 표 2와 같이 변화시켜가며 에멀젼 혼합물을 제조하고, 각 에멀젼 혼합물을 이용하여 제조예와 동일한 방법으로 탄소나노튜브를 합성하였다. 이후, 실험예 1과 동일한 방법으로 합성 수율 및 직경 분포도를 측정하고 그 결과를 표 2에 함께 기재하였다.
기능향상제(중량부) 합성
수율
(%)
직경 분포도
인돌
(A)
디스테아르디모늄 헥토라이트
(B)
합계 A:B 평균값
(nm)
표준편차
실시예 5 0.21 - 0.21 - 233 2.8 1.45
실시예 6 - 0.20 0.20 - 91 1.9 0.41
실시예 7 0.15 0.04 0.19 1:0.27 214 2.2 1.02
실시예 8 0.14 0.05 0.19 1:0.36 222 2.0 0.20
실시예 9 0.12 0.07 0.19 1:0.58 232 2.1 0.28
실시예 10 0.12 0.08 0.20 1:0.67 216 1.8 0.28
실시예 11 0.12 0.09 0.21 1:0.75 125 2.5 0.21
상기 표 2의 실험 결과를 살펴보면, 실시예 5의 경우에는 합성 수율은 높으나 탄소나노튜브의 직경이 불균일하게 형성되는 문제가 있고, 실시예 6의 경우에는합성 수율이 저하되는 문제가 있어, 기능 향상제로 인돌과 디스테아르디모늄 헥토라이트를 함께 사용하는 것이 바람직함을 확인할 수 있다.
또한, 실시예 7의 경우에는 인돌과 디스테아르디모늄 헥토라이트가 모두 포함되었음에도 불구하고 실시예 5와 유사한 결과가 나타났고, 실시예 11의 경우에는 실시예 6과 유사한 결과가 나타났다. 이러한 결과로부터 기능 향상제로 인돌과 디스테아르디모늄 헥토라이트가 모두 사용되는 경우 1 : 0.3~0.7의 중량비로 사용되는 것이 바람직함을 확인할 수 있었다.
본 발명은 상술한 특정의 실시예 및 설명에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능하며, 그와 같은 변형은 본 발명의 보호 범위 내에 있게 된다.
본 발명에 따른 기상합성 방식을 이용한 연속식 탄소나노튜브의 제조 방법은, 탄소나노튜브의 직경을 균일하게 제어할 수 있고, 탄소나노튜브 생성 수율을 높일 수 있는 효과가 존재하므로, 산업상 이용가능성이 존재한다.

Claims (6)

  1. 용매, 금속염, 계면활성제, 환원제 및 기능 향상제를 혼합하고 교반하여 에멀젼 혼합물을 제조하는 액상 혼합물 형성 단계;
    상기 에멀젼 혼합물을 운반 기체와 혼합하여 기상 혼합물을 제조하는, 기상혼합물 형성 단계; 및
    상기 기상 혼합물을 가열된 반응기 내로 도입하여, 탄소나노튜브를 형성하는 반응 단계;를 포함하고,
    상기 기능 향상제는 인돌, 이미다졸 및 헥토라이트 화합물 중 적어도 어느 하나 이상을 포함하는, 연속식 탄소나노튜브의 제조 방법.
  2. 제1항에 있어서,
    상기 기상 혼합물 형성 단계에서, 탄소원이 추가로 더 혼합되는 것을 특징으로 하는, 연속식 탄소나노튜브의 제조 방법.
  3. 제1항에 있어서, 상기 액상 혼합물 형성 단계는,
    용매, 금속염 및 계면활성제를 혼합하고 교반하는 제1 혼합 단계; 및
    상기 제1 혼합 단계를 거쳐 얻어진 혼합물에 환원제 및 기능 향상제를 첨가하고 교반하는 제2 혼합 단계;를 포함하는 것을 특징으로 하는, 연속식 탄소나노튜브의 제조 방법.
  4. 제1항에 있어서, 상기 용매는,
    방향족 탄화수소, 지방족 탄화수소, 알코올 화합물 및 물로 이루어진 군에서 선택되는 적어도 어느 하나 이상인 것을 특징으로 하는, 연속식 탄소나노튜브의 제조 방법.
  5. 제1항에 있어서, 상기 에멀젼 혼합물은,
    용매 100 중량부에 대하여, 금속염 0.01~5 중량부, 계면활성제 5~17 중량부, 환원제 0.02~10 중량부 및 기능 향상제 0.1~0.4 중량부를 포함하는 것을 특징으로 하는, 연속식 탄소나노튜브의 제조 방법.
  6. 제1항에 있어서, 상기 기능 향상제는,
    인돌과 이미다졸로 이루어진 군에서 선택되는 적어도 어느 하나 이상의 제1 화합물과 헥토라이트 화합물을 포함하는 제2 화합물이 혼합된 것인, 연속식 탄소나노튜브의 제조 방법.
PCT/KR2021/014227 2020-11-09 2021-10-14 연속식 탄소나노튜브의 제조 방법 WO2022097948A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21889413.7A EP4242175A1 (en) 2020-11-09 2021-10-14 Method for continuous production of carbon nanotubes
US18/250,700 US20230406707A1 (en) 2020-11-09 2021-10-14 Method for continuous production of carbon nanotubes
JP2023527714A JP2023548407A (ja) 2020-11-09 2021-10-14 カーボンナノチューブの連続式製造方法
CN202180074547.4A CN116368097A (zh) 2020-11-09 2021-10-14 连续制造碳纳米管的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200148692A KR102230238B1 (ko) 2020-11-09 2020-11-09 연속식 탄소나노튜브의 제조 방법
KR10-2020-0148692 2020-11-09

Publications (1)

Publication Number Publication Date
WO2022097948A1 true WO2022097948A1 (ko) 2022-05-12

Family

ID=75262095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/014227 WO2022097948A1 (ko) 2020-11-09 2021-10-14 연속식 탄소나노튜브의 제조 방법

Country Status (6)

Country Link
US (1) US20230406707A1 (ko)
EP (1) EP4242175A1 (ko)
JP (1) JP2023548407A (ko)
KR (1) KR102230238B1 (ko)
CN (1) CN116368097A (ko)
WO (1) WO2022097948A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102230238B1 (ko) * 2020-11-09 2021-03-19 (주)케이에이치 케미컬 연속식 탄소나노튜브의 제조 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030008763A (ko) * 2001-07-20 2003-01-29 (주)케이에이치 케미컬 탄소나노튜브의 제조 방법
KR20050052885A (ko) * 2003-12-01 2005-06-07 (주)케이에이치 케미컬 물을 사용하는 고순도 탄소나노튜브의 제조 방법
KR20080006813A (ko) * 2006-07-13 2008-01-17 충남대학교산학협력단 연속적인 합성이 가능한 탄소나노튜브 합성 방법
JP5942854B2 (ja) * 2010-12-28 2016-06-29 日本電気株式会社 カーボンナノチューブインク組成物とその塗布方法、カーボンナノチューブ含有薄膜の形成方法
KR20170123633A (ko) * 2015-02-27 2017-11-08 니폰 제온 가부시키가이샤 폴리에테르계 중합체 조성물
KR102230238B1 (ko) * 2020-11-09 2021-03-19 (주)케이에이치 케미컬 연속식 탄소나노튜브의 제조 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942854B2 (ja) * 1977-08-10 1984-10-18 株式会社リコー 複数ビ−ム同時走査装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030008763A (ko) * 2001-07-20 2003-01-29 (주)케이에이치 케미컬 탄소나노튜브의 제조 방법
KR20050052885A (ko) * 2003-12-01 2005-06-07 (주)케이에이치 케미컬 물을 사용하는 고순도 탄소나노튜브의 제조 방법
KR20080006813A (ko) * 2006-07-13 2008-01-17 충남대학교산학협력단 연속적인 합성이 가능한 탄소나노튜브 합성 방법
JP5942854B2 (ja) * 2010-12-28 2016-06-29 日本電気株式会社 カーボンナノチューブインク組成物とその塗布方法、カーボンナノチューブ含有薄膜の形成方法
KR20170123633A (ko) * 2015-02-27 2017-11-08 니폰 제온 가부시키가이샤 폴리에테르계 중합체 조성물
KR102230238B1 (ko) * 2020-11-09 2021-03-19 (주)케이에이치 케미컬 연속식 탄소나노튜브의 제조 방법

Also Published As

Publication number Publication date
US20230406707A1 (en) 2023-12-21
CN116368097A (zh) 2023-06-30
EP4242175A1 (en) 2023-09-13
JP2023548407A (ja) 2023-11-16
KR102230238B1 (ko) 2021-03-19

Similar Documents

Publication Publication Date Title
AU2001294278B2 (en) Preparation of carbon nanotubes
US9862604B2 (en) Boron nitride nanotubes and process for production thereof
Nyamori et al. The use of organometallic transition metal complexes in the synthesis of shaped carbon nanomaterials
KR101350690B1 (ko) 초저밀도 특성을 지닌 번들 구조의 고전도성 탄소나노튜브 및 이의 제조방법
WO2017039132A1 (ko) 카본나노튜브의 정제방법
WO2022097948A1 (ko) 연속식 탄소나노튜브의 제조 방법
WO2017018667A1 (ko) 열안정성이 개선된 카본나노튜브
US20070248528A1 (en) Method for the Preparation of High Purity Carbon Nanotubes Using Water
KR101349670B1 (ko) 수직 배향된 번들 구조를 지닌 고전도성 탄소나노튜브 및 이를 이용한 고전도성 코팅액 조성물
WO2017048053A1 (ko) 결정성이 개선된 카본나노튜브
Tian et al. Fabrication and growth mechanism of carbon nanospheres by chemical vapor deposition
KR102230246B1 (ko) 탄소나노튜브의 연속 합성 방법
RU2391289C2 (ru) Способ приготовления азотсодержащего углеродного материала нанотрубчатой структуры
Mohlala et al. Floating catalyst CVD synthesis of carbon nanotubes from CpFe (CO) 2X (X= Me, I): Poisoning effects of I
Yoo et al. Thermal transfer improvement in polyvinyl alcohol films by mixing with boron nitride nanotubes synthesized using a radio-frequency inductively coupled thermal plasma
Call et al. The density factor in the synthesis of carbon nanotube forest by injection chemical vapor deposition
WO2024080789A1 (ko) 탄소나노튜브 제조용 촉매
WO2023136631A1 (ko) 번들형 탄소나노튜브
US20240017998A1 (en) Method of producing single crystalline boron nitride nanosheets and boron carbon nitride nanosheets
WO2023136634A1 (ko) 탄소나노튜브 제조용 촉매의 제조방법
Han et al. Synthesis of aligned carbon nanotubes by C 2 H 2 decomposition on Fe (CO) 5 as a catalyst precursor
KIM et al. Patent 2877060 Summary

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21889413

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023527714

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2021889413

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021889413

Country of ref document: EP

Effective date: 20230609