WO2022095110A1 - 一种具有抗菌功能的织物及其快速成形方法 - Google Patents

一种具有抗菌功能的织物及其快速成形方法 Download PDF

Info

Publication number
WO2022095110A1
WO2022095110A1 PCT/CN2020/129020 CN2020129020W WO2022095110A1 WO 2022095110 A1 WO2022095110 A1 WO 2022095110A1 CN 2020129020 W CN2020129020 W CN 2020129020W WO 2022095110 A1 WO2022095110 A1 WO 2022095110A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibacterial
printing
masterbatch
fabric
layer
Prior art date
Application number
PCT/CN2020/129020
Other languages
English (en)
French (fr)
Inventor
张尧宗
Original Assignee
三阳纺织有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三阳纺织有限公司 filed Critical 三阳纺织有限公司
Publication of WO2022095110A1 publication Critical patent/WO2022095110A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/321Feeding
    • B29C64/336Feeding of two or more materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling

Definitions

  • the invention relates to the technical field of rapid prototyping of fabrics, in particular to a fabric with antibacterial function and a rapid prototyping method thereof.
  • the present invention provides a fabric with antibacterial function and a rapid forming method thereof, which realizes the rapid forming of antibacterial function fabric by means of three-dimensional printing as a whole, and conducts antibacterial treatment on different areas of the fabric or different layers in the same area as required.
  • the antibacterial functional fabric with the characteristics of partition and gradient distribution of antibacterial ingredients is manufactured, so that the antibacterial function and the slow release of antibacterial particles can be controlled in many aspects.
  • a fabric with antibacterial function which has a laminated structure formed by three-dimensional printing, and at least in part, has different contents of antibacterial particles formed by differential printing on different layer thicknesses of the laminated structure, so that the antibacterial particles are
  • the content has a gradient change between layers; and/or, at least in some parts, in different regions of the same layer thickness of the laminated structure, there are different antibacterial particle contents formed by differential printing, so that the antibacterial particle content has a layer of zoning changes within.
  • an antibacterial masterbatch and a basic masterbatch are used to feed and mix in proportion to form a printing material for printing a current layer or a current area, and send it to a print head of a three-dimensional printing device.
  • the printing head ejects or extrudes the filament, and prints a texture containing a specific content of antibacterial particles in the current layer or current area; in another step, change the feeding ratio of the antibacterial masterbatch and the basic masterbatch to print a new
  • the printing material of the current layer or new current area is sent to the print head of the 3D printing device, and the print head ejects or extrudes the filament, and prints out the printing material containing the previous layer or the previous area on the new current layer or new current area. Texture with changed antimicrobial particle content.
  • the antibacterial master batch contains nano antibacterial particles, and no antibacterial functional components are added to the basic master batch.
  • the antibacterial masterbatch and the basic masterbatch are used to feed and mix in proportion to form a printing material for printing the current layer, which is fed into the print head of the three-dimensional printing device, and the print head is ejected or extruded.
  • Filament, in the current layer a texture with an antimicrobial particle content of A % by weight is printed; in the second continuous step, the feeding ratio of the antimicrobial masterbatch and the base masterbatch is changed to print a new current
  • the layer of printing material is fed into the print head of the 3D printing device, and the print head ejects or extrudes the filament, and prints a texture containing (A+B) % antimicrobial particle content in the new current layer.
  • the content of antibacterial particles in the antibacterial masterbatch is ⁇ 25%, the A% ⁇ 10%, the number B is a positive increment, and B% ⁇ 2%.
  • the antibacterial masterbatch and the basic masterbatch are used to feed and mix in proportion to form a print.
  • the printing material in the current area is fed into the print head of the 3D printing device, the print head ejects or extrudes the filament, and prints the texture containing the specific antimicrobial particle content in the current area; in another step, the antimicrobial masterbatch and The basic masterbatch feeding ratio is formulated to print the printing material of the new current area, which is fed into the print head of the 3D printing device, and the print head ejects or extrudes the filament, and prints in the new current area the same as the previous area.
  • Antibacterial particles The texture of the content changed, and finally the texture of the antibacterial particle content in the partition change and the antibacterial performance controllable in the layer is obtained.
  • the three-dimensional printing device is a fused deposition device, and the printing head is a spinneret or a spinneret.
  • the fused deposition equipment uses at least two pumping barrels to pump the base masterbatch and the antibacterial masterbatch respectively, and adjust the mixing ratio of the base masterbatch and the antibacterial masterbatch by adjusting the control valve.
  • the fused deposition apparatus includes two print heads.
  • the three-dimensional printing device has three-dimensional freedom of movement, wherein the print head has at least two degrees of freedom of movement, and the printing platform has at least one degree of freedom of movement.
  • the fabric with antibacterial function and the rapid prototyping method thereof of the present invention utilize the advantages of rapid prototyping of three-dimensional printing, and the formed laminated structure, at least in some parts, is printed on different layer thicknesses of the laminated structure with different characteristics formed by differential printing.
  • the pumping ratio of antibacterial masterbatch and basic masterbatch can be adjusted to achieve the current layer or The rapid preparation and switching of materials in the current area further improves the efficiency of 3D printing through the 3D motion function of the 3D printing equipment and the cooperation of multiple print heads.
  • FIG. 1 is a schematic diagram of the rapid prototyping of a fabric with antibacterial function according to Example 1 of the present invention.
  • FIG. 2 is a schematic diagram of the rapid prototyping of a fabric with antibacterial function according to Embodiment 3 of the present invention.
  • FIG. 3 is a schematic diagram of the rapid prototyping of a fabric with antibacterial function according to Embodiment 4 of the present invention.
  • This example manufactures a fabric with antibacterial function
  • the fabric has a laminated structure formed by three-dimensional printing, and different layer thicknesses of the laminated structure have different contents of antibacterial particles formed by differential printing, so that the antibacterial
  • the particle content has a gradient between layers.
  • FIG. 1 is a schematic diagram of the rapid prototyping of a fabric with an antibacterial function according to Example 1 of the present invention.
  • the aforementioned rapid prototyping method for a fabric with an antibacterial function in the first step, adopts an antibacterial masterbatch and a basic masterbatch.
  • the materials are fed and mixed in proportion to form the printing material for printing the current layer, which is fed into the print head 31 of the three-dimensional printing device.
  • the three-dimensional printing device in this embodiment is a fused deposition device
  • the printing head 31 is a wire extrusion head
  • its extrusion power is a mechanical screw
  • the protection scope of the present invention is not limited to this, other mechanical powers such as pistons, etc., and non-mechanical power, as long as the function of the present invention can be realized
  • the base material in the antibacterial masterbatch and basic masterbatch of this embodiment can be various hot-melt polymers used for fabric manufacturing or their mixtures, preferably including Polyurethane, PET, PP, PE, etc., and preferably meet the safety standards for human contact textiles or medical standards.
  • the fused deposition equipment uses the first pumping barrel 10 and the second pumping barrel 20 to pump the base masterbatch and the antibacterial masterbatch, respectively, and the base masterbatch and the antibacterial masterbatch are adjusted through the adjustment control valve 40 for adjusting the flow rate/flow.
  • the mixing ratio of the antibacterial masterbatch, the printing head 31 and the printing platform 50 are driven by the three-dimensional motion system (not shown in the figure) under the control of the control system to extrude the wire and weave layer by layer, and the weaving route of each layer can be vertical and horizontal.
  • the weave angle and/or weave span can be changed to ensure that the overall fabric 60 is substantially homogeneous across multiple layer thicknesses, since the extruded filaments are used for intra-layer non-woven fabrics.
  • the three-dimensional motion system includes at least one degree of freedom of movement that enables the printing platform 50 to move horizontally. In this way, the printing platform 50 can cooperate with the print head 31 to move toward each other or cross when the print head 31 moves horizontally. Motion to improve printing efficiency or build printing angles, which is different from many similar 3D motion equipment.
  • the content of antibacterial particles in the antibacterial masterbatch is further controlled to be ⁇ 25%, preferably between 15% and 20%.
  • the A% in the above formula generally ranges from ⁇ 10%, preferably about 3%-6%, in the above formula
  • the number B is a positive increment, and generally satisfies B% ⁇ 2%. The smaller the value is, the slower the gradient changes, and the smaller the interlayer difference of the slow-release properties of the antibacterial particles (nano-silver) is. Therefore, it is preferable to satisfy B% ⁇ 2%.
  • 1%, more preferably B% ⁇ 0.5%, more preferably B% ⁇ 0.2% the corresponding number of printing layers can also be correspondingly from several layers to dozens of layers or even hundreds of layers.
  • Number B in this embodiment is a texture with an increasing trend of antibacterial particle content from the outermost layer to the innermost layer of the printed fabric, which can be constructed with positive increments.
  • the present invention is not limited to this. According to other needs, it is also possible that the number B is a negative increment.
  • only nanometer antibacterial particles silver is added to the antibacterial masterbatch, and no addition to the basic masterbatch is added.
  • Antibacterial functional ingredients, but small amounts of functional ingredients can also be added to the base masterbatch if desired.
  • This example describes the production of sub-regional changes in the antibacterial particle content layer and controllable texture in the antibacterial performance layer.
  • the antibacterial masterbatch and the basic masterbatch are used to feed and mix in proportion to form a printing material for printing the current area, and then send it to the print head 31 of the three-dimensional printing device, and print The head 31 ejects or extrudes the filament, and prints the texture containing the specific antibacterial particle content in the current area; in another step, the feeding ratio of the antibacterial masterbatch and the basic masterbatch is changed to print a new print of the current area The material is fed into the print head 31 of the three-dimensional printing device.
  • the print head 31 ejects or extrudes the filament, and prints the texture in the new current area that contains the antibacterial particle content changed from the previous area, and finally obtains an antibacterial particle content layer. Internal zoning changes, controllable texture within the antibacterial performance layer.
  • the advantage of this solution can be exemplified that for some antibacterial functional fabrics for medical or sanitary needs, when contacting with special parts of the human body, the amount of antibacterial particles in the local area of the fabric can be controlled to avoid possible stress with the human body. response, or reduce people's fear of this stress response.
  • FIG. 2 is a schematic diagram of the rapid prototyping of a fabric with antibacterial function of this embodiment.
  • This embodiment is the same as Embodiment 1 or 2.
  • Three-dimensional printing The equipment is a fused deposition equipment, and the printing head is an extruding head.
  • the first pumping barrel 10 and the second pumping barrel 20 are used to pump the basic masterbatch and the antibacterial masterbatch, respectively.
  • the difference between the mixing ratio of the masterbatch and the antibacterial masterbatch is that this embodiment uses two print heads.
  • the print head 31 and the sub-print head 32 and the printing platform 50 are controlled Under the control of the system, it is driven by the three-dimensional motion system to perform wire extrusion and layer-by-layer weaving.
  • the regulating control valve 40 is shared on each pumping cartridge.
  • FIG. 3 is a schematic diagram of a fabric rapid prototyping with antibacterial function of this embodiment.
  • the three-dimensional printing device is a fused deposition device.
  • the printing head is an extruding head, and the first pumping barrel 10 and the second pumping barrel 20 are used to pump the basic masterbatch and the antibacterial masterbatch respectively, and the mixing ratio of the basic masterbatch and the antibacterial masterbatch is adjusted by adjusting the control valve 40, and the same
  • the printing head 31 and the sub-printing head 32 are used for printing.
  • the printing head 31, the sub-printing head 32 and the printing platform 50 are driven by the three-dimensional motion system under the control of the control system to extrude and weave the wire material layer by layer.
  • the print head 31 and the sub-print head 32 when connected to the first pumping cartridge 10 and the second pumping cartridge 20, are It has its own adjustment control valve 40.
  • the advantage of this design is that different adjustment control valves 40 can adjust different mixing ratios, so that the first pumping barrel 10 and the second pumping barrel 20 are pumped to the print head.
  • the content of antibacterial particles in the materials of 31 and the sub-print head 32 can be different, so that, in addition to being able to achieve the two print heads described in Example 3 when printing a larger fabric plane (the content of the antibacterial particles designed in the printing area) can be the same or different), can improve printing efficiency by partitioning in span, starting position and/or range of motion, and can also adapt to the gradient of antimicrobial particle content between different layers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Ink Jet (AREA)

Abstract

一种具有抗菌功能的织物,具有采用三维打印方式形成的层叠构造,在层叠构造的不同层厚上具有由差异化打印形成的不同的抗菌粒子含量,从而使得抗菌粒子含量具有层间的梯度变化,在层叠构造的相同层厚的不同区域,具有由差异化打印形成的不同的抗菌粒子含量,从而使得抗菌粒子含量具有层内的分区变化;上述织物的快速成形方法,在打印过程中通过抗菌母料和基础母料的泵送比例调节实现当前层或当前区域材料的快速配制和切换,通过三维打印设备的三维运动和打印头(31)配合提高打印效率,制得的织物抗菌功能性和抗菌粒子的缓释性多方面可控,满足了抗菌功能产品的长效缓释需要和个性化定制需要。

Description

一种具有抗菌功能的织物及其快速成形方法 技术领域
本发明涉及织物快速成形技术领域,具体涉及一种具有抗菌功能的织物及其快速成形方法。
背景技术
随着人们对穿戴物功能性要求的提高,加之一些特殊公共卫生场所的特殊需要,具有抗菌功能的、用于穿戴的织物越来越多的走进人们的视野。
目前具有抗菌功能的织物生产方法主要有两种,一种是采用抗菌母粒纺成抗菌纤维,采用抗菌纤维制成各种织物,然后经过染色、整理成抗菌织物,抗菌效果持久、耐洗性好,另一种方法是人们常称的“后整理法”,即在织物的印染、整理过程中采用浸渍、浸轧、涂层等方法将抗菌剂施加在纤维表面,加工简单但不耐洗涤,溶出量大。
总体而言,采用抗菌母粒纺成抗菌纤维来制造织物是一种比“后整理法”更安全、抗菌效果更持久的操作工艺,但该操作工艺中纺制抗菌纤维和织物制造的过程仍然较为复杂,织物制造效率低,个性化定制功能不足,而且,对于抗菌材料而言,没有很好的抗菌性分区设计和抗菌粒子缓释控制手段。
发明内容
为解决上述问题,本发明提供一种具有抗菌功能的织物及其快速成形方法,借助三维打印的整体手段实现抗菌功能织物的快速成形,并根据需要对织物不同区域或者同一区域的不同层次进行抗菌性设计,制造出抗菌成分具有分区特性和梯度分布特性的抗菌功能织物,从而使得抗菌功能性和抗菌粒子的缓释性多方面可控。
本发明的目的是通过以下技术方案实现的。
一种具有抗菌功能的织物,具有采用三维打印方式形成的层叠构造,至少在部分部位,在所述层叠构造的不同层厚上具有由差异化打印形成的不同的抗菌粒子含量,从而使得抗菌粒子含量具有层间的梯度变化;和/或,至少在部分部位,在所述层叠构造的相同层厚的不同区域,具有由差异化打印形成的不同的抗菌粒子含量,从而使得抗菌粒子含量具有层内的分区变化。
一种具有抗菌功能的织物的快速成形方法,在一个步骤中,采用抗菌母料和基础母料按比例送料混合,配成打印当前层或者当前区域的打印料,送入三维打印设备的打印头,打印头喷出或挤出丝材,在当前层或者当前区域打印出含有特定抗菌粒子含量的织构;在另一步骤中,改变抗菌母料和基础母料送料比例,配成打印新的当前层或者新的当前区域的打印料,送入三维打印设备的打印头,打印头喷出或挤出丝材,在该新的当前层或者新的当前区域打印出含有与之前层或者之前区域抗菌粒子含量变化了的织构。
如上所述的方法,所述抗菌母料中含有纳米抗菌粒子,所述基础母料中不加入抗菌功能成分。
如上所述的方法,在第一步骤中,采用抗菌母料和基础母料按比例送料混合,配成打印当前层的打印料,送入三维打印设备的打印头,打印头喷出或挤出丝材,在当前层打印出含有以重量百分数计为A%的抗菌粒子含量的织构;在相连续的第二步骤中,改变抗菌母料和基础母料送料比例,配成打印新的当前层的打印料,送入三维打印设备的打印头,打印头喷出或挤出丝材,在新的当前层打印出含有以重量百分数计为(A+B)%的抗菌粒子含量的织构;重复第二步骤中改变抗菌母料和基础母料送料比例以及喷出或挤出丝材的操作过程,在连续的若干层继续打印出含有以重量百分数计分别为(A+2B)%、(A+3B)%……(A+NB)%的抗菌粒子含量的织构(N为≥3的自然数),最终获得抗菌粒子含量层间渐变、缓释性可控的织构。
如上所述的方法,所述抗菌母料中的抗菌粒子含量≤25%,所述A%≤10%,数字B为正增量,且满足B%≤2%。
如上所述的方法,在打印所述抗菌粒子含量层间渐变、缓释性可控的织构的同时,在某一步骤中,采用抗菌母料和基础母料按比例送料混合,配成打印当前区域的打印料,送入三维打印设备的打印头,打印头喷出或挤出丝材,在当前区域打印出含有特定抗菌粒子含量的织构;在另一步骤中,改变抗菌母料和基础母料送料比例,配成打印新的当前区域的打印料,送入三维打印设备的打印头,打印头喷出或挤出丝材,在该新的当前区域打印出含有与之前区域抗菌粒子含量变化了的织构,最终获得抗菌粒子含量层内分区变化、抗菌性能层内可控的织构。
如上所述的方法,所述三维打印设备为熔融沉积设备,所述打印头为喷丝头或挤丝头。
如上所述的方法,所述熔融沉积设备采用至少两个泵送料筒分别泵送基础母料和抗菌母料,通过调节控制阀调节基础母料和抗菌母料混合比例。
如上所述的方法,所述熔融沉积设备包含两个打印头。
如上所述的方法,所述三维打印设备具有三维运动自由度,其中所述打印头具有至少二个维度的运动自由度,打印平台具有至少一个维度的运动自由度。
本发明的有益效果在于:
本发明的具有抗菌功能的织物及其快速成形方法,利用三维打印快速成形的优势,形成的层叠构造,至少在部分部位,在层叠构造的不同层厚上打印具有由差异化打印形成的不同的抗菌粒子含量的织构,从而使得抗菌粒子含量具有层间的梯度变化,并且,至少在部分部位,在层叠构造的相同层厚的不同区域打印具有由差异化打印形成的不同的抗菌粒子含量的织构,从而使得抗菌粒子含量具有层内的分区变化,制造出的抗菌功能织物中抗菌成分具有分区特性和梯度分布特性,从而使得抗菌功能性和抗菌粒子的缓释性多方面可控,满足了抗菌功能产品的长效缓释需要和个性化定制需要,在生活、医学等领域具有极高的应用价值,在打印过程中通过抗菌母料和基础母料的泵送比例调节实现当前层或当前区域材料的快速配制和切换,通过三维打印设备的三维运动功能和多个打印头的配合进一步提高三维打印效率。
附图说明
通过阅读下文优选实施方式的详细描述,本申请的方案和优点对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。在附图中:
图1为本发明实施例1的一种具有抗菌功能的织物快速成形原理图。
图2为本发明实施例3的一种具有抗菌功能的织物快速成形原理图。
图3为本发明实施例4的一种具有抗菌功能的织物快速成形原理图。
图中各附图标记所代表的组件为:
第一泵送料筒10,第二泵送料筒20,打印头31,副打印头32,调节控制阀40,打印平台50,织物60。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施方式。虽然附图中显示了本公开的示例性实施方式,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
实施例1
本实施例制造一种具有抗菌功能的织物,该织物具有采用三维打印方式形成的层叠构造,在所述层叠构造的不同层厚上具有由差异化打印形成的不同的抗菌粒子含量,从而使得抗菌粒子含量具有层间的梯度变化。
参见图1,图1为本发明实施例1的一种具有抗菌功能的织物快速成形原理图,前述具有抗菌功能的织物的快速成形方法,在第一步骤中,采用抗菌母料和基础母料按比例送料混合,配成打印当前层的打印料,送入三维打印设备的打印头31,打印头31喷出或挤出丝材,在当前层打印出含有以重量百分数计为A%的抗菌粒子含量的织构;在相连续的第二步骤中,改变抗菌母料和基础母料送料比例,配成打印新的当前层的打印料,送入三维打印设备的打印头31,打印头31喷出或挤出丝材,在新的当前层打印出含有以重量百分数计为(A+B)%的抗菌粒子含量的织构;重复第二步骤中改变抗菌母料和基础母料送料比例以及喷出或挤出丝材的操作过程,在连续的若干层继续打印出含有以重量百分数计分别为(A+2B)%、(A+3B)%……(A+NB)%的抗菌粒子含量的织构(N为≥3的自然数),最终获得抗菌粒子含量层间渐变、缓释性可控的织构。
本实施例的所述三维打印设备为熔融沉积设备,所述打印头31为挤丝头,其挤出动力为机械螺杆,但本发明保护范围并不局限于此,其余机械动力如活塞等,以及非机械的动力,只要能实现本发明的功能即可,本实施例的抗菌母料和基础母料中的基材可以是用于织物制造的各种热熔聚合物或者其混合物,优选包括聚氨酯、PET、PP、PE等,并优选符合人体接触类纺织品安全标准或医用标准。
从图1可以看到,熔融沉积设备采用第一泵送料筒10和第二泵送料筒20分别泵送基础母料和抗菌母料,通过调节流速/流量的调节控制阀40调节基础母料和抗菌母料混合比例,打印头31和打印平台50在控制系统控制下被三维 运动系统(图中未示出)带动,进行丝材的挤出和逐层编织,每层的编织路线可以采用纵横正交或者呈角度相交,在切换层厚后,可以改变编织角度和/或编织跨度以确保整体的织物60在多个层厚上表面为基本均质,由于是挤出丝材进行层内非搭接式打印,优选的,三维运动系统中至少包括一个使所述打印平台50水平运动的运动自由度,这样,打印平台50可以在打印头31水平运动时配合打印头31做相向运动或交叉运动,以提高打印效率或构建打印角度,这是与很多同类三维运动设备不同的。
根据生活、医学等领域常用抗菌功能织物的抗菌粒子(纳米银)用量控制标准,本实施例进一步通过控制抗菌母料中的抗菌粒子含量≤25%,优选15%-20%之间,可基本确保抗菌母料和基础母料的泵送量不会出现量级层面的较大差异,上式中所述A%一般取值范围为≤10%,优选3%-6%左右,上式中数字B为正增量,且一般满足B%≤2%,其取值越小,梯度变化越缓,抗菌粒子(纳米银)的缓释性层间差异越小,因此,优选满足B%≤1%,更优选满足B%≤0.5%,更优选满足B%≤0.2%,相应的打印层数也可以相应的从几层到几十层甚至上百层。
本实施例数字B为正增量可构造从打印织物的最外层到最内层抗菌粒子含量呈递增趋势的织构,对抗菌功能织物在较长周期使用中的抗菌功能缓释具有明显调节作用,但本发明并不限于此,根据另外的需要,数字B为负增量也是可以的,本实施例仅在所述抗菌母料中添加纳米抗菌粒子银,所述基础母料中不加入抗菌功能成分,但如果需要,基础母料中也可以加入少量功能成分。
实施例2
本实施例对制造抗菌粒子含量层内分区变化、抗菌性能层内可控的织构作出说明,具体以在实施例1的基础上的改进为例,在打印所述抗菌粒子含量层间渐变、缓释性可控的织构的同时,在某一步骤中,采用抗菌母料和基础母料按比例送料混合,配成打印当前区域的打印料,送入三维打印设备的打印头31,打印头31喷出或挤出丝材,在当前区域打印出含有特定抗菌粒子含量的织构;在另一步骤中,改变抗菌母料和基础母料送料比例,配成打印新的当前区域的打印料,送入三维打印设备的打印头31,打印头31喷出或挤出丝材,在该新的当前区域打印出含有与之前区域抗菌粒子含量变化了的织构,最终获得抗菌粒子含量层内分区变化、抗菌性能层内可控的织构。
这一方案的优点可以举例说明的是,对于一些医疗或卫生需要的抗菌功能织物,当与人体特别部位接触时,可以通过织物局部区域的抗菌粒子用量控制来避免可能存在的与人体的应激反应,或者减少人们对这种应激反应的担忧。
实施例3
本实施例是在实施例1或实施例2基础上的进一步改进,图2为本实施例的一种具有抗菌功能的织物快速成形原理图,本实施例与实施例1或2一样,三维打印设备为熔融沉积设备,打印头为挤丝头,采用第一泵送料筒10和第二泵送料筒20分别泵送基础母料和抗菌母料,通过调节流速/流量的调节控制阀40调节基础母料和抗菌母料混合比例,不同之处在于,本实施例采用两个打印头,除了打印头31,还有一个副打印头32,打印头31和副打印头32以及打印平台50在控制系统控制下被三维运动系统带动,进行丝材的挤出和逐层编织。
从图2中可以看到,打印头31和副打印头32在连接到第一泵送料筒10和第二泵送料筒20时,在每个泵送料筒上都是共用调节控制阀40的,这样设计的优点是两个打印头在打印较大的织物平面并且打印区域所设计的抗菌粒子含量没有差异时,可以通过在跨度、起始位置和/或运动幅度上的分区进行来提高打印效率。
实施例4
本实施例是在实施例3基础上的进一步改进,图3为本实施例的一种具有抗菌功能的织物快速成形原理图,本实施例与实施例3一样,三维打印设备为熔融沉积设备,打印头为挤丝头,采用第一泵送料筒10和第二泵送料筒20分别泵送基础母料和抗菌母料,通过调节控制阀40调节基础母料和抗菌母料混合比例,并且同样采用打印头31和副打印头32进行打印,打印头31和副打印头32以及打印平台50在控制系统控制下被三维运动系统带动,进行丝材的挤出和逐层编织。
从图3中可以看到,与实施例3不同的是,打印头31和副打印头32在连接到第一泵送料筒10和第二泵送料筒20时,在每个泵送料筒上都是具有各自的调节控制阀40的,这样设计的优点是由于不同的调节控制阀40可调节不同的混料比例,这样由第一泵送料筒10和第二泵送料筒20泵送到打印头31和副打印头32的物料中抗菌粒子含量可以是不同的,这样,除了能够实现实施例3 中所描述的两个打印头在打印较大的织物平面时(打印区域所设计的抗菌粒子含量可以相同或不同),可以通过在跨度、起始位置和/或运动幅度上的分区进行来提高打印效率这一作用外,还可以适应不同层之间的抗菌粒子含量梯度变化打印需要,尤其是在打印头对不同抗菌粒子含量的打印母料的混熔需要一定时间间隔时,可以以一个打印头进行打印,另一打印头进行混熔备料的方式来减少切换间隔时间,提高打印效率。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种具有抗菌功能的织物,具有采用三维打印方式形成的层叠构造,其特征在于,至少在部分部位,在所述层叠构造的不同层厚上具有由差异化打印形成的不同的抗菌粒子含量,从而使得抗菌粒子含量具有层间的梯度变化;和/或,至少在部分部位,在所述层叠构造的相同层厚的不同区域,具有由差异化打印形成的不同的抗菌粒子含量,从而使得抗菌粒子含量具有层内的分区变化。
  2. 一种具有抗菌功能的织物的快速成形方法,其特征在于,在一个步骤中,采用抗菌母料和基础母料按比例送料混合,配成打印当前层或者当前区域的打印料,送入三维打印设备的打印头,打印头喷出或挤出丝材,在当前层或者当前区域打印出含有特定抗菌粒子含量的织构;在另一步骤中,改变抗菌母料和基础母料送料比例,配成打印新的当前层或者新的当前区域的打印料,送入三维打印设备的打印头,打印头喷出或挤出丝材,在该新的当前层或者新的当前区域打印出含有与之前层或者之前区域抗菌粒子含量变化了的织构。
  3. 根据权利要求2所述的一种具有抗菌功能的织物的快速成形方法,其特征在于,所述抗菌母料中含有纳米抗菌粒子,所述基础母料中不加入抗菌功能成分。
  4. 根据权利要求2所述的一种具有抗菌功能的织物的快速成形方法,其特征在于,在第一步骤中,采用抗菌母料和基础母料按比例送料混合,配成打印当前层的打印料,送入三维打印设备的打印头,打印头喷出或挤出丝材,在当前层打印出含有以重量百分数计为A%的抗菌粒子含量的织构;在相连续的第二步骤中,改变抗菌母料和基础母料送料比例,配成打印新的当前层的打印料,送入三维打印设备的打印头,打印头喷出或挤出丝材,在新的当前层打印出含有以重量百分数计为(A+B)%的抗菌粒子含量的织构;重复第二步骤中改变抗菌母料和基础母料送料比例以及喷出或挤出丝材的操作过程,在连续的若干层继续打印出含有以重量百分数计分别为(A+2B)%、(A+3B)%……(A+NB)%的抗菌粒子含量的织构(N为≥3的自然数),最终获得抗菌粒子含量层间渐变、缓释性可控的织构。
  5. 根据权利要求4所述的一种具有抗菌功能的织物的快速成形方法,其特征在于,所述抗菌母料中的抗菌粒子含量≤25%,所述A%≤10%,数字B为正增量,且满足B%≤2%。
  6. 根据权利要求4所述的一种具有抗菌功能的织物的快速成形方法,其特征在于,在打印所述抗菌粒子含量层间渐变、缓释性可控的织构的同时,在某一步骤中,采用抗菌母料和基础母料按比例送料混合,配成打印当前区域的打印料,送入三维打印设备的打印头,打印头喷出或挤出丝材,在当前区域打印出含有特定抗菌粒子含量的织构;在另一步骤中,改变抗菌母料和基础母料送料比例,配成打印新的当前区域的打印料,送入三维打印设备的打印头,打印头喷出或挤出丝材,在该新的当前区域打印出含有与之前区域抗菌粒子含量变化了的织构,最终获得抗菌粒子含量层内分区变化、抗菌性能层内可控的织构。
  7. 根据权利要求2-6任一项所述的一种具有抗菌功能的织物的快速成形方法,其特征在于,所述三维打印设备为熔融沉积设备,所述打印头为喷丝头或挤丝头。
  8. 根据权利要求7所述的一种具有抗菌功能的织物的快速成形方法,其特征在于,所述熔融沉积设备采用至少两个泵送料筒分别泵送基础母料和抗菌母料,通过调节控制阀调节基础母料和抗菌母料混合比例。
  9. 根据权利要求7所述的一种具有抗菌功能的织物的快速成形方法,其特征在于,所述熔融沉积设备包含两个打印头。
  10. 根据权利要求7所述的一种具有抗菌功能的织物的快速成形方法,其特征在于,所述三维打印设备具有三维运动自由度,其中所述打印头具有至少二个维度的运动自由度,打印平台具有至少一个维度的运动自由度。
PCT/CN2020/129020 2020-11-05 2020-11-16 一种具有抗菌功能的织物及其快速成形方法 WO2022095110A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011225161.2 2020-11-05
CN202011225161.2A CN112406095B (zh) 2020-11-05 2020-11-05 一种具有抗菌功能的织物及其快速成形方法

Publications (1)

Publication Number Publication Date
WO2022095110A1 true WO2022095110A1 (zh) 2022-05-12

Family

ID=74828654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129020 WO2022095110A1 (zh) 2020-11-05 2020-11-16 一种具有抗菌功能的织物及其快速成形方法

Country Status (2)

Country Link
CN (1) CN112406095B (zh)
WO (1) WO2022095110A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205741716U (zh) * 2015-11-13 2016-11-30 创方拓展有限公司 功能织物及由其制成的服装
CN106702724A (zh) * 2015-11-13 2017-05-24 创方拓展有限公司 功能织物及其制造方法
KR20190060440A (ko) * 2017-11-24 2019-06-03 한국기계연구원 저항성 센싱 정보를 가지는 3d 에어메쉬 원단
CN110694102A (zh) * 2019-11-13 2020-01-17 中国矿业大学 一种具有长效抗菌作用的3d打印水凝胶伤口敷料
CN210911399U (zh) * 2019-06-26 2020-07-03 浙江兆新纺织科技股份有限公司 一种珠光仿棉抗菌除臭被套面料
JP3227470U (ja) * 2020-06-01 2020-08-27 株式会社ハリソン 立体マスク

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9004428D0 (en) * 1990-02-28 1990-04-25 Middleton Nigel John Fabric
JP4045365B2 (ja) * 1993-11-15 2008-02-13 株式会社日本吸収体技術研究所 抗菌性複合不織布およびその製造方法
CN100554296C (zh) * 2007-02-28 2009-10-28 中山大学 可反应性高分子抗菌剂及其制备方法和应用
CN101209240B (zh) * 2007-12-21 2011-04-27 东华大学 药物梯度零级植入控释给药装置及其制备方法
KR101231535B1 (ko) * 2010-10-11 2013-02-07 박정호 소나무의 항균성분을 가지는 의류소재의 제조방법.
EP2508212A1 (en) * 2011-04-05 2012-10-10 Universitätsklinikum Freiburg Biocompatible and biodegradable gradient layer system for regenerative medicine and for tissue support
CN202131448U (zh) * 2011-06-23 2012-02-01 青岛金三阳纺织机械有限公司 用于塑料编织布喷水织机的挤水机构
EA201490708A1 (ru) * 2011-09-29 2014-09-30 Полиганикс Б.В. Способ получения синтетической пены с регулируемым распределением частиц
US20140232035A1 (en) * 2013-02-19 2014-08-21 Hemant Bheda Reinforced fused-deposition modeling
KR101346307B1 (ko) * 2013-03-14 2013-12-31 송완수 음이온 및 원적외선 방사성 의자 원단의 제조방법
US9579851B2 (en) * 2013-03-22 2017-02-28 Markforged, Inc. Apparatus for fiber reinforced additive manufacturing
WO2016025388A1 (en) * 2014-08-10 2016-02-18 Louisiana Tech University Foundation; A Division Of Louisiana Tech University Foundation , Inc. Methods and devices for three-dimensional printing or additive manufacturing of bioactive medical devices
CN105522803B (zh) * 2014-09-29 2020-03-24 苏州工业园区新国大研究院 基于静电纺丝与喷雾的3d打印制备功能梯度涂层的方法
CN205115745U (zh) * 2014-12-11 2016-03-30 江苏悦达众翔针织印染有限公司 梯度结构双面异效复合功能户外休闲服用面料
FR3029838A1 (fr) * 2014-12-11 2016-06-17 Centre Nat Rech Scient Procede de fabrication additive d'un objet mecatronique 3d
US20170247818A1 (en) * 2016-02-25 2017-08-31 Chin-Yen Yang Antiseptic 3d printing filament
CN105773976A (zh) * 2016-04-21 2016-07-20 东华大学 一种纤维级基于反应挤出的抗菌产品的3d打印方法
US10137635B2 (en) * 2016-05-19 2018-11-27 Palo Alto Research Center Incorporated System and method for printing path planning for manufacturing of functionally graded materials with the aid of a digital computer
EP3845087B1 (en) * 2016-05-31 2024-07-03 Nike Innovate C.V. Gradient printing a three-dimensional structural component
CN106113681B (zh) * 2016-06-27 2019-01-25 中国人民解放军总后勤部军需装备研究所 一种梯度功能的鞋面复合布及其制备方法
US10405540B2 (en) * 2016-07-06 2019-09-10 Xerox Corporation Anti-bacterial metallo ionomer polymer nanocomposite filaments and methods of making the same
CN106046756A (zh) * 2016-07-29 2016-10-26 佛山市高明区诚睿基科技有限公司 一种石墨烯改性增强3d打印用聚氨酯复合材料
US10624750B2 (en) * 2016-08-07 2020-04-21 Nanochon, Llc Three-dimensionally printed tissue engineering scaffolds for tissue regeneration
WO2018048545A1 (en) * 2016-09-07 2018-03-15 The Procter & Gamble Company Polymeric materials and articles manufactured there from
KR101794985B1 (ko) * 2016-09-09 2017-12-01 청주대학교 산학협력단 항균기능을 갖는 삼차원 프린팅용 옻 필라멘트의 제조방법 및 이에 의해 제조된 삼차원 프린팅용 옻 필라멘트
CN108610551A (zh) * 2016-12-13 2018-10-02 佛山市顺德区美的电热电器制造有限公司 一种抗菌塑料组合物以及抗菌材料及制备方法和应用
GR1009361B (el) * 2017-05-11 2018-09-17 Κωνσταντινος Ηλια Θεοδοσοπουλος Συστημα παραγωγης μεσω τρισδιαστατης εκτυπωσης, δισκιων, κοκκιων και καψουλων
CN107952962B (zh) * 2017-11-20 2019-11-26 淮阴工学院 一种功能梯度仿生结构钛合金人工植入体及其成形方法
CA3083744A1 (en) * 2017-11-29 2019-06-06 Auregen Biotherapeutics Sa Sterile additive manufacturing system
CN108327241B (zh) * 2018-01-28 2019-09-20 浙江大学 一种可控抗菌气管支架的制造方法
WO2019232778A1 (en) * 2018-06-08 2019-12-12 Elkem Silicones Shanghai Co., Ltd. Curable silicone composition
CN109228337B (zh) * 2018-07-24 2020-03-31 西安交通大学 一种基于微流体混合的梯度材料3d打印喷头
CN113651933A (zh) * 2018-08-31 2021-11-16 深圳市绎立锐光科技开发有限公司 一种抗菌性光固化3d打印材料及其制备方法和3d打印装置
US20200102673A1 (en) * 2018-10-02 2020-04-02 Zincore, LLC Antibacterial Fibers and Materials
WO2020079669A1 (en) * 2018-10-19 2020-04-23 National Research Council Of Canada Functionalized product fabricated from a resin comprising a functional component and a polymeric resin, and method of making the same
CN111364121B (zh) * 2018-12-25 2022-11-18 凯泰特种纤维科技有限公司 一种抗菌导电纤维及其制备方法
CN210062018U (zh) * 2019-03-11 2020-02-14 华中科技大学 多材料梯度成形熔融挤出和颗粒状异质多材料挤出系统
CN110014643B (zh) * 2019-03-11 2024-03-19 华中科技大学 一种用于3d打印的多材料梯度成形熔融挤出系统
CN109966547B (zh) * 2019-04-22 2021-11-02 四川大学 3d打印具有缓释抗菌功能的骨组织工程支架及制备方法
CN110202860B (zh) * 2019-05-31 2021-04-23 华南农业大学 一种梯度缓释型的活性复合膜及其制备方法
CN111138723B (zh) * 2019-12-10 2021-07-20 四川农业大学 一种3d打印梯度抗菌膜的制备方法、产品及其应用
CN111155205B (zh) * 2019-12-31 2021-01-19 三阳纺织有限公司 一种增大条筒容量的圈条方法
CN111152452B (zh) * 2020-01-14 2023-04-18 青岛理工大学 一种PDMS/SiC功能梯度衬底及其制备方法与应用
CN212472677U (zh) * 2020-03-20 2021-02-05 湖南俏妃卫生用品有限公司 一种抗菌型聚丙烯植物纤维无纺布
CN111808408B (zh) * 2020-08-06 2022-04-15 苏州环诺新材料科技有限公司 一种感光抗菌可生物降解3d打印线材及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205741716U (zh) * 2015-11-13 2016-11-30 创方拓展有限公司 功能织物及由其制成的服装
CN106702724A (zh) * 2015-11-13 2017-05-24 创方拓展有限公司 功能织物及其制造方法
KR20190060440A (ko) * 2017-11-24 2019-06-03 한국기계연구원 저항성 센싱 정보를 가지는 3d 에어메쉬 원단
CN210911399U (zh) * 2019-06-26 2020-07-03 浙江兆新纺织科技股份有限公司 一种珠光仿棉抗菌除臭被套面料
CN110694102A (zh) * 2019-11-13 2020-01-17 中国矿业大学 一种具有长效抗菌作用的3d打印水凝胶伤口敷料
JP3227470U (ja) * 2020-06-01 2020-08-27 株式会社ハリソン 立体マスク

Also Published As

Publication number Publication date
CN112406095A (zh) 2021-02-26
CN112406095B (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
KR101368253B1 (ko) 항균성 온열 보존 섬유의 제조방법, 이로부터 제조되는 섬유 및 이를 사용한 원단
US20120164449A1 (en) Fibers with improving anti-microbial performance
DE2063204C3 (de) Mit Kunststoff überzogenes Garn aus einem Bündel von Filamenten und Verfahren zu dessen Herstellung
CN101109114A (zh) 一种负离子聚酰胺纤维及其制造方法
WO1990009736A1 (en) Antibacterial or conductive composition and applications thereof
CN111020777B (zh) 热湿舒适性双股纱及其制备方法
WO2022095110A1 (zh) 一种具有抗菌功能的织物及其快速成形方法
CN106757508B (zh) 一种芳纶-氨纶皮芯复合纤维及其制备方法
TW201615693A (zh) 用於紗線塗佈之水性熱固型氨基甲酸乙酯化合物及使用其製造塗佈之紗線之方法
EP2303008A2 (de) Verfahren zur herstellung eines kompositwerkstoffs mit antimikrobieller wirkung
CN112127014B (zh) 一种高抗菌消臭纳米复合功能纤维制备方法
CN111411419A (zh) 一种皮芯结构驱蚊抗菌纤维及其制备方法
KR101557573B1 (ko) 서방성 섬유의 제조방법 및 그에 의해서 제조된 서방성 섬유
CN113290963B (zh) 一种耐磨性好的纳米银抗菌面料及其制备方法
KR100643515B1 (ko) 항균 방취성이 우수한 폴리프로필렌 스판본드 부직포 및 그 제조방법
CN110699860A (zh) 一种绵柔爽滑非织造布及其制备方法和应用
CN108265405A (zh) 一种静电纺纳米多组分纤维非织造材料及其制备方法和应用
DE112018003959T5 (de) Herstellung von Nanopartikeln aus Metalloxiden, die auf Fasern dispergiert sind
EP3954812A1 (en) Polymeric yarn, composition and method
CN217628799U (zh) 一种抗紫外线防变形面料
CN207982556U (zh) 一种复合纤维激光刻蚀装置
CN106082333A (zh) 一种调控BiVO4全介孔纳米带材料的方法
CN105062012A (zh) 一种雾化聚酯薄膜的制备方法
KR20200048142A (ko) 기능성 마스터배치 칩 및 이를 이용한 기능성 필라멘트의 제조방법
CN115044093B (zh) 一种多孔透湿膜及其制备方法、应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20960567

Country of ref document: EP

Kind code of ref document: A1