WO2022095369A1 - 一种依赖于通信距离的随机相位调制方法 - Google Patents

一种依赖于通信距离的随机相位调制方法 Download PDF

Info

Publication number
WO2022095369A1
WO2022095369A1 PCT/CN2021/090943 CN2021090943W WO2022095369A1 WO 2022095369 A1 WO2022095369 A1 WO 2022095369A1 CN 2021090943 W CN2021090943 W CN 2021090943W WO 2022095369 A1 WO2022095369 A1 WO 2022095369A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
sampling time
receiver
transmitter
kth
Prior art date
Application number
PCT/CN2021/090943
Other languages
English (en)
French (fr)
Inventor
岳光荣
余代中
杨霖
Original Assignee
电子科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电子科技大学 filed Critical 电子科技大学
Priority to US18/033,375 priority Critical patent/US11881932B2/en
Publication of WO2022095369A1 publication Critical patent/WO2022095369A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K1/00Secret communication
    • H04K1/006Secret communication by varying or inverting the phase, at periodic or random intervals

Definitions

  • the invention belongs to the field of communication technology, and in particular relates to a random phase modulation method depending on communication distance.
  • the existing physical layer encryption authentication methods include physical layer watermarking, physical layer challenge response, cross-layer authentication, physical layer key exchange, radio frequency fingerprint and wireless channel fingerprint.
  • Most of the existing physical layer encryption and authentication technologies are based on information theory and utilize the randomness of the channel, while the potential security performance brought by some other natural factors, such as the location of the transmitter and receiver, has not been fully exploited.
  • the present invention provides a physical layer encryption algorithm, through random phase modulation depending on the communication distance, so that the receiver at the expected distance can receive the signal with the correct phase, and the receiver at other distances can receive the signal with the correct phase.
  • the machine receives signals with chaotic phases, which improves the secure communication capability of the wireless communication system in the spatial dimension.
  • the present invention provides a random phase modulation method dependent on communication distance, characterized in that the method comprises the following steps:
  • Step 1 Time synchronization between the transmitter and the receiver, the transmitter is used to process and transmit the original signal, and the receiver is used to recover the received signal;
  • Step 2 The transmitter and the receiver obtain the kth sampling time according to the pre-agreed sampling rate T s :
  • t 0 represents the initial time of sampling
  • Step 3 The transmitter generates the local random signal ⁇ (t 0 ) at the initial sampling time at the initial sampling time t 0 , where ⁇ (t 0 ) obeys a uniform distribution on the interval [0, 2 ⁇ ); at the kth sampling time, The transmitter generates the local random signal ⁇ (t k ) at the kth sampling time according to the local random signal ⁇ (t k -1 ) at the last sampling time.
  • the generation method is as follows:
  • is a constant on the interval [0, 1]
  • ⁇ (t k ) is the local random signal increment generated by the transmitter at the kth sampling time, and ⁇ (t k ) obeys the constant on the interval [0, 2 ⁇ ) Evenly distributed;
  • Step 4 The transmitter calculates the sampling point offset between the transmitter and the receiver according to the transmission delay ⁇ t to the receiver in Represents an upward rounding operation; the transmitter generates a precoded signal at the kth sampling time according to the local random signal ⁇ (t k+ ⁇ ) at the k+ ⁇ sampling time
  • Step 6 The receiver estimates the transmitted signal at the k-th sampling time to obtain the received signal r k at the k-th sampling time; the receiver generates the k-th random signal ⁇ (t k ) according to the local random signal ⁇ (t k ) at the k-th sampling time Local matching signal at sub-sample time The receiver multiplies the received signal r k at the k-th sampling time by the local matching signal ⁇ k at the k-th sampling time to obtain an estimate of the original signal at the k-th sampling time
  • the method provided by the present invention performs time synchronization through a transmitter and a receiver, generates a local random signal, precodes the original signal to be sent according to the transmission delay and the generated local random signal, and realizes random phase modulation depending on the communication distance. , making full use of the potential security brought by the location of the transmitter and receiver, so that the receiver at the expected distance can receive the correct phase signal, while the receiver at other distances receives the phase position
  • the chaotic signal can improve the safe communication capability of the wireless communication system in the dimension of space.
  • Fig. 1 shows the signal processing block diagram of the transmitter of the present invention.
  • FIG. 2 shows a block diagram of the receiver signal processing of the present invention.
  • FIG. 3 shows the EVM performance of the system described in Embodiment 1
  • the distance interval from the transmitter to the receiver is 3km.
  • the transmitter and the receiver perform time synchronization
  • the transmitter generates a local random signal ⁇ (t 0 ) at the initial sampling time at the initial sampling time t 0 , where ⁇ (t 0 ) obeys a uniform distribution on the interval [0, 2 ⁇ );
  • the signal ⁇ (t k ) is generated by
  • the receiver adopts the architecture shown in FIG. 2 , the receiver estimates the transmitted signal at the kth sampling time, and obtains the received signal r k at the kth sampling time;
  • the random signal ⁇ (t k ) generates the local matching signal at the kth sampling time.
  • the receiver multiplies the received signal rk at the k -th sampling time by the local matching signal ⁇ k at the k-th sampling time to obtain an estimate of the original signal at the k-th sampling time

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

该发明公开了一种依赖于通信距离的随机相位调制方法,属于通信技术领域。本发明所提供的方法通过发射机和接收机进行时间同步,并产生本地随机信号,依据传输时延和所产生本地随机信号对待发送的原始信号进行预编码,实现依赖于通信距离的随机相位调制,充分利用了发射机和接收机的位置所带来的潜在安全性,实现在预期距离位置处的接收机能够收到相位正确的信号,而在其他距离位置处的接收机则收到相位置乱的信号,在空间的维度上提升无线通信系统的安全通信能力。

Description

一种依赖于通信距离的随机相位调制方法 技术领域
该发明属于通信技术领域,具体涉及依赖于通信距离的随机相位调制方法。
背景技术
传统的抗截获安全通信方法依赖于上层的加密和认证技术,然而随着计算能力的提升,上层的加密和认证技术面临着前所未有的挑战。例如,2019年9月,谷歌公司宣告在全球首次实现“量子霸权”:其量子计算机仅用200秒就完成了世界第一超算Summit用1万年的时间才能完成的计算,计算能力提升了15亿倍。在另一方面,随着无线接入的增加,高层加密认证技术的秘钥分配管理更加困难。基于此背景,物理层加密认证技术得到了广泛而深入的研究。物理层加密认证技术通过基于物理层的特征属性来实现加密认证,充分利用了底层信号特征属性,并且还具备较高的协议架构兼容性、高灵活性和低时延特征。
现有的物理层加密认证方法包括物理层水印、物理层挑战响应、跨层认证、物理层秘钥交换、射频指纹和无线信道指纹等。现有物理层加密认证技术大多基于信息论基础,对信道的随机性加以利用,而一些其他自然因素,例如发射机和接收机的位置,所带来的潜在安全性能没有得到充分挖掘。
发明内容
为了解决该问题,本发明提供一种物理层加密算法,通过依赖于通信距离的随机相位调制,实现在预期距离位置处的接收机能够收到相位正确的信号,而在其他距离位置处的接收机则收到相位置乱的信号,在空间的维度上提升无线通信系统的安全通信能力。
为了实现上述目的,本发明提供一种依赖于通信距离的随机相位调制方法,其特征在于,该方法包括以下步骤:
步骤1:将发射机和接收机进行时间同步,发射机用于对原始信号进行处理和发射,接收机用于对接收信号进行恢复;
步骤2:发射机和接收机依据事先约定的采样率T s,得到第k次采样时刻:
t k=t 0+kT s
其中,t 0表示采样初始时刻;
步骤3:发射机在采样初始时刻t 0产生初始采样时刻的本地随机信号θ(t 0),其中θ(t 0)服 从区间[0,2π)上的均匀分布;在第k次采样时刻,发射机依据上一次采样时刻的本地随机信号θ(t k-1),产生在第k次采样时刻的本地随机信号θ(t k),产生方法为:
Figure PCTCN2021090943-appb-000001
其中ρ为区间[0,1]上的常数,χ(t k)为在第k次采样时刻发射机产生的本地随机信号增量,并且χ(t k)服从区间[0,2π)上的均匀分布;
步骤4:发射机依据到接收机的传输时延Δt,计算发射机与接收机之间的采样点偏移
Figure PCTCN2021090943-appb-000002
其中
Figure PCTCN2021090943-appb-000003
表示向上取整操作;发射机依据第k+Δτ次采样时刻的本地随机信号θ(t k+Δτ)产生第k次采样时刻的预编码信号
Figure PCTCN2021090943-appb-000004
步骤5:发射机将第k次采样时刻的原始信号s k,与第k次采样时刻的预编码信号α k相乘,得到第k次采样时刻的发送信号x k=s kα k,并发送至接收机,其中原始信号s k表示待发送的数据信号;
步骤6:接收机对第k次采样时刻的发送信号进行估计,得到第k次采样时刻的接收信号r k;接收机依据第k次采样时刻的本地随机信号θ(t k),产生第k次采样时刻的本地匹配信号
Figure PCTCN2021090943-appb-000005
接收机将第k次采样时刻的接收信号r k与第k次采样时刻的本地匹配信号β k相乘,得到对所述第k次采样时刻的原始信号的估计
Figure PCTCN2021090943-appb-000006
本发明所提供的方法通过发射机和接收机进行时间同步,并产生本地随机信号,依据传输时延和所产生本地随机信号对待发送的原始信号进行预编码,实现依赖于通信距离的随机相位调制,充分利用了发射机和接收机的位置所带来的潜在安全性,实现在预期距离位置处的接收机能够收到相位正确的信号,而在其他距离位置处的接收机则收到相位置乱的信号,在空间的维度上提升无线通信系统的安全通信能力。
附图说明
图1给出了本发明发射机信号处理框图。
图2给出了本发明接收机信号处理框图。
图3给出了实施方式1所描述系统的EVM性能
具体实施方式
下面结合附图,详细说明本发明的实施方式。
发射机采用如图1所示架构,假设所述发射机和所述接收机依据事先约定的采样率T s=0.025μs。初始采样时刻为t 0=0。假设发射机到接收机的距离间隔为3km。
(1)所述发射机和所述接收机进行时间同步;
(2)所述发射机和所述接收机依据事先约定的采样率T s,得到第k次采样时刻t k=kT s=0.025kμs;
(3)所述发射机在所述采样初始时刻t 0产生初始采样时刻的本地随机信号θ(t 0),其中θ(t 0)服从区间[0,2π)上的均匀分布;在所述第k次采样时刻,其中k=1,2,3,…,所述发射机依据上一次采样时刻的本地随机信号θ(t k-1),产生在所述第k次采样时刻的本地随机信号θ(t k),产生方法为
Figure PCTCN2021090943-appb-000007
其中ρ=0.99,χ(t k)服从区间[0,2π)上的均匀分布。
(4)所述发射机依据到所述接收机的传输时延Δt=(3km)/c=10μs,其中c为电磁波在空间中的传播速度,计算发射机与接收机之间的采样点偏移
Figure PCTCN2021090943-appb-000008
产生第k次采样时刻的预编码信号
Figure PCTCN2021090943-appb-000009
其中θ(t k+400)表示第k+400次采样时刻的本地随机信号。
(5)所述发射机将第k次采样时刻的原始信号s k与所述第k次采样时刻的预编码信号α k相乘,得到第k次采样时刻的发送信号x k=s kα k,发送至接收机。
接收机采用图2所示的架构,接收机对第k次采样时刻的发送信号进行估计,得到第k次采样时刻的接收信号r k;所述接收机依据所述第k次采样时刻的本地随机信号θ(t k),产生 第k次采样时刻的本地匹配信号
Figure PCTCN2021090943-appb-000010
所述接收机将所述第k次采样时刻的接收信号r k与所述第k次采样时刻的本地匹配信号β k相乘,得到对所述第k次采样时刻的原始信号的估计
Figure PCTCN2021090943-appb-000011
图3给出了该实施方式所描述系统的EVM性能随传输距离的关系,可以看到,只有在预期距离位置3km附近的接收机能够收到相位正确的信号,误差向量幅度EVM=0%,在其他位置处的接收机接收到的都是相位置乱的信号,EVM值非0且大于100%。

Claims (1)

  1. 一种依赖于通信距离的随机相位调制方法,其特征在于,该方法包括以下步骤::
    步骤1:将发射机和接收机进行时间同步,发射机用于对原始信号进行处理和发射,接收机用于对接收信号进行恢复;
    步骤2:发射机和接收机依据事先约定的采样率T s,得到第k次采样时刻:
    t k=t 0+kT s
    其中,t 0表示采样初始时刻;
    步骤3:发射机在采样初始时刻t 0产生初始采样时刻的本地随机信号θ(t 0),其中θ(t 0)服从区间[0,2π)上的均匀分布;在第k次采样时刻,发射机依据上一次采样时刻的本地随机信号θ(t k-1),产生在第k次采样时刻的本地随机信号θ(t k),产生方法为:
    Figure PCTCN2021090943-appb-100001
    其中ρ为区间[0,1]上的常数,χ(t k)为在第k次采样时刻发射机产生的本地随机信号增量,并且χ(t k)服从区间[0,2π)上的均匀分布;
    步骤4:发射机依据到接收机的传输时延Δt,计算发射机与接收机之间的采样点偏移
    Figure PCTCN2021090943-appb-100002
    其中
    Figure PCTCN2021090943-appb-100003
    表示向上取整操作;发射机依据第k+Δτ次采样时刻的本地随机信号θ(t k+Δτ)产生第k次采样时刻的预编码信号
    Figure PCTCN2021090943-appb-100004
    步骤5:发射机将第k次采样时刻的原始信号s k,与第k次采样时刻的预编码信号α k相乘,得到第k次采样时刻的发送信号x k=s kα k,并发送至接收机,其中原始信号s k表示待发送的数据信号;
    步骤6:接收机对第k次采样时刻的发送信号进行估计,得到第k次采样时刻的接收信号r k;接收机依据第k次采样时刻的本地随机信号θ(t k),产生第k次采样时刻的本地匹配信号
    Figure PCTCN2021090943-appb-100005
    接收机将第k次采样时刻的接收信号r k与第k次采样时刻的本地匹配信号β k相乘,得到对所述第k次采样时刻的原始信号的估计
    Figure PCTCN2021090943-appb-100006
PCT/CN2021/090943 2020-11-04 2021-04-29 一种依赖于通信距离的随机相位调制方法 WO2022095369A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/033,375 US11881932B2 (en) 2020-11-04 2021-04-29 Random phase modulation method depending on communication distance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011213369.2 2020-11-04
CN202011213369.2A CN112039626B (zh) 2020-11-04 2020-11-04 一种依赖于通信距离的随机相位调制方法

Publications (1)

Publication Number Publication Date
WO2022095369A1 true WO2022095369A1 (zh) 2022-05-12

Family

ID=73573168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090943 WO2022095369A1 (zh) 2020-11-04 2021-04-29 一种依赖于通信距离的随机相位调制方法

Country Status (3)

Country Link
US (1) US11881932B2 (zh)
CN (1) CN112039626B (zh)
WO (1) WO2022095369A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112039626B (zh) 2020-11-04 2021-02-05 电子科技大学 一种依赖于通信距离的随机相位调制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010017898A1 (en) * 1997-06-03 2001-08-30 Riccardo Raheli Non-coherent sequence estimation receiver for modulations
CN109639325A (zh) * 2019-01-24 2019-04-16 电子科技大学 一种基于通信距离的多载波相控通信方法
CN112039626A (zh) * 2020-11-04 2020-12-04 电子科技大学 一种依赖于通信距离的随机相位调制方法

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6359923B1 (en) * 1997-12-18 2002-03-19 At&T Wireless Services, Inc. Highly bandwidth efficient communications
JP3436879B2 (ja) * 1998-03-05 2003-08-18 松下電器産業株式会社 距離検出方法及びその装置
US6826607B1 (en) * 1999-10-06 2004-11-30 Sensoria Corporation Apparatus for internetworked hybrid wireless integrated network sensors (WINS)
US6532271B1 (en) * 1999-10-29 2003-03-11 Cadence Design Systems, Inc. Carrier recovery and doppler frequency estimation
US6675009B1 (en) * 2001-02-15 2004-01-06 Sprint Communications Company, L.P. Automated configuration of a wireless communication device
US6937639B2 (en) * 2001-04-16 2005-08-30 Time Domain Corporation System and method for positioning pulses in time using a code that provides spectral shaping
EP1267175A3 (en) * 2001-06-11 2003-10-15 Hewlett-Packard Company Location determination using location data items received by short-range communication
US7499710B2 (en) * 2001-08-30 2009-03-03 Alcatel-Lucent Usa Inc. Integrity monitoring for geo-location systems
US7289520B2 (en) * 2002-11-20 2007-10-30 Hewlett-Packard Development Company, L.P. Method, apparatus, and system for expressway routing among peers
CN101662816B (zh) * 2003-02-03 2014-03-05 索尼株式会社 无线通信系统,无线通信设备和无线通信方法及计算机程序
US7362817B2 (en) * 2003-07-18 2008-04-22 Broadcom Corproation UWB (Ultra Wide Band) interference mitigation
US7362829B2 (en) * 2003-07-18 2008-04-22 Broadcom Corporation Multi-band single-carrier modulation
US20050084033A1 (en) * 2003-08-04 2005-04-21 Lowell Rosen Scalable transform wideband holographic communications apparatus and methods
US20050100076A1 (en) * 2003-08-04 2005-05-12 Gazdzinski Robert F. Adaptive holographic wideband communications apparatus and methods
US20050084032A1 (en) * 2003-08-04 2005-04-21 Lowell Rosen Wideband holographic communications apparatus and methods
US20050084031A1 (en) * 2003-08-04 2005-04-21 Lowell Rosen Holographic communications using multiple code stages
EP3447935B1 (en) * 2004-04-02 2022-01-26 Apple Inc. Wireless communication methods, systems, and signal structures
US7689240B2 (en) * 2005-11-16 2010-03-30 Trueposition, Inc. Transmit-power control for wireless mobile services
FR2899042B1 (fr) * 2006-03-21 2008-05-02 Commissariat Energie Atomique Procede de codage spatio-temporel pour systeme de communication bi-antenne de type uwb impulsionnel
US20090086657A1 (en) * 2007-10-01 2009-04-02 Comsys Communication & Signal Processing Ltd. Hybrid automatic repeat request buffer flushing mechanism
KR100890182B1 (ko) * 2007-12-18 2009-03-25 인하대학교 산학협력단 Mb-ofdm 시스템 기반 채널 및 주파수 옵셋결합추정장치 및 방법
CN102148628B (zh) * 2010-02-08 2013-11-13 北京泰美世纪科技有限公司 扩频弱信号同步的方法及装置
US8599901B2 (en) * 2010-04-05 2013-12-03 The United States Of America As Represented By The Secretary Of The Army Method and apparatus for tracking a frequency-hopped signal
DE102013008607A1 (de) * 2013-05-22 2014-11-27 S.M.S Smart Microwave Sensors Gmbh Verfahren zur Bestimmung von Abstand und Relativgeschwindigkeit eines entfernten Objekts
US9467957B2 (en) * 2014-01-21 2016-10-11 Qualcomm Incorporated Method and apparatus for resource allocation for distributed device to device synchronization
US20150223246A1 (en) * 2014-02-05 2015-08-06 Qualcomm Incorporated Systems and methods for improved communication efficiency in high efficiency wireless networks
CN103905154A (zh) * 2014-03-28 2014-07-02 哈尔滨工程大学 一种多基地空时码探测信号的时反相关检测方法
FR3020531B1 (fr) * 2014-04-25 2016-05-20 Commissariat Energie Atomique Dispositif et methode de determination du temps d'arrivee d'un signal uwb.
US10050750B2 (en) * 2014-12-09 2018-08-14 Qualcomm Incorporated Training field tone plans for mixed-rate wireless communication networks
EP3321712B1 (en) * 2016-11-11 2024-06-05 Nxp B.V. Processing module and associated method
US10925082B2 (en) * 2017-03-24 2021-02-16 Apple Inc. Sub-PRB resource allocation for pusch in even further enhanced MTC
CN110870226A (zh) * 2017-07-31 2020-03-06 深圳市大疆创新科技有限公司 数据处理装置和方法
CN108234062A (zh) * 2017-12-19 2018-06-29 中国电子科技集团公司第三十研究所 一种基于空口信号特征复杂化的安全传输方法
CN110460360B (zh) * 2018-05-08 2020-06-30 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN110635882B (zh) * 2018-06-25 2020-10-02 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
US11533694B2 (en) * 2018-10-31 2022-12-20 Qualcomm Incorporated Relative timing drift correction for distributed multi-user transmissions
CN110501729B (zh) * 2019-06-18 2023-03-31 山东大学 一种基于fpga分步码相位细化的gnss信号的捕获方法
US11476372B1 (en) * 2020-05-13 2022-10-18 Apple Inc. SPAD-based photon detectors with multi-phase sampling TDCs
US20220391696A1 (en) * 2021-05-25 2022-12-08 University Of South Carolina Methods for reliable over-the-air computation and federated edge learning

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010017898A1 (en) * 1997-06-03 2001-08-30 Riccardo Raheli Non-coherent sequence estimation receiver for modulations
CN109639325A (zh) * 2019-01-24 2019-04-16 电子科技大学 一种基于通信距离的多载波相控通信方法
CN112039626A (zh) * 2020-11-04 2020-12-04 电子科技大学 一种依赖于通信距离的随机相位调制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "CM Increase for PUCCH/DM RS in Non-contiguous Allocation", 3GPP DRAFT; R1-094781_LG_ULDMRS_CM, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. Jeju; 20091109, 1 November 2009 (2009-11-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP050389177 *
YAOBO SHANG, YING GUO, WEIDONG PENG, LIFENG HAN: "Precise synchronization algorithm for CPM signal based on pilot-aided pre-coding", JOURNAL OF CHONGQING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS(NATURAL SCIENCE EDITION), 31 October 2014 (2014-10-31), pages 642 - 647, XP055927935, ISSN: 1673-825X *

Also Published As

Publication number Publication date
CN112039626A (zh) 2020-12-04
CN112039626B (zh) 2021-02-05
US11881932B2 (en) 2024-01-23
US20230421284A1 (en) 2023-12-28

Similar Documents

Publication Publication Date Title
CN112052086B (zh) 一种移动边缘计算网络中的多用户安全节能资源分配方法
WO2022095371A1 (zh) I/q域调制方法、双域调制方法和多址通信方法
CN111065096B (zh) 针对无线通信的物理层加密传输系统及其方法
CN109150855B (zh) 一种优化功率资源的鲁棒性无线通信安全传输方法
CN111343712A (zh) 一种无人机辅助认知无线网络通信安全的控制方法
CN108988922A (zh) 安全空间调制中基于最大化近似安全速率的预编码方法
WO2022095369A1 (zh) 一种依赖于通信距离的随机相位调制方法
US12096217B2 (en) PUF-based IoT device using channel state information, and authentication method thereof
CN109743155B (zh) 一种基于天线选择的差分混沌键控的物理层安全传输方法
CN108964730A (zh) 安全空间调制系统中基于连续凸近似的线性预编码方法
CN106685639A (zh) 5g通信系统中基于人工加噪的序列密码加密安全传输方法
CN112104585B (zh) 依赖于空间位置的相位域调制方法
CN110635832B (zh) 基于方向调制的无线网络最大化安全速率功率分配方法
CN113179113B (zh) 卫星通信多播信号传输方式下波束成形方法和系统
Zhou et al. Physical layer secret key generation for spatially correlated channels based on multi-task autoencoder
CN110798832B (zh) 一种基于信道加密的时域调制方法
CN111786789B (zh) 一种基于随机波束和边缘计算的物理层密钥分发方法
CN101888262B (zh) 一种采用高密度差分跳频的通信方法
US12013925B2 (en) Authenticating proximity via time-of-flight
CN113055347B (zh) 一种基于随机自干扰实现物理层密钥分发的通信方法
CN111464299A (zh) 基于频分双工模式下构建互易信道参数的物理层密钥生成方法
CN108234062A (zh) 一种基于空口信号特征复杂化的安全传输方法
CN112565125B (zh) 基于ofdm的高速移动无线通信保密方法
Yang et al. Secure transmission technology based on direct modulation with random channel characteristics
CN116760458B (zh) 一种基于非正交多址接入的卫星通信数据安全传输方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21888073

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18033375

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21888073

Country of ref document: EP

Kind code of ref document: A1