WO2022095185A1 - 输电线故障测距基波分量提取中量测误差抑制方法及系统 - Google Patents

输电线故障测距基波分量提取中量测误差抑制方法及系统 Download PDF

Info

Publication number
WO2022095185A1
WO2022095185A1 PCT/CN2020/133638 CN2020133638W WO2022095185A1 WO 2022095185 A1 WO2022095185 A1 WO 2022095185A1 CN 2020133638 W CN2020133638 W CN 2020133638W WO 2022095185 A1 WO2022095185 A1 WO 2022095185A1
Authority
WO
WIPO (PCT)
Prior art keywords
fundamental wave
extraction
line fault
transmission line
data
Prior art date
Application number
PCT/CN2020/133638
Other languages
English (en)
French (fr)
Inventor
贠志皓
文韬
石访
张恒旭
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Publication of WO2022095185A1 publication Critical patent/WO2022095185A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/085Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution lines, e.g. overhead
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/088Aspects of digital computing

Definitions

  • the invention relates to the technical field of transmission line fault location, in particular to a method and system for suppressing measurement errors in fundamental wave component extraction of transmission line fault location.
  • the existing fault location algorithms based on measured impedance all need to use the fundamental components of the voltage and current after the fault for calculation.
  • the accuracy of the fundamental wave component will greatly affect the fault location accuracy.
  • the existence of measurement errors will cause errors in the fundamental components of voltage and current used for ranging calculation, which will affect the accuracy of the ranging results.
  • the existing methods In order to overcome the influence of measurement errors on the ranging accuracy, the existing methods generally extract multiple sets of fundamental wave components through sliding sampling data windows to construct redundant ranging equations, and use the least squares method to improve the ranging accuracy. Although this method has achieved certain results, for the more common T connection or multi-branch connection in the distribution network, the solution of the ranging equation is relatively complex, and the use of redundant data to increase the number of equations is not conducive to nonlinear measurement. Numerical solution of the distance equation.
  • the present invention proposes a measurement error suppression method and system in the fundamental wave component extraction of power line fault ranging, which can directly filter the sampled data to obtain a more accurate fundamental wave component calculation result, thereby improving the Accuracy of fault location results.
  • a method for suppressing measurement errors in the extraction of fundamental wave components of power transmission line fault ranging comprising:
  • Multiple sets of sampling data are formed by sliding the starting moment of the sampling data window
  • a measurement error suppression system in the extraction of fundamental wave components of transmission line fault ranging comprising:
  • the data sampling module is used to form multiple sets of sampling data by sliding the starting moment of the sampling data window;
  • a fundamental wave component extraction module for extracting fundamental wave components from each set of sampled data using discrete Fourier transform
  • the linear fitting module is used to perform linear fitting on the amplitude and initial phase of the fundamental component to obtain accurate amplitude and phase.
  • a terminal device comprising a processor and a computer-readable storage medium, where the processor is used to implement various instructions; the computer-readable storage medium is used to store a plurality of instructions, the instructions are suitable for being loaded by the processor and executing the above-mentioned power line Measurement error suppression method in extraction of fundamental wave components of fault location.
  • a computer-readable storage medium stores a plurality of instructions, wherein the instructions are adapted to be loaded by a processor of a terminal device and execute the above-mentioned method for suppressing measurement error in fundamental wave component extraction of power line fault ranging.
  • the invention proposes a new measurement error suppression method, which can directly filter the sampled data and obtain a more accurate calculation result of the fundamental wave component. , so as to improve the accuracy of fault location results.
  • FIG. 1 is a flowchart of a method for suppressing measurement errors in the fundamental wave component extraction of transmission line fault ranging according to an embodiment of the present invention.
  • a method for suppressing measurement errors in the extraction of fundamental wave components of transmission line fault ranging is disclosed. Referring to FIG. 1 , the method specifically includes the following steps:
  • f 1 is the frequency of the fundamental wave component
  • ⁇ 0 is the initial phase of the fundamental wave component, referred to as the initial phase
  • U 1 is the amplitude of the fundamental wave component.
  • phase is a linear function that varies with time.
  • the fundamental wave component is extracted by using the power frequency one-cycle sampling point after the fault. If the result is accurate, theoretically, its amplitude does not change with the change of the starting point of the data window of the sampling point.
  • linear fitting filtering is selected in this embodiment, and multiple sets of sampling data are formed by sliding the starting time of the data window, and discrete Fourier transform (DFT) is used.
  • DFT discrete Fourier transform
  • the fundamental wave components are extracted from each data window, and the amplitude and initial phase are obtained.
  • the amplitude and initial phase of these fundamental wave components fluctuate around the corresponding accurate values, and then the accurate amplitude and initial phase can be obtained by means of linear fitting. phase.
  • the following is an example of the amplitude U mab and the initial phase ⁇ 0 of the fundamental wave component of the AB phase-to-phase line voltage obtained at the measurement point m after the fault.
  • the length of each data window is one cycle of the fundamental wave component
  • the linear fitting result to be obtained is U mab
  • the linear fitting result to be obtained is ⁇ 0
  • the error function is derived with respect to ⁇ 0 and the derivative function is set equal to 0:
  • the simulation verification is carried out in MATLAB.
  • the signal is constructed.
  • the results are compared as shown in Table 1.
  • the average amplitude of the fundamental component extracted by linear fitting is 99.8412, the relative error is 0.15%, and the maximum relative error is 0.63%; the fundamental component directly extracted without linear fitting
  • the average amplitude is 97.47382, the relative error is 2.53%, and the maximum relative error is 4.59%.
  • the average phase angle of the fundamental component extracted by linear fitting is 59.9536°, the relative error is 0.08%, and the maximum relative error is 1.06%; the average phase angle of the fundamental component extracted without linear fitting is 58.2766, and the relative error is 2.87% , the maximum relative error is 6.37%.
  • the data show that the measurement noise suppression method based on linear fitting proposed in the present invention can well suppress the interference of random noise, and the fundamental wave component amplitude is closer to the exact value of the fundamental wave component than the direct extraction result.
  • a terminal device including a server, the server including a memory, a processor, and a computer program stored on the memory and executable on the processor, the processor executing the The method in the first embodiment is implemented in the program. For brevity, details are not repeated here.
  • the processor may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors, DSPs, application-specific integrated circuits (ASICs), off-the-shelf programmable gate arrays (FPGAs), or other programmable logic devices. , discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory may include read-only memory and random access memory and provide instructions and data to the processor, and a portion of the memory may also include non-volatile random access memory.
  • the memory may also store device type information.
  • each step of the above-mentioned method can be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the method in the first embodiment can be directly embodied as being executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, detailed description is omitted here.
  • a computer-readable storage medium in which a plurality of instructions are stored, the instructions are adapted to be loaded by a processor of a terminal device and the power transmission line described in the first embodiment Measurement error suppression method in extraction of fundamental wave components of fault location.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Locating Faults (AREA)

Abstract

一种输电线故障测距基波分量提取中量测误差抑制方法及系统,包括:通过滑动采样数据窗口的起始时刻形成多组采样数据;使用离散傅里叶变换从每组采样数据中分别提取基波分量;对基波分量的幅值和初相分别进行线性拟合,得到准确的幅值和相位,直接对采样数据进行滤波处理,得到更加精准的基波分量计算结果,从而提高故障测距结果的精度。

Description

输电线故障测距基波分量提取中量测误差抑制方法及系统 技术领域
本发明涉及输电线故障测距技术领域,尤其涉及一种输电线故障测距基波分量提取中量测误差抑制方法及系统。
背景技术
本部分的陈述仅仅是提供了与本发明相关的背景技术信息,不必然构成在先技术。
现有基于量测阻抗的故障测距算法都需要利用故障后电压和电流的基波分量进行计算。基波分量的准确性会极大的影响故障测距精度。而量测误差的存在,会使得用于测距计算的电压电流基波分量存在误差,影响测距结果的精度。
为克服量测误差对测距精度的影响,现有方法一般是通过滑动采样数据窗提取多组基波分量构建冗余测距方程,利用最小二乘法提升测距精度。虽然该方法取得了一定效果,但对于配电网中较为常见的T接线或多分支接线而言,求解的测距方程比较复杂,利用冗余数据增加方程组数较多,不利于非线性测距方程的数值求解。
发明内容
为了解决上述问题,本发明提出了一种输电线故障测距基波分量提取中量测误差抑制方法及系统,可以直接对采样数据进行滤波处理,得到更加精准的基波分量计算结果,从而提高故障测距结果的精度。
在一些实施方式中,采用如下技术方案:
一种输电线故障测距基波分量提取中量测误差抑制方法,包括:
通过滑动采样数据窗口的起始时刻形成多组采样数据;
使用离散傅里叶变换从每组采样数据中分别提取基波分量;
对基波分量的幅值和初相分别进行线性拟合,得到准确的幅值和相位。
在另一些实施方式中,采用如下技术方案:
一种输电线故障测距基波分量提取中量测误差抑制系统,包括:
数据采样模块,用于通过滑动采样数据窗口的起始时刻形成多组采样数据;
基波分量提取模块,用于使用离散傅里叶变换从每组采样数据中分别提取基波分量;
线性拟合模块,用于对基波分量的幅值和初相分别进行线性拟合,得到准确的幅值和相位。
在另一些实施方式中,采用如下技术方案:
一种终端设备,其包括处理器和计算机可读存储介质,处理器用于实现各指令;计算机可读存储介质用于存储多条指令,所述指令适于由处理器加载并执行上述的输电线故障测距基波分量提取中量测误差抑制方法。
在另一些实施方式中,采用如下技术方案:
一种计算机可读存储介质,其中存储有多条指令,所述指令适于由终端设备的处理器加载并执行上述的输电线故障测距基波分量提取中量测误差抑制方法。
与现有技术相比,本发明的有益效果是:
本发明根据故障后电压和电流基波分量幅值和初相位恒定不变特征,提出一种新的量测误差抑制方法,可以直接对采样数据进行滤波处理,得到更加精准的基波分量计算结果,从而提高故障测距结果的精度。
本发明的其他特征和附加方面的优点将在下面的描述中部分给出,部分将从 下面的描述中变得明显,或通过本方面的实践了解到。
附图说明
图1为本发明实施例中输电线故障测距基波分量提取中量测误差抑制方法流程图。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本发明使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
实施例一
在一个或多个实施方式中,公开了一种输电线故障测距基波分量提取中量测误差抑制方法,参照图1,具体包括如下步骤:
(1)通过滑动采样数据窗口的起始时刻形成多组采样数据;
(2)使用离散傅里叶变换从每组采样数据中分别提取基波分量;
(3)对基波分量的幅值和初相分别进行线性拟合,得到准确的幅值和相位。
具体地,假设故障后基波分量表达式为:
u 1(t)=U 1cos(w 1t+θ 0)    (1)
式中,w 1=2πf 1为基波角频率,f 1为基波分量的频率,θ 0为基波分量的初相 位,简称初相,U 1为基波分量的幅值。根据基波分量的表达式可知其幅值和初相不随故障后时间推移变化,是常量。相位
Figure PCTCN2020133638-appb-000001
则是随时间变化的线性函数。
因此,利用故障后工频一周波采样点进行基波分量提取,如果结果准确,理论上其幅值不随采样点数据窗起点时刻变化而变化。
假设故障起始时刻为0时刻,采样周期为Δt,如按Δt步长依次平移提取基波分量的一周波采样点数据窗,对于起始时刻为kΔt的数据窗,则相位是步长Δt的线性函数
Figure PCTCN2020133638-appb-000002
起始时刻的相角
Figure PCTCN2020133638-appb-000003
根据上述基波分量的幅值和初相恒定不变的特征规律,本实施例选用了线性拟合滤波,通过滑动数据窗口起始时刻形成多组采样数据,使用离散傅里叶变换(DFT)从每个数据窗口分别提取基波分量,并求出幅值和初相,这些基波分量的幅值和初相围绕对应的准确值上下波动,进而可以借助线性拟合获得准确的幅值和相位。
下面以故障后量测点m处所得AB相间线电压基波分量的幅值U mab和初相θ 0为例进行具体阐述。
在故障后选取32个连续的采样数据窗口,每个数据窗的长度是基波分量的一个周期,使用离散傅里叶变换(DFT)从每个采样数据窗口内提取基波分量并将幅值记为U mab(i)(i=0,1,2,……,31),待求的线性拟合结果为U mab,基于最小二乘法的线性拟合是指拟合一个近似直线y=U mab,使得对于所有数据来说总的误差和err1最小,即求:
Figure PCTCN2020133638-appb-000004
为使误差和最小,对误差函数求导,并且令导函数等于0:
Figure PCTCN2020133638-appb-000005
进而有:
Figure PCTCN2020133638-appb-000006
Figure PCTCN2020133638-appb-000007
再对初相进行拟合,由于在数据窗内相角随时间一次线性变化,所以相角满足关系式
Figure PCTCN2020133638-appb-000008
基波分量频率f 1=50Hz,w 1=2πf 1=100πrad/s,则
Figure PCTCN2020133638-appb-000009
由于初相θ 0与时间无关,故是个恒定不变的常数。
将32个数据窗中提取的基波分量的相角记为为α k(k=0,1,2……,31),则计算出的初相θ k=α k-w 1kΔt(k=0,1,2……,31),待求的线性拟合结果为θ 0,基于最小二乘法的线性拟合是指拟合一个近似直线y=θ 0,使得对于所有θ k,总的误差和err2最小,即求:
Figure PCTCN2020133638-appb-000010
为使误差和最小,误差函数对θ 0求导,并且令导函数等于0:
Figure PCTCN2020133638-appb-000011
进而解出:
Figure PCTCN2020133638-appb-000012
为了验证所提出的量测误差抑制方法的自洽性和有效性,在MATLAB中对进行仿真验证,首先构造信号
Figure PCTCN2020133638-appb-000013
式(9)中基波分量的幅值为100,初相位为
Figure PCTCN2020133638-appb-000014
再给信号添加20组10%的随机噪音,分别采用滑动数据窗提取基波分量并线性拟合与从t=0初始时刻直接提 取基波分量两种方法获得基波分量幅值和初相位,并将结果进行比较如表1所示,经过线性拟合提取的基波分量平均幅值为99.8412,相对误差为0.15%,最大相对误差为0.63%;未经过线性拟合直接提取的基波分量平均幅值为97.47382,相对误差为2.53%,最大相对误差为4.59%。经过线性拟合提取的基波分量平均相角为59.9536°,相对误差为0.08%,最大相对误差为1.06%;未经过线性拟合提取的基波分量平均相角为58.2766,相对误差为2.87%,最大相对误差为6.37%。数据表明本发明所提基于线性拟合的量测噪声抑制方法能够很好地抑制随机噪音的干扰,基波分量幅值和初相计算结果相比直接提取结果更接近基波分量的准确值。
表1 20组含随机噪声的线性拟合结果和未经线性拟合基本分量提取结果比较
Figure PCTCN2020133638-appb-000015
Figure PCTCN2020133638-appb-000016
实施例三
在一个或多个实施方式中,公开了一种终端设备,包括服务器,所述服务器包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现实施例一中的方法。为了简洁,在此不再赘述。
应理解,本实施例中,处理器可以是中央处理单元CPU,处理器还可以是其他通用处理器、数字信号处理器DSP、专用集成电路ASIC,现成可编程门阵列FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据、存储器的一部分还可以包括非易失性随机存储器。例如,存储器还可以存储设备类型的信息。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。
实施例一中的方法可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器、闪存、只读存储器、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
实施例四
在一个或多个实施方式中,公开了一种计算机可读存储介质,其中存储有多条指令,所述指令适于由终端设备的处理器加载并实施例一中所述的一种输电线故障测距基波分量提取中量测误差抑制方法。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (10)

  1. 一种输电线故障测距基波分量提取中量测误差抑制方法,其特征在于,包括:
    通过滑动采样数据窗口的起始时刻形成多组采样数据;
    使用离散傅里叶变换从每组采样数据中分别提取基波分量;
    对基波分量的幅值和初相分别进行线性拟合,得到准确的幅值和相位。
  2. 如权利要求1所述的一种输电线故障测距基波分量提取中量测误差抑制方法,其特征在于,通过滑动采样数据窗口的起始时刻形成多组采样数据,具体包括:
    假设故障起始时刻为0时刻,采样周期为Δt,如按Δt步长依次平移提取基波分量的一周波采样点数据窗,对于起始时刻为kΔt的数据窗,则相位是步长Δt的线性函数
    Figure PCTCN2020133638-appb-100001
    起始时刻的相角
    Figure PCTCN2020133638-appb-100002
    其中,w 1为基波角频率,θ 0为基波分量的初相位,简称初相;k为从故障初始时刻到当前数据窗起点所需平移步长的个数。
  3. 如权利要求1所述的一种输电线故障测距基波分量提取中量测误差抑制方法,其特征在于,所述基波分量的幅值和初相不随故障后时间推移而变化,为常量。
  4. 如权利要求1所述的一种输电线故障测距基波分量提取中量测误差抑制方法,其特征在于,使用离散傅里叶变换从每组采样数据中分别提取基波分量并将幅值记为U mab(i),i=0,1,2,……,N-1,基于最小二乘法拟合一个近似直线y=U mab,使得对于所有数据来说总的误差和err1最小,从而求得线性拟合结果U mab
  5. 如权利要求4所述的一种输电线故障测距基波分量提取中量测误差抑制 方法,其特征在于,所述线性拟合结果U mab具体为:
    Figure PCTCN2020133638-appb-100003
    其中,N为采样数据窗口的个数。
  6. 如权利要求1所述的一种输电线故障测距基波分量提取中量测误差抑制方法,其特征在于,使用离散傅里叶变换从每组采样数据中分别提取基波分量并将相角记为α k,k=0,1,2……,N-1,分别计算出初相θ k,基于最小二乘法拟合一个近似直线y=θ 0,使得对于所有数据来说总的误差和err2最小,从而求得线性拟合结果θ 0
  7. 如权利要求6所述的一种输电线故障测距基波分量提取中量测误差抑制方法,其特征在于,所述线性拟合结果θ 0具体为:
    Figure PCTCN2020133638-appb-100004
    其中,N为采样数据窗口的个数。
  8. 一种输电线故障测距基波分量提取中量测误差抑制系统,其特征在于,包括:
    数据采样模块,用于通过滑动采样数据窗口的起始时刻形成多组采样数据;
    基波分量提取模块,用于使用离散傅里叶变换从每组采样数据中分别提取基波分量;
    线性拟合模块,用于对基波分量的幅值和初相分别进行线性拟合,得到准确的幅值和相位。
  9. 一种终端设备,其包括处理器和计算机可读存储介质,处理器用于实现各指令;计算机可读存储介质用于存储多条指令,其特征在于,所述指令适于由 处理器加载并执行权利要求1-7任一项所述的输电线故障测距基波分量提取中量测误差抑制方法。
  10. 一种计算机可读存储介质,其中存储有多条指令,其特征在于,所述指令适于由终端设备的处理器加载并执行权利要求1-7任一项所述的输电线故障测距基波分量提取中量测误差抑制方法。
PCT/CN2020/133638 2020-11-05 2020-12-03 输电线故障测距基波分量提取中量测误差抑制方法及系统 WO2022095185A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011225612.2 2020-11-05
CN202011225612.2A CN112379216A (zh) 2020-11-05 2020-11-05 输电线故障测距基波分量提取中量测误差抑制方法及系统

Publications (1)

Publication Number Publication Date
WO2022095185A1 true WO2022095185A1 (zh) 2022-05-12

Family

ID=74579377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133638 WO2022095185A1 (zh) 2020-11-05 2020-12-03 输电线故障测距基波分量提取中量测误差抑制方法及系统

Country Status (2)

Country Link
CN (1) CN112379216A (zh)
WO (1) WO2022095185A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115277294A (zh) * 2022-07-27 2022-11-01 中车青岛四方车辆研究所有限公司 一种差分总线在线健康诊断方法及系统
CN117471366A (zh) * 2023-12-27 2024-01-30 国网福建省电力有限公司 一种基于最小二乘法的计量装置中性线接触不良研判方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8680872B2 (en) * 2009-09-29 2014-03-25 International Business Machines Corporation Identification of false positives in high impedance fault detection
CN109085455A (zh) * 2017-12-26 2018-12-25 贵州电网有限责任公司 一种用于配电线路高阻接地故障的判定方法
CN109145476A (zh) * 2018-08-31 2019-01-04 重庆水利电力职业技术学院 用于电力系统信号处理的时域自适应分段复指数级数法
CN109256762A (zh) * 2017-07-13 2019-01-22 许继集团有限公司 配电网单相故障电流补偿控制方法、装置与系统
CN109802372A (zh) * 2019-03-05 2019-05-24 华北电力大学 基于暂态电流波形特征的快速差动保护方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3812433A1 (de) * 1988-04-14 1989-10-26 Siemens Ag Verfahren zur bestimmung des fehlerortes auf einer elektrischen leitung
CN101441233A (zh) * 2008-12-02 2009-05-27 湖南海兴电器有限责任公司 基于Kaiser窗双谱线插值FFT的基波与谐波检测方法
CN101587147B (zh) * 2009-06-25 2011-09-14 中国电力科学研究院 一种同步相量测量装置进行相量修正的方法
CN106501602B (zh) * 2016-09-28 2018-10-30 西南交通大学 一种基于滑窗频谱分离的基波参数测量方法
CN109490625B (zh) * 2018-11-14 2020-11-20 国网江苏省电力有限公司徐州供电分公司 一种基于滑动窗口和半定规划的谐波信号分析方法
CN109831184B (zh) * 2019-02-18 2020-08-28 山东大学 一种带通滤波方法、系统、存储介质及终端设备
CN110244144B (zh) * 2019-05-28 2021-11-16 许昌许继软件技术有限公司 一种避雷器状态监测方法及交流数据采集方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8680872B2 (en) * 2009-09-29 2014-03-25 International Business Machines Corporation Identification of false positives in high impedance fault detection
CN109256762A (zh) * 2017-07-13 2019-01-22 许继集团有限公司 配电网单相故障电流补偿控制方法、装置与系统
CN109085455A (zh) * 2017-12-26 2018-12-25 贵州电网有限责任公司 一种用于配电线路高阻接地故障的判定方法
CN109145476A (zh) * 2018-08-31 2019-01-04 重庆水利电力职业技术学院 用于电力系统信号处理的时域自适应分段复指数级数法
CN109802372A (zh) * 2019-03-05 2019-05-24 华北电力大学 基于暂态电流波形特征的快速差动保护方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG CHUNYOU, CHUNYOU WANG, SHU HONGCHUN , SUN SHIYUN ,, WU SHUIJUN ,, XIAOHONG ,FAN, LI DAFENG: "Time Domain Distance Protection of the Collector Line of the Double-Fed Wind Power Farm Based on Measured Data", POWER SYSTEM AND CLEAN ENERGY, vol. 9, no. 36, 30 September 2020 (2020-09-30), XP055928779, ISSN: 1674-3814 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115277294A (zh) * 2022-07-27 2022-11-01 中车青岛四方车辆研究所有限公司 一种差分总线在线健康诊断方法及系统
CN115277294B (zh) * 2022-07-27 2024-03-26 中车青岛四方车辆研究所有限公司 一种差分总线在线健康诊断方法及系统
CN117471366A (zh) * 2023-12-27 2024-01-30 国网福建省电力有限公司 一种基于最小二乘法的计量装置中性线接触不良研判方法
CN117471366B (zh) * 2023-12-27 2024-04-09 国网福建省电力有限公司 一种基于最小二乘法的计量装置中性线接触不良研判方法

Also Published As

Publication number Publication date
CN112379216A (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
WO2022095185A1 (zh) 输电线故障测距基波分量提取中量测误差抑制方法及系统
WO2022007350A1 (zh) 一种全局路径规划方法、装置、终端及可读存储介质
Costa Fault-induced transient detection based on real-time analysis of the wavelet coefficient energy
CN109342989B (zh) 一种电能表的误差分析方法及装置
CN111222088B (zh) 一种改进的平顶自卷积窗加权电力谐波幅值估计方法
CN104897960A (zh) 基于加窗四谱线插值fft的谐波快速分析方法及系统
CA2929382A1 (en) Method of removing decaying dc component from power system fault signal
CN105911341B (zh) 一种谐波无功功率的测量方法
WO2024087948A1 (zh) 无源器件阻抗拟合方法、装置、电子设备及存储介质
CN103076538A (zh) 一种利用原子分解的输电线路行波故障测距方法
WO2023202355A1 (zh) 一种基于边界面塑性模型的土体状态数据计算方法及装置
CN103809023A (zh) 基于二分搜索的电网同步谐波相量测量方法
CN105137181A (zh) 基于Nuttall-Kaiser组合窗双谱线插值的谐波分析方法
CN112557751A (zh) 一种基于dft迭代法的谐波参数估计方法
CN114117999B (zh) 一种互连线数学模型的降阶方法、装置、电子设备及存储介质
CN107748300A (zh) 一种基于改进s变换的三相不平衡度检测方法
CN106532712A (zh) 含小阻抗支路电网的补偿法直角坐标牛顿法潮流计算方法
Koul et al. Conditional variance model checking
CN105004920B (zh) 傅里叶修正系数频率测量方法
CN112415328A (zh) 基于三次b样条小波及插值算法的故障定位方法及系统
Shi et al. Highly efficient H 1-Galerkin mixed finite element method (MFEM) for parabolic integro-differential equation
CN113985210A (zh) 一种考虑电压暂降幅值与持续时间的电压暂降域计算方法
CN110728022B (zh) 一种基于均匀五元圆阵的测向方法、装置与设备
Wang et al. Long line distance protection based on fast phasor calculation algorithm
Zhang et al. Study of harmonic analysis based on improved discrete Fourier transform

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20960642

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06.11.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20960642

Country of ref document: EP

Kind code of ref document: A1