WO2022091688A1 - アブレーションシステム - Google Patents

アブレーションシステム Download PDF

Info

Publication number
WO2022091688A1
WO2022091688A1 PCT/JP2021/036151 JP2021036151W WO2022091688A1 WO 2022091688 A1 WO2022091688 A1 WO 2022091688A1 JP 2021036151 W JP2021036151 W JP 2021036151W WO 2022091688 A1 WO2022091688 A1 WO 2022091688A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
power supply
ablation
time
control unit
Prior art date
Application number
PCT/JP2021/036151
Other languages
English (en)
French (fr)
Inventor
久生 宮本
Original Assignee
日本ライフライン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ライフライン株式会社 filed Critical 日本ライフライン株式会社
Priority to JP2022558941A priority Critical patent/JP7455494B2/ja
Publication of WO2022091688A1 publication Critical patent/WO2022091688A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current

Definitions

  • the present invention relates to an ablation system including an electrode needle that is percutaneously punctured into an affected area in the body and a power supply device that supplies electric power for ablation (causing).
  • an ablation system that ablate the affected area has been proposed (for example, Patent Document 1). reference).
  • This ablation system includes an electrode needle that is percutaneously punctured into the affected area in the body, and a power supply device that supplies electric power to perform ablation on the affected area.
  • the ablation system is a power source that supplies electric power for ablation between an electrode needle that is percutaneously punctured into an affected portion in the body and the electrode needle and the counter electrode plate. It is provided with a power supply device having a unit and a control unit for controlling the power supply operation in the power supply unit.
  • the control unit measures the impedance value between the electrode needle and the counter electrode plate during ablation, and counts the number of breaks, which is the number of times the impedance value exceeds the first threshold and shifts to the break state. When the number of breaks reaches the second threshold, the ablation is automatically terminated by automatically stopping the power supply, while the number of breaks does not reach the second threshold.
  • the power supply is temporarily reduced or stopped based on the first power supply value, which is the power supply value at the time of transition to the break state, and a predetermined decrease from the first power supply value.
  • the power supply is restarted in the state of being set to the second power supply value lowered by the value.
  • the number of breaks is counted in the control unit, and when the number of breaks reaches the second threshold value, the power supply from the power supply unit is automatically supplied. By stopping, the ablation ends automatically. This is compared to, for example, a case where the ablation is manually terminated after visually confirming the number of breaks, or a case where the ablation is automatically terminated after a predetermined waiting time has elapsed without confirming the number of breaks. Effective ablation will be facilitated.
  • the power supply is temporarily reduced or stopped based on the first power supply value, and the power supply value becomes the first power supply value.
  • the power supply is restarted in a state of being set to the second power supply value which is lowered by a predetermined decrease value from the one power supply value.
  • a predetermined decrease value for example, it becomes difficult to shift to the next break state in a short time (shift to the next break state) as compared with the case where the power supply is restarted at the power supply value of about the first power supply value. It is possible to secure a certain amount of time until it is done). Therefore, the ablation after the restart of the power supply is enabled, and the ablation target can be efficiently cauterized (it becomes easy to prevent the ablation efficiency from being lowered due to the transition to the break state).
  • the control unit controls so that the power supply value is maintained after the restart of the power supply until the next break state is entered. May be good. In this case, it becomes easier to secure the time until the transition to the next break state, so that cauterization is performed more efficiently. As a result, the cauterization efficiency during ablation is further improved.
  • the target time from the start to the end of the ablation is set, and the control unit maintains the power supply value from the current time to the end of the target time.
  • the power supply value may be further reduced.
  • the remaining time until the above target time is secured to some extent, there is a sign that the state shifts to the next break state, so that the power supply value can be further reduced.
  • the short transition to the next break state is more likely to be avoided. Therefore, as a result of the cauterization being performed more efficiently, the cauterization efficiency at the time of ablation is further improved.
  • the control unit has the remaining time less than the third threshold value, and the increase value of the impedance value per unit time is less than the fourth threshold value.
  • the power supply value may be increased. In this case, even if the remaining time until the above target time is short, there is no sign of transition to the next break state yet, so by increasing the power supply value, it is possible to increase the power supply value. It is possible to facilitate a forced transition to the next break state and promote the end of ablation within the above target time. Therefore, the cauterization efficiency during ablation is further improved while minimizing the burden on the patient's body due to long-term ablation.
  • the control unit has the remaining time less than the third threshold value and the increase value of the impedance value per unit time is equal to or higher than the fourth threshold value.
  • the power supply value is maintained, and it is determined whether or not the elapsed time from the start of the ablation has reached the target time, and when the elapsed time reaches the target time. Automatically terminates the ablation by automatically stopping the power supply, while the impedance value exceeds the first threshold value when the elapsed time has not reached the target time. Then, it may be determined whether or not the transition to the next break state has occurred.
  • the control unit is in the state before the transition to the break state.
  • the power supply value may be increased from the second power supply value. .. In this case, the ablation efficiency is avoided due to the significant decrease in the measured temperature after the restart of the power supply, and as a result, the ablation efficiency at the time of ablation is further improved.
  • control unit may adjust so that the predetermined decrease value increases as the remaining time increases.
  • control unit responds to the determination result of whether or not the actual output value at the time of power supply has reached a plateau due to the voltage reaching the upper limit value at the time of the ablation.
  • the replacement process of the first power supply value may be performed during the break state.
  • the actual output value of the second power supply value at the time of restarting the power supply after the transition to the break state is the first power supply value due to the peaking state. It becomes easy to prevent the occurrence of a situation in which the difference is almost eliminated (the predetermined decrease value is not actually guaranteed). That is, even when the above-mentioned peaking state is reached, it becomes easy to avoid the transition to the next break state in a short time, and as a result of efficient cauterization, the cauterization efficiency at the time of ablation is further improved.
  • the first power supply value replacement process is executed and the control unit has not reached the peak. If it is determined that, the replacement process of the first power supply value may not be executed.
  • the control unit may perform the replacement process of the first power supply value based on the actual output value of the power in the period before the transition to the break state.
  • the replacement process of the first power supply value is performed based on the actual output value of the power in such a period, not the set value of the power in the period before the transition to the break state. Therefore, it becomes as follows. That is, when the above peaking state is reached, the actual output value of the electric power deviates from the set value (the set value is not reached). Therefore, the first electric power supply is based on the actual output value of the electric power.
  • the predetermined decrease value can be easily secured when the power supply is restarted. As a result, even when the above-mentioned peaking state is reached, the transition to the next break state in a short time is more likely to be avoided, so that the cauterization efficiency at the time of ablation is further improved.
  • the control unit replaces the first power supply value based on the actual output value of the power in the vicinity of the period of the peaking state before the transition to the break state. May be done. More specifically, for example, the control unit replaces the maximum value of the actual output value of the electric power before the transition to the break state with the first electric power supply value, thereby causing the first electric power supply value.
  • the replacement process may be performed. In this way, when the replacement process of the first power supply value is performed by utilizing the replacement of the actual output value of the power with the maximum value before the transition to the break state, the above peaking is performed. Even in the case of a state, it becomes easier to avoid the transition to the next break state in a short time. As a result, the cauterization efficiency during ablation is further improved.
  • an output unit for outputting information to the outside is further provided, and this output unit outputs both the set value and the actual output value at the time of power supply to the outside in chronological order. You may try to do it. In this case, for example, whether or not the above-mentioned peaking state is reached (the set value of the above-mentioned power and the actual output value are different values) and how much the above-mentioned peaking state is (the above-mentioned electric power).
  • a user such as an operator of a power supply device can grasp at a glance the situation such as (how much the set value and the actual output value deviate from each other). Therefore, the convenience of the user is improved.
  • control unit may control the power supply value to increase during the period from the start of the ablation to the time when the first break state is entered.
  • control unit automatically performs the ablation when the number of breaks reaches two times as the second threshold value before the elapsed time from the start of the ablation reaches the target time. It may be controlled to end. In this case, since the ablation is completed while suppressing the number of breaks to the minimum, it is possible to improve the ablation efficiency while minimizing the burden on the patient's body during the ablation.
  • the power supply when the number of breaks does not reach the second threshold value, the power supply is temporarily reduced or the power supply is temporarily reduced with reference to the first power supply value.
  • the power supply is restarted with the power supply value set to the second power supply value, which is a predetermined decrease from the first power supply value, so that the ablation can be performed efficiently in a short time. It can be carried out. Therefore, it is possible to improve the cauterization efficiency during ablation.
  • FIG. 5A It is a block diagram schematically showing the whole configuration example of the ablation system which concerns on one Embodiment of this invention. It is a schematic diagram which shows an example of the cauterization condition in the affected part by ablation. It is a timing diagram schematically showing an example of the break state and the number of breaks at the time of ablation. It is a schematic diagram which shows an example of the display mode in the display part at the time of ablation which concerns on embodiment. It is a flow chart which shows the processing example of ablation which concerns on embodiment. It is a flow chart which shows the processing example following FIG. 5A. It is a flow chart which shows the detailed processing example of a part of processing shown in FIG. 5A.
  • FIG. 5A It is a figure which shows an example of the operation mode at the time of resuming the power supply and changing the power supply value shown in FIG. 5A. It is a schematic diagram which shows the timing waveform example at the time of a part of the processing shown in FIG. It is a schematic diagram which shows the timing waveform example at the time of the other part of the processing shown in FIG. It is a schematic diagram which shows the timing waveform example at the time of the other part of the processing shown in FIG. It is a schematic diagram which shows the timing waveform example at the time of the other part of the processing shown in FIG. It is a figure which shows the timing waveform example at the time of ablation which concerns on a comparative example and an Example.
  • FIG. 15A It is a schematic diagram which shows the timing waveform example at the time of ablation which concerns on a reference example. It is a schematic diagram which shows the timing waveform example at the time of ablation which concerns on the modification. It is a flow chart which shows the processing example of ablation which concerns on the modification. It is a flow chart which shows the processing example following FIG. 15A.
  • FIG. 1 is a schematic block diagram showing an overall configuration example of an ablation system (ablation system 5) according to an embodiment of the present invention.
  • This ablation system 5 for example, as shown in FIG. 1, is a system used when treating an affected portion 90 in the body of a patient 9, and a predetermined ablation is performed on such an affected portion 90.
  • the affected area 90 include an affected area having a tumor such as cancer (liver cancer, lung cancer, breast cancer, kidney cancer, thyroid cancer, etc.).
  • the ablation system 5 includes an electrode needle 1, a liquid supply device 2, and a power supply device 3. Further, in the ablation using the ablation system 5, for example, the counter electrode plate 4 shown in FIG. 1 is also appropriately used.
  • the electrode needle 1 is, for example, as shown by the arrow P1 in FIG. 1, a needle that is percutaneously punctured into the affected portion 90 in the body of the patient 9.
  • the electrode needle 1 is used during the above-mentioned ablation, and has an electrode portion 11 and a covering portion 12 as shown in FIG. 1, for example.
  • the liquid L supplied from the liquid supply device 2 described later circulates and flows inside the electrode needle 1 (see FIG. 1).
  • the electrode portion 11 is a region portion of the needle-shaped structure constituting the electrode needle 1 that is not covered with an insulating coating, and is a portion that functions as an electrode during ablation.
  • the covering portion 12 is a region portion of the above-mentioned needle-shaped structure in which an insulating coating is made. As shown in FIG. 1, the electrode portion 11 is arranged near the tip of the electrode needle 1, and the covering portion 12 is arranged on the proximal end side of the electrode portion 11.
  • the liquid supply device 2 is a device that supplies the cooling liquid L to the electrode needle 1 described above, and has, for example, a liquid supply unit 21 as shown in FIG.
  • Examples of the cooling liquid L include sterilized water and sterilized physiological saline.
  • the liquid supply unit 21 supplies the above-mentioned liquid L to the electrode needle 1 at any time according to the control by the control signal CTL2 described later. Specifically, for example, as shown in FIG. 1, the liquid supply unit 21 causes the liquid L to circulate between the inside of the liquid supply device 2 and the inside of the electrode needle 1 (in a predetermined flow path). Then, the liquid L is supplied. Further, although the details will be described later, such a liquid L supply operation is executed or stopped according to the control by the control signal CTL2 described above.
  • the liquid supply unit 21 is configured to include, for example, a liquid pump or the like.
  • the power supply device 3 supplies a power Pout (for example, radio frequency (RF) power) for ablation between the electrode needle 1 and the counter electrode plate 4, and also supplies the liquid L in the liquid supply device 2 described above. It is a device that controls the supply operation. As shown in FIG. 1, the power supply device 3 has an input unit 31, a power supply unit 32, a control unit 33, and a display unit 34.
  • RF radio frequency
  • the input unit 31 is a part for inputting various set values and an instruction signal (operation signal Sm) for instructing a predetermined operation described later.
  • Such an operation signal Sm is input from the input unit 31 in response to an operation by an operator (for example, an engineer or the like) of the power supply device 3.
  • these various setting values are not input according to the operation by the operator, but may be set in advance in the power supply device 3 at the time of shipment of the product, for example.
  • the set value input by the input unit 31 is supplied to the control unit 33, which will be described later.
  • such an input unit 31 is configured by using, for example, a predetermined dial, button, touch panel, or the like.
  • the power supply unit 32 is a portion that supplies the above-mentioned power Pout between the electrode needle 1 and the counter electrode plate 4 according to the control signal CTL1 described later.
  • a power supply unit 32 is configured by using a predetermined power supply circuit (for example, a switching regulator or the like).
  • the frequency is, for example, about 450 kHz to 550 kHz (for example, 500 kHz).
  • the control unit 33 is a part that controls the entire power supply device 3 and performs predetermined arithmetic processing, and is configured by using, for example, a microcomputer or the like. Specifically, the control unit 33 first has a function (power supply control function) of controlling the power supply operation of the power supply unit 32 by using the control signal CTL1. Further, the control unit 33 has a function (liquid supply control function) of controlling the supply operation of the liquid L in the liquid supply device 2 (liquid supply unit 21) by using the control signal CTL 2. Further, the control unit 33 has a function (display control function) for controlling the display operation in the display unit 34, which will be described later.
  • Such a control unit 33 also has temperature information indicating the temperature measured Tm near the tip of the electrode needle 1 (a temperature sensor such as a thermoelectric pair arranged inside the electrode unit 11), for example, as shown in FIG. It is designed to be supplied at any time. Further, for example, as shown in FIG. 1, the measured value of the impedance value Z (described later) is supplied to the control unit 33 from the power supply unit 32 described above at any time.
  • control unit 33 The details of the control operation and the like in the control unit 33 including the above-mentioned power supply control function and liquid supply control function will be described later.
  • the display unit 34 is a part (monitor) that displays various information and outputs it to the outside.
  • the information to be displayed includes, for example, the various set values input from the input unit 31 and various parameters supplied from the control unit 33 (for example, the impedance value Z described later and the count value of the number of breaks Nb). , Temperature information It supplied from the electrode needle 1 (information on the measurement temperature Tm described above) and the like.
  • the information to be displayed is not limited to these information, and other information may be displayed instead or by adding other information.
  • Such a display unit 34 is configured by using a display by various methods (for example, a liquid crystal display, a CRT (Cathode Ray Tube) display, an organic EL (Electro Luminescence) display, or the like).
  • Such a display unit 23 corresponds to a specific example of the "output unit" in the present invention.
  • a detailed example of the information displayed on the display unit 34 will be described later (FIG. 4).
  • the counter electrode plate 4 is used in a state of being attached to the body surface of the patient 9 at the time of ablation. Details will be described later, but at the time of ablation, high-frequency energization (power Pout is supplied) is performed between the above-mentioned electrode needle 1 (electrode portion 11) and the counter electrode plate 4. Further, as will be described in detail later, at the time of such ablation, as shown in FIG. 1, the impedance value Z between the electrode needle 1 (electrode portion 11) and the counter electrode plate 4 is measured and measured at any time. The impedance value Z is supplied from the power supply unit 32 to the control unit 33 in the power supply device 3.
  • the liquid supply device 2 (so that the cooling liquid L circulates between the inside of the liquid supply device 2 and the inside of the electrode needle 1 (in a predetermined flow path)).
  • the liquid L is supplied from the liquid supply unit 21) to the electrode needle 1 (see FIG. 1).
  • a cooling operation (cooling) is performed on the electrode needle 1.
  • the tissue temperature of the affected area 90 rises sufficiently based on the temperature information It indicating the measured temperature Tm near the tip of the electrode needle 1.
  • the condition of cauterization of the affected area is confirmed, such as whether it is present.
  • FIG. 2 schematically shows an example of the cauterization condition in the affected area 90 due to such ablation.
  • the initial rugby ball-shaped (elliptical spherical) thermal coagulation region Ah1 gradually expands.
  • a substantially spherical thermal coagulation region Ah2 is obtained (see the broken line arrow in FIG. 2).
  • isotropic ablation of the entire affected area 90 is performed, and as a result, effective treatment of the affected area 90 is performed.
  • FIG. 3 schematically shows an example of the break state and the number of breaks at the time of ablation in a timing diagram. Specifically, in FIG. 3, an example of a measured waveform of the impedance value Z between the electrode needle 1 (electrode portion 11) and the counter electrode plate 4 is shown along the time axis.
  • the impedance value Z rapidly rises due to the evaporation of water in the tissue in the affected area 90.
  • Such a rapid increase in the impedance value Z is an index of thermal coagulation of the tissue in the affected area 90, and thus serves as a guideline for the stop timing during ablation.
  • a state in which the impedance value Z exceeds a predetermined threshold value Zth (Z> Zth) is called a “break state” (see FIG. 3).
  • ablation supply of electric power Pout
  • the temporary stop time of ablation is, for example, a preset predetermined time (for example, about 10 seconds to 15 seconds) or before the impedance value Z rises. The time it takes to return to the value of.
  • Various information such as the count value of the number of breaks Nb is displayed at any time on the display unit 34 of the power supply device 3, as shown schematically in FIG. 4, for example.
  • the display unit 34 first, as schematically shown in FIG. 3 described above, the measured waveform of the impedance value Z is displayed along the time axis (reference numeral in FIG. 4). See page 20).
  • the current value of the impedance value Z (Impedance: refer to the reference numeral P21), the temperature information It (Temperature: refer to the reference numeral P22) indicating the measurement temperature Tm described above, and the supply value of the power Pout.
  • FIGS. 5A and 5B are flow charts showing an example of ablation processing according to the present embodiment.
  • FIG. 6 is a flow chart showing a detailed processing example of a part of the processing shown in FIG. 5A (processing of step S17 described later: processing of changing the supply value of the power Pout as necessary).
  • FIG. 7 shows an example of the operation mode when the power Pout supply is restarted (step S16 in FIG. 5A), which will be described later, and the power Pout supply value is changed (step S17 in FIG. 5A), which will be described later.
  • FIGS. 8 to 11 schematically show examples of timing waveforms during the process shown in FIG. 6 (process in step S17 described above). In each of FIGS. 8 to 11, the horizontal axis indicates time, and the vertical axis indicates the supply value and impedance value Z of the power Pout.
  • various parameters including the above-mentioned threshold value Zth (threshold value of impedance value Z) and the later-described threshold value Nth (threshold value of the number of breaks Nb) are set (FIG. 5A). Step S10).
  • Such various parameters include, in addition to the above-mentioned threshold values Zth and Nth, the threshold value ⁇ Zth (threshold value of the impedance increase value ⁇ Z described later), the threshold value ⁇ Tmth (threshold value of the decrease amount ⁇ Tm of the measured temperature Tm described later), and the ablation described later.
  • Examples thereof include a target time ⁇ tse and a threshold value ⁇ th (threshold value of the remaining time ⁇ tr described later). Further, the set values of these various parameters (threshold value Zth, ⁇ Zth, Nth, ⁇ Tmth, ⁇ trth, target time ⁇ tse, etc.) are input from the input unit 31 according to the operation by the operator of the power supply device 3, respectively, and are input from the input unit 33. It is supposed to be supplied to.
  • the above-mentioned threshold value Zth of the impedance value Z corresponds to a specific example of the "first threshold value” in the present invention
  • the above-mentioned threshold value Nth of the number of breaks Nb is a specific example of the "second threshold value” in the present invention. It corresponds to.
  • the above-mentioned threshold value ⁇ th of the remaining time ⁇ tr corresponds to a specific example of the “third threshold value” in the present invention
  • the above-mentioned threshold value ⁇ Zth of the impedance increase value ⁇ Z is a specific example of the “fourth threshold value” in the present invention.
  • the threshold value ⁇ Tmth of the amount of decrease ⁇ Tm of the measured temperature Tm described above corresponds to a specific example of the “fifth threshold value” in the present invention.
  • the method of defining by this relative value there are a method of defining the impedance value Z at the start of ablation as a reference and a method of defining the minimum value of the impedance value Z after the start of ablation as a reference.
  • the setting values of such various parameters are not input according to the operation by the operator, but are set in advance in the power supply device 3, for example, at the time of shipment of the product. You may do so.
  • ablation with respect to the affected portion 90 is started by supplying a power Pout from the power supply device 3 (power supply unit 32) between the electrode needle 1 and the counter electrode plate 4 (step S11). Specifically, the start of this ablation is executed by inputting the operation signal Sm from the input unit 31 and supplying it to the control unit 33 in response to the operation by the operator of the power supply device 3. That is, in this example, the ablation is manually initiated.
  • the control unit 33 controls, for example, so that the supply value of the electric power Pout increases. Specifically, in the examples of FIGS. 8 to 11, the control unit 33 controls so that the supply value of the electric power Pout during this period gradually (linearly) increases. However, the control unit 33 may control, for example, so that the supply value of the electric power Pout during this period rises stepwise. The increase in the power supply value of the power Pout during this period is not automatically controlled by the control unit 33, but is manually controlled according to the operation (operation signal Sm) by the operator of the power supply device 3. You may do so.
  • the power supply unit 32 first measures the impedance value Z between the electrode needle 1 and the counter electrode plate 4, and also measures near the tip of the electrode needle 1 described above.
  • the measurement for the temperature Tm is performed by the electrode needle 1 (step S12).
  • the control unit 33 acquires the measurement information of the impedance value Z and the temperature information It indicating the measurement temperature Tm at this time point (see FIG. 1).
  • the control unit 33 makes the following determinations. That is, whether or not the impedance value Z is larger than the threshold value Zth set in step S10 (whether or not Z> Zth is satisfied), that is, whether or not the control unit 33 has shifted to the break state described above. Is determined (step S13).
  • step S13 when it is determined that the impedance value Z is equal to or less than the threshold value Zth (Z> Zth is not satisfied) (step S13: N), the process returns to step S12 described above, and the measurement of the impedance value Z or the like is performed. It will be done again.
  • the control unit 33 stores various parameters at the time of transitioning to such a first break state (at the time of the first break). Specifically, the control unit 33 first stores the elapsed time ⁇ tsn (see FIG. 8) from the start time ts of ablation to the present time (here, timing t1). Further, the control unit 33 supplies a power Pout value (power supply value) at the time of transitioning to the first break state (for example, at the time of transitioning to the break state, at the time when the impedance value Z stabilizes, etc.). Pout1: (see FIGS. 8 to 11) is stored. Further, the control unit 33 stores the above-mentioned measurement temperature Tm (for example, the average temperature within a predetermined period before the transition) before the transition to the first break state.
  • Tm for example, the average temperature within a predetermined period before the transition
  • control unit 33 uses the control signal CTL1 described above to temporarily reduce or stop the supply of the power Pout from the power supply unit 32 with reference to the power supply value Pout1 described above to perform ablation. Temporarily stop (step S15: see the dashed arrow in the power Pout in FIGS. 8-11). As a result, as described above, the impedance value Z drops again, and the break state is exited (see FIGS. 8 to 11).
  • ⁇ P1 for example, about 20 [W]
  • Pout2 the power supply value of the power Pout is restarted (step S16: see the broken line arrow in the power Pout in FIGS. 8 to 11).
  • This power supply value Pout2 is set to, for example, a power supply value just before the transition to the break state (for example, a power supply value of about 80% of the power supply value Pout1).
  • control unit 33 basically (when the power supply value change process in step S17 described later is performed) until the next break state is entered. (Except for), control is performed so that the supply value of the power Pout is maintained (see the broken line arrow in the power Pout in FIGS. 8 to 11).
  • the target time ⁇ tse at the time of this ablation is, for example, about 6 to 12 minutes, and one example is about 8 minutes.
  • step S16 as the operation modes at the time of restarting the supply of the power Pout (step S16), for example, "full auto mode (first operation mode)” and “semi-auto mode” are used. (Second operation mode) ”, two types of operation modes can be mentioned. Regarding these two types of operation modes, the same operation modes can be obtained even when the supply value of the power Pout described later is changed (step S17 in FIG. 5A: for example, steps S172, S177, S178 in FIG. 6). Can be mentioned.
  • the control unit 33 automatically restarts the power Pout supply (ablation) or automatically changes the power Pout supply value. Specifically, the control unit 33 automatically restarts the supply of the power Pout from the power supply unit 32 or automatically changes the supply value of the power Pout by using the control signal CTL1 described above. .. That is, in this fully automatic mode, the supply of the electric power Pout is restarted and the supply value of the electric power Pout is changed automatically.
  • the control unit 33 restarts the supply of the power Pout or changes the supply value of the power Pout based on the operation signal Sm input in response to the operation by the operator of the power supply device 3. Or something. That is, in this semi-auto mode, the supply of the electric power Pout is restarted and the supply value of the electric power Pout is changed manually.
  • a predetermined notification to the outside of the power supply device 3 a predetermined message on the display unit 34. , Etc.
  • such two types of operation modes (“full auto mode” and “semi-auto mode”) may be switchable (shown in FIG. 7). See the dashed arrow P3). That is, for example, these two types of operation modes may be switched at any time based on the operation signal Sm input in response to the operation by the operator of the power supply device 3.
  • control unit 33 performs a process of changing the supply value of the power Pout as needed (step S17).
  • step S17 Each specific process in the process of changing the supply value of the electric power Pout as needed will be described in detail below with reference to FIG.
  • the control unit 33 makes the following determination based on the measured temperature Tm (measured temperature Tm stored in step S14 described above) before the transition to the first break state. .. That is, the control unit 33 uses the measured temperature Tm as a reference, and the decrease amount ⁇ Tm of the measured temperature Tm after restarting the supply of the power Pout (step S16) is equal to or greater than the threshold value ⁇ Tmth set in step S10. It is determined whether or not ( ⁇ Tm ⁇ ⁇ Tmth) is satisfied (step S170 in FIG. 6). Examples of such a threshold value ⁇ Tmth include a value of about 5 [° C.] to 20 [° C.] (preferably, a value of about 10 [° C.] to 20 [° C.]).
  • step S170: N when it is determined that the above-mentioned decrease amount ⁇ Tm is less than the threshold value ⁇ Tmth ( ⁇ Tm ⁇ ⁇ Tmth is not satisfied) (step S170: N), the control unit 33 causes the control unit 33 to maintain the supply value of the power Pout. (Step S171). After that, the process proceeds to step S173, which will be described later.
  • the threshold value ⁇ trth for example, a value of about 30 [sec] to 120 [sec] (preferably, a value of about 30 [sec] to 60 [sec]) can be mentioned.
  • the control unit 33 when it is determined that the remaining time ⁇ tr described above is equal to or greater than the threshold value ⁇ trth (satisfying ⁇ tr ⁇ ⁇ trth) (step S173: Y), the control unit 33 then controls the control unit 33 per unit time at the impedance value Z.
  • the rise value (impedance rise value ⁇ Z) is calculated (step S174a).
  • the control unit 33 determines whether or not the impedance increase value ⁇ Z calculated in this way is equal to or greater than the threshold value ⁇ Zth set in step S10 (whether or not ⁇ Z ⁇ ⁇ Zth is satisfied). (Step S175a).
  • a threshold value ⁇ Zth for example, a value of about 10 [ ⁇ ] to 20 [ ⁇ ] can be mentioned.
  • step S175a: N when it is determined that the impedance increase value ⁇ Z is less than the threshold value ⁇ Zth ( ⁇ Z ⁇ ⁇ Zth is not satisfied) (step S175a: N), there is no sign of transition to the next break state. become. Therefore, in this case, the control unit 33 maintains the supply value of the power Pout (step S176a) and returns to the above-mentioned step S173.
  • a predetermined decrease value ⁇ P3 for example, about 5 [W] to 10 [W]
  • the supply value of the power Pout is set so as to be ⁇ P3).
  • the impedance value Z subsequently decreases, and the sign of transition to the next break state is suppressed. After that, the process returns to step S173 described above.
  • step S173 determines whether or not the calculated impedance increase value ⁇ Z is equal to or greater than the threshold value ⁇ Zth (whether or not ⁇ Z ⁇ ⁇ Zth is satisfied) in the same manner as in step S175a described above (step). S175b).
  • step S175b Y
  • the control unit 33 maintains the supply value of the power Pout (step S176b), and proceeds to step S18 in FIG. 5A, which will be described later.
  • step S175b N
  • the control unit 33 raises the supply value of the power Pout by a predetermined rise value ⁇ P4 (for example, about 10 [W] to 20 [W]) (step S178).
  • ⁇ P4 for example, about 10 [W] to 20 [W]
  • the power supply value of Pout is set so as to be. As a result, as shown by the broken line arrow in FIG. 11, the impedance value Z subsequently rises, and the transition to the next break state is promoted. After that, the process returns to step S174b described above.
  • step S18 in FIG. 5A described above the control unit 33 determines whether or not the elapsed time ⁇ tsn from the start time ts of ablation has reached the target time ⁇ tsse described above (step S18). .. When such an elapsed time ⁇ tsn reaches the target time ⁇ tse (step S18: Y), the process proceeds to step S23 described later. That is, although the details will be described later, the control unit 33 automatically ends the ablation by automatically stopping (completely stopping) the supply of the power Pout from the power supply unit 32. As a result, the ablation for the affected area 90 is automatically terminated by the control unit 33.
  • step S18: N the control unit 33 receives the measurement information of the impedance value Z at this time and the measurement information of the impedance value Z at this time in the same manner as in step S12 described above.
  • the temperature information It indicating the measured temperature Tm is acquired (step S19 in FIG. 5B).
  • the control unit 33 makes the following determination in the same manner as in step S13 described above. That is, the control unit 33 determines whether or not the impedance value Z is larger than the threshold value Zth (whether or not Z> Zth is satisfied), that is, whether or not the next (second or later) break state is entered. , Make a determination (step S20).
  • step S20: N if it is determined that the impedance value Z is equal to or less than the threshold value Zth (Z> Zth is not satisfied) (step S20: N), the process returns to step S18 described above, and the elapsed time ⁇ tsn described above is the target time. The determination as to whether or not the ⁇ tse has been reached is performed again.
  • step S20 when it is determined that the impedance value Z is larger than the threshold value Zth (satisfying Z> Zth) (step S20: Y), it means that the state has moved to the next break state. Therefore, in this case, the control unit 33 then automatically counts the number of break states (break count Nb: here, Nb ⁇ 2) in the same manner as in step S14 described above (step S21).
  • the control unit 33 stores various parameters at the time of transitioning to such a second and subsequent break states (at the time of the second and subsequent breaks). .. Specifically, as in step S14, the control unit 33 has an elapsed time ⁇ tsn, a supply value of the power Pout at the time of transition to the second and subsequent break states, and before the transition to the second and subsequent break states.
  • the measured temperature Tm (for example, the average temperature within a predetermined period before the transition) is stored.
  • the control unit 33 determines whether or not the number of breaks Nb counted in step S21 is equal to or greater than the threshold value Nth set in step S10 (whether or not Nb ⁇ Nth is satisfied). (Step S22). Here, if it is determined that the number of breaks Nb is less than the threshold value Nth (Nb ⁇ Nth is not satisfied) (step S22: N), the process returns to step S15 described above. That is, the supply of the power Pout is temporarily reduced or stopped again, and the ablation is temporarily stopped again.
  • the control unit 33 when it is determined that the break count Nb described above is equal to or greater than the threshold value Nth (Satisfying Nb ⁇ Nth) (step S22: Y), the control unit 33 then performs the following control. That is, in this case, the control unit 33 automatically ends the ablation by automatically stopping (completely stopping) the supply of the power Pout from the power supply unit 32 (step S23: in FIGS. 8 to 11). See the dashed arrow in the power Pout of. Specifically, the control unit 33 automatically stops the supply of the power Pout by using the control signal CTL1 described above. As a result, the ablation for the affected area 90 is automatically terminated by the control unit 33.
  • the control unit 33 controls the number of breaks Nb at the time of automatic termination of such ablation, for example, as follows. Is desirable. That is, the control unit 33 automatically ends the ablation when the number of breaks Nb reaches twice as the threshold value Nth before the elapsed time ⁇ tsn from the start time ts of the ablation reaches the target time ⁇ tsse. It is desirable to control it so that it does.
  • control unit 33 automatically ends the ablation in this way (step S23), and then automatically stops the supply of the cooling liquid L from the liquid supply device 2 (step S24). .. Specifically, the control unit 33 automatically stops the supply of the liquid L from the liquid supply unit 21 by using the control signal CTL2 described above. As a result, the circulation of the liquid L between the inside of the liquid supply device 2 and the inside of the electrode needle 1 is stopped (see FIG. 1), and the cooling operation (cooling) for the electrode needle 1 is stopped.
  • the control unit 33 performs the following control at the time of ablation. That is, first, the control unit 33 measures the impedance value Z between the electrode needle 1 and the counter electrode plate 4, and the number of breaks, which is the number of times the impedance value Z exceeds the threshold value Zth and shifts to the break state. Count Nb. Then, when the break number Nb reaches the threshold value Nth, the control unit 33 automatically stops the supply of the power Pout to automatically end the ablation.
  • the control unit 33 supplies the power Pout with reference to the power Pout supply value (power supply value Pout1) at the time of transition to the break state. Temporarily lowers or stops. Then, the control unit 33 restarts the supply of the electric power Pout in a state where the supply value of the electric power Pout is set to the electric power supply value Pout2 which is lowered by a predetermined decrease value ⁇ P1 from the electric power supply value Pout1 described above. This makes it difficult to shift to the next break state in a short time, for example, as compared with the case where the power supply is restarted at the above-mentioned power supply value Pout1 (corresponding to the comparative example described later).
  • the ablation after the restart of the power supply is enabled, and the ablation target (affected portion 90) can be efficiently cauterized.
  • the break time of the power supply supply the above-mentioned temporary decrease or stop period: about 15 seconds
  • energy cannot be injected into the ablation target or the ablation target is put into a break state.
  • the power Pout supply value is controlled so as to be maintained until the next break state is entered, so that the result is as follows. That is, since it becomes easier to secure the time until the transition to the next break state, cauterization is performed more efficiently. As a result, the cauterization efficiency during ablation can be further improved.
  • the remaining time ⁇ tr from the present time to the end time te of the above-mentioned target time ⁇ tse is equal to or more than the threshold value ⁇ trth, and is described above.
  • the impedance rise value ⁇ Z is equal to or higher than the threshold value ⁇ Zth, the supply value of the power Pout is further lowered, so that the result is as follows. That is, in a situation where the remaining time ⁇ tr until the target time ⁇ tse is secured to some extent, there is a sign that the state shifts to the next break state.
  • the next It is easier to avoid the transition to the break state in a short time. Therefore, as a result of the cauterization being performed more efficiently, it is possible to further improve the cauterization efficiency at the time of ablation.
  • the result is as follows. That is, even in a situation where the remaining time ⁇ tr until the target time ⁇ tse is small, there is no sign of transition to the next break state yet, so by increasing the supply value of the power Pout, the next It is possible to facilitate the forced transition to the break state and promote the end of ablation within the target time ⁇ tse. Therefore, it is possible to further improve the ablation efficiency during ablation while minimizing the burden on the body of the patient 9 due to long-term ablation (details will be described later).
  • the amount of decrease ⁇ Tm of the measured temperature Tm after restarting the supply of the power Pout is based on the measured temperature Tm (measured temperature near the tip of the electrode needle 1) before the transition to the break state.
  • the threshold value is ⁇ Tmth or more
  • the supply value of the power Pout is increased from the power supply value Pout2, so that the result is as follows. That is, as a result of avoiding a decrease in ablation efficiency due to a significant decrease in the measured temperature Tm after restarting the power supply, it is possible to further improve the ablation efficiency during ablation.
  • the decrease value ⁇ P1 described above is adjusted to increase, so that the result is as follows. That is, as the remaining time ⁇ tr is adjusted so that the decrease value ⁇ P1 becomes larger, it becomes easier to avoid the transition to the next break state in a short time. Therefore, as a result of more efficient cauterization, it is possible to further improve the ablation efficiency.
  • the affected area 90 becomes more than necessary during treatment by ablation. A break state will be given. As a result, the pain felt by the patient 9 becomes large, and the burden on the body of the patient 9 may become large.
  • this pain means the pain felt by the patient 9 during treatment, and it is said that, for example, the right shoulder and the like often hurt as referred pain via the spinal nerve. Since the impedance value Z rises sharply in the break state, the output voltage also rises sharply when the power Pout is output as a constant power, for example. In addition, the temperature at the affected area 90 tends to rise before the transition to the break state. Therefore, it is said that this pain has both electrical and thermal causes.
  • FIG. 12 shows an example of a timing waveform (actual measurement waveform example) at the time of ablation according to a comparative example and an example.
  • FIG. 12A shows an example of a timing waveform at the time of ablation according to a comparative example
  • FIG. 12B shows an example of a timing waveform at the time of ablation according to an embodiment.
  • the impedance value Z [ ⁇ ] the measured temperature Tm [° C.] near the tip of the electrode needle 1
  • the power Pout [W] are the times, respectively. It is shown in common units along the axis.
  • each condition and each measurement result in the comparative example shown in FIG. 12A are as follows.
  • Power Pout increase method until the first break (t 1): 10 [W / min]
  • linear increase ⁇ Break count Nb 2 -Decrease value of power Pout when power supply is restarted after the first break
  • Power Pout after restart Setting to increase linearly (see the broken line arrow in FIG.
  • each condition and each measurement result in the example shown in FIG. 12B are as follows.
  • -Ablation target (specimen): Pig-extracted liver-Length of electrode portion 11 near the tip of electrode needle 1 (tip portion length): 3 [cm]
  • -Power Pout supply value at the start of ablation (output at the start): 40 [W]
  • Power Pout increase method until the first break (t 1): 10 [W / min], linear increase
  • ⁇ Break count Nb 2 -Decrease value of power Pout when power supply is restarted after the first break ⁇ P1:30 [W]
  • Power Pout after restart Set to the maintained state (see the broken line arrow in FIG.
  • the basic conditions are the same between the comparative example and the embodiment.
  • the decrease value ⁇ P1 of the power Pout at the time of restarting the power supply after the first break is relatively small in the comparative example (the power supply is restarted at the same level as the power supply value at the first break stage).
  • the power Pout after resumption is set to increase linearly, while in the embodiment, the power Pout after resumption is set to be maintained.
  • the period from the first break time to the second break time (the period from t1 to t2) is very short (1 minute 06 seconds), and the second break state is shortened. It can be seen that the time has shifted (see FIG. 12 (A)).
  • the period from the first break to the second break (the period from t1 to t2) is about 6 times longer than that of the comparative example (6 minutes 13 seconds). It can be seen that the time required to shift to the second break state is secured to some extent (see FIG. 12 (B)).
  • the difference (12.6 [mm]) between the vertical length and the horizontal length in the thermal coagulation region of the ablation target is large, and the ablation is anisotropic with respect to the ablation target. You can see that it has become.
  • the difference (1.9 [mm]) between the vertical length and the horizontal length in the thermal coagulation region to be ablated is very small ((1/6) or less in the case of the comparative example). ), It can be seen that the above-mentioned isotropic ablation is performed on the ablation target.
  • FIG. 13 schematically shows an example of a timing waveform at the time of ablation according to a reference example.
  • FIG. 14 schematically shows an example of a timing waveform at the time of ablation according to this modification.
  • the horizontal axis represents time
  • the vertical axis represents the set value of the power Pout, the actual output value (Pout') of the power Pout, the impedance value Z, and the ablation.
  • the voltage V at the time is shown.
  • examples of time-series changes in the set value of the power Pout and the actual output value (Pout') are shown schematically, respectively.
  • the control increase rate of 20 [W / min] in which the supply value of the power Pout is increased stepwise is performed.
  • the predetermined decrease value ⁇ P1 20 [W] described above.
  • the impedance value Z when the impedance value Z is high, the voltage V at the time of ablation has an upper limit, so that the actual power Pout (actual output value Pout') at the time of ablation rises to the set value of the power Pout. It may disappear and reach a plateau.
  • the set value of the power Pout and the actual output value Pout' match up to around 240 [s], but in the subsequent period, as follows. It has become. That is, as shown by the broken line arrow in FIG. 13, the actual output value Pout'of the power Pout deviates from the set value of the power Pout (the set value is not reached), and the actual output value Pout 'Has reached a plateau.
  • the actual output value Pout'of the power Pout becomes the maximum value (Pout' (max)).
  • the voltage V at the time of ablation is also the upper limit value (maximum voltage value Vmax).
  • the actual output value Pout'of the power Pout becomes when the power supply is restarted after the transition to the break state.
  • the actual output value Pout'of the power supply value Pout1 becomes when the power supply is restarted after the transition to the break state.
  • the above-mentioned predetermined decrease value ( ⁇ P1) corresponding to the decrease from the set value of the power supply value Pout1 to the set value of the power supply value Pout2 is actually obtained. May not be secured.
  • the predetermined decrease value ( ⁇ P1) described above is not actually guaranteed, as described in the following embodiment.
  • the ablation after the restart of the power supply becomes insufficient, and the target of ablation ( The ablation efficiency for the affected area 90) may decrease.
  • the control unit 33 performs the replacement process for the set value of the power supply value Pout1 described above during the break state as follows. In other words, as described above, the control unit 33 performs a process of reviewing the reference value when calculating the set value of the power supply value Pout2 by subtracting the amount of the decrease value ⁇ P1.
  • the actual output value Pout'of the power Pout reaches a plateau because the voltage V at the time of ablation reaches the upper limit value (maximum voltage value Vmax).
  • the replacement process of the power supply value Pout1 is performed during the period of the break state according to the determination result of whether or not the state is in the state. Specifically, although the details will be described later (FIGS. 15A and 15B), the control unit 33 executes the replacement process of the power supply value Pout1 when it is determined that the power supply level has reached a plateau. On the other hand, if it is determined that the power supply value has not reached a plateau, the replacement process of the power supply value Pout1 is not executed.
  • the control unit 33 performs a replacement process of the power supply value Pout1 based on the actual output value Pout'of the power Pout in the period before the transition to the break state. That is, in the above-mentioned reference example of FIG. 13, the power supply value Pout2 is set (calculated) based on the set value of the power supply value Pout1, whereas in this modification, the actual output value of the power Pout is set.
  • the replacement process of the power supply value Pout1 is performed so that the power supply value Pout2 is set (calculated) based on Pout'.
  • the control unit 33 has the power supply value Pout1 based on the actual output value Pout'of the power Pout in the vicinity of the peaking state period ⁇ tp before the transition to the break state.
  • the replacement process is being performed. More specifically, in the example of FIG. 14, the control unit 33 shifts the maximum value (Pout'(max)) of the actual output value Pout'of the power Pout to the power supply value Pout1 before the transition to the break state.
  • the power supply value Pout1 is replaced (see the x (x) mark in FIG. 14 and the broken line arrow indicated by the reference numeral P72). This is because, for example, as shown in FIG. 14, in the period immediately before the transition to the break state, the actual output value Pout'of the power Pout tends to drop sharply from the maximum value Pout' (max). be.
  • the power supply value Pout2 at the time of restarting the power supply is subtracted by the decrease value ⁇ P1 with the power supply value Pout1 after the replacement process as a reference.
  • the set value of is calculated. Therefore, unlike the reference example shown in FIG. 13, in this modification, even when the above-mentioned peaking state is reached, the decrease from the set value of the power supply value Pout1 to the set value of the power supply value Pout2 is achieved.
  • the corresponding decrease value ( ⁇ P1) described above is actually guaranteed (see reference numeral P62 in FIG. 14).
  • FIGS. 15A and 15B are flow charts showing processing examples (processing examples including the above-mentioned replacement processing of the power supply value Pout1) at the time of ablation according to this modification, respectively.
  • the processing examples shown in FIGS. 15A and 15B are obtained by adding or changing some of the processing in the processing examples of FIGS. 5A and 5B described in the embodiment. Therefore, in the following, processing examples of these added or changed parts (steps S12a, S14a, S31, S32, S19a, S21a described below) will be excerpted and described.
  • step S12a in FIG. 15A and step S19a in FIG. 15B the power supply unit 32 measures the impedance value Z and the measurement temperature Tm, respectively, in the same manner as in steps S12 and S19 (FIGS. 5A and 5B) described above. Is measured by the electrode needle 1. Further, in these steps S12a and S19a, the above-mentioned voltage V measurement information is further supplied from the power supply unit 32 to the control unit 33. In this way, the control unit 33 acquires the measurement information of the impedance value Z and the voltage V at each of these time points and the temperature information It indicating the measurement temperature Tm, respectively.
  • step S14a in FIG. 15A and step S21a in FIG. 15B the control unit 33 automatically counts the number of breaks Nb described above, as in steps S14 and S21 (FIGS. 5A and 5B) described above, respectively. do. Further, in these steps S14a and S21a, the control unit 33 is in a break state in addition to the elapsed time ⁇ tsn, the power supply value (power supply value Pout1), and the measurement temperature Tm described above at each of these time points.
  • the voltage V (voltage value Vb: see FIGS. 13 and 14) is stored, respectively.
  • step S31 in FIG. 15A the step immediately after step S15 described above
  • the maximum voltage value Vmax described above is a value set in advance at the time of designing, for example, in this example, in step S10 (processing of setting various parameters by the operator of the power supply device 3) described above, the above-mentioned maximum voltage value Vmax is set in advance. It is not set.
  • step S31: N the above-mentioned actual output value Pout'is not in the above-mentioned peaking state.
  • step S32 the control unit 33 proceeds to the above-mentioned step S16 without executing such a replacement process of the power supply value Pout1.
  • step S31: Y the control unit 33 then moves the above-mentioned.
  • the set value of the power Pout (reference numeral P23a) and the actual output value Pout'(see the reference numeral P23b) are distinguished from each other. In the embodiment, they are individually displayed on the display unit 34. More specifically, in the example of FIG. 4, the set value of the power Pout (reference numeral P23a) is the position of the denominator in the fraction, and the actual output value Pout'(see the reference numeral P23b) is the position of the numerator in the fraction. As shown above, it is displayed on the display unit 34. That is, in the example of FIG. 4, it is displayed in the same format as the time-series change in the set value and the actual output value (Pout') of the power Pout shown schematically in the lower part of FIGS. 13 and 14 described above. The display is made on the unit 34.
  • such various information is displayed on the display unit 34 (when the display unit 34 is an example of the "output unit" in the present invention). Not limited to this example. That is, various information may be output to the outside by using another method such as external output of a predetermined voice.
  • the replacement process of the power supply value Pout1 is performed based on the actual output value Pout'of the power Pout in the period before the transition to the break state, so that the process is as follows. That is, in this modification, first, the replacement process of the power supply value Pout1 is performed based on the actual output value Pout'of the power Pout in such a period, not the set value of the power Pout in the period before the transition to the break state. Is done. That is, when the above-mentioned peaking state is reached, as described above, the actual output value Pout'of the power Pout deviates from the set value (the set value is not reached), so that the actual output of the power Pout is not reached.
  • the predetermined decrease value ( ⁇ P1) described above can be easily secured when the power supply is restarted.
  • the transition to the next break state in a short time is more likely to be avoided, so that it is possible to further improve the cauterization efficiency during ablation. Will be.
  • the maximum value (Pout'(max)) of the actual output value Pout'of the power Pout before the transition to the break state is replaced with the power supply value Pout1 to obtain the above-mentioned power supply value Pout1.
  • the result is as follows. That is, even when the above-mentioned peaking state is reached, the transition to the next break state in a short time is more likely to be avoided. As a result, the cauterization efficiency during ablation can be further improved.
  • both the set value and the actual output value (Pout') at the time of supplying the electric power Pout are output to the outside in chronological order on the display unit 34. It will be like. That is, for example, whether or not the above-mentioned peaking state is reached (the set value of the power Pout and the actual output value Pout'are different values), and how much the peaking state is (power Pout).
  • the user such as the operator of the power supply device 3 can grasp at a glance the situation such as (how much the set value and the actual output value Pout'are different from each other). Therefore, it is possible to improve the convenience of the user.
  • each member described in the above-described embodiment and the like are not limited, and may be other materials.
  • the configuration of the electrode needle 1 has been specifically described, but it is not always necessary to include all the members, and other members may be further provided.
  • the values, ranges, magnitude relations, etc. of various parameters described in the above-described embodiments are not limited to those described in the above-described embodiments, and may be other values, ranges, magnitude relations, etc. good.
  • the block configurations of the liquid supply device 2 and the power supply device 3 have been specifically described, but it is not always necessary to include all the blocks described in the above-described embodiment and the like. Other blocks may be further provided. Further, the ablation system 5 as a whole may be further provided with other devices in addition to the devices described in the above-described embodiment and the like.
  • control operation (ablation method) in the control unit 33 including the power supply control function and the liquid supply control function has been specifically described.
  • the control method (ablation method) in these power supply control functions, liquid supply control functions, and the like is not limited to the methods mentioned in the above-described embodiments.
  • the method of replacing the power supply value Pout1 has been specifically described, but for example, another method may be used to perform the replacement process of the power supply value Pout1.
  • the above-mentioned target The target time without the above-mentioned impedance rise value ⁇ Z exceeding the threshold value ⁇ Zth (without any sign of the second break state) before reaching the time ⁇ tse or shifting to the second break state.
  • ⁇ tse There may be cases where ⁇ tse is reached.
  • the transition to the first break state is indispensable even if the target time ⁇ tse is exceeded, or the occurrence of the second break state sign is indispensable even if the target time ⁇ tse is exceeded. You may try to do it.
  • control using the measured temperature Tm (temperature information It) (processing for changing the supply value of the power Pout, etc.) is performed.
  • Tm temperature information It
  • Control processing of changing the supply value of the power Pout, etc.
  • ⁇ E integrated value of the supply value of the power Pout from ts at the start of ablation
  • the series of processes described in the above-described embodiment or the like may be performed by hardware (circuit) or software (program).
  • the software is composed of a group of programs for executing each function by a computer.
  • Each program may be used by being preliminarily incorporated in the computer, for example, or may be installed and used in the computer from a network or a recording medium.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Otolaryngology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

アブレーションの際の焼灼効率を向上させることが可能なアブレーションシステムを提供する。アブレーションシステム5は、電極針1と、電力Poutを供給する電源部32と制御部33とを有する電源装置3と、を備えている。制御部33は、アブレーションの際に、電極針1と対極板4との間のインピーダンス値Zを測定すると共に、そのインピーダンス値Zが閾値Zthを越えてブレイク状態へと移行した回数であるブレイク回数Nbをカウントし、そのブレイク回数Nbが閾値Nthに到達した場合には、電力Poutの供給を自動的に停止させることにより、アブレーションを自動的に終了させる一方、ブレイク回数Nbが閾値Nthに到達していない場合には、ブレイク状態へと移行する際における電力供給値Pout1を基準として、電力Poutの供給を一時的に低下または停止させると共に、電力Poutの供給値を、電力供給値Pout1から所定の減少値ΔP1の分だけ低下させた電力供給値Pout2に設定した状態で、電力Poutの供給を再開させる。

Description

アブレーションシステム
 本発明は、体内の患部に対して経皮的に穿刺される電極針と、アブレーション(焼灼)を行うための電力を供給する電源装置と、を備えたアブレーションシステムに関する。
 患者体内の患部(例えば癌などの腫瘍を有する患部)を治療するための医療機器の1つとして、そのような患部に対してアブレーションを行う、アブレーションシステムが提案されている(例えば、特許文献1参照)。このアブレーションシステムは、体内の患部に対して経皮的に穿刺される電極針と、患部に対するアブレーションを行うための電力を供給する電源装置とを、備えている。
特開2019-41782号公報
 ところで、このようなアブレーションシステムでは一般に、例えば、アブレーションの際の焼灼効率を向上することが求められている。アブレーションの際の焼灼効率を向上させることが可能なアブレーションシステムを提供することが望ましい。
 本発明の一実施の形態に係るアブレーションシステムは、体内の患部に対して経皮的に穿刺される電極針と、この電極針と対極板との間にアブレーションを行うための電力を供給する電源部とこの電源部における電力の供給動作を制御する制御部とを有する電源装置と、を備えたものである。上記制御部は、アブレーションの際に、電極針と対極板との間のインピーダンス値を測定すると共に、そのインピーダンス値が第1閾値を越えてブレイク状態へと移行した回数であるブレイク回数をカウントし、このブレイク回数が第2閾値に到達した場合には、電力の供給を自動的に停止させることにより、アブレーションを自動的に終了させる一方、上記ブレイク回数が上記第2閾値に到達していない場合には、上記ブレイク状態へと移行する際における電力の供給値である第1電力供給値を基準として、電力の供給を一時的に低下または停止させると共に、上記第1電力供給値から所定の減少値の分だけ低下させた第2電力供給値に設定した状態で、電力の供給を再開させる。
 本発明の一実施の形態に係るアブレーションシステムでは、制御部において上記ブレイク回数がカウントされると共に、このブレイク回数が上記第2閾値に到達した場合には、電源部からの電力供給が自動的に停止されることで、アブレーションが自動的に終了する。これにより、例えば、ブレイク回数を目視等で確認してからアブレーションを手動で終了させる場合や、ブレイク回数を確認せずに所定の待機時間が経過してからアブレーションを自動終了させる場合などと比べ、効果的なアブレーションが容易に実施できるようになる。また、上記ブレイク回数が上記第2閾値に到達していない場合には、上記第1電力供給値を基準として電力の供給が一時的に低下または停止されると共に、電力の供給値が、上記第1電力供給値から所定の減少値の分だけ低下させた第2電力供給値に設定された状態で、電力の供給が再開される。これにより、例えば、上記第1電力供給値程度の電力供給値にて電力供給が再開されるような場合と比べ、次のブレイク状態へと短時間に移行しにくくなる(次のブレイク状態に移行するまでの時間をある程度確保することができる)。したがって、電力供給の再開後のアブレーションが有効化され、アブレーション対象に対して効率良く焼灼を行うことができる(ブレイク状態への移行に伴う焼灼効率の低下を、防止し易くなる)。
 本発明の一実施の形態に係るアブレーションシステムでは、上記制御部は、電力の供給の再開後においては、次のブレイク状態へと移行するまで、電力の供給値が維持されるように制御してもよい。このようにした場合、次のブレイク状態に移行するまでの時間が、更に確保し易くなることから、更に効率良く焼灼が行われる。その結果、アブレーションの際の焼灼効率が、更に向上される。
 この場合において、アブレーションの開始時から終了時までの目標時間が設定されていると共に、上記制御部は、電力の供給値を維持している状態において、上記目標時間のうちの現時点から終了時までの残時間が、第3閾値以上であると共に、上記インピーダンス値における単位時間当たりの上昇値が、第4閾値以上である場合には、電力の供給値を更に低下させるようにしてもよい。このようにした場合、上記目標時間までの残時間がある程度確保されている状況にて、次のブレイク状態へと移行する兆候が発生していることから、電力の供給値を更に低下させることで、次のブレイク状態への短時間での移行が、より回避され易くなる。したがって、より一層効率良く焼灼が行われる結果、アブレーションの際の焼灼効率が、より一層向上される。
 また、上記制御部は、電力の供給値を維持している状態において、上記残時間が上記第3閾値未満であると共に、上記インピーダンス値における単位時間当たりの上昇値が、上記第4閾値未満である場合には、電力の供給値を上昇させるようにしてもよい。このようにした場合、上記目標時間までの残時間が少なくなった状況においても、次のブレイク状態へと移行する兆候が、まだ発生していないことから、電力の供給値を上昇させることで、次のブレイク状態へと強制的に移行し易くし、上記目標時間内でのアブレーションの終了を促進することができる。したがって、長時間のアブレーションによる患者の体への負担を最小限に抑えつつ、アブレーションの際の焼灼効率が、より一層向上される。
 更に、上記制御部は、電力の供給値を維持している状態において、上記残時間が上記第3閾値未満であると共に、上記インピーダンス値における単位時間当たりの上昇値が、上記第4閾値以上である場合には、電力の供給値を維持すると共に、上記アブレーションの開始時からの経過時間が、上記目標時間まで到達したのか否かを判定し、上記経過時間が上記目標時間まで到達した場合には、電力の供給を自動的に停止させることにより、上記アブレーションを自動的に終了させる一方、上記経過時間が上記目標時間まで到達していない場合には、上記インピーダンス値が上記第1閾値を越えて、次のブレイク状態へと移行したのか否かを判定するようにしてもよい。
 加えて、上記電極針の先端付近での測定温度を示す情報が、上記電極針から上記制御部へと供給されるようになっていると共に、上記制御部は、上記ブレイク状態への移行前における上記測定温度を基準として、電力の供給の再開後における上記測定温度の低下量が第5閾値以上である場合には、電力の供給値を上記第2電力供給値から上昇させるようにしてもよい。このようにした場合、電力供給の再開後における上記測定温度の大幅な低下による、アブレーションの効率低下が回避される結果、アブレーションの際の焼灼効率が、更に向上される。
 ここで、上記制御部は、上記残時間が長くなるのに従って、上記所定の減少値が大きくなるように調整してもよい。このようにした場合、上記残時間が長いほど、上記所定の減少値が大きくなるように調整されることで、次のブレイク状態への短時間での移行が、更に回避され易くなる。したがって、更に効率良く焼灼が行われる結果、アブレーションの際の焼灼効率が、更に向上される。
 また、上記制御部は、上記アブレーションの際の電圧が上限値に到達したことに起因して、電力の供給の際の実出力値が頭打ち状態になっているのか否かの判定結果に応じて、上記ブレイク状態の期間中に、上記第1電力供給値の置き換え処理を行うようにしてもよい。このようにした場合、上記頭打ち状態になっていることに起因して、ブレイク状態への移行後の電力供給再開の際における上記第2電力供給値の実出力値が、上記第1電力供給値とほとんど差が無くなってしまう(上記所定の減少値が、実際には担保されなくなってしまう)状況の発生が、防止され易くなる。つまり、上記頭打ち状態になった場合においても、次のブレイク状態への短時間での移行が回避され易くなり、効率良く焼灼が行われる結果、アブレーションの際の焼灼効率が、更に向上される。
 この場合において、具体的には例えば、上記制御部は、上記頭打ち状態になっていると判定された場合には、上記第1電力供給値の置き換え処理を実行し、上記頭打ち状態になっていないと判定された場合には、上記第1電力供給値の置き換え処理を実行しないようにしてもよい。
 ここで、上記制御部は、上記ブレイク状態への移行前の期間における、電力の実出力値に基づいて、上記第1電力供給値の置き換え処理を行うようにしてもよい。このようにした場合、上記ブレイク状態への移行前の期間における電力の設定値ではなく、そのような期間における電力の実出力値を基にして、上記第1電力供給値の置き換え処理が行われることから、以下のようになる。すなわち、上記頭打ち状態になった場合、電力の実出力値が設定値と乖離してしまう(設定値まで到達しなくなってしまう)ことから、電力の実出力値を基にして記第1電力供給値の置き換え処理が行われることで、上記した電力供給再開の際に、上記所定の減少値が、実際に担保され易くなる。その結果、上記頭打ち状態になった場合においても、次のブレイク状態への短時間での移行が、更に回避され易くなることから、アブレーションの際の焼灼効率が、更に向上される。
 この場合において、具体的には例えば、上記制御部は、上記ブレイク状態への移行前での上記頭打ち状態の期間付近における、電力の実出力値に基づいて、上記第1電力供給値の置き換え処理を行うようにしてもよい。また、より具体的には、例えば、上記制御部は、上記ブレイク状態への移行前における電力の実出力値の最大値を、上記第1電力供給値として置き換えることによって、上記第1電力供給値の置き換え処理を行うようにしてもよい。このようにして、上記ブレイク状態への移行前における、電力の実出力値の最大値への置き換えを利用して、上記第1電力供給値の置き換え処理を行うようにした場合には、上記頭打ち状態になった場合においても、次のブレイク状態への短時間での移行が、より一層回避され易くなる。その結果、アブレーションの際の焼灼効率が、より一層向上される。
 ここで、外部への情報出力を行う出力部を、更に設けるようにすると共に、この出力部が、電力の供給の際の設定値および実出力値の双方を、時系列にて外部へと出力するようにしてもよい。このようにした場合、例えば、上記頭打ち状態となっている(上記電力の設定値と実出力値とが異なる値になっている)のか否かや、どの程度の頭打ち状態であるのか(上記電力の設定値と実出力値とが、どの程度乖離している状態であるのか)等の状況を、電源装置の操作者等のユーザが、一見して把握することができる。よって、ユーザの利便性が向上することになる。
 また、上記制御部は、上記アブレーションの開始時から初回のブレイク状態へと移行する時点までの期間においては、電力の供給値が上昇していくように制御してもよい。
 更に、上記制御部は、上記アブレーションの開始時からの経過時間が、上記目標時間まで到達する前に、上記ブレイク回数が上記第2閾値としての2回に到達して、上記アブレーションが自動的に終了するように制御してもよい。このようにした場合、最小限のブレイク回数に抑えつつ、アブレーションが終了することから、アブレーションの際の患者の体への負担を最小限に抑えつつ、焼灼効率を向上させることが可能となる。
 本発明の一実施の形態に係るアブレーションシステムによれば、上記ブレイク回数が上記第2閾値に到達していない場合には、上記第1電力供給値を基準として電力の供給を一時的に低下または停止させると共に、上記第1電力供給値から所定の減少値の分だけ低下させた第2電力供給値に設定した状態で、電力の供給を再開させるようにしたので、短時間で効率良く焼灼を行うことができる。よって、アブレーションの際の焼灼効率を、向上させることが可能となる。
本発明の一実施の形態に係るアブレーションシステムの全体構成例を模式的に表すブロック図である。 アブレーションによる患部での焼灼具合の一例を表す模式図である。 アブレーションの際のブレイク状態およびブレイク回数の一例を模式的に表すタイミング図である。 実施の形態に係るアブレーションの際の表示部での表示態様の一例を表す模式図である。 実施の形態に係るアブレーションの処理例を表す流れ図である。 図5Aに続く処理例を表す流れ図である。 図5Aに示した一部の処理の詳細処理例を表す流れ図である。 図5Aに示した電力供給再開および電力供給値変更の際の動作モードの一例を表す図である。 図6に示した一部の処理の際のタイミング波形例を表す模式図である。 図6に示した他の一部の処理の際のタイミング波形例を表す模式図である。 図6に示した他の一部の処理の際のタイミング波形例を表す模式図である。 図6に示した他の一部の処理の際のタイミング波形例を表す模式図である。 比較例および実施例に係るアブレーションの際のタイミング波形例を表す図である。 参考例に係るアブレーションの際のタイミング波形例を表す模式図である。 変形例に係るアブレーションの際のタイミング波形例を表す模式図である。 変形例に係るアブレーションの処理例を表す流れ図である。 図15Aに続く処理例を表す流れ図である。
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
1.実施の形態(ブレイク状態への移行後の再開時の電力供給値を制御する手法の例)
2.変形例(所定の判定結果に応じて、移行時の電力供給値の置き換え処理を行う例)
3.その他の変形例
<1.実施の形態>
[構成]
 図1は、本発明の一実施の形態に係るアブレーションシステム(アブレーションシステム5)の全体構成例を、模式的にブロック図で表したものである。このアブレーションシステム5は、例えば図1に示したように、患者9の体内における患部90を治療する際に用いられるシステムであり、そのような患部90に対して所定のアブレーションを行うようになっている。なお、上記した患部90としては、例えば、癌(肝癌,肺癌,乳癌,腎臓癌,甲状腺癌など)等の腫瘍を有する患部が挙げられる。
 アブレーションシステム5は、図1に示したように、電極針1、液体供給装置2および電源装置3を備えている。また、このアブレーションシステム5を用いたアブレーションの際には、例えば図1に示した対極板4も、適宜使用されるようになっている。
(A.電極針1)
 電極針1は、例えば図1中の矢印P1で示したように、患者9の体内における患部90に対して、経皮的に穿刺される針である。この電極針1は、上記したアブレーションの際に使用されるものであり、例えば図1に示したように、電極部11および被覆部12を有している。なお、このような電極針1の内部には、後述する液体供給装置2から供給される液体Lが、循環して流れるようになっている(図1参照)。
 電極部11は、電極針1を構成する針状構造体のうち、絶縁性の被覆がなされてない領域部分であり、アブレーションの際の電極として機能する部分である。被覆部12は、上記した針状構造体のうち、絶縁性の被覆がなされている領域部分である。図1に示したように、電極針1における先端付近に電極部11が配置されていると共に、この電極部11の基端側に被覆部12が配置されるようになっている。
(液体供給装置2)
 液体供給装置2は、上記した電極針1に対して冷却用の液体Lを供給する装置であり、例えば図1に示したように、液体供給部21を有している。なお、この冷却用の液体Lとしては、例えば、滅菌水や、滅菌した生理食塩水などが挙げられる。
 液体供給部21は、後述する制御信号CTL2による制御に従って、上記した液体Lを電極針1に対して随時供給するものである。具体的には、例えば図1に示したように、液体供給部21は、液体供給装置2の内部と電極針1の内部との間(所定の流路内)を液体Lが循環するようにして、液体Lの供給動作を行う。また、詳細は後述するが、上記した制御信号CTL2による制御に従って、このような液体Lの供給動作が実行されたり、停止されたりするようになっている。なお、このような液体供給部21は、例えば、液体ポンプ等を含んで構成されている。
(電源装置3)
 電源装置3は、電極針1と対極板4との間にアブレーションを行うための電力Pout(例えば高周波(RF;Radio Frequency)の電力)を供給すると共に、上記した液体供給装置2における液体Lの供給動作を制御する装置である。この電源装置3は、図1に示したように、入力部31、電源部32、制御部33および表示部34を有している。
 入力部31は、各種の設定値や、後述する所定の動作を指示するための指示信号(操作信号Sm)を入力する部分である。このような操作信号Smは、電源装置3の操作者(例えば技師等)による操作に応じて、入力部31から入力されるようになっている。ただし、これらの各種の設定値が、操作者による操作に応じて入力されるのではなく、例えば、製品の出荷時等に予め電源装置3内で設定されているようにしてもよい。また、入力部31により入力された設定値は、後述する制御部33へ供給されるようになっている。なお、このような入力部31は、例えば所定のダイヤルやボタン、タッチパネル等を用いて構成されている。
 電源部32は、後述する制御信号CTL1に従って、上記した電力Poutを電極針1と対極板4との間に供給する部分である。このような電源部32は、所定の電源回路(例えばスイッチングレギュレータ等)を用いて構成されている。なお、電力Poutが高周波電力からなる場合、その周波数は、例えば450kHz~550kHz程度(例えば500kHz)である。
 制御部33は、電源装置3全体を制御すると共に所定の演算処理を行う部分であり、例えばマイクロコンピュータ等を用いて構成されている。具体的には、制御部33は、まず、制御信号CTL1を用いて、電源部32における電力Poutの供給動作を制御する機能(電力供給制御機能)を有している。また、制御部33は、制御信号CTL2を用いて、液体供給装置2(液体供給部21)における液体Lの供給動作を制御する機能(液体供給制御機能)を有している。更に、制御部33は、後述する表示部34における表示動作を制御する機能(表示制御機能)を有している。
 このような制御部33にはまた、例えば図1に示したように、電極針1の先端付近(電極部11の内部に配置された熱電対等の温度センサ)での測定温度Tmを示す温度情報Itが、随時供給されるようになっている。また、例えば図1に示したように、制御部33には、上記した電源部32からインピーダンス値Z(後述)の測定値が、随時供給されるようになっている。
 なお、上記した電力供給制御機能および液体供給制御機能を含む、制御部33における制御動作等の詳細については、後述する。
 表示部34は、各種の情報を表示して外部へと出力する部分(モニター)である。表示対象の情報としては、例えば、入力部31から入力される前述の各種の設定値や、制御部33から供給される各種パラメータ(例えば、後述するインピーダンス値Zやブレイク回数Nbのカウント値など)、電極針1から供給される温度情報It(前述した測定温度Tmの情報)などが挙げられる。ただし、表示対象の情報としてはこれらの情報には限られず、他の情報を代わりに、あるいは他の情報を加えて表示するようにしてもよい。このような表示部34は、各種の方式によるディスプレイ(例えば、液晶ディスプレイやCRT(Cathode Ray Tube)ディスプレイ、有機EL(Electro Luminescence)ディスプレイなど)を用いて構成されている。
 ここで、このような表示部23は、本発明における「出力部」の一具体例に対応している。なお、このような表示部34上に表示される情報の詳細例については、後述する(図4)。
(対極板4)
 対極板4は、例えば図1に示したように、アブレーションの際に患者9の体表に装着された状態で用いられるものである。詳細は後述するが、アブレーションの際に、前述した電極針1(電極部11)とこの対極板4との間で、高周波通電がなされる(電力Poutが供給される)ようになっている。また、詳細は後述するが、このようなアブレーションの際に、図1に示したように、電極針1(電極部11)と対極板4との間のインピーダンス値Zが随時測定され、測定されたインピーダンス値Zが、電源装置3内において電源部32から制御部33へと供給されるようになっている。
[動作および作用・効果]
(A.基本動作)
 このアブレーションシステム5では、例えば癌等の腫瘍を有する患部90を治療する際に、そのような患部90に対して所定のアブレーションが行われる(図1参照)。このようなアブレーションでは、まず、例えば図1中の矢印P1で示したように、患者9の体内の患部90に対し、電極針1が先端側(電極部11側)から経皮的に穿刺される。そして、この電極針1と対極板4との間に、電源装置3(電源部32)から電力Pout(例えば高周波電力)が供給されることで、患部90に対して、ジュール発熱によるアブレーションが行われる。
 また、このようなアブレーションの際には、液体供給装置2の内部と電極針1の内部との間(所定の流路内)を冷却用の液体Lが循環するように、液体供給装置2(液体供給部21)から電極針1に対して液体Lが供給される(図1参照)。これにより、アブレーションの際に、電極針1に対する冷却動作(クーリング)が行われる。なお、アブレーションの終了後には、このような冷却動作も停止された後、電極針1の先端付近での測定温度Tmを示す温度情報Itを基に、患部90の組織温度が十分に上昇しているのかなど、患部の焼灼具合が確認される。
 図2は、このようなアブレーションによる患部90での焼灼具合の一例を、模式的に表したものである。この図2に示したように、患部90に穿刺された電極針1を用いて上記したアブレーションがなされると、例えば、当初のラグビボール状(楕円球状)の熱凝固領域Ah1が、徐々に拡がっていくことで、ほぼ球状の熱凝固領域Ah2が得られる(図2中の破線の矢印を参照)。これにより、患部90全体への等方的なアブレーションが行われる結果、患部90への効果的な治療がなされることになる。
(B.ブレイク状態およびブレイク回数について)
 ここで、図1,図2に加えて、図3を参照して、上記したアブレーションの詳細(後述するブレイク状態およびブレイク回数)について説明する。図3は、アブレーションの際のブレイク状態およびブレイク回数の一例を、タイミング図にて模式的に表したものである。具体的には、この図3では、電極針1(電極部11)と対極板4との間のインピーダンス値Zの測定波形例を、時間軸に沿って示している。
 図3に示した例のように、一般に、電極針1を使用したアブレーションの際には、患部90における組織内の水分の蒸発により、インピーダンス値Zが急激に上昇していく。このようなインピーダンス値Zの急激な上昇(インピーダンスライズ)は、患部90における組織の熱凝固の指標となることから、アブレーションの際の停止タイミングの目安となる。具体的には、インピーダンス値Zが所定の閾値Zthを越えた状態(Z>Zth)は、「ブレイク状態」と呼ばれる(図3参照)。また、このようなブレイク状態へと移行すると、アブレーション(電力Poutの供給)が一時的に停止された後、アブレーションが再開される。なお、アブレーションが一時的に停止されると、周りの組織から患部90における組織内へ水分が供給される結果、インピーダンス値Zが再度低下することになる(図3参照)。そして、このような断続的なアブレーションが複数回繰り返されることで、患部90への治療がなされる。なお、上記したアブレーションの一時的な停止時間(アブレーションの再開までの待機時間)としては、例えば、予め設定された所定時間(例えば10秒~15秒程度)、または、インピーダンス値Zが概ね上昇前の値に戻るまでの時間が挙げられる。
 具体的には、この図3に示した例では、時間の経過とともに、タイミングt1,t2,t3の3回、ブレイク状態へと移行して、アブレーションが一時的に停止されている。このように、ブレイク状態への移行が複数回繰り返される場合における、ブレイク状態へ移行した回数(移行回数)を、以下、「ブレイク回数Nb」と称する。つまり、この図3の例では、タイミングt1において1回目のブレイク状態へと移行し(Nb=1)、タイミングt2において2回目のブレイク状態へと移行し(Nb=2)、タイミングt3において3回目のブレイク状態へと移行している(Nb=3)。
 ちなみに、電極針1を使用したアブレーションによる患部90への治療では、このブレイク回数Nbは、一般に、2~3回(Nb=2またはNb=3)程度が目安とされている。つまり、前述の図2中に示した熱凝固領域Ah1,Ah2はそれぞれ、一例として、Nb=1,Nb=3の場合に相当している。
 このようなブレイク回数Nbのカウント値等の各種情報は、例えば図4に模式的に示したように、電源装置3における表示部34に、随時表示されるようになっている。具体的には、この表示部34では、まず、前述した図3にも模式的に示したように、インピーダンス値Zの測定波形が、時間軸に沿って表示されている(図4中の符号P20参照)。また、この表示部34の例では更に、インピーダンス値Zの現在値(Impedance:符号P21参照)と、前述した測定温度Tmを示す温度情報It(Temperature:符号P22参照)と、電力Poutの供給値(Power:符号P23参照)と、アブレーション時間(後述する、アブレーションの開始時からの経過時間Δtsn)の情報(Ablation Time:符号P24参照)とが、それぞれ表示されている。更に、この表示部34の例では、図4中に示したように、インピーダンス値Zの現在値(符号P21参照)とともに、前述したブレイク回数Nbのカウント値が、併せて表示されている。加えて、この表示部34の例では、図4中の符号P25で示したように、アブレーションの開始時から初回のブレイク状態となるまでの経過時間(前述したタイミングt1までの時間)と、電力Poutの供給動作によるエネルギー量ΔE(アブレーションの開始時からの、電力Poutの供給値の積算値(エネルギー積算値,ジュール量))とがそれぞれ、表示されるようになっている。
(C.本実施の形態のアブレーション)
 続いて、図1~図4に加えて、図5A~図11を参照して、本実施の形態のアブレーションシステム5におけるアブレーションについて、詳細に説明する。
 ここで、図5A,図5Bは、本実施の形態のアブレーションの処理例を、流れ図で表したものである。また、図6は、図5Aに示した一部の処理(後述するステップS17の処理:必要に応じて電力Poutの供給値を変更する処理)の詳細処理例を、流れ図で表したものである。また、図7は、後述する電力Poutの供給再開(図5AのステップS16)、および、後述する電力Poutの供給値変更(図5AのステップS17)の際の、動作モードの一例を表したものである。また、図8~図11はそれぞれ、図6に示した処理(上記したステップS17の処理)の際のタイミング波形例を、模式的に表したものである。なお、これらの図8~図11ではそれぞれ、横軸は時間を示しており、縦軸は、電力Poutの供給値およびインピーダンス値Zを、示している。
 この本実施の形態のアブレーションでは、まず、前述した閾値Zth(インピーダンス値Zの閾値)や、後述する閾値Nth(ブレイク回数Nbの閾値)等を含む、各種パラメータの設定が行われる(図5AのステップS10)。このような各種パラメータとしては、上記した閾値Zth,Nthの他、閾値ΔZth(後述するインピーダンス上昇値ΔZの閾値)、閾値ΔTmth(後述する測定温度Tmの低下量ΔTmの閾値)、後述するアブレーションの際の目標時間Δtse、および、閾値Δtrth(後述する残時間Δtrの閾値)等が、挙げられる。また、これらの各種パラメータ(閾値Zth,ΔZth,Nth,ΔTmth,Δtrthおよび目標時間Δtse等)の設定値はそれぞれ、電源装置3の操作者による操作に応じて入力部31から入力され、制御部33へと供給されるようになっている。
 なお、上記したインピーダンス値Zの閾値Zthは、本発明における「第1閾値」の一具体例に対応し、上記したブレイク回数Nbの閾値Nthは、本発明における「第2閾値」の一具体例に対応している。また、上記した残時間Δtrの閾値Δtrthは、本発明における「第3閾値」の一具体例に対応し、上記したインピーダンス上昇値ΔZの閾値ΔZthは、本発明における「第4閾値」の一具体例に対応し、上記した測定温度Tmの低下量ΔTmの閾値ΔTmthは、本発明における「第5閾値」の一具体例に対応している。
 ここで、閾値Nthとしては、ブレイク回数Nbに関して前述したように、例えば2回(Nth=2)(あるいは3回(Nth=3))が挙げられる。また、閾値Zthとしては、絶対値で規定する手法(例えば、Zth=120[Ω]程度)と、相対値で規定する手法(何Ωもしくは何%上昇したかで規定する手法:例えば、30Ω程度もしくは30%程度の上昇など)と、に大別される。更に、この相対値で規定する手法としても、アブレーションの開始時におけるインピーダンス値Zを基準として規定する手法と、アブレーション開始後におけるインピーダンス値Zの最小値を基準として規定する手法と、が挙げられる。なお、前述したように、このような各種のパラメータの設定値が、操作者による操作に応じて入力されるのではなく、例えば、製品の出荷時等に予め電源装置3内で設定されているようにしてもよい。
 次に、電極針1と対極板4との間に電源装置3(電源部32)から電力Poutを供給することで、患部90に対するアブレーションを開始する(ステップS11)。具体的には、このアブレーションの開始は、電源装置3の操作者による操作に応じて、操作信号Smが入力部31から入力されて制御部33へと供給されることで、実行される。すなわち、この例では、アブレーションが手動で開始されるようになっている。
 ここで、例えば図8~図11中の破線の矢印で示したように、このようなアブレーションの開始時tsから、後述する1回目(初回)のブレイク状態へと移行する時点(タイミングt1)までの期間においては、制御部33は、例えば、電力Poutの供給値が上昇していくように制御する。具体的には、図8~図11の例では、制御部33は、この期間における電力Poutの供給値が、徐々に(線形的に)上昇していくように制御している。ただし、制御部33は、例えば、この期間における電力Poutの供給値が、階段状に上昇していくように制御してもよい。なお、この期間における電力Poutの供給値の上昇が、制御部33によって自動的に制御されるのではなく、電源装置3の操作者による操作(操作信号Sm)に応じて、手動で制御されるようにしてもよい。
 続いて、このようなアブレーションが開始されると、まず、電源部32が、電極針1と対極板4との間のインピーダンス値Zを測定すると共に、前述した電極針1の先端付近での測定温度Tmについての測定が、電極針1にて行われる(ステップS12)。言い換えると、制御部33は、この時点における、インピーダンス値Zの測定情報と、測定温度Tmを示す温度情報Itとを、それぞれ取得する(図1参照)。
 そして、これらのインピーダンス値Zおよび測定温度Tmがそれぞれ、電源部32や電極針1から制御部33へと供給されると、次に制御部33は、以下の判定を行う。すなわち、制御部33は、インピーダンス値Zが、ステップS10において設定された閾値Zthよりも大きいのか否か(Z>Zthを満たすのか否か)、つまり、前述したブレイク状態へと移行したのか否かについて、判定を行う(ステップS13)。ここで、インピーダンス値Zが閾値Zth以下である(Z>Zthを満たさない)と判定された場合には(ステップS13:N)、上記したステップS12へと戻り、インピーダンス値Z等の測定が、再度行われる。
 一方、インピーダンス値Zが閾値Zthよりも大きい(Z>Zthを満たす)と判定された場合(ステップS13:Y)、前述したブレイク状態(ここでは、1回目のブレイク状態)へと移行したことを意味する。そこで、この場合、次に制御部33は、このブレイク状態の回数(ブレイク回数Nb:ここでは、Nb=1)を自動的にカウントする(ステップS14)。なお、このブレイク回数Nbのカウント値は、例えば制御部33内の各種記憶媒体に、随時記憶されることになる。
 また、このステップS14において、制御部33は、このような1回目のブレイク状態へと移行する際(1回目のブレイク時)における、各種パラメータを記憶する。具体的には、制御部33は、まず、アブレーションの開始時tsから現時点(ここでは、タイミングt1)までの経過時間Δtsn(図8参照)を、記憶する。また、制御部33は、1回目のブレイク状態へと移行する際(例えば、ブレイク状態へと移行する時点や、インピーダンス値Zが安定化した時点など)における、電力Poutの供給値(電力供給値Pout1:図8~図11参照)を、記憶する。更に、制御部33は、1回目のブレイク状態への移行前における、前述した測定温度Tm(例えば、移行前の所定期間内での平均温度)を、記憶する。
 続いて、制御部33は、前述した制御信号CTL1を用いて、電源部32からの電力Poutの供給を、上記した電力供給値Pout1を基準として、一時的に低下または停止させることで、アブレーションを一時的に停止させる(ステップS15:図8~図11中の電力Poutにおける破線の矢印参照)。これにより前述したように、インピーダンス値Zが再度低下し、ブレイク状態から抜けることになる(図8~図11参照)。
 次に、制御部33は、電力Poutの供給値を、上記した電力供給値Pout1から所定の減少値ΔP1(例えば、20[W]程度)の分だけ低下させた電力供給値Pout2(=Pout1-ΔP1)に設定した状態で、電力Poutの供給(アブレーション)を再開させる(ステップS16:図8~図11中の電力Poutにおける破線の矢印参照)。この電力供給値Pout2は、例えば、ブレイク状態へと再度移行してしまう直前のぎりぎりの電力供給値(例えば、電力供給値Pout1の80%程度の電力供給値)に設定される。また、制御部33は、このような電力Poutの供給の再開後においては、次のブレイク状態へと移行するまで、基本的には(後述のステップS17における電力供給値の変更処理が行われる場合を除いて)、電力Poutの供給値が維持されるように制御する(図8~図11中の電力Poutにおける破線の矢印参照)。
 ちなみに、制御部33は、例えば図8中の実線の矢印A1にて示したようにして、上記した減少値ΔP1の大きさを調整するようにしてもよい。すなわち、この減少値ΔP1の大きさが、予め設定された固定値ではなく、アブレーションの際に随時調整されるようにしてもよい。具体的には、制御部33は、図8に示したように、アブレーションの開始時tsから終了時teまでの目標時間Δtseのうちの、現時点(ここではタイミングt1)から終了時teまでの残時間Δtr(=目標時間Δtse-経過時間Δtsn)が、長くなるのに従って、この減少値ΔP1が大きくなるように調整してもよい。なお、このアブレーションの際の目標時間Δtseとしては、例えば、6分~12分程度が挙げられ、一例としては8分程度である。
 ここで、図7に示したように、このような電力Poutの供給再開(ステップS16)の際の動作モードとしては、例えば、「フルオートモード(第1の動作モード)」と、「セミオートモード(第2の動作モード)」との、2種類の動作モードが挙げられる。なお、このような2種類の動作モードについては、後述する電力Poutの供給値変更(図5AのステップS17:例えば、図6のステップS172,S177,S178)の際にも、同様の動作モードが挙げられる。
 まず、フルオードモードでは、制御部33により、電力Poutの供給(アブレーション)を自動的に再開させたり、電力Poutの供給値を自動的に変更させたりする。具体的には、制御部33は、前述した制御信号CTL1を用いて、電源部32からの電力Poutの供給を自動的に再開させたり、この電力Poutの供給値を自動的に変更させたりする。つまり、このフルオートモードでは、電力Poutの供給の再開や、電力Poutの供給値の変更がそれぞれ、自動的に行われるようになっている。
 一方、セミオードモードでは、電源装置3の操作者による操作に応じて入力される操作信号Smに基づいて、制御部33が、電力Poutの供給を再開させたり、電力Poutの供給値を変更させたりする。つまり、このセミオートモードでは、電力Poutの供給の再開や、電力Poutの供給値の変更がそれぞれ、手動により行われるようになっている。なお、このような手動による、電力Poutの供給の再開や、電力Poutの供給値の変更の際には、例えば、電源装置3の外部への所定の通知(表示部34上への所定のメッセージの表示など)を行うことで、電源装置3の操作者に対して、上記した操作を促すようにしてもよい。
 また、本実施の形態では、例えば電源装置3において、このような2種類の動作モード(「フルオートモード」および「セミオートモード」)が、切り替え可能となっていてもよい(図7中に示した破線の矢印P3参照)。すなわち、例えば、電源装置3の操作者による操作に応じて入力される操作信号Smに基づいて、これらの2種類の動作モードが、随時切り替えられるようになっていてもよい。
 続いて、制御部33は、必要に応じて、電力Poutの供給値を変更する処理を行う(ステップS17)。このような、必要に応じて電力Poutの供給値を変更する処理における、具体的な各処理については、図6を用いて、以下詳細に説明する。
 この具体的な各処理では、まず、制御部33は、初回のブレイク状態への移行前における測定温度Tm(前述したステップS14にて記憶された測定温度Tm)を基準として、以下の判定を行う。すなわち、制御部33は、このような測定温度Tmを基準として、電力Poutの供給の再開(ステップS16)の後における測定温度Tmの低下量ΔTmが、ステップS10において設定された閾値ΔTmth以上であるのか否か(ΔTm≧ΔTmth)を満たすのか否かについて、判定を行う(図6のステップS170)。なお、このような閾値ΔTmthとしては、例えば、5[℃]~20[℃]程度の値(望ましくは、例えば、10[℃]~20[℃]程度の値)が挙げられる。
 ここで、上記した低下量ΔTmが閾値ΔTmth未満である(ΔTm≧ΔTmthを満たさない)と判定された場合には(ステップS170:N)、制御部33は、電力Poutの供給値を維持させるようにする(ステップS171)。なお、その後は、後述するステップS173へと進むことになる。
 一方、上記した低下量ΔTmが閾値ΔTmth以上である(ΔTm≧ΔTmthを満たす)と判定された場合には(ステップS170:Y)、制御部33は、電力Poutの供給値を、所定の上昇値ΔP2(例えば、5[W]~10[W]程度)の分だけ、上昇させる(ステップS172)。具体的には、例えば図9に示したように、制御部33は、この時点(タイミングt12)での電力供給値Pout2に対して、上昇値ΔP2の分だけ上昇させた供給値(=Pout2+ΔP2)となるように、電力Poutの供給値を設定する。なお、このようにして電力Poutの供給値を上昇させた後には、例えば、上記した測定温度Tmが実際に上昇したのか否かについて、制御部33にて確認するようにしてもよい。
 そして、次に制御部33は、電力Poutの供給値を維持している状態において、前述した残時間Δtr(=Δtse-Δtsn)が、ステップS10において設定された閾値Δtrth以上であるのか否か(Δtr≧Δtrth)を満たすのか否かについて、判定を行う(ステップS173)。なお、このような閾値Δtrthとしては、例えば、30[sec]~120[sec]程度の値(望ましくは、例えば、30[sec]~60[sec]程度の値)が挙げられる。
 ここで、上記した残時間Δtrが閾値Δtrth以上である(Δtr≧Δtrthを満たす)と判定された場合には(ステップS173:Y)、次に制御部33は、インピーダンス値Zにおける単位時間当たりの上昇値(インピーダンス上昇値ΔZ)を算出する(ステップS174a)。このインピーダンス上昇値ΔZとは、次のブレイク状態への移行の兆候度合いを示す、パラメータである。このようなインピーダンス上昇値ΔZは、インピーダンス値Zにおける現在値(Zn)から、現在から上記した単位時間(例えば60[sec]程度)の分だけ前までの期間におけるインピーダンス値Zの最小値に対応する過去値(Zp)を差し引くことで、算出されるようになっている(ΔZ=Zn-Zp)。
 次いで、制御部33は、このようにして算出されたインピーダンス上昇値ΔZが、ステップS10にて設定された閾値ΔZth以上であるのか否か(ΔZ≧ΔZthを満たすのか否か)について、判定を行う(ステップS175a)。なお、このような閾値ΔZthとしては、例えば、10[Ω]~20[Ω]程度の値が挙げられる。
 ここで、インピーダンス上昇値ΔZが、閾値ΔZth未満である(ΔZ≧ΔZthを満たさない)と判定された場合(ステップS175a:N)、次のブレイク状態へと移行する兆候が、発生していないことになる。したがって、この場合には制御部33は、電力Poutの供給値を維持させる(ステップS176a)と共に、前述したステップS173へと戻ることになる。
 一方、インピーダンス上昇値ΔZが、閾値ΔZth以上である(ΔZ≧ΔZthを満たす)と判定された場合には(ステップS175a:Y)、次のブレイク状態へと移行する兆候が、発生していることになる(例えば、図10参照)。したがって、この場合には制御部33は、電力Poutの供給値を、所定の減少値ΔP3(例えば、5[W]~10[W]程度)の分だけ、更に低下させる(ステップS177)。具体的には、例えば図10に示したように、制御部33は、この時点(タイミングt13)での電力供給値Pout2に対して、減少値ΔP3の分だけ減少させた供給値(=Pout2-ΔP3)となるように、電力Poutの供給値を設定する。これにより図10中の破線の矢印で示したように、インピーダンス値Zがその後に減少していき、次のブレイク状態へと移行する兆候が、抑えられることになる。なお、その後は、前述したステップS173へと戻ることになる。
 ここで、前述したステップS173において、残時間Δtrが閾値Δtrth未満である(Δtr≧Δtrthを満たさない)と判定された場合には(ステップS173:N)、次に制御部33は、前述したステップS174aと同様にして、インピーダンス上昇値ΔZ)を算出する(ステップS174b)。そして、制御部33は、前述したステップS175aと同様にして、算出されたインピーダンス上昇値ΔZが、閾値ΔZth以上であるのか否か(ΔZ≧ΔZthを満たすのか否か)について、判定を行う(ステップS175b)。
 ここで、インピーダンス上昇値ΔZが、閾値ΔZth以上である(ΔZ≧ΔZthを満たす)と判定された場合(ステップS175b:Y)、次のブレイク状態へと移行する兆候が、既に発生していることになる。したがって、この場合には制御部33は、電力Poutの供給値を維持させる(ステップS176b)と共に、後述する図5A中のステップS18へと進むことになる。
 一方、インピーダンス上昇値ΔZが、閾値ΔZth未満である(ΔZ≧ΔZthを満たさない)と判定された場合には(ステップS175b:N)、次のブレイク状態へと移行する兆候が、依然として発生していないことになる(例えば、図11参照)。したがって、この場合には制御部33は、電力Poutの供給値を、所定の上昇値ΔP4(例えば、10[W]~20[W]程度)の分だけ、上昇させる(ステップS178)。具体的には、例えば図11に示したように、制御部33は、この時点(タイミングt14)での電力供給値Pout2に対して、上昇値ΔP4の分だけ上昇させた供給値(=Pout2+ΔP4)となるように、電力Poutの供給値を設定する。これにより図11中の破線の矢印で示したように、インピーダンス値Zがその後に上昇していき、次のブレイク状態への移行が、促進されることになる。なお、その後は、前述したステップS174bへと戻ることになる。
 ここで、上記した図5A中のステップS18では、制御部33は、アブレーションの開始時tsからの経過時間Δtsnが、前述した目標時間Δtseまで到達したのか否かについて、判定を行う(ステップS18)。このような経過時間Δtsnが目標時間Δtseまで到達した場合には(ステップS18:Y)、後述するステップS23へと進む。すなわち、制御部33は、詳細は後述するが、電源部32からの電力Poutの供給を自動的に停止(完全停止)させることにより、アブレーションを自動的に終了させる。これにより、患部90に対するアブレーションが、制御部33によって自動的に終了させられることになる。
 一方、経過時間Δtsnが目標時間Δtseまで到達していない場合には(ステップS18:N)、制御部33は、前述したステップS12と同様にして、この時点における、インピーダンス値Zの測定情報と、測定温度Tmを示す温度情報Itとを、それぞれ取得する(図5BのステップS19)。そして、次に制御部33は、前述したステップS13と同様にして、以下の判定を行う。すなわち、制御部33は、インピーダンス値Zが閾値Zthよりも大きいのか否か(Z>Zthを満たすのか否か)、つまり、次の(2回目以降の)ブレイク状態へと移行したのか否かについて、判定を行う(ステップS20)。ここで、インピーダンス値Zが閾値Zth以下である(Z>Zthを満たさない)と判定された場合には(ステップS20:N)、上記したステップS18へと戻り、上記した経過時間Δtsnが目標時間Δtseまで到達したのか否かについての判定が、再度行われる。
 一方、インピーダンス値Zが閾値Zthよりも大きい(Z>Zthを満たす)と判定された場合(ステップS20:Y)、次のブレイク状態へと移行したことを意味する。そこで、この場合、次に制御部33は、前述したステップS14と同様にして、このブレイク状態の回数(ブレイク回数Nb:ここでは、Nb≧2)を自動的にカウントする(ステップS21)。
 また、このステップS21においても、前述したステップS14と同様に、制御部33は、このような2回目以降のブレイク状態へと移行する際(2回目以降のブレイク時)における、各種パラメータを記憶する。具体的にはステップS14と同様に、制御部33は、経過時間Δtsnや、2回目以降のブレイク状態へと移行した時点での電力Poutの供給値、2回目以降のブレイク状態への移行前における測定温度Tm(例えば、移行前の所定期間内での平均温度)を、それぞれ記憶する。
 続いて、制御部33は、上記したステップS21においてカウントされたブレイク回数Nbが、ステップS10において設定された閾値Nth以上であるのか否か(Nb≧Nthを満たすのか否か)について、判定を行う(ステップS22)。ここで、このようなブレイク回数Nbが、閾値Nth未満である(Nb≧Nthを満たさない)と判定された場合には(ステップS22:N)、前述したステップS15へと戻る。すなわち、電力Poutの供給が、再び一時的に低下または停止され、アブレーションが再び一時的に停止することになる。
 一方、上記したブレイク回数Nbが、閾値Nth以上である(Nb≧Nthを満たす)と判定された場合には(ステップS22:Y)、次に制御部33は、以下の制御を行う。すなわち、この場合には制御部33は、電源部32からの電力Poutの供給を自動的に停止(完全停止)させることにより、アブレーションを自動的に終了させる(ステップS23:図8~図11中の電力Poutにおける破線の矢印参照)。具体的には、制御部33は、前述した制御信号CTL1を用いて、電力Poutの供給を自動的に停止させる。これにより、患部90に対するアブレーションが、制御部33によって自動的に終了させられることになる。
 ここで、例えば図8~図11に示したように、本実施の形態では、制御部33は、このようなアブレーションの自動的終了の際のブレイク回数Nbに関して、例えば、以下のように制御するのが望ましい。すなわち、制御部33は、アブレーションの開始時tsからの経過時間Δtsnが、目標時間Δtseまで到達する前に、ブレイク回数Nbが、閾値Nthとしての2回に到達して、アブレーションが自動的に終了するように制御するのが望ましい。
 続いて、制御部33は、このようにしてアブレーションを自動的に終了させた(ステップS23)後に、液体供給装置2からの冷却用の液体Lの供給も、自動的に停止させる(ステップS24)。具体的には、制御部33は、前述した制御信号CTL2を用いて、液体供給部21からの液体Lの供給を、自動的に停止させる。これにより、液体供給装置2の内部と電極針1の内部との間での液体Lの循環が停止され(図1参照)、電極針1に対する冷却動作(クーリング)が停止される。
 以上で、図5A,図5B,図6に示した一連の処理(本実施の形態のアブレーションの処理例)が、終了となる。
(D.作用・効果)
 このようにして、本実施の形態のアブレーションシステム5では、制御部33はアブレーションの際に、以下のような制御を行う。すなわち、まず、制御部33は、電極針1と対極板4との間のインピーダンス値Zを測定すると共に、このインピーダンス値Zが閾値Zthを越えてブレイク状態へと移行した回数である、ブレイク回数Nbをカウントする。そして、制御部33は、このブレイク回数Nbが閾値Nthに到達した場合には、電力Poutの供給を自動的に停止させることにより、アブレーションを自動的に終了させる。これにより、例えば、ブレイク回数Nbを目視等で確認してからアブレーションを手動で終了させる場合や、ブレイク回数Nbを確認せずに所定の待機時間が経過してからアブレーションを自動終了させる場合などと比べ、効果的なアブレーションが容易に実施できるようになる。
 一方、制御部33は、このブレイク回数Nbが閾値Nthに到達していない場合には、ブレイク状態へと移行する際における電力Poutの供給値(電力供給値Pout1)を基準として、電力Poutの供給を一時的に低下または停止させる。そして、制御部33は、電力Poutの供給値を、上記した電力供給値Pout1から所定の減少値ΔP1の分だけ低下させた電力供給値Pout2に設定した状態で、電力Poutの供給を再開させる。これにより、例えば、上記した電力供給値Pout1程度にて電力供給が再開されるような場合(後述する比較例に相当)と比べ、次のブレイク状態へと短時間に移行しにくくなる(次のブレイク状態に移行するまでの時間を、ある程度確保することができる)。したがって、電力供給の再開後におけるアブレーションが有効化され、アブレーション対象(患部90)に対して効率良く焼灼を行うことができる。具体的には、例えば、電力Poutの供給の休憩時間(上記した一時的な低下または停止の期間:約15秒程度)においては、アブレーション対象に対してエネルギーを注入できなかったり、ブレイク状態への移行が繰り返されることによって、焦げ付きにより熱伝導が悪くなったり、といったブレイク状態への移行に伴う焼灼効率の低下を、防止し易くなる。したがって、詳細は後述する実施例にて述べるが、例えば前述した図2中の熱凝固領域Ah2(ほぼ球状の領域)のように、患部90全体への等方的なアブレーションを、容易に行うことができるようになる。その結果、本実施の形態では、アブレーションの際の焼灼効率を向上させることが可能となる。
 また、本実施の形態では、電力Poutの供給の再開後においては、次のブレイク状態へと移行するまで、電力Poutの供給値が維持されるように制御することから、以下のようになる。すなわち、次のブレイク状態に移行するまでの時間が、更に確保し易くなることから、更に効率良く焼灼が行われる。その結果、アブレーションの際の焼灼効率を、更に向上させることが可能となる。
 更に、本実施の形態では、電力Poutの供給値を維持している状態において、前述した目標時間Δtseのうちの現時点から終了時teまでの残時間Δtrが、閾値Δtrth以上であると共に、前述したインピーダンス上昇値ΔZが閾値ΔZth以上である場合には、電力Poutの供給値を更に低下させることから、以下のようになる。すなわち、目標時間Δtseまでの残時間Δtrがある程度確保されている状況にて、次のブレイク状態へと移行する兆候が発生していることから、電力Poutの供給値を更に低下させることで、次のブレイク状態への短時間での移行が、より回避され易くなる。したがって、より一層効率良く焼灼が行われる結果、アブレーションの際の焼灼効率を、より一層向上させることが可能となる。
 加えて、本実施の形態では、電力Poutの供給値を維持している状態において、上記した残時間Δtrが閾値Δtrth未満であると共に、上記したインピーダンス上昇値ΔZが閾値ΔZth未満である場合には、電力Poutの供給値を上昇させることから、以下のようになる。すなわち、目標時間Δtseまでの残時間Δtrが少なくなった状況においても、次のブレイク状態へと移行する兆候が、まだ発生していないことから、電力Poutの供給値を上昇させることで、次のブレイク状態へと強制的に移行し易くし、目標時間Δtse内でのアブレーションの終了を促進することができる。したがって、長時間のアブレーションによる患者9の体への負担(詳細は後述)を最小限に抑えつつ、アブレーションの際の焼灼効率を、より一層向上させることが可能となる。
 また、本実施の形態では、ブレイク状態への移行前における測定温度Tm(電極針1の先端付近での測定温度)を基準として、電力Poutの供給の再開後における測定温度Tmの低下量ΔTmが、閾値ΔTmth以上である場合には、電力Poutの供給値を、電力供給値Pout2から上昇させることから、以下のようになる。すなわち、電力供給の再開後における測定温度Tmの大幅な低下による、アブレーションの効率低下が回避される結果、アブレーションの際の焼灼効率を、更に向上させることが可能となる。
 更に、本実施の形態では、上記した残時間Δtrが長くなるのに従って、上記した減少値ΔP1が大きくなるように調整することから、以下のようになる。すなわち、残時間Δtrが長いほど、減少値ΔP1が大きくなるように調整されることで、次のブレイク状態への短時間での移行が、更に回避され易くなる。したがって、更に効率良く焼灼が行われる結果、アブレーションの際の焼灼効率を、更に向上させることが可能となる。
 加えて、本実施の形態では、アブレーションの開始時tsからの経過時間Δtsnが、上記した目標時間Δtseまで到達する前に、ブレイク回数Nbが、閾値Nthとしての2回に到達して、アブレーションが自動的に終了するように制御することから、以下のようになる。すなわち、最小限のブレイク回数(Nb=2)に抑えつつ、アブレーションが終了することから、アブレーションの際の患者9の体への負担を最小限に抑えつつ、焼灼効率を向上させることが可能となる。
 具体的には、アブレーション時間内にブレイク回数Nbが必要以上に多くなってしまう(例えば、3回以上や4回以上)と、アブレーションによる治療の際に、患部90に対して必要以上に多くのブレイク状態が付与されることになる。その結果、患者9が感じる疼痛が大きくなり、患者9の体への負担も大きくなってしまうおそれがある。
 ここで、この疼痛とは、治療の際に患者9が感じる痛みのことを意味しており、例えば、脊髄神経を介した関連痛として、右肩などが痛むことが多いと言われている。なお、ブレイク状態ではインピーダンス値Zが急上昇するため、電力Poutを例えば定電力出力する場合には、出力電圧も急上昇する。また、ブレイク状態への移行前には、患部90での温度も上昇する傾向にある。したがって、この疼痛には、電気的および熱的の双方の発生要因があると言われている。
[実施例]
 続いて、本実施の形態の実施例について、比較例と比較しつつ説明する。
 図12は、比較例および実施例に係るアブレーションの際のタイミング波形例(実測波形例)を、表したものである。具体的には、図12(A)は、比較例に係るアブレーションの際のタイミング波形例を示し、図12(B)は、実施例に係るアブレーションの際のタイミング波形例を示している。詳細には、これらの図12(A),図12(B)ではそれぞれ、インピーダンス値Z[Ω]、電極針1の先端付近での測定温度Tm[℃]および電力Pout[W]が、時間軸に沿って共通単位で示されている。
 まず、図12(A)に示した比較例における各条件および各測定結果は、以下の通りである。
・アブレーション対象(検体):豚摘出肝臓
・電極針1の先端付近の電極部11の長さ(先端部長):3[cm]
・アブレーション開始時の電力Poutの供給値(開始時出力):40[W]
・初回ブレイク時(t=1)までの電力Poutの上昇方式:10[W/min],線形上昇
・ブレイク回数Nb:2
・初回ブレイク後の電力供給再開時における電力Poutの減少値ΔP1:10[W]
 (再開後の電力Pout:線形に上昇させる設定(図12(A)中の破線の矢印参照))
・t1=4分52秒
・t2=5分58秒(t1~t2の期間:1分06秒)
・アブレーション対象の熱凝固領域における縦方向長:40.8[mm]
・アブレーション対象の熱凝固領域における横方向長:28.2[mm]
 一方、図12(B)に示した実施例における各条件および各測定結果は、以下の通りである。
・アブレーション対象(検体):豚摘出肝臓
・電極針1の先端付近の電極部11の長さ(先端部長):3[cm]
・アブレーション開始時の電力Poutの供給値(開始時出力):40[W]
・初回ブレイク時(t=1)までの電力Poutの上昇方式:10[W/min],線形上昇
・ブレイク回数Nb:2
・初回ブレイク後の電力供給再開時における電力Poutの減少値ΔP1:30[W]
 (再開後の電力Pout:維持した状態に設定(図12(B)中の破線の矢印参照))
・t1=4分54秒
・t2=11分07秒(t1~t2の期間:6分13秒)
・アブレーション対象の熱凝固領域における縦方向長:38.1[mm]
・アブレーション対象の熱凝固領域における横方向長:36.2[mm]
 このように、比較例と実施例とでは、基本的な条件は一致している。ただし、初回ブレイク後の電力供給再開時における電力Poutの減少値ΔP1が、比較例では比較的小さい(初回のブレイク段階での電力供給値と同程度にて電力供給を再開している)一方で、実施例では、大きくなっている。また、比較例では、再開後の電力Poutを、線形に上昇させる設定としている一方、実施例では、再開後の電力Poutを維持させる設定としている。
 これにより比較例では、1回目のブレイク時から2回目のブレイク時までの期間(t1~t2の期間)が、非常に短くなっており(1分06秒)、2回目のブレイク状態へと短時間に移行してしまっていることが分かる(図12(A)参照)。一方で、実施例では、1回目のブレイク時から2回目のブレイク時までの期間(t1~t2の期間)が、比較例と比べて約6倍もの長さとなっており(6分13秒)、2回目のブレイク状態に移行するまでの時間が、ある程度確保できていることが分かる(図12(B)参照)。
 その結果、比較例では、アブレーション対象の熱凝固領域における縦方向長と横方向長との差(12.6[mm])が大きくなっており、アブレーション対象に対して、非等方的なアブレーションとなってしまっていることが分かる。一方、実施例では、アブレーション対象の熱凝固領域における縦方向長と横方向長との差(1.9[mm])が非常に小さくなっており(比較例の場合の(1/6)以下の値)、アブレーション対象に対して、前述した等方的なアブレーションが行われていることが分かる。
 以上のことから、実施例では比較例と比べて、アブレーションの際の焼灼効率が向上していることが、実際に確認されたと言える。
<2.変形例>
 続いて、上記実施の形態の変形例について説明する。この変形例では、上記実施の形態で説明したアブレーションの処理例をベースとしたうえで、後述する所定の判定結果に応じて、前述した電力供給値Pout1についての置き換え処理を行う例となっている。なお、以下では、実施の形態における構成要素と同一のものには同一の符号を付し、適宜説明を省略する。
[構成・動作]
 図13は、参考例に係るアブレーションの際のタイミング波形例を、模式的に表したものである。図14は、本変形例に係るアブレーションの際のタイミング波形例を、模式的に表したものである。
 なお、これらの図13,図14ではそれぞれ、横軸は時間を示しており、縦軸は、電力Poutの設定値、電力Poutの実出力値(Pout’)、インピーダンス値Z、および、アブレーションの際の電圧Vを、示している。また、これらの図13,図14の下方ではそれぞれ、電力Poutの設定値および実出力値(Pout’)における時系列変化の例を、模式的に示している。更に、これらの図13,図14に示した例ではそれぞれ、前述したフルオートモードにて、電力Poutの供給値を階段状に上昇させていく制御(20[W/min]の上昇率)になっていると共に、前述した所定の減少値ΔP1=20[W]となっている。
(参考例の処理例)
 最初に、図13に示した参考例のように、上記実施の形態で説明したアブレーションの処理例では、例えば、以下のようなケースが生じ得る。
 すなわち、まず、インピーダンス値Zが高い場合、アブレーションの際の電圧Vには上限があることから、アブレーションの際での実際の電力Pout(実出力値Pout’)が、電力Poutの設定値まで上がらなくなり、頭打ち状態になってしまう場合がある。具体的には、図13に示した参考例では、240[s]付近までは、電力Poutの設定値と実出力値Pout’とが一致しているが、その後の期間では、以下のようになっている。すなわち、電力Poutの実出力値Pout’が、図13中の破線の矢印で示したように、電力Poutの設定値と乖離してしまい(設定値まで到達しなくなってしまい)、実出力値Pout’が頭打ち状態となっている。なお、このようなブレイク状態への移行前における頭打ち状態期間Δtp付近)では、図13中に示したように、電力Poutの実出力値Pout’が最大値(Pout’(max))になっていると共に、アブレーションの際の電圧Vも上限値(最大電圧値Vmax)になっている。
 このようにして、電力Poutの実出力値Pout’が頭打ち状態になると、ブレイク状態への移行後の電力供給再開の際に、電力Pout(前述した電力供給値Pout2)の実出力値Pout’が、ブレイク状態へと移行する際の電力供給値Pout1の実出力値Pout’と、ほとんど差が無くなってしまう場合が生じ得る(図13中の符号P61参照)。言い換えると、例えば図13中に示したように、電力供給値Pout1の設定値から電力供給値Pout2の設定値への減少分に対応する、前述した所定の減少値(-ΔP1)が、実際には担保されなくなってしまう場合が生じ得る。これは、例えば図13中の符号P51内に示したように、電力供給値Pout1の設定値(140[W])を基準として、減少値ΔP1(20[W])の分だけ差し引くことで、電力供給値Pout2の設定値(120[W])を算出しているためである。したがって、この図13の参考例では、電力供給値Pout2の実出力値Pout’(100[W])が、電力供給値Pout1の実出力値Pout’(100[W])と、同じ値になってしまっている。
 そして、ブレイク状態への移行後の電力供給再開の際に、上記した所定の減少値(-ΔP1)が、実際には担保されなくなってしまうと、実施の形態にて説明したように、次のブレイク状態へと短時間に移行し易くなってしまうおそれがある。具体的には、例えば図13の参考例では、タイミングt1での1回目のブレイク状態(Nb=1)の後、電力供給が再開された直後のタイミングt2において、次の2回目のブレイク状態へと移行している(Nb=2)。このようにして、次のブレイク状態に移行するまでの時間が、ある程度確保されにくくなると、実施の形態にて説明したように、電力供給の再開後でのアブレーションが不十分となり、アブレーションの対象(患部90)に対する焼灼効率が、低下してしまうおそれがある。
(本変形例の処理例)
 そこで、例えば図14に示したように、本変形例では以下のようにして、ブレイク状態の期間中に、制御部33が、上記した電力供給値Pout1の設定値についての、置き換え処理を行う。言い換えると、制御部33は、上記したようにして、減少値ΔP1の分だけ差し引いて電力供給値Pout2の設定値を算出する際の、基準値を見直す処理を行う。
 まず、本変形例では制御部33は、上記したように、アブレーションの際の電圧Vが上限値(最大電圧値Vmax)に到達したことに起因して、電力Poutの実出力値Pout’が頭打ち状態になっているのか否かの判定結果に応じて、ブレイク状態の期間中に、電力供給値Pout1の置き換え処理を行う。具体的には、詳細は後述するが(図15A,図15B)、制御部33は、そのような頭打ち状態になっていると判定された場合には、電力供給値Pout1の置き換え処理を実行する一方、頭打ち状態になっていないと判定された場合には、電力供給値Pout1の置き換え処理を実行しないようにする。
 この際に制御部33は、ブレイク状態への移行前の期間における、電力Poutの実出力値Pout’に基づいて、電力供給値Pout1の置き換え処理を行う。つまり、上記した図13の参考例では、電力供給値Pout1の設定値を基にして、電力供給値Pout2を設定(算出)しているのに対し、本変形例では、電力Poutの実出力値Pout’を基にして電力供給値Pout2が設定(算出)されるように、電力供給値Pout1の置き換え処理を行う。
 具体的には、図14に示した例では、制御部33は、ブレイク状態への移行前での頭打ち状態期間Δtp付近における、電力Poutの実出力値Pout’に基づいて、電力供給値Pout1の置き換え処理を行っている。より具体的には、図14の例では制御部33は、ブレイク状態への移行前における、電力Poutの実出力値Pout’の最大値(Pout’(max))を、電力供給値Pout1へと置き換えることによって、電力供給値Pout1の置き換え処理を行っている(図14中の×(バツ)印、および、符号P72で示した破線の矢印参照)。これは、例えば図14に示したように、ブレイク状態へと移行する直前の期間では、電力Poutの実出力値Pout’が、最大値Pout’(max)から急激に低下する傾向にあるためである。
 これにより本変形例では、例えば図14に示したように、上記した置き換え処理後の電力供給値Pout1を基準として、減少値ΔP1の分だけ差し引くことで、電力供給再開の際における電力供給値Pout2の設定値が、算出される。したがって、本変形例では図13に示した参考例とは異なり、上記した頭打ち状態となった場合であっても、電力供給値Pout1の設定値から電力供給値Pout2の設定値への減少分に対応する、上記した減少値(-ΔP1)が、実際にも担保されることになる(図14中の符号P62参照)。これは、例えば図14中の符号P52内に示したように、電力供給値Pout1の実出力値Pout’(この例では、最大値Pout’(max)=100[W])を基準として、減少値ΔP1(20[W])の分だけ差し引くことで、電力供給値Pout2の設定値(80[W])を算出しているためである。
 このようにして本変形例では、例えば図14に示したように、図13に示した参考例とは異なり、アブレーションの際に上記した頭打ち状態になった場合においても、以下のようになる。すなわち、詳細は後述するが、次の(2回目の)ブレイク状態への短時間での移行が回避され易くなり(次のブレイク状態に移行するまでの時間が、ある程度確保され易くなり)、効率良く焼灼が行われるようになる。
(電力供給値Pout1の置き換え処置等の詳細)
 ここで、本変形例に係る、このような電力供給値Pout1の置き換え処理等は、詳細には、例えば以下のようにして行われる。
 図15A,図15Bはそれぞれ、本変形例に係るアブレーションの際の処理例(上記した電力供給値Pout1の置き換え処理等を含む処理例)を、流れ図で表したものである。これらの図15A,図15Bに示した処理例は、実施の形態にて説明した図5A,図5Bの処理例において、一部の処理を追加または変更したものとなっている。したがって、以下では、これらの追加または変更した部分の処理例(以下説明する、ステップS12a,S14a,S31,S32,S19a,S21a)について、抜粋して説明する。
 まず、図15A中のステップS12aおよび図15B中のステップS19aではそれぞれ、前述したステップS12,S19(図5A,図5B)と同様に、電源部32がインピーダンス値Zを測定すると共に、測定温度Tmについての測定が、電極針1にて行われる。また、これらのステップS12a,S19aでは更に、前述した電圧Vの測定情報が、電源部32から制御部33へと供給される。このようにして制御部33は、これらの各時点における、インピーダンス値Zおよび電圧Vの測定情報と、測定温度Tmを示す温度情報Itとを、それぞれ取得する。
 また、図15A中のステップS14aおよび図15B中のステップS21aではそれぞれ、前述したステップS14,S21(図5A,図5B)と同様に、制御部33が、前述したブレイク回数Nbを自動的にカウントする。また、これらのステップS14a,S21aでは更に、制御部33は、これらの各時点における、前述した経過時間Δtsn、電力Poutの供給値(電力供給値Pout1)および測定温度Tmに加え、ブレイク状態での電圧V(電圧値Vb:図13,図14参照)を、それぞれ記憶する。
 そして、図15A中のステップS31(前述したステップS15の直後のステップ)では、制御部33は、上記したブレイク状態での電圧値Vbが、最大電圧値Vmax(図13,図14参照)に到達しているのか否か(Vb=Vmaxとなっているのか否か)について、判定を行う。これにより、制御部33は、前述したブレイク前の電力Poutの実出力値(Pout’)が、前述した頭打ち状態になっているのか否かについての、判定を行うことになる。なお、上記した最大電圧値Vmaxは、例えば、設計時などに予め設定される値となっているため、この例では前述したステップS10(電源装置3の操作者による各種パラメータの設定処理)では、設定されないようになっている。
 ここで、Vb=Vmaxとはなっていない(上記した実出力値Pout’が、前述した頭打ち状態とはなっていない)と判定された場合には(ステップS31:N)、前述した電力供給値Pout1の置き換え処理(以下のステップS32)が、実行されないことになる。すなわち、この場合には制御部33は、そのような電力供給値Pout1の置き換え処理を実行せずに、前述したステップS16へと進むことになる。
 一方、Vb=Vmaxとなっている(上記した実出力値Pout’が、前述した頭打ち状態となっている)と判定された場合には(ステップS31:Y)、次に制御部33は、上記した電力供給値Pout1の置き換え処理を、実行する(ステップS32)。具体的には、例えば前述したように、制御部33は、ブレイク前(ブレイク状態への移行前の期間)における電力Poutの実出力値(Pout’)に基づいて、そのような電力供給値Pout1の置き換え処理を行う。より具体的には、例えば前述したように、制御部33は、そのような実出力値Pout’の最大値(Pout’(max):図13,図14参照)を、電力供給値Pout1として置き換える(Pout1=Pout’(max))ことによって、そのような置き換え処理を行う。なお、その後は、前述したステップS16へと進むことになる。
 以上で、図15A,図15Bに示した一連の処理についての説明が、終了となる。
(Poutの設定値・実出力値の外部出力例)
 ここで、本変形例では、例えば前述した図4中に示したように、表示部34上において電力Poutの供給値(Power:符号P23参照)を表示する(外部へ情報出力を行う)際に、そのような電力Poutの設定値および実出力値(Pout’)の双方を、時系列にて表示(出力)するようにしてもよい。
 具体的には、図4の例では、符号P23で示した電力Poutの供給値として、電力Poutの設定値(符号P23a)と実出力値Pout’(符号P23b参照)とがそれぞれ、互いに区別した態様で、表示部34上に個別に表示されている。より具体的には、図4の例では、電力Poutの設定値(符号P23a)が、分数における分母の位置となり、実出力値Pout’(符号P23b参照)が、その分数における分子の位置となるように、表示部34上に表示されている。つまり、この図4の例では、前述した図13,図14の下方において模式的に示した、電力Poutの設定値および実出力値(Pout’)における時系列変化と同様の形式にて、表示部34上での表示がなされている。
 なお、図4の例では、表示部34上にそのような各種情報が表示される場合(表示部34が、本発明における「出力部」の一例となっている場合)となっているが、この例には限られない。すなわち、例えば、所定の音声の外部出力等の、他の手法を用いて、各種情報が外部に出力されるようにしてもよい。
[作用・効果]
 このようにして本変形例では、アブレーションの際の電圧Vが上限値に到達したことに起因して、電力Poutの実出力値Pout’が頭打ち状態になっているのか否かの判定結果に応じて、ブレイク状態の期間中に、電力供給値Pout1の置き換え処理を行うようにしたので、以下のようになる。すなわち、前述したように、そのような頭打ち状態になっていることに起因して、電力供給再開の際における電力供給値Pout2の実出力値が、上記した電力供給値Pout1とほとんど差が無くなってしまう(前述した所定の減少値(-ΔP1)が、実際には担保されなくなってしまう)状況の発生が、防止され易くなる。つまり、そのような頭打ち状態になった場合においても、前述したように、次のブレイク状態への短時間での移行が回避され易くなり、効率良く焼灼が行われるようになる。その結果、本変形例では、実施の形態(例えば前述した参考例)と比べ、アブレーションの際の焼灼効率を更に向上させることが可能となる。
 また、本変形例では、ブレイク状態への移行前の期間における電力Poutの実出力値Pout’に基づいて、電力供給値Pout1の置き換え処理を行うようにしたので、以下のようになる。すなわち、本変形例ではまず、ブレイク状態への移行前の期間における電力Poutの設定値ではなく、そのような期間における電力Poutの実出力値Pout’を基にして、電力供給値Pout1の置き換え処理が行われる。つまり、上記した頭打ち状態になった場合、前述したように、電力Poutの実出力値Pout’が設定値と乖離してしまう(設定値まで到達しなくなってしまう)ことから、電力Poutの実出力値Pout’を基にして電力供給値Pout1の置き換え処理が行われることで、上記した電力供給再開の際に、上記した所定の減少値(-ΔP1)が、実際に担保され易くなる。その結果、上記した頭打ち状態になった場合においても、次のブレイク状態への短時間での移行が、更に回避され易くなることから、アブレーションの際の焼灼効率の更なる向上を図ることが可能となる。
 更に、本変形例では、ブレイク状態への移行前における電力Poutの実出力値Pout’の最大値(Pout’(max))を、電力供給値Pout1として置き換えることによって、上記した電力供給値Pout1の置き換え処理を行うようにした場合には、以下のようになる。すなわち、上記した頭打ち状態になった場合においても、次のブレイク状態への短時間での移行が、より一層回避され易くなる。その結果、アブレーションの際の焼灼効率を、より一層向上させることが可能となる。
 加えて、本変形例では、表示部34において、電力Poutの供給の際の設定値および実出力値(Pout’)の双方を、時系列にて外部へと出力するようにしたので、以下のようになる。すなわち、例えば、上記した頭打ち状態となっている(電力Poutの設定値と実出力値Pout’とが、異なる値になっている)のか否かや、どの程度の頭打ち状態であるのか(電力Poutの設定値と実出力値Pout’とが、どの程度乖離している状態であるのか)等の状況を、電源装置3の操作者等のユーザが、一見して把握することができる。よって、ユーザの利便性を向上させることが可能となる。
<3.その他の変形例>
 以上、実施の形態、変形例および実施例を挙げて本発明を説明したが、本発明はこれらの実施の形態等に限定されず、種々の変形が可能である。
 例えば、上記実施の形態等において説明した各部材の材料等は限定されるものではなく、他の材料としてもよい。また、上記実施の形態等では、電極針1の構成を具体的に挙げて説明したが、必ずしも全ての部材を備える必要はなく、また、他の部材を更に備えていてもよい。更に、上記実施の形態等で説明した各種パラメータの値や範囲、大小関係等についても、上記実施の形態等で説明したものには限られず、他の値や範囲、大小関係等であってもよい。
 また、上記実施の形態等では、液体供給装置2および電源装置3のブロック構成を具体的に挙げて説明したが、上記実施の形態等で説明した各ブロックを必ずしも全て備える必要はなく、また、他のブロックを更に備えていてもよい。また、アブレーションシステム5全体としても、上記実施の形態等で説明した各装置に加えて、他の装置を更に備えていてもよい。
 更に、上記実施の形態等では、電力供給制御機能と液体供給制御機能とを含む、制御部33における制御動作(アブレーションの手法)について具体的に説明した。しかしながら、これらの電力供給制御機能および液体供給制御機能等における制御手法(アブレーションの手法)については、上記実施の形態等で挙げた手法には限られない。また、上記変形例では、電力供給値Pout1の置き換え処理の手法について、具体的に説明したが、例えば他の手法を用いて、電力供給値Pout1の置き換え処理を行うようにしてもよい。
 具体的には、例えば図5A,図5B,図6,図15A,図15Bに示したアブレーションの処理例において、場合によっては、例えば、1回目のブレイク状態へと移行する前に、前述した目標時間Δtseに到達してしまったり、2回目のブレイク状態へと移行する前に、前述したインピーダンス上昇値ΔZが閾値ΔZth以上とならないまま(2回目のブレイク状態の兆候が生じないまま)、目標時間Δtseに到達してしまったり、というケースも生じ得る。ただし、このような場合においても、例えば、目標時間Δtseを超えても1回目のブレイク状態への移行は必須としたり、目標時間Δtseを超えても2回目のブレイク状態の兆候の発生は必須としたりするようにしてもよい。
 また、例えば図5A,図5B,図6,図15A,図15Bに示したアブレーションの処理例では、測定温度Tm(温度情報It)を利用した制御(電力Poutの供給値変更の処理等)を行う場合について説明したが、この場合には限られない。すなわち、例えば、場合によっては、このような測定温度Tmを利用した制御を行わないようにしてもよい。
 更に、例えば図5A,図5B,図6,図15A,図15Bに示したアブレーションの処理例において、アブレーションの際の目標時間Δtseの代わりに(あるいは、目標時間Δtseに加えて)、例えば、前述したエネルギー量ΔE(アブレーションの開始時tsからの電力Poutの供給値の積算値)を利用して、制御(電力Poutの供給値変更の処理等)を行うようにしてもよい。
 加えて、上記実施の形態等で説明した一連の処理は、ハードウェア(回路)で行われるようにしてもよいし、ソフトウェア(プログラム)で行われるようにしてもよい。ソフトウェアで行われるようにした場合、そのソフトウェアは、各機能をコンピュータにより実行させるためのプログラム群で構成される。各プログラムは、例えば、上記コンピュータに予め組み込まれて用いられてもよいし、ネットワークや記録媒体から上記コンピュータにインストールして用いられてもよい。
 また、これまでに説明した各種の例を、任意の組み合わせで適用させるようにしてもよい。

Claims (15)

  1.  体内の患部に対して経皮的に穿刺される電極針と、
     前記電極針と対極板との間にアブレーションを行うための電力を供給する電源部と、前記電源部における前記電力の供給動作を制御する制御部と、を有する電源装置と
     を備え、
     前記制御部は、
     前記アブレーションの際に、前記電極針と前記対極板との間のインピーダンス値を測定すると共に、前記インピーダンス値が第1閾値を越えてブレイク状態へと移行した回数である、ブレイク回数をカウントし、
     前記ブレイク回数が第2閾値に到達した場合には、前記電力の供給を自動的に停止させることにより、前記アブレーションを自動的に終了させる一方、
     前記ブレイク回数が前記第2閾値に到達していない場合には、
     前記ブレイク状態へと移行する際における前記電力の供給値である、第1電力供給値を基準として、前記電力の供給を一時的に低下または停止させると共に、
     前記電力の供給値を、前記第1電力供給値から所定の減少値の分だけ低下させた第2電力供給値に設定した状態で、前記電力の供給を再開させる
     アブレーションシステム。
  2.  前記制御部は、
     前記電力の供給の再開後においては、次の前記ブレイク状態へと移行するまで、
     前記電力の供給値が維持されるように制御する
     請求項1に記載のアブレーションシステム。
  3.  前記アブレーションの開始時から終了時までの目標時間が、設定されていると共に、
     前記制御部は、
     前記電力の供給値を維持している状態において、
     前記目標時間のうちの、現時点から前記終了時までの残時間が、第3閾値以上であると共に、
     前記インピーダンス値における単位時間当たりの上昇値が、第4閾値以上である場合には、
     前記電力の供給値を更に低下させる
     請求項2に記載のアブレーションシステム。
  4.  前記アブレーションの開始時から終了時までの目標時間が、設定されていると共に、
     前記制御部は、
     前記電力の供給値を維持している状態において、
     前記目標時間のうちの、現時点から前記終了時までの残時間が、第3閾値未満であると共に、
     前記インピーダンス値における単位時間当たりの上昇値が、第4閾値未満である場合には、
     前記電力の供給値を上昇させる
     請求項2または請求項3に記載のアブレーションシステム。
  5.  前記アブレーションの開始時から終了時までの目標時間が、設定されていると共に、
     前記制御部は、
     前記電力の供給値を維持している状態において、
     前記目標時間のうちの、現時点から前記終了時までの残時間が、第3閾値未満であると共に、
     前記インピーダンス値における単位時間当たりの上昇値が、第4閾値以上である場合には、
     前記電力の供給値を維持すると共に、前記アブレーションの開始時からの経過時間が、前記目標時間まで到達したのか否かを判定し、
     前記経過時間が前記目標時間まで到達した場合には、前記電力の供給を自動的に停止させることにより、前記アブレーションを自動的に終了させる一方、
     前記経過時間が前記目標時間まで到達していない場合には、前記インピーダンス値が前記第1閾値を越えて、次の前記ブレイク状態へと移行したのか否かを判定する
     請求項2ないし請求項4のいずれか1項に記載のアブレーションシステム。
  6.  前記電極針の先端付近での測定温度を示す情報が、前記電極針から前記制御部へと供給されるようになっていると共に、
     前記制御部は、
     前記ブレイク状態への移行前における前記測定温度を基準として、前記電力の供給の再開後における前記測定温度の低下量が、第5閾値以上である場合には、
     前記電力の供給値を、前記第2電力供給値から上昇させる
     請求項2ないし請求項5のいずれか1項に記載のアブレーションシステム。
  7.  前記アブレーションの開始時から終了時までの目標時間が、設定されていると共に、
     前記制御部は、
     前記目標時間のうちの、現時点から前記終了時までの残時間が長くなるのに従って、前記所定の減少値が大きくなるように、調整する
     請求項1ないし請求項6のいずれか1項に記載のアブレーションシステム。
  8.  前記制御部は、
     前記アブレーションの際の電圧が上限値に到達したことに起因して、前記電力の供給の際の実出力値が、頭打ち状態になっているのか否かの判定結果に応じて、
     前記ブレイク状態の期間中に、前記第1電力供給値の置き換え処理を行う
     請求項1ないし請求項7のいずれか1項に記載のアブレーションシステム。
  9.  前記制御部は、
     前記頭打ち状態になっていると判定された場合には、前記第1電力供給値の置き換え処理を実行し、
     前記頭打ち状態になっていないと判定された場合には、前記第1電力供給値の置き換え処理を実行しない
     請求項8に記載のアブレーションシステム。
  10.  前記制御部は、
     前記ブレイク状態への移行前の期間における、前記電力の実出力値に基づいて、
     前記第1電力供給値の置き換え処理を行う
     請求項8または請求項9に記載のアブレーションシステム。
  11.  前記制御部は、
     前記ブレイク状態への移行前での前記頭打ち状態の期間付近における、前記電力の実出力値に基づいて、
     前記第1電力供給値の置き換え処理を行う
     請求項10に記載のアブレーションシステム。
  12.  前記制御部は、
     前記ブレイク状態への移行前における前記電力の実出力値の最大値を、前記第1電力供給値として置き換えることによって、
     前記第1電力供給値の置き換え処理を行う
     請求項11に記載のアブレーションシステム。
  13.  外部への情報出力を行う出力部を、更に備え、
     前記出力部は、前記電力の供給の際の設定値および実出力値の双方を、時系列にて外部へと出力する
     請求項1ないし請求項12のいずれか1項に記載のアブレーションシステム。
  14.  前記制御部は、
     前記アブレーションの開始時から、初回の前記ブレイク状態へと移行する時点までの期間においては、
     前記電力の供給値が上昇していくように制御する
     請求項1ないし請求項13のいずれか1項に記載のアブレーションシステム。
  15.  前記アブレーションの開始時から終了時までの目標時間が、設定されていると共に、
     前記制御部は、
     前記アブレーションの開始時からの経過時間が、前記目標時間まで到達する前に、
     前記ブレイク回数が、前記第2閾値としての2回に到達して、前記アブレーションが自動的に終了するように、制御する
     請求項1ないし請求項14のいずれか1項に記載のアブレーションシステム。
PCT/JP2021/036151 2020-10-27 2021-09-30 アブレーションシステム WO2022091688A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022558941A JP7455494B2 (ja) 2020-10-27 2021-09-30 アブレーションシステム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/040275 WO2022091224A1 (ja) 2020-10-27 2020-10-27 アブレーションシステム
JPPCT/JP2020/040275 2020-10-27

Publications (1)

Publication Number Publication Date
WO2022091688A1 true WO2022091688A1 (ja) 2022-05-05

Family

ID=81382164

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/040275 WO2022091224A1 (ja) 2020-10-27 2020-10-27 アブレーションシステム
PCT/JP2021/036151 WO2022091688A1 (ja) 2020-10-27 2021-09-30 アブレーションシステム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040275 WO2022091224A1 (ja) 2020-10-27 2020-10-27 アブレーションシステム

Country Status (2)

Country Link
JP (1) JP7455494B2 (ja)
WO (2) WO2022091224A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002065690A (ja) * 2000-08-23 2002-03-05 Olympus Optical Co Ltd 電気手術装置
JP2008510507A (ja) * 2004-08-20 2008-04-10 セロン アクチエンゲゼルシャフト メディカル インスツルメンツ 体組織の電気外科的硬化処置のための装置
JP2010512181A (ja) * 2006-12-06 2010-04-22 ボストン サイエンティフィック リミテッド パルス変調された無線周波数エネルギーを用いる組織焼灼
JP2015008830A (ja) * 2013-06-27 2015-01-19 日本ライフライン株式会社 カテーテルシステム
US20180344390A1 (en) * 2017-05-31 2018-12-06 Covidien Lp Systems and methods for thermal ablation distortion detection
JP2019041782A (ja) * 2017-08-29 2019-03-22 日本ライフライン株式会社 アブレーションシステム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002065690A (ja) * 2000-08-23 2002-03-05 Olympus Optical Co Ltd 電気手術装置
JP2008510507A (ja) * 2004-08-20 2008-04-10 セロン アクチエンゲゼルシャフト メディカル インスツルメンツ 体組織の電気外科的硬化処置のための装置
JP2010512181A (ja) * 2006-12-06 2010-04-22 ボストン サイエンティフィック リミテッド パルス変調された無線周波数エネルギーを用いる組織焼灼
JP2015008830A (ja) * 2013-06-27 2015-01-19 日本ライフライン株式会社 カテーテルシステム
US20180344390A1 (en) * 2017-05-31 2018-12-06 Covidien Lp Systems and methods for thermal ablation distortion detection
JP2019041782A (ja) * 2017-08-29 2019-03-22 日本ライフライン株式会社 アブレーションシステム

Also Published As

Publication number Publication date
JP7455494B2 (ja) 2024-03-26
WO2022091224A1 (ja) 2022-05-05
JPWO2022091688A1 (ja) 2022-05-05

Similar Documents

Publication Publication Date Title
JP6853145B2 (ja) アブレーションシステム
JP4819062B2 (ja) 高周波手術装置
JP2018149301A (ja) アブレーション中の電力及び灌流の同時制御
US20210393315A1 (en) System and method for independent or simultaneous control of multiple radiofrequency probes during an ablation procedure
WO2020262279A1 (ja) 高周波処置装置および高周波処置方法
WO2022091688A1 (ja) アブレーションシステム
KR101737253B1 (ko) 카테터 시스템
KR20130092154A (ko) 고주파 수술용 전극 팁 및 이를 구비하는 고주파 수술용 전극
KR101652659B1 (ko) 카테터 시스템
WO2022091369A1 (ja) アブレーションシステム
WO2022038728A1 (ja) アブレーションシステム
US11737819B2 (en) System and method for a graphical user interface that provides improved control and visualization for an ablation procedure
JP7352011B2 (ja) アブレーション制御システム
KR20200060246A (ko) 절제 중의 관주 제어
JP7414860B2 (ja) 電気医療デバイス制御システムおよび電気医療デバイスシステムの制御方法
WO2019187238A1 (ja) アブレーションデバイス
TWI693920B (zh) 消融裝置
JP2019501719A (ja) 高周波交流電流を生成するための電気外科手術システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885807

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022558941

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21885807

Country of ref document: EP

Kind code of ref document: A1