WO2022091529A1 - 熱間プレス部材および熱間プレス用鋼板ならびにそれらの製造方法 - Google Patents

熱間プレス部材および熱間プレス用鋼板ならびにそれらの製造方法 Download PDF

Info

Publication number
WO2022091529A1
WO2022091529A1 PCT/JP2021/030091 JP2021030091W WO2022091529A1 WO 2022091529 A1 WO2022091529 A1 WO 2022091529A1 JP 2021030091 W JP2021030091 W JP 2021030091W WO 2022091529 A1 WO2022091529 A1 WO 2022091529A1
Authority
WO
WIPO (PCT)
Prior art keywords
based alloy
plating layer
alloy plating
steel sheet
hot
Prior art date
Application number
PCT/JP2021/030091
Other languages
English (en)
French (fr)
Inventor
修平 小川
稔 田中
林太 佐藤
大輔 水野
清次 中島
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US18/032,298 priority Critical patent/US20230392226A1/en
Priority to CN202180070291.XA priority patent/CN116348215A/zh
Priority to JP2021566532A priority patent/JP7131719B1/ja
Priority to EP21885650.8A priority patent/EP4215294A4/en
Priority to MX2023004567A priority patent/MX2023004567A/es
Priority to KR1020237012586A priority patent/KR20230069975A/ko
Publication of WO2022091529A1 publication Critical patent/WO2022091529A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/565Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/10Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0242Flattening; Dressing; Flexing

Definitions

  • the present invention relates to a hot pressed member, a steel sheet for hot pressing, and a method for manufacturing them.
  • the present invention relates to a hot pressed member and a steel sheet for hot pressing, which are excellent in corrosion resistance and hydrogen release characteristics after coating, and a method for manufacturing them.
  • Patent Document 1 discloses a steel sheet for hot pressing having a zinc or zinc-based alloy plating layer on the surface of the steel sheet, which is provided with a barrier layer on the surface layer to prevent evaporation of zinc during heating.
  • zirconium-based chemical conversion treatment has begun to spread in place of the conventional zinc phosphate-based chemical conversion treatment, and post-coating corrosion resistance of members subjected to electrodeposition coating after this zirconium-based chemical conversion treatment is also required. It has become.
  • the hot press member disclosed in Patent Document 1 is a hot press member manufactured by heating a Zn-based alloy-plated steel sheet, and has corrosion resistance without coating and coating when zinc phosphate-based chemical conversion treatment is applied. Excellent post-corrosion resistance.
  • the hot pressed member of Patent Document 1 has a problem that the corrosion resistance after painting when the zirconium-based chemical conversion treatment is applied is insufficient.
  • the present invention has been made in view of the above problems, and provides a hot pressed member having excellent post-painting corrosion resistance, particularly post-painting corrosion resistance when a zirconium-based chemical conversion treatment is applied, and a hot pressing member having excellent hydrogen release characteristics, and a method for manufacturing the same.
  • the purpose is to do.
  • Another object of the present invention is to provide a hot-pressed steel sheet suitable for a hot-pressed member having excellent post-coating corrosion resistance and hydrogen release characteristics, and a method for manufacturing the same.
  • the present inventors conducted diligent research in order to achieve the above-mentioned problems, and obtained the following findings.
  • the oxide layer is located on the outermost surface of the Zn-based alloy plating layer in the Zn-based alloy plating layer on the surface of the hot press member.
  • an oxide layer is formed so as to divide the intermetallic compound phase. Further, for this oxide layer, it is effective to set the division density per unit cross section with respect to the intermetallic compound phase to a predetermined value or more.
  • a hot pressed member having excellent post-coating corrosion resistance and hydrogen release characteristics can be obtained. be able to.
  • (3) As a method of forming cracks in the Zn-based alloy plated layer of the hot-pressed steel sheet used for the hot-pressed member so that the crack density per unit cross section becomes a predetermined value or more, a steel plate provided with a Zn-based alloy plated layer. Is effective in a method of immersing the plating in an acidic aqueous solution. Alternatively, a method of imparting strain to the Zn-based alloy plating layer of the steel sheet is effective.
  • the intermetallic compound phase containing Fe and the balance consisting of Zn and unavoidable impurities, or Fe which further contains Al, Mg, Si, Sr, Mn, Ti, Sn, In, Bi, Pb, and B.
  • a Zn-based alloy plating layer having a Zn-containing oxide layer and a Zn-based alloy plating layer is provided.
  • the oxide layer is located on the outermost surface of the Zn-based alloy plating layer, and the oxide layer divides the intermetallic compound phase.
  • At least one selected from Fe, Al, Mg, Si, Sr, Mn, Ti, Sn, In, Bi, Pb, and B is 0.1 to 60 in total. It is provided with a Zn-based alloy plating layer containing% by mass, the balance consisting of Zn and unavoidable impurities, and an adhesion amount of 10 to 90 g / m 2 . Inside the Zn-based alloy plating layer, there are cracks that divide the Zn-based alloy plating layer. A steel sheet for hot pressing, wherein the crack density per unit cross section in at least one cross section of the Zn-based alloy plating layer is 10 division points / mm or more.
  • At least one selected from Fe, Al, Mg, Si, Sr, Mn, Ti, Sn, In, Bi, Pb, and B is 0.1 to 60 in total.
  • a Zn-based alloy plating layer containing mass%, the balance of which is composed of Zn and unavoidable impurities, and an adhesion amount of 10 to 90 g / m 2 is provided, and the Zn-based alloy plating layer is divided inside the Zn-based alloy plating layer.
  • Ac 3 A method for manufacturing a hot pressed member, which is hot pressed after heating in a temperature range of 100 ° C. to the transformation point.
  • a hot pressed member having excellent post-painting corrosion resistance, particularly post-painting corrosion resistance when a zirconium-based chemical conversion treatment is applied, and hydrogen release characteristics. Further, according to the present invention, it is possible to obtain a hot pressing steel sheet suitable for a hot pressing member having excellent post-coating corrosion resistance and hydrogen release characteristics.
  • FIG. 1 is a schematic view showing a cross section of a Zn-based alloy plating layer before hot pressing (before heating) when no cracks are formed in the Zn-based alloy plating layer.
  • FIG. 2 is a schematic view showing a cross section of the Zn-based alloy plating layer after hot pressing (after heating) when no cracks are formed in the Zn-based alloy plating layer.
  • FIG. 3 is a schematic view showing a cross section of the Zn-based alloy plating layer before hot pressing (before heating) when cracks are formed in the Zn-based alloy plating layer.
  • FIG. 4 is a schematic view showing a cross section of the Zn-based alloy plating layer after hot pressing (after heating) when cracks are formed in the Zn-based alloy plating layer.
  • the hot press member of the present invention is provided with a Zn-based alloy plating layer having a solid solution phase and an intermetallic compound phase on at least one surface of a steel sheet.
  • the above solid solution phase contains Zn and the balance consists of Fe and unavoidable impurities, or contains Zn, and further contains Al, Mg, Si, Sr, Mn, Ti, Sn, In, Bi, Pb, B. It contains at least one selected from among, and the balance consists of Fe and unavoidable impurities.
  • the above intermetallic compound phase contains Fe, the balance of which is Zn and unavoidable impurities, or contains Fe, and further contains Al, Mg, Si, Sr, Mn, Ti, Sn, In, Bi, Pb.
  • B contains at least one selected from B, the balance of which consists of Zn and unavoidable impurities.
  • the Zn-based alloy plating layer has an oxide layer containing Zn, and the oxide layer is located on the outermost surface of the Zn-based alloy plating layer. At the same time, the oxide layer divides the intermetallic compound phase, and the division density per unit cross section in at least one cross section of the oxide layer is 10 division points / mm or more.
  • Zn in the Zn-based alloy plating layer diffuses into the underlying steel sheet, and Zn is contained in this diffusion region, and the balance is a solid solution composed of Fe and unavoidable impurities. Form a phase.
  • Zn in the Zn-based alloy plating layer and oxygen existing in the heating atmosphere combine to form an oxide layer containing Zn.
  • the Zn-based alloy plating layer which is an intermetal compound that did not contribute to diffusion into the base steel plate or formation of the oxide layer, remains as it is as an intermetal compound phase, but Fe diffused from the base steel plate is incorporated. Therefore, it contains Fe, and the balance is an intermetallic compound phase composed of Zn and unavoidable impurities.
  • the Zn-based alloy plating layer contains Zn and further contains at least one selected from Al, Mg, Si, Sr, Mn, Ti, Sn, In, Bi, Pb, and B
  • the steel sheet provided with the Zn-based alloy plating layer is hot-pressed, the result is as follows.
  • Each element other than Zn and Zn in the Zn-based alloy plating layer diffuses into the base steel sheet, and Zn is contained in this diffusion region, and further, Al, Mg, Si, Sr, Mn, Ti, Sn, In, Bi, Pb.
  • B contains at least one selected from B, and the balance forms a solid solution phase consisting of Fe and unavoidable impurities.
  • the Zn-based alloy plating layer which is an intermetallic compound that did not contribute to diffusion into the base steel sheet or formation of the oxide layer, remains as an intermetallic compound phase as it is, but Fe diffused from the base steel sheet is incorporated. Therefore, it contains Fe, and further contains at least one selected from Al, Mg, Si, Sr, Mn, Ti, Sn, In, Bi, Pb, and B, and the balance is from Zn and unavoidable impurities. It becomes an intermetallic compound phase.
  • both the solid solution phase and the intermetallic compound phase contain Zn having a sacrificial anticorrosion effect, they contribute to the improvement of corrosion resistance.
  • the zinc-containing oxide layer has an effect of uniformly and densely covering the zinc phosphate-based chemical conversion treatment and the zirconium-based chemical conversion treatment, which are applied as the coating base treatment, and thus contributes to the improvement of coating adhesion. Therefore, in order to satisfy the post-painting corrosion resistance which is the subject of the present invention, all of the solid solution phase, the intermetallic compound phase, and the oxide layer are indispensable constituent requirements.
  • the oxide layer is located on the outermost surface of the Zn-based alloy plating layer and is also located in the direction perpendicular to the surface of the Zn-based alloy plating layer to divide the intermetallic compound phase.
  • the oxide layer divides only the intermetallic compound phase and does not divide the solid solution phase.
  • the oxide layer need only divide the intermetallic compound phase in at least one cross section thereof, and is not limited to a cross section in a specific direction such as a cross section in the rolling direction or a cross section in a direction perpendicular to the rolling direction. not.
  • the oxide layer of the present invention is located on the outermost surface of the Zn-based alloy plating layer and that the oxide layer divides the intermetallic compound phase in order to satisfy the corrosion resistance and hydrogen release characteristics after coating. Is.
  • an oxide layer is formed on the surface of the Zn-based alloy plating layer as the temperature rises.
  • the plating layer located between the oxide layer and the steel sheet melts and becomes a liquid. If the heating continues and the temperature of the steel sheet continues to rise, the oxide layer will continue to grow. At this time, in the direction perpendicular to the surface of the plating layer, the oxide layer grows by increasing its thickness, and in the direction horizontal to the surface of the plating layer, the oxide layer increases its surface area while forming irregularities. Grow by. This is because the plating layer located between the oxide layer and the steel plate is a fluid liquid, so that the oxide layer can change its shape.
  • the hot-pressed member having a large unevenness in the oxide layer produced in this manner is subjected to zirconium-based chemical conversion treatment and electrodeposition coating to evaluate post-coating corrosion resistance, it is particularly found from the general part not subjected to cross-cutting.
  • the occurrence of red rust is remarkable. It is considered that the reason for this is that the electrodeposition coating does not follow the unevenness of the surface of the hot pressed member, and the film thickness of the electrodeposition coating becomes extremely thin in the convex portion, so that red rust occurs in such a portion.
  • the film thickness of the electrodeposition coating is uniform, and therefore, in a general portion not subjected to cross-cutting. No local red rust is generated, and excellent post-painting corrosion resistance can be obtained.
  • the surface of the Zn-based alloy plating layer forms large irregularities with heating, and the oxide layer cannot follow its own deformation and peels off. It may happen.
  • the reactivity of the portion where the oxide layer is peeled off with the zirconium-based chemical conversion treatment liquid is inferior to that of the portion where the oxide layer is present. Therefore, the coverage of the zirconium-based chemical conversion treatment film decreases in the portion where the oxide layer is peeled off, and red rust may occur in the portion not covered by the chemical conversion treatment film.
  • the hot pressing member of the present invention since the oxide layer is flat, the oxide layer does not peel off due to deformation during heating. Therefore, the zirconium-based chemical conversion coating can uniformly cover the entire surface of the hot pressed member, and red rust does not occur due to the peeling of the oxide layer as described above.
  • the amount of Zn diffused into the steel sheet in the Zn-based alloy plating layer is suppressed, the formation of the solid solution phase is small, and the residual amount of the intermetallic compound phase is large. Since the Zn content of the intermetallic compound phase is higher than that of the solid solution phase, the corrosion resistance after coating is further improved.
  • the presence of the oxide layer of the present invention significantly improves the corrosion resistance after painting.
  • the division density per unit cross section in at least one cross section of the oxide layer is 10 division points / mm or more. If the division density per unit cross section in at least one cross section of the oxide layer is less than 10 division points / mm, the above-mentioned effect cannot be obtained, and the above-mentioned effect of improving the post-painting corrosion resistance and hydrogen release characteristics is insufficient. .. From the viewpoint of improving the corrosion resistance after coating and the hydrogen release characteristics, the division density per unit cross section is preferably 50 divisions / mm or more, and more preferably 100 divisions / mm or more. The upper limit of the division density per unit cross section is not specified.
  • the division density per unit cross section is preferably 300 divisions.
  • At least one cross section of the oxide layer means at least one of the oxide layers in the direction perpendicular to the surface of the Zn-based alloy plating layer, which divides the total thickness of the intermetallic compound phase in the Zn-based alloy plating layer. Refers to the cross section of the oxide layer. The division density can be measured by the method described in Examples described later.
  • the division densities per unit cross section of the two orthogonal cross sections in the oxide layer are 10 division points / mm or more.
  • the mechanism for improving the corrosion resistance and hydrogen release characteristics after coating due to the presence of the oxide layer of the present invention is the effect of suppressing unevenness by dividing the plating layer, the effect of suppressing the peeling of the oxide layer by reducing the unevenness, and the effect of suppressing the peeling of the oxide layer by dividing the plating layer between metals.
  • the oxide layer of the present invention has corrosion resistance after coating when it exists at a density of 10 divisions / mm or more for each of two orthogonal cross sections, rather than at a density of 10 divisions / mm or more in only one cross section. And the effect of improving the hydrogen release characteristics becomes greater. Therefore, in the hot pressing member of the present invention, it is preferable that the division densities per unit cross section of the two orthogonal cross sections in the oxide layer are 10 division points / mm or more.
  • the division densities of the two cross sections are preferably 50 division points / mm or more, and more preferably 100 division points / mm or more. For the same reason as described above, all of them are preferably 300-divided points / mm or less, and more preferably 200-divided points / mm or less.
  • two orthogonal cross sections in the oxide layer are two cross sections of the oxide layer in the direction perpendicular to the surface of the Zn-based alloy plating layer, which divides the total thickness of the metal-to-metal compound phase in the Zn-based alloy plating layer. It refers to two cross sections of the steel sheets that are orthogonal to each other and are in a rolling direction (L direction) and in a direction perpendicular to the rolling direction (C direction).
  • the division density of the above two cross sections can be measured by the method described in Examples described later.
  • the steel sheet for hot press of the present invention has Fe, Al, Mg, Si, Sr, Mn, Ti, Sn, In, Bi, Pb, and B on at least one surface of the steel sheet.
  • a Zn-based alloy plating layer having a total content of 0.1 to 60% by mass, the balance of which is composed of Zn and unavoidable impurities, and an adhesion amount of 10 to 90 g / m 2 is provided.
  • Inside the Zn-based alloy plating layer there are cracks that divide the Zn-based alloy plating layer, and the crack density per unit cross section in at least one cross section of the Zn-based alloy plating layer is 10 division points / mm or more.
  • the Zn-based alloy plating layer contains at least one selected from Fe, Al, Mg, Si, Sr, Mn, Ti, Sn, In, Bi, Pb, and B in a total amount of 0.1 to 60% by mass.
  • the melting point of the Zn-based alloy plating layer is raised, and as a result, a hot-pressed member having excellent corrosion resistance after coating can be obtained. If the total content of each element is less than 0.1% by mass, the melting point of the Zn-based alloy plating layer cannot be sufficiently raised, and the intermetallic compound phase disappears due to heating before hot pressing. There is. As a result, it is not possible to obtain a hot pressed member having desired post-painting corrosion resistance.
  • the lower limit of the total content of each of the above elements is preferably 0.2% by mass or more, and more preferably 4% by mass or more.
  • the upper limit of the total content of each of the above elements is preferably 55% by mass or less, and more preferably 15% by mass or less.
  • Examples of the Zn-based alloy plating layer include an electric Zn-Fe plating layer, a hot-dip Zn plating layer, an alloyed hot-dip Zn plating layer, a hot-dip Zn-Al plating layer, and a hot-dip Zn-Al-Mg plating layer. Zinc.
  • the adhesion amount of the Zn-based alloy plating layer is 10 to 90 g / m 2 .
  • the adhesion amount is less than 10 g / m 2 , the intermetallic compound phase disappears due to heating before hot pressing, so that a hot pressed member having desired post-coating corrosion resistance cannot be obtained.
  • the amount of adhesion exceeds 90 g / m 2 , the effect of improving the corrosion resistance after painting is saturated, which is not only cost-effective but also deteriorates the hydrogen release characteristics.
  • the adhesion amount is 30 g / m 2 or more.
  • the adhesion amount is preferably 80 g / m 2 or less.
  • the amount of adhesion is the amount of adhesion per side.
  • the hot-pressed steel sheet of the present invention has cracks in the Zn-based alloy plating layer that divide the Zn-based alloy plating layer, and the crack density per unit cross section of at least one of the Zn-based alloy plating layers is divided by 10. Location / mm or more.
  • the cracks that divide the Zn-based alloy plating layer are in the direction perpendicular to the surface of the Zn-based alloy plating layer, that is, from the surface of the Zn-based alloy plating layer to the base steel sheet side. It shall refer to the crack formed toward.
  • the width of the crack is 5 ⁇ m or less, more preferably 2 ⁇ m or less, from the viewpoint of corrosion resistance after painting.
  • the lower limit of the crack width is not specified. It is preferably 0.1 ⁇ m or more.
  • the oxide layer is located on the outermost surface of the Zn-based alloy plating layer, and the oxide layer divides the intermetallic compound phase to form an oxide.
  • the division density per unit section in at least one section of the layer is 10 division points / mm or more.
  • the hot-pressed steel sheet of the present invention has a crack in the Zn-based alloy plating layer that divides the Zn-based alloy plating layer, and at least the Zn-based alloy plating layer is formed.
  • the crack density per unit cross section in one cross section shall be 10 division points / mm or more.
  • the crack density per unit cross section in at least one cross section of the Zn-based alloy plating layer is less than 10 divisions / mm, the effect of improving the corrosion resistance and hydrogen release characteristics of the obtained hot pressed member after coating is insufficient.
  • the crack density per unit cross section is preferably 50-divided portion / mm or more, and more preferably 100-divided portion / mm or more. Excessive increase in crack density per unit cross section requires an increase in immersion time in an acidic aqueous solution, resulting in a decrease in production efficiency and an increase in production cost. Therefore, the crack density per unit cross section is preferably divided into 300 parts. The location / mm or less, more preferably the 200-divided portion / mm or less.
  • the crack densities per unit cross section of the two orthogonal cross sections in the Zn-based alloy plating layer are 10 division points / mm or more.
  • the oxide layer of the hot press member of the present invention is present in only one cross section at a density of 10 divisions / mm or more, but in two orthogonal cross sections, each is 10 divisions /. When present at a density of mm or more, the effect of improving the corrosion resistance and hydrogen release characteristics after coating becomes greater.
  • the crack densities per unit cross section of the two orthogonal cross sections in the Zn-based alloy plating layer are 10 division points / mm or more.
  • the division densities of the two cross sections are preferably 50 division points / mm or more, and more preferably 100 division points / mm or more.
  • all of them are preferably 300-divided points / mm or less, and more preferably 200-divided points / mm or less.
  • the crack in the present invention means a crack formed by intentionally performing a crack forming treatment as described in 3) below. Therefore, it does not include cracks or the like generated when preparing a test piece for observing a cross section.
  • the Zn-based alloy plating layer of the present invention may be a single-layer Zn-based alloy plating layer, but a lower layer film may be provided depending on the purpose as long as it does not affect the action and effect of the present invention.
  • a base plating layer mainly composed of Ni is exemplified as the underlayer film.
  • the base steel sheet of the Zn-based alloy plating layer may be, for example, C: 0.20 to 0.35 by mass%. %, Si: 0.1 to 0.5%, Mn: 1.0 to 3.0%, P: 0.02% or less, S: 0.01% or less, Al: 0.1% or less, N: A steel sheet containing 0.01% or less and having a component composition in which the balance is composed of Fe and unavoidable impurities can be used.
  • the steel plate may be either a cold-rolled steel plate or a hot-rolled steel plate. The reasons for limiting each component are described below.
  • C 0.20 to 0.35% C improves the strength by forming martensite or the like as a steel structure. 0.20% or more is required to obtain strength exceeding 1470 MPa class. On the other hand, if it exceeds 0.35%, the toughness of the spot welded portion deteriorates. Therefore, the amount of C is preferably 0.20 to 0.35%.
  • Si 0.1-0.5% Si is an effective element for strengthening steel to obtain a good material. For that purpose, 0.1% or more is required. On the other hand, if it exceeds 0.5%, the ferrite is stabilized and the quenchability is lowered. Therefore, the amount of Si is preferably 0.1 to 0.5%.
  • Mn 1.0-3.0%
  • Mn is an element effective for increasing the strength of steel. In order to secure mechanical properties and strength, it is necessary to contain 1.0% or more. On the other hand, if it exceeds 3.0%, the surface thickening during annealing increases, and it becomes difficult to secure the plating adhesion. Therefore, the amount of Mn is preferably 1.0 to 3.0%.
  • the amount of P is preferably 0.02% or less.
  • the lower limit of the P content is not particularly limited. However, since excessive reduction leads to an increase in cost, the P content is preferably 0.001% or more.
  • S 0.01% or less S becomes inclusions such as MnS and causes deterioration of impact resistance and cracking along the metal flow of the welded portion. Therefore, it is desirable to reduce it as much as possible, and it is preferably 0.01% or less. Further, in order to secure good stretch flangeability, it is more preferably 0.005% or less.
  • the lower limit of the S content is not particularly limited. However, since excessive reduction leads to an increase in cost, the S content is preferably 0.0001% or more.
  • the amount of Al is preferably 0.1% or less.
  • the lower limit of the Al content is not particularly limited. However, if the content is low, deoxidation during molten steel is suppressed, and the uniformity and mechanical properties of the material are deteriorated. Therefore, the Al content is preferably 0.001% or more.
  • the amount of N is preferably 0.01% or less.
  • the lower limit of the N content is not particularly limited. However, since excessive reduction causes an increase in cost, the N content is preferably 0.0001% or more.
  • Nb 0.05% or less
  • Ti 0.05% or less
  • B 0.0002 to 0.005
  • %, Cr 0.1 to 0.3%
  • Sb 0.003 to 0.03%
  • Nb 0.05% or less
  • Nb is an effective component for strengthening steel, but if it is contained in an excessive amount, the shape freezing property is lowered. Therefore, when Nb is contained, it should be 0.05% or less.
  • the lower limit of the Nb content is not particularly limited. However, if the content is low, the effect of strengthening the strength of the steel cannot be obtained, so the Nb content is preferably 0.001% or more.
  • Ti 0.05% or less Ti is also effective for strengthening steel like Nb, but there is a problem that shape freezing property is lowered if it is contained in an excessive amount. Therefore, when Ti is contained, the content is 0.05% or less.
  • the lower limit of the Ti content is not particularly limited. However, if the content is low, the effect of strengthening the strength of the steel cannot be obtained, so the Ti content is preferably 0.001% or more.
  • B 0.0002 to 0.005% Since B has an effect of suppressing ferrite formation and ferrite growth from austenite grain boundaries, it is preferable to add 0.0002% or more. On the other hand, the addition of excess B greatly impairs moldability. Therefore, when B is contained, it is set to 0.0002 to 0.005%.
  • Cr 0.1-0.3% Cr is useful for strengthening steel and improving hardenability. In order to exhibit such an effect, addition of 0.1% or more is preferable. On the other hand, since the alloy cost is high, adding more than 0.3% causes a significant cost increase. Therefore, when Cr is contained, it is set to 0.1 to 0.3%.
  • Sb 0.003 to 0.03% Sb also has the effect of suppressing decarburization of the surface layer of the steel sheet during the hot pressing process. In order to exhibit such an effect, it is necessary to add 0.003% or more. On the other hand, if the amount of Sb exceeds 0.03%, the rolling load is increased and the productivity is lowered. Therefore, when Sb is contained, it is set to 0.003 to 0.03%.
  • the rest other than the above consists of Fe and unavoidable impurities.
  • Method for manufacturing a steel sheet for hot pressing on at least one surface of the steel sheet, Fe, Al, Mg, Si, Sr, Mn, Ti, Sn, In, Bi, Pb, and B are selected.
  • a steel sheet for hot pressing having a desired crack density can be produced by immersing the steel sheet in an acidic aqueous solution for 1.5 seconds or longer, or by imparting strain to the Zn-based alloy plating layer of the steel sheet.
  • Examples of the Zn-based alloy plating layer include an electric Zn-Fe plating layer, a hot-dip Zn plating layer, an alloyed hot-dip Zn plating layer, a hot-dip Zn-Al plating layer, and a hot-dip Zn-Al-Mg plating layer. Zinc.
  • an electric Zn-Fe plating layer When an electric Zn-Fe plating layer is applied as the Zn-based alloy plating layer, it contains 200 g / L of zinc sulfate heptahydrate and 240 g / L of ferrous sulfate heptahydrate, and has a pH of 1.5 and a bath. Electric Zn-Fe plating can be performed using a plating solution having a temperature of 50 ° C. under the condition of a current density of 50 A / dm 2 .
  • the steel sheet is plated for 2 seconds using a plating bath containing 0.2% Al and having a balance of Zn and unavoidable impurities at a bath temperature of 460 ° C. By immersing in a bath, hot-dip Zn plating can be performed.
  • a hot-dip Zn plating bath having a bath temperature of 460 ° C. is used, the steel plate is immersed in the plating bath for 2 seconds, and then the alloying temperature is 500 ° C. By performing the alloying treatment for a second, alloying hot-dip Zn plating can be performed.
  • molten Zn-Al plating layer When a molten Zn-Al plating layer is applied as a Zn-based alloy plating layer, it contains 5% of Al, and a plating bath having a bath temperature of 500 ° C. in which the balance is made of Zn and unavoidable impurities, or 55% of Al. Then, molten Zn-Al plating can be performed by immersing the steel sheet in the plating bath for 2 seconds using a plating bath having a bath temperature of 600 ° C. in which the balance is made of Zn and unavoidable impurities.
  • the bath temperature is 500 ° C., which contains 4.5% of Al and 0.5% of Mg, and the balance is Zn and unavoidable impurities.
  • the molten Zn-Al-Mg plating can be performed by immersing the steel sheet in the plating bath for 2 seconds using the plating bath of.
  • the pH of the acidic aqueous solution is set to 4.0 or less. ..
  • the pH of the acidic aqueous solution is preferably 2.0 or less.
  • the pH of the acidic aqueous solution is preferably 1.0 or higher in order to prevent excessive etching.
  • the immersion time in the water is 1.5 seconds or more.
  • the immersion time in the acidic aqueous solution is preferably 2.0 seconds or longer.
  • the upper limit of the immersion time is not particularly specified, but is preferably 20 seconds or less, more preferably 15 seconds or less, from the viewpoint of preventing excessive etching.
  • the crack density per unit cross section of the two orthogonal cross sections in the Zn-based alloy plating layer is 10-divided points / A steel plate for hot pressing having a thickness of mm or more can be obtained.
  • an acidic aqueous solution such as hydrochloric acid or sulfuric acid can be used.
  • the acidic aqueous solution is preferably a plating solution that forms a Zn-based alloy plating layer.
  • the plating solution for forming the Zn-based alloy plating layer is usually an acidic aqueous solution having a pH of 4.0 or less. Therefore, if the Zn-based alloy plating layer is formed and then immersed in this plating solution, the Zn-based alloy plating layer can be formed and cracks can be formed using one solution, which is costly. It is advantageous in terms of.
  • the plating solution for forming the Zn-based alloy plating layer for example, zinc sulfate heptahydrate 200 g / L and ferrous sulfate heptahydrate 240 g, which are used when an electric Zn—Fe plating layer is applied.
  • a plating solution containing / L, pH 1.5, and a bath temperature of 50 ° C. can be used.
  • a steel sheet for hot pressing having a desired crack density can be manufactured by applying strain to the Zn-based alloy plating layer of the steel sheet.
  • strain forming process for applying strain uniaxial tension or the like is exemplified.
  • the amount of strain is preferably 2% or more. From the viewpoint of preventing the crack width from increasing excessively, the strain amount is preferably 10% or less.
  • the method of performing uniaxial tension is not particularly limited, and examples thereof include a method of applying a Zn-based alloy plating layer and then increasing the tension in the rolling direction in a specific section of the steel sheet production line to apply strain.
  • a steel sheet for hot pressing manufactured by the method described in 3) above is hot pressed after being heated to a temperature range of Ac 3 transformation point to 1000 ° C. Thereby, a hot pressed member having a desired division density can be obtained.
  • at least one selected from Fe, Al, Mg, Si, Sr, Mn, Ti, Sn, In, Bi, Pb, and B is placed on at least one surface of the steel sheet by a total mass of 0.1 to 60 mass.
  • % Is contained the balance is made of Zn and unavoidable impurities, and a Zn-based alloy plating layer having an adhesion amount of 10 to 90 g / m 2 is provided, and cracks that divide the Zn-based alloy plating layer are formed inside the Zn-based alloy plating layer.
  • a steel sheet steel sheet for hot pressing
  • the temperature range from the Ac 3 transformation point to 1000 ° C.
  • the heating temperature range of the hot-pressed steel sheet to Ac 3 transformation point to 1000 ° C., Zn-based alloy plating having a solid solution phase, an intermetallic compound phase, and an oxide layer described in 1) above. You can get a layer. If the heating temperature is lower than the Ac 3 transformation point, the strength required for the hot press member may not be obtained, while if the heating temperature exceeds 1000 ° C., the intermetallic compound phase in the Zn-based alloy plating layer becomes It may disappear.
  • the heating temperature is preferably 800 ° C. or higher, preferably 950 ° C. or lower.
  • the Ac 3 transformation point was determined by the thermodynamic calculation software Thermo-Calc.
  • the holding time at the above heating temperature is not limited at all.
  • the holding time is set to 3 minutes or less from the viewpoint of further improving the corrosion resistance after painting by leaving as much intermetallic compound phase as possible and from the viewpoint of avoiding hydrogen intrusion by taking in water vapor in the furnace during the holding time. It is preferably within 1 minute, more preferably 0 minutes.
  • the method of heating the hot pressed steel sheet is not limited in any way, and examples thereof include furnace heating by an electric furnace or a gas furnace, energization heating, induction heating, high frequency heating, and flame heating.
  • hot pressing is performed, and at the same time as or immediately after processing, cooling is performed using a refrigerant such as a die or water to manufacture a hot pressed member.
  • a refrigerant such as a die or water to manufacture a hot pressed member.
  • the hot pressing conditions are not particularly limited, but pressing can be performed at 600 to 800 ° C., which is a general hot pressing temperature range.
  • Plating (Al: 5%), hot-dip Zn-Al-Mg plating (Al: 4.5%, Mg: 0.5%), hot-dip Zn-Al plating (Al: 55%) were performed, and on the base steel plate, Various Zn-based alloy plating layers were formed.
  • the electric Zn plating contains 440 g / L of zinc sulfate heptahydrate, and is plated by performing electroplating under the conditions of a current density of 50 A / dm 2 using a plating solution having a pH of 1.5 and a bath temperature of 50 ° C. Was formed.
  • Table 1 shows the content and adhesion of each element in the obtained Zn-based alloy plating layer.
  • Each element in the Zn-based alloy plating layer shown in Table 1 is an element other than the balance (Zn and unavoidable impurities).
  • the cross section of the obtained Zn-based alloy plated layer of the hot pressed steel sheet was observed and the crack density was measured. Specifically, the cross section of the Zn-based alloy plating layer was observed at a magnification of 500 using a scanning electron microscope (SEM), and converted into a crack density (location / mm) per unit cross-sectional length. At this time, in order to improve the measurement accuracy of the crack density, cross-sectional observations of three fields of view were performed for one test material, and the average value was taken as the crack density. The crack density was measured on two cross sections of the steel sheet in the rolling direction (L direction) and in the direction perpendicular to the rolling direction (C direction). The crack densities are shown in Table 1.
  • the obtained steel sheet for hot pressing was subjected to hot pressing. That is, a 150 mm ⁇ 300 mm test piece was collected from the obtained steel sheet for hot pressing and heat-treated by an electric furnace.
  • Table 1 shows the heat treatment conditions (heating temperature, holding time).
  • the test piece after the heat treatment was taken out from the electric furnace and immediately pressed by hot pressing at a molding start temperature of 700 ° C. using a hat mold to obtain a hot pressed member.
  • the shape of the obtained hot pressed member is a flat portion length of 100 mm on the upper surface, a flat portion length of 50 mm on the side surface, and a flat portion length of 50 mm on the lower surface.
  • the bending radius (radius of curvature) of the mold is 7R for both the upper shoulders and the lower shoulders.
  • the phase structure of the plating layer was identified, the fragmentation density of the oxide layer was measured, the corrosion resistance after painting was evaluated, and the hydrogen release characteristics were evaluated.
  • phase structure solid solution phase, intermetallic compound phase, oxide layer
  • the phase structure was identified for each plating layer of the obtained hot breath member. Specifically, the presence or absence of each phase of the solid solution phase, the intermetallic compound phase, and the oxide layer was determined by X-ray diffraction, and the existence position of each phase was confirmed by a scanning electron microscope (SEM). If the existence position can be confirmed, enter " ⁇ " in the column of each phase in Table 1, and if the existence position cannot be confirmed, enter "x None" in the column of each phase in Table 1. Described.
  • a test piece for cross-section observation was collected from the flat portion on the upper surface of the obtained hot pressed member, and the fragmentation density of the oxide layer was measured by observing the cross-section.
  • the cross section of the Zn-based alloy plating layer of the hot press member was observed at a magnification of 500 using a scanning electron microscope (SEM), and converted into a division density (location / mm) per unit cross section.
  • SEM scanning electron microscope
  • cross-sectional observations of three fields of view were performed for one test material, and the average value was taken as the fragmentation density.
  • the division density was measured on two cross sections of the steel sheet in the rolling direction (L direction) and in the direction perpendicular to the rolling direction (C direction). Table 1 shows the measurement results of the fragmentation density of the oxide layer.
  • the amount of hydrogen in the obtained hot pressed member was measured by gas chromatography.
  • the heating rate of gas chromatography is 200 ° C./h, and the ultimate temperature is 300 ° C.
  • the amount of hydrogen is the accumulation of the amount of hydrogen released from the steel in the temperature range of room temperature to 300 ° C., and is calculated by integrating the amount of hydrogen released at each temperature.
  • the hot pressed member of the present invention is excellent in post-painting corrosion resistance, particularly post-painting corrosion resistance when a zirconium-based chemical conversion treatment is applied, and hydrogen release characteristics. Further, with the hot-pressed steel sheet of the present invention, it is possible to obtain a hot-pressed member having excellent post-coating corrosion resistance and hydrogen release characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Chemically Coating (AREA)

Abstract

熱間プレス部材および熱間プレス用鋼板ならびにそれらの製造方法を提供する。本発明の熱間プレス部材は、鋼板の少なくとも一方の表面に、Znを含有し、残部がFeおよび不可避的不純物である固溶体相と、Feを含有し、残部がZnおよび不可避的不純物である金属間化合物相と、Znを含有する酸化物層とを有するZn系合金めっき層を備え、酸化物層はZn系合金めっき層の最表層に位置するとともに、酸化物層は金属間化合物相を分断し、酸化物層の少なくとも1断面における単位断面当たりの分断密度は10分断箇所/mm以上である。

Description

熱間プレス部材および熱間プレス用鋼板ならびにそれらの製造方法
 本発明は、熱間プレス部材および熱間プレス用鋼板ならびにそれらの製造方法に関する。特に、塗装後耐食性および水素放出特性に優れた熱間プレス部材および熱間プレス用鋼板ならびにそれらの製造方法に関する。
 近年、自動車の分野では素材鋼板の高性能化と共に軽量化が促進されており、防錆性を有する高強度溶融亜鉛めっき鋼板または電気亜鉛めっき鋼板の使用が増加している。しかし、多くの場合、鋼板の高強度化に伴ってそのプレス成形性が低下するため、複雑な部品形状を得ることは困難になる。例えば自動車用途で、防錆性が必要であり、かつ難成形部品としては、シャシーなどの足回り部材やBピラーなどの骨格用構造部材が挙げられる。
 このような背景から、近年では冷間プレスに比べてプレス成形性と高強度化の両立が容易である熱間プレスによる自動車用部品の製造が急速に増加しており、熱間プレス技術の諸課題を解決する様々な技術が開発されている。
 特に、熱間プレス用鋼板としてZn系合金めっき鋼板を用いると、最終製品である熱間プレス部材の耐食性を向上させることも可能となることから、亜鉛系合金めっき層(Zn系合金めっき層)を施した熱間プレス用鋼板に関する技術が提案されている。例えば、特許文献1には、表層に加熱時の亜鉛の蒸発を防止するバリア層を備えた亜鉛または亜鉛系合金のめっき層を鋼板表面に有する熱間プレス用鋼板が開示されている。
特開2003-73774号公報
 しかしながら、近年では、従来のリン酸亜鉛系化成処理に代わり、ジルコニウム系化成処理が普及し始めており、このジルコニウム系化成処理を施した後に電着塗装を行った部材の塗装後耐食性も求められるようになってきた。
 特許文献1に開示される熱間プレス部材は、Zn系合金めっき鋼板を加熱して製造された熱間プレス部材であり、無塗装での耐食性やリン酸亜鉛系化成処理を適用した場合の塗装後耐食性には優れる。しかしながら、特許文献1の熱間プレス部材では、ジルコニウム系化成処理を適用した場合の塗装後耐食性については不十分であるという問題がある。
 一方、熱間プレス部材の遅れ破壊を回避するためには、熱間プレス用鋼板の製造工程において鋼板に侵入した水素を、熱間プレス部材の製造工程において効率よく放出することが望まれる。すなわち、水素放出特性に優れる熱間プレス部材およびその製造方法と、水素放出特性に優れる熱間プレス部材を得るための熱間プレス用鋼板およびその製造方法の開発が課題となっている。
 本発明は、上記課題に鑑みてなされたものであり、塗装後耐食性、特にジルコニウム系化成処理を適用した場合の塗装後耐食性、および、水素放出特性に優れる熱間プレス部材およびその製造方法を提供することを目的とする。また本発明は、塗装後耐食性および水素放出特性に優れる熱間プレス部材に適した熱間プレス用鋼板およびその製造方法を提供することを目的とする。
 本発明者らは、上記課題を達成するために、鋭意研究を行い、以下の知見を得た。
(1)熱間プレス部材の塗装後耐食性および水素放出特性を向上させるためには、熱間プレス部材表面のZn系合金めっき層において、酸化物層はZn系合金めっき層の最表層に位置するとともに、金属間化合物相を分断するように酸化物層を形成させる。さらにこの酸化物層について、金属間化合物相に対する単位断面当たりの分断密度を所定値以上とすることが有効である。
(2)単位断面当たりのクラック密度が所定値以上であるZn系合金めっき層を有する熱間プレス用鋼板を熱間プレスすることにより、塗装後耐食性および水素放出特性に優れる熱間プレス部材を得ることができる。
(3)熱間プレス部材に用いる熱間プレス用鋼板のZn系合金めっき層に、単位断面当たりのクラック密度が所定値以上となるクラックを形成する方法としては、Zn系合金めっき層を備える鋼板を酸性水溶液に浸漬する方法が有効である。あるいは、鋼板のZn系合金めっき層に対して歪を付与する方法が有効である。
 本発明は上記知見に基づくものであり、その要旨は以下の通りである。
[1]鋼板の少なくとも一方の表面に、Znを含有し、残部がFeおよび不可避的不純物からなる固溶体相、または、Znを含有し、さらにAl、Mg、Si、Sr、Mn、Ti、Sn、In、Bi、Pb、Bのうちから選ばれた少なくとも一種を含有し、残部がFeおよび不可避的不純物からなる固溶体相と、
Feを含有し、残部がZnおよび不可避的不純物からなる金属間化合物相、または、Feを含有し、さらにAl、Mg、Si、Sr、Mn、Ti、Sn、In、Bi、Pb、Bのうちから選ばれた少なくとも一種を含有し、残部がZnおよび不可避的不純物からなる金属間化合物相と、
Znを含有する酸化物層と、を有するZn系合金めっき層を備え、
前記酸化物層は前記Zn系合金めっき層の最表層に位置するとともに、前記酸化物層は前記金属間化合物相を分断し、
前記酸化物層の少なくとも1断面における単位断面当たりの分断密度は10分断箇所/mm以上である、熱間プレス部材。
[2]前記酸化物層における直交する2断面について、単位断面当たりの分断密度がいずれも10分断箇所/mm以上である、[1]に記載の熱間プレス部材。
[3]鋼板の少なくとも一方の表面に、Fe、Al、Mg、Si、Sr、Mn、Ti、Sn、In、Bi、Pb、Bのうちから選ばれた少なくとも一種を合計で0.1~60質量%含有し、残部がZnおよび不可避的不純物からなり、付着量が10~90g/m2のZn系合金めっき層を備え、
前記Zn系合金めっき層内部に、前記Zn系合金めっき層を分断するクラックを有し、
前記Zn系合金めっき層の少なくとも1断面における単位断面当たりのクラック密度が10分断箇所/mm以上である、熱間プレス用鋼板。
[4]前記Zn系合金めっき層における直交する2断面について、単位断面当たりのクラック密度がいずれも10分断箇所/mm以上である、[3]に記載の熱間プレス用鋼板。
[5]鋼板の少なくとも一方の表面に、Fe、Al、Mg、Si、Sr、Mn、Ti、Sn、In、Bi、Pb、Bのうちから選ばれた少なくとも一種を合計で0.1~60質量%含有し、残部がZnおよび不可避的不純物からなり、付着量が10~90g/m2のZn系合金めっき層を備える鋼板を、
pH4.0以下の酸性水溶液に1.5秒以上浸漬する、もしくは前記Zn系合金めっき層に対して歪を付与する、
熱間プレス用鋼板の製造方法。
[6]前記酸性水溶液が、前記Zn系合金めっき層を形成するめっき液である、[5]に記載の熱間プレス用鋼板の製造方法。
[7][5]または[6]に記載の製造方法により得られる熱間プレス用鋼板を、Ac変態点~1000℃の温度範囲に加熱後熱間プレスする、熱間プレス部材の製造方法。
[8]鋼板の少なくとも一方の表面に、Fe、Al、Mg、Si、Sr、Mn、Ti、Sn、In、Bi、Pb、Bのうちから選ばれた少なくとも一種を合計で0.1~60質量%含有し、残部がZnおよび不可避的不純物からなり、付着量が10~90g/m2のZn系合金めっき層を備え、前記Zn系合金めっき層内部に、前記Zn系合金めっき層を分断するクラックを有し、前記Zn系合金めっき層の少なくとも1断面における単位断面当たりのクラック密度が10分断箇所/mm以上である鋼板を、
Ac変態点~1000℃の温度範囲に加熱後熱間プレスする、熱間プレス部材の製造方法。
 本発明によれば、塗装後耐食性、特にジルコニウム系化成処理を適用した場合の塗装後耐食性、および、水素放出特性に優れる熱間プレス部材を得ることができる。また、本発明によれば、塗装後耐食性および水素放出特性に優れる熱間プレス部材に適した熱間プレス用鋼板を得ることができる。
図1は、Zn系合金めっき層にクラックが形成されていない場合の、熱間プレス前(加熱前)のZn系合金めっき層の断面を示す模式図である。 図2は、Zn系合金めっき層にクラックが形成されていない場合の、熱間プレス後(加熱後)のZn系合金めっき層の断面を示す模式図である。 図3は、Zn系合金めっき層にクラックが形成されている場合の、熱間プレス前(加熱前)のZn系合金めっき層の断面を示す模式図である。 図4は、Zn系合金めっき層にクラックが形成されている場合の、熱間プレス後(加熱後)のZn系合金めっき層の断面を示す模式図である。
 以下、本発明の実施形態について説明する。なお、以下の説明は、本発明の好適な一実施態様を示すものであり、以下の説明によって何ら限定されるものではない。また、鋼成分組成の各元素の含有量の単位はいずれも「質量%」であり、以下、特に断らない限り単に「%」で示す。
 1)熱間プレス部材
 本発明の熱間プレス部材は、鋼板の少なくとも一方の表面に、固溶体相と金属間化合物相とを有するZn系合金めっき層を備える。上記の固溶体相は、Znを含有し、残部がFeおよび不可避的不純物からなり、または、Znを含有し、さらにAl、Mg、Si、Sr、Mn、Ti、Sn、In、Bi、Pb、Bのうちから選ばれた少なくとも一種を含有し、残部がFeおよび不可避的不純物からなる。上記の金属間化合物相は、Feを含有し、残部がZnおよび不可避的不純物からなり、または、Feを含有し、さらにAl、Mg、Si、Sr、Mn、Ti、Sn、In、Bi、Pb、Bのうちから選ばれた少なくとも一種を含有し、残部がZnおよび不可避的不純物からなる。上記のZn系合金めっき層は、Znを含有する酸化物層を有し、該酸化物層はZn系合金めっき層の最表層に位置する。これとともに、該酸化物層は、金属間化合物相を分断し、酸化物層の少なくとも1断面における単位断面当たりの分断密度は10分断箇所/mm以上である。
 Zn系合金めっき層を備える鋼板に熱間プレスを施すと、Zn系合金めっき層中のZnが下地鋼板に拡散し、この拡散領域においてZnを含有し、残部がFeおよび不可避的不純物からなる固溶体相を形成する。同時に、Zn系合金めっき層中のZnと加熱雰囲気中に存在する酸素とが結合して、Znを含有する酸化物層を形成する。また、下地鋼板への拡散にも酸化物層の形成にも寄与しなかった金属間化合物であるZn系合金めっき層は、そのまま金属間化合物相として残存するが、下地鋼板から拡散したFeが取り込まれるため、Feを含有し、残部がZnおよび不可避的不純物からなる金属間化合物相となる。
 一方、Zn系合金めっき層がZnを含有し、さらにAl、Mg、Si、Sr、Mn、Ti、Sn、In、Bi、Pb、Bのうちから選ばれた少なくとも一種を含有する場合には、このZn系合金めっき層を備える鋼板に熱間プレスを施すと次のようになる。Zn系合金めっき層中のZnおよびZn以外の各元素が下地鋼板に拡散し、この拡散領域においてZnを含有し、さらにAl、Mg、Si、Sr、Mn、Ti、Sn、In、Bi、Pb、Bのうちから選ばれた少なくとも一種を含有し、残部がFeおよび不可避的不純物からなる固溶体相を形成する。同時に、Zn系合金めっき層中のZnと加熱雰囲気中に存在する酸素とが結合して、Znを含有する酸化物層を形成する。また、下地鋼板への拡散にも酸化物層の形成にも寄与しなかった金属間化合物であるZn系合金めっき層は、そのまま金属間化合物相として残存するが、下地鋼板から拡散したFeが取り込まれるため、Feを含有し、さらにAl、Mg、Si、Sr、Mn、Ti、Sn、In、Bi、Pb、Bのうちから選ばれた少なくとも一種を含有し、残部がZnおよび不可避的不純物からなる金属間化合物相となる。
 なお、固溶体相と金属間化合物相は、いずれも犠牲防食作用を有するZnを含有するため、耐食性の向上に寄与する。一方、Znを含有する酸化物層は、塗装下地処理として施されるリン酸亜鉛系化成処理やジルコニウム系化成処理を均一かつ緻密に被覆させる作用を有するため、塗装密着性の向上に寄与する。したがって、本発明が課題とする塗装後耐食性を満足するためには、固溶体相、金属間化合物相、酸化物層のいずれもが必須の構成要件である。
 また、本発明において、酸化物層はZn系合金めっき層の最表層に位置するとともに、Zn系合金めっき層表面に垂直な方向にも位置することによって、金属間化合物相を分断する。酸化物層は金属間化合物相のみを分断し、固溶体相は分断しない。また、酸化物層は、その少なくとも1断面において金属間化合物相を分断していればよく、圧延方向の断面や圧延方向に対して直角の方向の断面といった特定方向の断面に限定されるわけではない。上記の「金属間化合物相を分断」とは、金属間化合物を分断する酸化物層の両端が金属間化合物相の厚み方向両端まで到達していることを意味する。
 本発明の酸化物層がZn系合金めっき層の最表層に位置するとともに、酸化物層は金属間化合物相を分断することは、塗装後耐食性と水素放出特性を満足させるために必須の構成要件である。
 まず、本発明の酸化物層が存在することにより、塗装後耐食性が向上する理由について説明する。
 クラックが形成されていない通常のZn系合金めっき層を有する鋼板(図1)を熱間プレスに供した場合、Zn系合金めっき層の表面には高低差10μmを超えるような大きな凹凸が形成する(図2)。この理由について、本発明者らは以下のように推測する。
 熱間プレス前の加熱により鋼板の温度を上昇させていくと、温度上昇に伴いZn系合金めっき層の表面に酸化物層が形成されていく。やがて鋼板の温度がZn系合金めっき層の融点を超えると、酸化物層と鋼板との間に位置するめっき層が溶融して液体となる。なおも加熱が進み鋼板の温度が上昇を続けると、酸化物層も成長を継続していくこととなる。このとき、めっき層表面に対して垂直な方向では、酸化物層はその厚みを増大させて成長し、めっき層表面に水平な方向には酸化物層が凹凸を形成しながらその表面積を増大させることによって成長する。これは、酸化物層と鋼板との間に位置するめっき層が流動可能な液体であるため、酸化物層がその形状を変化させることが可能なためである。
 このようにして製造された、酸化物層が大きな凹凸を有する熱間プレス部材に、ジルコニウム系化成処理および電着塗装を施して塗装後耐食性を評価すると、特にクロスカットを施していない一般部からの赤錆発生が顕著となる。この理由は、電着塗装が熱間プレス部材表面の凹凸に追従せず、凸部において電着塗装の膜厚が極めて薄くなるため、このような部分で赤錆が発生するものと考えられる。
 これに対して、本発明のように、あらかじめクラックが形成されているZn系合金めっき層を有する鋼板(図3)を熱間プレスに供した場合、熱間プレス前にクラックが存在した部分においては酸化物層が形成する(図4)。そして、熱間プレス前の加熱によりZn系合金めっき層が溶融して液体になったとしても、酸化物層が金属間化合物相を分断しているため、Zn系合金めっき層全体が大きな凹凸を形成することはない。このため、Zn系合金めっき層全体として見た場合に、平坦なZn系合金めっき層を有する熱間プレス部材を得ることができる。
 したがって、本発明の熱間プレス部材にジルコニウム系化成処理および電着塗装を施して塗装後耐食性を評価した場合、電着塗装の膜厚が均一であるため、クロスカットを施していない一般部において局部的な赤錆発生が生じることはなく、優れた塗装後耐食性を得ることができる。
 なお、鋼板のZn系合金めっき層にクラックが形成されていない場合、加熱にともないZn系合金めっき層の表面が大きな凹凸を形成するとともに、酸化物層がそれ自身の変形に追従できず、剥離してしまう場合がある。酸化物層が剥離した部分のジルコニウム系化成処理液との反応性は、酸化物層の存在する部分よりも劣る。このため、酸化物層が剥離した部分ではジルコニウム系化成処理皮膜の被覆率が低下し、化成処理皮膜が被覆していない部分において赤錆が発生する場合がある。一方、本発明の熱間プレス部材では、酸化物層が平坦であるため、加熱時の変形による酸化物層の剥離を生じることはない。このため、ジルコニウム系化成処理皮膜が熱間プレス部材の全面を均一に被覆することができ、上記のような酸化物層の剥離に起因した赤錆発生を生じることはない。
 さらにまた、鋼板のZn系合金めっき層にクラックが形成されていない場合、加熱によりZn系合金めっき層が溶融すると、液体であるZn系合金めっき層は酸化物層と鋼板との間で自由に流動することができる。その結果、Zn系合金めっき層中のZnの鋼板への拡散が活発となり、固溶体相が厚く形成する。一方、本発明のように、鋼板のZn系合金めっき層にクラックが形成されている場合には、加熱によりZn系合金めっき層が溶融しても、液体であるZn系合金めっき層は酸化物層で取り囲まれているために移動が制限され、その位置に留まり続ける。その結果、Zn系合金めっき層中のZnの鋼板への拡散量が抑制されることとなり、固溶体相の形成が少なく、金属間化合物相の残存量が多くなる。固溶体相よりも金属間化合物相の方がZn含有率が高いため、塗装後耐食性はより一層向上する。
 以上のような理由により、本発明の酸化物層が存在することによって、塗装後耐食性が著しく向上する。
 次に、Zn系合金めっき層にクラックが形成された鋼板を用いて熱間プレス部材を製造することにより、水素放出特性が向上する理由について説明する。
 Zn系合金めっき層を有する鋼板を熱間プレス用鋼板として適用した場合、その製造工程において、電気めっき液中で発生した水素ガスの取り込みや、電気めっき後の大気中の水蒸気との接触等により、不可避的に下地鋼板に水素が侵入する。
 鋼板のZn系合金めっき層にクラックが形成されていない場合、鋼板に侵入した水素は、熱間プレス前の加熱での昇温過程において、Zn系合金めっき層を経由して放出される。しかしながら、水素の放出経路が金属間化合物相を経由する経路に限られるため、必ずしも効率よく水素を放出することができない。
 これに対して、鋼板のZn系合金めっき層にクラックが形成されている場合、上記の水素放出経路に加え、昇温過程の初期においてはクラックを経由して水素が放出されるため、鋼板製造時に侵入した水素を効率良く放出することが可能である。鋼板表面に水素放出を妨げるバリア層(またはめっき層)などが存在しない場合、または1時間以上など十分に長時間加熱した場合、鋼板中の拡散性水素は一般に300~350℃の低温域で放出されると考えられている。このような理由により、Zn系合金めっき層にクラックが形成されている鋼板は、低温域における水素放出特性が向上する。
 一方、熱間プレス工程の昇温過程において、400℃以上の高温域では炉内雰囲気中の水蒸気と鋼板またはめっき層が反応して、水素が鋼中に取り込まれることが知られている。このような高温域での鋼板への水素侵入を抑制するためには、酸化物のようなバリア層を形成させることが有効である。Zn系合金めっき層にクラックが形成された熱間プレス用鋼板では、最表層において横断的に形成する酸化物層に加えて、クラックが形成された箇所に対応して酸化物層が形成する。このような酸化物層は、水素侵入に対するバリア層として機能する酸化物層を疑似的に厚くする効果がある。このような酸化物層が存在することによって高温域での水素侵入が抑制され、結果として遅れ破壊の発生し難い熱間プレス部材を得ることができる。
 本発明の熱間プレス部材において、酸化物層の少なくとも1断面における単位断面当たりの分断密度は10分断箇所/mm以上である。酸化物層の少なくとも1断面における単位断面当たりの分断密度が10分断箇所/mm未満であると、上記の作用を得られず、上述した塗装後耐食性および水素放出特性の向上効果が不十分である。塗装後耐食性および水素放出特性を向上させる観点から、単位断面当たりの分断密度は、好ましくは50分断箇所/mm以上、より好ましくは100分断箇所/mm以上である。上記の単位断面当たりの分断密度の上限は特に規定しない。単位断面当たりの分断密度の過度の増大は、酸性水溶液への浸漬時間の増大などを要し、生産効率の低下および製造コストの増大を招くため、単位断面当たりの分断密度は、好ましくは300分断箇所/mm以下、より好ましくは200分断箇所/mm以下である。
 上記の「酸化物層の少なくとも1断面」とは、Zn系合金めっき層における金属間化合物相の全厚を分断する、Zn系合金めっき層表面に垂直な方向の酸化物層のうち少なくとも1つの酸化物層の断面を指す。なお、上記の分断密度は、後述する実施例に記載の方法で測定することができる。
 本発明の熱間プレス部材において、酸化物層における直交する2断面について、単位断面当たりの分断密度がいずれも10分断箇所/mm以上であることが好ましい。本発明の酸化物層の存在による塗装後耐食性および水素放出特性の向上メカニズムは、上述のとおり、めっき層分断による凹凸抑制効果、凹凸低減による酸化物層の剥離抑制効果、めっき層分断による金属間化合物相の残存量増大効果、水素放出経路の増大効果等である。本発明の酸化物層は、1断面のみに10分断箇所/mm以上の密度で存在するよりも、直交する2断面について、それぞれ10分断箇所/mm以上の密度で存在する方が、塗装後耐食性および水素放出特性を向上させる効果がより大きくなる。したがって、本発明の熱間プレス部材において、酸化物層における直交する2断面について、単位断面当たりの分断密度がいずれも10分断箇所/mm以上であることが好ましい。2断面の上記分断密度は、いずれも、好ましくは50分断箇所/mm以上、より好ましくは100分断箇所/mm以上である。上述と同様の理由から、いずれも、好ましくは300分断箇所/mm以下、より好ましくは200分断箇所/mm以下である。
 上記の「酸化物層における直交する2断面」とは、Zn系合金めっき層における金属間化合物相の全厚を分断する、Zn系合金めっき層表面に垂直な方向の酸化物層の2つの断面であり、かつ、互いに直交する関係にある鋼板の圧延方向(L方向)および圧延方向に直角の方向(C方向)の2つの断面を指す。なお、上記2断面の分断密度は、後述する実施例に記載の方法で測定することができる。
 2)熱間プレス用鋼板
 本発明の熱間プレス用鋼板は、鋼板の少なくとも一方の表面に、Fe、Al、Mg、Si、Sr、Mn、Ti、Sn、In、Bi、Pb、Bのうちから選ばれた少なくとも一種を合計で0.1~60質量%含有し、残部がZnおよび不可避的不純物からなり、付着量が10~90g/m2のZn系合金めっき層を備える。該Zn系合金めっき層内部には、Zn系合金めっき層を分断するクラックを有し、Zn系合金めっき層の少なくとも1断面における単位断面当たりのクラック密度が10分断箇所/mm以上である。
 Zn系合金めっき層が、Fe、Al、Mg、Si、Sr、Mn、Ti、Sn、In、Bi、Pb、Bのうちから選ばれた少なくとも一種を合計で0.1~60質量%含有することにより、Zn系合金めっき層の融点を上昇させ、その結果として塗装後耐食性に優れた熱間プレス部材を得ることができる。各元素の含有量の合計が0.1質量%未満であると、Zn系合金めっき層の融点を十分に上昇させることができず、熱間プレス前の加熱により金属間化合物相が消失する場合がある。その結果、所望の塗装後耐食性を有する熱間プレス部材を得ることができない。各元素の含有量の合計が60質量%を超えると、酸性水溶液によるZnの溶出反応が抑制されることによってクラックの形成が困難となるため、熱間プレス部材の塗装後耐食性および水素放出特性が不十分となる。上記の各元素の含有量の合計の下限は、好ましくは0.2質量%以上であり、より好ましくは4質量%以上である。上記の各元素の含有量の合計の上限は、好ましくは55質量%以下であり、より好ましくは15質量%以下である。
 上記のZn系合金めっき層としては、例えば、電気Zn-Feめっき層、溶融Znめっき層、合金化溶融Znめっき層、溶融Zn-Alめっき層、溶融Zn-Al-Mgめっき層などが例示される。
 また、Zn系合金めっき層の付着量を10~90g/m2とすることにより、塗装後耐食性および水素放出特性に優れた熱間プレス部材を得ることができる。付着量が10g/m2未満であると、熱間プレス前の加熱により金属間化合物相が消失するため、所望の塗装後耐食性を有する熱間プレス部材を得ることができない。付着量が90g/m2を超えると塗装後耐食性の向上効果が飽和するためコスト的に不経済であるばかりでなく、水素放出特性が劣化する場合もある。塗装後耐食性のさらなる向上を目的とする場合、付着量を30g/m2以上としておくことが好ましい。付着量は80g/m2以下とすることが好ましい。なお、上記付着量は、片面当たりの付着量である。
 本発明の熱間プレス用鋼板において、Zn系合金めっき層内部に、Zn系合金めっき層を分断するクラックを有し、Zn系合金めっき層の少なくとも1断面における単位断面当たりのクラック密度が10分断箇所/mm以上である。
 なお、本発明の熱間プレス用鋼板において、Zn系合金めっき層を分断するクラックとは、Zn系合金めっき層表面に対して垂直な方向、すなわち、Zn系合金めっき層の表面から下地鋼板側に向かって形成されたクラックのことを指すものとする。また、クラックの幅は、塗装後耐食性の観点から5μm以下とし、より好ましくは2μm以下とする。クラック幅の下限は特に規定しない。好ましくは0.1μm以上とする。
 上記1)で詳細に説明したとおり、本発明の熱間プレス部材は、酸化物層がZn系合金めっき層の最表層に位置するとともに、酸化物層が金属間化合物相を分断し、酸化物層の少なくとも1断面における単位断面当たりの分断密度は10分断箇所/mm以上である。このような熱間プレス部材を得るために、本発明の熱間プレス用鋼板は、Zn系合金めっき層内部に、Zn系合金めっき層を分断するクラックを有し、Zn系合金めっき層の少なくとも1断面における単位断面当たりのクラック密度が10分断箇所/mm以上とする。Zn系合金めっき層の少なくとも1断面における単位断面当たりのクラック密度が10分断箇所/mm未満であると、得られる熱間プレス部材の塗装後耐食性および水素放出特性の向上効果が不十分である。塗装後耐食性および水素放出特性を向上させる観点から、単位断面当たりのクラック密度は、好ましくは50分断箇所/mm以上、より好ましくは100分断箇所/mm以上である。単位断面当たりのクラック密度の過度の増大は、酸性水溶液への浸漬時間の増大などを要し、生産効率の低下および製造コストの増大を招くため、単位断面当たりのクラック密度は、好ましくは300分断箇所/mm以下、より好ましくは200分断箇所/mm以下である。
 本発明の熱間プレス用鋼板において、Zn系合金めっき層における直交する2断面について、単位断面当たりのクラック密度がいずれも10分断箇所/mm以上であることが好ましい。上記1)で説明したとおり、本発明の熱間プレス部材の酸化物層が、1断面のみに10分断箇所/mm以上の密度で存在するよりも、直交する2断面について、それぞれ10分断箇所/mm以上の密度で存在する方が、塗装後耐食性および水素放出特性を向上させる効果がより大きくなる。したがって、本発明の熱間プレス用鋼板においても、Zn系合金めっき層における直交する2断面について、単位断面当たりのクラック密度がいずれも10分断箇所/mm以上であることが好ましい。2断面の上記分断密度は、いずれも、好ましくは50分断箇所/mm以上、より好ましくは100分断箇所/mm以上である。上述と同様の理由から、いずれも、好ましくは300分断箇所/mm以下、より好ましくは200分断箇所/mm以下である。
 なお、本発明におけるクラックとは、下記3)で説明するとおり、意図的なクラック形成処理を施すことにより形成させたクラックを意味する。したがって、断面を観察するための試験片を準備する際に生じたクラック等を含むものではない。
 本発明のZn系合金めっき層は、単層のZn系合金めっき層であってもよいが、本発明の作用効果に影響を及ぼさない範囲で、目的に応じて下層皮膜を設けてもよい。例えば、下層皮膜としては、Niを主体とする下地めっき層が例示される。
 本発明において、熱間プレス後に1470MPa級を超えるような熱間プレス部材を得るためには、Zn系合金めっき層の下地鋼板としては、例えば、質量%で、C:0.20~0.35%、Si:0.1~0.5%、Mn:1.0~3.0%、P:0.02%以下、S:0.01%以下、Al:0.1%以下、N:0.01%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼板を用いることができる。なお、鋼板としては冷延鋼板または熱延鋼板のいずれでも構わない。以下に各成分の限定理由を記載する。
 C:0.20~0.35%
 Cは、鋼組織としてマルテンサイトなどを形成させることで強度を向上させる。1470MPa級を超えるような強度を得るためには0.20%以上必要である。一方、0.35%を超えるとスポット溶接部の靱性が劣化する。したがって、C量は0.20~0.35%とすることが好ましい。
 Si:0.1~0.5%
 Siは鋼を強化して良好な材質を得るのに有効な元素である。そのためには0.1%以上必要である。一方、0.5%を超えるとフェライトが安定化されるため、焼き入れ性が低下する。したがって、Si量は0.1~0.5%とすることが好ましい。
 Mn:1.0~3.0%
 Mnは鋼の高強度化に有効な元素である。機械特性や強度を確保するためは1.0%以上含有させることが必要である。一方、3.0%超えると焼鈍時の表面濃化が増加し、めっき密着性の確保が困難になる。したがって、Mn量は1.0~3.0%とすることが好ましい。
 P:0.02%以下
 P量が0.02%を超えると鋳造時のオーステナイト粒界へのP偏析に伴う粒界脆化により、局部延性の劣化を通じて強度と延性のバランスが低下する。したがって、P量は0.02%以下とすることが好ましい。なお、P含有量の下限は特に限定されない。ただし、過度の低減はコストの増加を招くので、P含有量は0.001%以上とすることが好ましい。
 S:0.01%以下
 SはMnSなどの介在物となって、耐衝撃性の劣化や溶接部のメタルフローに沿った割れの原因となる。したがって、極力低減することが望ましく0.01%以下とすることが好ましい。また、良好な伸びフランジ性を確保するため、より好ましくは0.005%以下とする。なお、S含有量の下限は特に限定されない。ただし、過度の低減はコストの増加を招くので、S含有量は0.0001%以上とすることが好ましい。
 Al:0.1%以下
 Al量が0.1%を超えると、素材の鋼板のブランキング加工性や焼入れ性を低下させる。したがって、Al量は0.1%以下とすることが好ましい。なお、Al含有量の下限は特に限定されない。ただし、含有量が少ないと溶鋼時の脱酸が抑制され、材料の均一性や機械特性が低下するため、Al含有量は0.001%以上とすることが好ましい。
 N:0.01%以下
 N量が0.01%を超えると、熱間圧延時や熱間プレス前の加熱時にAlNの窒化物を形成し、素材の鋼板のブランキング加工性や焼入れ性を低下させる。したがって、N量は0.01%以下とすることが好ましい。なお、N含有量の下限は特に限定されない。ただし、過度の低減はコスト増加を招くため、N含有量は0.0001%以上とすることが好ましい。
 また、本発明では、上記した基本成分のほかに鋼板の特性の更なる改善を意図して、Nb:0.05%以下、Ti:0.05%以下、B:0.0002~0.005%、Cr:0.1~0.3%、Sb:0.003~0.03%のうちから選ばれた少なくとも1種を、必要に応じて適宜含有させることが可能である。
 Nb:0.05%以下
 Nbは鋼の強化に有効な成分であるが、過剰に含まれると形状凍結性が低下する。したがって、Nbを含有させる場合は0.05%以下とする。なお、Nb含有量の下限は特に限定されない。ただし、含有量が少ないと鋼の強度強化効果が得られないため、Nb含有量は0.001%以上とすることが好ましい。
 Ti:0.05%以下
 TiもNbと同様に鋼の強化には有効であるが、過剰に含まれると形状凍結性が低下するという課題がある。したがって、Tiを含有させる場合は0.05%以下とする。なお、Ti含有量の下限は特に限定されない。ただし、含有量が少ないと鋼の強度強化効果が得られないため、Ti含有量は0.001%以上とすることが好ましい。
 B:0.0002~0.005%
 Bはオーステナイト粒界からのフェライト生成およびフェライト成長を抑制する作用を有するため、0.0002%以上の添加が好ましい。一方、過剰なBの添加は成形性を大きく損なう。したがって、Bを含有させる場合は0.0002~0.005%とする。
 Cr:0.1~0.3%
 Crは鋼の強化および焼き入れ性を向上させるために有用である。このような効果を発現するためには0.1%以上の添加が好ましい。一方、合金コストが高いため0.3%超えの添加では大幅なコストアップを招く。したがって、Crを含有させる場合は0.1~0.3%とする。
 Sb:0.003~0.03%
 Sbも熱間プレスのプロセス中に鋼板表層の脱炭を抑止する効果がある。このような効果を発現するためには0.003%以上の添加が必要である。一方、Sb量が0.03%を超えると圧延荷重の増加を招くため生産性を低下させる。したがって、Sbを含有させる場合は0.003~0.03%とする。
 上記以外の残部は、Feおよび不可避的不純物からなる。
 3)熱間プレス用鋼板の製造方法
 本発明において、鋼板の少なくとも一方の表面に、Fe、Al、Mg、Si、Sr、Mn、Ti、Sn、In、Bi、Pb、Bのうちから選ばれた少なくとも一種を合計で0.1~60質量%含有し、残部がZnおよび不可避的不純物からなり、付着量が10~90g/m2のZn系合金めっき層を備える鋼板を、pH4.0以下の酸性水溶液に1.5秒以上浸漬する、もしくは鋼板のZn系合金めっき層に対して歪を付与することにより、所望のクラック密度を有する熱間プレス用鋼板を製造することができる。
 上記のZn系合金めっき層としては、例えば、電気Zn-Feめっき層、溶融Znめっき層、合金化溶融Znめっき層、溶融Zn-Alめっき層、溶融Zn-Al-Mgめっき層などが例示される。
 Zn系合金めっき層として、電気Zn-Feめっき層を施す場合には、硫酸亜鉛7水和物200g/L、硫酸第一鉄鉄7水和物240g/Lを含有し、pH1.5、浴温50℃のめっき液を用いて、電流密度50A/dm2の条件で、電気Zn-Feめっきを行うことができる。
 Zn系合金めっき層として、溶融Znめっき層を施す場合には、Alを0.2%含有し、残部がZnおよび不可避的不純物からなる浴温460℃のめっき浴を用い、鋼板を2秒間めっき浴に浸漬させることにより、溶融Znめっきを行うことができる。
 Zn系合金めっき層として、合金化溶融Znめっき層を施す場合には、浴温460℃の溶融Znめっき浴を用い、鋼板を2秒間めっき浴に浸漬させた後、合金化温度500℃で15秒間合金化処理を施すことにより、合金化溶融Znめっきを行うことができる。
 Zn系合金めっき層として、溶融Zn-Alめっき層を施す場合には、Alを5%含有し、残部がZnおよび不可避的不純物からなる浴温500℃のめっき浴、または、Alを55%含有し、残部がZnおよび不可避的不純物からなる浴温600℃のめっき浴を用い、鋼板を2秒間めっき浴に浸漬させることにより、溶融Zn-Alめっきを行うことができる。
 Zn系合金めっき層として、溶融Zn-Al-Mgめっき層を施す場合には、Alを4.5%、Mgを0.5%含有し、残部がZnおよび不可避的不純物からなる浴温500℃のめっき浴を用い、鋼板を2秒間めっき浴に浸漬させることにより、溶融Zn-Al-Mgめっきを行うことができる。
 酸性水溶液のpHが4.0を超えると、エッチング能力が低下するため、クラックを形成する効果が減少し、所望のクラック密度を得ることができないため、酸性水溶液のpHは4.0以下とする。酸性水溶液のpHは、好ましくは2.0以下とする。過剰なエッチングを防止するため、酸性水溶液のpHは好ましくは1.0以上とする。また、酸性水溶液への浸漬時間が1.5秒未満である場合にも、エッチングが十分に進行しないため、クラックを形成する効果が減少し、所望のクラック密度を得ることができないため、酸性水溶液への浸漬時間は1.5秒以上とする。酸性水溶液への浸漬時間は、好ましくは2.0秒以上とする。該浸漬時間の上限は特に規定しないが、過剰なエッチングを防止する観点から、好ましくは20秒以下、より好ましくは15秒以下とする。
 特に本発明では、pH4.0以下の酸性水溶液に1.5秒以上鋼板を浸漬することにより、Zn系合金めっき層における直交する2断面について、単位断面当たりのクラック密度がいずれも10分断箇所/mm以上である熱間プレス用鋼板を得ることができる。本発明において、酸性水溶液として、例えば、塩酸、硫酸などの酸性水溶液を用いることができる。
 本発明において、酸性水溶液は、Zn系合金めっき層を形成するめっき液であることが好ましい。Zn系合金めっき層を形成するためのめっき液は、通常pH4.0以下の酸性水溶液である。したがって、Zn系合金めっき層を形成した後、引き続きこのめっき液への浸漬処理を行えば、1つの液を用いてZn系合金めっき層の形成処理とクラック形成処理を行うことができるので、コスト的に有利である。
 本発明において、Zn系合金めっき層を形成するめっき液として、例えば、電気Zn-Feめっき層を施す場合に用いる、硫酸亜鉛7水和物200g/L、硫酸第一鉄鉄7水和物240g/Lを含有し、pH1.5、浴温50℃のめっき液を用いることができる。
 また、本発明では、鋼板のZn系合金めっき層に対して歪を付与することにより、所望のクラック密度を有する熱間プレス用鋼板を製造することができる。歪を付与するクラック形成処理としては、一軸引張等が例示される。また、歪量としては、2%以上が好ましい。クラックの幅が過剰に増大することを防止する観点から、歪量は10%以下とすることが好ましい。一軸引張を行う方法は特に限定されないが、例えば、Zn系合金めっき層を施した後に、鋼板製造ラインの特定区間における圧延方向の張力を増大させて歪を付与する方法が例示される。
 4)熱間プレス部材の製造方法
 本発明において、上記3)で説明した方法で製造される熱間プレス用鋼板に対して、Ac変態点~1000℃の温度範囲に加熱後熱間プレスすることにより、所望の分断密度を有する熱間プレス部材を得ることができる。あるいは、鋼板の少なくとも一方の表面に、Fe、Al、Mg、Si、Sr、Mn、Ti、Sn、In、Bi、Pb、Bのうちから選ばれた少なくとも一種を合計で0.1~60質量%含有し、残部がZnおよび不可避的不純物からなり、付着量が10~90g/m2のZn系合金めっき層を備え、Zn系合金めっき層内部に、Zn系合金めっき層を分断するクラックを有し、Zn系合金めっき層の少なくとも1断面における単位断面当たりのクラック密度が10分断箇所/mm以上である鋼板(熱間プレス用鋼板)に対して、Ac変態点~1000℃の温度範囲に加熱後熱間プレスすることにより、所望の分断密度を有する熱間プレス部材を得ることができる。
 熱間プレス用鋼板の加熱温度の範囲をAc変態点~1000℃とすることにより、上記1)で説明した、固溶体相と、金属間化合物相と、酸化物層とを有するZn系合金めっき層を得ることができる。加熱温度がAc変態点より低いと、熱間プレス部材として必要な強度を得ることができない場合があり、一方、加熱温度が1000℃を超えると、Zn系合金めっき層における金属間化合物相が消失してしまう場合がある。上記加熱温度は、好ましくは800℃以上であり、好ましくは950℃以下である。なお、本発明において、Ac変態点は、熱力学計算ソフトThermo-Calcで求めた。
 また、上記加熱温度における保持時間については何ら限定されるものではない。なお、金属間化合物相をなるべく多く残存させて塗装後耐食性をより一層向上させる観点、および、保持時間中に炉内の水蒸気を取り込むことによる水素侵入を避ける観点から、保持時間は3分以内とすることが好ましく、より好ましくは1分以内、さらに好ましくは0分とする。
 また、熱間プレス用鋼板を加熱する方法は何ら限定されるものでなく、電気炉やガス炉による炉加熱、通電加熱、誘導加熱、高周波加熱、火炎加熱などが例示される。
 加熱に次いで、熱間プレス加工を行い、加工と同時または直後に金型や水などの冷媒を用いて冷却を行うことにより熱間プレス部材が製造される。本発明においては、熱間プレス条件は特に限定されないが、一般的な熱間プレス温度範囲である600~800℃でプレスを行う事が出来る。
 以下、本発明を実施例に基づいて具体的に説明する。下記の実施例は本発明を限定するものではなく、要旨構成の範囲内で適宜変更することは、本発明の範囲に含まれるものとする。
 下地鋼板として、質量%で、C:0.33%、Si:0.25%、Mn:1.9%、P:0.005%、S:0.001%、Al:0.03%、N:0.004%、Nb:0.02%、Ti:0.02%、B:0.002%、Cr:0.2%、Sb:0.008%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する、板厚1.4mmの冷延鋼板を用いた(Ac変態点=730℃)。
 上記の下地鋼板に、電気Znめっき、電気Zn-Feめっき(Fe:13%)、溶融Znめっき(Al:0.2%)、合金化溶融Znめっき(Fe:10%)、溶融Zn-Alめっき(Al:5%)、溶融Zn-Al-Mgめっき(Al:4.5%、Mg:0.5%)、溶融Zn-Alめっき(Al:55%)を施し、下地鋼板上に、各種のZn系合金めっき層を形成させた。
 電気Zn-Feめっき(Fe:13%)、溶融Znめっき(Al:0.2%)、合金化溶融Znめっき(Fe:10%)、溶融Zn-Alめっき(Al:5%)、溶融Zn-Al-Mgめっき(Al:4.5%、Mg:0.5%)、溶融Zn-Alめっき(Al:55%)はすでに説明したとおりの方法によりめっき層を形成させた。電気Znめっきは、硫酸亜鉛7水和物440g/Lを含有し、pH1.5、浴温50℃のめっき液を用いて、電流密度50A/dm2の条件で電気めっきを行うことによりめっき層を形成させた。
 得られたZn系合金めっき層中の各元素の含有量および付着量を表1に示す。なお、表1に示したZn系合金めっき層中の各元素は、残部(Znおよび不可避的不純物)以外の元素である。
 このようにして得られた鋼板を以下の方法で処理することにより、Zn系合金めっき層にクラックを形成させた。各方法におけるクラック形成処理の条件は、表1に示す条件とした。
A:鋼板を上記浴組成のめっき液に浸漬する処理
B:鋼板を塩酸に浸漬する処理
C:鋼板の圧延方向に歪量5%の一軸引張を行う処理
なお、上記Cの処理により、めっき層に対しても5%の歪を付与することとなる。
 得られた熱間プレス用鋼板のZn系合金めっき層について、断面観察を行い、クラック密度を測定した。具体的には、Zn系合金めっき層の断面を、走査型電子顕微鏡(SEM)を用いて500倍で観察し、単位断面長さ当たりのクラック密度(箇所/mm)に換算した。このとき、クラック密度の測定精度を上げるため、1つの供試材について3視野の断面観察を行い、その平均値をクラック密度とした。なお、クラック密度の測定は、鋼板の圧延方向(L方向)および圧延方向に直角の方向(C方向)の2断面について行った。クラック密度を表1に示す。
 次いで、得られた熱間プレス用鋼板を、熱間プレスに供した。すなわち、得られた熱間プレス用鋼板から150mm×300mmの試験片を採取し、電気炉によって加熱処理を行った。熱処理条件(加熱温度、保持時間)を表1に示す。熱処理後の試験片を電気炉から取り出し、直ちにハット型金型を用いて成形開始温度700℃で熱間プレスを行うことにより熱間プレス部材を得た。なお、得られた熱間プレス部材の形状は上面の平坦部長さ100mm、側面の平坦部長さ50mm、下面の平坦部長さ50mmである。また、金型の曲げR(曲率半径)は上面の両肩、下面の両肩いずれも7Rである。
 得られた熱間プレス部材について、めっき層の相構造の同定、酸化物層の分断密度の測定、塗装後耐食性の評価、水素放出特性の評価を行った。
 <めっき層の相構造および酸化物層の分断密度>
 得られた熱間ブレス部材の各めっき層について、相構造(固溶体相、金属間化合物相、酸化物層)の同定を行った。具体的には、X線回折により固溶体相、金属間化合物相、酸化物層の各相の存在有無を判定し、走査型電子顕微鏡(SEM)により各相の存在位置を確認した。存在位置を確認できた場合には表1中の各相の欄に「〇有り」と記載し、存在位置を確認できなかった場合には表1中の各相の欄に「×無し」と記載した。
 また、得られた熱間プレス部材の上面の平坦部から断面観察用の試験片を採取し、断面観察を行うことにより酸化物層の分断密度を測定した。具体的には、熱間プレス部材のZn系合金めっき層の断面を、走査型電子顕微鏡(SEM)を用いて500倍で観察し、単位断面当たりの分断密度(箇所/mm)に換算した。このとき、酸化物層の分断密度の測定精度を上げるため、1つの供試材について3視野の断面観察を行い、その平均値を分断密度とした。なお、分断密度の測定は、鋼板の圧延方向(L方向)および圧延方向に直角の方向(C方向)の2断面について行った。酸化物層の分断密度の測定結果を表1に示す。
 <塗装後耐食性>
 塗装後耐食性を評価するため、得られた熱間プレス部材について、上面の平坦部から70mm×150mmの試験片を切り出し、この試験片に対してジルコニウム系化成処理および電着塗装を施した。ジルコニウム系化成処理は、日本パーカライジング社製PLM2100を用いて標準条件で行い、電着塗装は関西ペイント社製GT100Vを用いて塗装膜厚が10μmとなるように行い、焼付け条件は170℃で20分間保持とした。次いで、ジルコニウム系化成処理および電着塗装を施した熱間プレス部材を腐食試験(SAE-J2334)に供し、30サイクル後の腐食状況の評価を行った。
 クロスカット部については、クロスカットからの片側最大膨れ幅を測定して以下の基準で判定を行い、以下に示す記号のうち「◎」または「○」を合格とした。評価結果を表2に示す。
◎:片側最大膨れ幅<1.5mm
○:1.5mm≦片側最大膨れ幅<3.0mm
△:3.0mm≦片側最大膨れ幅<4.0mm
×:4.0mm≦片側最大膨れ幅
 クロスカットを施していない一般部については、以下の基準で判定を行い、以下に示す記号のうち「◎」または「○」を合格とした。評価結果を表2に示す。
◎:一般部における赤錆発生なし
○:1箇所≦赤錆発生箇所<3箇所
△:3箇所≦赤錆発生箇所<10箇所
×:10箇所≦赤錆発生箇所
 <熱間プレス部材中の水素量測定>
 得られた熱間プレス部材中の水素量をガスクロマトグラフィーにより測定した。ガスクロマトグラフィーの昇温速度は200℃/h、到達温度は300℃である。ここで、水素量とは室温から300℃の温度範囲で鋼中から放出される水素量の累積であり、各温度の放出水素量を積算して算出される。
 以下の基準で判定を行い、以下に示す記号のうち「◎」または「○」を合格とした。評価結果を表2に示す。
◎:熱間プレス部材中の水素量<0.10ppm
○:0.10ppm≦熱間プレス部材中の水素量<0.15ppm
△:0.15ppm≦熱間プレス部材中の水素量<0.20ppm
×:0.20ppm≦熱間プレス部材中の水素量
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2の結果から、本発明の熱間プレス部材は、塗装後耐食性、特にジルコニウム系化成処理を適用した場合の塗装後耐食性、および、水素放出特性に優れる。また、本発明の熱間プレス用鋼板であれば、塗装後耐食性および水素放出特性に優れる熱間プレス部材を得ることができる。

Claims (8)

  1.  鋼板の少なくとも一方の表面に、Znを含有し、残部がFeおよび不可避的不純物からなる固溶体相、または、Znを含有し、さらにAl、Mg、Si、Sr、Mn、Ti、Sn、In、Bi、Pb、Bのうちから選ばれた少なくとも一種を含有し、残部がFeおよび不可避的不純物からなる固溶体相と、
    Feを含有し、残部がZnおよび不可避的不純物からなる金属間化合物相、または、Feを含有し、さらにAl、Mg、Si、Sr、Mn、Ti、Sn、In、Bi、Pb、Bのうちから選ばれた少なくとも一種を含有し、残部がZnおよび不可避的不純物からなる金属間化合物相と、
    Znを含有する酸化物層と、を有するZn系合金めっき層を備え、
    前記酸化物層は前記Zn系合金めっき層の最表層に位置するとともに、前記酸化物層は前記金属間化合物相を分断し、
    前記酸化物層の少なくとも1断面における単位断面当たりの分断密度は10分断箇所/mm以上である、熱間プレス部材。
  2.  前記酸化物層における直交する2断面について、単位断面当たりの分断密度がいずれも10分断箇所/mm以上である、請求項1に記載の熱間プレス部材。
  3.  鋼板の少なくとも一方の表面に、Fe、Al、Mg、Si、Sr、Mn、Ti、Sn、In、Bi、Pb、Bのうちから選ばれた少なくとも一種を合計で0.1~60質量%含有し、残部がZnおよび不可避的不純物からなり、付着量が10~90g/m2のZn系合金めっき層を備え、
    前記Zn系合金めっき層内部に、前記Zn系合金めっき層を分断するクラックを有し、
    前記Zn系合金めっき層の少なくとも1断面における単位断面当たりのクラック密度が10分断箇所/mm以上である、熱間プレス用鋼板。
  4.  前記Zn系合金めっき層における直交する2断面について、単位断面当たりのクラック密度がいずれも10分断箇所/mm以上である、請求項3に記載の熱間プレス用鋼板。
  5.  鋼板の少なくとも一方の表面に、Fe、Al、Mg、Si、Sr、Mn、Ti、Sn、In、Bi、Pb、Bのうちから選ばれた少なくとも一種を合計で0.1~60質量%含有し、残部がZnおよび不可避的不純物からなり、付着量が10~90g/m2のZn系合金めっき層を備える鋼板を、
    pH4.0以下の酸性水溶液に1.5秒以上浸漬する、もしくは前記Zn系合金めっき層に対して歪を付与する、
    熱間プレス用鋼板の製造方法。
  6.  前記酸性水溶液が、前記Zn系合金めっき層を形成するめっき液である、請求項5に記載の熱間プレス用鋼板の製造方法。
  7.  請求項5または6に記載の製造方法により得られる熱間プレス用鋼板を、Ac変態点~1000℃の温度範囲に加熱後熱間プレスする、熱間プレス部材の製造方法。
  8.  鋼板の少なくとも一方の表面に、Fe、Al、Mg、Si、Sr、Mn、Ti、Sn、In、Bi、Pb、Bのうちから選ばれた少なくとも一種を合計で0.1~60質量%含有し、残部がZnおよび不可避的不純物からなり、付着量が10~90g/m2のZn系合金めっき層を備え、前記Zn系合金めっき層内部に、前記Zn系合金めっき層を分断するクラックを有し、前記Zn系合金めっき層の少なくとも1断面における単位断面当たりのクラック密度が10分断箇所/mm以上である鋼板を、
    Ac変態点~1000℃の温度範囲に加熱後熱間プレスする、熱間プレス部材の製造方法。
PCT/JP2021/030091 2020-10-27 2021-08-18 熱間プレス部材および熱間プレス用鋼板ならびにそれらの製造方法 WO2022091529A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US18/032,298 US20230392226A1 (en) 2020-10-27 2021-08-18 Hot-pressed member, steel sheet for hot pressing, and methods for producing the hot-pressed member and the steel sheet for hot pressing
CN202180070291.XA CN116348215A (zh) 2020-10-27 2021-08-18 热压构件和热压用钢板以及它们的制造方法
JP2021566532A JP7131719B1 (ja) 2020-10-27 2021-08-18 熱間プレス部材および熱間プレス用鋼板ならびにそれらの製造方法
EP21885650.8A EP4215294A4 (en) 2020-10-27 2021-08-18 HOT-PRESSED ELEMENT, STEEL SHEET FOR HOT-PRESSING AND METHOD FOR PRODUCING THE SAME
MX2023004567A MX2023004567A (es) 2020-10-27 2021-08-18 Elemento prensado en caliente, lamina de acero para prensado en caliente, y metodos para producir el elemento prensado en caliente y la lamina de acero para prensado en caliente.
KR1020237012586A KR20230069975A (ko) 2020-10-27 2021-08-18 열간 프레스 부재 및 열간 프레스용 강판 그리고 그것들의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020179397 2020-10-27
JP2020-179397 2020-10-27

Publications (1)

Publication Number Publication Date
WO2022091529A1 true WO2022091529A1 (ja) 2022-05-05

Family

ID=81382244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030091 WO2022091529A1 (ja) 2020-10-27 2021-08-18 熱間プレス部材および熱間プレス用鋼板ならびにそれらの製造方法

Country Status (7)

Country Link
US (1) US20230392226A1 (ja)
EP (1) EP4215294A4 (ja)
JP (1) JP7131719B1 (ja)
KR (1) KR20230069975A (ja)
CN (1) CN116348215A (ja)
MX (1) MX2023004567A (ja)
WO (1) WO2022091529A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023233779A1 (ja) * 2022-06-03 2023-12-07 Jfeスチール株式会社 熱間プレス部材、熱間プレス用鋼板、および熱間プレス部材の製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633213A (ja) * 1992-07-17 1994-02-08 Kobe Steel Ltd 水素脆化の発生しない超高強度亜鉛めっき鋼板
JPH10317121A (ja) * 1997-05-19 1998-12-02 Nkk Corp 塗装下地用溶融亜鉛めっき鋼板の製造方法
JP2003073774A (ja) 2001-08-31 2003-03-12 Sumitomo Metal Ind Ltd 熱間プレス用めっき鋼板
JP2015081368A (ja) * 2013-10-23 2015-04-27 新日鐵住金株式会社 ホットスタンプ鋼材の製造方法、ホットスタンプ用鋼板の製造方法及びホットスタンプ用鋼板
WO2015152263A1 (ja) * 2014-03-31 2015-10-08 新日鐵住金株式会社 ホットスタンプ鋼材
WO2018179395A1 (ja) * 2017-03-31 2018-10-04 新日鐵住金株式会社 ホットスタンプ成形体
JP2018204065A (ja) * 2017-06-01 2018-12-27 日新製鋼株式会社 高強度Zn−Al−Mg系表面被覆鋼板およびその製造方法
WO2019189067A1 (ja) * 2018-03-28 2019-10-03 Jfeスチール株式会社 高強度合金化溶融亜鉛めっき鋼板およびその製造方法
WO2021019829A1 (ja) * 2019-07-30 2021-02-04 Jfeスチール株式会社 熱間プレス部材および熱間プレス用鋼板ならびにそれらの製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6249113B2 (ja) * 2016-01-27 2017-12-20 Jfeスチール株式会社 高降伏比型高強度亜鉛めっき鋼板及びその製造方法
CN112867807B (zh) * 2018-10-18 2023-04-21 杰富意钢铁株式会社 高延展性高强度电镀锌系钢板及其制造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633213A (ja) * 1992-07-17 1994-02-08 Kobe Steel Ltd 水素脆化の発生しない超高強度亜鉛めっき鋼板
JPH10317121A (ja) * 1997-05-19 1998-12-02 Nkk Corp 塗装下地用溶融亜鉛めっき鋼板の製造方法
JP2003073774A (ja) 2001-08-31 2003-03-12 Sumitomo Metal Ind Ltd 熱間プレス用めっき鋼板
JP2015081368A (ja) * 2013-10-23 2015-04-27 新日鐵住金株式会社 ホットスタンプ鋼材の製造方法、ホットスタンプ用鋼板の製造方法及びホットスタンプ用鋼板
WO2015152263A1 (ja) * 2014-03-31 2015-10-08 新日鐵住金株式会社 ホットスタンプ鋼材
WO2018179395A1 (ja) * 2017-03-31 2018-10-04 新日鐵住金株式会社 ホットスタンプ成形体
JP2018204065A (ja) * 2017-06-01 2018-12-27 日新製鋼株式会社 高強度Zn−Al−Mg系表面被覆鋼板およびその製造方法
WO2019189067A1 (ja) * 2018-03-28 2019-10-03 Jfeスチール株式会社 高強度合金化溶融亜鉛めっき鋼板およびその製造方法
WO2021019829A1 (ja) * 2019-07-30 2021-02-04 Jfeスチール株式会社 熱間プレス部材および熱間プレス用鋼板ならびにそれらの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4215294A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023233779A1 (ja) * 2022-06-03 2023-12-07 Jfeスチール株式会社 熱間プレス部材、熱間プレス用鋼板、および熱間プレス部材の製造方法
JP7568115B2 (ja) 2022-06-03 2024-10-16 Jfeスチール株式会社 熱間プレス部材、熱間プレス用鋼板、および熱間プレス部材の製造方法

Also Published As

Publication number Publication date
EP4215294A1 (en) 2023-07-26
US20230392226A1 (en) 2023-12-07
JPWO2022091529A1 (ja) 2022-05-05
MX2023004567A (es) 2023-05-04
JP7131719B1 (ja) 2022-09-06
EP4215294A4 (en) 2023-11-01
KR20230069975A (ko) 2023-05-19
CN116348215A (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
JP6607338B1 (ja) Fe−Al系めっきホットスタンプ部材及びFe−Al系めっきホットスタンプ部材の製造方法
CN111936650B (zh) 高强度镀锌钢板、高强度部件和它们的制造方法
CN110809630B (zh) 热压构件及其制造方法以及热压用冷轧钢板及其制造方法
JP4837604B2 (ja) 合金化溶融亜鉛めっき鋼板
US20190032185A1 (en) High-yield-ratio high-strength galvanized steel sheet and method for producing the same
CN111936648B (zh) 高强度镀锌钢板、高强度部件及其制造方法
CN113122772A (zh) 薄钢板和镀覆钢板、以及薄钢板和镀覆钢板的制造方法
JP7063430B1 (ja) 熱間プレス部材、塗装部材、熱間プレス用鋼板、および熱間プレス部材の製造方法ならびに塗装部材の製造方法
JP7255634B2 (ja) 熱間プレス部材およびその製造方法
KR101647225B1 (ko) 표면품질 및 내파우더링성이 우수한 고강도 합금화용융아연도금강판 및 그 제조방법
WO2022091529A1 (ja) 熱間プレス部材および熱間プレス用鋼板ならびにそれらの製造方法
JP2020041175A (ja) 熱間プレス用鋼板
WO2021019829A1 (ja) 熱間プレス部材および熱間プレス用鋼板ならびにそれらの製造方法
JP6981385B2 (ja) 熱間プレス用鋼板
JP5245376B2 (ja) 焼付硬化性に優れた合金化溶融亜鉛めっき用鋼板を用いた合金化溶融亜鉛めっき鋼板
JP7173368B2 (ja) 熱間プレス部材および熱間プレス用鋼板ならびに熱間プレス部材の製造方法
JP7126093B2 (ja) 熱間プレス部材およびその製造方法
WO2020049833A1 (ja) 熱間プレス用鋼板
JP2020041174A (ja) 熱間プレス用鋼板
JP7243948B1 (ja) 熱間プレス部材
JP7243949B1 (ja) 熱間プレス部材
KR101560883B1 (ko) 가공성 및 용접성이 우수한 열간 프레스 성형용 강판 및 이의 제조방법
JP6819796B2 (ja) 熱間プレス用鋼板
JP6933197B2 (ja) 熱間プレス用鋼板
JP5092858B2 (ja) 溶融亜鉛めっき用鋼板及び合金化溶融亜鉛めっき鋼板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021566532

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885650

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202317017758

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20237012586

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18032298

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021885650

Country of ref document: EP

Effective date: 20230419

NENP Non-entry into the national phase

Ref country code: DE