WO2022091636A1 - 撹拌・脱泡処理用の容器及びその製造方法、並びに、撹拌・脱泡処理装置及びその運転方法 - Google Patents

撹拌・脱泡処理用の容器及びその製造方法、並びに、撹拌・脱泡処理装置及びその運転方法 Download PDF

Info

Publication number
WO2022091636A1
WO2022091636A1 PCT/JP2021/034526 JP2021034526W WO2022091636A1 WO 2022091636 A1 WO2022091636 A1 WO 2022091636A1 JP 2021034526 W JP2021034526 W JP 2021034526W WO 2022091636 A1 WO2022091636 A1 WO 2022091636A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
stirring
defoaming treatment
defoaming
treatment
Prior art date
Application number
PCT/JP2021/034526
Other languages
English (en)
French (fr)
Inventor
中村友紀
井上洋貴
Original Assignee
株式会社写真化学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社写真化学 filed Critical 株式会社写真化学
Publication of WO2022091636A1 publication Critical patent/WO2022091636A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F29/00Mixers with rotating receptacles
    • B01F29/90Mixers with rotating receptacles with stirrers having planetary motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/50Mixing receptacles
    • B01F35/511Mixing receptacles provided with liners, e.g. wear resistant or flexible liners

Definitions

  • the present disclosure is used in a stirring / defoaming treatment apparatus for stirring / defoaming an object to be treated, and a bottomed tubular agitating / defoaming container for accommodating the object to be treated and a method for manufacturing the same.
  • a stirring / defoaming treatment apparatus for stirring / defoaming an object to be treated
  • a bottomed tubular agitating / defoaming container for accommodating the object to be treated and a method for manufacturing the same.
  • it relates to a stirring / defoaming treatment apparatus and an operation method thereof.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2019-51495 describes a revolving body, a rotating body held by the revolving body, a driving mechanism for rotationally driving the revolving body and the rotating body, and a cover attached to the rotating body.
  • a processing apparatus including a container for storing the processing material is described.
  • On the inner peripheral surface of the container a plurality of ridges extending along the rotation axis of the container are formed.
  • the drive mechanism rotates the rotating body at a rotation speed higher than that of the revolving body. This makes it possible to generate microbubbles in a short time even with a highly viscous material.
  • the protrusions formed on the inner peripheral surface of the container collide with the material to be treated to entrain the bubbles and make them finer, so that a large number of microbubbles can be efficiently contained.
  • Patent Document 1 The container described in Patent Document 1 is formed for the purpose of foaming the object to be treated, but when it is required to suppress the foaming of the object to be treated while improving the dispersibility of the object to be treated. There is also.
  • the present disclosure has been made in view of the above problems, and is a container for stirring / defoaming treatment that makes it difficult for the object to be foamed and can enhance the dispersibility of the object to be treated, a method for producing the same, and stirring. -Providing a defoaming treatment device and an operation method thereof.
  • the configuration of the container for stirring / defoaming treatment according to the embodiment of the present disclosure is used in a stirring / defoaming treatment device that stirs / defoaming the object to be treated, and has the object to be treated inside.
  • a plurality of irregularly shaped irregularities are formed on at least a part of the inner surface in contact with the object to be accommodated.
  • the distance between the vertices of the plurality of convex portions constituting the plurality of irregularities, and the plurality of concave portions constituting the plurality of irregularities are formed.
  • At least one of the intervals between the base points may be irregularly formed. Further, on at least a part of the internal surface in contact with the object to be accommodated, the heights of the vertices of the plurality of convex portions constituting the plurality of irregularities and the bottoms of the plurality of concave portions constituting the plurality of irregularities are formed. At least one of the depths of the points may be irregularly formed.
  • a plurality of irregularly shaped irregularities formed on at least a part of the inner surface of the container reduce the local change in the flow of the object to be treated during the stirring / defoaming treatment, so that air is used. It is thought that it will be difficult to get involved. Therefore, it is possible to provide a container for agitation / defoaming treatment, which makes it difficult for the object to be foamed to foam and can enhance the dispersibility of the object to be treated.
  • Yet another configuration of the container for stirring / defoaming treatment according to the present disclosure is that the surface roughness Ra of the plurality of the irregularities is in the range of 3 ⁇ m or more and less than 100 ⁇ m.
  • the surface roughness Ra of the plurality of irregularities formed on the inner surface is in the range of 3 ⁇ m or more and less than 100 ⁇ m, and the stirring / defoaming treatment is performed by the container to be treated during the stirring / defoaming treatment.
  • the flow of the object can be effectively disturbed to enhance the dispersibility of the object to be treated, and the object to be treated can be effectively made difficult to foam.
  • a plurality of the above-mentioned irregularities are formed by blasting treatment, thermal spraying treatment, or abrasive grain adhesion treatment.
  • a plurality of irregularities can be effectively formed on the inner surface of the container by blasting treatment, thermal spraying treatment, or abrasive grain adhesion treatment.
  • the configuration of the method for manufacturing a container for stirring / defoaming treatment according to an embodiment of the present disclosure is such that a plurality of particles are attached to at least a part of the inner surface of the container for stirring / defoaming treatment, or.
  • a plurality of irregularly shaped irregularities are formed on at least a part of the inner surface of the container for stirring / defoaming treatment.
  • the configuration of the stirring / defoaming treatment apparatus for achieving the above object includes the above-mentioned container for stirring / defoaming treatment and the container for the stirring / defoaming treatment.
  • a container having a plurality of irregularly shaped irregularities formed on at least a part of the internal surface in contact with the object to be accommodated is mounted on the container holder.
  • the drive mechanism rotates the container holder around the rotation axis and revolves the rotation axis.
  • the configuration of the operation method of the stirring / defoaming treatment device comprises rotating the container for the stirring / defoaming treatment, the container holder on which the container for the stirring / defoaming treatment is mounted, and the container holder.
  • a stirring / defoaming treatment device provided with a drive mechanism that rotates around the axis and revolves around the axis of rotation, the stirring / defoaming treatment is performed with the object to be treated contained in the container for the stirring / defoaming treatment.
  • the container for defoaming treatment is revolved in a range where the centrifugal acceleration is 4 G or more and 1000 G or less.
  • the container for stirring / defoaming treatment is revolved in a range of centrifugal acceleration of 4 G or more and 1000 G or less to be treated.
  • the force that presses the object against the unevenness inside the container increases to some extent, and the shear stress for enhancing the dispersibility of the object to be processed is secured.
  • FIG. 1 It is a block diagram which shows the example of the stirring / defoaming processing apparatus. It is a figure which schematically drawn the shape of the cross section of a container. It is a figure which schematically drew the cross section of the unevenness formed on the inner surface of a container. It is a figure which schematically drew the cross section of the unevenness formed on the inner surface of a container. It is a figure which schematically drew the cross section of the unevenness formed on the inner surface of a container. It is a figure which shows the measurement result of the shape of the unevenness of a container. It is a figure which shows the measurement result of the shape of the unevenness of a container.
  • FIG. 1 is a configuration diagram showing an example of a stirring / defoaming treatment device 100.
  • the stirring / defoaming treatment device 100 includes one or more containers 1 for stirring / defoaming treatment having a bottomed cylinder for accommodating the object 5 to be processed, and one or more stirrings.
  • a container holder 106 on which the container 1 for defoaming treatment is mounted, and a drive mechanism D for rotating the container holder 106 around the rotation axis X1 and revolving the rotation axis X1 are provided.
  • the stirring / defoaming treatment device 100 may include a weight for balancing during rotation.
  • the drive mechanism D of the present embodiment shown in FIG. 1 includes a revolution gear 101, a rotary drum 102, a revolution shaft 103, a drive motor 104, a revolution table 105, a container holder 106, a rotation gear 108, an intermediate gear 109, a sun gear 110, and a gear. It includes 111, a gear 112, and a gear 113.
  • the rotary drum 102 having the revolution gear 101 is rotatably supported with respect to the revolution shaft 103, which is a fixed shaft, via a bearing.
  • the rotational motion of the drive motor 104 is transmitted to the rotating drum 102 via the revolution gear 101, and the rotating drum 102 rotates about the revolution axis X2 of the revolution shaft 103.
  • the revolution table 105 is connected to and fixed to the rotary drum 102, and rotates together with the rotary drum 102.
  • the container holder 106 is rotatably supported by the revolution table 105 about its rotation axis X1. Therefore, the container holder 106 rotates (that is, revolves) about the revolution axis X2 of the revolution shaft 103 due to the rotation of the revolution table 105.
  • the container holder 106 has a rotation gear 108.
  • the rotation gear 108 meshes with the intermediate gear 109 rotatably supported by the revolution table 105 via a bearing.
  • the intermediate gear 109 meshes with the sun gear 110.
  • the sun gear 110 is arranged outside the rotary drum 102, and is rotatably supported by the rotary drum 102 via a bearing.
  • the sun gear 110 meshes with the gear 111.
  • the braking force of a braking device 114 such as a powder brake is transmitted to the gear 111 via the gear 112 and the gear 113 that mesh with each other.
  • the sun gear 110 rotates in accordance with the rotating drum 102 when there is no braking force applied by the braking device 114 (that is, when the braking force is 0).
  • the rotation speed of the sun gear 110 decreases with respect to the rotation speed of the rotary drum 102, and the rotation speed of the sun gear 110 and the rotation drum 102.
  • the intermediate gear 109 rotates relative to the sun gear 110. Since the intermediate gear 109 meshes with the rotation gear 108, the rotation gear 108 rotates, and the container holder 106 rotates (that is, rotates) about the rotation axis X1.
  • the stirring / defoaming processing device 100 has shown a configuration example in which the container holder 106 is revolved and rotated by one drive motor 104, the configuration of the stirring / defoaming processing device 100 is limited to the example of FIG. It's not a thing.
  • the stirring / defoaming processing device 100 may separately include a revolution drive motor and a rotation drive motor, and may revolve and rotate the container holder 106, or may have another configuration.
  • the stirring / defoaming treatment device 100 is equipped with two containers 1. With this configuration, the stirring / defoaming treatment device 100 can simultaneously perform the stirring / defoaming treatment of two or more containers 1.
  • the container 1 for stirring / defoaming treatment, the container holder 106 on which the container 1 for stirring / defoaming treatment is mounted, and the container holder 106 are rotated shafts.
  • the stirring / defoaming treatment apparatus 100 provided with the drive mechanism D that rotates around the core X1 and revolves around the rotation axis X1, the object 5 to be processed is housed in the container 1 for the stirring / defoaming treatment.
  • the container 1 for stirring / defoaming treatment is revolved in a range where the centrifugal acceleration is 4 G or more and 1000 G or less.
  • the centrifugal acceleration may be 23 G or more, or may be 40 G or more.
  • the centrifugal acceleration may be 750 G or less, or may be 500 G or less.
  • the centrifugal acceleration of revolution is 400 G or more and 1000 G or less.
  • the mass of the object 5 to be treated contained in the container 1 is 500 g or more and less than 1,000 g, it is desirable that the centrifugal acceleration of revolution is 200 G or more and 450 G or less.
  • the centrifugal acceleration of revolution is 60 G or more and 250 G or less.
  • the centrifugal acceleration of revolution is 10 G or more and 75 G or less.
  • the centrifugal acceleration of revolution is 4 G or more and 15 G or less.
  • the revolution radius r shown in FIG. 1 may be 5 cm or more and 60 cm or less, or the revolution rotation speed may be 100 rpm or more and 3500 rpm or less.
  • the centrifugal acceleration is about 4.47 G.
  • the centrifugal acceleration is about 978.25 G.
  • the centrifugal acceleration of revolution When the centrifugal acceleration of revolution is 4 G or more, the change in the attitude of the object to be processed 5 inside the container 1 becomes large (that is, it is possible to reduce the fact that gravity stays below the inside of the container 1), and the container can be reduced. The contact area of the inner surface of 1 with the unevenness 2 becomes large. Further, when the centrifugal acceleration of revolution is 4 G or more, the force for pressing the object 5 to be processed against the unevenness 2 on the inner surface of the container 1 becomes large.
  • the shear stress for crushing the object to be treated 5 that is, the process of disassembling the agglomeration of fine particles
  • the defibration that is, the process of disassembling the entanglement of the fibers
  • the centrifugal acceleration of revolution is 1000 G or less
  • fracture and pulverization are reduced in the object 5 to be treated, which contains fibrous materials and particles.
  • the centrifugal acceleration of revolution is 1000 G or less
  • separation and reaggregation are reduced even in the object 5 containing a material having a high specific density.
  • the dispersion effect of the object to be treated 5 becomes good.
  • the centrifugal acceleration of the revolution is 1000 G or less, it is possible to reduce the strength requirement of the components and the like, and it is possible to reduce the installation area and cost of the stirring / defoaming treatment device 100.
  • the rotation speed of the rotation of the container 1 of the stirring / defoaming treatment device 100 may be 50 rpm or more and 2000 rpm or less. When the rotation speed is 50 rpm or more, the shear stress for crushing and defibration becomes large, so that the dispersion effect of the object 5 to be processed becomes large. When the rotation speed is 2000 rpm or less, breakage and crushing are reduced. Further, the rotation rotation speed of the stirring / defoaming treatment device 100 may be 0.2 times or more or 0.5 times or more the revolution rotation speed. The rotation speed of the stirring / defoaming treatment device 100 may be 1.75 times or less, or may be 1.5 times or less.
  • the object 5 to be processed may contain either a liquid or a solid.
  • FIG. 2 is a diagram schematically depicting the shape of the cross section of the container 1.
  • the shape of the unevenness 2 drawn in FIG. 2 is described for the purpose of illustration, and is not a faithful drawing of the actual shape. Further, when the vertical cross section of the container 1 is viewed, the same unevenness 2 is formed.
  • the container 1 can be formed by using various materials such as metal and resin, and the unevenness 2 can also be formed by using various materials.
  • the container 1 is formed in a bottomed cylindrical shape for accommodating the object to be processed 5.
  • the container 1 is formed with a plurality of irregularly shaped irregularities 2 on at least a part of the inner surface in contact with the object to be processed 5 to be accommodated.
  • the unevenness 2 is formed on the entire inner surface (that is, the bottom surface and the side surface) of the container 1.
  • a plurality of fine irregularities 2 are formed on the inner surface of the container 1 by a blasting treatment, a thermal spraying treatment, or an abrasive grain adhesion treatment, which will be described later.
  • At least a part of the inner surface in contact with the object to be accommodated 5 is formed with the distance between the vertices 3a of the plurality of convex portions 3 constituting the plurality of irregularities 2 and the plurality of irregularities 2. At least one of the intervals between the bottom points 4a of the plurality of recesses 4 is irregularly formed (see FIGS. 3 to 5).
  • the height of the vertices 3a of the plurality of convex portions 3 constituting the plurality of irregularities 2 and the plurality of irregularities 2 are formed on at least a part of the inner surface of the container 1 in contact with the object to be accommodated 5. At least one of the depths of the bottom points 4a of the plurality of recesses 4 is irregularly formed.
  • FIGS. 3 to 5 are views schematically showing a cross section of the unevenness 2 formed on the inner surface of the container 1. It should be noted that the shapes of the unevenness 2 drawn in FIGS. 3 to 5 are described for the purpose of illustration, and are not faithful to the actual shapes.
  • the arcuate internal surface of the container 1 is represented and drawn in a straight line.
  • the distance between the vertices 3a of the plurality of convex portions 3 and the height of the plurality of convex portions 3 are irregularly formed.
  • the distance between the bottom points 4a of the plurality of recesses 4 and the depth of the bottom points 4a of the plurality of recesses 4 are irregularly formed.
  • FIG. 4 the distance between the bottom points 4a of the plurality of recesses 4 and the depth of the bottom points 4a of the plurality of recesses 4 are irregularly formed.
  • the distance between the vertices 3a of the plurality of convex portions 3 and the heights of the plurality of convex portions 3 are irregularly formed, and the distance between the bottom points 4a of the plurality of concave portions 4 and the plurality of protrusions 3 are irregular.
  • the depth of the bottom point 4a of the recess 4 is irregularly formed.
  • the surface roughness (arithmetic mean roughness) Ra of the plurality of irregularities 2 is in the range of 3 ⁇ m or more and 100 ⁇ m or less.
  • the surface roughness Ra of the plurality of irregularities 2 may be 3 ⁇ m or more and less than 30 ⁇ m, or 30 ⁇ m or more and less than 100 ⁇ m.
  • FIG. 6 and 7 are diagrams showing the measurement results of the shape of the unevenness 2.
  • FIG. 2 is an example when the surface roughness Ra of the plurality of irregularities 2 is 16 ⁇ m
  • FIG. 3 is an example when the surface roughness Ra of the plurality of irregularities 2 is 38 ⁇ m.
  • the container 1 for stirring and defoaming treatment by adhering a plurality of particles to at least a part of the inner surface of the container 1 for stirring / defoaming treatment, or by adhering at least a part of the inner surface of the container 1 for stirring / defoaming treatment.
  • an unevenness forming process for forming a plurality of irregularly shaped unevenness 2 is performed on at least a part of the inner surface of the container 1 for stirring / defoaming treatment.
  • the unevenness forming treatment for forming a plurality of unevenness 2 include a blast treatment for projecting granules on the inner surface of the container 1, and granules having at least a part melted by heating on the inner surface of the container 1.
  • a spraying treatment for spraying an abrasive grain adhesion treatment for adhering abrasive grains to the inner surface of the container 1, and the like.
  • the blasting process is a process of denting the internal surface with a projecting granular material (for example, an abrasive).
  • a projecting granular material for example, an abrasive
  • the shape of the unevenness 2 can be changed by changing the size, amount, or the like of the projecting granular material.
  • the material of the container 1 and the thermal spraying material can be selected according to the purpose of use, and functions such as corrosion resistance and heat resistance can be added.
  • the thermal spraying material may be a single material or a combination of a plurality of types of materials.
  • the type of abrasive grain, the shape and size of the abrasive grain, the abundance density of the convex portion 3 (that is, the abrasive grain density), etc. can be set by, for example, electrodeposition treatment, depending on the type of plating. It can also be corrosion resistant.
  • FIG. 8 is a table showing the evaluation results of the stirring effect and the evaluation results of the foaming suppressing effect. Specifically, in order to verify the stirring effect, a defibration test of cellulose fibers and a crushing test of ceramic powder are performed, and in order to verify the foaming suppression effect, a bubble mixing test is performed in the object to be treated 5. rice field.
  • the surface roughness Ra of the internal surface is " ⁇ 3 ⁇ m (less than 3 ⁇ m)", “3 ⁇ m to 30 ⁇ m (3 ⁇ m or more and less than 30 ⁇ m)", “30 ⁇ m to 100 ⁇ m (30 ⁇ m or more and less than 100 ⁇ m)", “100 ⁇ m to 1000 ⁇ m ( This was performed using five types of containers 1 of "100 ⁇ m or more and less than 1000 ⁇ m)" and "1000 ⁇ m to (1000 ⁇ m or more)”. As the container 1 having a surface roughness Ra of the inner surface of "1000 ⁇ m to (1000 ⁇ m or more)", the container 1 shown in FIG. 9 was used. The container 1 shown in FIG.
  • the inner surface of the container 1 having a surface roughness Ra of less than 3 ⁇ m is not subjected to the unevenness forming treatment and is substantially smooth.
  • the container 1 having an internal surface roughness Ra of 30 ⁇ m or more has the highest stirring effect of the object 5 to be treated. You can see that. Further, it can be seen that the stirring effect of the object to be treated 5 is relatively high also in the container 1 having a surface roughness Ra of 3 ⁇ m or more on the inner surface.
  • the container 1 having a surface roughness Ra of less than 30 ⁇ m on the inner surface has the highest effect of suppressing foaming of the object to be treated 5. Further, it can be seen that the container 1 having a surface roughness Ra of less than 100 ⁇ m on the inner surface also has a relatively high effect of suppressing foaming of the object to be treated 5.
  • the frictional stress applied to the object to be treated 5 is secured while the foaming property is low, and the dispersibility of the object to be processed 5 is high.
  • Foamability means the ease with which bubbles are generated.
  • the surface roughness Ra of the unevenness 2 on the inner surface is 30 ⁇ m or more and less than 100 ⁇ m
  • the flow of the object to be processed 5 due to rotation is somewhat disturbed due to the large unevenness 2, but the unevenness 2 is irregular. Therefore, the turbulence of the flow of the object to be processed 5 becomes small. Therefore, while suppressing the foaming property of the object to be treated 5, the flow of the object to be processed 5 due to the rotation of the container 1 is disturbed, so that the dispersibility of the object to be processed 5 becomes high.
  • the container 1 having the surface roughness Ra of the unevenness 2 on the inner surface of less than 3 ⁇ m has a low foaming property because the inner surface of the container 1 is smooth, but the frictional stress with respect to the object 5 to be treated. Is reduced, and the dispersibility of the object to be treated 5 is lowered. Further, when the surface roughness Ra of the unevenness 2 on the inner surface is 1000 ⁇ m or more, the turbulence of the flow of the object to be treated 5 due to the rotation becomes large, and it is relatively easy to entrain air and the foaming property becomes high.
  • the subject during the stirring / defoaming treatment is performed. It can be said that the flow of the processed object 5 can be effectively disturbed to enhance the dispersibility of the object to be processed 5, and the object to be processed 5 can be effectively made difficult to foam.
  • FIG. 10 is a diagram showing the results of a defibration test for cellulose fibers. Specifically, it is an image showing the result of observing the object 5 to be processed before and after the stirring and defoaming treatment under the above conditions with an optical microscope.
  • the container 1 for stirring and defoaming treatment is made of SUS.
  • the mass of the cellulose fiber was small or loosened, and the dispersibility of the cellulose fiber was enhanced.
  • FIG. 11 is a graph showing the results of a crushing test of alumina powder as a ceramic powder. Specifically, it is a graph showing the particle size distribution of the ceramic powder before and after the stirring and defoaming treatment under the above conditions.
  • the object to be treated 5 before the stirring / defoaming treatment contains a large amount of alumina having a particle size of 1 ⁇ m or more.
  • the amount of alumina having a particle size of 1 ⁇ m or more is reduced and the aggregates of alumina are crushed.
  • the irregularly shaped unevenness 2 as described above may be formed on at least a part of the internal surface in contact with the object to be processed 5 to be accommodated.
  • the irregularly shaped unevenness 2 as described above may be formed on the bottom surface inside the container 1 and not on the inner side surface of the container 1.
  • the irregularly shaped unevenness 2 as described above may be formed on the inner side surface of the container 1 and not on the inner bottom surface of the container 1. As described above, it is possible to appropriately design where in the container 1 the irregularly shaped unevenness 2 as described above is formed.
  • the shape, dimensions, spacing, etc. of the unevenness 2 are not limited to those described above, and can be appropriately designed. Further, in the blasting process for forming the unevenness 2, the size and amount of the projected particles can be appropriately designed.
  • the thermal spraying material may be a single material or a combination of a plurality of types of materials.
  • the type of abrasive grains, the shape and size of the abrasive grains, and the like can be appropriately designed. Diamond, silicon carbide, metal and the like can also be used as abrasive grains.
  • the present disclosure can be used for a container for stirring / defoaming treatment and a method for manufacturing the same, as well as a stirring / defoaming treatment device and an operating method thereof, in which the object to be treated is less likely to foam and the dispersibility of the object to be treated can be enhanced. ..

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

被処理物5を撹拌・脱泡処理する撹拌・脱泡処理装置100で用いられ、被処理物5を内部に収容する有底筒状の撹拌・脱泡処理用の容器1であって、収容する被処理物5と接触する内部表面の少なくとも一部に、不規則な形状の複数の凹凸2が形成されている。

Description

撹拌・脱泡処理用の容器及びその製造方法、並びに、撹拌・脱泡処理装置及びその運転方法
 本開示は、被処理物を撹拌・脱泡処理する撹拌・脱泡処理装置で用いられ、被処理物を内部に収容する有底筒状の撹拌・脱泡処理用の容器及びその製造方法、並びに、撹拌・脱泡処理装置及びその運転方法に関する。
 特許文献1(特開2019-51495号公報)には、公転体と、その公転体に保持される自転体と、公転体と自転体とを回転駆動する駆動機構と、自転体に取り付けられ被処理材料を収納する容器とを備える処理装置が記載されている。容器の内周面には、容器の自転軸に沿って延在した複数の突条部を形成してある。そして、駆動機構が、自転体を公転体よりも高い回転速度で回転させる。これにより、高粘度の材料でも短時間でマイクロバブルの起泡を可能としている。具体的には、容器の内周面に形成された突起部が被処理材料に衝突して泡を巻き込むと共に微細化することで、効率的に多くのマイクロバブルを含有させることを可能としている。
特開2019-51495号公報
 特許文献1に記載の容器は、被処理物を泡立たせることを目的に形成されたものであるが、被処理物の分散性は高めつつ、被処理物の泡立ちを抑制することが求められる場合もある。
 本開示は、上記の課題に鑑みてなされたものであり、被処理物が泡立ち難く且つ被処理物の分散性を高めることができる撹拌・脱泡処理用の容器及びその製造方法、並びに、撹拌・脱泡処理装置及びその運転方法を提供する。
 本開示の一実施形態に係る撹拌・脱泡処理用の容器の構成は、被処理物を撹拌・脱泡処理する撹拌・脱泡処理装置で用いられ、前記被処理物を内部に収容する有底筒状の撹拌・脱泡処理用の容器であって、
 収容する前記被処理物と接触する内部表面の少なくとも一部に、不規則な形状の複数の凹凸が形成されている。
 ここで、収容する前記被処理物と接触する内部表面の少なくとも一部に、複数の前記凹凸を構成する複数の凸部の頂点同士の間隔、及び、複数の前記凹凸を構成する複数の凹部の底点同士の間隔の少なくとも一方が不規則に形成されていてもよい。
 また、収容する前記被処理物と接触する内部表面の少なくとも一部に、複数の前記凹凸を構成する複数の凸部の頂点の高さ、及び、複数の前記凹凸を構成する複数の凹部の底点の深さの少なくとも一方が不規則に形成されていてもよい。
 上記構成によれば、容器の内部表面の少なくとも一部に形成された不規則な形状の複数の凹凸によって撹拌・脱泡処理中の被処理物の流れの局所的な変化が小さくなるため、空気を巻き込みにくい状況になると考えられる。
 従って、被処理物が泡立ち難く且つ被処理物の分散性を高めることができる撹拌・脱泡処理用の容器を提供できる。
 本開示に係る撹拌・脱泡処理用の容器の更に別の構成は、複数の前記凹凸の表面粗さRaは3μm以上100μm未満の範囲である。
 上記構成によれば、内部表面に形成された複数の凹凸の表面粗さRaが3μm以上100μm未満の範囲である容器により撹拌・脱泡処理を行うことで、撹拌・脱泡処理中の被処理物の流れを効果的に乱して被処理物の分散性を高めることができ、且つ、効果的に被処理物が泡立ち難くすることができる。
 本開示に係る撹拌・脱泡処理用の容器の更に別の構成は、ブラスト処理又は溶射処理又は砥粒付着処理により複数の前記凹凸が形成されている。
 上記構成によれば、複数の凹凸を、ブラスト処理又は溶射処理又は砥粒付着処理により容器の内部表面に効果的に形成することができる。
 本開示の一実施形態に係る撹拌・脱泡処理用の容器の製造方法の構成は、前記撹拌・脱泡処理用の容器の内部表面の少なくとも一部に複数の粒子を付着させることにより、又は、前記撹拌・脱泡処理用の容器の内部表面の少なくとも一部を窪ませることにより、前記撹拌・脱泡処理用の容器の内部表面の少なくとも一部に、不規則な形状の複数の凹凸を形成する。
 上記構成によれば、撹拌・脱泡処理用の容器の内部表面の少なくとも一部に複数の粒子を付着させることにより、又は、撹拌・脱泡処理用の容器の内部表面の少なくとも一部を窪ませることにより、撹拌・脱泡処理用の容器の内部表面の少なくとも一部に、不規則な形状の複数の凹凸を形成することができる。その結果、容器の内部表面の少なくとも一部に形成された不規則な形状の複数の凹凸によって撹拌・脱泡処理中の被処理物の流れの局所的な変化が小さくなるため、空気を巻き込みにくい状況になると考えられる。
 従って、被処理物が泡立ち難く且つ被処理物の分散性を高めることができる撹拌・脱泡処理用の容器の製造方法を提供できる。
 上記目的を達成するための本開示に係る撹拌・脱泡処理装置の構成は、上記撹拌・脱泡処理用の容器と、
 前記撹拌・脱泡処理用の容器が搭載される容器ホルダーと、
 前記容器ホルダーを自転軸心周りに自転させ且つ前記自転軸心を公転させる駆動機構とを備える。
 上記構成によれば、撹拌・脱泡処理装置は、収容する被処理物と接触する内部表面の少なくとも一部に不規則な形状の複数の凹凸が形成されている容器を容器ホルダーに搭載し、駆動機構によって容器ホルダーを自転軸心周りに自転させ且つ自転軸心を公転させる。その結果、容器の内部表面の少なくとも一部に形成された不規則な形状の複数の凹凸によって撹拌・脱泡処理中の被処理物の流れの局所的な変化が小さくなるため、空気を巻き込みにくい状況になると考えられる。
 従って、被処理物が泡立ち難く且つ被処理物の分散性を高めることができる撹拌・脱泡処理装置を提供できる。
 本開示に係る撹拌・脱泡処理装置の運転方法の構成は、上記撹拌・脱泡処理用の容器と、前記撹拌・脱泡処理用の容器が搭載される容器ホルダーと、前記容器ホルダーを自転軸心周りに自転させ且つ前記自転軸心を公転させる駆動機構とを備える撹拌・脱泡処理装置において、前記撹拌・脱泡処理用の容器に前記被処理物を収容した状態で、前記撹拌・脱泡処理用の容器を遠心加速度が4G以上1000G以下の範囲で公転させる。
 上記構成によれば、撹拌・脱泡処理用の容器に被処理物を収容した状態で、撹拌・脱泡処理用の容器を遠心加速度が4G以上1000G以下の範囲で公転させることで、被処理物を容器内部の凹凸に押さえつける力がある程度大きくなり、被処理物の分散性を高めるためのずり応力が確保される。加えて、繊維状の材料や粒子が含まれる被処理物において、それらを解繊や解砕する以上に破断や粉砕してしまうことを防止できる。
 従って、被処理物が泡立ち難く且つ被処理物の分散性を高めることができる撹拌・脱泡処理装置の運転方法を提供できる。
撹拌・脱泡処理装置の例を示す構成図である。 容器の横断面の形状を模式的に描いた図である。 容器の内部表面に形成される凹凸の断面を模式的に描いた図である。 容器の内部表面に形成される凹凸の断面を模式的に描いた図である。 容器の内部表面に形成される凹凸の断面を模式的に描いた図である。 容器の凹凸の形状の測定結果を示す図である。 容器の凹凸の形状の測定結果を示す図である。 撹拌効果についての評価結果と起泡抑制効果についての評価結果とを示す表である。 容器の横断面の形状を模式的に描いた図である。 セルロース繊維の解繊試験の結果を示す図である。 セラミックス粉末の解砕試験の結果を示す図である。
 以下に図面を参照して実施形態に係る撹拌・脱泡処理装置100及び撹拌・脱泡処理用の容器1について説明する。
 図1は、撹拌・脱泡処理装置100の例を示す構成図である。図示するように、撹拌・脱泡処理装置100は、被処理物5を内部に収容する有底筒状の撹拌・脱泡処理用の一つ又は複数の容器1と、一つ又は複数の撹拌・脱泡処理用の容器1が搭載される容器ホルダー106と、容器ホルダー106を自転軸心X1の周りに自転させ且つ自転軸心X1を公転させる駆動機構Dとを備える。一つの容器ホルダー106に一つの容器1が搭載される場合、撹拌・脱泡処理装置100は、回転時のバランスを取るための錘を備えてもよい。
 図1に示す本実施形態の駆動機構Dは、公転歯車101、回転ドラム102、公転軸103、駆動モータ104、公転テーブル105、容器ホルダー106、自転歯車108、中間歯車109、太陽歯車110、歯車111、歯車112、及び、歯車113を備える。
 駆動機構Dにおいて、公転歯車101を有する回転ドラム102は、軸受を介して固定軸である公転軸103に対して回転自在に支持されている。駆動モータ104による回転運動が、公転歯車101を介して回転ドラム102に伝達され、回転ドラム102は、公転軸103の公転軸心X2を軸に回転する。公転テーブル105は、回転ドラム102に連結されて固定されており、回転ドラム102と共に回転する。容器ホルダー106は、公転テーブル105に対してその自転軸心X1を軸に回転自在に支持されている。そのため、容器ホルダー106は、公転テーブル105の回転により、公転軸103の公転軸心X2を中心に回転(即ち、公転)する。
 容器ホルダー106は、自転歯車108を有している。自転歯車108は、軸受を介して公転テーブル105に回転自在に支持されている中間歯車109と噛合する。中間歯車109は、太陽歯車110と噛合する。太陽歯車110は、回転ドラム102の外側に配置されており、回転ドラム102に対して、軸受を介して回転自在に支持されている。
 太陽歯車110は、歯車111に噛合する。歯車111には、互いに噛合する歯車112及び歯車113を介して、パウダーブレーキ等の制動装置114の制動力が伝達される。
 太陽歯車110は、制動装置114により加えられる制動力が無い場合(即ち、制動力が0の場合)、回転ドラム102に従動して回転する。
 制動装置114の制動力が歯車111を介して太陽歯車110に伝達された場合、太陽歯車110の回転速度が回転ドラム102の回転速度に比べて減少し、太陽歯車110の回転速度と回転ドラム102に連結されている公転テーブル105の回転速度との間に差が生じる。その結果、太陽歯車110に対して、中間歯車109が相対的に回転する。中間歯車109は、自転歯車108と噛合するため、自転歯車108が回転し、容器ホルダー106は、自転軸心X1を軸に回転(即ち、自転)する。
 尚、上記撹拌・脱泡処理装置100は、1つの駆動モータ104により容器ホルダー106を公転及び自転させる構成例を示したが、撹拌・脱泡処理装置100の構成は図1の例に限定するものではない。例えば、撹拌・脱泡処理装置100は、公転用駆動モータと自転用駆動モータを別々に備え、容器ホルダー106を公転及び自転させてもよく、他の構成であってもよい。
 図1においては、撹拌・脱泡処理装置100は、2つの容器1を搭載している。この構成により、撹拌・脱泡処理装置100は、2つ以上の複数の容器1を同時に撹拌・脱泡処理を行うことができる。そして、撹拌・脱泡処理装置100の運転方法としては、撹拌・脱泡処理用の容器1と、撹拌・脱泡処理用の容器1が搭載される容器ホルダー106と、容器ホルダー106を自転軸心X1の周りに自転させ且つ自転軸心X1を公転させる駆動機構Dとを備える撹拌・脱泡処理装置100において、撹拌・脱泡処理用の容器1に被処理物5を収容した状態で、撹拌・脱泡処理用の容器1を遠心加速度が4G以上1000G以下の範囲で公転させる。遠心加速度は、23G以上であってもよいし、或いは、40G以上であってもよい。或いは、遠心加速度は、750G以下であってもよいし、或いは、500G以下であってもよい。
 容器1に収容する被処理物5の質量が200g以上500g未満である場合は、公転の遠心加速度が400G以上1000G以下であることが望ましい。容器1に収容する被処理物5の質量が500g以上1,000g未満である場合は、公転の遠心加速度が200G以上450G以下であることが望ましい。容器1に収容する被処理物5の質量が1,000g以上3,000g未満である場合は、公転の遠心加速度が60G以上250G以下であることが望ましい。容器1に収容する被処理物5の質量が3,000g以上10,000g以下である場合は、公転の遠心加速度が10G以上75G以下であることが望ましい。容器1に収容する被処理物5の質量が10,000g以上30,000g以下である場合は、公転の遠心加速度が4G以上15G以下であることが望ましい。
 上記遠心加速度となる範囲内で、図1に記載する公転の回転半径rは、5cm以上60cm以下であってもよく、或いは、公転の回転速度は、100rpm以上3500rpm以下であってもよい。例えば、公転の回転半径rが約40cm、公転回転速度が約100rpmである場合、遠心加速度は約4.47Gとなる。また、公転の回転半径rが約14cm、公転回転速度が約2500rpmである場合、遠心加速度は約978.25Gとなる。
 公転の遠心加速度が4G以上の場合、容器1の内部での被処理物5の姿勢の変化が大きくなり(即ち、重力によって容器1の内部の下方に留まることを低減することができ)、容器1の内部表面の凹凸2との接触面積が大きくなる。また、公転の遠心加速度が4G以上の場合、被処理物5を容器1の内部表面の凹凸2に押さえつける力が大きくなる。これらにより、被処理物5の解砕(即ち、細かい粒子の凝集をほぐす処理)や解繊(即ち、繊維の絡まりをほぐす処理)のためのずり応力が大きくなるため、被処理物5の分散効果が大きくなる。一方、公転の遠心加速度が1000G以下の場合、繊維状の材料や粒子が含まれる被処理物5において破断や粉砕が低減される。また、公転の遠心加速度が1000G以下の場合、比重の高い材料を含む被処理物5であっても分離や再凝集が低減される。これらにより、被処理物5の分散効果が良好となる。また、公転の遠心加速度が1000G以下の場合、構成部品等の強度要求を低減することができ、撹拌・脱泡処理装置100の設置専有面積やコストを低減することができる。
 撹拌・脱泡処理装置100の容器1の自転の回転速度は、50rpm以上で2000rpm以下であってもよい。自転回転速度が50rpm以上の場合、解砕や解繊のためのずり応力が大きくなるため、被処理物5の分散効果が大きくなる。自転回転速度が2000rpm以下の場合、破断や粉砕が低減される。また、撹拌・脱泡処理装置100の自転回転速度は、公転回転速度に対して0.2倍以上であってもよいし、或いは、0.5倍以上であってもよい。撹拌・脱泡処理装置100の自転回転速度は、1.75倍以下であってもよいし、或いは、1.5倍以下であってもよい。被処理物5は、液体及び固体の何れを含んでいてもよい。
 図2は、容器1の横断面の形状を模式的に描いた図である。尚、図2で描いている凹凸2の形状は例示目的で記載したものであり、実際の形状を忠実に描いたものではない。また、容器1の縦断面を見た場合も同様の凹凸2が形成されている。
 容器1は、金属、樹脂などの様々な材料を用いて形成でき、凹凸2も、様々な材料を用いて形成できる。
 図1及び図2に示すように、容器1は、被処理物5を内部に収容する有底筒状に形成されている。そして、容器1は、収容する被処理物5と接触する内部表面の少なくとも一部に、不規則な形状の複数の凹凸2が形成されている。尚、本実施形態では、容器1の内部表面全体(即ち、底面及び側面)に凹凸2を形成してある。例えば、後述するブラスト処理又は溶射処理又は砥粒付着処理により、容器1の内部表面に複数の微細な凹凸2が形成されている。
 例えば、容器1は、収容する被処理物5と接触する内部表面の少なくとも一部に、複数の凹凸2を構成する複数の凸部3の頂点3a同士の間隔、及び、複数の凹凸2を構成する複数の凹部4の底点4a同士の間隔の少なくとも一方が不規則に形成されている(図3~図5参照)。
 また、容器1の、収容する被処理物5と接触する内部表面の少なくとも一部に、複数の凹凸2を構成する複数の凸部3の頂点3aの高さ、及び、複数の凹凸2を構成する複数の凹部4の底点4aの深さの少なくとも一方が不規則に形成されている。
 図3~図5は、容器1の内部表面に形成される凹凸2の断面を模式的に描いた図である。尚、図3~図5で描いている凹凸2の形状は例示目的で記載したものであり、実際の形状を忠実に描いたものではない。図3~図5では、容器1の円弧状の内部表面を直線状に表現して描いている。
 図3に示す例では、複数の凸部3の頂点3a同士の間隔及び複数の凸部3の高さが不規則に形成されている。
 図4に示す例では、複数の凹部4の底点4a同士の間隔及び複数の凹部4の底点4aの深さが不規則に形成されている。
 図5に示す例では、複数の凸部3の頂点3a同士の間隔及び複数の凸部3の高さが不規則に形成され、且つ、複数の凹部4の底点4a同士の間隔及び複数の凹部4の底点4aの深さが不規則に形成されている。
 本実施形態において、例えば、複数の凹凸2の表面粗さ(算術平均粗さ)Raは3μm以上100μm以下の範囲である。複数の凹凸2の表面粗さRaは3μm以上30μm未満であってもよいし、或いは、30μm以上100μm未満であってもよい。
 図6及び図7は、凹凸2の形状の測定結果を示す図である。具体的には、図2は、複数の凹凸2の表面粗さRaが16μmの場合の例であり、図3は、複数の凹凸2の表面粗さRaが38μmの場合の例である。
 次に、撹拌・脱泡処理用の容器1の製造方法について説明する。
 本実施形態では、撹拌・脱泡処理用の容器1の内部表面の少なくとも一部に複数の粒子を付着させることにより、又は、撹拌・脱泡処理用の容器1の内部表面の少なくとも一部を窪ませることにより、撹拌・脱泡処理用の容器1の内部表面の少なくとも一部に、不規則な形状の複数の凹凸2を形成する凹凸形成処理を実施する。
 例えば、複数の凹凸2を形成する凹凸形成処理の具体例としては、容器1の内部表面に粒体を投射するブラスト処理、容器1の内部表面に、加熱により少なくとも一部が溶融した粒体を吹き付ける溶射処理、容器1の内部表面に、砥粒を付着させる砥粒付着処理などがある。
 ブラスト処理は、投射する粒体(例えば、研磨剤など)により内部表面を窪ませる処理であり、例えば投射する粒体の大きさ、量などを変えることで凹凸2の形状等を変更できる。そして、ブラスト処理の場合は、容器1の内部表面に被膜を形成しなくてもよい。溶射処理の場合は、使用目的に合わせて容器1の材料と溶射材料との選択が可能になり、耐食性及び耐熱性などの機能を付加することも可能になる。溶射材料は、単一材料でもよいし、複数種の材料を組み合わせて用いてもよい。砥粒付着処理の場合は、例えば電着処理などにより、砥粒の種類、砥粒の形状、大きさ、凸部3の存在密度(即ち、砥粒密度)などを設定でき、メッキの種類により耐食性を持たせることもできる。
 次に、撹拌・脱泡処理用の容器1を用いて被処理物5の撹拌・脱泡処理を行った結果を説明する。尚、以下の説明では、先ず、被処理物5の撹拌・脱泡処理を行った場合の撹拌効果と起泡抑制効果との検証結果の全体を説明した後、個別の検証条件及び検証結果について具体的に説明する。
 図8は、撹拌効果についての評価結果と起泡抑制効果についての評価結果とを示す表である。具体的には、撹拌効果を検証するために、セルロース繊維の解繊試験及びセラミックス粉末の解砕試験を行い、起泡抑制効果を検証するために、被処理物5への気泡混入試験を行った。
 各試験は、内部表面の表面粗さRaが「~3μm(3μm未満)」、「3μm~30μm(3μm以上30μm未満)」、「30μm~100μm(30μm以上100μm未満)」、「100μm~1000μm(100μm以上1000μm未満)」、「1000μm~(1000μm以上)」の5種類の容器1を用いて行った。尚、内部表面の表面粗さRaが「1000μm~(1000μm以上)」の容器1は、図9に示す容器1を用いた。この図9に示す容器1は、内部表面に自転軸心X1に沿った線状突起(高さ:2mm)を円周にわたって規則的に設けたものであり、表面粗さRa=1000μm以上に相当する。表面粗さRaが3μm未満の容器1の内部表面は、凹凸形成処理はなされておらず、ほぼ平滑である。
 図8に示すように、セルロース繊維の解繊試験及びセラミックス粉末の解砕試験の結果からは、内部表面の表面粗さRaが30μm以上の容器1が、最も被処理物5の撹拌効果が高いことが分かる。また、内部表面の表面粗さRaが3μm以上の容器1も、被処理物5の撹拌効果が比較的高いことが分かる。
 また、図8に示すように、気泡混入試験の結果からは、内部表面の表面粗さRaが30μm未満の容器1が、最も被処理物5の起泡抑制効果が高いことが分かる。また、内部表面の表面粗さRaが100μm未満の容器1も、被処理物5の起泡抑制効果が比較的高いことが分かる。
 内部表面の凹凸2の表面粗さRaが3μm以上30μm未満である容器1では、起泡性は低いまま、被処理物5に加える摩擦応力が確保されて、被処理物5の分散性は高くなる。起泡性とは、気泡の生じ易さを意味している。また、内部表面の凹凸2の表面粗さRaが30μm以上100μm未満である容器1では、凹凸2が大きくなったことで自転による被処理物5の流れは多少乱れるが、凹凸2が不規則になっているため被処理物5の流れの乱れ方は小さくなる。よって、被処理物5の起泡性を抑制しつつ、容器1の自転による被処理物5の流れが乱されるため被処理物5の分散性は高くなる。
 それと比較して、内部表面の凹凸2の表面粗さRaが3μm未満の容器1は、容器1の内部表面が平滑であるため起泡性は低いが、被処理物5に対しての摩擦応力が小さくなり、被処理物5の分散性は低くなる。また、内部表面の凹凸2の表面粗さRaが1000μm以上になると、自転による被処理物5の流れの乱れが大きくなり、比較的空気を巻き込みやすく起泡性が高くなる。
 以上のように、内部表面に形成された複数の凹凸2の表面粗さRaが3μm以上100μm未満の範囲である容器1により撹拌・脱泡処理を行うことで、撹拌・脱泡処理中の被処理物5の流れを効果的に乱して被処理物5の分散性を高めることができ、且つ、効果的に被処理物5が泡立ち難くすることができると言える。
 次に、図8の表で示したセルロース繊維の解繊試験及びセラミックス粉末の解砕試験の具体的な条件及び結果、並びに、起泡抑制効果を検証するための気泡混入試験の具体的な条件について説明する。
〔撹拌効果〕
(1)セルロース繊維の解繊試験
 撹拌・脱泡処理の条件は以下の通りである。
 被処理物5:セルロース 2.4g、水 77.6g
 公転回転速度:1000rpm
 自転回転速度:1000rpm
 時間:300秒
 図10は、セルロース繊維の解繊試験の結果を示す図である。具体的には、上記条件で撹拌・脱泡処理する前後での被処理物5を光学顕微鏡によって観察した結果を示す画像である。撹拌・脱泡処理用の容器1はSUS製である。尚、図10に示す解繊試験の結果は、内部表面が未処理(凹凸2を形成する加工を行っていない)の容器1(表面粗さRa=0.4μm)、内部表面に溶射処理を行った容器1(表面粗さRa=16μm)、内部表面に砥粒を付着させる処理を行った容器1(表面粗さRa=38μm)を用いて行ったものである。
 図10から分かるように、撹拌・脱泡処理を行っていない未処理の状態では、セルロース繊維が大きな、又は絡まりあった塊になっている。また、内部表面が未処理の容器1(Ra=0.4μm)を用いて撹拌・脱泡処理を行った場合も、比較的大きく絡まりあったセルロース繊維の塊が残存していた。
 それと比較して、内部表面に溶射処理を行った容器1(Ra=16μm)、内部表面に砥粒を付着させる処理を行った容器1(Ra=38μm)を用いて撹拌・脱泡処理を行った場合、セルロース繊維の塊は小さく、又はほぐれた状態となっており、セルロース繊維の分散性は高まっていた。
(2)セラミックス粉末の解砕試験
 撹拌・脱泡処理の条件は以下の通りである。
 被処理物5:アルミナ 47.4g、水 28g
 公転回転速度:1000rpm
 自転回転速度:1000rpm
 時間:120秒
 図11は、セラミックス粉末としてのアルミナ粉末の解砕試験の結果を示すグラフである。具体的には、上記条件で撹拌・脱泡処理する前後でのセラミックス粉末の粒度分布を示すグラフである。尚、図11に示す解砕試験の結果は、内部表面が未処理(即ち、凹凸2を形成する加工を行っていない)の樹脂製の容器1(表面粗さRa=3μm未満)、内部表面に溶射処理を行ったSUS製の容器1(表面粗さRa=16μm)を用いて行ったものである。
 図11から分かるように、撹拌・脱泡処理前の被処理物5には、粒径が1μm以上のアルミナが多数含まれている。そして、上記条件で撹拌・脱泡処理を行った場合、内部表面が未処理の樹脂製の容器1(Ra=3μm未満)、内部表面に溶射処理を行ったSUS製の容器1(Ra=16μm)の何れの場合も、粒径が1μm以上のアルミナが減少し、アルミナの凝集体の解砕が行われていることが分かる。特に、内部表面に溶射処理を行ったSUS製の容器1を用いた場合、粒径が1μm以上のアルミナが非常に少なくなり、粒径が約0.1μm~約0.3μmのアルミナ1次粒子が増加している。つまり、本解砕試験において、内部表面に溶射処理を行ったSUS製の容器1(Ra=16μm)が最も良好な結果であった。
〔起泡抑制効果〕
 起泡抑制効果を検証するための気泡混入試験における撹拌・脱泡処理の条件は以下の通りである。
 被処理物5:粘度調整液(水、CMC(カルボキシメチルセルロース)) 50g
 公転回転速度:1000rpm
 自転回転速度:1000rpm、1500rpm
 時間:300秒
<別実施形態>
<1>
 上記実施形態では、撹拌・脱泡処理装置100の構成について具体例を挙げて説明したが、その構成は適宜変更可能である。
<2>
 上記実施形態では、幾つかの材料を被処理物5として例示したが、被処理物5の種類は上述した材料に限定されず、様々な材料を用いることができる。
<3>
 上記実施形態において、上述したような不規則な形状の凹凸2は、収容する被処理物5と接触する内部表面の少なくとも一部に形成されていることでもよい。例えば、上述したような不規則な形状の凹凸2が、容器1の内部の底面に形成され、容器1の内部の側面には形成されていない形態でもよい。或いは、上述したような不規則な形状の凹凸2が、容器1の内部の側面に形成され、容器1の内部の底面には形成されていない形態でもよい。このように、上述したような不規則な形状の凹凸2を容器1の内部のどこに形成するのかは適宜設計可能である。
<4>
 上記実施形態において、凹凸2の形状、寸法、間隔などは上述したものに限定されず、適宜設計可能である。
 また、凹凸2を形成する際のブラスト処理において、投射する粒体の大きさ、量などは適宜設計可能である。溶射処理において、溶射材料は、単一材料でもよいし、複数種の材料を組み合わせて用いてもよい。砥粒付着処理において、砥粒の種類、砥粒の形状、大きさなどは適宜設計可能である。ダイヤモンド、炭化ケイ素、金属などを砥粒として用いることもできる。
<5>
 上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用でき、また、本明細書において開示された実施形態は例示であって、本開示の実施形態はこれに限定されず、本開示の目的を逸脱しない範囲内で適宜改変できる。
 本開示は、被処理物が泡立ち難く且つ被処理物の分散性を高めることができる撹拌・脱泡処理用の容器及びその製造方法、並びに、撹拌・脱泡処理装置及びその運転方法に利用できる。
1 容器
2 凹凸
3 凸部
3a 頂点
4 凹部
4a 底点
5 被処理物
100 撹拌・脱泡処理装置
106 容器ホルダー
D 駆動機構
X1 自転軸心

Claims (8)

  1.  被処理物を撹拌・脱泡処理する撹拌・脱泡処理装置で用いられ、前記被処理物を内部に収容する有底筒状の撹拌・脱泡処理用の容器であって、
     収容する前記被処理物と接触する内部表面の少なくとも一部に、不規則な形状の複数の凹凸が形成されている撹拌・脱泡処理用の容器。
  2.  収容する前記被処理物と接触する内部表面の少なくとも一部に、複数の前記凹凸を構成する複数の凸部の頂点同士の間隔、及び、複数の前記凹凸を構成する複数の凹部の底点同士の間隔の少なくとも一方が不規則に形成されている請求項1に記載の撹拌・脱泡処理用の容器。
  3.  収容する前記被処理物と接触する内部表面の少なくとも一部に、複数の前記凹凸を構成する複数の凸部のそれぞれの頂点の高さ、及び、複数の前記凹凸を構成する複数の凹部のそれぞれの底点の深さの少なくとも一方が不規則に形成されている請求項1又は2に記載の撹拌・脱泡処理用の容器。
  4.  複数の前記凹凸の表面粗さRaは3μm以上100μm未満の範囲である請求項1~3の何れか一項に記載の撹拌・脱泡処理用の容器。
  5.  ブラスト処理又は溶射処理又は砥粒付着処理により複数の前記凹凸が形成されている請求項1~4の何れか一項に記載の撹拌・脱泡処理用の容器。
  6.  請求項1~5の何れか一項に記載の撹拌・脱泡処理用の容器の製造方法であって、
     前記撹拌・脱泡処理用の容器の内部表面の少なくとも一部に複数の粒子を付着させることにより、又は、前記撹拌・脱泡処理用の容器の内部表面の少なくとも一部を窪ませることにより、前記撹拌・脱泡処理用の容器の内部表面の少なくとも一部に、不規則な形状の複数の凹凸を形成する撹拌・脱泡処理用の容器の製造方法。
  7.  請求項1~5の何れか一項に記載の撹拌・脱泡処理用の容器と、
     前記撹拌・脱泡処理用の容器が搭載される容器ホルダーと、
     前記容器ホルダーを自転軸心周りに自転させ且つ前記自転軸心を公転させる駆動機構とを備える撹拌・脱泡処理装置。
  8.  請求項1~5の何れか一項に記載の撹拌・脱泡処理用の容器と、前記撹拌・脱泡処理用の容器が搭載される容器ホルダーと、前記容器ホルダーを自転軸心周りに自転させ且つ前記自転軸心を公転させる駆動機構とを備える撹拌・脱泡処理装置において、前記撹拌・脱泡処理用の容器に前記被処理物を収容した状態で、前記撹拌・脱泡処理用の容器を遠心加速度が4G以上1000G以下の範囲で公転させる撹拌・脱泡処理装置の運転方法。
PCT/JP2021/034526 2020-10-26 2021-09-21 撹拌・脱泡処理用の容器及びその製造方法、並びに、撹拌・脱泡処理装置及びその運転方法 WO2022091636A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-178798 2020-10-26
JP2020178798A JP2022069875A (ja) 2020-10-26 2020-10-26 撹拌・脱泡処理用の容器及びその製造方法、並びに、撹拌・脱泡処理装置及びその運転方法

Publications (1)

Publication Number Publication Date
WO2022091636A1 true WO2022091636A1 (ja) 2022-05-05

Family

ID=81382296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034526 WO2022091636A1 (ja) 2020-10-26 2021-09-21 撹拌・脱泡処理用の容器及びその製造方法、並びに、撹拌・脱泡処理装置及びその運転方法

Country Status (2)

Country Link
JP (1) JP2022069875A (ja)
WO (1) WO2022091636A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5385576A (en) * 1977-01-07 1978-07-28 Kiyokutou Denki Kk Method of reapidly removing airrcells in viscous liquid
JPH09122469A (ja) * 1995-10-31 1997-05-13 Nachi Fujikoshi Corp 粉体混合機用攪拌翼
JP2006070253A (ja) * 2004-08-05 2006-03-16 Fuji Photo Film Co Ltd ドープ製造設備及びドープ製造方法
JP2007229703A (ja) * 2005-12-26 2007-09-13 Ibiden Co Ltd 粉末の混合方法、撹拌機、及び、ハニカム構造体の製造方法
WO2011136023A1 (ja) * 2010-04-27 2011-11-03 三星工業株式会社 攪拌・脱泡装置
JP2012050929A (ja) * 2010-09-01 2012-03-15 Gijutsu Kaihatsu Sogo Kenkyusho:Kk 脱泡器
US20180304176A1 (en) * 2017-04-21 2018-10-25 Innovaprep Llc Devices, systems, and methods for removal of soluble gases from fluid samples
JP2018196362A (ja) * 2017-05-24 2018-12-13 デクセリアルズ株式会社 培養バッグ、及び培養装置
JP2019051495A (ja) * 2017-09-19 2019-04-04 株式会社ビートセンシング 攪拌起泡装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5385576A (en) * 1977-01-07 1978-07-28 Kiyokutou Denki Kk Method of reapidly removing airrcells in viscous liquid
JPH09122469A (ja) * 1995-10-31 1997-05-13 Nachi Fujikoshi Corp 粉体混合機用攪拌翼
JP2006070253A (ja) * 2004-08-05 2006-03-16 Fuji Photo Film Co Ltd ドープ製造設備及びドープ製造方法
JP2007229703A (ja) * 2005-12-26 2007-09-13 Ibiden Co Ltd 粉末の混合方法、撹拌機、及び、ハニカム構造体の製造方法
WO2011136023A1 (ja) * 2010-04-27 2011-11-03 三星工業株式会社 攪拌・脱泡装置
JP2012050929A (ja) * 2010-09-01 2012-03-15 Gijutsu Kaihatsu Sogo Kenkyusho:Kk 脱泡器
US20180304176A1 (en) * 2017-04-21 2018-10-25 Innovaprep Llc Devices, systems, and methods for removal of soluble gases from fluid samples
JP2018196362A (ja) * 2017-05-24 2018-12-13 デクセリアルズ株式会社 培養バッグ、及び培養装置
JP2019051495A (ja) * 2017-09-19 2019-04-04 株式会社ビートセンシング 攪拌起泡装置

Also Published As

Publication number Publication date
JP2022069875A (ja) 2022-05-12

Similar Documents

Publication Publication Date Title
US5238304A (en) Process and device for mixing
EP0910473B1 (en) Process for rapid production of colloidal nanoparticles
JP2889340B2 (ja) 高速乾式粉砕機
JP2007529298A (ja) 非ブレードミキサー
EP0421980A2 (en) Particulate material treating apparatus
JP5506818B2 (ja) 粒体研磨装置、鋳物砂再生装置、および、微粒子生成装置
CN106660130B (zh) 产生粉末产品的方法
WO2022091636A1 (ja) 撹拌・脱泡処理用の容器及びその製造方法、並びに、撹拌・脱泡処理装置及びその運転方法
JPH0889832A (ja) 横型ミルによる粉砕方法
JPWO2007052409A1 (ja) 砕砂製造装置
CN102448613A (zh) 将颗粒状物料进给到研磨机的进给轴
JPH0160297B2 (ja)
JPH09150072A (ja) スラリー製造方法及び装置
JP3217671U (ja) ビーズミル
JPH06312124A (ja) 流体の混合分散機
CN216826498U (zh) 一种滚筒式制浆装置
JP2002528258A (ja) 分散装置
JP2001079379A (ja) 研磨材微粒化用撹拌機の撹拌羽根及び混合羽根
JPH0975703A (ja) 回転翼式撹拌造粒装置
JPH09201543A (ja) 機械式粉砕装置
JPH08131818A (ja) 粉体処理装置
JPH0618580Y2 (ja) 固体粒子の表面改質装置に用いる回転盤
JPH0587307B2 (ja)
JP2002238457A (ja) 茶葉の粉砕方法および装置
CN210613897U (zh) 一种搅拌磨机搅拌装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885755

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21885755

Country of ref document: EP

Kind code of ref document: A1