WO2022095185A1 - 输电线故障测距基波分量提取中量测误差抑制方法及系统 - Google Patents
输电线故障测距基波分量提取中量测误差抑制方法及系统 Download PDFInfo
- Publication number
- WO2022095185A1 WO2022095185A1 PCT/CN2020/133638 CN2020133638W WO2022095185A1 WO 2022095185 A1 WO2022095185 A1 WO 2022095185A1 CN 2020133638 W CN2020133638 W CN 2020133638W WO 2022095185 A1 WO2022095185 A1 WO 2022095185A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fundamental wave
- extraction
- line fault
- transmission line
- data
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- 238000005259 measurement Methods 0.000 title claims abstract description 28
- 238000000605 extraction Methods 0.000 title claims abstract description 25
- 230000005540 biological transmission Effects 0.000 title claims abstract description 16
- 238000005070 sampling Methods 0.000 claims abstract description 28
- 230000001629 suppression Effects 0.000 claims description 9
- 230000008859 change Effects 0.000 claims description 4
- 238000012886 linear function Methods 0.000 claims description 3
- 101100119135 Mus musculus Esrrb gene Proteins 0.000 claims description 2
- 238000004364 calculation method Methods 0.000 abstract description 5
- 238000001914 filtration Methods 0.000 abstract description 2
- 238000012545 processing Methods 0.000 abstract description 2
- 230000009466 transformation Effects 0.000 abstract 1
- 230000006870 function Effects 0.000 description 3
- 238000003491 array Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/08—Locating faults in cables, transmission lines, or networks
- G01R31/081—Locating faults in cables, transmission lines, or networks according to type of conductors
- G01R31/085—Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution lines, e.g. overhead
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/08—Locating faults in cables, transmission lines, or networks
- G01R31/088—Aspects of digital computing
Definitions
- the invention relates to the technical field of transmission line fault location, in particular to a method and system for suppressing measurement errors in fundamental wave component extraction of transmission line fault location.
- the existing fault location algorithms based on measured impedance all need to use the fundamental components of the voltage and current after the fault for calculation.
- the accuracy of the fundamental wave component will greatly affect the fault location accuracy.
- the existence of measurement errors will cause errors in the fundamental components of voltage and current used for ranging calculation, which will affect the accuracy of the ranging results.
- the existing methods In order to overcome the influence of measurement errors on the ranging accuracy, the existing methods generally extract multiple sets of fundamental wave components through sliding sampling data windows to construct redundant ranging equations, and use the least squares method to improve the ranging accuracy. Although this method has achieved certain results, for the more common T connection or multi-branch connection in the distribution network, the solution of the ranging equation is relatively complex, and the use of redundant data to increase the number of equations is not conducive to nonlinear measurement. Numerical solution of the distance equation.
- the present invention proposes a measurement error suppression method and system in the fundamental wave component extraction of power line fault ranging, which can directly filter the sampled data to obtain a more accurate fundamental wave component calculation result, thereby improving the Accuracy of fault location results.
- a method for suppressing measurement errors in the extraction of fundamental wave components of power transmission line fault ranging comprising:
- Multiple sets of sampling data are formed by sliding the starting moment of the sampling data window
- a measurement error suppression system in the extraction of fundamental wave components of transmission line fault ranging comprising:
- the data sampling module is used to form multiple sets of sampling data by sliding the starting moment of the sampling data window;
- a fundamental wave component extraction module for extracting fundamental wave components from each set of sampled data using discrete Fourier transform
- the linear fitting module is used to perform linear fitting on the amplitude and initial phase of the fundamental component to obtain accurate amplitude and phase.
- a terminal device comprising a processor and a computer-readable storage medium, where the processor is used to implement various instructions; the computer-readable storage medium is used to store a plurality of instructions, the instructions are suitable for being loaded by the processor and executing the above-mentioned power line Measurement error suppression method in extraction of fundamental wave components of fault location.
- a computer-readable storage medium stores a plurality of instructions, wherein the instructions are adapted to be loaded by a processor of a terminal device and execute the above-mentioned method for suppressing measurement error in fundamental wave component extraction of power line fault ranging.
- the invention proposes a new measurement error suppression method, which can directly filter the sampled data and obtain a more accurate calculation result of the fundamental wave component. , so as to improve the accuracy of fault location results.
- FIG. 1 is a flowchart of a method for suppressing measurement errors in the fundamental wave component extraction of transmission line fault ranging according to an embodiment of the present invention.
- a method for suppressing measurement errors in the extraction of fundamental wave components of transmission line fault ranging is disclosed. Referring to FIG. 1 , the method specifically includes the following steps:
- f 1 is the frequency of the fundamental wave component
- ⁇ 0 is the initial phase of the fundamental wave component, referred to as the initial phase
- U 1 is the amplitude of the fundamental wave component.
- phase is a linear function that varies with time.
- the fundamental wave component is extracted by using the power frequency one-cycle sampling point after the fault. If the result is accurate, theoretically, its amplitude does not change with the change of the starting point of the data window of the sampling point.
- linear fitting filtering is selected in this embodiment, and multiple sets of sampling data are formed by sliding the starting time of the data window, and discrete Fourier transform (DFT) is used.
- DFT discrete Fourier transform
- the fundamental wave components are extracted from each data window, and the amplitude and initial phase are obtained.
- the amplitude and initial phase of these fundamental wave components fluctuate around the corresponding accurate values, and then the accurate amplitude and initial phase can be obtained by means of linear fitting. phase.
- the following is an example of the amplitude U mab and the initial phase ⁇ 0 of the fundamental wave component of the AB phase-to-phase line voltage obtained at the measurement point m after the fault.
- the length of each data window is one cycle of the fundamental wave component
- the linear fitting result to be obtained is U mab
- the linear fitting result to be obtained is ⁇ 0
- the error function is derived with respect to ⁇ 0 and the derivative function is set equal to 0:
- the simulation verification is carried out in MATLAB.
- the signal is constructed.
- the results are compared as shown in Table 1.
- the average amplitude of the fundamental component extracted by linear fitting is 99.8412, the relative error is 0.15%, and the maximum relative error is 0.63%; the fundamental component directly extracted without linear fitting
- the average amplitude is 97.47382, the relative error is 2.53%, and the maximum relative error is 4.59%.
- the average phase angle of the fundamental component extracted by linear fitting is 59.9536°, the relative error is 0.08%, and the maximum relative error is 1.06%; the average phase angle of the fundamental component extracted without linear fitting is 58.2766, and the relative error is 2.87% , the maximum relative error is 6.37%.
- the data show that the measurement noise suppression method based on linear fitting proposed in the present invention can well suppress the interference of random noise, and the fundamental wave component amplitude is closer to the exact value of the fundamental wave component than the direct extraction result.
- a terminal device including a server, the server including a memory, a processor, and a computer program stored on the memory and executable on the processor, the processor executing the The method in the first embodiment is implemented in the program. For brevity, details are not repeated here.
- the processor may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors, DSPs, application-specific integrated circuits (ASICs), off-the-shelf programmable gate arrays (FPGAs), or other programmable logic devices. , discrete gate or transistor logic devices, discrete hardware components, etc.
- a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
- the memory may include read-only memory and random access memory and provide instructions and data to the processor, and a portion of the memory may also include non-volatile random access memory.
- the memory may also store device type information.
- each step of the above-mentioned method can be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
- the method in the first embodiment can be directly embodied as being executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
- the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
- the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, detailed description is omitted here.
- a computer-readable storage medium in which a plurality of instructions are stored, the instructions are adapted to be loaded by a processor of a terminal device and the power transmission line described in the first embodiment Measurement error suppression method in extraction of fundamental wave components of fault location.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Locating Faults (AREA)
Abstract
Description
Claims (10)
- 一种输电线故障测距基波分量提取中量测误差抑制方法,其特征在于,包括:通过滑动采样数据窗口的起始时刻形成多组采样数据;使用离散傅里叶变换从每组采样数据中分别提取基波分量;对基波分量的幅值和初相分别进行线性拟合,得到准确的幅值和相位。
- 如权利要求1所述的一种输电线故障测距基波分量提取中量测误差抑制方法,其特征在于,所述基波分量的幅值和初相不随故障后时间推移而变化,为常量。
- 如权利要求1所述的一种输电线故障测距基波分量提取中量测误差抑制方法,其特征在于,使用离散傅里叶变换从每组采样数据中分别提取基波分量并将幅值记为U mab(i),i=0,1,2,……,N-1,基于最小二乘法拟合一个近似直线y=U mab,使得对于所有数据来说总的误差和err1最小,从而求得线性拟合结果U mab。
- 如权利要求1所述的一种输电线故障测距基波分量提取中量测误差抑制方法,其特征在于,使用离散傅里叶变换从每组采样数据中分别提取基波分量并将相角记为α k,k=0,1,2……,N-1,分别计算出初相θ k,基于最小二乘法拟合一个近似直线y=θ 0,使得对于所有数据来说总的误差和err2最小,从而求得线性拟合结果θ 0。
- 一种输电线故障测距基波分量提取中量测误差抑制系统,其特征在于,包括:数据采样模块,用于通过滑动采样数据窗口的起始时刻形成多组采样数据;基波分量提取模块,用于使用离散傅里叶变换从每组采样数据中分别提取基波分量;线性拟合模块,用于对基波分量的幅值和初相分别进行线性拟合,得到准确的幅值和相位。
- 一种终端设备,其包括处理器和计算机可读存储介质,处理器用于实现各指令;计算机可读存储介质用于存储多条指令,其特征在于,所述指令适于由 处理器加载并执行权利要求1-7任一项所述的输电线故障测距基波分量提取中量测误差抑制方法。
- 一种计算机可读存储介质,其中存储有多条指令,其特征在于,所述指令适于由终端设备的处理器加载并执行权利要求1-7任一项所述的输电线故障测距基波分量提取中量测误差抑制方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011225612.2 | 2020-11-05 | ||
CN202011225612.2A CN112379216A (zh) | 2020-11-05 | 2020-11-05 | 输电线故障测距基波分量提取中量测误差抑制方法及系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022095185A1 true WO2022095185A1 (zh) | 2022-05-12 |
Family
ID=74579377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/133638 WO2022095185A1 (zh) | 2020-11-05 | 2020-12-03 | 输电线故障测距基波分量提取中量测误差抑制方法及系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112379216A (zh) |
WO (1) | WO2022095185A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115277294A (zh) * | 2022-07-27 | 2022-11-01 | 中车青岛四方车辆研究所有限公司 | 一种差分总线在线健康诊断方法及系统 |
CN117471366A (zh) * | 2023-12-27 | 2024-01-30 | 国网福建省电力有限公司 | 一种基于最小二乘法的计量装置中性线接触不良研判方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8680872B2 (en) * | 2009-09-29 | 2014-03-25 | International Business Machines Corporation | Identification of false positives in high impedance fault detection |
CN109085455A (zh) * | 2017-12-26 | 2018-12-25 | 贵州电网有限责任公司 | 一种用于配电线路高阻接地故障的判定方法 |
CN109145476A (zh) * | 2018-08-31 | 2019-01-04 | 重庆水利电力职业技术学院 | 用于电力系统信号处理的时域自适应分段复指数级数法 |
CN109256762A (zh) * | 2017-07-13 | 2019-01-22 | 许继集团有限公司 | 配电网单相故障电流补偿控制方法、装置与系统 |
CN109802372A (zh) * | 2019-03-05 | 2019-05-24 | 华北电力大学 | 基于暂态电流波形特征的快速差动保护方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3812433A1 (de) * | 1988-04-14 | 1989-10-26 | Siemens Ag | Verfahren zur bestimmung des fehlerortes auf einer elektrischen leitung |
CN101441233A (zh) * | 2008-12-02 | 2009-05-27 | 湖南海兴电器有限责任公司 | 基于Kaiser窗双谱线插值FFT的基波与谐波检测方法 |
CN101587147B (zh) * | 2009-06-25 | 2011-09-14 | 中国电力科学研究院 | 一种同步相量测量装置进行相量修正的方法 |
CN106501602B (zh) * | 2016-09-28 | 2018-10-30 | 西南交通大学 | 一种基于滑窗频谱分离的基波参数测量方法 |
CN109490625B (zh) * | 2018-11-14 | 2020-11-20 | 国网江苏省电力有限公司徐州供电分公司 | 一种基于滑动窗口和半定规划的谐波信号分析方法 |
CN109831184B (zh) * | 2019-02-18 | 2020-08-28 | 山东大学 | 一种带通滤波方法、系统、存储介质及终端设备 |
CN110244144B (zh) * | 2019-05-28 | 2021-11-16 | 许昌许继软件技术有限公司 | 一种避雷器状态监测方法及交流数据采集方法 |
-
2020
- 2020-11-05 CN CN202011225612.2A patent/CN112379216A/zh active Pending
- 2020-12-03 WO PCT/CN2020/133638 patent/WO2022095185A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8680872B2 (en) * | 2009-09-29 | 2014-03-25 | International Business Machines Corporation | Identification of false positives in high impedance fault detection |
CN109256762A (zh) * | 2017-07-13 | 2019-01-22 | 许继集团有限公司 | 配电网单相故障电流补偿控制方法、装置与系统 |
CN109085455A (zh) * | 2017-12-26 | 2018-12-25 | 贵州电网有限责任公司 | 一种用于配电线路高阻接地故障的判定方法 |
CN109145476A (zh) * | 2018-08-31 | 2019-01-04 | 重庆水利电力职业技术学院 | 用于电力系统信号处理的时域自适应分段复指数级数法 |
CN109802372A (zh) * | 2019-03-05 | 2019-05-24 | 华北电力大学 | 基于暂态电流波形特征的快速差动保护方法 |
Non-Patent Citations (1)
Title |
---|
WANG CHUNYOU, CHUNYOU WANG, SHU HONGCHUN , SUN SHIYUN ,, WU SHUIJUN ,, XIAOHONG ,FAN, LI DAFENG: "Time Domain Distance Protection of the Collector Line of the Double-Fed Wind Power Farm Based on Measured Data", POWER SYSTEM AND CLEAN ENERGY, vol. 9, no. 36, 30 September 2020 (2020-09-30), XP055928779, ISSN: 1674-3814 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115277294A (zh) * | 2022-07-27 | 2022-11-01 | 中车青岛四方车辆研究所有限公司 | 一种差分总线在线健康诊断方法及系统 |
CN115277294B (zh) * | 2022-07-27 | 2024-03-26 | 中车青岛四方车辆研究所有限公司 | 一种差分总线在线健康诊断方法及系统 |
CN117471366A (zh) * | 2023-12-27 | 2024-01-30 | 国网福建省电力有限公司 | 一种基于最小二乘法的计量装置中性线接触不良研判方法 |
CN117471366B (zh) * | 2023-12-27 | 2024-04-09 | 国网福建省电力有限公司 | 一种基于最小二乘法的计量装置中性线接触不良研判方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112379216A (zh) | 2021-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022095185A1 (zh) | 输电线故障测距基波分量提取中量测误差抑制方法及系统 | |
WO2022007350A1 (zh) | 一种全局路径规划方法、装置、终端及可读存储介质 | |
Costa | Fault-induced transient detection based on real-time analysis of the wavelet coefficient energy | |
CN109342989B (zh) | 一种电能表的误差分析方法及装置 | |
CN103576002B (zh) | 一种容性绝缘设备介质损耗角的计算方法 | |
CA2929382C (en) | Method of removing decaying dc component from power system fault signal | |
CN105911341B (zh) | 一种谐波无功功率的测量方法 | |
WO2024087948A1 (zh) | 无源器件阻抗拟合方法、装置、电子设备及存储介质 | |
CN111222088A (zh) | 一种改进的平顶自卷积窗加权电力谐波幅值估计方法 | |
CN103076538A (zh) | 一种利用原子分解的输电线路行波故障测距方法 | |
WO2023202355A1 (zh) | 一种基于边界面塑性模型的土体状态数据计算方法及装置 | |
CN103809023A (zh) | 基于二分搜索的电网同步谐波相量测量方法 | |
CN105137181A (zh) | 基于Nuttall-Kaiser组合窗双谱线插值的谐波分析方法 | |
CN114117999B (zh) | 一种互连线数学模型的降阶方法、装置、电子设备及存储介质 | |
CN107748300A (zh) | 一种基于改进s变换的三相不平衡度检测方法 | |
CN106532712A (zh) | 含小阻抗支路电网的补偿法直角坐标牛顿法潮流计算方法 | |
Koul et al. | Conditional variance model checking | |
CN105004920B (zh) | 傅里叶修正系数频率测量方法 | |
CN112415328A (zh) | 基于三次b样条小波及插值算法的故障定位方法及系统 | |
CN109683078B (zh) | 肖特基二极管测试方法及装置 | |
CN112557751A (zh) | 一种基于dft迭代法的谐波参数估计方法 | |
Shi et al. | Highly efficient H 1-Galerkin mixed finite element method (MFEM) for parabolic integro-differential equation | |
CN113985210A (zh) | 一种考虑电压暂降幅值与持续时间的电压暂降域计算方法 | |
CN110728022B (zh) | 一种基于均匀五元圆阵的测向方法、装置与设备 | |
Wang et al. | Long line distance protection based on fast phasor calculation algorithm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20960642 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20960642 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06.11.2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20960642 Country of ref document: EP Kind code of ref document: A1 |