WO2022092089A1 - 光ファイバ着色心線、光ファイバリボン、単心ファイバの集合体ケーブル、リボンケーブルおよびこれらの製造方法 - Google Patents

光ファイバ着色心線、光ファイバリボン、単心ファイバの集合体ケーブル、リボンケーブルおよびこれらの製造方法 Download PDF

Info

Publication number
WO2022092089A1
WO2022092089A1 PCT/JP2021/039503 JP2021039503W WO2022092089A1 WO 2022092089 A1 WO2022092089 A1 WO 2022092089A1 JP 2021039503 W JP2021039503 W JP 2021039503W WO 2022092089 A1 WO2022092089 A1 WO 2022092089A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
modulus
young
primary layer
layer
Prior art date
Application number
PCT/JP2021/039503
Other languages
English (en)
French (fr)
Inventor
邦彬 石附
稔 笠原
光洋 岩屋
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to EP21886207.6A priority Critical patent/EP4238946A4/en
Priority to JP2022559162A priority patent/JPWO2022092089A1/ja
Publication of WO2022092089A1 publication Critical patent/WO2022092089A1/ja
Priority to US18/305,485 priority patent/US20230257301A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/62Surface treatment of fibres or filaments made from glass, minerals or slags by application of electric or wave energy; by particle radiation or ion implantation
    • C03C25/6206Electromagnetic waves
    • C03C25/6226Ultraviolet
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4403Optical cables with ribbon structure
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/105Organic claddings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/1065Multiple coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/465Coatings containing composite materials
    • C03C25/475Coatings containing composite materials containing colouring agents
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02395Glass optical fibre with a protective coating, e.g. two layer polymer coating deposited directly on a silica cladding surface during fibre manufacture
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/4482Code or colour marking
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment

Definitions

  • the present invention relates to an optical fiber colored core wire, an optical fiber ribbon, an aggregate cable of a single core fiber, a ribbon cable, and a method for manufacturing these.
  • each of the primary layer covering the optical fiber bare wire, the secondary layer covering the primary layer, and the colored layer covering the secondary layer is set to a desired Young's modulus by an ultraviolet curable resin.
  • Patent Documents 1 and 2 For example, the Young's modulus of the primary layer is set low, and the primary layer can buffer the external force applied to the bare optical fiber wire and suppress the light transmission loss (microbend loss) due to the minute deformation of the bare optical fiber wire.
  • the Young's modulus of the secondary layer is set higher than the Young's modulus of the primary layer, and the secondary layer protects the optical fiber bare wire and the primary layer from external force.
  • Patent Documents 3 and 4 Since it is desirable that the Young's modulus of the primary layer is low, the techniques described in Patent Documents 3 and 4 use an ultraviolet curable resin having a low Young's modulus as the primary layer until the Young's modulus approaches the saturated Young's modulus.
  • the primary layer is UV cured.
  • the ultraviolet curable resin having a low Saturated Young's modulus has a high viscosity, it is difficult to handle. Further, in the drawing step, the UV curable resin is exposed to a high temperature, which may cause a problem that the curing reaction is suppressed and the Young's modulus becomes too low.
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to effectively suppress microbend loss while avoiding problems associated with an ultraviolet curable resin having a low Saturated Young's modulus.
  • an optical fiber bare wire a primary layer formed of an ultraviolet curable resin covering the optical fiber bare wire, and a secondary layer formed of an ultraviolet curable resin covering the primary layer.
  • the Young's modulus of the primary layer is less than 70% with respect to the saturated Young's modulus of the primary layer, and the saturated Young's modulus of the primary layer is 0.84 MPa or more.
  • a core line is provided.
  • a step of drawing an optical fiber bare wire from an optical fiber base material and a step of applying an ultraviolet curable resin around the optical fiber bare wire to form a primary layer comprising a step of applying an ultraviolet curable resin around the primary layer and irradiating the ultraviolet curable resin with ultraviolet rays to form a secondary layer.
  • the Young ratio of the primary layer is less than 70% with respect to the saturated Young ratio of the primary layer, and the saturated Young ratio of the primary layer is 0.84 MPa or more.
  • a method for manufacturing a characteristic optical fiber colored core wire is provided.
  • FIG. 1 is a cross-sectional view of an optical fiber colored core wire 1 according to the first embodiment.
  • the optical fiber colored core wire 1 includes an optical fiber bare wire 2, a primary layer 3 coated on the outer periphery of the optical fiber bare wire 2, a secondary layer 4 coated on the outer periphery of the primary layer 3, and an outer periphery of the secondary layer 4. It is provided with a colored layer 5 coated with.
  • the optical fiber bare wire 2 is covered with three covering layers of a primary layer 3, a secondary layer 4, and a colored layer 5.
  • the optical fiber bare wire 2 is formed of, for example, quartz-based glass or the like, and transmits light.
  • the primary layer 3, the secondary layer 4, and the colored layer 5 are each formed by curing an ultraviolet curable resin by irradiation with ultraviolet rays.
  • the ultraviolet curable resin is not particularly limited as long as it can be polymerized by irradiation with ultraviolet rays.
  • the ultraviolet curable resin can be polymerized by, for example, photoradical polymerization.
  • the ultraviolet curable resin is polymerized and polymerized by ultraviolet rays such as urethane (meth) acrylates such as polyether urethane (meth) acrylates and polyester urethane (meth) acrylates, epoxy (meth) acrylates, and polyester (meth) acrylates. It is an ultraviolet curable resin having a polymerizable unsaturated group such as an ethylenically unsaturated group that cures, and preferably has at least two polymerizable unsaturated groups.
  • Examples of the polymerizable unsaturated group in the ultraviolet curable resin include a group having an unsaturated double bond such as a vinyl group, an allyl group, an acryloyl group and a methacryloyl group, and a group having an unsaturated triple bond such as a propargyl group. Can be mentioned. Among these, acryloyl group and methacryloyl group are preferable in terms of polymerizability.
  • the ultraviolet curable resin may be a monomer, an oligomer or a polymer that starts and cures by irradiation with ultraviolet rays, but is preferably an oligomer.
  • the oligomer is a polymer having a degree of polymerization of 2 to 100.
  • "(meth) acrylate” means one or both of acrylate and methacrylate.
  • the polyether urethane (meth) acrylate is a reaction product of a polyol having a polyether skeleton, an organic polyisocyanate compound and a hydroxyalkyl (meth) acrylate, and has a polyether segment, a (meth) acrylate and a urethane bond. It is a compound that has.
  • the polyester-based urethane (meth) acrylate has a polyester segment, a (meth) acrylate and a urethane bond like a reaction product of a polyol having a polyester skeleton, an organic polyisocyanate compound and a hydroxyalkyl (meth) acrylate. It is a compound.
  • the ultraviolet curable resin may contain, for example, a diluting monomer, a photosensitizer, a chain transfer agent and various additives in addition to the oligomer and the photopolymerization initiator.
  • a diluting monomer monofunctional (meth) acrylate or polyfunctional (meth) acrylate is used.
  • the diluting monomer means a monomer for diluting an ultraviolet curable resin.
  • the primary layer 3 is a soft layer having a Young's modulus of 0.1 MPa or more and 5 MPa or less, and has a function of buffering an external force applied to the optical fiber bare wire 2.
  • the primary layer 3 preferably has a Young's modulus of less than 70% with respect to the saturated Young's modulus, and the saturated Young's modulus of the primary layer 3 Is preferably 0.84 MPa or more.
  • the secondary layer 4 is preferably a hard layer having a Young's modulus of 500 MPa or more, and has a function of protecting the optical fiber bare wire 2 and the primary layer 3 from external forces.
  • the colored layer 5 is colored to identify the optical fiber colored core wire 1.
  • the optical fiber colored core wire 1 is not limited to the configuration shown in FIG.
  • the optical fiber bare wire 2 may be covered with four or more layers.
  • an optical fiber having no colored layer 5 may be used.
  • the secondary layer 4 may be colored.
  • the diameter of the optical fiber bare wire 2 may be 80 ⁇ m or more and 150 ⁇ m or less, preferably 124 ⁇ m or more and 126 ⁇ m or less.
  • the thickness of the primary layer 3 can be 5 ⁇ m or more and 60 ⁇ m or less.
  • the thickness of the secondary layer 4 can be 5 ⁇ m or more and 60 ⁇ m or less. Further, the thickness of the colored layer 5 may be about several ⁇ m.
  • FIG. 2 is a schematic diagram of a manufacturing apparatus 10 used in the manufacturing method of the optical fiber colored core wire 1 according to the first embodiment.
  • the manufacturing device 10 includes a heating device 20, a primary layer covering device 30, a secondary layer covering device 40, a colored layer covering device 50, guide rollers 60, 61, 62, a bobbin 70, and a winding device 71.
  • the manufacturing apparatus 10 is an apparatus for manufacturing an optical fiber colored core wire 1 from an optical fiber base material 6.
  • the optical fiber base material 6 is made of, for example, quartz-based glass, and is manufactured by a well-known method such as a VAD method, an OVD method, or a MCVD method.
  • the heating device 20 has a heater 21.
  • the heater 21 can be any heat source such as a tape heater, a ribbon heater, a rubber heater, an oven heater, a ceramic heater, and a halogen heater.
  • the end portion of the optical fiber base material 6 is heated and melted by a heater 21 arranged around the optical fiber base material 6, and is drawn to draw out the optical fiber bare wire 2.
  • a primary layer covering device 30 is provided below the heating device 20.
  • the primary layer covering device 30 includes a resin coating device 31 and an ultraviolet irradiation device 32.
  • the coating material (also referred to as the primary layer material) of the primary layer 3 is held in the resin coating device 31.
  • the optical fiber bare wire 2 drawn from the optical fiber base material 6 is coated with the primary layer material by the resin coating device 31.
  • An ultraviolet irradiation device 32 is provided below the resin coating device 31.
  • the ultraviolet irradiation device 32 includes an arbitrary ultraviolet light source such as a metal halide lamp, a mercury lamp, and a UV-LED.
  • the optical fiber bare wire 2 is coated with the primary layer material by the resin coating device 31, the optical fiber bare wire 2 enters the ultraviolet irradiation device 32, and the primary layer material is irradiated with ultraviolet rays. As a result, the primary layer material containing the ultraviolet curable resin as a main component is cured, and the primary layer 3 is formed.
  • a secondary layer covering device 40 is provided below the primary layer covering device 30.
  • the secondary layer covering device 40 includes a resin coating device 41 and an ultraviolet irradiation device 42.
  • the coating material (also referred to as the secondary layer material) of the secondary layer 4 is held in the resin coating device 41.
  • the secondary layer material is applied to the primary layer 3 by the resin coating device 41.
  • An ultraviolet irradiation device 42 is provided below the resin coating device 41.
  • the ultraviolet irradiation device 42 may have the same configuration as the ultraviolet irradiation device 32.
  • the optical fiber bare wire 2 enters the ultraviolet irradiation device 42, and the secondary layer material is irradiated with ultraviolet rays.
  • the secondary layer material containing the ultraviolet curable resin as a main component is cured, and the secondary layer 4 is formed.
  • the optical fiber bare wire 2 is guided by a guide roller 60 provided below the secondary layer covering device 40 and wound around the bobbin 70.
  • the optical fiber bare wire 2 coated with the primary layer 3 and the secondary layer 4 is once wound around the bobbin, and then the colored layer 5 is formed again.
  • the resin coating device 31 may be configured to separately hold the primary layer material and the secondary layer material. In this case, the resin coating device 31 coats the optical fiber bare wire 2 with the primary layer material, and then coats the secondary layer material on the primary layer material.
  • the ultraviolet irradiation device 32 irradiates the primary layer material and the secondary layer material coated on the optical fiber bare wire 2 with ultraviolet rays to form the primary layer 3 and the secondary layer 4. In this case, the manufacturing apparatus 10 does not necessarily have to have the secondary layer covering apparatus 40.
  • the optical fiber bare wire 2 wound around the bobbin 70 is guided by the guide roller 61 and enters the colored layer covering device 50.
  • the colored layer coating device 50 includes a resin coating device 51 and an ultraviolet irradiation device 52.
  • the coating material (also referred to as a colored layer material) of the colored layer 5 is held in the resin coating device 51.
  • the optical fiber bare wire 2 coated with the primary layer 3 and the secondary layer 4 is coated with a colored layer material by the resin coating device 51.
  • An ultraviolet irradiation device 52 is provided below the resin coating device 51.
  • the ultraviolet irradiation device 52 may be configured in the same manner as the ultraviolet irradiation devices 32 and 42.
  • the optical fiber bare wire 2 having the colored layer material coated on the outer periphery of the secondary layer 4 enters the ultraviolet irradiation device 52, and the optical fiber bare wire 2 is irradiated with ultraviolet rays.
  • the colored layer material containing the ultraviolet curable resin as a main component is cured to become the colored layer 5.
  • the primary layer 3, the secondary layer 4, and the colored layer 5 are covered with the optical fiber bare wire 2, and the optical fiber colored core wire 1 is formed.
  • the optical fiber colored core wire 1 is guided by a guide roller 62 provided below the colored layer covering device 50, and is wound by the winding device 71.
  • FIG. 3 is a flowchart of a method for manufacturing the optical fiber colored core wire 1 according to the first embodiment.
  • the user installs the optical fiber base material 6 in the manufacturing apparatus 10 (step S101).
  • the heater 21 provided in the heating device 20 heats the optical fiber base material 6 and starts drawing the optical fiber bare wire 2 (step S102).
  • the primary layer covering device 30 applies a primary layer material containing an ultraviolet curable resin around the drawn optical fiber bare wire 2 and irradiates the primary layer material with ultraviolet rays to form the primary layer 3 (step S103). ..
  • the secondary layer covering device 40 applies a secondary layer material containing an ultraviolet curable resin around the primary layer 3 and irradiates the secondary layer material with ultraviolet rays to form the secondary layer 4 (step S104).
  • the colored layer covering device 50 applies a colored layer material containing an ultraviolet curable resin around the secondary layer 4 and irradiates the colored layer material with ultraviolet rays to form the colored layer 5 (step S105). As a result, the optical fiber colored core wire 1 is obtained.
  • the primary layer 3 can be cured by irradiation with ultraviolet rays in the step of forming the secondary layer 4 (step S104).
  • the irradiation of ultraviolet rays is a step of forming the primary layer 3 (step S103), a step of forming the secondary layer 4 (step S104), and a step of forming the colored layer 5 (step S105). ). Therefore, after the primary layer 3 is formed, the primary layer 3 can be cured by irradiating the primary layer 3 with ultraviolet rays even in the formation of the secondary layer 4 and the colored layer 5. More specifically, the ultraviolet rays transmitted through the secondary layer 4 and the colored layer 5 are absorbed by the primary layer 3, and the curing of the primary layer 3 can proceed further. If the ultraviolet curable resin is overcured, the Young's modulus of the primary layer 3 becomes high, and it may be difficult for the primary layer 3 to sufficiently buffer the external force applied to the optical fiber bare wire 2. As a result, microbend loss can occur.
  • the primary layer 3 is cured by polymerizing the ultraviolet curable resin contained in the primary layer material. Further, a part of the low molecular weight component contained in the primary layer material is volatilized, for example, under high temperature conditions after the drawing step (step S102). By irradiating the primary layer material with ultraviolet rays while the primary layer material is at a high temperature, the polymerization and volatilization of the primary layer material proceed at the same time.
  • the polymerization and volatilization of the primary layer material proceed at the same time, so that the polymerization of the primary layer material is suppressed. That is, by irradiating the primary layer material with ultraviolet rays under the condition that the primary layer material has a high temperature, the progress of curing of the primary layer 3 can be suppressed and the Young's modulus of the primary layer 3 can be suppressed low. At this time, the composition of the primary layer material changes due to the volatilization of the primary layer material, and the curing of the primary layer 3 is suppressed. In other words, the composition of the primary layer 3 is changed so that the progress of curing is suppressed.
  • the curing of the primary layer 3 can be suppressed.
  • the period from the end of the drawing step (step S102) to the start of the step of covering the primary layer 3 (step S103) may be shortened.
  • the primary layer material since the primary layer material is applied around the relatively high temperature optical fiber bare wire 2, the primary layer material can be irradiated with ultraviolet rays while the primary layer material is at a high temperature.
  • the method of suppressing the progress of curing of the primary layer 3 is not limited to the method of raising the temperature of the primary layer material.
  • Other methods include, for example, a method of adjusting the amount of additives contained in the primary layer material, a method of adjusting the amount of ultraviolet rays to be irradiated, and the like. By arbitrarily selecting or combining these methods, it is possible to appropriately set so that the primary layer 3 having the required Young's modulus can be obtained.
  • the ultraviolet curable resin used as the primary layer material preferably has a saturated Young's modulus of 0.84 MPa or more.
  • the viscosity of the UV curable resin having a high Saturated Young's modulus is lower than the viscosity of the UV curable resin having a low Saturated Young's modulus. Therefore, for example, it becomes easy to uniformly apply the primary layer material to the outer periphery of the optical fiber bare wire 2, and it becomes easy to form the primary layer.
  • an optical fiber ribbon composed of the optical fiber colored core wire 1 according to the first embodiment will be described.
  • the application example of the optical fiber colored core wire according to the first embodiment is not limited to the form of the optical fiber ribbon, and for example, an aggregate cable of a single core fiber in which the optical fiber colored core wire is housed by a sheath. It may take the form of.
  • FIG. 4 is a cross-sectional view of the optical fiber ribbon 100 according to the second embodiment.
  • the optical fiber ribbon 100 is configured by bundling a plurality of optical fiber colored core wires 1 in a band shape via an adhesive layer 101.
  • the adhesive layer 101 is formed by irradiating a coating material containing an ultraviolet curable resin with ultraviolet rays to cure the adhesive layer 101.
  • the ultraviolet curable resin forming the adhesive layer 101 is composed of the same resin as the ultraviolet curable resin forming the primary layer 3, the secondary layer 4, and the colored layer 5.
  • the optical fiber colored core wire 1 can be bundled at a high density by taking the form of the optical fiber ribbon 100.
  • the optical fiber ribbon 100 is not limited to the configuration shown in FIG. Further, the optical fiber ribbon 100 may be in the form of a ribbon cable in which the optical fiber ribbon 100 is housed by a sheath, or the optical fiber colored core wire 1 may be intermittently bonded in the longitudinal direction.
  • FIG. 5 is a schematic diagram of the ribbon-making device 80 used in the method for manufacturing the optical fiber ribbon 100 according to the second embodiment.
  • the ribbon-forming device 80 holds the covering material (also referred to as the adhesive layer material) of the adhesive layer 101. Further, the ribbon-making device 80 is provided with an ultraviolet light source similar to the ultraviolet light source provided in the ultraviolet irradiation devices 32, 42 and 52.
  • a plurality of prepared optical fiber colored core wires 1 enter the ribbon forming apparatus 80, and the adhesive layer material is applied.
  • the optical fiber colored core wire 1 coated with the adhesive layer material is bundled together with a plurality of other optical fiber colored core wires 1 coated with the adhesive layer material.
  • the bundled plurality of optical fiber colored core wires 1 are irradiated with ultraviolet rays by an ultraviolet light source provided in the ribbon forming apparatus 80.
  • the adhesive layer material containing the ultraviolet curable resin as a main component is cured to become the adhesive layer 101.
  • a plurality of optical fiber colored core wires 1 arranged in parallel via the adhesive layer 101 are connected. In this way, the optical fiber ribbon 100 is formed from the optical fiber colored core wire 1.
  • FIG. 6 is a flowchart of the manufacturing method of the optical fiber ribbon 100 according to the second embodiment. Steps S101 to S105 are the same as those in the first embodiment.
  • the ribbon-making step of the optical fiber colored core wire 1 is performed. That is, after the colored layer 5 is formed in step S105, the ribbon-making device 80 applies an ultraviolet curable resin to a plurality of prepared optical fiber colored core wires 1, and irradiates the ultraviolet curable resin with ultraviolet rays to irradiate the plurality of optical fibers.
  • the optical fiber colored core wire 1 is connected (step S106). As a result, the optical fiber ribbon 100 is manufactured.
  • the optical fiber colored core wire 1 is irradiated with ultraviolet rays. Further, the optical fiber colored core wire 1 can suppress the curing of the primary layer 3 even when the primary layer 3 is irradiated with additional ultraviolet rays after production. Therefore, even in the process of ribbonizing the optical fiber colored core wire, it is possible to suppress the curing of the primary layer 3 due to the irradiation of ultraviolet rays. Therefore, it is possible to obtain the optical fiber ribbon 100 in which the increase in microbend loss in the ribbon forming step is suppressed.
  • Table 1 shows the Young's modulus of the primary layer and the evaluation of the microbend loss in the examples and comparative examples of the optical fiber colored core wire or the optical fiber ribbon. That is, Table 1 shows the saturated Young's modulus (MPa), Young's modulus (MPa), Young's modulus / Saturated Young's modulus (%) of the primary layer 3 in Examples 1 to 9 and Comparative Examples 1 and 2, and Young's modulus after additional UV irradiation. It represents the evaluation of the rate (MPa), Young's modulus after additional UV irradiation / Saturated Young's modulus (%), Young's modulus change amount / Saturated Young's modulus (%), and microbend loss.
  • MPa Young's modulus after additional UV irradiation / Saturated Young's modulus
  • Young's modulus change amount / Saturated Young's modulus (%) and microbend loss.
  • the “saturated Young's modulus” in Table 1 refers to the case where an ultraviolet curable resin forming the primary layer 3 is formed and irradiated with ultraviolet rays at room temperature using a mercury lamp, UV-LED, or the like to be completely cured. Young's modulus. Further, the “Young's modulus” in Table 1 is the ISM (In Situ Modulus) of the primary layer 3 of the optical fiber colored core wire 1. In the present specification, ISM is defined as measured by the following method.
  • the primary layer 3 and the secondary layer 4 of the optical fiber intermediate portion as a sample are stripped off by a length of several mm, and then a load is applied to the other end of the optical fiber on which the coating layer is formed. Apply F.
  • the displacement ⁇ of the primary layer 3 at the boundary between the portion where the coating layer is peeled off and the portion where the coating layer is formed is read with a microscope.
  • the load F to 10, 20, 30, 50 and 70 gf (that is, sequentially 98, 196, 294, 490 and 686 mN)
  • a graph of the displacement ⁇ with respect to the load F is created.
  • the primary elastic modulus is calculated using the slope obtained from the graph and the following equation (1). Since the calculated primary elastic modulus corresponds to the so-called ISM, it will be appropriately referred to as P-ISM below.
  • P-ISM (3F / ⁇ ) * (1 / 2 ⁇ l) * ln (DP / DG) ... (Equation 1)
  • the unit of P-ISM is [MPa].
  • F / ⁇ is the slope shown by the graph of displacement ( ⁇ ) [ ⁇ m] with respect to the load (F) [gf]
  • l is the sample length (for example, 10 mm)
  • DP / DG is the outer diameter (DP) of the primary layer 3. ⁇ m] and the outer diameter (DG) [ ⁇ m] of the clad portion of the optical fiber. Therefore, when calculating P-ISM from the used F, ⁇ , l using the above equation, it is necessary to perform a predetermined unit conversion.
  • the outer diameter of the primary layer 3 and the outer diameter of the clad portion can be measured by observing the cross section of the optical fiber cut by the fiber cutter with a microscope.
  • the “Young's modulus after additional UV irradiation” in Table 1 refers to the ISM of the primary layer 3 when the optical fiber colored core wire 1 after production is additionally irradiated with ultraviolet rays at 1000 mW / cm2 and 500 mJ / cm2 using D-bulb. Is. Further, “Young's modulus change amount / saturated Young's modulus” represents the ratio between the change amount of Young's modulus before and after additional irradiation with ultraviolet rays and the saturated Young's modulus. The “Young's modulus change amount” is a value of the change amount from the "Young's modulus” to the "Young's modulus after additional UV irradiation”.
  • Evaluation 1 indicates whether or not the microbend loss in the optical fiber colored core wire 1 before additional irradiation with ultraviolet rays meets the standard (0.15 dB / km or less). Further, “evaluation 2" indicates whether or not the microbend loss in the optical fiber colored core wire 1 after the additional irradiation with ultraviolet rays satisfies the standard (0.15 dB / km or less). If the microbend loss meets the criteria, evaluations 1 and 2 are judged to be good (OK), and if the microbend loss does not meet the criteria, evaluations 1 and 2 are judged to be bad (NG).
  • the transmission loss of the optical fiber in the state B does not include the microbend loss, and is considered to be a transmission loss inherent in the optical fiber itself.
  • this measuring method is similar to the fixed diameter drum method specified in JIS C6823: 2010. This measuring method is also called a sandpaper method. Further, in this measuring method, since the transmission loss is measured at a wavelength of 1550 nm, the following microbend loss is also a value at a wavelength of 1550 nm.
  • the effective core cross section (effective core cross section) can be mentioned as an index showing the susceptibility to microbend loss of the optical fiber.
  • the effective core cross section is represented by the following equation (2).
  • (Effective core cross section) ( ⁇ k / 4) * (MFD) 2 ...
  • Equation 2 the effective core cross section is a value at a wavelength of 1550 nm
  • MFD is a mode field diameter ( ⁇ m)
  • k is a constant.
  • the effective core cross-sectional area represents the area of a portion of the cross section orthogonal to the axis of the optical fiber bare wire 2 through which light having a predetermined intensity passes.
  • the optical fiber colored core wire 1 has a primary layer 3 capable of effectively buffering an external force applied to the optical fiber colored core wire 1. Therefore, by sufficiently buffering the external force applied to the optical fiber colored core wire 1 by the primary layer 3, the external force applied to the optical fiber bare wire 2 can be sufficiently reduced. As a result, even when the effective core cross section of the optical fiber bare wire 2 is large, the microbend loss of the optical fiber can be effectively suppressed.
  • the optical fiber colored core wires 1 of Examples 1 to 9 and Comparative Examples 1 and 2 preferably have an effective core cross section of 100 ⁇ m 2 or more and 160 ⁇ m 2 or less, for example, 120 ⁇ m 2 or more and 160 ⁇ m 2 or less. Thereby, the optical fiber colored core wire 1 capable of suppressing the non-linear optical effect due to the light in the optical fiber bare wire 2 can be obtained.
  • Examples 1 and 2 a primary layer material having a saturated Young's modulus of 0.84 MPa was used.
  • the primary layer material was ultraviolet-cured until the Young's modulus of Examples 1 and 2 became 0.58 MPa and 0.54 MPa, respectively, and the ratios of Young's modulus to saturated Young's modulus were 68.7% and 63.9%, respectively.
  • the Young's modulus after the additional UV irradiation was 0.59 MPa and 0.54 MPa, and the ratio of the Young's modulus after the additional UV irradiation to the saturated Young's modulus was 69.9% and 64.0%.
  • the ratio of the amount of change in Young's modulus to the saturated Young's modulus was 1.2% and 0.0%, and in each case, the ratio was 16% or less.
  • the microbend loss before and after the additional irradiation with ultraviolet rays was 0.15 dB / km or less, and evaluations 1 and 2 were both good (OK).
  • Examples 3, 4 and 5 a primary layer material having a saturated Young's modulus of 1.30 MPa was used.
  • the primary layer material was UV-cured until the Young's modulus of Examples 3, 4, and 5 became 0.39 MPa, 0.30 MPa, and 0.70 MPa, respectively, and the ratios of Young's modulus to saturated Young's modulus were 30.3% and 23. It was 1% and 53.8%.
  • the Young's modulus after additional UV irradiation was 0.43 MPa, 0.33 MPa, 0.90 MPa, and the ratios of the Young's modulus after additional UV irradiation to the saturated Young's modulus were 32.7%, 25.4%, and 69.2%. rice field.
  • the ratio of the amount of change in Young's modulus to the saturated Young's modulus was 3.1%, 2.3%, and 15.4%, and the ratio was 16% or less in each case.
  • the microbend loss before and after the additional irradiation with ultraviolet rays was 0.15 dB / km or less, and evaluations 1 and 2 were both good (OK).
  • Examples 6 and 7 a primary layer material having a saturated Young's modulus of 1.74 MPa was used.
  • the primary layer material was ultraviolet-cured until the Young's modulus of Examples 6 and 7 became 1.11 MPa and 0.82 MPa, respectively, and the ratios of Young's modulus to saturated Young's modulus were 63.6% and 47.0%, respectively.
  • the Young's modulus after the additional UV irradiation was 1.12 MPa and 0.89 MPa, and the ratio of the Young's modulus after the additional UV irradiation to the saturated Young's modulus was 64.1% and 50.9%.
  • the ratio of the amount of change in Young's modulus to the saturated Young's modulus was 0.6% and 4.0%.
  • the microbend loss before and after the additional irradiation with ultraviolet rays was 0.15 dB / km or less, and evaluations 1 and 2 were both good (OK).
  • Examples 8 and 9 a primary layer material having a saturated Young's modulus of 2.60 MPa was used.
  • the primary layer material was ultraviolet-cured until the Young's modulus of Examples 8 and 9 became 0.90 MPa and 0.71 MPa, respectively, and the ratios of Young's modulus to saturated Young's modulus were 34.5% and 27.4%, respectively.
  • the Young's modulus after the additional UV irradiation was 1.04 MPa and 1.00 MPa, and the ratio of the Young's modulus after the additional UV irradiation to the saturated Young's modulus was 40.0% and 38.3%.
  • the ratio of the amount of change in Young's modulus to the saturated Young's modulus was 5.4% and 11.2%.
  • the microbend loss before and after the additional irradiation with ultraviolet rays was 0.15 dB / km or less, and both evaluations 1 and 2 were good (OK).
  • Comparative Example 1 a primary layer material having a saturated Young's modulus of 1.30 MPa was used, and the primary layer material was cured until the Young's modulus reached 0.19 MPa.
  • the ratio of the amount of change in Young's modulus to the saturated Young's modulus was 14.4%, which was less than 70%, but the ratio of Young's modulus after additional UV irradiation to the saturated Young's modulus was 97.7%, which exceeded 70%.
  • the ratio of the amount of change in Young's modulus and the saturated Young's modulus before and after additional UV irradiation was 83.1%.
  • the microbend loss was 0.15 dB / km, and the evaluation 1 was good (OK), but the microbend loss after additional irradiation with ultraviolet rays exceeded 0.15 dB / km, and the evaluation 2 was poor (NG). ).
  • Comparative Example 2 a primary layer material having a saturated Young's modulus of 1.30 MPa was used, and the primary layer material was cured until the Young's modulus became 0.95 MPa.
  • the ratio of the amount of change in Young's modulus to the saturated Young's modulus was 73.3%, which exceeded 70%.
  • the ratio of Young's modulus after additional UV irradiation to saturated Young's modulus was 99.1%, which exceeded 70%.
  • the ratio of the amount of change in Young's modulus and the saturated Young's modulus before and after additional UV irradiation was 26.2%.
  • the microbend loss before and after the additional irradiation with ultraviolet rays exceeded 0.15 dB / km, and both evaluations 1 and 2 were defective (NG).
  • FIG. 7 shows the ratio (%) of Young's modulus to saturated Young's modulus and the ratio of Young's modulus to saturated Young's modulus after additional UV irradiation (%) and micro in Examples 1 to 9 and Comparative Examples 1 and 2 in Table 1. It is a figure which shows the relationship with bend loss (dB / km). As shown in FIG. 7, when the ratio of Young's modulus to saturated Young's modulus is less than 70%, it was confirmed that the microbend loss of the optical fiber colored core wire 1 is 0.15 dB / km or less. .. Therefore, the ratio of Young's modulus to saturated Young's modulus is preferably less than 70%.
  • the saturated Young's modulus of the primary layer 3 has a relatively high Young's modulus of, for example, 0.84 MPa or more.
  • the ultraviolet curable resin having a high Saturated Young's modulus has a relatively low viscosity, and is therefore easy to handle. Therefore, for example, it is possible to obtain a manufacturing advantage such as facilitating the formation of a uniform primary layer 3.
  • the drawing step since the primary layer 3 is exposed to a high temperature, the curing reaction due to additional UV irradiation can be suppressed.
  • an ultraviolet curable resin having a high Saturated Young's modulus it is possible to prevent the Young's modulus from becoming too low even when the primary layer 3 is exposed to a high temperature in the drawing step.
  • the ratio of the Young's modulus after the additional UV irradiation to the saturated Young's modulus is less than 70%, and the ratio of the amount of change in the Young's modulus before and after the additional UV irradiation to the saturated Young's modulus is 16% or less.
  • the present invention is not limited to the above embodiment and can be modified in various ways.
  • an example in which a partial configuration of any of the embodiments is added to another embodiment, and an example in which a partial configuration of another embodiment is replaced with another embodiment are also embodiments of the present invention.
  • well-known techniques and publicly-known techniques in the technical field can be appropriately applied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

プライマリ層の形成が容易な光ファイバ着色心線を提供する。光ファイバ着色心線(1)は、光ファイバ裸線(2)と、光ファイバ裸線(2)を覆う紫外線硬化型樹脂により形成されたプライマリ層(3)と、プライマリ層(3)を覆う紫外線硬化型樹脂により形成されたセカンダリ層(4)と、を備えている。前記プライマリ層(3)のヤング率が、前記プライマリ層(3)の飽和ヤング率に対して70%未満であり、前記プライマリ層(3)の飽和ヤング率が0.84MPa以上である。

Description

光ファイバ着色心線、光ファイバリボン、単心ファイバの集合体ケーブル、リボンケーブルおよびこれらの製造方法
 本発明は、光ファイバ着色心線、光ファイバリボン、単心ファイバの集合体ケーブル、リボンケーブルおよびこれらの製造方法に関する。
 光ファイバ着色心線において、光ファイバ裸線を覆うプライマリ層、プライマリ層を覆うセカンダリ層、セカンダリ層を覆う着色層のそれぞれが紫外線硬化型樹脂によって所望のヤング率に設定される技術が知られている(特許文献1、2)。例えば、プライマリ層のヤング率は低く設定され、プライマリ層は光ファイバ裸線に加わる外力を緩衝し、光ファイバ裸線の微小変形による光の伝送損失(マイクロベンドロス)を抑えることができる。また、セカンダリ層のヤング率はプライマリ層のヤング率よりも高く設定され、セカンダリ層は光ファイバ裸線およびプライマリ層を外力から保護している。
 プライマリ層のヤング率は低いことが望ましいことから、特許文献3、4に記載された技術は、低い飽和ヤング率を有する紫外線硬化型樹脂をプライマリ層に用い、ヤング率が飽和ヤング率に近づくまでプライマリ層を紫外線硬化させている。
特開2005-162522号公報 特表2002-524581号公報 国際公開第2018/062364号 国際公開第2018/062365号
 しかしながら、低い飽和ヤング率を有する紫外線硬化型樹脂は高い粘度を有しているため、取り扱いに困難を伴う。また、線引き工程において、紫外線硬化型樹脂が高温に晒されることにより、硬化の反応が抑制され、ヤング率が低くなりすぎてしまうなどの問題が生じ得る。
 本発明は、上述した課題に鑑みてなされたものであって、低い飽和ヤング率を有する紫外線硬化型樹脂に伴う問題を回避しながら、マイクロベンドロスを効果的に抑制することを目的とする。
 本発明の一観点によれば、光ファイバ裸線と、前記光ファイバ裸線を覆う紫外線硬化型樹脂により形成されたプライマリ層と、前記プライマリ層を覆う紫外線硬化型樹脂により形成されたセカンダリ層と、を備え、前記プライマリ層のヤング率が、前記プライマリ層の飽和ヤング率に対して70%未満であり、前記プライマリ層の飽和ヤング率が0.84MPa以上であることを特徴とする光ファイバ着色心線が提供される。
 また、本発明の他の一観点によれば、光ファイバ母材から光ファイバ裸線を線引きする工程と、前記光ファイバ裸線の周囲に紫外線硬化型樹脂を塗布し、プライマリ層を形成する工程と、前記プライマリ層の周囲に紫外線硬化型樹脂を塗布し、前記紫外線硬化型樹脂に紫外線を照射してセカンダリ層を形成する工程とを備えた光ファイバ着色心線の製造方法であって、前記光ファイバ着色心線の製造後において、前記プライマリ層のヤング率が、前記プライマリ層の飽和ヤング率に対して70%未満であり、前記プライマリ層の飽和ヤング率が0.84MPa以上であることを特徴とする光ファイバ着色心線の製造方法が提供される。
 本発明によれば、低い飽和ヤング率を有する紫外線硬化型樹脂に伴う問題を回避しながら、マイクロベンドロスを効果的に抑制することが可能となる。
第1実施形態に係る光ファイバ着色心線の断面図である。 第1実施形態に係る光ファイバ着色心線の製造方法に用いる製造装置の模式図である。 第1実施形態に係る光ファイバ着色心線の製造方法のフローチャートである。 第2実施形態に係る光ファイバリボンの断面図である。 第2実施形態に係る光ファイバリボンの製造方法に用いるリボン化装置の模式図である。 第2実施形態に係る光ファイバリボンの製造方法のフローチャートである。 実施例、比較例に係るマイクロベンドロスを示す図である。
 以下、本発明に係る実施形態について図面を参照しつつ詳細に説明する。各図面を通じて共通する機能を有する要素には同一の符号を付し、重複する説明を省略又は簡略化することがある。
[第1実施形態]
 図1は、第1実施形態に係る光ファイバ着色心線1の断面図である。光ファイバ着色心線1は、光ファイバ裸線2と、光ファイバ裸線2の外周に被覆されたプライマリ層3と、プライマリ層3の外周に被覆されたセカンダリ層4と、セカンダリ層4の外周に被覆された着色層5とを備える。光ファイバ裸線2は、プライマリ層3、セカンダリ層4及び着色層5の3層の被覆層により被覆される。
 光ファイバ裸線2は、例えば石英系ガラス等から形成され、光を伝達する。プライマリ層3、セカンダリ層4及び着色層5は、それぞれ紫外線の照射によって紫外線硬化型樹脂を硬化させることによって形成される。紫外線硬化型樹脂は、紫外線の照射によって重合可能なものであれば特に限定されるものではない。紫外線硬化型樹脂は、例えば、光ラジカル重合などにより重合可能なものである。紫外線硬化型樹脂は、例えば、ポリエーテル系ウレタン(メタ)アクリレート及びポリエステル系ウレタン(メタ)アクリレートのようなウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレートなどの紫外線で重合及び硬化するエチレン性不飽和基などの重合性不飽和基を有する紫外線硬化型樹脂であり、重合性不飽和基を少なくとも2つ有するものであることが好ましい。紫外線硬化型樹脂における重合性不飽和基としては、例えば、ビニル基、アリル基、アクリロイル基、メタクリロイル基などの不飽和二重結合を有する基、プロパルギル基などの不飽和三重結合を有する基などが挙げられる。これらの中でも、アクリロイル基、メタクリロイル基が重合性の面で好ましい。紫外線硬化型樹脂は、紫外線の照射により重合を開始して硬化するモノマー、オリゴマー又はポリマーでありうるが、好ましくはオリゴマーである。なお、オリゴマーとは、重合度が2~100の重合体である。また、本明細書において、「(メタ)アクリレート」とは、アクリレート及びメタクリレートの一方又は両方を意味する。
 ポリエーテル系ウレタン(メタ)アクリレートとは、ポリエーテル骨格を有するポリオールと、有機ポリイソシアネート化合物及びヒドロキシアルキル(メタ)アクリレートとの反応物のように、ポリエーテルセグメント、(メタ)アクリレート及びウレタン結合を有する化合物である。また、ポリエステル系ウレタン(メタ)アクリレートとは、ポリエステル骨格を有するポリオールと、有機ポリイソシアネート化合物及びヒドロキシアルキル(メタ)アクリレートとの反応物のように、ポリエステルセグメント、(メタ)アクリレート及びウレタン結合を有する化合物である。
 さらに、紫外線硬化型樹脂は、オリゴマー及び光重合開始剤に加えて、例えば希釈モノマー、光増感剤、連鎖移動剤及び各種添加剤を含んでもよい。希釈モノマーとしては、単官能(メタ)アクリレート又は多官能(メタ)アクリレートが用いられる。ここで、希釈モノマーとは、紫外線硬化型樹脂を希釈するためのモノマーを意味する。
 プライマリ層3は、ヤング率が0.1MPa以上5MPa以下の軟質層であり、光ファイバ裸線2に加わる外力を緩衝するための機能を有している。その樹脂が発現しうる最大のヤング率を「飽和ヤング率」と定義したとき、プライマリ層3は飽和ヤング率に対して70%未満のヤング率を有することが好ましく、プライマリ層3の飽和ヤング率は0.84MPa以上であることが好ましい。セカンダリ層4は、好ましくは500MPa以上のヤング率を有する硬質層であり、光ファイバ裸線2及びプライマリ層3を外力から保護するための機能を有している。着色層5には、光ファイバ着色心線1を識別するための着色がなされている。
 光ファイバ着色心線1は、図1に示した構成に限定されない。例えば、光ファイバ裸線2は4層以上の層により被覆されてもよい。また、光ファイバ着色心線1に代えて、着色層5を有しない光ファイバの形態をとってもよい。さらに、セカンダリ層4に着色層5を被覆する代わりに、セカンダリ層4を着色してもよい。
 光ファイバ裸線2の直径は、80μm以上150μm以下であり、好ましくは124μm以上126μm以下であり得る。プライマリ層3の厚さは、5μm以上60μm以下であり得る。セカンダリ層4の厚さは、5μm以上60μm以下であり得る。また、着色層5の厚さは、数μm程度であり得る。
 図2は、第1実施形態に係る光ファイバ着色心線1の製造方法に用いる製造装置10の模式図である。製造装置10は、加熱装置20、プライマリ層被覆装置30、セカンダリ層被覆装置40、着色層被覆装置50、ガイドローラ60、61、62、ボビン70及び巻取り装置71を有する。製造装置10は、光ファイバ母材6から光ファイバ着色心線1を製造する装置である。光ファイバ母材6は、例えば石英系のガラスからなり、VAD法、OVD法、MCVD法など周知の方法により製造される。加熱装置20は、ヒータ21を有する。ヒータ21は、テープヒータ、リボンヒータ、ラバーヒータ、オーブンヒータ、セラミックヒータ、ハロゲンヒータなどの任意の熱源であり得る。光ファイバ母材6の端部は、光ファイバ母材6の周囲に配置されたヒータ21によって加熱されて溶融し、線引きされて光ファイバ裸線2が引き出される。
 加熱装置20の下方には、プライマリ層被覆装置30が設けられる。プライマリ層被覆装置30は、樹脂塗布装置31及び紫外線照射装置32を有する。樹脂塗布装置31には、プライマリ層3の被覆材料(プライマリ層材料ともいう)が保持される。光ファイバ母材6から引き出された光ファイバ裸線2は、樹脂塗布装置31によってプライマリ層材料が塗布される。樹脂塗布装置31の下方には、紫外線照射装置32が設けられる。紫外線照射装置32は、メタルハライドランプ、水銀ランプ、UV-LEDなどの任意の紫外線光源を備える。光ファイバ裸線2には樹脂塗布装置31によってプライマリ層材料が塗布され、光ファイバ裸線2は紫外線照射装置32に入り、プライマリ層材料に紫外線が照射される。その結果、紫外線硬化型樹脂を主なる成分とするプライマリ層材料は硬化され、プライマリ層3が形成される。
 プライマリ層被覆装置30の下方には、セカンダリ層被覆装置40が設けられる。セカンダリ層被覆装置40は、樹脂塗布装置41及び紫外線照射装置42を有する。樹脂塗布装置41には、セカンダリ層4の被覆材料(セカンダリ層材料ともいう)が保持される。プライマリ層3には、樹脂塗布装置41によってセカンダリ層材料が塗布される。樹脂塗布装置41の下方には、紫外線照射装置42が設けられる。紫外線照射装置42は、紫外線照射装置32と同様の構成からなり得る。光ファイバ裸線2は紫外線照射装置42に入り、セカンダリ層材料に紫外線が照射される。その結果、紫外線硬化型樹脂を主なる成分とするセカンダリ層材料は硬化され、セカンダリ層4が形成される。プライマリ層3及びセカンダリ層4形成後、光ファイバ裸線2は、セカンダリ層被覆装置40の下方に設けられたガイドローラ60にガイドされ、ボビン70に巻き取られる。なお、プライマリ層3及びセカンダリ層4の形成後、プライマリ層3及びセカンダリ層4が被覆された光ファイバ裸線2を一度ボビンに巻き取り、その後改めて着色層5を形成する。
 なお、樹脂塗布装置31は、プライマリ層材料とセカンダリ層材料とを別々に保持するように構成されてもよい。この場合、樹脂塗布装置31は、プライマリ層材料を光ファイバ裸線2に塗布し、続いて、プライマリ層材料の上にセカンダリ層材料を塗布する。紫外線照射装置32は、光ファイバ裸線2に塗布されたプライマリ層材料及びセカンダリ層材料に紫外線を照射し、プライマリ層3及びセカンダリ層4が形成される。この場合、製造装置10は、必ずしもセカンダリ層被覆装置40を有することを要しない。
 ボビン70に巻き取られた光ファイバ裸線2は、ガイドローラ61にガイドされ、着色層被覆装置50に入る。着色層被覆装置50は、樹脂塗布装置51及び紫外線照射装置52を有する。樹脂塗布装置51には、着色層5の被覆材料(着色層材料ともいう)が保持される。プライマリ層3及びセカンダリ層4が被覆された光ファイバ裸線2は、樹脂塗布装置51によって着色層材料が塗布される。樹脂塗布装置51の下方には、紫外線照射装置52が設けられる。紫外線照射装置52は、紫外線照射装置32及び42と同様に構成され得る。セカンダリ層4の外周に着色層材料が塗布された光ファイバ裸線2は、紫外線照射装置52に入り、光ファイバ裸線2に紫外線が照射される。その結果、紫外線硬化型樹脂を主な成分とする着色層材料は硬化され、着色層5となる。プライマリ層3、セカンダリ層4及び着色層5が光ファイバ裸線2に被覆され、光ファイバ着色心線1が形成される。光ファイバ着色心線1は、着色層被覆装置50の下方に設けられたガイドローラ62にガイドされ、巻取り装置71に巻き取られる。
 図3は、第1実施形態に係る光ファイバ着色心線1の製造方法のフローチャートである。まず、ユーザは製造装置10に光ファイバ母材6を設置する(ステップS101)。次いで加熱装置20に設けられたヒータ21は、光ファイバ母材6を加熱し、光ファイバ裸線2の線引きを開始する(ステップS102)。
 プライマリ層被覆装置30は、線引きされた光ファイバ裸線2の周囲に紫外線硬化型樹脂を含むプライマリ層材料を塗布し、プライマリ層材料に紫外線を照射し、プライマリ層3を形成する(ステップS103)。次に、セカンダリ層被覆装置40は、プライマリ層3の周囲に紫外線硬化型樹脂を含むセカンダリ層材料を塗布し、セカンダリ層材料に紫外線を照射してセカンダリ層4を形成する(ステップS104)。続いて、着色層被覆装置50は、セカンダリ層4の周囲に紫外線硬化型樹脂を含む着色層材料を塗布し、着色層材料に紫外線を照射して着色層5を形成する(ステップS105)。以上により、光ファイバ着色心線1が得られる。なお、プライマリ層を形成する工程(ステップS103)において必ずしも紫外線を照射することを要しない。この場合、プライマリ層3は、セカンダリ層4を形成する工程(ステップS104)における紫外線の照射によって、硬化され得る。
 光ファイバ着色心線1の製造工程では、紫外線の照射は、プライマリ層3を形成する工程(ステップS103)、セカンダリ層4を形成する工程(ステップS104)、着色層5を形成する工程(ステップS105)で行われる。したがって、プライマリ層3を形成した後において、セカンダリ層4、着色層5の形成においても紫外線がプライマリ層3に照射され、プライマリ層3が硬化し得る。より具体的には、セカンダリ層4、着色層5を透過した紫外線がプライマリ層3に吸収され、プライマリ層3の硬化がさらに進行し得る。紫外線硬化型樹脂が硬化し過ぎると、プライマリ層3のヤング率が高くなり、プライマリ層3は光ファイバ裸線2に加わる外力を十分に緩衝することが困難となり得る。この結果、マイクロベンドロスが生じ得る。
 本実施形態では、プライマリ層3のヤング率を飽和ヤング率に対して低くしながら、プライマリ層3の硬化を抑制し、マイクロベンドロスを効果的に回避している。以下、プライマリ層3の硬化を抑制する方法について説明する。プライマリ層3は、プライマリ層材料に含まれる紫外線硬化型樹脂が重合することで硬化する。また、プライマリ層材料に含まれる低分子量の成分は、例えば線引き工程(ステップS102)後の高温条件下において、その一部が揮発する。プライマリ層材料が高温である状態でプライマリ層材料に紫外線を照射することによって、プライマリ層材料の重合と揮発が同時に進行する。プライマリ層材料の重合と揮発が同時に進行することで、プライマリ層材料の重合が抑制される。すなわち、プライマリ層材料が高温である条件でプライマリ層材料に紫外線を照射することで、プライマリ層3の硬化の進行を抑制し、プライマリ層3のヤング率を低く抑えることができる。この時、プライマリ層材料の揮発によって、プライマリ層材料の組成が変化し、プライマリ層3の硬化が抑制されている。言い換えると、プライマリ層3は、硬化の進行が抑制されるように組成が変化している。すなわち、光ファイバ着色心線1に追加の紫外線が照射された場合においても、プライマリ層3の硬化を抑制することができる。なお、プライマリ層材料を高温にする方法は、例えば、線引き工程(ステップS102)の終了からプライマリ層3を被覆する工程(ステップS103)の開始までの期間を短くするなどが挙げられる。この場合、比較的高温の光ファイバ裸線2の周囲にプライマリ層材料が塗布されるため、プライマリ層材料が高温である状態でプライマリ層材料に紫外線を照射することができる。
 プライマリ層3の硬化の進行を抑える方法は、プライマリ層材料を高温にする方法に限定されるものではない。その他の方法としては、例えば、プライマリ層材料に含まれる添加物の量を調整する方法、照射する紫外線の光量を調整する方法などが挙げられる。これらの方法を任意に選択若しくは組み合わせることにより、要求されるヤング率を有するプライマリ層3が得られるように、適宜設定することができる。
 本実施形態において、プライマリ層材料に用いられる紫外線硬化型樹脂は、望ましくは0.84MPa以上の飽和ヤング率を有している。高い飽和ヤング率を有する紫外線硬化型樹脂の粘度は、低い飽和ヤング率を有する紫外線硬化型樹脂の粘度よりも低い。このため、例えば光ファイバ裸線2の外周に均一にプライマリ層材料を塗布し易くなり、プライマリ層の形成が容易となる。
[第2実施形態]
 本発明の第2実施形態による光ファイバリボン、光ファイバリボンの製造装置及び製造方法について説明する。第1実施形態による光ファイバ着色心線1、光ファイバ着色心線1の製造装置10及び製造方法と同様の構成要素には同一の符号を付し、説明を省略し或いは簡潔にする。
 本実施形態では、第1実施形態による光ファイバ着色心線1を適用したケーブルの一例として、第1実施形態による光ファイバ着色心線1から構成される光ファイバリボンについて説明する。なお、第1実施形態による光ファイバ着色心線の適用例は、光ファイバリボンの形態に限定されるものではなく、例えば、光ファイバ着色心線がシースにより収容された単心ファイバの集合体ケーブルの形態をとってもよい。
 図4は、第2実施形態に係る光ファイバリボン100の断面図である。光ファイバリボン100は、接着層101を介して複数の光ファイバ着色心線1が帯状に束ねられることによって構成される。接着層101は、紫外線硬化型樹脂を含む被覆材料に紫外線を照射して硬化させることによって形成される。接着層101を形成する紫外線硬化型樹脂は、プライマリ層3、セカンダリ層4、着色層5を形成する紫外線硬化型樹脂と同様の樹脂で構成される。光ファイバ着色心線1は、光ファイバリボン100の形態をとることによって、高密度に束ねることができる。なお、光ファイバリボン100は、図4に示した構成に限定されない。また、光ファイバリボン100がシースにより収容されたリボンケーブルの形態をとってもよく、光ファイバ着色心線1が長手方向に間欠的に接着された間欠接着構造をとってもよい。
 図5は、第2実施形態に係る光ファイバリボン100の製造方法に用いるリボン化装置80の模式図である。リボン化装置80には、接着層101の被覆材料(接着層材料ともいう)が保持される。また、リボン化装置80には、紫外線照射装置32、42及び52に設けられている紫外線光源と同様の紫外線光源が設けられる。複数用意された光ファイバ着色心線1は、リボン化装置80に入り、接着層材料を塗布される。接着層材料が塗布された光ファイバ着色心線1は、接着層材料が塗布された他の複数の光ファイバ着色心線1とともに束ねられる。束ねられた複数の光ファイバ着色心線1は、リボン化装置80に設けられた紫外線光源により紫外線が照射される。その結果、紫外線硬化型樹脂を主なる成分とする接着層材料は硬化され、接着層101となる。接着層101を介して並列された複数の光ファイバ着色心線1が連結される。このようにして、光ファイバ着色心線1から光ファイバリボン100が形成される。
 図6は、第2実施形態に係る光ファイバリボン100の製造方法のフローチャートである。ステップS101~S105は第1実施形態と同様である。図6のフローチャートにおいて、第1実施形態のフローチャートに加えて、光ファイバ着色心線1のリボン化工程が行われる。すなわち、ステップS105において着色層5が形成された後、リボン化装置80は複数用意された光ファイバ着色心線1に紫外線硬化型樹脂を塗布し、紫外線硬化型樹脂に紫外線を照射して複数の光ファイバ着色心線1を連結する(ステップS106)。これにより、光ファイバリボン100が製造される。
 光ファイバ着色心線1から光ファイバリボン100を製造する工程において、光ファイバ着色心線1に紫外線が照射される。また、光ファイバ着色心線1は、製造後に追加の紫外線の照射が行われた場合においても、プライマリ層3の硬化を抑制することができる。よって、光ファイバ着色心線のリボン化工程においても、紫外線の照射によるプライマリ層3の硬化を抑えることができる。従って、リボン化工程におけるマイクロベンドロスの増加が抑制された光ファイバリボン100を得ることができる。
 以下、本発明の実施形態に係る光ファイバ着色心線、光ファイバリボンの実験の結果について説明する。
Figure JPOXMLDOC01-appb-T000001
 表1は、プライマリ層のヤング率と光ファイバ着色心線または光ファイバリボンの実施例、比較例におけるマイクロベンドロスの評価を表している。すなわち、表1は、実施例1~9、比較例1、2におけるプライマリ層3の飽和ヤング率(MPa)、ヤング率(MPa)、ヤング率/飽和ヤング率(%)、追加UV照射後ヤング率(MPa)、追加UV照射後ヤング率/飽和ヤング率(%)、ヤング率変化量/飽和ヤング率(%)、マイクロベンドロスの評価を表している。
 表1における「飽和ヤング率」とは、プライマリ層3を形成する紫外線硬化型樹脂を製膜し、室温にて水銀ランプ、UV-LED等を用いて紫外線を照射して完全に硬化させた際のヤング率である。また、表1における「ヤング率」とは、光ファイバ着色心線1のプライマリ層3のISM(In Situ Modulus)である。本明細書では、ISMは下記の方法で測定したものと定義する。
 まず、市販のストリッパーを用いて、サンプルとなる光ファイバ中間部のプライマリ層3及びセカンダリ層4を数mmの長さだけ剥ぎ取った後、被覆層が形成されている光ファイバの他端に荷重Fを印加する。この状態において、被覆層を剥ぎ取った部分と被覆層が形成されている部分との境目におけるプライマリ層3の変位δを顕微鏡で読み取る。そして、荷重Fを10、20、30、50及び70gf(すなわち順次98、196、294、490及び686mN)とすることで、荷重Fに対する変位δのグラフを作成する。そしてグラフから得られる傾きと下記式(1)を用いてプライマリ弾性率を算出する。算出されるプライマリ弾性率は、いわゆるISMに相当するので、以下では適宜P-ISMと記載する。
 P-ISM=(3F/δ)*(1/2πl)*ln(DP/DG) ・・・(式1)
 ここでP-ISMの単位は[MPa]である。また、F/δは荷重(F)[gf]に対する変位(δ)[μm]のグラフが示す傾き、lはサンプル長(例えば10mm)、DP/DGはプライマリ層3の外径(DP)[μm]と光ファイバのクラッド部の外径(DG)[μm]との比である。したがって、用いたF、δ、lから上式を用いてP-ISMを算出する場合は、所定の単位変換をする必要がある。なお、プライマリ層3の外径およびクラッド部の外径は、ファイバカッターにより切断した光ファイバの断面を顕微鏡で観察することにより計測できる。
 表1における「追加UV照射後ヤング率」とは、製造後の光ファイバ着色心線1にD bulbを用いて1000mW/cm2、500mJ/cm2で紫外線を追加で照射した際のプライマリ層3のISMである。また、「ヤング率変化量/飽和ヤング率」は紫外線を追加で照射した前後のヤング率の変化量と飽和ヤング率との比を表している。「ヤング率変化量」は、「ヤング率」から「追加UV照射後ヤング率」への変化量の値である。
 表1における「評価1」は、紫外線を追加で照射する前の光ファイバ着色心線1におけるマイクロベンドロスが基準(0.15dB/km以下)を満たすか否かを表している。また、「評価2」は、紫外線を追加で照射した後の光ファイバ着色心線1におけるマイクロベンドロスが基準(0.15dB/km以下)を満たすか否かを表している。マイクロベンドロスが基準を満たす場合には、評価1、2は良好(OK)と判断され、マイクロベンドロスが基準を満たさない場合には、評価1、2は不良(NG)と判断される。
 マイクロベンドロスの測定方法については様々なものが考えられる。本明細書では、番手が#1000のサンドペーパーを巻いた大きめのボビンに、100gfの張力で、400m以上の長さの光ファイバを互いに重ならないように1層巻きに巻き付けた状態Aにおける測定対象の光ファイバの伝送損失と、状態Aと同じボビンに状態Aと同じ張力、同じ長さで巻き付けた、サンドペーパーが巻かれていない状態Bの光ファイバの伝送損失との差をマイクロベンドロスの値として定義した。ここで状態Bの光ファイバの伝送損失はマイクロベンドロスを含まず、光ファイバそのものに固有の伝送損失と考えられる。
 なお、この測定方法は、JIS C6823:2010に規定される固定径ドラム法に類似するものである。また、この測定方法は、サンドペーパー法とも呼ばれる。また、この測定方法では、伝送損失は波長1550nmで測定しているので、以下のマイクロベンドロスも波長1550nmでの値である。
 なお、光ファイバのマイクロベンドロスの生じやすさを表す指標として有効コア断面積(実効コア断面積)が挙げられる。有効コア断面積は下記式(2)で示される。
 (有効コア断面積)=(πk/4)*(MFD) ・・・(式2)
 ここで、有効コア断面積は、波長1550nmにおける値であり、MFDはモードフィールド径(μm)、kは定数である。有効コア断面積は、光ファイバ裸線2の軸に直交する断面のうち、所定の強度を有する光が通過する部分の面積を表す。一般的に、光ファイバ裸線2の有効コア断面積が大きくなるほど、光ファイバ裸線2の断面における光学的閉じ込めが弱くなる。すなわち、光ファイバ裸線2の有効コア断面積が大きい場合、光ファイバ裸線2に加わる外力によって光ファイバ裸線2内の光が漏出しやすくなる。このため、光ファイバ裸線2の有効コア断面積が大きくなると、光ファイバ着色心線1のマイクロベンドロスが生じやすくなる。
 ここで、本発明の実施形態に係る光ファイバ着色心線1は、光ファイバ着色心線1に加わる外力を効果的に緩衝可能なプライマリ層3を有する。従って、光ファイバ着色心線1に加わる外力をプライマリ層3が十分に緩衝することによって、光ファイバ裸線2に加わる外力を十分に低減することができる。これにより、光ファイバ裸線2の有効コア断面積が大きい場合においても、光ファイバのマイクロベンドロスを効果的に抑制することができる。
 また、光ファイバ裸線2の有効コア断面積を大きくすることによって、光ファイバ裸線2の断面における単位面積あたりの光強度を低減することができる。これにより、光ファイバ裸線2内の光による非線形光学効果を抑制することができる。従って、実施例1~9、比較例1、2の光ファイバ着色心線1は、好ましくは、100μm以上160μm以下、例えば120μm以上160μm以下の有効コア断面積を有することが好ましい。これにより、光ファイバ裸線2内の光による非線形光学効果を抑制可能な光ファイバ着色心線1を得ることができる。
 実施例1、2において、飽和ヤング率が0.84MPaのプライマリ層材料を用いた。実施例1、2のヤング率がそれぞれ0.58MPa、0.54MPaになるまでプライマリ層材料を紫外線硬化させ、飽和ヤング率に対するヤング率の比率は68.7%、63.9%であった。追加UV照射後のヤング率は0.59MPa、0.54MPaとなり、飽和ヤング率に対する追加UV照射後ヤング率の比率は69.9%、64.0%であった。飽和ヤング率に対するヤング率変化量の比率は1.2%、0.0%であって、いずれの場合においても比率は16%以下であった。紫外線を追加で照射した前後のマイクロベンドロスは0.15dB/km以下となり、評価1、2はともに良好(OK)であった。
 実施例3、4、5において、飽和ヤング率が1.30MPaのプライマリ層材料を用いた。実施例3、4、5のヤング率がそれぞれ0.39MPa、0.30MPa、0.70MPaになるまでプライマリ層材料を紫外線硬化させ、飽和ヤング率に対するヤング率の比率は30.3%、23.1%、53.8%であった。追加UV照射後のヤング率は0.43MPa、0.33MPa、0.90MPaとなり、飽和ヤング率に対する追加UV照射後ヤング率の比率は32.7%、25.4%、69.2%であった。飽和ヤング率に対するヤング率変化量の比率は3.1%、2.3%、15.4%であって、いずれの場合においても比率は16%以下であった。紫外線を追加で照射した前後のマイクロベンドロスは0.15dB/km以下となり、評価1、2はともに良好(OK)であった。
 実施例6、7において、飽和ヤング率が1.74MPaのプライマリ層材料を用いた。実施例6、7のヤング率がそれぞれ1.11MPa、0.82MPaになるまでプライマリ層材料を紫外線硬化させ、飽和ヤング率に対するヤング率の比率は63.6%、47.0%であった。追加UV照射後のヤング率は1.12MPa、0.89MPaとなり、飽和ヤング率に対する追加UV照射後ヤング率の比率は64.1%、50.9%であった。飽和ヤング率に対するヤング率変化量の比率は0.6%、4.0%であった。紫外線を追加で照射した前後のマイクロベンドロスは0.15dB/km以下となり、評価1、2がともに良好(OK)であった。
 実施例8、9において、飽和ヤング率が2.60MPaのプライマリ層材料を用いた。実施例8、9のヤング率がそれぞれ0.90MPa、0.71MPaになるまでプライマリ層材料を紫外線硬化させ、飽和ヤング率に対するヤング率の比率は34.5%、27.4%であった。追加UV照射後のヤング率は1.04MPa、1.00MPaとなり、飽和ヤング率に対する追加UV照射後ヤング率の比率は40.0%、38.3%であった。飽和ヤング率に対するヤング率変化量の比率は5.4%、11.2%であった。紫外線を追加で照射した前後のマイクロベンドロスは0.15dB/km以下となり、評価1、2がともに良好(OK)となった。
 比較例1において、飽和ヤング率が1.30MPaのプライマリ層材料を用い、ヤング率が0.19MPaになるまでプライマリ層材料を硬化させた。飽和ヤング率に対するヤング率変化量の比率は70%未満の14.4%であるが、飽和ヤング率に対する追加UV照射後ヤング率の比率は70%を超える97.7%であった。追加UV照射の前後におけるヤング率の変化量と飽和ヤング率との比率は83.1%となった。マイクロベンドロスは0.15dB/kmであり、評価1は良好(OK)であったが、紫外線を追加で照射した後のマイクロベンドロスは0.15dB/kmを超え、評価2は不良(NG)となった。
 比較例2において、飽和ヤング率が1.30MPaのプライマリ層材料を用い、ヤング率が0.95MPaになるまでプライマリ層材料を硬化させた。飽和ヤング率に対するヤング率変化量の比率は70%を超える73.3%であった。また、飽和ヤング率に対する追加UV照射後ヤング率の比率は70%を超える99.1%であった。追加UV照射の前後におけるヤング率の変化量と飽和ヤング率との比率は26.2%となった。紫外線を追加で照射した前後のマイクロベンドロスは0.15dB/kmを超え、評価1、2がともに不良(NG)となった。
 図7は、表1の実施例1~9、比較例1、2における、飽和ヤング率に対するヤング率の比(%)および飽和ヤング率に対する追加UV照射後のヤング率の比(%)とマイクロベンドロス(dB/km)との関係を示す図である。図7に示されているように、飽和ヤング率に対するヤング率の比が70%未満である場合、光ファイバ着色心線1のマイクロベンドロスは0.15dB/km以下となることが確認された。従って、飽和ヤング率に対するヤング率の比が70%未満であることが好ましい。
 また、プライマリ層3の飽和ヤング率は例えば0.84MPa以上の比較的に高い飽和ヤング率を有することが好ましい。高い飽和ヤング率を有する紫外線硬化型樹脂は比較的に低い粘度を有しているため、取り扱いが容易である。このため、例えば均一なプライマリ層3を形成し易くなるなどの製造上の利点を奏し得る。
 また、線引き工程において、プライマリ層3は高温に晒されるため、追加のUV照射による硬化反応が抑制され得る。本実施形態においては、飽和ヤング率の高い紫外線硬化型樹脂を用いることにより、線引き工程においてプライマリ層3が高温に晒された場合においても、ヤング率が低くなりすぎるのを回避することができる。
 さらに、飽和ヤング率に対する追加UV照射後ヤング率の比が70%未満であり、追加UV照射の前後におけるヤング率の変化量と飽和ヤング率との比率が16%以下であることが好ましい。これにより、製造された光ファイバ着色心線1に追加の紫外線が照射される場合において、プライマリ層3の硬化によるマイクロベンドロスを抑制することができる。
 以上述べたように、本実施形態によれば、低い飽和ヤング率を有する紫外線硬化型樹脂に伴う問題を回避しながら、マイクロベンドロスを効果的に抑制することができる。
 本発明は、上記実施形態に限らず種々の変形が可能である。例えば、いずれかの実施形態の一部の構成を他の実施形態に追加した例、ほかの実施形態の一部の構成と置換した例も、本発明の実施形態である。また、実施形態において特段の説明や図示のない部分に関しては、当該技術分野の周知技術や公知技術を適宜適用可能である。
 この出願は2020年10月29日に出願された日本国特許出願第2020-181724号からの優先権を主張するものであり、その内容を引用してこの出願の一部とするものである。
1             光ファイバ着色心線
2             光ファイバ裸線
3             プライマリ層
4             セカンダリ層
5             着色層

Claims (12)

  1.  光ファイバ裸線と、
     前記光ファイバ裸線を覆う紫外線硬化型樹脂により形成されたプライマリ層と、
     前記プライマリ層を覆う紫外線硬化型樹脂により形成されたセカンダリ層と、
     を備え、
     前記プライマリ層のヤング率が、前記プライマリ層の飽和ヤング率に対して70%未満であり、
     前記プライマリ層の飽和ヤング率が0.84MPa以上であることを特徴とする光ファイバ着色心線。
  2.  前記プライマリ層のヤング率が1.12MPa以下であることを特徴とする請求項1に記載の光ファイバ着色心線。
  3.  前記プライマリ層に紫外線を照射した後のヤング率が、前記プライマリ層の飽和ヤング率に対して70%未満であることを特徴とする、請求項1または2に記載の光ファイバ着色心線。
  4.  前記プライマリ層を形成する際におけるヤング率と前記プライマリ層を形成した後におけるヤング率の変化量が、前記プライマリ層の飽和ヤング率に対して16%以下であることを特徴とする請求項1乃至3のいずれか1項に記載の光ファイバ着色心線。
  5.  請求項1乃至4のいずれか1項に記載の複数の光ファイバ着色心線と、
     前記複数の光ファイバ着色心線を連結する接着層とを備えることを特徴とする光ファイバリボン。
  6.  請求項1乃至4のいずれか1項に記載の光ファイバ着色心線と、
     前記光ファイバ着色心線を内部に収容するシースとを備えることを特徴とする単心ファイバの集合体ケーブル。
  7.  請求項5に記載の光ファイバリボンと、
     前記光ファイバリボンを収容するシースとを備えることを特徴とするリボンケーブル。
  8.  光ファイバ母材から光ファイバ裸線を線引きする工程と、
     前記光ファイバ裸線の周囲に紫外線硬化型樹脂を塗布し、プライマリ層を形成する工程と、
     前記プライマリ層の周囲に紫外線硬化型樹脂を塗布し、前記紫外線硬化型樹脂に紫外線を照射してセカンダリ層を形成する工程とを備えた光ファイバ着色心線の製造方法であって、
     前記光ファイバ着色心線の製造後において、
     前記プライマリ層のヤング率が、前記プライマリ層の飽和ヤング率に対して70%未満であり、
     前記プライマリ層の飽和ヤング率が0.84MPa以上である
     ことを特徴とする光ファイバ着色心線の製造方法。
  9.  前記プライマリ層を形成する工程において、前記紫外線硬化型樹脂に紫外線を照射することを特徴とする請求項8に記載の光ファイバ着色心線の製造方法。
  10.  前記セカンダリ層の周囲に紫外線硬化型樹脂を塗布し、前記紫外線硬化型樹脂に紫外線を照射して着色層を形成する工程をさらに備える請求項8または9に記載の光ファイバ着色心線の製造方法。
  11.  前記セカンダリ層が着色されたことを特徴とする請求項8または9に記載の光ファイバ着色心線の製造方法。
  12.  請求項8乃至11のいずれか1項に記載の光ファイバ着色心線を複数用意する工程と、
     前記複数の光ファイバ着色心線に紫外線硬化型樹脂を塗布し、前記紫外線硬化型樹脂に紫外線を照射して前記複数の光ファイバ着色心線を連結する工程とを備えることを特徴とする光ファイバリボンの製造方法。
PCT/JP2021/039503 2020-10-29 2021-10-26 光ファイバ着色心線、光ファイバリボン、単心ファイバの集合体ケーブル、リボンケーブルおよびこれらの製造方法 WO2022092089A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21886207.6A EP4238946A4 (en) 2020-10-29 2021-10-26 COLORED FIBERGLASS CORE WIRE, FIBERGLASS TAPE, SINGLE-CORE FIBER MOUNTING CABLE, RIBBON CABLE AND METHOD OF MANUFACTURING THE SAME
JP2022559162A JPWO2022092089A1 (ja) 2020-10-29 2021-10-26
US18/305,485 US20230257301A1 (en) 2020-10-29 2023-04-24 Colored optical fiber, optical fiber ribbon, assembly cable of single fibers, ribbon cable and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-181724 2020-10-29
JP2020181724 2020-10-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/305,485 Continuation US20230257301A1 (en) 2020-10-29 2023-04-24 Colored optical fiber, optical fiber ribbon, assembly cable of single fibers, ribbon cable and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2022092089A1 true WO2022092089A1 (ja) 2022-05-05

Family

ID=81383944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039503 WO2022092089A1 (ja) 2020-10-29 2021-10-26 光ファイバ着色心線、光ファイバリボン、単心ファイバの集合体ケーブル、リボンケーブルおよびこれらの製造方法

Country Status (4)

Country Link
US (1) US20230257301A1 (ja)
EP (1) EP4238946A4 (ja)
JP (1) JPWO2022092089A1 (ja)
WO (1) WO2022092089A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202842A (ja) * 1986-03-03 1987-09-07 Nippon Telegr & Teleph Corp <Ntt> 紫外線硬化樹脂被覆光フアイバの高速被覆方法
JPS63315542A (ja) * 1987-06-16 1988-12-23 Sumitomo Electric Ind Ltd 光フアイバの製造方法
JPH0442838A (ja) * 1990-06-05 1992-02-13 Sumitomo Electric Ind Ltd 光硬化型樹脂被覆光ファイバの製造方法
JPH0769686A (ja) * 1993-08-31 1995-03-14 Dainippon Ink & Chem Inc 光ファイバ被覆用紫外線硬化型樹脂組成物
US5977202A (en) * 1997-09-22 1999-11-02 Dsm N.V. Radiation-curable compositions having fast cure speed and good adhesion to glass
JP2005162522A (ja) 2003-12-01 2005-06-23 Sumitomo Electric Ind Ltd 被覆線条体の製造方法、及び被覆線条体製造装置
WO2018062365A1 (ja) * 2016-09-30 2018-04-05 株式会社フジクラ 光ファイバリボン、光ファイバケーブル、および光ファイバリボンの製造方法
WO2018062364A1 (ja) * 2016-09-30 2018-04-05 株式会社フジクラ 光ファイバ着色心線、光ファイバケーブル、および光ファイバ着色心線の製造方法
JP2020181724A (ja) 2019-04-25 2020-11-05 日本電子株式会社 荷電粒子線装置および荷電粒子線装置の光学系の制御方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0387706A (ja) * 1989-06-26 1991-04-12 Sumitomo Electric Ind Ltd 光ファイバ心線
ES2543879T3 (es) * 2008-11-07 2015-08-25 Draka Comteq B.V. Fibra óptica de diámetro reducido
JP5790942B2 (ja) * 2012-06-22 2015-10-07 住友電気工業株式会社 光ファイバ素線

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202842A (ja) * 1986-03-03 1987-09-07 Nippon Telegr & Teleph Corp <Ntt> 紫外線硬化樹脂被覆光フアイバの高速被覆方法
JPS63315542A (ja) * 1987-06-16 1988-12-23 Sumitomo Electric Ind Ltd 光フアイバの製造方法
JPH0442838A (ja) * 1990-06-05 1992-02-13 Sumitomo Electric Ind Ltd 光硬化型樹脂被覆光ファイバの製造方法
JPH0769686A (ja) * 1993-08-31 1995-03-14 Dainippon Ink & Chem Inc 光ファイバ被覆用紫外線硬化型樹脂組成物
US5977202A (en) * 1997-09-22 1999-11-02 Dsm N.V. Radiation-curable compositions having fast cure speed and good adhesion to glass
JP2005162522A (ja) 2003-12-01 2005-06-23 Sumitomo Electric Ind Ltd 被覆線条体の製造方法、及び被覆線条体製造装置
WO2018062365A1 (ja) * 2016-09-30 2018-04-05 株式会社フジクラ 光ファイバリボン、光ファイバケーブル、および光ファイバリボンの製造方法
WO2018062364A1 (ja) * 2016-09-30 2018-04-05 株式会社フジクラ 光ファイバ着色心線、光ファイバケーブル、および光ファイバ着色心線の製造方法
JP2020181724A (ja) 2019-04-25 2020-11-05 日本電子株式会社 荷電粒子線装置および荷電粒子線装置の光学系の制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4238946A4

Also Published As

Publication number Publication date
EP4238946A4 (en) 2024-08-07
EP4238946A1 (en) 2023-09-06
JPWO2022092089A1 (ja) 2022-05-05
US20230257301A1 (en) 2023-08-17

Similar Documents

Publication Publication Date Title
JP4134724B2 (ja) 被覆光ファイバ、これを用いた光ファイバテープ心線及び光ファイバユニット
WO2017094560A1 (ja) 光ファイバテープ心線及び光ファイバケーブル
JP6927222B2 (ja) 光ファイバ及び光ファイバの製造方法
KR100460366B1 (ko) 피복된 광섬유 및 이의 제조방법
JP2007272060A (ja) 光ファイバリボン芯線及び光ファイバケーブル
US20230418015A1 (en) Colored optical fiber, optical fiber ribbon, assembly cable of single fibers, optical fiber ribbon cable and method for manufacturing the same
JP2950264B2 (ja) 光ファイバテープ心線の製造方法
JP6046021B2 (ja) オーバーコート心線及び当該オーバーコート心線を備えた光ファイバケーブル
JP3096584B2 (ja) 二重被覆保護層を有する光ファイバおよびその硬化方法
CN112654908B (zh) 光纤芯线和光纤线缆
JP7536670B2 (ja) 光ファイバ心線の製造方法
JP2018528910A (ja) 再コーティング済み光ファイバ及び光ファイバの再コーティング方法
WO2022092089A1 (ja) 光ファイバ着色心線、光ファイバリボン、単心ファイバの集合体ケーブル、リボンケーブルおよびこれらの製造方法
JP7099160B2 (ja) 光ファイバの製造方法
JP2009198706A (ja) ポリマークラッド光ファイバ心線
WO2022264873A1 (ja) 光ファイバ着色心線、光ファイバリボン、光ファイバリボンケーブル、およびこれらの製造方法
JP2004107184A (ja) 被覆光ファイバ
JP7508437B2 (ja) 光ファイバ着色心線及び光ファイバ着色心線の製造方法
JP2023081056A (ja) 光ファイバリボン及び光ファイバリボンの製造方法
WO2024029592A1 (ja) 光ファイバ着色心線及びその製造方法
JP2023109095A (ja) 光ファイバリボン及び光ファイバリボンの製造方法
JP2001240433A (ja) 被覆光ファイバ
JP2020050549A (ja) 光ファイバの製造方法
JP2024144142A (ja) 光ファイバ着色心線の製造方法および製造装置
JP2024144007A (ja) 分割型光ファイバテープ心線の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886207

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022559162

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202347035756

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021886207

Country of ref document: EP

Effective date: 20230530