WO2022097493A1 - 成形材料および成形品 - Google Patents

成形材料および成形品 Download PDF

Info

Publication number
WO2022097493A1
WO2022097493A1 PCT/JP2021/038942 JP2021038942W WO2022097493A1 WO 2022097493 A1 WO2022097493 A1 WO 2022097493A1 JP 2021038942 W JP2021038942 W JP 2021038942W WO 2022097493 A1 WO2022097493 A1 WO 2022097493A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyphenylene sulfide
molding material
sulfide
resin
reinforcing fiber
Prior art date
Application number
PCT/JP2021/038942
Other languages
English (en)
French (fr)
Inventor
平田慎
鈴木貴文
濱口美都繁
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2021565816A priority Critical patent/JPWO2022097493A1/ja
Priority to CN202180072578.6A priority patent/CN116419947A/zh
Priority to US18/034,454 priority patent/US20240017444A1/en
Priority to EP21889046.5A priority patent/EP4242259A1/en
Publication of WO2022097493A1 publication Critical patent/WO2022097493A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/726Measuring properties of mixture, e.g. temperature or density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/04Polysulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length

Definitions

  • the present invention relates to a molding material containing a reinforcing fiber bundle and polyphenylene sulfide, and a molded product containing reinforcing fibers and polyphenylene sulfide.
  • thermoplastic prepregs, yarns, and glass mats are known as molding materials using a continuous reinforcing fiber bundle and a thermoplastic resin as a matrix.
  • a molding material is easy to mold by taking advantage of the characteristics of a thermoplastic resin, does not require a storage load like a thermosetting resin, and the obtained molded product has high toughness and is recyclable. It has the characteristic of being excellent.
  • the molding material processed into pellets can be applied to molding methods having excellent economic efficiency and productivity such as injection molding and stamping molding, and is useful as an industrial material.
  • Patent Documents 1 and 2 disclose that a molded product having high mechanical properties can be obtained by injection molding a molding material composed of a continuous reinforcing fiber bundle and a polyphenylene sulfide resin.
  • Patent Document 3 discloses that polyarylene sulfide containing a paraarylene sulfide unit, a metaarylene sulfide unit and a filler improves adhesiveness to an epoxy resin while maintaining heat resistance and mechanical properties. ..
  • a molding material containing a bundle of reinforcing fibers which has good moldability, dimensional accuracy, and appearance characteristics even when molded into a small size, thin wall, or a complicated shape, has not yet been found.
  • the subject of the present invention has been made in view of the above circumstances, and more specifically, by reducing the generation of gas during the molding process and suppressing the surface roughness of the molded product, the molded product It is an object of the present invention to provide a molding material capable of achieving both excellent surface smoothness and mechanical properties.
  • the polyphenylene sulfide (B) contains a paraphenylene sulfide unit and a metaphenylene sulfide unit, and the content of the metaphenylene sulfide unit is 7 mol% or more with respect to the total amount of the paraphenylene sulfide unit and the metaphenylene sulfide unit.
  • [3] The molding material according to [1] or [2], wherein the molding material is a long fiber pellet.
  • the reinforcing fiber bundles (A) are arranged in parallel in parallel with the axial direction of the molding material, and the length of the reinforcing fiber bundles (A) is substantially the same as the length of the molding material.
  • [5] The molding material according to any one of [1] to [4], wherein the temperature-decreasing crystallization temperature of the polyphenylene sulfide (B) is 190 ° C. or lower.
  • the polyphenylene sulfide contains a paraphenylene sulfide unit and a metaphenylene sulfide unit, and the content of the metaphenylene sulfide unit is 7 mol% or more with respect to the total amount of the paraphenylene sulfide unit and the metaphenylene sulfide unit.
  • the molded product according to any one of [10] to [12].
  • polyphenylene sulfide according to any one of [10] to [13], which comprises a homopolyphenylene sulfide composed of only paraphenylene sulfide units and a copolymerized polyphenylene sulfide composed of paraphenylene sulfide units and metaphenylene sulfide units. Molded product.
  • the present invention it is possible to reduce the generation of gas derived from the reinforcing fiber bundle and the sizing agent during the molding process, and it is possible to suppress the surface roughness of the molded product due to the gas, so that the surface smoothness and mechanical properties of the molded product can be improved.
  • a compatible molding material can be obtained.
  • the molding material of the present invention can suppress the generation of gas derived from the reinforcing fiber bundle and the sizing agent during the molding process, and the reinforcing fibers are well dispersed in the molded product during injection molding. Because it is possible to easily manufacture molded products with excellent mechanical properties, it is not limited to molding methods such as injection molding, transfer molding, blow molding, insert molding, etc., but also a wide range of molding methods such as plunger molding, press molding, stamping molding, etc. It can also be applied to molding methods.
  • Molded products obtained by molding the molding material of the present invention include thrust washers, oil filters, seals, bearings, gears, cylinder head covers, bearing retainers, intake manifolds, automobile parts such as pedals, silicon wafer carriers, and IC chip trays. , Semiconductor / liquid crystal manufacturing equipment parts such as electrolytic condenser trays and insulating films, compressor parts such as pumps, valves and seals, industrial machine parts such as aircraft cabin interior parts, medical equipment parts such as sterilization equipment, columns and pipes, and food products. Beverage manufacturing equipment parts can be mentioned. Further, the molding material of the present invention can relatively easily obtain a thin-walled molded product having a thickness of 0.5 to 2 mm.
  • Such thin-walled molding is required, for example, as represented by a housing used for a personal computer, a mobile phone, etc., and a keyboard support which is a member for supporting the keyboard inside the personal computer.
  • Examples include members for electric and electronic devices. In such a member for electric / electronic equipment, when carbon fiber having conductivity is used for the reinforcing fiber, electromagnetic wave shielding property is imparted, which is suitable.
  • FIG. 1 It is a schematic diagram which shows still another example of the shape of the cross section in the direction orthogonal to the axis of a preferred embodiment of the molding material of this invention. It is an internal perspective perspective view (schematic view) of a general long fiber pellet. It is an internal perspective perspective view (schematic diagram) of a general short fiber pellet.
  • the molding material of the present invention contains a reinforcing fiber bundle (A) and polyphenylene sulfide (B).
  • A reinforcing fiber bundle
  • B polyphenylene sulfide
  • the molding material of the present invention preferably contains polyphenylene sulfide (B) and a composite, and the composite is preferably composed of a reinforcing fiber bundle (A) and a resin (C).
  • the resin (C) is preferably one or more resins selected from the group consisting of epoxy resins, phenol resins and terpene resins.
  • the composite is coated with polyphenylene sulfide (B). That is, the composite composed of the reinforcing fiber bundle (A) and the resin (C) (impregnated resin) selected from the group consisting of the epoxy resin, the phenol resin and the terpene resin is coated with the polyphenylene sulfide (B). Is preferable.
  • the handleability of the molding material is improved.
  • the molding material of the present invention is kneaded by, for example, injection molding to obtain a final molded product. From the viewpoint of handleability of the molding material, the complex and the polyphenylene sulfide resin are not separated until molding is performed, and the above-mentioned form (the form in which the complex is coated with polyphenylene sulfide (B)) is maintained. It is important to be.
  • the molding material is the reinforcing fiber bundle and the polyphenylene sulfide resin during material transfer in the molding process.
  • the complex is filled with a resin (C) (hereinafter, the resin (C) may be referred to as an "impregnated resin") between each single fiber of the reinforcing fiber bundle (A).
  • the resin (C) is impregnated between the single fibers of the reinforcing fiber bundle (A). That is, it is a complex in which reinforcing fibers are dispersed like islands in the sea of impregnated resin.
  • the reinforcing fiber bundle (A) is completely impregnated with the impregnated resin, but the complex composed of the reinforcing fiber bundle (A) and the impregnated resin may have some voids.
  • the void ratio is preferably in the range of 0 to 40% or less. More preferably, it is 0 to 20% or less. When the void ratio is in the range, the effect of impregnation and promotion of fiber dispersion is excellent.
  • the void ratio is measured by measuring the portion of the complex by the ASTM 2734 (1997) test method.
  • the form of the coating is not particularly limited, and examples thereof include a form in which polyphenylene sulfide (B) covers a part or all of the periphery of the strand-shaped complex.
  • polyphenylene sulfide (B) covers a part or all of the periphery of the strand-shaped complex.
  • All around the strand-shaped complex is coated with polyphenylene sulfide (B).
  • the state of the boundary between the complex and the polyphenylene sulfide (B) is not particularly limited, but is partially near the boundary between the complex and the polyphenylene sulfide (B).
  • Polyphenylene sulfide (B) may enter a part of the complex and be in a state of being compatible with the impregnated resin in the complex, or a state of being impregnated in the reinforcing fiber bundle (A). preferable.
  • the coated polyphenylene sulfide (B) is less likely to be peeled off from the complex, a molding material with good handleability can be obtained, and a stable feed is achieved during molding, so that gas generation can be reduced. Uniform plasticization can be achieved and excellent fluidity can be developed.
  • the molding material of the present invention is preferably in the form of pellets and is preferably long fiber pellets.
  • the long fiber pellet refers to a resin material containing reinforcing fibers having substantially the same length as the pellet length in substantially the same direction.
  • long fiber pellets have a longer fiber length in a molded product after molding than short fiber pellets, and therefore exhibit excellent mechanical properties.
  • long fiber pellets tend to be significantly inferior in formability (fluidity).
  • polyphenylene sulfide is used as the thermoplastic resin, the tendency is remarkable because polyphenylene sulfide has a high molding temperature and a high crystallization rate.
  • the molding temperature is raised in order to improve the moldability (fluidity)
  • the amount of gas derived from the reinforcing fiber bundle and the sizing agent during the molding process increases, and the appearance characteristics (surface smoothness) of the molded product are improved. descend.
  • the molding material is a long fiber pellet and the thermoplastic resin used is polyphenylene sulfide, it is low by adopting the embodiment of the present invention, that is, by using polyphenylene sulfide having a melting point of 270 ° C. or lower.
  • the molding process can be performed at the molding temperature. As a result, while maintaining excellent mechanical properties, it is possible to greatly suppress the generation of gas derived from the reinforcing fiber bundle and the sizing agent during the molding process, and it is possible to significantly improve the moldability (fluidity). can.
  • the short fiber pellet refers to a resin material in which reinforcing fibers are randomly dispersed in a thermoplastic resin.
  • FIG. 6 is an internal permeation perspective view of the long fiber pellet (schematic diagram) (in the figure, reference numeral 1 indicates a reinforcing fiber bundle (A), reference numeral 2 indicates a polyphenylene sulfide (B)), and FIG. 7 shows the inside of the short fiber pellet.
  • a transmission perspective view (schematic diagram) is shown (in the figure, reference numeral 2 indicates polyphenylene sulfide (B), and reference numeral 3 indicates reinforcing fibers).
  • the long fiber pellets can be produced by a known method.
  • the reinforcing fiber bundles (A) are arranged in parallel in parallel with the axial direction of the molding material (preferably pellets), and the length of the reinforcing fiber bundle (A) is substantially the length of the molding material. It is preferable that they are the same.
  • parallel parallel means a state in which the axis of the long axis of the reinforcing fiber bundle (A) and the axis of the long axis of the molding material are oriented in the same direction, and the angle between the axes.
  • the deviation is preferably 20 ° or less, more preferably 10 ° or less, and further preferably 5 ° or less.
  • substantially the same length means that, for example, in a pellet-shaped molding material, the reinforcing fiber bundle (A) is cut in the middle of the inside of the pellet, or the reinforcing fiber bundle (A) significantly shorter than the total length of the pellet is substantially the same. It is not included in the target.
  • the amount of the reinforcing fiber bundle (A) shorter than the total length of the pellet is not specified, but when the content of the reinforcing fiber having a length of 50% or less of the total length of the pellet is 30% by mass or less. , It is evaluated that the reinforcing fiber bundle (A) significantly shorter than the total length of the pellet is not substantially contained.
  • the content of the reinforcing fiber having a length of 50% or less of the total length of the pellet is preferably 20% by mass or less.
  • the total length of the pellet is the length of the pellet in the direction parallel to the orientation direction of the reinforcing fibers in the pellet. Since the reinforcing fiber bundle (A) has substantially the same length as the molding material, the reinforcing fiber length in the molded product can be lengthened, and excellent mechanical properties can be obtained.
  • the length of the molding material there is no particular limitation on the length of the molding material, and it can be used continuously or as long as it is, depending on the molding method.
  • a thermoplastic yarn prepreg it can be wound around a mandrel while being heated to obtain a roll-shaped molded product.
  • the molding material is preferably 1 to 50 mm long fiber pellets. It is more preferably 3 to 20 mm, and most preferably 5 to 10 mm.
  • FIGS. 3 to 5 schematically show the shape of the cross section in the direction orthogonal to the axial center of the molding material of the present invention. It is a representation of the target.
  • the shape of the cross section of the molding material is not limited to that shown in the figure, but preferably, as shown in FIG. 1, which is a cross section in the axial direction, the reinforcing fiber bundle (A) serves as a core material and the polyphenylene sulfide (B). It is preferable that the components are sandwiched between layers.
  • the reinforcing fiber bundle (A) has a core structure and the polyphenylene sulfide (B) has a sheath structure.
  • the molding material preferably has a core-sheath structure in which the polyphenylene sulfide (B) covers the periphery of the reinforcing fiber bundle (A).
  • the molding material may contain a complex composed of the reinforcing fiber bundle (A) and the resin (C), the "reinforced fiber bundle (A)” is read as “complex”, and the "composite” in FIGS. 1 to 6 is used. 1: “Reinforcing fiber bundle (A)” is read as "complex”.
  • polyphenylene sulfide (B) can be kneaded into a complex composed of a reinforcing fiber bundle (A) and an impregnated resin by a method such as injection molding or press molding to obtain a final molding material. From the viewpoint of handleability of the molding material, it is preferable that the complex and the polyphenylene sulfide (B) are not separated until molding is performed, and the polyphenylene sulfide (B) keeps the form of covering the complex. Since the impregnated resin has a low molecular weight, it is often a solid that is relatively brittle and easily crushed. Therefore, polyphenylene sulfide (B) is arranged so as to protect the complex so that the impregnated resin is not crushed and scattered due to transportation of the material until molding, impact during handling, rubbing, etc. Is desirable.
  • the reinforcing fiber bundle (A) in the present invention refers to a state in which single fibers are arranged in one direction.
  • Examples of the form of the reinforcing fiber bundle (A) include a unidirectional fiber bundle, a bidirectional fiber bundle, and a multidirectional fiber bundle, but the unidirectional fiber bundle is unidirectional from the viewpoint of productivity in the process of manufacturing the molding material.
  • Fiber bundles can be used more preferably.
  • the reinforcing fiber bundle (A) the larger the number of single yarns of the reinforcing fibers is, the more economically advantageous it is. Therefore, the number of single fibers is preferably 10,000 or more.
  • the type of the reinforcing fiber constituting the reinforcing fiber bundle (A) is not particularly limited, and for example, carbon fiber, glass fiber, aramid fiber, alumina fiber, silicon carbide fiber, boron fiber, metal fiber, natural fiber, mineral fiber. Etc. can be used, and these may be used alone or in combination of two or more. Among them, PAN (polyacrylic nitrile) -based, pitch-based, rayon-based and other carbon fibers are preferably used from the viewpoint of obtaining a molded product having a light weight, high strength and a high elastic modulus.
  • reinforcing fibers having a tensile strength of 4,000 MPa or more are preferable, and more preferably 5,000 MPa or more.
  • reinforcing fibers having a tensile elastic modulus of 200 GPa or more are preferable, and more preferably 400 GPa or more.
  • a reinforcing fiber having an elastic modulus of 400 GPa or more, which is difficult to maintain a long fiber length, is preferable because the effect of the molding material of the present invention described later can be more exhibited.
  • glass fiber can be preferably used from the viewpoint of enhancing the economic efficiency of the obtained molded product, and it is particularly preferable to use carbon fiber and glass fiber in combination from the viewpoint of the balance between mechanical properties and economic efficiency.
  • aramid fibers can be preferably used from the viewpoint of enhancing the impact absorption and shapeability of the obtained molded product, and it is particularly preferable to use carbon fibers and aramid fibers in combination from the viewpoint of the balance between mechanical properties and impact absorption.
  • reinforced fibers coated with a metal such as nickel, copper or ytterbium, or pitch-based carbon fibers can also be used.
  • a sizing agent is attached to the reinforcing fiber bundle (A).
  • the type of the sizing agent is not particularly limited, but one or more kinds of sizing agents such as epoxy resin, urethane resin, acrylic resin and various thermoplastic resins can be used in combination.
  • the reinforcing fiber bundle (A) is preferably 1% by mass or more and 50% by mass or less with respect to the total amount (100% by mass) of the molding material. More preferably, it is 10% by mass or more and 30% by mass or less. If the content of the reinforcing fiber bundle (A) is less than 1% by mass, the mechanical properties of the obtained molded product may be insufficient, and if it exceeds 50% by mass, it is derived from the reinforcing fiber or the sizing agent adhering to the reinforcing fiber. The amount of gas generated may increase.
  • the melting point of polyphenylene sulfide (B) in the present invention is 270 ° C. or lower.
  • the melting point of polyphenylene sulfide (B) can be determined from the temperature of the apex of the melting peak in the differential scanning calorimetry. When two or more polyphenylene sulfides are used and the mixture thereof exhibits a single melting peak, the melting point can be determined from the apex of the melting peak. On the other hand, when two or more kinds of polyphenylene sulfides are used and a plurality of melting peaks are observed, the melting point is obtained from the apex of each melting peak.
  • the molding temperature can be lowered and the generation of gas generated during molding can be suppressed. It can also improve economic efficiency.
  • the molding material contains an impregnated resin or when a sizing agent is attached to the reinforcing fiber, decomposition of the impregnating resin or the sizing agent during the molding process can be suppressed, so that the impregnation has relatively low heat resistance. It becomes possible to select a resin or a sizing agent. That is, it is possible to increase the degree of freedom in designing the impregnated resin and the sizing agent and the degree of freedom in selecting the impregnating resin and the sizing agent.
  • the melting point of polyphenylene sulfide (B) is more preferably 260 ° C. or lower. Since the melting point of the polyphenylene sulfide (B) is 270 ° C. or lower, the molding temperature can be lowered, and the decomposition gas at the time of molding is suppressed and the economy is excellent. In particular, when the molding material contains an impregnated resin or when a sizing agent is attached to the reinforcing fiber, the decomposition of the impregnating resin or the sizing agent can be suppressed, and the degree of freedom of the impregnating resin or the sizing agent should be increased. Is possible. Further, from the viewpoint of heat resistance, the melting point of polyphenylene sulfide (B) is preferably 240 ° C. or higher. The melting point of polyphenylene sulfide (B) is measured as follows.
  • the sample is heated at a heating rate of 20 ° C./min from 40 ° C. to 340 ° C. with a differential scanning calorimeter.
  • the temperature of the sample is lowered from 340 ° C. to 40 ° C. at a temperature lowering rate of 20 ° C./min.
  • the temperature of the sample is raised again from 40 ° C. to 340 ° C. at a heating rate of 20 ° C./min.
  • the apex of the melting peak observed in the heating process of [3] above is defined as the melting point.
  • the method for lowering the melting point of polyphenylene sulfide (B) to 270 ° C. or lower is not particularly limited, but metaphenylene sulfide and / or orthophenylene sulfide is copolymerized with polyphenylene sulfide mainly formed of a paraphenylene sulfide skeleton.
  • metaphenylene sulfide and / or orthophenylene sulfide is copolymerized with polyphenylene sulfide mainly formed of a paraphenylene sulfide skeleton.
  • Examples thereof include a method of block-copolymerizing another polymer at the terminal of polyphenylene sulfide, and a method of reducing molecular motility by oxidatively cross-linking polyphenylene sulfide.
  • Etherketone polyether ether ketone, polythioether ketone, polytetrafluoroethylene, polyorganosiloxane, thermoplastic polyurethane resin, high density polyethylene, low density polyethylene, linear low density polyethylene, polypropylene, polyacrylic acid ester, polymethacrylic Examples thereof include polyolefins such as acid esters, poly1-butene, poly1-pentene, polymethylpentene, and ethylene / ⁇ -olefin copolymers.
  • the polyphenylene sulfide (B) is preferably a polyphenylene sulfide obtained by copolymerizing paraphenylene sulfide and metaphenylene sulfide. That is, in the present invention, the polyphenylene sulfide (B) preferably contains a paraphenylene sulfide unit and a metaphenylene sulfide unit. In the present invention, the content of the metaphenylene sulfide unit is preferably 7 mol% or more with respect to the total amount of the paraphenylene sulfide unit and the metaphenylene sulfide unit.
  • the content of the metaphenylene sulfide unit is more preferably 8 mol% or more, further preferably 10 mol% or more, and particularly preferably 10.5 mol% or more.
  • the melting point of polyphenylene sulfide can be lowered, the crystallization rate of polyphenylene sulfide (B) is lowered, and the fluidity is improved.
  • the content of the metaphenylene sulfide unit is less than 7 mol%, it may not be possible to sufficiently lower the melting point of the polyphenylene sulfide.
  • the upper limit of the content of the metaphenylene sulfide unit of polyphenylene sulfide is not particularly limited, but is preferably 20 mol% or less, and more preferably 14 mol% or less.
  • the content of the metaphenylene sulfide unit is 20 mol% or less, the mechanical properties can be achieved, the demolding property at the time of molding is improved, and the molding cycle property is also good.
  • it is 14 mol% or less, in addition to being able to achieve both excellent fluidity and mechanical properties, the moldability during molding is improved, and the molding cycle property can be improved.
  • the metaphenylene sulfide unit is larger than 20 mol%, it may not be preferable because the inherent heat aging resistance and chemical resistance of polyphenylene sulfide are lowered.
  • the molding material is in the form of covering a part or all of the periphery of the strand-shaped composite with polyphenylene sulfide (B), if the content of the metaphenylene sulfide unit is 7 mol% or more, the composite is coated. Crystallization of polyphenylene sulfide (B) is suppressed, polyphenylene sulfide (B) is less likely to break, and a molding material with excellent handleability can be obtained.
  • the variation in the mechanical properties of the molded product can be suppressed, the surface smoothness can be improved, the decrease in the fluidity of the molded material can be suppressed, and the fluidity can be suppressed. Can be improved.
  • the content of the metaphenylene sulfide unit is 7 mol% or more, the polyphenylene sulfide is used.
  • (B) is preferable because it is hard to break.
  • the shear stress applied to the reinforcing fibers during kneading or molding can be reduced, and the reinforcing fiber bundle (A) of the molded product can be reduced.
  • the fiber length can be maintained for a long time.
  • it is preferable because the effect of the molding material of the present invention can be more exhibited on the reinforcing fiber having an elastic modulus of 350 GPa or more, which is difficult to maintain the fiber length for a long time.
  • the metaphenylene sulfide unit of polyphenylene sulfide (B) is measured using a Fourier transform infrared spectroscope (hereinafter, abbreviated as FT-IR). Specifically, the content of the metaphenylene sulfide unit is calculated from the size of the absorption peak of 780 cm -1 , which is the absorption peak of the metaphenylene sulfide unit.
  • FT-IR Fourier transform infrared spectroscope
  • the temperature-decreasing crystallization temperature of polyphenylene sulfide (B) is preferably 190 ° C. or lower. More preferably, it is 170 ° C. or lower.
  • the temperature-decreasing crystallization temperature of the polyphenylene sulfide (B) is 190 ° C. or lower, the crystallization rate is slowed down and the fluidity during molding is excellent.
  • the lower limit of the temperature-decreasing crystallization temperature of polyphenylene sulfide (B) is preferably 140 ° C.
  • thermodecreasing crystallization temperature of polyphenylene sulfide (B) To measure the temperature-decreasing crystallization temperature of polyphenylene sulfide (B), use a differential scanning calorimeter to raise the temperature from 40 ° C to 340 ° C at 20 ° C / min, and then lower the temperature from 340 ° C to 40 ° C at 20 ° C / min. The peak of the temperature-decreasing crystallization peak is defined as the temperature-decreasing crystallization temperature.
  • the method for lowering the temperature-decreasing crystallization temperature of polyphenylene sulfide (B) to 190 ° C. or lower is not particularly limited, but a method for copolymerizing metaphenylene sulfide and / or orthophenylene sulfide with polyphenylene sulfide mainly formed of a paraphenylene sulfide skeleton. , A method of block-copolymerizing another polymer at the terminal of polyphenylene sulfide, a method of reducing molecular motility by oxidatively cross-linking polyphenylene sulfide, and the like.
  • the difference between the melting point of polyphenylene sulfide (B) and the temperature-decreasing crystallization temperature is preferably 80 ° C. or higher. More preferably, it is 90 ° C. or higher.
  • the difference between the melting point and the temperature-decreasing crystallization temperature refers to the temperature until the resin, which was in a molten state under the temperature-decreasing temperature, crystallizes and solidifies. Therefore, if the difference between the melting point and the temperature-decreasing crystallization temperature is large, it means that the solidification of the resin is delayed.
  • the difference between the melting point of the polyphenylene sulfide (B) and the temperature-decreasing crystallization temperature is 80 ° C.
  • the upper limit of the difference between the melting point of the polyphenylene sulfide (B) and the temperature-decreasing crystallization temperature is preferably 120 ° C.
  • the method for increasing the difference between the melting point of the polyphenylene sulfide (B) and the temperature-decreasing crystallization temperature to 80 ° C. or higher is not particularly limited, but metaphenylene sulfide and / or orthophenylene sulfide is mainly added to the polyphenylene sulfide formed by the paraphenylene sulfide skeleton. Examples thereof include a method of copolymerizing, a method of blocking copolymerizing another polymer at the end of polyphenylene sulfide, and a method of reducing molecular motility by oxidatively cross-linking polyphenylene sulfide.
  • the polyphenylene sulfide (B) preferably contains homopolyphenylene sulfide composed of only paraphenylene sulfide units and copolymerized polyphenylene sulfide composed of paraphenylene sulfide units and metaphenylene sulfide units.
  • homopolyphenylene sulfide and copolymerized polyphenylene sulfide By containing homopolyphenylene sulfide and copolymerized polyphenylene sulfide, the crystallinity of polyphenylene sulfide can be increased while reducing the amount of gas generated during molding, and the surface smoothness and mechanical properties, fluidity and molding cycleability can be improved. Achieving more compatibility.
  • the content of polyphenylene sulfide (B) is preferably 30% by mass or more and 98.9% by mass or less, more preferably 40% by mass or more and 94.5% by mass, based on the total amount (100% by mass) of the molding material. It is mass% or less, more preferably 50% by mass or more, and 89% by mass or less. By adjusting to such a range, a molding material having excellent moldability and handleability can be obtained. In addition, excellent mechanical properties can be imparted to the molded product.
  • the content of polyphenylene sulfide (B) is less than 30% by mass, the amount of polyphenylene sulfide resin (B) contained in the molding material is small, so that the reinforcing fiber bundle (A) and the polyphenylene sulfide resin (B) are used during molding. May not be sufficiently melt-kneaded or the fluidity may decrease during injection molding. In that case, the reinforcing fiber bundle (A) cannot be sufficiently dispersed in the molded product, which makes molding difficult and may not be preferable.
  • the content of polyphenylene sulfide (B) exceeds 98.9% by mass, the amount of the reinforcing fiber bundle (A) contained in the molding material is relatively small, so that the polyphenylene sulfide (B) is imparted to the molded product. Since the fiber reinforcing effect becomes insufficient, the mechanical properties of the obtained molded product become insufficient, which may be unfavorable. Further, in the case where the polyphenylene sulfide (B) covers a part or all of the periphery of the strand-shaped composite in the molding material, and the polyphenylene sulfide (B) is less than 30% by mass, it is the case. Since the amount of polyphenylene sulfide (B) is small, the coating layer becomes thin, the molding material is easily cracked, and the handleability is deteriorated, which may be unfavorable.
  • the molecular weight of polyphenylene sulfide (B) is preferably 10,000 or more, more preferably 20,000 or more, and particularly particularly, from the viewpoint of the mechanical properties of the molded product obtained by molding the molding material. It is preferably 30,000 or more. This is advantageous from the viewpoint that the larger the weight average molecular weight, the higher the strength and elongation of the matrix resin.
  • the upper limit of the weight average molecular weight is not particularly limited, but is preferably 1,000,000 or less, and more preferably 500,000 or less, from the viewpoint of fluidity during molding.
  • the weight average molecular weight can be determined by using a general GPC (gel permeation chromatography) such as the SEC (size exclusion chromatography).
  • polyphenylene sulfide (B) includes mica, talc, kaolin, hydrotalcite, sericite, bentonite, zonotrite, sepiolite, smectite, montmorillonite, wallastenite, silica, calcium carbonate, glass beads, and glass depending on the application.
  • Flame retardants such as ammonium polyphosphate, aromatic phosphate and red phosphorus, organic acid metal salt flame retardants such as boric acid metal salts, carboxylate metal salts and aromatic sulfonimide metal salts, zinc borate, Inorganic flame retardants such as zinc, zinc oxide and zirconium compounds, nitrogen flame retardants such as cyanuric acid, isocyanuric acid, melamine, melamine cyanurate, melamine phosphate and nitrogenated guanidine, fluoroflame retardants such as PTFE, polyorganosiloxane Silicone flame retardants such as, metal hydroxide flame retardants such as aluminum hydroxide and magnesium hydroxide, and other flame retardants, cadmium oxide, zinc oxide, ferrous oxide, ferric oxide, ferrous oxide.
  • organic acid metal salt flame retardants such as boric acid metal salts, carboxylate metal salts and aromatic sulfonimide metal salts, zinc borate
  • Inorganic flame retardants such as zinc, zinc oxide
  • Flame retardants such as ferric oxide, cobalt oxide, manganese oxide, molybdenum oxide, tin oxide and titanium oxide, pigments, dyes, lubricants, mold retardants, compatibilizers, dispersants, mica, talc and kaolin etc.
  • Crystal nucleating agents, plasticizing agents such as phosphate esters, heat stabilizers, antioxidants, anticoloring agents, UV absorbers, fluidity modifiers, foaming agents, antibacterial agents, anti-vibration agents, deodorants, sliding A sex modifier, an antistatic agent such as polyether ester amide, or the like may be added.
  • the resin (C) (impregnated resin) is preferably one or more resins selected from the group consisting of epoxy resins, phenol resins, and terpene resins.
  • the dispersibility of the reinforcing fiber can be improved when the molding material is molded.
  • the impregnated resin has a lower melt viscosity than polyphenylene sulfide (B). Since the melt viscosity of the impregnated resin is lower than that of polyphenylene sulfide (B), the fluidity of the impregnated resin is high when the molding material is molded, and the effect of dispersing the reinforcing fiber bundle in the polyphenylene sulfide (B) is further improved. be able to.
  • the melt viscosity of the impregnating resin can be made lower than that of polyphenylene sulfide (B), and the molded product can be molded. Since the dispersibility of the reinforcing fiber bundle in the above can be improved, the surface smoothness can be improved while improving the mechanical properties of the molded product obtained by molding the molding material of the present invention, which is preferable.
  • the impregnated resin preferably has a high affinity with polyphenylene sulfide (B).
  • B polyphenylene sulfide
  • the melt viscosity of the impregnated resin at 200 ° C. is preferably 0.01 to 10 Pa ⁇ s.
  • the melt viscosity is more preferably 0.05 Pa ⁇ s or more, and further preferably 0.1 Pa ⁇ s or more.
  • the melt viscosity at 200 ° C. is 10 Pa ⁇ s or less, the impregnated resin can be easily impregnated into the inside of the reinforcing fiber bundle (A).
  • the melt viscosity is preferably 5 Pa ⁇ s or less, and more preferably 2 Pa ⁇ s or less.
  • the melt viscosity of the impregnated resin at 200 ° C. can be measured by a viscoelasticity measuring instrument at 0.5 Hz using a 40 mm parallel plate.
  • the number average molecular weight of the impregnated resin is preferably 200 to 5,000. When the number average molecular weight is 200 or more, the bending strength and the tensile strength of the molded product can be further improved.
  • the number average molecular weight is more preferably 1,000 or more. Further, when the number average molecular weight is 5,000 or less, the viscosity of the impregnated resin is moderately low, so that the impregnation property into the reinforcing fiber bundle (A) is excellent, and the dispersibility of the reinforcing fibers in the molded product is further improved. Can be made to.
  • the number average molecular weight is more preferably 3,000 or less.
  • the number average molecular weight of the impregnated resin can be measured by gel permeation chromatography (GPC).
  • the impregnated resin preferably has a heating weight loss of 5% by weight or less when heated in nitrogen at 280 ° C. for 30 minutes. More preferably, it is 3% by weight or less.
  • the heating weight loss is 5% by weight or less, it is possible to suppress the generation of decomposition gas when the reinforcing fiber bundle (A) is impregnated, and it is possible to suppress the generation of voids and the poor surface appearance during molding. ..
  • the generated gas can be suppressed especially in molding at a high temperature.
  • the weight loss by heating in the present invention represents the weight loss rate of the impregnated resin before and after heating under the heating conditions, where the weight of the impregnated resin before heating is 100%, and can be obtained by the following formula.
  • the weight before and after heating can be determined by measuring the weight at the molding temperature by thermogravimetric analysis (TGA) in an air atmosphere at a heating rate of 10 ° C./min using a platinum sample pan. can.
  • TGA thermogravimetric analysis
  • [Weight%] ⁇ (Weight before heating-Weight after heating) / Weight before heating ⁇ x 100
  • the epoxy resin preferably used as the impregnating resin is a compound having two or more epoxy groups, which does not substantially contain a curing agent, and even when heated, it is subjected to so-called three-dimensional crosslinking. A compound that does not cure. Since the epoxy resin has an epoxy group, it easily interacts with the reinforcing fibers, and at the time of impregnation, it easily adapts to the reinforcing fiber bundle (A) and is easily impregnated. In addition, the dispersibility of the reinforcing fibers during the molding process is further improved.
  • examples of the epoxy resin include glycidyl ether type epoxy resin, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin, and alicyclic epoxy resin. Two or more of these may be used.
  • examples of the glycidyl ether type epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, halogenated bisphenol A type epoxy resin, bisphenol S type epoxy resin, resorcinol type epoxy resin, and hydrogenated bisphenol.
  • Examples of the glycidyl ester type epoxy resin include hexahydrophthalic acid glycidyl ester and dimer acid diglycidyl ester.
  • Examples of the glycidylamine type epoxy resin include triglycidyl isocyanurate, tetraglycidyldiaminodiphenylmethane, tetraglycidylmethylenediamine, and an aminophenol type epoxy resin.
  • Examples of the alicyclic epoxy resin include 3,4-epoxy-6-methylcyclohexylmethylcarboxylate and 3,4-epoxycyclohexylmethylcarboxylate.
  • the glycidyl ether type epoxy resin is preferable, and the bisphenol A type epoxy resin and the bisphenol F type epoxy resin are more preferable because the balance between the viscosity and the heat resistance is excellent.
  • the phenol resin is a resin having a phenol skeleton, may have a substituent, and may be cresol or naphthol.
  • Specific examples of the phenol resin include phenol novolac resin, o-cresol novolak resin, phenol aralkyl resin, naphthol novolak resin, naphthol aralkyl resin and the like.
  • o-cresol novolak resin is preferably used because it has an excellent balance between heat resistance and handleability such as melt viscosity, so that the take-up speed of the complex can be increased and the flame retardancy can be maintained higher. ..
  • the melting point of the phenol resin is not particularly limited, but it is preferably higher than 80 ° C. from the viewpoint of improving the heat resistance and handleability of the molding material and suppressing bleeding out during long-term storage of the molding material. More preferably, it exceeds 100 ° C., and even more preferably 120 ° C.
  • the upper limit of the melting point is not particularly limited, but the melting point of the phenol resin can be obtained from the DSC measurement. Specifically, it can be obtained from the value of the endothermic peak top measured under the condition of a temperature rise of 40 ° C./min.
  • the terpene resin may be a resin made of a polymer obtained by polymerizing a terpene monomer alone in the presence of a Friedelcraft type catalyst in an organic solvent, a terpene monomer and an aromatic monomer, or the like. Examples thereof include a resin made of a polymer obtained by copolymerizing with.
  • terpene monomers include ⁇ -pinene, ⁇ -pinene, dipentene, d-lymonen, milsen, aloocimen, osimene, ⁇ -ferandren, ⁇ -terpinene, ⁇ -terpinene, terpineolene, 1,8-cineole, 1, Examples thereof include monoterpene monoterpenes such as 4-cineole, ⁇ -terpineol, ⁇ -terpineol, ⁇ -terpineol, sabinen, paramentadiens and curenes. Moreover, styrene, ⁇ -methylstyrene and the like are mentioned as an aromatic monomer.
  • ⁇ -pinene, ⁇ -pinene, dipentene, and d-limonene are preferable from the viewpoint of compatibility, and a homopolymer of the compound is more preferable. Further, a hydrogenated terpene resin obtained by hydrogenating the terpene resin is more preferable from the viewpoint of compatibility.
  • a terpene resin obtained by reacting a terpene monomer and phenols in the presence of a catalyst can also be used.
  • the phenols those having 1 to 3 substituents of at least one selected from the group consisting of an alkyl group, a halogen atom and a hydroxyl group on the benzene ring of phenol are preferably used. Specific examples thereof include cresol, xylenol, ethylphenol, butylphenol, t-butylphenol, nonylphenol, 3,4,5-trimethylphenol, chlorophenol, bromophenol, chlorocresol, hydroquinone, resorcinol, orcinol and the like. Two or more of these may be used. Of these, phenol and cresol are preferred.
  • the number average molecular weight of the terpene resin or the terpene phenol resin is preferably 100 to 5,000. More preferably, it is 500 to 1,000.
  • the number average molecular weight is 100 or more, the heat loss of the terpene resin is lowered, and the dispersibility of the reinforcing fiber bundle (A) in the molded product is improved, which is preferable.
  • the number average molecular weight is 5,000 or less, the viscosity of the terpene resin is lowered, so that the impregnation property into the reinforcing fiber bundle (A) and the fiber dispersibility during molding are improved, which is preferable.
  • the content of the resin (C) is preferably 0.1% by mass or more and 20% by mass or less, more preferably 3% by mass or more, based on the total amount (100% by mass) of the molding material. It is 10% by mass or less. Within such a range, a molding material having excellent moldability and handleability can be obtained. If the content of the impregnated resin is less than 0.1% by weight, the impregnated fiber bundle (A) may be insufficiently impregnated, and the handleability of the obtained molding material may be insufficient, which is not preferable. On the other hand, if it exceeds 20% by mass, the amount of low molecular weight components contained in the molded product is relatively large, which is not preferable because the molded product becomes brittle and the mechanical properties deteriorate.
  • the molding material of the present invention is kneaded by, for example, injection molding to become a final molded product.
  • the handleability of the molded material can be improved, and as a result, the variation in the mechanical properties of the molded product can be suppressed and the surface smoothness of the molded product can be suppressed. It is possible to improve the fluidity, suppress the decrease in the fluidity of the molding material, and improve the fluidity. In addition, excellent mechanical properties can be imparted to the obtained molded product.
  • the molding material of the present invention is further enhanced to contain 0.1 to 10% by mass of a compound having two or more compounds having at least one structure selected from a carbodiimide structure, a urea structure and a urethane structure in one molecule. It is preferable from the viewpoint of further enhancing the affinity between the fiber bundle (A) and the polyphenylene sulfide (B) and improving the tensile properties of the obtained molded product.
  • the blending amount is preferably 0.3 to 8% by mass, and is particularly preferably in the range of 0.5 to 5% by mass from the viewpoint of generating decomposition gas during kneading with the matrix resin.
  • the compound having a carbodiimide structure that is, the carbodiimide compound includes polycarbodiimide, and examples thereof include aliphatic polycarbodiimide and aromatic polycarbodiimide, and the affinity and reactivity between the reinforcing fiber bundle (A) and polyphenylene sulfide (B). From the viewpoint of the above, aliphatic polycarbodiimide is preferably used.
  • the repeating unit represented by (indicating the divalent organic group of the aliphatic compound) is the main constituent unit, preferably the repeating unit is 70 mol% or more, more preferably 90 mol% or more, still more preferably 95 mol. It is a homopolymer or copolymer containing% or more.
  • a compound obtained by reacting diisocyanate with a diamine containing a compound containing a plurality of amino groups for example, hydrazine, dihydrazide, etc.
  • polyurea can be synthesized by reacting isocyanate with water to form unstable carbamic acid. Carbamic acid decomposes to generate carbon dioxide and immediately reacts with excess isocyanate to form amino groups that form urea crosslinks.
  • it can also be obtained by treating a compound having a carbodiimide structure with water to react the carbodiimide with urea.
  • a compound obtained by reacting bischloroformate with a diamine can be used.
  • polyurethane can be synthesized by reacting the diisocyanate with a diol such as macroglycol, a polyol, or a combination of macroglycol and a single chain glycol extender.
  • polycarbodiimide is preferably used from the viewpoint of interfacial adhesion with the reinforcing fiber bundle (A).
  • the molded product of the present invention is a molded product containing reinforcing fibers and polyphenylene sulfide, and the weight average fiber length of the reinforcing fibers is 0.3 mm or more and 3.0 mm or less, and the melting point of the polyphenylene sulfide is 270 ° C. or less. It is a molded product. Further, the molded product of the present invention is a molded product containing a reinforcing fiber and polyphenylene sulfide (B), and the weight average fiber length of the reinforcing fiber is 0.3 mm or more and 3.0 mm or less, and the polyphenylene sulfide is used. It is a molded product having a temperature-decreasing crystallizing temperature of 190 ° C. or lower.
  • the weight average fiber length of the reinforcing fibers contained in the molded product is 0.3 to 3.0 mm. More preferably, it is 0.5 to 2.8 mm. More preferably, it is 0.8 to 2.5 mm.
  • the weight average fiber length of the reinforcing fiber is 0.3 to 3.0 mm or more, the mechanical properties of the molded product can be sufficiently exhibited.
  • the weight average fiber length of the reinforcing fiber exceeds 3.0 mm, the fiber pattern of the reinforcing fiber tends to remarkably appear on the surface of the molded product, and waviness derived from the reinforcing fiber occurs on the surface of the molded product, resulting in poor appearance. It may not be preferable because it invites you. Therefore, by setting the weight average fiber length of the reinforcing fiber to 3.0 mm or less, such waviness can be suppressed and the surface appearance of the molded product can be improved.
  • the type of the reinforcing fiber is not particularly limited, and the reinforcing fiber described in the description of the reinforcing fiber bundle of the molding material can be exemplified. Further, the types and combinations of preferable reinforcing fibers are the same, and the reasons for the preferred are the same.
  • the reinforcing fiber is 1 to 50% by mass with respect to 100% by mass of the molded product. More preferably, it is 10 to 30% by mass. If the content of the reinforcing fiber is less than 1% by mass, the mechanical properties of the obtained molded product may be insufficient, and if it exceeds 50% by mass, the appearance of the molded product may be poor.
  • a sizing agent is attached to the reinforcing fiber.
  • the type of the sizing agent is not particularly limited, but one or more kinds of sizing agents such as epoxy resin, urethane resin, acrylic resin and various thermoplastic resins can be used in combination.
  • the polyphenylene sulfide resin contained in the molded product in the present invention preferably has a melting point of 270 ° C. or lower. By setting the melting point to 270 ° C. or lower, molding can be performed at a lower molding temperature than the conventional polyphenylene sulfide resin. This makes it possible to suppress the thermal decomposition of the impregnated resin, the sizing agent and other additives contained in the molding material, that is, the generated gas.
  • the melting point of polyphenylene sulfide (B) is more preferably 260 ° C. or lower. Further, from the viewpoint of heat resistance, the melting point of polyphenylene sulfide (B) is preferably 240 ° C. or higher.
  • the polyphenylene sulfide resin contained in the molded product in the present invention preferably contains homopolyphenylene sulfide composed of only paraphenylene sulfide units and copolymerized polyphenylene sulfide composed of paraphenylene sulfide units and metaphenylene sulfide units.
  • homopolyphenylene sulfide and the copolymerized polyphenylene sulfide By using the homopolyphenylene sulfide and the copolymerized polyphenylene sulfide, the crystallization rate and the temperature-decreasing crystallization temperature can be appropriately controlled.
  • the solidification rate of the molded product can be controlled, for example, sudden solidification in the mold during injection molding and extreme solidification delay can be suppressed, and as a result, the fluidity of the resin during molding can be improved. Can be secured. In addition, the cycle time can be maintained.
  • the degree of crystallization of the polyphenylene sulfide resin is controlled by the above-mentioned polyphenylene sulfide resin containing homopolyphenylene sulfide composed of only paraphenylene sulfide units and copolymerized polyphenylene sulfide composed of paraphenylene sulfide units and metaphenylene sulfide units. can do. Since the crystallinity of the polyphenylene sulfide resin can be increased by appropriately adjusting the blending amount of the polyphenylene sulfide resin described above, for example, the crystallinity of the polyphenylene sulfide resin in the molded product obtained by injection molding. Can be increased and mechanical properties can be improved.
  • the polyphenylene sulfide resin may contain homopolyphenylene sulfide composed of only paraphenylene sulfide units and copolymerized polyphenylene sulfide composed of paraphenylene sulfide units and metaphenylene sulfide units.
  • a homopolyphenylene sulfide pellet consisting of only paraphenylene sulfide units and a copolymerized polyphenylene sulfide pellet consisting of paraphenylene sulfide units and metaphenylene sulfide units are dry-blended to obtain pellets in which both are mixed (hereinafter referred to as mixed pellets) in advance.
  • homopolyphenylene sulfide consisting of only paraphenylene sulfide units and copolymerized polyphenylene sulfide consisting of paraphenylene sulfide units and metaphenylene sulfide units can be obtained. It may be mixed.
  • the blending ratio of the homopolyphenylene sulfide consisting of only the paraphenylene sulfide unit and the copolymerized polyphenylene sulfide consisting of the paraphenylene sulfide unit and the metaphenylene sulfide unit is not particularly limited, but the homopolyphenylene sulfide consisting only of the paraphenylene sulfide unit and Homopolyphenylene sulfide consisting only of paraphenylene sulfide units is 1 to 50 parts by weight, and paraphenylene sulfide units and metaphenylene A compounding ratio of 99 to 50 parts by weight of the copolymerized polyphenylene sulfide consisting of sulfide units is preferable, and more preferably, 5 to 40 parts by weight of homopolyphenylene sulfide consisting only of paraphenylene sulfide units, and paraphenylene sulfide units and meta.
  • the amount of homopolyphenylene sulfide composed of only paraphenylene sulfide units is less than 1 part by weight, the crystallization rate and the temperature-decreasing crystallization temperature cannot be appropriately controlled, and the solidification rate of the molded product becomes extremely slow. Therefore, it may not be preferable because the cycle time during injection molding described above becomes long, and if it exceeds 50 parts by weight, the crystallization speed becomes too fast, so that solidification in the mold during injection molding described above may occur. It may not be preferable because the speed increases and the fluidity decreases.
  • the blending amount of the copolymerized polyphenylene sulfide composed of the paraphenylene sulfide unit and the metaphenylene sulfide unit is less than 50 parts by weight, the crystallization rate becomes too fast, and therefore, in the above-mentioned injection molding, in the mold. It may not be preferable because the solidification rate becomes high and the fluidity decreases, and if it exceeds 99 parts by weight, the crystallization rate and the temperature-decreasing crystallization temperature cannot be appropriately controlled, and the solidification rate of the molded product becomes high. Since it becomes extremely slow, the cycle time at the time of injection molding described above becomes long, which may be unfavorable.
  • the melting point and temperature-decreasing crystallization temperature of polyphenylene sulfide (B) are measured as follows using a differential scanning calorimeter TA3000 (manufactured by Meterer). rice field. [1] Using a differential scanning calorimeter TA3000 (manufactured by Metler), the temperature of the sample was raised from 40 ° C. to 340 ° C. at a heating rate of 20 ° C./min. [2] After raising the temperature in [1], the temperature of the sample was lowered from 340 ° C. to 40 ° C.
  • Weight average fiber length ⁇ (Mi 2 x Ni) / ⁇ (Mi x Ni) Mi: Fiber length (mm) Ni: Number of carbon fibers with fiber length Mi i: Number of measured fibers.
  • the obtained cake, 11880 g of ion-exchanged water, and 4 g of calcium acetate monohydrate (Sigma Aldrich) were placed in an autoclave equipped with a stirrer, the inside of the autoclave was replaced with nitrogen, the temperature was raised to 192 ° C, and the temperature was maintained for 30 minutes. .. After that, the autoclave was cooled and the contents were taken out.
  • the polymer was washed with hexane at 50 ° C. for 15 minutes and filtered twice, and further washed with methanol at 50 ° C. for 15 minutes and filtered twice at 70 ° C. It was washed with water for 15 minutes and filtered once to obtain polyphenylene sulfide (B-5).
  • A-1 Carbon fiber "Trading Card” T800-24K (manufactured by Toray Industries, Inc.) was used.
  • As a carbon fiber sizing agent polyglycerol polyglycidyl ether (epoxy equivalent: 140 g / eq) was attached in an amount of 1.0% by mass based on the total amount of the sizing agent and carbon fibers (100% by mass).
  • A-2) Carbon fiber "Trading Card” M55JB-6K (manufactured by Toray Industries, Inc.) was used.
  • polyglycerol polyglycidyl ether (epoxy equivalent: 140 g / eq) was attached in an amount of 1.5% by mass based on the total amount of the sizing agent and carbon fibers (100% by mass).
  • Example 1 An epoxy resin (jER828 manufactured by Japan Epoxy Resin Co., Ltd.), which is an impregnating resin, was melted in a melting bath at 200 ° C. and supplied to a kiss coater by a gear pump. An epoxy resin was applied from a kiss coater onto a roll heated to 200 ° C. to form a film. The carbon fibers (A-1) were passed through the roll while being in contact with each other, and a certain amount of epoxy resin was adhered to each unit length of the carbon fiber bundle. The carbon fibers to which the epoxy resin was attached were passed between free rolls heated to 230 ° C. and arranged alternately up and down in a straight line to obtain a composite in which the carbon fibers were sufficiently impregnated with the epoxy resin.
  • jER828 manufactured by Japan Epoxy Resin Co., Ltd. which is an impregnating resin
  • polyphenylene sulfide (B-2) was melted in an extruder at 320 ° C. and extruded into a crosshead die attached to the tip of the extruder, and at the same time, the obtained complex was continuously inserted into the crosshead die.
  • the complex was coated with polyphenylene sulfide (B-2) to obtain strands.
  • the obtained strands After cooling the obtained strands, they were cut to a length of 7 mm with a cutter to obtain long fiber pellets, which is the molding material of the present invention.
  • This pellet had a core-sheath structure with a complex as a core and polyphenylene sulfide (B-2) as a sheath.
  • B-2 polyphenylene sulfide
  • the carbon fiber bundles were arranged in parallel in parallel with the axial direction of the molding material, and the length of the carbon fiber bundle was substantially the same as the length of the molding material.
  • the obtained long fiber pellets showed good handleability without fluffing due to transportation.
  • the obtained long fiber pellet-shaped molding material was injected with an injection time of 2 seconds, a back pressure of 10 MPa, a holding pressure time of 10 seconds, and a cycle time of 55.
  • An ISO type tensile dumbbell test piece (molded product) was produced by injection molding under the conditions of seconds, cylinder temperature: 280 ° C., and mold temperature: 160 ° C.
  • the cylinder temperature indicates the temperature of a portion where the molding material of the injection molding machine is heated and melted
  • the mold temperature indicates the temperature of the mold for injecting the molding material into a predetermined shape.
  • the cycle time indicates the time from the start of one injection molding process to the removal of the molded product.
  • the injection pressure here indicates a value obtained by measuring the maximum pressure generated when the molding material melted during injection molding is filled into the mold. The obtained test piece (molded product) was allowed to stand in a constant temperature and humidity chamber adjusted to a temperature of 23 ° C. and 50% RH for 24 hours, and then evaluated by the above-mentioned method. Table 1 shows the characteristics of the molding material, the value of the injection pressure during injection molding, and the evaluation results of the molded product.
  • Example 1 except that the type and content of the reinforcing fiber bundle (A), the type and content of polyphenylene sulfide (B), and the type and content of the resin (C) were changed as shown in Table 1.
  • a molding material long fiber pellet was obtained in the same manner as above.
  • the obtained pellet had a complex in which the epoxy resin was sufficiently impregnated into the carbon fiber.
  • the complex was coated with polyphenylene sulfide.
  • the obtained pellet had a core-sheath structure with a complex as a core and polyphenylene sulfide as a sheath.
  • the length of the obtained long fiber pellet was 7 mm as in Example 1. Further, the carbon fiber bundles were arranged in parallel in parallel with the axial direction of the molding material, and the length of the carbon fiber bundle was substantially the same as the length of the molding material.
  • the long fiber pellets obtained in Examples 2 to 8 and 11 to 14 showed good handleability without fluffing due to transportation.
  • the long fiber pellet obtained in Example 15 contains a large amount of the reinforcing fiber bundle (A), the amount of polyphenylene sulfide (B) contained is relatively small, and uneven coating and fluffing occur. It was seen and the result was inferior in handleability.
  • a molded product was produced and evaluated by injection molding the obtained molding material in the same manner as in Example 1. Table 1 shows the characteristics of the molding material, the value of the injection pressure during injection molding, and the evaluation results of the molded product.
  • Epoxy resin (jER828 manufactured by Japan Epoxy Resin Co., Ltd.), which is an impregnated resin, was melted in a melting bath at 200 ° C. and supplied to a kiss coater by a gear pump in the same manner as in Example 1.
  • An epoxy resin was applied from a kiss coater onto a roll heated to 200 ° C. to form a film.
  • the carbon fibers (A-1) were passed through the roll while being in contact with each other, and a certain amount of epoxy resin was adhered to each unit length of the carbon fiber bundle.
  • the carbon fibers to which the epoxy resin was attached were passed between free rolls heated to 230 ° C. and arranged alternately up and down in a straight line to obtain a composite in which the carbon fibers were sufficiently impregnated with the epoxy resin.
  • the obtained mixed pellets were used in a JSW TEX-30 ⁇ twin-screw extruder (screw diameter 30 mm, die diameter 5 mm, barrel temperature 260 ° C., screw rotation speed 150 rpm), and the mixture was used as the main hopper of the extruder. It was supplied from the above, melt-kneaded, and discharged into a die in a molten state, and the periphery of the composite was covered (by the discharged material) to obtain a molten continuous molding material (strand).
  • the contents of the reinforcing fiber bundle (A), the polyphenylene sulfide resin (B), the resin (C) and the aliphatic polycarbodiimide in the molding material are shown in Table 1 with respect to the molding material (100 parts by mass).
  • the discharge amount in the die was adjusted so as to have the value described.
  • the obtained continuous molding material (strand) was cooled and then cut with a cutter to obtain a molding material (long fiber pellet) having a length of 7 mm.
  • the obtained pellet had a complex in which epoxy was sufficiently impregnated into carbon fibers. Further, in the obtained pellet, the complex has a resin composition composed of polyphenylene sulfide (B-1), polyphenylene sulfide (B-2) and an aliphatic polycarbodiimide (“Carbodilite HMV-8CA” (manufactured by Nisshinbo Chemical Co., Ltd.)). It was covered with things. Further, the obtained pellet had a core-sheath structure in which the composite was used as the core and the resin composition described above was used as the sheath. The length of the obtained long fiber pellet was 7 mm as in Example 1. Further, the carbon fiber bundles were arranged in parallel in parallel with the axial direction of the molding material, and the length of the carbon fiber bundle was substantially the same as the length of the molding material.
  • the obtained long fiber pellets showed good handleability without fluffing due to transportation.
  • a molded product was produced and evaluated by injection molding the obtained molding material in the same manner as in Example 1. Table 1 shows the characteristics of the molding material, the value of the injection pressure during injection molding, and the evaluation results of the molded product.
  • Example 1 (Comparative Examples 1 to 4) Example 1 except that the type and content of the reinforcing fiber bundle (A), the type and content of polyphenylene sulfide (B), and the type and content of the resin (C) were changed as shown in Table 1.
  • a molding material (long fiber pellet) was obtained in the same manner as above.
  • the obtained pellet had a complex in which the epoxy resin was sufficiently impregnated into the carbon fiber.
  • the complex was coated with polyphenylene sulfide.
  • the obtained pellet had a core-sheath structure with a complex as a core and polyphenylene sulfide as a sheath.
  • the length of the obtained long fiber pellet was 7 mm as in Example 1. Further, the carbon fiber bundles were arranged in parallel in parallel with the axial direction of the molding material, and the length of the carbon fiber bundle was substantially the same as the length of the molding material.
  • thermoplastic resin composition having a length of 7 mm.
  • the obtained pellets did not contain the reinforcing fiber bundle (A), the length of the reinforcing fiber bundle could not be measured, and the core-sheath structure was not provided.
  • the obtained resin pellets were injected with an injection time of 2 seconds, a back pressure of 10 MPa, a holding pressure time of 10 seconds, a cycle time of 45 seconds, and a cylinder temperature:
  • An ISO type tensile dumbbell test piece (molded product) was produced by injection molding under the conditions of 280 ° C. and mold temperature: 160 ° C.
  • the cylinder temperature indicates the temperature of a portion where the molding material of the injection molding machine is heated and melted
  • the mold temperature indicates the temperature of the mold for injecting the molding material into a predetermined shape.
  • the obtained test piece (molded product) was allowed to stand in a constant temperature and humidity chamber adjusted to a temperature of 23 ° C. and 50% RH for 24 hours, and then evaluated by the above-mentioned method. The evaluation results are shown in Table 2.
  • Examples 2 to 4, 6 to 10, 12 to 15 include homopolyphenylene sulfide composed of only paraphenylene sulfide units and copolymerized polyphenylene sulfide composed of paraphenylene sulfide units and metaphenylene sulfide units. Therefore, as compared with the case where only the copolymerized polyphenylene sulfide composed of metaphenylene sulfide units is contained (Examples 1 and 5), the crystallization rate, that is, the solidification rate is increased, but the molding material in a molten state in the mold is used. The filling of the molding material into the mold could be completed before the solidification of the material began. As described above, the molding materials of Examples 2 to 4, 6 to 10, and 12 to 15 were able to further shorten the cycle time.
  • the molding temperature can be lowered as compared with the case where the melting point of polyphenylene sulfide is lowered by copolymerizing polysiloxane (Example 11), so that the gas can be used.
  • the generation could be further suppressed, and the surface roughness of the molded product could be further reduced.
  • Example 15 since the contents of the carbon fiber bundles in Examples 1 to 14 were in a suitable range, the injection pressure could be further lowered as compared with Example 15.
  • Comparative Examples 1 to 4 were molding materials having a melting point of polyphenylene sulfide higher than 270 ° C. and inferior in surface smoothness of the molded product after molding due to gas generation derived from the sizing agent for the reinforcing fiber bundle during molding.
  • Comparative Example 5 was a molding material having inferior mechanical properties because it did not contain the reinforcing fiber bundle (A).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

強化繊維束(A)とポリフェニレンスルフィド(B)を含む成形材料であって、該ポリフェニレンスルフィドの融点が270℃以下である成形材料、および、強化繊維とポリフェニレンスルフィドを含む成形品であり、強化繊維の重量平均繊維長が0.3mm以上、3.0mm以下であって、ポリフェニレンスルフィドの融点が270℃以下である、あるいは、ポリフェニレンスルフィドの降温結晶化温度が190℃以下である成形品。成形加工時に強化繊維束や集束剤に由来するガスの発生を低減でき、ガスによる成形品の表面荒れを抑制することができるため、成形品の表面平滑性と力学特性を両立する成形材料を得ることができる。

Description

成形材料および成形品
 本発明は、強化繊維束とポリフェニレンスルフィドを含む成形材料および強化繊維とポリフェニレンスルフィドを含む成形品に関する。
 連続した強化繊維束と熱可塑性樹脂をマトリックスとする成形材料として、熱可塑性のプリプレグ、ヤーン、ガラスマット(GMT)など多種多様な形態が公知である。このような成形材料は、熱可塑性樹脂の特性を生かして成形が容易であったり、熱硬化性樹脂のような貯蔵の負荷を必要とせず、また得られる成形品の靭性が高く、リサイクル性に優れるといった特徴がある。とりわけ、ペレット状に加工した成形材料は、射出成形やスタンピング成形などの経済性、生産性に優れた成形法に適用でき、工業材料として有用である。
 特許文献1、2には連続した強化繊維束とポリフェニレンスルフィド樹脂からなる成形材料を射出成形することにより力学特性の高い成形品が得られることが開示されている。一方、特許文献3にはパラアリーレンスルフィド単位とメタアリーレンスルフィド単位および充填剤を含むポリアリーレンスルフィドにおいて、耐熱性、機械特性を維持しつつエポキシ樹脂との接着性を向上することが開示されている。
特開2012-158746号公報 特開2012-158747号公報 特開平8-269200号公報
 今後、成形品の小型化、薄肉化、形状の複雑化が進み、成形材料にはより高精度の成形性や優れた外観特性(成形材料を成形した後の成形品の表面平滑性)が要求されるようになると思われる。
 一方で、成形材料を成形するときに、成形材料からガスが発生すると成形性や外観特性が損なわれることがあり、特に、前述のような小型、薄肉、複雑な形状に成形する際には僅かなガスであっても、成形性、寸法精度、および外観特性に大きな影響を及ぼすことがある。
 他方、成形品に高い力学特性を付与するためには、成形品を構成する成形材料に強化繊維束を含有せしめる必要がある。
 しかし、これまで、強化繊維束およびその集束剤から発生するガスについては全く着目されておらず、ガスを低減させる検討も全く実施されていない。これは、強化繊維束およびその集束剤から発生するガスの量はそれほど多くなく、これを低減する必要性がなかったためであると思われる。
 すなわち、強化繊維束を含有した成形材料であって、小型、薄肉、複雑な形状に成形しても、成形性、寸法精度、外観特性が良好な成形材料は未だ見いだされていない。
 本発明の課題は、上記実情に鑑みてなされたものであって、より具体的には、成形加工時のガスの発生を低減し、かつ、成形品の表面荒れを抑制することで、成形品の優れた表面平滑性と力学特性を両立できる成形材料を提供することにある。
[規則91に基づく訂正 26.10.2021] 
 上記課題を解決するために、本発明は以下の構成を有する。
[1]強化繊維束(A)とポリフェニレンスルフィド(B)を含む成形材料であって、該ポリフェニレンスルフィド(B)の融点が270℃以下である成形材料。
[2]前記ポリフェニレンスルフィド(B)は、パラフェニレンスルフィド単位とメタフェニレンスルフィド単位を含み、該メタフェニレンスルフィド単位の含有量が、パラフェニレンスルフィド単位とメタフェニレンスルフィド単位の全量に対し、7mol%以上である、[1]に記載の成形材料。
[3]成形材料が長繊維ペレットである、[1]または[2]に記載の成形材料。
[4]前記強化繊維束(A)が成形材料の軸心方向に平行に並列されており、かつ該強化繊維束(A)の長さが成形材料の長さと実質的に同じである、[1]から[3]のいずれかに記載の成形材料。
[5]前記ポリフェニレンスルフィド(B)の降温結晶化温度が190℃以下である、[1]から[4]のいずれかに記載の成形材料。
[6]前記ポリフェニレンスルフィド(B)の降温結晶化温度と融点の差が80℃以上である、[1]から[5]のいずれかに記載の成形材料。
[7]前記ポリフェニレンスルフィド(B)と複合体を含む成形材料であり、該複合体が前記強化繊維束(A)および樹脂(C)からなり、該樹脂(C)がエポキシ樹脂、フェノール樹脂およびテルペン樹脂からなる群より選ばれる1種以上の樹脂であり、前記複合体が前記ポリフェニレンスルフィド(B)によって被覆されている、[1]から[6]のいずれかに記載の成形材料。
[8]前記強化繊維束(A)を構成する強化繊維が炭素繊維である、[1]から[7]のいずれかに記載の成形材料。
[9]前記強化繊維束(A)には集束剤が付着している、[1]から[8]のいずれかに記載の成形材料。
[10]強化繊維とポリフェニレンスルフィドを含む成形品であって、前記強化繊維の重量平均繊維長が0.3mm以上、3.0mm以下であり、前記ポリフェニレンスルフィドの融点が270℃以下である成形品。
[11]強化繊維とポリフェニレンスルフィドを含む成形品であって、前記強化繊維の重量平均繊維長が0.3mm以上、3.0mm以下であり、前記ポリフェニレンスルフィドの降温結晶化温度が190℃以下である成形品。
[12]前記ポリフェニレンスルフィドの融点が270℃以下である、[11]に記載の成形品。
[13]前記ポリフェニレンスルフィドは、パラフェニレンスルフィド単位とメタフェニレンスルフィド単位を含み、該メタフェニレンスルフィド単位の含有量が、パラフェニレンスルフィド単位とメタフェニレンスルフィド単位の全量に対し、7mol%以上である、[10]から[12]のいずれかに記載の成形品。
[14]前記ポリフェニレンスルフィドは、パラフェニレンスルフィド単位のみからなるホモポリフェニレンスルフィドと、パラフェニレンスルフィド単位とメタフェニレンスルフィド単位からなる共重合ポリフェニレンスルフィドを含む、[10]から[13]のいずれかに記載の成形品。
 本発明によれば、成形加工時に強化繊維束や集束剤に由来するガスの発生を低減でき、ガスによる成形品の表面荒れを抑制することができるため、成形品の表面平滑性と力学特性を両立する成形材料を得ることができる。
 本発明の成形材料は、成形加工時の強化繊維束や集束剤に由来するガスの発生を抑制することができ、また、射出成形を行う際には強化繊維の成形品中への分散が良好であり、力学特性に優れた成形品を容易に製造することができるため、射出成形、トランスファー成形、ブロー成形、インサート成形などの成形方法に限らず、プランジャー成形、プレス成形、スタンピング成形など幅広い成形方法にも応用することができる。
 本発明の成形材料を成形して得られる成形品としては、スラストワッシャー、オイルフィルター、シール、ベアリング、ギア、シリンダーヘッドカバー、ベアリングリテーナ、インテークマニホールド、ペダル等の自動車部品、シリコンウエハーキャリアー、ICチップトレイ、電解コンデンサートレイ、絶縁フィルム等の半導体・液晶製造装置部品、ポンプ、バルブ、シール等のコンプレッサー部品や航空機のキャビン内装部品といった産業機械部品、滅菌器具、カラム、配管等の医療器具部品や食品・飲料製造設備部品が挙げられる。また、本発明の成形材料は、0.5~2mmといった薄肉の成形品を比較的容易に得ることができる。このような薄肉成形が要求されるものとしては、例えばパーソナルコンピューター、携帯電話などに使用されるような筐体や、パーソナルコンピューターの内部でキーボードを支持する部材であるキーボード支持体に代表されるような電気・電子機器用部材が挙げられる。このような電気・電子機器用部材では、強化繊維に導電性を有する炭素繊維を使用した場合に、電磁波シールド性が付与されるために好適である。
本発明の成形材料の好ましい態様の、軸心方向断面の形状の一例を示す概略図である。 本発明の成形材料の好ましい態様の、軸心方向断面の形状の別の一例を示す概略図である。 本発明の成形材料の好ましい態様の、軸心と直交方向断面の形状の一例を示す概略図である。 本発明の成形材料の好ましい態様の、軸心と直交方向断面の形状の別の一例を示す概略図である。 本発明の成形材料の好ましい態様の、軸心と直交方向断面の形状のさらに別の一例を示す概略図である。 一般的な長繊維ペレットの内部透視斜視図(模式図)である。 一般的な短繊維ペレットの内部透視斜視図(模式図)である。
 以下に、本発明について、実施の形態とともに詳細に説明する。
<成形材料>
 本発明の成形材料は強化繊維束(A)とポリフェニレンスルフィド(B)を含む。強化繊維束(A)を含むことによって、強化繊維の繊維長を長く保つことができ、優れた力学特性を発現することができる。
 本発明の成形材料はポリフェニレンスルフィド(B)と複合体を含み、該複合体が強化繊維束(A)および樹脂(C)からなることが好ましい。樹脂(C)はエポキシ樹脂、フェノール樹脂およびテルペン樹脂からなる群より選ばれる1種以上の樹脂であることが好ましい。また、本発明の成形材料において、複合体がポリフェニレンスルフィド(B)によって被覆されていることが好ましい。すなわち、強化繊維束(A)とエポキシ樹脂、フェノール樹脂およびテルペン樹脂からなる群より選択される樹脂(C)(含浸樹脂)からなる複合体が、ポリフェニレンスルフィド(B)によって被覆された形態であることが好ましい。
 ポリフェニレンスルフィド(B)が複合体を被覆することによって、成形材料の取扱性が向上する。本発明の成形材料は、例えば射出成形により混練されて最終的な成形品となる。成形材料の取扱性の点から、複合体とポリフェニレンフルフィド樹脂は成形が行われるまでは分離せず、前述のような形態(複合体がポリフェニレンスルフィド(B)によって被覆されている形態)を保っていることが重要である。複合体(特に強化繊維束)とポリフェニレンフルフィド樹脂では、形状(サイズ、アスペクト比)、比重、質量が全く異なるため、成形工程での材料移送時に、成形材料が強化繊維束とポリフェニレンフルフィド樹脂に分離したり、当該分離物が分級したりすると、成形時の成形材料の流動性が低下したり、成形品の力学特性にバラツキを生じたり、成形品の表面に荒れが生じ、表面平滑性が低下する場合がある。
 また、ここで、複合体とは、強化繊維束(A)の各単繊維間に樹脂(C)(以降、樹脂(C)を「含浸樹脂」と称することがある。)が満たされている状態の複合体を指す。換言すると、強化繊維束(A)の各単繊維間に樹脂(C)が含浸している状態である。すなわち、含浸樹脂の海に、強化繊維が島のように分散している状態の複合体である。
 強化繊維束(A)は含浸樹脂によって完全に含浸されていることが望ましいが、強化繊維束(A)と含浸樹脂からなる複合体にはある程度のボイドが存在してもいてもよい。かかるボイド率は0~40%以下の範囲が好ましい。より好ましくは、0~20%以下である。ボイド率がかかる範囲であると、含浸・繊維分散促進の効果に優れる。ボイド率は、複合体の部分をASTM 2734(1997)試験法により測定する。
 また、被覆の形態には、特に制限はないが、例えば、ストランド状の複合体の周囲の一部あるいは全てをポリフェニレンスルフィド(B)が被覆する形態が挙げられる。かかる形態の場合、ストランド状の複合体の周囲の50%以上が被覆される形態が好ましく、さらに好ましくは、ストランド状の複合体の周囲の80%以上が被覆される形態であり、最も好ましくは、ストランド状の複合体の周囲の全てがポリフェニレンスルフィド(B)で被覆される形態である。
 複合体とポリフェニレンスルフィド(B)が接着していれば、複合体とポリフェニレンスルフィド(B)の境界の状態には、特に制限はないが、複合体とポリフェニレンスルフィド(B)の境界付近で部分的にポリフェニレンスルフィド(B)が複合体の一部に入り込み、複合体中の含浸樹脂と相溶しているような状態、あるいは強化繊維束(A)に含浸しているような状態となることが好ましい。かかる状態であれば、被覆したポリフェニレンスルフィド(B)が複合体から剥離しにくくなり、取扱性の良い成形材料を得ることができ、成形時に安定したフィードが達成されるためガスの発生を低減や均一な可塑化を達成することができ、優れた流動性は発現することができる。
 本発明の成形材料はペレット形状であり、かつ、長繊維ペレットであることが好ましい。長繊維ペレットとは、ペレット長と実質的に同じ長さの強化繊維を実質的に同一方向に含有する樹脂材料を指す。一般に、長繊維ペレットは、短繊維ペレットに比べ、成形後の成形品中の繊維長が長いため、機械特性の面で優れた特性を発揮する。一方で、長繊維ペレットは、成形性(流動性)が大きく劣る傾向にある。特に、熱可塑性樹脂としてポリフェニレンスルフィドを用いた場合、ポリフェニレンスルフィドは成形温度が高く、そして、結晶化速度が速いため、その傾向が顕著である。ここで、成形性(流動性)を高めるために、成形温度を高くすると、成形加工時に強化繊維束や集束剤に由来するガスの量が大きくなり、成形品の外観特性(表面平滑性)が低下する。
 しかし、成形材料が長繊維ペレットであり、かつ、用いられる熱可塑性樹脂がポリフェニレンスルフィドであっても、本発明の態様を採ること、すなわち、融点が270℃以下のポリフェニレンスルフィドを用いることによって、低い成形温度で成形加工を行うことができる。そして、その結果、優れた機械特性を維持しつつ、成形加工時の強化繊維束や集束剤に由来するガスの発生を大きく抑制することができ、かつ成形性(流動性)を著しく高めることができる。
 なお、短繊維ペレットとは、熱可塑性樹脂に強化繊維をランダムに分散せしめた樹脂材料を指す。図6に長繊維ペレットの内部透過斜視図(模式図)(図中、符号1は強化繊維束(A)、符号2はポリフェニレンスルフィド(B)を示す。)、図7に短繊維ペレットの内部透過斜視図(模式図)(図中、符号2はポリフェニレンスルフィド(B)、符号3は強化繊維を示す。)を示す。また、長繊維ペレットは公知の方法で作製することができる。
 本発明の成形材料において、強化繊維束(A)が成形材料(好ましくはペレット)の軸心方向に平行に並列されており、かつ強化繊維束(A)の長さが成形材料の長さと実質的に同じであることが好ましい。ここで、平行に並列されているとは、強化繊維束(A)の長軸の軸線と、成形材料の長軸の軸線とが、同方向を指向している状態を指し、軸線同士の角度のずれは、好ましくは20°以下であり、より好ましくは10°以下であり、さらに好ましくは5°以下である。また、実質的に同じ長さとは、例えばペレット状の成形材料において、ペレット内部の途中で強化繊維束(A)が切断されていたり、ペレット全長よりも有意に短い強化繊維束(A)が実質的に含まれたりしないことである。特に、そのペレット全長よりも短い強化繊維束(A)の量について規定されるわけではないが、ペレット全長の50%以下の長さの強化繊維の含有量が30質量%以下である場合には、ペレット全長よりも有意に短い強化繊維束(A)が実質的に含まれていないと評価する。さらに、ペレット全長の50%以下の長さの強化繊維の含有量は20質量%以下であることが好ましい。なお、ペレット全長とは、ペレット中の強化繊維配向方向に平行な方向のペレットの長さである。強化繊維束(A)が成形材料と実質的に同じ長さを有することで、成形品中の強化繊維長を長くすることができ、優れた力学特性を得ることができる。
 成形材料の長さには、特に制限はなく、連続、長尺のままでも成形法によっては使用可能である。例えば、熱可塑性ヤーンプリプレグとして、加熱しながらマンドレルに巻き付け、ロール状成形品を得たりすることができる。また、本発明の成形材料を、複数本一方向に引き揃えて加熱・融着させることにより一方向熱可塑性プリプレグを作製することも可能である。一方、取扱性の観点からは、成形材料は1~50mmの長繊維ペレットであることが好ましい。さらに好ましくは、3~20mmであり、最も好ましくは、5~10mmである。かかる長さの長繊維ペレットとすることで汎用性の高い射出成形用のペレットとすることができ、成形時の取扱性を十分に高めることができ、成形時に安定したフィードが達成されるためガスの発生を低減することができる。
 図1~2は、本発明の成形材料の軸心方向断面の形状を模式的に表したものであり、図3~5は、本発明の成形材料の軸心と直交方向断面の形状を模式的に表したものである。
 成形材料の断面の形状は、図に示されたものに限定されないが、好ましくは軸心方向断面である図1に示されるように、強化繊維束(A)が芯材となりポリフェニレンスルフィド(B)で層状に挟まれて配置されている構成が好ましい。
 また軸心と直交方向断面である図3~5に示されるように、強化繊維束(A)は芯構造となり、ポリフェニレンスルフィド(B)は鞘構造となることが好ましい。成形材料は、前記ポリフェニレンスルフィド(B)が、強化繊維束(A)の周囲を被覆した芯鞘構造である構成が好ましい。このような構造の成形材料とすることで成形材料を成形したときに成形品中に強化繊維束を長く残存させることができ、本発明の効果である力学特性を高めることができる。さらに複数の強化繊維束(A)をポリフェニレンスルフィド(B)が被覆するように配置された多芯鞘構造であってもよく、この場合、強化繊維束(A)の数は2本以上、6本以下が好ましい。なお、成形材料が、前記強化繊維束(A)および樹脂(C)からなる複合体を含む場合、前記「強化繊維束(A)」は「複合体」に読み替えられ、図1~6における「1:強化繊維束(A)」は「複合体」に読み替えられる。
 成形材料は、例えば射出成形やプレス成形などの手法により、強化繊維束(A)と含浸樹脂からなる複合体に、ポリフェニレンスルフィド(B)を混練して最終的な成形材料を得ることができる。成形材料の取扱性の点から、複合体とポリフェニレンスルフィド(B)は成形が行われるまでは分離せず、ポリフェニレンスルフィド(B)が複合体を被覆した形態を保っていることが好ましい。含浸樹脂は低分子量であることから、比較的脆く破砕しやすい固体である場合が多い。このため、ポリフェニレンスルフィド(B)を、複合体を保護するように配置し、成形までの材料の運搬、取り扱い時の衝撃、擦過などにより、含浸樹脂が破砕されて飛散したりしないようにすることが望ましい。
[強化繊維束(A)]
 本発明における強化繊維束(A)は、単繊維が一方向に配列された状態であることを指す。強化繊維束(A)の形態として、一方向性繊維束、二方向性繊維束、多方向性繊維束などが例示できるが、成形材料を製造する過程での生産性の観点から、一方向性繊維束がより好ましく使用できる。強化繊維束(A)は、強化繊維の単糸数が多いほど経済性には有利であることから、単繊維は10,000本以上が好ましい。他方、強化繊維の単糸数が多いほどマトリックス樹脂の含浸性には不利となる傾向があるため、経済性と含浸性の両立を図る観点から、15,000本以上100,000本以下がより好ましく、20,000本以上50,000本以下がとりわけ好ましく使用できる。
 強化繊維束(A)を構成する強化繊維の種類については、特に制限されず、例えば、炭素繊維、ガラス繊維、アラミド繊維、アルミナ繊維、炭化珪素繊維、ボロン繊維、金属繊維、天然繊維、鉱物繊維などが使用でき、これらは1種または2種以上を併用してもよい。中でも、軽量かつ高強度、高弾性率の成形品を得る観点から、PAN(ポリアクリルニトリル)系、ピッチ系、レーヨン系などの炭素繊維が好ましく用いられる。特に、高強度の観点からは、引張強度が4,000MPa以上の強化繊維が好ましく、より好ましくは、5,000MPa以上である。高弾性率の観点からは、引張弾性率が200GPa以上の強化繊維が好ましく、より好ましくは、400GPa以上である。特に、繊維長を長く保つことが難しい弾性率が400GPa以上の強化繊維は、後述する本発明の成形材料の効果をより発現できるため好ましい。
 また、得られる成形品の経済性を高める観点から、ガラス繊維が好ましく用いることができ、とりわけ機械特性と経済性のバランスから炭素繊維とガラス繊維を併用することが好ましい。さらに、得られる成形品の衝撃吸収性や賦形性を高める観点から、アラミド繊維が好ましく用いることができ、とりわけ機械特性と衝撃吸収性のバランスから炭素繊維とアラミド繊維を併用することが好ましい。また、得られる成形品の導電性を高める観点から、ニッケルや銅やイッテルビウムなどの金属を被覆した強化繊維やピッチ系の炭素繊維を用いることもできる。
 強化繊維束(A)には集束剤が付着されていることが好ましい。これは強化繊維束(A)に集束剤を付着させることで、強化繊維の移送時の取扱性や、成形材料を製造する過程でのプロセス性を高めることができる。集束剤の種類には特に限定はないが、エポキシ樹脂、ウレタン樹脂、アクリル樹脂や種々の熱可塑性樹脂などの集束剤を1種または2種以上併用することができる。
 成形材料の全量(100質量%)に対して、強化繊維束(A)は1質量%以上、50質量%以下であることが好ましい。より好ましくは、10質量%以上、30質量%以下である。強化繊維束(A)の含有量が1質量%未満では、得られる成形品の力学特性が不十分となる場合があり、50質量%を超えると強化繊維や強化繊維に付着する集束剤に由来するガスの発生量が増える場合がある。
[ポリフェニレンスルフィド(B)]
 本発明におけるポリフェニレンスルフィド(B)の融点は270℃以下である。ポリフェニレンスルフィド(B)の融点は示差走査熱量測定における融解ピークの頂点の温度から求めることができる。2種以上のポリフェニレンスルフィドが用いられる場合であって、それらの混合物が単一の融解ピークを示す場合は、当該融解ピークの頂点から融点を求めることができる。一方、2種以上のポリフェニレンスルフィドが用いられる場合であって、複数の融解ピークが観察される場合は、それぞれの融解ピークの頂点から融点を求める。
 融点が270℃以下であることにより、成形温度を低下させることができ、成形時に発生するガスの発生を抑制させることができる。また、経済性を高めることもできる。特に、成形材料が含浸樹脂を含む場合や強化繊維に集束剤が付着されている場合は、成形加工時における含浸樹脂や集束剤の分解を抑制することができるため、比較的耐熱性の低い含浸樹脂や集束剤を選択することが可能となる。つまり、含浸樹脂や集束剤の設計の自由度や、含浸樹脂や集束剤の選択の自由度を高くすることが可能となる。
 本発明において、ポリフェニレンスルフィド(B)の融点は、より好ましくは、260℃以下である。ポリフェニレンスルフィド(B)の融点が270℃以下であることにより、成形温度を低下させることができ、成形時の分解ガスの抑制や経済性に優れる。特に、成形材料が含浸樹脂を含む場合や強化繊維に集束剤が付着されている場合は、含浸樹脂や集束剤の分解を抑制することができ、含浸樹脂や集束剤の自由度を高くすることが可能となる。また耐熱性の観点からポリフェニレンスルフィド(B)の融点は240℃以上であることが好ましい。ポリフェニレンスルフィド(B)の融点は以下のとおりに測定される。
[1]示差走査熱量計にて、40℃から340℃まで20℃/分の昇温速度でサンプルを昇温する。
[2][1]の昇温後、340℃から40℃まで20℃/分の降温速度でサンプルを降温する。
[3][2]の降温後、再度、40℃から340℃まで20℃/分の昇温速度でサンプル昇温する。
上記[3]の昇温過程において観測される融解ピークの頂点を融点とする。
 本発明において、ポリフェニレンスルフィド(B)の融点を270℃以下にする方法は特に限定されないが、主としてパラフェニレンスルフィド骨格で形成されるポリフェニレンスルフィドにメタフェニレンスルフィドおよび/またはオルトフェニレンフルフィドを共重合する方法、ポリフェニレンスルフィドの末端に別のポリマーをブロック共重合する方法、ポリフェニレンスルフィドを酸化架橋することで分子運動性を低下させる方法などが挙げられる。ポリフェニレンスルフィドの末端に別のポリマーをブロック共重合する場合、別のポリマーについては制約は無く、ポリエステル、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリアリレート、ポリスルフォン、ポリエーテルスルフォン、ポリケトン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリチオエーテルケトン、ポリテトラフルオロエチレン、ポリオルガノシロキサン、熱可塑性ポリウレタン樹脂、高密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、ポリプロピレン、ポリアクリル酸エステル、ポリメタクリル酸エステル、ポリ1-ブテン、ポリ1-ペンテン、ポリメチルペンテン、エチレン/α-オレフィン共重合体などのポリオレフィンを挙げることができる。
 中でも、本発明において、ポリフェニレンスルフィド(B)は、パラフェニレンスルフィドとメタフェニレンスルフィドを共重合して得られるポリフェニレンスルフィドであることが好ましい。すなわち、本発明において、ポリフェニレンスルフィド(B)はパラフェニレンスルフィド単位とメタフェニレンスルフィド単位を含むことが好ましい。本発明において、メタフェニレンスルフィド単位の含有量は、パラフェニレンスルフィド単位とメタフェニレンスルフィド単位の全量に対し、7mol%以上であることが好ましい。より好ましくは8mol%以上であり、更に好ましくは10mol%以上であり、特に好ましくは10.5mol%以上である。メタフェニレンスルフィド単位の含有量を7mol%以上とすることによって、ポリフェニレンスルフィドの融点を低下させることができ、かつポリフェニレンスルフィド(B)の結晶化速度が低下し、流動性が向上する。一方、メタフェニレンスルフィド単位の含有量が7mol%よりも少ない場合は、ポリフェニレンスルフィドの融点を十分に低下させることができない場合がある。
 ポリフェニレンスルフィドのメタフェニレンスルフィド単位の含有量の上限については、特に制限はないが、好ましくは、20mol%以下であり、さらに好ましくは、14mol%以下である。メタフェニレンスルフィド単位の含有量が20mol%以下であれば、力学特性を達成できることに加え、成形時の脱型性が向上し、成形サイクル性も良好となる。さらに、14mol%以下であれば、優れた流動性と力学特性を両立できることに加え、成形時の脱型性が向上し、成形サイクル性を高めることができる。一方、メタフェニレンスルフィド単位が20mol%よりも大きい場合は、ポリフェニレンスルフィド本来の耐熱老化性や耐薬品性が低下するため好ましくないことがある。
 また、成形材料がストランド状の複合体の周囲の一部あるいは全てをポリフェニレンスルフィド(B)が被覆する形態の場合、メタフェニレンスルフィド単位の含有量が7mol%以上であれば、複合体を被覆するポリフェニレンスルフィド(B)の結晶化が抑制され、ポリフェニレンスルフィド(B)が破断しにくくなり、取扱性の優れた成形材料を得ることができる。そして、前述のとおり、成形材料の取扱性を高めることにより、成形品の力学特性のバラツキを抑制したり、表面平滑性を向上せしめたり、成形材料の流動性の低下を抑制したり、流動性を向上せしめたりすることができる。
 かかる理由から、ペレット状の成形材料とするために、ポリフェニレンスルフィド(B)が複合体を被覆したストランドをカットする際においても、メタフェニレンスルフィド単位の含有量が7mol%以上であれば、ポリフェニレンスルフィド(B)が破断しにくいため好ましい。また、メタフェニレンスルフィド単位の含有量を7mol%以上とし、流動性を向上させることで、混練時あるいは成形時に強化繊維にかかる剪断応力を小さくすることができ、成形品の強化繊維束(A)の繊維長を長く保つことができる。特に、繊維長を長く保つことが難しい弾性率が350GPa以上の強化繊維に対して、本発明の成形材料の効果をより発現できるため好ましい。
 ポリフェニレンスルフィド(B)のメタフェニレンスルフィド単位は、フーリエ変換赤外分光装置(以下、FT-IRと略す)を用いて測定する。具体的には、メタフェニレンスルフィド単位の吸収ピークである780cm-1の吸収ピークの大きさから、メタフェニレンスルフィド単位の含有量を算出する。
 ポリフェニレンスルフィド(B)の降温結晶化温度は190℃以下であることが好ましい。より好ましくは170℃以下である。ポリフェニレンスルフィド(B)の降温結晶化温度が190℃以下であることにより、結晶化速度が遅くなり、成形時の流動性が優れる。一方で、成形品の力学特性や表面品位の観点からポリフェニレンスルフィド(B)の降温結晶化温度の下限は140℃であることが好ましい。ポリフェニレンスルフィド(B)の降温結晶化温度の測定は、示差走査熱量計にて、40℃から340℃まで20℃/分で昇温し、その後、340℃から40℃まで20℃/分で降温した際の降温結晶化ピークの頂点を降温結晶化温度とする。
 ポリフェニレンスルフィド(B)の降温結晶化温度を190℃以下にする方法は特に限定されないが、主としてパラフェニレンスルフィド骨格で形成されるポリフェニレンスルフィドにメタフェニレンスルフィドおよび/またはオルトフェニレンフルフィドを共重合する方法、ポリフェニレンスルフィドの末端に別のポリマーをブロック共重合する方法、ポリフェニレンスルフィドを酸化架橋することで分子運動性を低下させる方法などが挙げられる。
 ポリフェニレンスルフィド(B)の融点と降温結晶化温度の差は80℃以上であることが好ましい。より好ましくは、90℃以上である。融点と降温結晶化温度の差は、降温下において溶融状態であった樹脂が結晶化し、固化するまでの温度を指す。従って、融点と降温結晶化温度の差が大きいと樹脂の固化が遅くなることを意味する。ポリフェニレンスルフィド(B)の融点と降温結晶化温度の差が80℃以上であることにより、固化が遅くなり、金型表面の転写性が向上するため表面平滑性が良好となるため好ましく、成形時の成形圧力を低下させることが可能である。一方で、成形品の力学特性や表面品位の観点からポリフェニレンスルフィド(B)の融点と降温結晶化温度の差の上限は120℃であることが好ましい。
 ポリフェニレンスルフィド(B)の融点と降温結晶化温度の差を80℃以上にする方法は特に限定されないが、主としてパラフェニレンスルフィド骨格で形成されるポリフェニレンスルフィドにメタフェニレンスルフィドおよび/またはオルトフェニレンフルフィドを共重合する方法、ポリフェニレンスルフィドの末端に別のポリマーをブロック共重合する方法、ポリフェニレンスルフィドを酸化架橋することで分子運動性を低下させる方法などが挙げられる。
 ポリフェニレンスルフィド(B)は、パラフェニレンスルフィド単位のみからなるホモポリフェニレンスルフィドと、パラフェニレンスルフィド単位とメタフェニレンスルフィド単位からなる共重合ポリフェニレンスルフィドを含むことが好ましい。ホモポリフェニレンスルフィドと共重合ポリフェニレンスルフィドを含むことにより、成形時の発生ガス量を低減しつつ、ポリフェニレンスルフィドの結晶化度を高めることができ、表面平滑性と力学特性、流動性および成形サイクル性の両立がより達成できる。
 成形材料の全量(100質量%)に対して、ポリフェニレンスルフィド(B)の含有量は30質量%以上、98.9質量%以下であることが好ましい、より好ましくは40質量%以上、94.5質量%以下、さらに好ましくは50質量%以上、89質量%以下である。かかる範囲に調整することで成形性と取扱性に優れた成形材料が得られる。また、成形品に優れた力学特性を付与することができる。ポリフェニレンスルフィド(B)の含有量が30質量%未満では、成形材料中に含まれるポリフェニレンフルフィド樹脂(B)が少ないため、成形時において強化繊維束(A)とポリフェニレンフルフィド樹脂(B)とを十分に溶融混練ができないことや射出成形の際に流動性が低下する場合がある。その場合、強化繊維束(A)が成形品中に十分に分散させることができず、成形が困難となり、好ましくないことがある。
 また、ポリフェニレンスルフィド(B)の含有量が98.9質量%を越えると、成形材料中に含まれる強化繊維束(A)の量が相対的に少なくなるため、成形品に対して付与される繊維補強効果が不十分となるので、得られる成形品の力学特性が不十分となり、好ましくないことがある。また、成形材料において、ポリフェニレンスルフィド(B)がストランド状の複合体の周囲の一部あるいは全てを被覆する形態を採る場合であって、ポリフェニレンスルフィド(B)が30質量%未満である場合は、ポリフェニレンスルフィド(B)の量が少ないため被覆層が薄くなり、成形材料が割れやすくなり、取扱性が低下するため、好ましくないことがある。
 ポリフェニレンスルフィド(B)の分子量は、成形材料を成形して得られる成形品の力学特性の観点から、重量平均分子量で好ましくは10,000以上であり、より好ましくは20,000以上であり、とりわけ好ましくは30,000以上である。これは重量平均分子量が大きいほど、マトリックス樹脂の強度や伸度が高くなる観点で有利である。一方、重量平均分子量の上限については特に制限は無いが、成形時の流動性の観点から好ましくは1,000,000以下であり、より好ましくは500,000以下を例示できる。なお、重量平均分子量は前記SEC(サイズ排除クロマトグラフィー)などの一般的なGPC(ゲルパーミレーションクロマトグラフィー)を使用して求めることができる。
 さらに、ポリフェニレンスルフィド(B)には、その用途に応じてマイカ、タルク、カオリン、ハイドロタルサイト、セリサイト、ベントナイト、ゾノトライト、セピオライト、スメクタイト、モンモリロナイト、ワラステナイト、シリカ、炭酸カルシウム、ガラスビーズ、ガラスフレーク、ガラスマイクロバルーン、クレー、二硫化モリブデン、酸化チタン、酸化亜鉛、酸化アンチモン、ポリリン酸カルシウム、グラファイト、硫酸バリウム、硫酸マグネシウム、ホウ酸亜鉛、ホウ酸亜カルシウム、ホウ酸アルミニウムウィスカ、チタン酸カリウムウィスカおよび高分子化合物などの充填材、金属系、金属酸化物系、カーボンブラックおよびグラファイト粉末などの導電性付与材、臭素化樹脂などのハロゲン系難燃剤、三酸化アンチモンや五酸化アンチモンなどのアンチモン系難燃剤、ポリリン酸アンモニウム、芳香族ホスフェートおよび赤燐などのリン系難燃剤、有ホウ酸金属塩、カルボン酸金属塩および芳香族スルホンイミド金属塩などの有機酸金属塩系難燃剤、硼酸亜鉛、亜鉛、酸化亜鉛およびジルコニウム化合物などの無機系難燃剤、シアヌル酸、イソシアヌル酸、メラミン、メラミンシアヌレート、メラミンホスフェートおよび窒素化グアニジンなどの窒素系難燃剤、PTFEなどのフッ素系難燃剤、ポリオルガノシロキサンなどのシリコーン系難燃剤、水酸化アルミニウムや水酸化マグネシウムなどの金属水酸化物系難燃剤、またその他の難燃剤、酸化カドミウム、酸化亜鉛、酸化第一銅、酸化第二銅、酸化第一鉄、酸化第二鉄、酸化コバルト、酸化マンガン、酸化モリブデン、酸化スズおよび酸化チタンなどの難燃助剤、顔料、染料、滑剤、離型剤、相溶化剤、分散剤、マイカ、タルクおよびカオリンなどの結晶核剤、リン酸エステルなどの可塑剤、熱安定剤、酸化防止剤、着色防止剤、紫外線吸収剤、流動性改質剤、発泡剤、抗菌剤、制振剤、防臭剤、摺動性改質剤、およびポリエーテルエステルアミドなどの帯電防止剤等を添加してもよい。
[樹脂(C)(含浸樹脂)]
 樹脂(C)(含浸樹脂)は、エポキシ樹脂、フェノール樹脂、およびテルペン樹脂からなる群より選択される1種以上の樹脂であることが好ましい。
 成形材料において強化繊維束(A)の各単繊維間に上記の含浸樹脂が満たされている状態とすることで、成形材料を成形する際、強化繊維の分散性を向上させることができる。
 また、含浸樹脂はポリフェニレンスルフィド(B)よりも溶融粘度が低いことが好ましい。含浸樹脂の溶融粘度がポリフェニレンスルフィド(B)よりも低いことにより、成形材料の成形の際、含浸樹脂の流動性が高く、強化繊維束のポリフェニレンスルフィド(B)内への分散効果をより向上させることができる。含浸樹脂として、エポキシ樹脂、フェノール樹脂、およびテルペン樹脂からなる群より選択される1種以上の樹脂を用いることでポリフェニレンスルフィド(B)よりも含浸樹脂の溶融粘度を低くすることができ、成形品における強化繊維束の分散性を向上させることができるため、本発明の成形材料を成形した成形品の力学特性を高めつつ、表面平滑性を向上させることができるため好ましい。
 含浸樹脂はポリフェニレンスルフィド(B)との親和性が高いものが好ましい。ポリフェニレンスルフィド(B)と親和性が高い含浸樹脂を選択することにより、成形材料の製造時や成形時に、ポリフェニレンスルフィド(B)と効率良く相溶するため、強化繊維の分散性をさらに向上させることができる。
 含浸樹脂の200℃における溶融粘度は、0.01~10Pa・sが好ましい。200℃における溶融粘度が0.01Pa・s以上であれば、含浸樹脂を起点とする破壊をより抑制し、成形品の衝撃強度をより向上させることができる。溶融粘度は、0.05Pa・s以上がより好ましく、0.1Pa・s以上がさらに好ましい。一方、200℃における溶融粘度が10Pa・s以下であれば、含浸樹脂を強化繊維束(A)の内部まで含浸させやすい。このため、本発明の成形材料を成形する際、強化繊維の分散性をより向上させることができる。溶融粘度は、5Pa・s以下が好ましく、2Pa・s以下がより好ましい。含浸樹脂の200℃における溶融粘度は、40mmのパラレルプレートを用いて、0.5Hzにて、粘弾性測定器により測定することができる。
 含浸樹脂の数平均分子量は、200~5,000が好ましい。数平均分子量が200以上であれば、成形品の曲げ強度および引張強度をより向上させることができる。数平均分子量は1,000以上がより好ましい。また、数平均分子量が5,000以下であれば、含浸樹脂の粘度が適度に低いことから、強化繊維束(A)への含浸性に優れ、成形品中における強化繊維の分散性をより向上させることができる。数平均分子量は3,000以下がより好ましい。なお、かかる含浸樹脂の数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定することができる。
 含浸樹脂は、窒素中にて280℃で30分加熱した際の加熱減量が5重量%以下であることが好ましい。より好ましくは3重量%以下である。かかる加熱減量が5重量%以下の場合、強化繊維束(A)へ含浸した際に分解ガスの発生を抑制することができ、成形した際にボイドの発生および表面外観不良を抑制することができる。また、特に高温における成形において、発生ガスを抑制することができる。
 なお、本発明における加熱減量とは、加熱前の含浸樹脂の重量を100%とし、前記加熱条件における加熱前後での含浸樹脂の重量減量率を表し、下記式により求めることができる。なお、加熱前後の重量は、白金サンプルパンを用いて、空気雰囲気下、昇温速度10℃/分の条件にて、成形温度における重量を熱重量分析(TGA)により測定することにより求めることができる。
(加熱減量)[重量%]={(加熱前重量-加熱後重量)/加熱前重量}×100
 本発明において、含浸樹脂として好ましく用いられるエポキシ樹脂とは、2つ以上のエポキシ基を有する化合物であって、実質的に硬化剤が含まれておらず、加熱しても、いわゆる三次元架橋による硬化をしないものをいう。エポキシ樹脂は、エポキシ基を有することにより、強化繊維と相互作用しやすくなり、含浸時に強化繊維束(A)と馴染みやすく、含浸しやすい。また、成形加工時の強化繊維の分散性がより向上する。
 また、本発明では、エポキシ樹脂としては、例えば、グリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、脂環式エポキシ樹脂が挙げられる。これらを2種以上用いてもよい。グリシジルエーテル型エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ハロゲン化ビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、レゾルシノール型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、エーテル結合を有する脂肪族エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂等が挙げられる。グリシジルエステル型エポキシ樹脂としては、例えば、ヘキサヒドロフタル酸グリシジルエステル、ダイマー酸ジグリシジルエステル等が挙げられる。グリシジルアミン型エポキシ樹脂としては、例えば、トリグリシジルイソシアヌレート、テトラグリシジルジアミノジフェニルメタン、テトラグリシジルメタキシレンジアミン、アミノフェノール型エポキシ樹脂等が挙げられる。脂環式エポキシ樹脂としては、例えば、3,4-エポキシ-6-メチルシクロヘキシルメチルカルボキシレート、3,4-エポキシシクロヘキシルメチルカルボキシレート等が挙げられる。中でも、粘度と耐熱性のバランスに優れるため、グリシジルエーテル型エポキシ樹脂が好ましく、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂がより好ましい。
 フェノール樹脂とは、フェノール骨格を有している樹脂であり、置換基を有していてもよく、クレゾール、ナフトールであってもよい。フェノール樹脂としては、具体的には、フェノールノボラック樹脂、o-クレゾールノボラック樹脂、フェノールアラルキル樹脂、ナフトールノボラック樹脂、ナフトールアラルキル樹脂などが挙げられる。中でも、o-クレゾールノボラック樹脂が、耐熱性と、溶融粘度などの取扱性のバランスに優れることから、複合体の引取速度を速くすることでき、難燃性もより高く維持できるため、好ましく用いられる。
 また、フェノール樹脂の融点は特に限定されないが、成形材料の耐熱性や取扱性を向上させ、成形材料の長期保管中におけるブリードアウトを抑制する観点から、80℃を超えることが好ましい。更に好ましくは、100℃を超えることであり、120℃を超えることが更に好ましい。融点の上限としては特に限定されないが、なお、フェノール樹脂の融点は、DSC測定から求めることができる。具体的には、40℃/分昇温の条件下で測定される吸熱ピークトップの値から求めることができる。
 テルペン樹脂としては、有機溶媒中でフリーデルクラフツ型触媒の存在下において、テルペン単量体を単独で重合して得られる重合体からなる樹脂、若しくは、テルペン単量体と芳香族単量体等と共重合体して得られる重合体からなる樹脂が挙げられる。
 テルペン単量体としては、α-ピネン、β-ピネン、ジペンテン、d-リモネン、ミルセン、アロオシメン、オシメン、α-フェランドレン、α-テルピネン、γ-テルピネン、テルピノーレン、1,8-シネオール、1,4-シネオール、α-テルピネオール、β-テルピネオール、γ-テルピネオール、サビネン、パラメンタジエン類、カレン類等の単環式モノテルペンが挙げられる。また、芳香族単量体としては、スチレン、α-メチルスチレン等が挙げられる。
 中でも、α-ピネン、β-ピネン、ジペンテン、d-リモネンが相溶性の観点から好ましく、さらに、該化合物の単独重合体がより好ましい。また、該テルペン系樹脂を水素添加処理して得られた水素化テルペン系樹脂が相溶性の観点からより好ましい。
 また、テルペン樹脂として、テルペン単量体とフェノール類を、触媒存在下で反応させて得られるテルペンフェノール樹脂を用いることもできる。ここで、フェノール類としては、フェノールのベンゼン環上に、アルキル基、ハロゲン原子および水酸基からなる群より選ばれる少なくとも1種の置換基を1~3個有するものが好ましく用いられる。その具体例としては、クレゾール、キシレノール、エチルフェノール、ブチルフェノール、t-ブチルフェノール、ノニルフェノール、3,4,5-トリメチルフェノール、クロロフェノール、ブロモフェノール、クロロクレゾール、ヒドロキノン、レゾルシノール、オルシノールなどが挙げられる。これらを2種以上用いてもよい。これらの中でも、フェノールおよびクレゾールが好ましい。
 テルペン系樹脂やテルペンフェノール樹脂の数平均分子量は、100~5,000であることが好ましい。より好ましくは、500~1,000である。数平均分子量が100以上であると、テルペン系樹脂の熱減量が低下するため、成形品中での強化繊維束(A)の分散性が向上するため好ましい。また、数平均分子量が5,000以下であると、テルペン樹脂の粘度が低粘度化するため、強化繊維束(A)への含浸性、および成形時の繊維分散性が向上するため、好ましい。
 成形材料の全量(100質量%)に対し、樹脂(C)(含浸樹脂)の含有量は0.1質量%以上、20質量%以下であることが好ましく、より好ましくは、3質量%以上、10質量%以下である。かかる範囲とすることで、成形性と取扱性に優れた成形材料が得られる。含浸樹脂の含有量が0.1重量%未満では強化繊維束(A)への含浸が不十分となり、得られる成形材料の取扱性が不十分となる場合があり好ましくない。一方で、20質量%を超えると成形品中に含まれる低分子量成分が相対的に多くなるため、成形品がもろくなり力学特性が低下するため好ましくない。
 本発明の成形材料は、例えば射出成形により混練されて最終的な成形品となる。樹脂(C)の含有量を上記の数値範囲内とすることによって、成形材料の取扱性を高めることができ、その結果、成形品の力学特性のバラツキを抑制したり、成形品の表面平滑性を向上せしめたりすることができ、また、成形材料の流動性の低下を抑制したり、流動性を向上せしめたりすることができる。また、得られる成形品に優れた力学特性を付与することができる。
[成形材料への添加物]
 本発明の成形材料には、さらに、カルボジイミド構造、ウレア構造およびウレタン構造から選択される少なくとも1種の構造を1分子内に2個以上有する化合物を0.1~10質量%含むことが、強化繊維束(A)とポリフェニレンスルフィド(B)との親和性をさらに高め、得られる成形品の引張特性の向上の観点から好ましい。配合量は0.3~8質量%が好ましく、マトリックス樹脂との混練時の分解ガス発生などの観点も含めると0.5~5質量%の範囲がとりわけ好ましい。
 カルボジイミド構造を有する化合物、すなわちカルボジイミド化合物としては、ポリカルボジイミドがあり、脂肪族ポリカルボジイミド、芳香族ポリカルボジイミドが挙げられるが、強化繊維束(A)とポリフェニレンスルフィド(B)との親和性や反応性の観点から脂肪族ポリカルボジイミドが好ましく用いられる。
 脂肪族ポリカルボジイミド化合物とは、一般式 -N=C=N-R3 - (式中、R3 はシクロヘキシレンなどの脂環式化合物の2価の有機基、またはメチレン、エチレン、プロピレン、メチルエチレンなどの脂肪族化合物の2価の有機基を示す)で表される繰り返し単位を主要構成単位とする、好ましくは当該繰り返し単位を70モル%以上、より好ましくは90モル%以上、さらに好ましくは95モル%以上含有するホモポリマーまたはコポリマーである。
 ウレア構造を有する化合物としては、ジイソシアネートを、複数のアミノ基を含む化合物(例えば、ヒドラジン、ジヒドラジドなど)を含むジアミンと反応させる事により得られたものを使用できる。別法として、ポリウレアは、イソシアネートを水と反応させて不安定なカルバミン酸を形成する事により合成し得る。カルバミン酸は分解して二酸化炭素を発生し、直ちに過剰のイソシアネートと反応してウレア架橋を形成するアミノ基を形成する。または、カルボジイミド構造を有する化合物を水で処理して、カルボジイミドをウレアへと反応させることでも得られる。
 ウレタン構造を有する化合物としては、ビスクロロホルメートをジアミンと反応させる事により得られたものを使用できる。別法として、ポリウレタンは、ジイソシアネートをマクログリコールなどのジオール、ポリオール、またはマクログリコールと単鎖グリコール延長剤の組合せと反応させる事により合成し得る。
 前記の化合物の中でも、強化繊維束(A)との界面接着の観点からポリカルボジイミドが好ましく用いられる。
<成形品>
 本発明の成形品は、強化繊維とポリフェニレンスルフィドを含む成形品であって、前記強化繊維の重量平均繊維長が0.3mm以上、3.0mm以下であり、前記ポリフェニレンスルフィドの融点が270℃以下である成形品である。また、本発明の成形品は、強化繊維とポリフェニレンスルフィド(B)を含む成形品であって、前記強化繊維の重量平均繊維長が0.3mm以上、3.0mm以下であり、該ポリフェニレンスルフィドの降温結晶化温度が190℃以下である成形品である。
[成形品に含まれる強化繊維]
 成形品に含まれる強化繊維の重量平均繊維長は0.3~3.0mmである。より好ましくは、0.5~2.8mmである。さらに好ましくは0.8~2.5mmである。強化繊維の重量平均繊維長を0.3mm以上とすることで、成形品の力学特性を十分に発現することができる。一方、強化繊維の重量平均繊維長が3.0mmを越える場合、成形品表面に強化繊維の繊維模様が顕著に現れやすくなり、成形品表面に強化繊維に由来するうねりが発生し、外観不良を招くため好ましくないことがある。そのため、強化繊維の重量平均繊維長を3.0mm以下にすることで、そのようなうねりを抑制し、成形品の表面外観と優れたものにことができる。
 強化繊維の種類については、特に制限されず、成形材料の強化繊維束の説明で述べた強化繊維を例示することができる。また、好ましい強化繊維の種類や組合せも同様であり、その好ましい理由も同様である。
 成形品100質量%に対して、強化繊維は1~50質量%であることが好ましい。より好ましくは、10~30質量%である。強化繊維が1質量%未満では、得られる成形品の力学特性が不十分となる場合があり、50質量%を超えると成形品の外観が不良となる場合がある。
 強化繊維には集束剤が付着されていることが好ましい。強化繊維に集束剤を付着させることで、成形品の力学特性を向上させることができる。集束剤の種類には特に、限定はないが、エポキシ樹脂、ウレタン樹脂、アクリル樹脂や種々の熱可塑性樹脂などの集束剤を1種または2種以上併用することができる。
[成形品に含まれるポリフェニレンスルフィド]
 本発明における成形品に含まれるポリフェニレンフルフィド樹脂は、融点が270℃以下であることが好ましい。融点を270℃以下にすることで、従来のポリフェニレンフルフィド樹脂よりも低い成形温度で成形することができる。これにより、成形材料中に含まれる、含浸樹脂や集束剤およびその他添加剤の熱分解、即ち発生ガスを抑制することができる。
 ポリフェニレンフルフィド樹脂の融点を270℃以下にする手法としては、前述した手法により適宜調整することで所望する融点を有するポリフェニレンフルフィド樹脂を得ることができる。本発明において、ポリフェニレンスルフィド(B)の融点は、より好ましくは、260℃以下である。また耐熱性の観点からポリフェニレンスルフィド(B)の融点は240℃以上であることが好ましい。
 また、本発明における成形品に含まれるポリフェニレンフルフィド樹脂は、パラフェニレンスルフィド単位のみからなるホモポリフェニレンスルフィドと、パラフェニレンスルフィド単位とメタフェニレンスルフィド単位からなる共重合ポリフェニレンスルフィドを含むことが好ましい。ホモポリフェニレンスルフィドと共重合ポリフェニレンスルフィドを用いることにより、結晶化の速度および降温結晶化温度を適宜コントロールすることができる。即ち、成形品の固化速度をコントロールすることができるため、例えば射出成形時における金型内での急な固化や極端な固化遅延を抑制することができ、結果として成形時の樹脂の流動性を確保することができる。また、サイクル時間を維持することができる。
 また、上記ポリフェニレンフルフィド樹脂が、パラフェニレンスルフィド単位のみからなるホモポリフェニレンスルフィドと、パラフェニレンスルフィド単位とメタフェニレンスルフィド単位からなる共重合ポリフェニレンスルフィドを含むことで、ポリフェニレンスルフィド樹脂の結晶化度をコントロールすることができる。前述した、ポリフェニレンフルフィド樹脂の配合量を適宜調整することで、ポリフェニレンフルフィド樹脂の結晶化度を高めることができるため、例えば射出成形により得られる成形品中のポリフェニレンフルフィド樹脂の結晶化度を高くでき、力学特性を向上させることができる。
 上記ポリフェニレンフルフィド樹脂は、パラフェニレンスルフィド単位のみからなるホモポリフェニレンスルフィドと、パラフェニレンスルフィド単位とメタフェニレンスルフィド単位からなる共重合ポリフェニレンスルフィドを含んでいればよい。例えば、パラフェニレンスルフィド単位のみからなるホモポリフェニレンスルフィドペレットとパラフェニレンスルフィド単位とメタフェニレンスルフィド単位からなる共重合ポリフェニレンスルフィドペレットをドライブレンドし、両者が混合されたペレット(以下、混合ペレット)を予め得て、二軸押出機のメインホッパーにポリフェニレンスルフィドとして当該混合ペレットを供給することによって、パラフェニレンスルフィド単位のみからなるホモポリフェニレンスルフィドと、パラフェニレンスルフィド単位とメタフェニレンスルフィド単位からなる共重合ポリフェニレンスルフィドを配合せしめてもよい。
 また、パラフェニレンスルフィド単位のみからなるホモポリフェニレンスルフィドとパラフェニレンスルフィド単位とメタフェニレンスルフィド単位からなる共重合ポリフェニレンスルフィドの配合比率は特に限定はされないが、パラフェニレンスルフィド単位のみからなるホモポリフェニレンスルフィドと、パラフェニレンスルフィド単位とメタフェニレンスルフィド単位からなる共重合ポリフェニレンスルフィドの合計100重量部に対して、パラフェニレンスルフィド単位のみからなるホモポリフェニレンスルフィドが1~50重量部であり、パラフェニレンスルフィド単位とメタフェニレンスルフィド単位からなる共重合ポリフェニレンスルフィドが99~50重量部となる配合比率が好ましく、より好ましくは、パラフェニレンスルフィド単位のみからなるホモポリフェニレンスルフィドが5~40重量部であり、パラフェニレンスルフィド単位とメタフェニレンスルフィド単位からなる共重合ポリフェニレンスルフィドが、95~60重量部となる配合比率である。
 パラフェニレンスルフィド単位のみからなるホモポリフェニレンスルフィドの配合量が、1重量部未満であると結晶化の速度および降温結晶化温度を適宜コントロールすることができず、成形品の固化速度が極端に遅くなるため、前述した射出成形時におけるサイクル時間が長くなるため好ましくなくことがあり、また、50重量部を越えると結晶化の速度が速くなりすぎるため、前述した射出成形時における金型内での固化速度が速くなり流動性が低下するため、好ましくないことがある。
 さらに、パラフェニレンスルフィド単位とメタフェニレンスルフィド単位からなる共重合ポリフェニレンスルフィドの配合量が50重量部未満であると、結晶化の速度が速くなりすぎるため、前述した射出成形時における金型内での固化速度が速くなり流動性が低下するため、好ましくなくことがあり、また、99重量部を越えると結晶化の速度および降温結晶化温度を適宜コントロールすることができず、成形品の固化速度が極端に遅くなるため、前述した射出成形時におけるサイクル時間が長くなるため、好ましくないことがある。
 以下、実施例より本発明をさらに詳細に説明する。まず、本発明に使用した評価方法を下記する。
(1)ポリフェニレンスルフィド(B)の融点および降温結晶化温度の測定
 ポリフェニレンスルフィド(B)の融点および降温結晶化温度は、示差走査熱量計TA3000(メトラー社製)を用い、以下のとおりに測定された。
[1]示差走査熱量計TA3000(メトラー社製)を用い、40℃から340℃まで20℃/分の昇温速度でサンプルを昇温した。
[2][1]の昇温後、340℃から40℃まで20℃/分の降温速度でサンプルを降温した。
[3][2]の降温後、再度、40℃から340℃まで20℃/分の昇温速度でサンプル昇温する。
上記[3]の昇温過程において観測される融解ピークの頂点を融点とした。また、上記[2]の降温過程において観測される降温結晶化ピークの頂点を降温結晶化温度とした。
(2)成形品の引張強度の測定
 成形材料を射出成形し得られたISO型ダンベル試験片について、ISO527(2012)に従い引張強度を測定した。支点間距離114mm、引張速度5mm/min、温度23℃、相対湿度50%条件下で、試験機として、“インストロン(登録商標)”万能試験機5566型(インストロン社製)を用いた。
(3)成形品の曲げ弾性率の測定
 成形材料を射出成形し得られたISO型ダンベル試験片について、ISO178(1993)に従い曲げ特性を測定した。3点曲げ試験冶具(圧子半径5mm)を用いて支点距離を64mmに設定し、試験速度2mm/分の試験条件にて曲げ弾性率を測定した。試験機として、“インストロン(登録商標)”万能試験機5566型(インストロン社製)を用いた。
(4)成形品に含まれる強化繊維の重量平均繊維長の測定
 成形材料を射出成形し得られたISO型ダンベル試験片の一部を切り出し、320℃で加熱プレスし、およそ30μm厚のフィルムを得た。得られたフィルムを光学顕微鏡にて150倍に拡大観察し、フィルム内で分散した強化繊維を、無作為に少なくとも400本以上抽出しその長さを1μm単位まで測定して、次式により重量平均繊維長を求めた。ここで、「重量平均繊維長」とは、重量平均分子量の算出方法を繊維長の算出に適用し、単純に数平均を取るのではなく、繊維長の寄与を考慮した下記の式から算出される平均繊維長を指す。ただし、下記の式は、強化繊維の繊維径および密度が一定の場合に適用される。
重量平均繊維長=Σ(Mi2×Ni)/Σ(Mi×Ni)
 Mi:繊維長(mm)
 Ni:繊維長Miの炭素繊維の個数
 i:測定繊維の個数。
(5)成形品の表面平滑性(表面粗さRz)の測定
 成形材料を射出成形し得られたISO型ダンベル試験片の金型鏡面側の表面について、表面粗さ計(東京精密(株)社製表面粗さ計)を用いRzを求めた。Rzが小さいほど表面粗さが小さく、表面平滑性に優れることを示している。
(参考例1)ポリフェニレンスルフィド(B-1)[パラフェニレンスルフィド単位のみからなるホモポリフェニレンスルフィド]の作製
 撹拌機付きの20リットルオートクレーブに、47質量%の水硫化ナトリウム水溶液2383g(20.0モル)、水酸化ナトリウム(純度96質量%)848g(20.4モル)、N-メチル-2-ピロリドン(NMP)3271g(33モル)、酢酸ナトリウム541g(6.6モル)、及びイオン交換水3000gを仕込み、常圧で窒素を通じながら225℃まで約3時間かけて徐々に加熱し、水4200gおよびNMP80gを留出したのち、反応容器を150℃に冷却した。仕込み水流化ナトリウム1モル当たりの硫化水素の飛散量は0.018モルであった。
 次に、p-ジクロロベンゼン(p-DCB)2940g(20モル)、NMP2620g(26.2モル)を加え、反応容器を窒素ガス下に密封し、400rpmで撹拌しながら、227℃まで0.8℃/分の速度で昇温し、その後270℃まで0.6℃/分の速度で昇温し270℃で170分保持した。その後180℃まで0.4℃/分の速度で冷却し、その後室温近傍まで急冷した。内容物を取り出し、10リットルのNMPで希釈後、溶剤と固形物をふるい(80mesh)で濾別し、得られた粒子を20リットルの温水で数回洗浄、濾別し、ポリフェニレンスルフィド(B-1)を得た。これを、80℃で熱風乾燥し、120℃で減圧乾燥した。最終的に得られた(B-1)のMFR(メルトフローレート)は600g/10分であった。
(参考例2)ポリフェニレンスルフィド(B-2)[パラフェニレンスルフィド単位とメタフェニレンスルフィド単位からなる共重合ポリフェニレンスルフィド]の作製
 p-ジクロロベンゼン(p-DCB)2940g(20モル)の代わりに、p-ジクロロベンゼン(p-DCB)2499g(17モル)およびm-ジクロロベンゼン(m-DCB)441g(3モル)を用いたこと以外は、上記参考例1と同様にしてポリフェニレンスルフィド(B-2)を得た。最終的に得られた(B-2)のMFRは775g/10分であった。
(参考例3)ポリフェニレンスルフィド(B-3)[パラフェニレンスルフィド単位とメタフェニレンスルフィド単位からなる共重合ポリフェニレンスルフィド]の作製
 p-ジクロロベンゼン(p-DCB)2940g(20モル)の代わりに、p-ジクロロベンゼン(p-DCB)2646g(18モル)およびm-ジクロロベンゼン(m-DCB)294g(2モル)を用いたこと以外は、上記参考例1と同様にしてポリフェニレンスルフィド(B-3)を得た。最終的に得られた(B-3)のMFRは170g/10分であった。
(参考例4)ポリフェニレンスルフィド(B-4)[パラフェニレンスルフィド単位のみからなるホモポリフェニレンスルフィド]の作製
 撹拌機および底に弁の付いた20リットルオートクレーブに、47質量%の水硫化ナトリウム水溶液2383g(20.0モル)、水酸化ナトリウム(純度96質量%)831g(19.9モル)、N-メチル-2-ピロリドン(NMP)3960g(40.0モル)、およびイオン交換水3000gを仕込み、常圧で窒素を通じながら225℃まで約3時間かけて徐々に加熱し、水4200gおよびNMP80gを留出した後、反応容器を160℃に冷却した。仕込み水流化ナトリウム1モル当たりの硫化水素の飛散量は0.021モルであった。
 次に、p-ジクロロベンゼン2942g(20.0モル)、NMP1515g(15.3モル)を加え、反応容器を窒素ガス下に密封した。その後、400rpmで撹拌しながら、200℃から227℃まで0.8℃/分の速度で昇温し、次いで274℃まで0.6℃/分の速度で昇温し、274℃で50分保持した後、282℃まで昇温した。オートクレーブ底部の抜き出しバルブを開放し、窒素で加圧しながら、内容物を撹拌機付き容器に15分かけてフラッシュし、250℃でしばらく撹拌して大半のNMPを除去し、ポリフェニレンスルフィドと塩類を含む固形物を回収した。
 得られた固形物およびイオン交換水15120gを撹拌機付きオートクレーブに入れ、70℃で30分洗浄した後、ガラスフィルターで吸引濾過した。次いで70℃に加熱した17280gのイオン交換水をガラスフィルターに注ぎ込み、吸引濾過してケークを得た。
 得られたケークおよびイオン交換水11880g、酢酸カルシウム1水和物(シグマアルドリッチ)4gを、撹拌機付きオートクレーブに仕込み、オートクレーブ内部を窒素で置換した後、192℃まで昇温し、30分保持した。その後オートクレーブを冷却して内容物を取り出した。
 内容物をガラスフィルターで吸引濾過した後、これに70℃のイオン交換水17280gを注ぎ込み吸引濾過してケークを得た。得られたケークを80℃で熱風乾燥し、さらに120℃で24時間で真空乾燥することにより、乾燥ポリフェニレンスルフィドを得た。最終的に得られた(B-4)のMFRは1000g/10分であった。
(参考例5)ポリフェニレンスルフィド(B-5)[パラフェニレンスルフィド単位のみからなるポリフェニレンスルフィドとポリシロキサンからなる共重合ポリフェニレンスルフィド]の作製
 特開昭64-45433号公報に記載されている方法に準じて、還流管、攪拌機を具備したオートクレーブに、無水硫化ナトリウムを937g(12モル)、4,4,-ジクロロジフェニルスルフィドを3570g(14モル)、N-メチル-2-ピロリドン(NMP)10280g(104モル)を仕込み、窒素雰囲気中、200℃で3時間加熱還流した。その後、反応混合物を水に注ぎいれ粗生成物をろ過によって得た後300mlの高温トルエンで抽出した。結果、トルエンに不溶のポリフェニレンスルフィドオリゴマーを2720g得た。
 次に、撹拌機を具備したオートクレーブに、上記ポリフェニレンスルフィドオリゴマー1164g(6.5モル)、p-アミノチオフェノール400g(3モル)、無水炭酸カリウム530g(3.8モル)、N-メチル-2-ピロリドン(NMP)10280g(104モル)を仕込み、窒素雰囲気中、130℃で1時間攪拌し、次に140~150℃で1.5時間攪拌した。次に反応混合物を220℃で15分間加熱し、200℃で20分保った。得られた溶液を冷却した後、400mlの水を注ぎ沈殿した粗生成物をろ過によって得た。粗生成物はメタノールで洗浄した後に減圧乾燥を行った。結果、1215gのポリフェニレンスルフィドを得た。
 撹拌翼付オートクレーブに、得られたポリフェニレンスルフィド500g、NMPを1380g、アミノ基変性ポリジメチルシロキサン(信越シリコーン製“X-22-161A”)30.5g、ビスフェノールA二無水物50.9gを加えて反応混合物を調製し、加熱還流した。水を共沸除去した後、オートクレーブ内を密封して3回窒素置換した後に、240rpmで攪拌しながら、ヒートジャケットを用いて約15分かけて反応混合物を250℃に昇温した。その後反応温度250℃で60分反応させた後に、オートクレーブを急冷させることにより生成物を得た。得られた生成物を回収するため、重合物を50℃のヘキサンで15分洗浄、ろ過操作を2回行い、さらに、50℃のメタノールで15分洗浄、ろ過操作を2回行い、70℃の水で15分洗浄、ろ過操作を1回行い、ポリフェニレンスルフィド(B-5)を得た。
<強化繊維束(A)>
(A-1):炭素繊維“トレカ”T800-24K(東レ(株)製)を用いた。炭素繊維の集束剤として、ポリグリセロールポリグリシジルエーテル(エポキシ当量:140g/eq)を、集束剤と炭素繊維の合計(100質量%)に対して、1.0重量%付着させた。
(A-2):炭素繊維“トレカ”M55JB-6K(東レ(株)製)を用いた。炭素繊維の集束剤として、ポリグリセロールポリグリシジルエーテル(エポキシ当量:140g/eq)を、集束剤と炭素繊維の合計(100質量%)に対して、1.5重量%付着させた。
(実施例1)
 含浸樹脂であるエポキシ樹脂(ジャパンエポキシレジン(株)製jER828)を200℃の溶融バス中で溶融させ、ギアポンプにてキスコーターに供給した。200℃に加熱されたロール上にキスコーターからエポキシ樹脂を塗布し、被膜を形成した。このロール上に炭素繊維(A-1)を接触させながら通過させて、炭素繊維束の単位長さあたりに一定量のエポキシ樹脂を付着させた。エポキシ樹脂が付着した炭素繊維を230℃に加熱された、一直線上に上下交互に配置されたフリーロール間に通過させ、エポキシ樹脂が炭素繊維に十分含浸した複合体を得た。
 続いて、ポリフェニレンスルフィド(B-2)を320℃で押出機にて溶融し、押出機の先端に取り付けたクロスヘッドダイ中に押し出すと同時に、得られた複合体もクロスヘッドダイ中に連続的に供給することにより、複合体がポリフェニレンスルフィド(B-2)によって被覆されたストランドを得た。
 得られたストランドを冷却後、カッターにて7mmの長さに切断して本発明の成形材料である長繊維ペレットを得た。このペレットは複合体を芯とし、ポリフェニレンスルフィド(B-2)を鞘とした芯鞘構造を有していた。また、炭素繊維束が成形材料の軸心方向に平行に並列されており、かつ炭素繊維束の長さが成形材料の長さと実質的に同じであった。
 得られた長繊維ペレットは運搬による毛羽立ちもなく、良好な取扱性を示した。
 得られた長繊維ペレット状の成形材料を、住友重機械工業社製SE75DUZ-C250型射出成形機を用いて、射出時間:2秒、背圧力:10MPa、保圧時間:10秒、サイクル時間55秒、シリンダー温度:280℃、金型温度:160℃の条件で射出成形することにより、ISO型引張ダンベル試験片(成形品)を作製した。ここで、シリンダー温度とは、射出成形機の成形材料を加熱溶融する部分の温度を示し、金型温度とは、所定の形状にするために成形材料を注入する金型の温度を示す。また、ここで、サイクル時間とは、1回の射出成形加工が開始してから成形品を取り出すまでの時間を示す。加えて、ここでの射出圧力は、射出成形時に溶融した成形材料を金型内へ充填する時に生じた、最大圧力を計測した値を示す。得られた試験片(成形品)を、温度23℃、50%RHに調整された恒温恒湿室に24時間静置した後、前述の方法により評価した。成形材料の特性、射出成形時の射出圧力の値、および成形品の評価結果を表1に示した。
(実施例2~8および11~15)
 強化繊維束(A)の種類および含有量、ポリフェニレンスルフィド(B)の種類および含有量、ならびに、樹脂(C)の種類および含有量を表1に記載のように変更した以外は、実施例1と同様にして成形材料(長繊維ペレット)を得た。
 得られたペレットは、エポキシ樹脂が炭素繊維に十分含浸した複合体を持つものであった。また、得られたペレットにおいて、当該複合体はポリフェニレンスルフィドによって被覆されていた。また、得られたペレットは複合体を芯とし、ポリフェニレンスルフィドを鞘とした芯鞘構造を有していた。得られた長繊維ペレットの長さは、実施例1と同様に7mmであった。また、炭素繊維束が成形材料の軸心方向に平行に並列されており、かつ炭素繊維束の長さが成形材料の長さと実質的に同じであった。
 実施例2~8、11~14で得られた長繊維ペレットは運搬による毛羽立ちもなく、良好な取扱性を示した。一方で、実施例15で得られた長繊維ペレットは、含まれる強化繊維束(A)の量が多いため、相対的にポリフェニレンスルフィド(B)が含まれる量が少なくなり、被覆ムラ、毛羽立ちが見られ、取扱性に劣る結果であった。得られた成形材料を実施例1と同様にして射出成型することによって、成形品を作製し、評価を行った。成形材料の特性、射出成形時の射出圧力の値、および成形品の評価結果を表1に示した。
(実施例9、10)
 実施例1と同様に含浸樹脂であるエポキシ樹脂(ジャパンエポキシレジン(株)製jER828)を200℃の溶融バス中で溶融させ、ギアポンプにてキスコーターに供給した。200℃に加熱されたロール上にキスコーターからエポキシ樹脂を塗布し、被膜を形成した。このロール上に炭素繊維(A-1)を接触させながら通過させて、炭素繊維束の単位長さあたりに一定量のエポキシ樹脂を付着させた。エポキシ樹脂が付着した炭素繊維を230℃に加熱された、一直線上に上下交互に配置されたフリーロール間に通過させ、エポキシ樹脂が炭素繊維に十分含浸した複合体を得た。
 次に、ポリフェニレンフルフィド樹脂(B-1)のペレット、ポリフェニレンフルフィド樹脂(B-2)のペレット、および、脂肪族ポリカルボジイミド(“カルボジライトHMV-8CA”(日清紡ケミカル社製))をドライブレンドし、中間原料となる混合体(混合ペレット)を得た。当該混合体(100質量%)において、ポリフェニレンフルフィド樹脂(B-1)の含有量は29質量%、ポリフェニレンフルフィド樹脂(B-2)の含有量は67質量%、および脂肪族ポリカルボジイミドの含有量は4質量%であった。
 得られた混合ペレットをJSW社製TEX-30α型2軸押出機(スクリュー直径30mm、ダイス直径5mm、バレル温度260℃、スクリュー回転数150rpm)を使用し、前記混合体を当該押出機のメインホッパーから供給して溶融混練し、溶融した状態でダイ内に吐出させ、複合体の周囲を(当該吐出物によって)被覆せしめ、溶融連続状の成形材料(ストランド)を得た。
 この時、成形材料における強化繊維束(A)、ポリフェニレンフルフィド樹脂(B)、樹脂(C)および脂肪族ポリカルボジイミドの含有量が、成形材料(100質量部)に対して、それぞれ表1に記載の値となるように、前記のダイ内における吐出量を調整した。
 得られた連続状の成形材料(ストランド)を冷却後、カッターで切断して、長さ7mmの成形材料(長繊維ペレット)を得た。
 得られたペレットは、エポキシが炭素繊維に十分含浸した複合体を持つものであった。また、得られたペレットにおいて、当該複合体はポリフェニレンスルフィド(B-1)、ポリフェニレンスルフィド(B-2)および脂肪族ポリカルボジイミド(“カルボジライトHMV-8CA”(日清紡ケミカル社製))からなる樹脂組成物によって被覆されていた。また、得られたペレットは複合体を芯とし、前述した樹脂組成物を鞘とした芯鞘構造を有していた。得られた長繊維ペレットの長さは、実施例1と同様に7mmであった。また、炭素繊維束が成形材料の軸心方向に平行に並列されており、かつ炭素繊維束の長さが成形材料の長さと実質的に同じであった。
 得られた長繊維ペレットは運搬による毛羽立ちもなく、良好な取扱性を示した。得られた成形材料を実施例1と同様にして射出成型することによって、成形品を作製し、評価を行った。成形材料の特性、射出成形時の射出圧力の値、および成形品の評価結果を表1に示した。
(比較例1~4)
 強化繊維束(A)の種類および含有量、ポリフェニレンスルフィド(B)の種類および含有量、ならびに、樹脂(C)の種類および含有量を表1に記載のように変更した以外は、実施例1と同様にして成形材料(長繊維ペレット)を得た。
 得られたペレットは、エポキシ樹脂が炭素繊維に十分含浸した複合体を持つものであった。また、得られたペレットにおいて、当該複合体はポリフェニレンスルフィドによって被覆されていた。また、得られたペレットは複合体を芯とし、ポリフェニレンスルフィドを鞘とした芯鞘構造を有していた。得られた長繊維ペレットの長さは、実施例1と同様に7mmであった。また、炭素繊維束が成形材料の軸心方向に平行に並列されており、かつ炭素繊維束の長さが成形材料の長さと実質的に同じであった。
 比較例1~4で得られた長繊維ペレットは運搬による毛羽立ちもなく、良好な取扱性を示した。得られた成形材料を実施例1と同様にして射出成型することによって、成形品を作製し、評価を行った。評価結果を表2に示した。
(比較例5)
 ポリフェニレンフルフィド樹脂(B-1)のペレット、ポリフェニレンフルフィド樹脂(B-2)のペレット、ポリフェニレンフルフィド樹脂(B-4)のペレット、および、エポキシ樹脂(C)をドライブレンドし、中間原料となる混合体を得た。当該混合体におけるそれぞれの含有量は表2に記載のとおりであった。
 JSW社製TEX-30α型2軸押出機(スクリュー直径30mm、ダイス直径5mm、バレル温度260℃、スクリュー回転数150rpm)を使用し、前記混合体を当該押出機のメインホッパーから供給して溶融混練し、下流の真空ベントより脱気を行いながら、溶融樹脂組成物をダイス口から吐出し、連続状の成形材料(ストランド)を得た。
 得られた連続状の成形材料を冷却後、カッターで切断して、長さ7mmの熱可塑性樹脂組成物のペレットを得た。
 得られたペレットは、強化繊維束(A)を含まないため、強化繊維束の長さを測定できず、また芯鞘構造を有していなかった。
 得られた樹脂ペレットを、住友重機械工業社製SE75DUZ-C250型射出成形機を用いて、射出時間:2秒、背圧力:10MPa、保圧時間:10秒、サイクル時間45秒、シリンダー温度:280℃、金型温度:160℃の条件で射出成形することにより、ISO型引張ダンベル試験片(成形品)を作製した。ここで、シリンダー温度とは、射出成形機の成形材料を加熱溶融する部分の温度を示し、金型温度とは、所定の形状にするために成形材料を注入する金型の温度を示す。得られた試験片(成形品)を、温度23℃、50%RHに調整された恒温恒湿室に24時間静置した後、前述の方法により評価した。評価結果を表2に示した。
 実施例1~15は、ポリフェニレンスルフィドの融点が低いため、成形時の成形圧力を低くすること、および、成形時の加工温度を低くすることができた。その結果、成形加工時に発生するガスの量を低減することができ、成形品の表面粗さRzを小さくすることができた。すなわち、表面平滑性、力学特性に優れる成形品が得られる成形材料を作製することができた。
 また、実施例2~4、6~10、12~15は、ポリフェニレンスルフィドが、パラフェニレンスルフィド単位のみからなるホモポリフェニレンスルフィドと、パラフェニレンスルフィド単位とメタフェニレンスルフィド単位からなる共重合ポリフェニレンスルフィドを含むため、メタフェニレンスルフィド単位からなる共重合ポリフェニレンスルフィドのみを含む場合(実施例1および5)と比較して、結晶化速度、即ち、固化速度を早めながらも、金型内において溶融状態の成形材料の固化が始まる前に、成形材料の金型への充填を完了することができた。このように、実施例2~4、6~10、12~15の成形材料は、サイクル時間を一層短くすることができた。
 また、実施例1~10、12~15は、ポリシロキサンを共重合することによってポリフェニレンスルフィドの融点を低下せしめている場合(実施例11)と比較して、成形温度を低くできるので、ガスの発生を一層抑制することができ、成形品の表面粗さを一層小さくできた。
 また、実施例1~14は炭素繊維束の含有量が好適な範囲であるため、実施例15と比較して、射出圧力を一層低くすることができた。
 比較例1~4はポリフェニレンスルフィドの融点が270℃よりも高く成形時の強化繊維束の集束剤に由来のガス発生により成形加工後の成形品表面平滑性に劣る成形材料であった。
 比較例5は、強化繊維束(A)を含まないため、力学特性が劣る成形材料となった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
1:強化繊維束(A)
2:ポリフェニレンスルフィド(B)
3:強化繊維

Claims (14)

  1.  強化繊維束(A)とポリフェニレンスルフィド(B)を含む成形材料であって、該ポリフェニレンスルフィド(B)の融点が270℃以下である成形材料。
  2.  前記ポリフェニレンスルフィド(B)は、パラフェニレンスルフィド単位とメタフェニレンスルフィド単位を含み、該メタフェニレンスルフィド単位の含有量が、パラフェニレンスルフィド単位とメタフェニレンスルフィド単位の全量に対し、7mol%以上である、請求項1に記載の成形材料。
  3. [規則91に基づく訂正 26.10.2021] 
     成形材料が長繊維ペレットである、請求項1または2に記載の成形材料。
  4.  前記強化繊維束(A)が成形材料の軸心方向に平行に並列されており、かつ該強化繊維束(A)の長さが成形材料の長さと実質的に同じである、請求項1から3のいずれかに記載の成形材料。
  5.  前記ポリフェニレンスルフィド(B)の降温結晶化温度が190℃以下である、請求項1から4のいずれかに記載の成形材料。
  6.  前記ポリフェニレンスルフィド(B)の降温結晶化温度と融点の差が80℃以上である、請求項1から5のいずれかに記載の成形材料。
  7.  前記ポリフェニレンスルフィド(B)と複合体を含む成形材料であり、該複合体が前記強化繊維束(A)および樹脂(C)からなり、該樹脂(C)がエポキシ樹脂、フェノール樹脂およびテルペン樹脂からなる群より選ばれる1種以上の樹脂であり、前記複合体が前記ポリフェニレンスルフィド(B)によって被覆されている、請求項1から6のいずれかに記載の成形材料。
  8.  前記強化繊維束(A)を構成する強化繊維が炭素繊維である、請求項1から7のいずれかに記載の成形材料。
  9.  前記強化繊維束(A)には集束剤が付着している、請求項1から8のいずれかに記載の成形材料。
  10.  強化繊維とポリフェニレンスルフィドを含む成形品であって、前記強化繊維の重量平均繊維長が0.3mm以上、3.0mm以下であり、前記ポリフェニレンスルフィドの融点が270℃以下である成形品。
  11.  強化繊維とポリフェニレンスルフィドを含む成形品であって、前記強化繊維の重量平均繊維長が0.3mm以上、3.0mm以下であり、前記ポリフェニレンスルフィドの降温結晶化温度が190℃以下である成形品。
  12.  前記ポリフェニレンスルフィドの融点が270℃以下である、請求項11に記載の成形品。
  13.  前記ポリフェニレンスルフィドは、パラフェニレンスルフィド単位とメタフェニレンスルフィド単位を含み、該メタフェニレンスルフィド単位の含有量が、パラフェニレンスルフィド単位とメタフェニレンスルフィド単位の全量に対し、7mol%以上である、請求項10から12のいずれかに記載の成形品。
  14.  前記ポリフェニレンスルフィドは、パラフェニレンスルフィド単位のみからなるホモポリフェニレンスルフィドと、パラフェニレンスルフィド単位とメタフェニレンスルフィド単位からなる共重合ポリフェニレンスルフィドを含む、請求項10から13のいずれかに記載の成形品。
PCT/JP2021/038942 2020-11-05 2021-10-21 成形材料および成形品 WO2022097493A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021565816A JPWO2022097493A1 (ja) 2020-11-05 2021-10-21
CN202180072578.6A CN116419947A (zh) 2020-11-05 2021-10-21 成型材料及成型品
US18/034,454 US20240017444A1 (en) 2020-11-05 2021-10-21 Molding material and molded article
EP21889046.5A EP4242259A1 (en) 2020-11-05 2021-10-21 Molding material and molded article

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-185079 2020-11-05
JP2020185078 2020-11-05
JP2020185079 2020-11-05
JP2020-185078 2020-11-05

Publications (1)

Publication Number Publication Date
WO2022097493A1 true WO2022097493A1 (ja) 2022-05-12

Family

ID=81457748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038942 WO2022097493A1 (ja) 2020-11-05 2021-10-21 成形材料および成形品

Country Status (6)

Country Link
US (1) US20240017444A1 (ja)
EP (1) EP4242259A1 (ja)
JP (1) JPWO2022097493A1 (ja)
CN (1) CN116419947A (ja)
TW (1) TW202224898A (ja)
WO (1) WO2022097493A1 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114228A (ja) * 1984-06-29 1986-01-22 Kureha Chem Ind Co Ltd パラフエニレンスルフイドブロツクコポリマ−、その製造法およびその用途
JPS6445433A (en) 1987-06-01 1989-02-17 Gen Electric Polyarylenesulfide block copolymer, manufacture and use
JPH08269200A (ja) 1995-03-31 1996-10-15 Tonen Chem Corp 接着性に優れたポリアリーレンスルフィド
JP2004059835A (ja) * 2002-07-31 2004-02-26 Toray Ind Inc ポリフェニレンサルファイド共重合体樹脂組成物
JP2005015792A (ja) * 2003-06-05 2005-01-20 Toray Ind Inc レーザー溶着用ポリフェニレンスルフィド樹脂組成物およびそれを用いた複合成形体
JP2008231291A (ja) * 2007-03-22 2008-10-02 Toray Ind Inc 成形材料
JP2012158746A (ja) 2011-01-14 2012-08-23 Toray Ind Inc 成形材料およびそれを用いた成形品の製造方法
JP2012158747A (ja) 2011-01-14 2012-08-23 Toray Ind Inc 成形材料およびその製造方法
JP2015105359A (ja) * 2013-12-02 2015-06-08 東レ株式会社 ガラス繊維強化熱可塑性樹脂組成物およびその成形品
JP2017160316A (ja) * 2016-03-09 2017-09-14 東レプラスチック精工株式会社 炭素繊維複合材料およびその製造方法
JP2018100365A (ja) * 2016-12-21 2018-06-28 Dic株式会社 ポリアリーレンスルフィド樹脂組成物、成形品及び製造方法
JP2019011421A (ja) * 2017-06-30 2019-01-24 東ソー株式会社 ポリアリーレンスルフィド組成物
JP2019108537A (ja) * 2017-12-15 2019-07-04 東レ株式会社 ポリフェニレンスルフィド樹脂組成物およびそれを用いた中空成形品

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114228A (ja) * 1984-06-29 1986-01-22 Kureha Chem Ind Co Ltd パラフエニレンスルフイドブロツクコポリマ−、その製造法およびその用途
JPS6445433A (en) 1987-06-01 1989-02-17 Gen Electric Polyarylenesulfide block copolymer, manufacture and use
JPH08269200A (ja) 1995-03-31 1996-10-15 Tonen Chem Corp 接着性に優れたポリアリーレンスルフィド
JP2004059835A (ja) * 2002-07-31 2004-02-26 Toray Ind Inc ポリフェニレンサルファイド共重合体樹脂組成物
JP2005015792A (ja) * 2003-06-05 2005-01-20 Toray Ind Inc レーザー溶着用ポリフェニレンスルフィド樹脂組成物およびそれを用いた複合成形体
JP2008231291A (ja) * 2007-03-22 2008-10-02 Toray Ind Inc 成形材料
JP2012158746A (ja) 2011-01-14 2012-08-23 Toray Ind Inc 成形材料およびそれを用いた成形品の製造方法
JP2012158747A (ja) 2011-01-14 2012-08-23 Toray Ind Inc 成形材料およびその製造方法
JP2015105359A (ja) * 2013-12-02 2015-06-08 東レ株式会社 ガラス繊維強化熱可塑性樹脂組成物およびその成形品
JP2017160316A (ja) * 2016-03-09 2017-09-14 東レプラスチック精工株式会社 炭素繊維複合材料およびその製造方法
JP2018100365A (ja) * 2016-12-21 2018-06-28 Dic株式会社 ポリアリーレンスルフィド樹脂組成物、成形品及び製造方法
JP2019011421A (ja) * 2017-06-30 2019-01-24 東ソー株式会社 ポリアリーレンスルフィド組成物
JP2019108537A (ja) * 2017-12-15 2019-07-04 東レ株式会社 ポリフェニレンスルフィド樹脂組成物およびそれを用いた中空成形品

Also Published As

Publication number Publication date
TW202224898A (zh) 2022-07-01
JPWO2022097493A1 (ja) 2022-05-12
US20240017444A1 (en) 2024-01-18
EP4242259A1 (en) 2023-09-13
CN116419947A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
JP6500783B2 (ja) 繊維強化熱可塑性樹脂成形品および繊維強化熱可塑性樹脂成形材料
EP2655512B1 (en) Epoxy resin system containing insoluble and partially soluble or swellable toughening particles for use in prepreg and structural component applications
Li et al. Effectively enhanced mechanical properties of injection molded short carbon fiber reinforced polyethersulfone composites by phenol-formaldehyde resin sizing
JP5597908B2 (ja) 成形材料
CN113613878B (zh) 纤维强化塑料层叠成形体及其制造方法
JP7234204B2 (ja) 熱可塑性樹脂組成物、成形品、熱可塑性樹脂組成物の製造方法、および、メッキ付成形品の製造方法
WO2015064482A1 (ja) 成形品および成形材料
JP2002088259A (ja) 成形材料その製造方法およびその成形品
JP6854591B2 (ja) プリプレグ、強化繊維、繊維強化複合材料、およびプリプレグの製造方法
JP2013173811A (ja) 樹脂組成物、成形材料およびその製造方法
EP3719062A1 (en) Prepreg, method for producing same, and method for producing fiber-reinforced composite material
EP3048137B1 (en) Molding material, method for producing same, and master batch used in same
JP5292711B2 (ja) 成形材料
EP4063092A1 (en) Resin composition, resin molded article and method for producing same
JP5589971B2 (ja) 成形材料
WO2022097493A1 (ja) 成形材料および成形品
EP3719184B1 (en) Carbon fiber bundle, prepreg, and fiber-reinforced composite material
JP2019156981A (ja) プリプレグ、繊維強化複合材料、及びそれらの製造方法
JP7235557B2 (ja) 硬化性樹脂組成物、及びそれを用いたトゥプリプレグ
JP5614382B2 (ja) 成形材料の製造方法
JP6321391B2 (ja) 繊維強化複合材料、プリプレグおよびそれらの製造方法
JP2023153036A (ja) 積層体、該積層体に用いられる部材及び樹脂組成物
JP2023103599A (ja) ポリアリーレンスルフィド樹脂成形用材料
WO2024071090A1 (ja) プリプレグ、及び該プリプレグを用いる繊維強化複合材料の製造方法
TW202134343A (zh) 環氧樹脂組成物及拉拔成型品

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021565816

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21889046

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18034454

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021889046

Country of ref document: EP

Effective date: 20230605