WO2018179395A1 - ホットスタンプ成形体 - Google Patents
ホットスタンプ成形体 Download PDFInfo
- Publication number
- WO2018179395A1 WO2018179395A1 PCT/JP2017/013760 JP2017013760W WO2018179395A1 WO 2018179395 A1 WO2018179395 A1 WO 2018179395A1 JP 2017013760 W JP2017013760 W JP 2017013760W WO 2018179395 A1 WO2018179395 A1 WO 2018179395A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- hot stamping
- content
- hot
- plating layer
- Prior art date
Links
- 238000000465 moulding Methods 0.000 title abstract description 3
- 238000007747 plating Methods 0.000 claims abstract description 99
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 39
- 229910018137 Al-Zn Inorganic materials 0.000 claims abstract description 17
- 229910018573 Al—Zn Inorganic materials 0.000 claims abstract description 17
- 239000000203 mixture Substances 0.000 claims abstract description 16
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 13
- 229910015372 FeAl Inorganic materials 0.000 claims abstract description 5
- 239000000463 material Substances 0.000 claims description 104
- 229910052782 aluminium Inorganic materials 0.000 claims description 42
- 229910052710 silicon Inorganic materials 0.000 claims description 13
- 229910018125 Al-Si Inorganic materials 0.000 claims description 8
- 229910018520 Al—Si Inorganic materials 0.000 claims description 8
- 239000010953 base metal Substances 0.000 abstract description 5
- 229910017372 Fe3Al Inorganic materials 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 170
- 229910000831 Steel Inorganic materials 0.000 description 104
- 239000010959 steel Substances 0.000 description 104
- 238000000034 method Methods 0.000 description 54
- 239000011701 zinc Substances 0.000 description 53
- 238000010438 heat treatment Methods 0.000 description 39
- 238000012360 testing method Methods 0.000 description 31
- 238000005260 corrosion Methods 0.000 description 29
- 230000007797 corrosion Effects 0.000 description 29
- 239000011248 coating agent Substances 0.000 description 26
- 238000000576 coating method Methods 0.000 description 26
- 230000000694 effects Effects 0.000 description 23
- 238000004458 analytical method Methods 0.000 description 18
- 238000011156 evaluation Methods 0.000 description 18
- 238000004519 manufacturing process Methods 0.000 description 16
- 238000005275 alloying Methods 0.000 description 15
- 239000010936 titanium Substances 0.000 description 15
- 239000011651 chromium Substances 0.000 description 13
- 239000003921 oil Substances 0.000 description 12
- 229910019142 PO4 Inorganic materials 0.000 description 10
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 10
- 239000010452 phosphate Substances 0.000 description 10
- 238000009616 inductively coupled plasma Methods 0.000 description 9
- 239000011572 manganese Substances 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- 239000010955 niobium Substances 0.000 description 8
- 230000001965 increasing effect Effects 0.000 description 7
- 229910052749 magnesium Inorganic materials 0.000 description 7
- 230000003647 oxidation Effects 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 229910052719 titanium Inorganic materials 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 229910052804 chromium Inorganic materials 0.000 description 6
- 238000004453 electron probe microanalysis Methods 0.000 description 6
- 239000012535 impurity Substances 0.000 description 6
- 229920006395 saturated elastomer Polymers 0.000 description 6
- 229910052791 calcium Inorganic materials 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 229910052712 strontium Inorganic materials 0.000 description 5
- 239000002344 surface layer Substances 0.000 description 5
- 229910018571 Al—Zn—Mg Inorganic materials 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 238000007598 dipping method Methods 0.000 description 4
- 238000004070 electrodeposition Methods 0.000 description 4
- 239000003973 paint Substances 0.000 description 4
- 238000010791 quenching Methods 0.000 description 4
- 230000000171 quenching effect Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- JOSWYUNQBRPBDN-UHFFFAOYSA-P ammonium dichromate Chemical compound [NH4+].[NH4+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O JOSWYUNQBRPBDN-UHFFFAOYSA-P 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000010960 cold rolled steel Substances 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000007731 hot pressing Methods 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 1
- 229910000165 zinc phosphate Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
- C22C18/04—Alloys based on zinc with aluminium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/10—Alloys based on aluminium with zinc as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/024—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/12—Aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
- C23C2/29—Cooling or quenching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/322—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/322—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
- C23C28/3225—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
Definitions
- the present invention relates to a hot stamping molded body.
- Structural members used in automobiles and the like are sometimes manufactured by hot stamping (hot pressing) in order to increase both strength and dimensional accuracy.
- hot stamping hot pressing
- the steel sheet is heated to Ac 3 points or more and rapidly cooled while being pressed with a mold. That is, in the manufacturing, pressing and quenching are performed simultaneously. According to the hot stamp, it is possible to produce a molded article with high dimensional accuracy and high strength.
- Patent Document 1 discloses a steel sheet for hot pressing in which a Zn plating layer is formed.
- Patent Document 2 discloses a high-strength aluminum-plated steel sheet for automobile members on which an Al plating layer is formed.
- Patent Document 3 discloses a hot-pressed Zn-based plated steel material in which various elements such as Mn are added to the plated layer of the Zn-plated steel sheet.
- Patent Document 2 since Al having a melting point higher than that of Zn is used for the plating layer, there is a low possibility that the molten metal enters the steel plate as in Patent Document 1. For this reason, it is expected that excellent fatigue characteristics can be obtained, and as a result, the molded article after hot stamping is excellent in fatigue characteristics.
- the steel material on which the Al plating layer is formed has a problem that it is difficult to form a phosphate film during the phosphate treatment performed before the coating of the automotive member. In other words, depending on the steel material, the phosphate treatment property cannot be sufficiently obtained, and there is a concern that the corrosion resistance after coating is lowered.
- the outermost layer (oxide film) after hot stamping is modified to improve spot weldability.
- LME is generated and hot stamping occurs.
- the fatigue characteristics of the steel material cannot be obtained sufficiently.
- the phosphate processability may be reduced.
- An object of the present invention is to solve the above-mentioned problems and to provide a hot stamping molded article having excellent fatigue characteristics, spot weldability, and post-coating corrosion resistance.
- the present invention has been made to solve the above-described problems, and the gist of the present invention is the following hot stamping product.
- a hot stamping body comprising a base material and a plating layer formed on the surface of the base material,
- the plating layer includes, in order from the base material side, an interface layer, an intermediate layer, and an oxide layer,
- the interface layer includes one or more Fe—Al alloys whose structures are selected from ⁇ Fe, Fe 3 Al, and FeAl, and the total area ratio of the Fe—Al alloys is 90% or more.
- the intermediate layer includes one or more Fe—Al—Zn phases selected from Fe (Al, Zn) 2 , Fe 2 (Al, Zn) 5 and Fe (Al, Zn) 3 , and the Fe
- the total area ratio of the -Al-Zn phase is 50% or more;
- the average composition of the intermediate layer is mass%, Al: 30-50%, and Zn: 15 to 30%,
- the oxide layer has an average film thickness of 3.0 ⁇ m or less and an Mg content of 0.05 to 1.00 g / m 2 . Hot stamping body.
- the interface layer has an average film thickness of 1.0 ⁇ m or more.
- the total content of Al and Zn in the plating layer is 20 to 100 g / m 2 .
- the total area ratio of the Fe—Al—Zn phase of the intermediate layer is 90% or more.
- the plating layer further includes 0.1 to 15% Si by mass%
- the intermediate layer further includes one or two types of Fe—Al—Si phases selected from Fe 3 (Al, Si) and Fe (Al, Si), and the Fe—Al—Zn phase and The total area ratio of the Fe—Al—Si phase is 90% or more,
- the hot stamping molded product according to any one of (1) to (3) above.
- a hot stamping molded article having excellent fatigue characteristics, spot weldability, and post-coating corrosion resistance can be obtained.
- the inventors of the present invention have studied a method of achieving both LME resistance during hot stamping, spot weldability and post-coating corrosion resistance of a hot stamped body.
- the present inventors examined a method for improving the post-coating corrosion resistance of the molded body. As a result, it has been found that the corrosion resistance can be improved by including Mg in the plating layer of the molded body.
- Mg in the plating layer of the molded body.
- the present inventors have intensively studied a method for improving the corrosion resistance without deteriorating fatigue characteristics and spot weldability.
- the plating layer has a structure including a layer mainly composed of an Fe—Al alloy on the base material side, an oxide layer on the surface layer side, and a layer located in the middle, and an oxidation formed on the surface layer. It has been clarified that all the above characteristics can be ensured in a well-balanced manner by concentrating an appropriate amount of Mg in the material layer.
- FIG. 1 is a view for explaining the structure of a hot stamp molded body according to an embodiment of the present invention.
- FIG. 2 is an example of the image which observed the cross section of the hot stamping molded object which concerns on one Embodiment of this invention by SEM.
- a hot stamp molded body 1 according to an embodiment of the present invention includes a base material 10 and a plating layer 20 formed on the surface of the base material 10.
- (B) Base material The improvement of fatigue characteristics, spot weldability, and post-coating corrosion resistance, which are problems of the hot stamped article according to the present embodiment, is realized by the configuration of the plating layer. Therefore, the base material of the hot stamp molded body according to the present embodiment is not particularly limited. However, when the composition of the base material is within the range described below, in addition to fatigue characteristics, spot weldability, and post-coating corrosion resistance, a molded body having suitable mechanical characteristics can be obtained.
- Carbon (C) is an element that increases the strength of the hot stamping molded body. If the C content is too small, the above effect cannot be obtained. On the other hand, if the C content is excessive, the toughness of the steel material decreases. Therefore, the C content is 0.05 to 0.4%.
- the C content is preferably 0.10% or more, and more preferably 0.13% or more.
- the C content is preferably 0.35% or less.
- Si 0.5% or less
- Silicon (Si) is an element that is inevitably contained and has a function of deoxidizing steel. However, if the Si content is excessive, Si in the steel diffuses during the heating of the hot stamp, and an oxide is formed on the steel sheet surface, thereby deteriorating the phosphate processability. Si is furthermore an element raising the Ac 3 point of the steel sheet, the Ac 3 point is increased, there is a possibility that the heating temperature during hot stamping may exceed the evaporation temperature of the Zn plating. Therefore, the Si content is 0.5% or less.
- the Si content is preferably 0.3% or less, and more preferably 0.2% or less.
- Mn 0.5 to 2.5%
- Mn Manganese
- the Mn content is preferably 0.6% or more, and more preferably 0.7% or more.
- Mn content is 2.4% or less, and it is more preferable that it is 2.3% or less.
- Phosphorus (P) is an impurity contained in steel. P segregates at the grain boundaries to lower the toughness of the steel and to reduce the delayed fracture resistance. Therefore, the P content is 0.03% or less. It is preferable to reduce the P content as much as possible.
- S 0.01% or less Sulfur (S) is an impurity contained in steel. S forms sulfides, lowers the toughness of the steel, and lowers the delayed fracture resistance. Therefore, the S content is 0.01% or less. It is preferable to reduce the S content as much as possible.
- Al 0.1% or less
- Aluminum (Al) is an element that is generally used for the purpose of deoxidizing steel and is inevitably contained. However, if the Al content is excessive, deoxidation is sufficiently performed, but the Ac 3 point of the steel sheet rises, and the heating temperature during hot stamping may exceed the evaporation temperature of Zn plating. Therefore, the Al content is 0.1% or less.
- the Al content is preferably 0.05% or less. In order to obtain the above effects, the Al content is preferably 0.01% or more.
- the Al content is sol. It means the content of Al (acid-soluble Al).
- N 0.01% or less Nitrogen (N) is an impurity inevitably contained in steel. N forms nitrides and lowers the toughness of the steel. Further, when B is contained in the steel, N combines with B to reduce the amount of solute B, and consequently lowers the hardenability. Therefore, the N content is 0.01% or less. It is preferable to reduce the N content as much as possible.
- B 0 to 0.005% Boron (B) has the effect of enhancing the hardenability of the steel and increasing the strength of the steel material after hot stamping, so it may be contained as necessary. However, if the B content is excessive, this effect is saturated. Therefore, the B content is 0.005% or less. In order to acquire said effect, it is preferable that B content is 0.0001% or more.
- Ti 0 to 0.1% Titanium (Ti) combines with N to form a nitride. When Ti and N are bonded in this way, the bond between B and N is suppressed, and a decrease in hardenability due to BN formation can be suppressed. Therefore, Ti may be included as necessary. However, if the Ti content is excessive, the above effect is saturated, and further, Ti nitride is excessively precipitated and the toughness of the steel is lowered. Therefore, the Ti content is 0.1% or less. In addition, Ti refines the austenite grain size at the time of hot stamping heating by the pinning effect, thereby enhancing the toughness of the steel material. In order to acquire said effect, it is preferable that Ti content is 0.01% or more.
- Cr 0 to 0.5% Since chromium (Cr) has an effect of improving the hardenability of steel, it may be contained as necessary. However, if the Cr content is excessive, Cr carbide is formed. Since this Cr carbide is difficult to dissolve during heating of the hot stamp, it becomes difficult for austenitization to proceed, and the hardenability decreases. Therefore, the Cr content is 0.5% or less. In order to acquire said effect, it is preferable that Cr content is 0.1% or more.
- Mo 0 to 0.5% Molybdenum (Mo) has an effect of improving the hardenability of steel, and may be contained as necessary. However, if the Mo content is excessive, the above effect is saturated. Therefore, the Mo content is 0.5% or less. In order to acquire said effect, it is preferable that Mo content is 0.05% or more.
- Niobium (Nb) forms carbides, refines crystal grains during hot stamping, and has the effect of increasing the toughness of the steel. Therefore, niobium (Nb) may be contained as necessary. However, if the Nb content is excessive, not only the above effects are saturated, but also the hardenability is lowered. Therefore, the Nb content is 0.1% or less. In order to acquire said effect, it is preferable that Nb content is 0.02% or more.
- Nickel (Ni) has the effect of increasing the toughness of the steel. Ni further suppresses embrittlement due to the presence of molten Zn during heating with a hot stamp. Therefore, you may contain Ni as needed. However, if the Ni content is excessive, these effects are saturated. Therefore, the Ni content is 1.0% or less. In order to obtain the above effect, the Ni content is preferably 0.1% or more.
- the balance is Fe and impurities.
- the impurity is a component that can be contained in ore or scrap as a raw material or a component that can be mixed due to the manufacturing environment, etc., when industrially manufacturing steel materials. It means the ingredient which is not done.
- the plating layer 20 in the present embodiment includes an interface layer 21, an intermediate layer 22, and an oxide layer 23 in order from the base material 10 side.
- the average film thickness means an average value of the maximum film thickness and the minimum film thickness of a target layer (film).
- the interface layer 21 is formed adjacent to the base material 10 and is composed of a structure mainly composed of an Fe—Al alloy.
- the Fe—Al alloy is a general term for ⁇ Fe, Fe 3 Al, and FeAl. That is, the interface layer 21 includes one or more types whose structures are selected from ⁇ Fe, Fe 3 Al, and FeAl.
- “mainly Fe—Al alloy” means that the total area ratio of the Fe—Al alloy is 90% or more. The total area ratio of the Fe—Al alloy is preferably 95% or more, and more preferably 99% or more.
- the Al content in the interface layer 21 is 30% by mass or less, and the Al content decreases as the base material 10 is approached. By forming the interface layer 21 adjacent to the base material 10, LME can be suppressed. In addition, since Zn or Si or the like may be dissolved in the Fe—Al alloy, the interface layer 21 may contain Zn: 10% or less and Si: 10% or less.
- the average thickness of the interface layer 21 is preferably 1.0 ⁇ m or more, and more preferably 2.0 ⁇ m or more.
- the lower limit of the average film thickness of the interface layer 21 is more preferably 5.0 ⁇ m, 6.0 ⁇ m, or 7.0 ⁇ m.
- the interface layer 21 having an average film thickness exceeding 15.0 ⁇ m is not preferable because performance such as corrosion resistance may be deteriorated. Therefore, the average film thickness of the interface layer 21 is preferably 15.0 ⁇ m or less.
- the upper limit of the average film thickness of the interface layer 21 is more preferably 12.0 ⁇ m, 11.0 ⁇ m, or 10.0 ⁇ m.
- the intermediate layer 22 is composed of a structure mainly composed of an Fe—Al—Zn phase.
- the Fe—Al—Zn phase is a general term for Fe (Al, Zn) 2 , Fe 2 (Al, Zn) 5 and Fe (Al, Zn) 3 . That is, the intermediate layer 22 includes at least one selected from the group consisting of Fe (Al, Zn) 2 , Fe 2 (Al, Zn) 5, and Fe (Al, Zn) 3 .
- the fact that the Fe—Al—Zn phase is mainly means that the total area ratio of the Fe—Al—Zn phase is 50% or more.
- the total area ratio of the Fe—Al—Zn phase is preferably 90% or more, more preferably 95% or more, and 99% or more. More preferably.
- the intermediate layer 22 further includes an Fe—Al—Si phase.
- the Fe—Al—Si phase is a general term for Fe 3 (Al, Si) and Fe (Al, Si). That is, the intermediate layer 22 further includes one or two selected from Fe 3 (Al, Si) and Fe (Al, Si).
- the total area ratio of the Fe—Al—Zn phase and the Fe—Al—Si phase is preferably 90% or more, more preferably 95% or more, and further preferably 99% or more. .
- the intermediate layer 22 has an average composition containing Al: 30 to 50% and Zn: 15 to 30% by mass.
- the Al content in the intermediate layer 22 By setting the Al content in the intermediate layer 22 to 30% or more, LME can be suppressed and fatigue characteristics can be improved. Moreover, the outstanding phosphate processability can be ensured by making Al content 50% or less, and corrosion resistance after coating improves.
- the Al content is preferably 32% or more, and more preferably 35% or more. Further, the Al content is preferably 48% or less, and more preferably 45% or less.
- Zn content in the intermediate layer 22 By setting the Zn content in the intermediate layer 22 to 15% or more, excellent phosphate processability can be secured, and post-coating corrosion resistance can be improved. Moreover, LME can be suppressed and a fatigue characteristic can be improved because Zn content shall be 30% or less.
- the Zn content is preferably 17% or more, and more preferably 20% or more. Moreover, it is preferable that Zn content is 28% or less, and it is more preferable that it is 25% or less.
- the Mg content is preferably 1.0% or less.
- the intermediate layer 22 may contain Si: 25% or less.
- the thickness of the intermediate layer there is no particular restriction on the thickness of the intermediate layer.
- the thickness of the intermediate layer is preferably 5.0 ⁇ m or more.
- the film thickness of the intermediate layer is desirably 30.0 ⁇ m or less.
- the oxide layer 23 is a Zn-based oxide layer and contains Mg.
- the Zn-based oxide layer specifically means that 50% by mass or more of the metal component contained in the oxide is Zn.
- the presence of the oxide layer 23 improves the phosphate processability.
- the average film thickness of the oxide layer 23 is set to 3.0 ⁇ m or less.
- the average film thickness of the oxide layer 23 is preferably 2.0 ⁇ m or less.
- the corrosion resistance after coating can be improved.
- the Mg content in the oxide layer 23 is set to 0.05 g / m 2 or more.
- the Mg content needs to be 1.00 g / m 2 or less.
- the plating layer before hot stamping may contain Mg, or a coating containing Mg in the form of coating or the like on the plated steel sheet. It may be generated.
- the total content of Mg, Cr, Ca, Sr and Ti in the oxide layer 23 is preferably 2.0 g / m 2 or less.
- the total content of Al and Zn in the plating layer 20 is preferably 20 to 100 g / m 2 .
- the total content of Al and Zn is preferably 20 to 100 g / m 2 .
- the total content is preferably 30 g / m 2 or more, and preferably 90 g / m 2 or less.
- the plating layer 20 preferably further contains 0.1 to 15% Si by mass%.
- the Si content in the plating layer is preferably 0.3% or more, and preferably 10% or less.
- the film thickness as the whole plating layer 20 it is preferable to set it as more than 6.0 micrometers from a viewpoint of ensuring corrosion resistance, On the other hand, it is set as 48.0 micrometers or less from a viewpoint of economical efficiency. preferable.
- the structure of the interface layer, the intermediate layer and the oxide layer, the average composition and thickness, and the chemical composition of the plating layer are determined by the following method.
- the molded body is cut perpendicular to the surface and the cross section is polished. Then, in this cross section, the concentration of each element in each region of the interface layer and the intermediate layer is analyzed by an electron beam microanalyzer (EPMA). In this case, mapping analysis is performed in a region of 25% or more in the film thickness direction from the film thickness center of each layer and 20 ⁇ m or more in the width direction, and the average composition is used. Thereby, the contents of Al and Zn in the interface layer and the contents of Al, Zn and Mg in the intermediate layer are measured.
- EPMA electron beam microanalyzer
- the average Si content in the entire plating layer is obtained by the following method.
- line analysis is performed at a pitch of 0.2 ⁇ m from the base material side to the surface side of the plating layer by EPMA. And it is set as the average composition in the whole plating layer by calculating
- the metal component contained in the oxide layer is defined as one end of the plating layer where the Fe concentration is lower than the average composition of the base material Among these, a portion where the Zn concentration is less than 50% by mass is defined as the other end of the plating layer, and a region therebetween is defined as the plating layer.
- the line analysis is performed at five or more places, and the average value is adopted.
- the total content of Al and Zn contained in the plating layer can be measured by dissolving the hot stamped article with hydrochloric acid and subjecting the solution to inductively coupled plasma emission spectroscopy (ICP analysis). By using this method, the amounts of Al and Zn can be determined individually.
- ICP analysis inductively coupled plasma emission spectroscopy
- a method of dissolving the plating layer at a liquid temperature of 40 to 50 ° C. using hydrochloric acid to which no inhibitor is added is suitable.
- the contents of Mg, Cr, Ca, Sr and Ti contained in the oxide layer are measured by dissolving the hot stamping molded body with an ammonium dichromate solution and analyzing the dissolved liquid by ICP. By using the above solution, it is possible to dissolve only the oxide layer. By using this method, the contents of Mg, Cr, Ca, Sr and Ti can be obtained individually.
- the structure of the interface layer and the intermediate layer can be obtained by crystal structure analysis by TEM. Furthermore, the thicknesses of the interface layer, the intermediate layer, and the oxide layer can be obtained by taking a photograph of the above-mentioned cross section with an SEM and analyzing the image of this micrograph.
- the structure of the plating layer of the molded object which concerns on this embodiment is not substantially uniform along the direction parallel to the surface of a molded object.
- the thicknesses of the interface layer, the intermediate layer, and the oxide layer often differ between the processed region and the non-processed region. Therefore, the analysis described above must be performed in an unprocessed area of the green body.
- a molded body in which the state of the plating layer in the unprocessed region is within the above-described range is regarded as the molded body according to the present embodiment.
- the manufacturing method of the hot stamping molded object of this embodiment includes the process of manufacturing the hot stamping plated steel material, and the process of hot stamping with respect to the hot stamping plated steel material.
- the process for producing the hot stamped plated steel material includes a process for producing a base metal for the hot stamped plated steel material and a process for forming an Al—Zn plated layer on the base metal for the hot stamped plated steel material. included. Furthermore, you may perform a rust-proof oil film formation process and a blanking process before the hot stamping process as needed. Hereinafter, each step will be described in detail.
- Base material manufacturing process a base material for hot stamped steel is manufactured.
- a molten steel having the same chemical composition as that of the base material of the hot stamping molded body according to this embodiment exemplified above is manufactured.
- a slab is manufactured by a casting method, or an ingot is manufactured by an ingot-making method.
- the base material (hot rolled plate) of the hot stamped steel plate is obtained by hot rolling the slab or ingot.
- the cold-rolled sheet obtained by performing a pickling process with respect to the said hot-rolled sheet, and performing cold rolling with respect to the hot-rolled sheet after a pickling process is good also considering the cold-rolled sheet obtained by performing a pickling process with respect to the said hot-rolled sheet, and performing cold rolling with respect to the hot-rolled sheet after a pickling process as a base material of the plated steel material for hot stamping.
- an Al—Zn—Mg plating layer is formed on the base material of the hot stamping plated steel material to produce a hot stamping plated steel material.
- the method for forming the Al—Zn—Mg plating layer may be a hot dipping process, or any other process such as a thermal spray plating process or a vapor deposition plating process.
- An example of forming an Al—Zn—Mg plating layer by hot dipping treatment is as follows. That is, the base material is immersed in a hot dipping bath made of Al, Zn, Mg and impurities, and a plating layer is attached to the surface of the base material. Next, the base material to which the plating layer is attached is pulled up from the plating bath.
- the hot stamping molded body preferably has a total content of Al and Zn in the plating layer of 20 to 100 g / m 2 .
- the total content of Al and Zn in the plating layer when the base material is pulled up from the plating bath is 20 to 100 g / m 2. .
- the total content of Al and Zn in the plating layer can be adjusted by appropriately adjusting the pulling speed of the steel plate from the plating bath and the flow rate of the wiping gas.
- the intermediate layer contains 30 to 50% Al and 15 to 30% Zn in mass%.
- the contents of Al and Zn can also be controlled mainly in this step (plating treatment step). Specifically, the Al content in the plating bath in this step is set to 40 to 60% and the Zn content is set to 40 to 60%, whereby the contents of Al and Zn in the hot stamped molded body are set as described above. Range.
- the Mg content in the plating bath is preferably 0.5 to 2.0%, preferably 1.0 to 1.5%. More preferably.
- the Mg concentration in the plating bath is high, the amount of Mg contained in the plating increases, so the amount of Mg contained in the surface layer oxide of the molded product increases, and the weldability is increased. There is concern about the decline.
- Mg remains in the intermediate layer in excess of 1.0%, the LME resistance may be lowered.
- the Mg concentration in the plating bath is low, the amount of Mg contained in the surface layer oxide of the molded product is lowered, and there is a concern that sufficient post-coating corrosion resistance cannot be obtained.
- Mg may be applied by applying a treatment liquid containing Mg oxide to the upper layer of the plating layer with a bar coater and baking and drying in an oven.
- the Mg content to be applied is preferably 0.050 to 1.00 g / m 2 .
- Hot stamp process In the hot stamping process, hot stamping is performed on the hot stamping plated steel material.
- the normal hot stamping is performed by heating a steel material to a hot stamping temperature range (hot working temperature range), then hot working the steel material, and further cooling the steel material.
- a hot stamping temperature range hot working temperature range
- the alloying of the plating layer proceeds sufficiently if the steel material is heated to the hot stamp temperature range, the normal hot stamp technology does not place importance on the control of the heating condition of the steel material.
- the plated steel material for hot stamping is heated to the hot stamping temperature (quenching heating temperature) after being subjected to the alloying heat treatment. Hot working and cooling.
- the temperature of the hot stamping plated steel material is raised to the hot stamping temperature, it is possible to form a plating layer having the above-described configuration by performing an alloying heat treatment that is held for a certain time in a predetermined temperature range.
- the hot stamping plated steel material is charged into a heating furnace (gas furnace, electric furnace, infrared furnace, etc.).
- the hot stamped plated steel material is heated to a temperature range of 500 to 750 ° C., and an alloying heat treatment is performed for 10 to 450 s within this temperature range.
- the base material Fe diffuses in the plating layer, and alloying proceeds.
- the plating layer is changed to the one including the interface layer, the intermediate layer, and the oxide layer in order from the base material side.
- the alloying heating temperature does not need to be constant and may vary within a range of 500 to 750 ° C.
- the alloying heating temperature is less than 500 ° C.
- the plating layer is alloyed at a very low rate, and the heating time is extremely long, which is not preferable from the viewpoint of productivity, and the formation of the intermediate layer is insufficient. There is a risk of becoming.
- the alloying heating temperature exceeds 750 ° C., the growth of the oxide layer is excessively promoted during this treatment process, and the weldability of the hot stamping body is lowered.
- the alloying heating time is less than 10 s, the alloying of the plating layer is not completed, so that the plating layer having the above-described interface layer, intermediate layer and oxide layer cannot be obtained.
- the alloying heating time exceeds 450 s, the amount of oxide growth becomes excessive and the productivity is lowered.
- the heating conditions for heating the plated steel material for hot stamping to the above alloying heating temperature are not particularly limited. However, from the viewpoint of productivity, it is desirable that the heating time is short.
- the hot stamped steel is heated to a temperature range of Ac 3 to 950 ° C., and then hot-worked.
- the time during which the temperature of the hot stamped steel material is within the temperature range of Ac 3 to 950 ° C. is limited to 60 s or less. If the hot stamping plated steel material temperature is within the oxidation temperature range, an oxide layer on the surface of the plating layer grows. When the time for which the temperature of the hot stamped plated steel material is within the oxidation temperature range exceeds 60 seconds, the oxide film grows too much, and there is a concern that the weldability of the formed body may deteriorate.
- the lower limit of the time during which the hot stamped plated steel temperature is within the oxidation temperature range is more than 0 s.
- a non-oxidizing atmosphere such as a 100% nitrogen atmosphere
- an oxidized layer is not formed. Therefore, the hot stamping plated steel material is heated in an oxidizing atmosphere such as an air atmosphere.
- the conditions such as the heating rate and the maximum heating temperature are not particularly defined, and various conditions capable of performing hot stamping can be selected. .
- the hot stamping plated steel material taken out from the heating furnace is press-molded using a mold.
- the steel material is quenched by a mold simultaneously with the press molding.
- a cooling medium for example, water
- a hot stamping body can be manufactured by the above process.
- the method of heating the plated steel material for hot stamping using a heating furnace has been described as an example, the plated steel material for hot stamping may be heated by energization heating. Even in this case, the steel material is heated for a predetermined time by energization heating, and the steel material is press-molded using a mold.
- the rust-preventing oil film forming process is to form a rust-preventing oil film by applying rust-preventing oil to the surface of the hot stamping plated steel after the plating process and before the hot stamping process. May be included.
- the surface of the hot stamped plated steel material may be oxidized.
- the rust-preventing oil film forming step can suppress the formation of the scale of the molded body. Note that any known technique can be used as a method of forming the rust-preventing oil film.
- This process is a process of forming the steel material into a specific shape by performing a shearing process and / or a punching process on the hot stamped plated steel material after the antirust oil film forming process and before the hot stamping process. .
- the sheared surface of the steel material after blanking is easily oxidized. However, if a rust-preventing oil film is formed in advance on the steel material surface, the rust-preventing oil spreads to some extent on the shear surface. Thereby, the oxidation of the steel material after blanking can be suppressed.
- the base material was prepared. That is, slabs were produced by continuous casting using molten steel having the chemical composition shown in Table 1. Subsequently, the slab was hot-rolled to produce a hot-rolled steel sheet, and the hot-rolled steel sheet was further pickled, and then cold-rolled to produce a cold-rolled steel sheet. And this cold-rolled steel plate was made into the base material (plate thickness 1.4mm) used for manufacture of a hot stamping molded object.
- plated steel materials for hot stamping (material Nos. 1 to 28) were produced according to the manufacturing conditions shown in Table 2. Moreover, the immersion time in the plating bath at the time of a plating process was 5 s, and the cooling rate to 450 ° C. after lifting from the plating bath was 10 ° C./s.
- the plated steel material for hot stamping was heated under the conditions shown in Table 3 (heating Nos. 1 to 9), and then immediately subjected to V bending using a hand press machine to simulate hot stamping,
- the hot stamping molded body of each test example was manufactured.
- the shape of the mold was such that the outer part of the bending radius by V bending was extended by about 15% at the end of bending. Further, even in a portion where the cooling rate during processing was slow, quenching was performed to a cooling rate of 50 ° C./s or more to the martensite transformation start point (410 ° C.).
- test pieces for plating layer structure observation, ICP analysis, spot weldability evaluation test, and post-coating corrosion resistance evaluation test were cut out and further bent A test piece for LME resistance evaluation test was cut out.
- the content of Al and Zn in the interface layer and the content of Al, Zn and Mg in the intermediate layer using EPMA was measured.
- mapping analysis was performed in an area of 25% or more in the film thickness direction from the film thickness center of each layer and 20 ⁇ m or more in the width direction, and the average composition was calculated.
- each layer was measured by taking an image of the cross section with an SEM and analyzing the micrograph.
- tissue of each layer it determined by performing the crystal structure analysis by TEM with respect to the thin piece extract
- the total content of Al and Zn contained in a plating layer was calculated
- the content of Mg, Cr, Ca, Sr, and Ti was determined by dissolving only the oxide layer with an ammonium dichromate solution and performing ICP analysis on the solution. .
- LME The presence or absence of LME was observed by observing the backscattered electron image using the SEM and the backscattered electron detector about the cross section in the thickness direction of the test piece for the LME resistance evaluation test of each test example. At this time, LME was generated when cracking had progressed to the base material (where the Fe concentration was 98% or more). And what was not generating the crack was evaluated as excellent (1), and what the crack extended to the base material beyond the plating layer was evaluated as impossible (4).
- an energy dispersive X-ray analysis is performed on the area around the crack end position using an energy dispersive X-ray microanalyzer.
- EDS energy dispersive X-ray analysis
- spot welding was performed on the test piece for the weldability evaluation test of each test example using a DC power source at a pressure of 350 kgf. Tests were conducted with various welding currents, the value where the nugget diameter of the weld exceeded 4.7 mm was set as the lower limit, the value of the welding current was increased appropriately, and the value generated during welding was set as the upper limit. . A value between the upper limit value and the lower limit value was set as an appropriate current range, and the difference between the upper limit value and the lower limit value was used as an index of spot weldability. In the evaluation of spot weldability, this value is 1.5A or more excellent (1), 1.0A or more and less than 1.5A is good (2), 0.5A or more and less than 1.0A. Yes (3), less than 0.5 A was evaluated as impossible (4).
- a cation type electrodeposition paint manufactured by Nippon Paint Co., Ltd. was electrodeposited by applying a slope of 160V to each molded body, and further, 20 ° C. at a baking temperature of 170 ° C. Baked for a minute.
- the film thickness control of the paint after electrodeposition coating was performed under the condition that the electrodeposition coating was 15 ⁇ m with the steel material before hot stamping.
- a cross-cut was made on the formed body after electrodeposition coating so as to reach the base steel material, and a composite corrosion test (JASO M610 cycle) was conducted. Corrosion resistance is evaluated by the paint blister width, and after the 180-cycle combined corrosion test, the paint blister width is 2.0 mm or less (1), and the one with more than 2.0 mm and 3.0 mm or less is good ( 2) More than 3.0 mm and less than 4.0 mm were evaluated as acceptable (3), and more than 4.0 mm were evaluated as unacceptable (4).
- An object of the present invention is to provide a hot stamping molded body that is excellent in balance in all of fatigue characteristics (LME resistance), spot weldability, and corrosion resistance after coating. Therefore, considering these evaluation results comprehensively, the overall evaluation A that was excellent or good in any test and the comprehensive evaluation B that was at least impossible in any test was accepted, and either The thing of the comprehensive evaluation C which was impossible in the test was made disqualified. The results are shown in Table 4.
- the hot stamped article according to the present invention was excellent in all of fatigue characteristics (LME resistance), spot weldability, and corrosion resistance after coating.
- the hot stamping molded body according to the present invention can be suitably used as a structural member used in an automobile or the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Coating With Molten Metal (AREA)
- Heat Treatment Of Articles (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Physical Vapour Deposition (AREA)
- Metal Rolling (AREA)
- Forging (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
Abstract
Description
前記めっき層は、前記母材側から順に、界面層、中間層および酸化物層を含み、
前記界面層は、組織がαFe、Fe3AlおよびFeAlから選択される1種以上のFe-Al合金を含み、かつ、前記Fe-Al合金の合計面積率が90%以上であり、
前記中間層は、Fe(Al,Zn)2、Fe2(Al,Zn)5およびFe(Al,Zn)3から選択される1種以上のFe-Al-Zn相を含み、かつ、前記Fe-Al-Zn相の合計面積率が50%以上であり、
前記中間層の平均組成が、質量%で、
Al:30~50%、および、
Zn:15~30%、を含み、
前記酸化物層は、平均膜厚が3.0μm以下であり、かつ、Mg含有量が0.05~1.00g/m2である、
ホットスタンプ成形体。
上記(1)に記載のホットスタンプ成形体。
上記(1)または(2)に記載のホットスタンプ成形体。
上記(1)から(3)までのいずれかに記載のホットスタンプ成形体。
前記中間層は、Fe3(Al,Si)およびFe(Al,Si)から選択される1種または2種のFe-Al-Si相をさらに含み、かつ、前記Fe-Al-Zn相および前記Fe-Al-Si相の合計面積率が90%以上である、
上記(1)から(3)までのいずれかに記載のホットスタンプ成形体。
図1は、本発明の一実施形態に係るホットスタンプ成形体の構造を説明するための図である。また、図2は、本発明の一実施形態に係るホットスタンプ成形体の断面をSEM観察した画像の一例である。図1および2に示すように、本発明の一実施形態に係るホットスタンプ成形体1は、母材10と母材10の表面に形成されためっき層20とを備える。
本実施形態に係るホットスタンプ成形体の課題である疲労特性、スポット溶接性、および塗装後耐食性の改善は、めっき層の構成によって実現される。したがって、本実施形態に係るホットスタンプ成形体の母材は特に限定されない。しかし、母材の成分が以下に説明する範囲内である場合、疲労特性、スポット溶接性、および塗装後耐食性に加えて、好適な機械特性を有する成形体が得られる。
炭素(C)は、ホットスタンプ成形体の強度を高める元素である。C含有量が少な過ぎると、上記効果が得られない。一方、C含有量が過剰であると、鋼材の靭性が低下する。したがって、C含有量は0.05~0.4%とする。C含有量は0.10%以上であるの他好ましく、0.13%以上であるのがより好ましい。また、C含有量は0.35%以下であるのが好ましい。
シリコン(Si)は、不可避的に含まれ、鋼を脱酸する作用を有する元素である。しかしながら、Si含有量が過剰であると、ホットスタンプの加熱中に鋼中のSiが拡散し、鋼板表面に酸化物が形成されて、りん酸塩処理性を低下させる。Siは、さらに、鋼板のAc3点を上昇させる元素であり、Ac3点が上昇すると、ホットスタンプ時の加熱温度がZnめっきの蒸発温度を超えてしまうおそれがある。したがって、Si含有量は0.5%以下とする。Si含有量は0.3%以下であるのが好ましく、0.2%以下であるのがより好ましい。上記製品性能の観点からはSi含有量の下限値の制約はないが、上述する脱酸を目的として使用されるため、実質的な下限値が存在する。求められる脱酸レベルによるが、通常は0.05%である。
マンガン(Mn)は、焼入れ性を高め、ホットスタンプ後の鋼材の強度を高める元素である。Mn含有量が少な過ぎると、この効果は得られない。一方、Mn含有量が過剰であると、この効果は飽和する。したがって、Mn含有量は0.5~2.5%とする。Mn含有量は0.6%以上であるのが好ましく、0.7%以上であるのがより好ましい。また、Mn含有量は2.4%以下であるのが好ましく、2.3%以下であるのがより好ましい。
りん(P)は、鋼中に含まれる不純物である。Pは結晶粒界に偏析して鋼の靭性を低下させ、耐遅れ破壊性を低下させる。したがって、P含有量は0.03%以下とする。P含有量はできる限り少なくすることが好ましい。
硫黄(S)は、鋼中に含まれる不純物である。Sは硫化物を形成して鋼の靭性を低下させ、耐遅れ破壊性を低下させる。したがって、S含有量は0.01%以下とする。S含有量はできる限り少なくすることが好ましい。
アルミニウム(Al)は、一般に鋼の脱酸目的で使用され、不可避的に含有される元素である。しかしながら、Al含有量が過剰であると、脱酸は十分に行われるが、鋼板のAc3点が上昇して、ホットスタンプ時の加熱温度がZnめっきの蒸発温度を超えるおそれがある。したがって、Al含有量は0.1%以下とする。Al含有量は0.05%以下であるのが好ましい。上記の効果を得るためには、Al含有量は0.01%以上であるのが好ましい。なお、本明細書において、Al含有量は、sol.Al(酸可溶Al)の含有量を意味する。
窒素(N)は、鋼中に不可避的に含まれる不純物である。Nは窒化物を形成して鋼の靭性を低下させる。Nはさらに、鋼中にBが含有される場合、Bと結合して固溶B量を減らし、ひいては焼入れ性を低下させる。したがって、N含有量は0.01%以下とする。N含有量はできる限り少なくすることが好ましい。
ボロン(B)は、鋼の焼入れ性を高め、ホットスタンプ後の鋼材の強度を高める効果を有するため、必要に応じて含有させてもよい。しかしながら、B含有量が過剰であると、この効果は飽和する。したがって、B含有量は0.005%以下とする。上記の効果を得るためには、B含有量は0.0001%以上であるのが好ましい。
チタン(Ti)は、Nと結合して窒化物を形成する。このようにTiとNとが結合する場合には、BとNとの結合が抑制され、BN形成による焼入れ性の低下を、抑制することができる。そのため、Tiを必要に応じて含有させてもよい。しかしながら、Ti含有量が過剰であると上記効果が飽和し、さらに、Ti窒化物が過剰に析出して鋼の靭性が低下する。したがって、Ti含有量は0.1%以下とする。なお、Tiはそのピン止め効果により、ホットスタンプ加熱時のオーステナイト粒径を微細化し、それにより鋼材の靱性等を高める。上記の効果を得るためには、Ti含有量は0.01%以上であるのが好ましい。
クロム(Cr)は、鋼の焼入れ性を高める効果を有するため、必要に応じて含有させてもよい。しかしながら、Cr含有量が過剰であると、Cr炭化物が形成される。このCr炭化物は、ホットスタンプの加熱時に溶解し難いことから、オーステナイト化が進行し難くなり、焼き入れ性が低下する。したがって、Cr含有量は0.5%以下とする。上記の効果を得るためには、Cr含有量は0.1%以上であるのが好ましい。
モリブデン(Mo)は、鋼の焼入れ性を高める効果を有するため、必要に応じて含有させてもよい。しかしながら、Mo含有量が過剰であると、上記効果は飽和する。したがって、Mo含有量は0.5%以下とする。上記の効果を得るためには、Mo含有量は0.05%以上であるのが好ましい。
ニオブ(Nb)は、炭化物を形成して、ホットスタンプ時に結晶粒を微細化し、鋼の靭性を高める効果を有するため、必要に応じて含有させてもよい。しかしながら、Nb含有量が過剰であると、上記効果が飽和するだけでなく、焼入れ性が低下する。したがって、Nb含有量は0.1%以下とする。上記の効果を得るためには、Nb含有量は0.02%以上であるのが好ましい。
ニッケル(Ni)は、鋼の靭性を高める効果を有する。Niは、さらに、ホットスタンプでの加熱時に、溶融Znの存在に起因した脆化を抑制する。そのため、Niを必要に応じて含有させてもよい。しかしながら、Ni含有量が過剰であると、これらの効果は飽和する。したがって、Ni含有量は1.0%以下とする。上記の効果を得るためには、Ni含有量は0.1%以上であるのが好ましい。
図1に示すように、本実施形態におけるめっき層20は、母材10側から順に、界面層21、中間層22および酸化物層23を含む。それぞれの層について詳しく説明する。なお、本明細書において、平均膜厚とは、対象となる層(膜)の最大膜厚と最小膜厚との平均値を意味するものとする。
本実施形態のホットスタンプ成形体の製造方法は、ホットスタンプ用めっき鋼材を製造する工程と、ホットスタンプ用めっき鋼材に対してホットスタンプする工程とを含む。また、上記のホットスタンプ用めっき鋼材を製造する工程には、ホットスタンプ用めっき鋼材の母材を製造する工程と、ホットスタンプ用めっき鋼材の母材にAl-Znめっき層を形成する工程とが含まれる。さらに、ホットスタンプする工程の前に、必要に応じて、防錆油膜形成工程およびブランキング加工工程を行ってもよい。以下、各工程について、詳述する。
母材製造工程では、ホットスタンプ用めっき鋼材の母材を製造する。例えば、上に例示された本実施形態に係るホットスタンプ成形体の母材の化学組成と同じ化学組成を有する溶鋼を製造する。そして、この溶鋼を用いて、鋳造法によりスラブを製造するか、または、造塊法によりインゴットを製造する。
めっき処理工程では、上記ホットスタンプ用めっき鋼材の母材にAl-Zn-Mgめっき層を形成して、ホットスタンプ用めっき鋼材を製造する。Al-Zn-Mgめっき層の形成方法は、溶融めっき処理であってもよいし、溶射めっき処理、蒸着めっき処理等の、その他のいかなる処理であってもよい。母材とめっき層との密着性を高めるためには、めっき層にSiを含有させることが好ましい。
ホットスタンプ工程では、上述のホットスタンプ用めっき鋼材にホットスタンプを行う。通常のホットスタンプは、鋼材をホットスタンプ温度範囲(熱間加工温度範囲)まで加熱し、次いで鋼材を熱間加工し、さらに鋼材を冷却することにより行われる。通常のホットスタンプ技術によれば、製造時間を短縮するために、鋼材の加熱速度をなるべく大きくすることがよいとされる。また、鋼材をホットスタンプ温度範囲まで加熱すればめっき層の合金化が十分に進むので、通常のホットスタンプ技術は、鋼材の加熱条件の制御を重要視していない。
防錆油膜形成工程は、めっき処理工程後、かつ、ホットスタンプ工程前に、ホットスタンプ用めっき鋼材の表面に防錆油を塗布して防錆油膜を形成するものであり、製造方法に任意に含まれてもよい。ホットスタンプ用めっき鋼材が製造されてからホットスタンプが行われるまでの時間が長い場合には、ホットスタンプ用めっき鋼材の表面が酸化されるおそれがある。しかしながら、防錆油膜形成工程により防錆油膜が形成されたホットスタンプ用めっき鋼材の表面は酸化し難いので、防錆油膜形成工程は、成形体のスケールの形成を抑制することができる。なお、防錆油膜の形成方法は、公知のいかなる技術を用いることもできる。
本工程は、防錆油膜形成工程後、かつ、ホットスタンプ工程前に、ホットスタンプ用めっき鋼材に対して剪断加工および/または打ち抜き加工を行って、当該鋼材を特定の形状に成形する工程である。ブランキング加工後の鋼材の剪断面は酸化し易い。しかしながら、鋼材表面に事前に防錆油膜が形成されていれば、上記剪断面にも防錆油がある程度広がる。これにより、ブランキング加工後の鋼材の酸化を抑制することができる。
各試験例の溶接性評価試験用試験片に対して、直流電源を用いて、加圧力350kgfにてスポット溶接を実施した。種々の溶接電流にて試験を実施し、溶接部のナゲット径が4.7mmを超えた値を下限値とし、適宜溶接電流の値を上げていき、溶接時にチリ発生した値を上限値とした。そして、上限値と下限値の間の値を適正電流範囲と設定し、上限値と下限値との差をスポット溶接性の指標とした。スポット溶接性の評価においては、この値が1.5A以上のものを優(1)、1.0A以上1.5A未満のものを良(2)、0.5A以上1.0A未満のものを可(3)、0.5A未満のものを不可(4)と評価した。
各試験例の塗装後耐食性評価試験用試験片に対して、日本パーカライジング株式会社製の表面調整処理剤(商品名:プレパレンX)を用いて、表面調整を室温で20s行った。次いで、日本パーカライジング株式会社製のりん酸亜鉛処理液(商品名:パルボンド3020)を用いて、りん酸塩処理を行った。具体的には、処理液の温度を43℃とし、成形体を処理液に120s浸漬した。これにより、鋼材表面にりん酸塩被膜が形成された。
本発明においては、疲労特性(耐LME性)、スポット溶接性、および塗装後耐食性の全てにおいてバランスよく優れるホットスタンプ成形体を提供することを目的としている。そのため、これらの評価結果を総合的に勘案し、いずれの試験においても優または良であった総合評価Aおよびいずれの試験においても少なくとも不可がなかった総合評価Bのものを合格とし、いずれかの試験において不可があった総合評価Cのものを不合格とした。それらの結果を表4に示す。
Claims (5)
- 母材と該母材の表面に形成されためっき層とを備えるホットスタンプ成形体であって、
前記めっき層は、前記母材側から順に、界面層、中間層および酸化物層を含み、
前記界面層は、組織がαFe、Fe3AlおよびFeAlから選択される1種以上のFe-Al合金を含み、かつ、前記Fe-Al合金の合計面積率が90%以上であり、
前記中間層は、Fe(Al,Zn)2、Fe2(Al,Zn)5およびFe(Al,Zn)3から選択される1種以上のFe-Al-Zn相を含み、かつ、前記Fe-Al-Zn相の合計面積率が50%以上であり、
前記中間層の平均組成が、質量%で、
Al:30~50%、および、
Zn:15~30%、を含み、
前記酸化物層は、平均膜厚が3.0μm以下であり、かつ、Mg含有量が0.05~0.50g/m2である、
ホットスタンプ成形体。 - 上記界面層は、平均膜厚が1.0μm以上である、
請求項1に記載のホットスタンプ成形体。 - 上記めっき層中のAlおよびZnの合計含有量が20~100g/m2である、
請求項1または請求項2に記載のホットスタンプ成形体。 - 前記中間層の前記Fe-Al-Zn相の合計面積率が90%以上である、
請求項1から請求項3までのいずれかに記載のホットスタンプ成形体。 - 上記めっき層は、質量%で、0.1~15%のSiをさらに含み、
前記中間層は、Fe3(Al,Si)およびFe(Al,Si)から選択される1種または2種のFe-Al-Si相をさらに含み、かつ、前記Fe-Al-Zn相および前記Fe-Al-Si相の合計面積率が90%以上である、
請求項1から請求項3までのいずれかに記載のホットスタンプ成形体。
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2019011731A MX2019011731A (es) | 2017-03-31 | 2017-03-31 | Cuerpo estampado en caliente. |
JP2019508151A JP6819771B2 (ja) | 2017-03-31 | 2017-03-31 | ホットスタンプ成形体 |
EP17903939.1A EP3604602A4 (en) | 2017-03-31 | 2017-03-31 | HOT-STAMPED MOLDED PART |
PCT/JP2017/013760 WO2018179395A1 (ja) | 2017-03-31 | 2017-03-31 | ホットスタンプ成形体 |
US16/499,795 US20200032360A1 (en) | 2017-03-31 | 2017-03-31 | Hot stamped body |
KR1020197032185A KR20190133754A (ko) | 2017-03-31 | 2017-03-31 | 핫 스탬프 성형체 |
CA3057006A CA3057006A1 (en) | 2017-03-31 | 2017-03-31 | Hot stamped body |
BR112019019587A BR112019019587A2 (pt) | 2017-03-31 | 2017-03-31 | corpo estampado a quente |
CN201780089247.7A CN110475898A (zh) | 2017-03-31 | 2017-03-31 | 热冲压成型体 |
RU2019134830A RU2019134830A (ru) | 2017-03-31 | 2017-03-31 | Горячештампованная заготовка |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/013760 WO2018179395A1 (ja) | 2017-03-31 | 2017-03-31 | ホットスタンプ成形体 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018179395A1 true WO2018179395A1 (ja) | 2018-10-04 |
Family
ID=63674828
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/013760 WO2018179395A1 (ja) | 2017-03-31 | 2017-03-31 | ホットスタンプ成形体 |
Country Status (10)
Country | Link |
---|---|
US (1) | US20200032360A1 (ja) |
EP (1) | EP3604602A4 (ja) |
JP (1) | JP6819771B2 (ja) |
KR (1) | KR20190133754A (ja) |
CN (1) | CN110475898A (ja) |
BR (1) | BR112019019587A2 (ja) |
CA (1) | CA3057006A1 (ja) |
MX (1) | MX2019011731A (ja) |
RU (1) | RU2019134830A (ja) |
WO (1) | WO2018179395A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022091529A1 (ja) * | 2020-10-27 | 2022-05-05 | Jfeスチール株式会社 | 熱間プレス部材および熱間プレス用鋼板ならびにそれらの製造方法 |
JP7243949B1 (ja) * | 2021-10-29 | 2023-03-22 | Jfeスチール株式会社 | 熱間プレス部材 |
WO2023074115A1 (ja) * | 2021-10-29 | 2023-05-04 | Jfeスチール株式会社 | 熱間プレス部材 |
JP7315129B1 (ja) * | 2022-03-29 | 2023-07-26 | Jfeスチール株式会社 | 熱間プレス部材および熱間プレス用鋼板 |
WO2023176100A1 (ja) * | 2022-03-14 | 2023-09-21 | Jfeスチール株式会社 | 熱間プレス部材および熱間プレス用鋼板、ならびにそれらの製造方法 |
WO2023188792A1 (ja) * | 2022-03-29 | 2023-10-05 | Jfeスチール株式会社 | 熱間プレス部材および熱間プレス用鋼板 |
US11897229B2 (en) | 2019-12-20 | 2024-02-13 | Posco | Aluminum alloy-plated steel sheet having excellent workability and corrosion resistance and method for manufacturing same |
US11965250B2 (en) | 2019-08-29 | 2024-04-23 | Nippon Steel Corporation | Hot stamped steel |
WO2024136357A1 (ko) * | 2022-12-21 | 2024-06-27 | 주식회사 포스코 | 알루미늄 도금강판, 이를 이용한 열간 성형 부재 및 이들의 제조방법 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI682066B (zh) * | 2018-02-15 | 2020-01-11 | 日商日本製鐵股份有限公司 | Fe-Al系鍍敷熱壓印構件及Fe-Al系鍍敷熱壓印構件的製造方法 |
KR102479929B1 (ko) * | 2020-12-31 | 2022-12-21 | 현대제철 주식회사 | 핫 스탬핑 부품, 및 이의 제조 방법 |
CN116463572A (zh) * | 2022-01-11 | 2023-07-21 | 宝山钢铁股份有限公司 | 一种具有Al-Zn-Mg-Si镀层的热冲压钢板及其热冲压方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003049256A (ja) | 2001-08-09 | 2003-02-21 | Nippon Steel Corp | 溶接性、塗装後耐食性に優れた高強度自動車部材用アルミめっき鋼板及びそれを使用した自動車部材 |
JP2003073774A (ja) | 2001-08-31 | 2003-03-12 | Sumitomo Metal Ind Ltd | 熱間プレス用めっき鋼板 |
JP2005113233A (ja) | 2003-10-09 | 2005-04-28 | Nippon Steel Corp | 熱間プレス用Zn系めっき鋼材 |
JP2012112010A (ja) * | 2010-11-26 | 2012-06-14 | Jfe Steel Corp | 熱間プレス用めっき鋼板、それを用いた熱間プレス部材の製造方法および熱間プレス部材 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2387322C (en) * | 2001-06-06 | 2008-09-30 | Kawasaki Steel Corporation | High-ductility steel sheet excellent in press formability and strain age hardenability, and method for manufacturing the same |
EP1630244B2 (en) * | 2003-04-23 | 2016-08-17 | Nippon Steel & Sumitomo Metal Corporation | Hot press formed product and method for production thereof |
JP4085876B2 (ja) * | 2003-04-23 | 2008-05-14 | 住友金属工業株式会社 | 熱間プレス成形品およびその製造方法 |
US11884998B2 (en) * | 2017-03-31 | 2024-01-30 | Nippon Steel Corporation | Surface treated steel sheet |
-
2017
- 2017-03-31 MX MX2019011731A patent/MX2019011731A/es unknown
- 2017-03-31 BR BR112019019587A patent/BR112019019587A2/pt not_active Application Discontinuation
- 2017-03-31 CA CA3057006A patent/CA3057006A1/en not_active Abandoned
- 2017-03-31 JP JP2019508151A patent/JP6819771B2/ja active Active
- 2017-03-31 WO PCT/JP2017/013760 patent/WO2018179395A1/ja unknown
- 2017-03-31 EP EP17903939.1A patent/EP3604602A4/en not_active Withdrawn
- 2017-03-31 KR KR1020197032185A patent/KR20190133754A/ko not_active Application Discontinuation
- 2017-03-31 RU RU2019134830A patent/RU2019134830A/ru not_active Application Discontinuation
- 2017-03-31 CN CN201780089247.7A patent/CN110475898A/zh not_active Withdrawn
- 2017-03-31 US US16/499,795 patent/US20200032360A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003049256A (ja) | 2001-08-09 | 2003-02-21 | Nippon Steel Corp | 溶接性、塗装後耐食性に優れた高強度自動車部材用アルミめっき鋼板及びそれを使用した自動車部材 |
JP2003073774A (ja) | 2001-08-31 | 2003-03-12 | Sumitomo Metal Ind Ltd | 熱間プレス用めっき鋼板 |
JP2005113233A (ja) | 2003-10-09 | 2005-04-28 | Nippon Steel Corp | 熱間プレス用Zn系めっき鋼材 |
JP2012112010A (ja) * | 2010-11-26 | 2012-06-14 | Jfe Steel Corp | 熱間プレス用めっき鋼板、それを用いた熱間プレス部材の製造方法および熱間プレス部材 |
Non-Patent Citations (1)
Title |
---|
NISSHIN STEEL CORPORATION GROUP PRODUCT DEVELOPMENT STRATEGY HEADQUARTERS TECHNICAL RESEARCH INSTITUTE OKUGAKU: "Development trend of surface treated steel sheet for building materials", KAI NISHIYAMA KINEN GIJUTSU KOZA, vol. 223-224, October 2015 (2015-10-01), JAPAN, pages 67 - 68, XP009517879, ISSN: 1344-0934 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11965250B2 (en) | 2019-08-29 | 2024-04-23 | Nippon Steel Corporation | Hot stamped steel |
US11897229B2 (en) | 2019-12-20 | 2024-02-13 | Posco | Aluminum alloy-plated steel sheet having excellent workability and corrosion resistance and method for manufacturing same |
WO2022091529A1 (ja) * | 2020-10-27 | 2022-05-05 | Jfeスチール株式会社 | 熱間プレス部材および熱間プレス用鋼板ならびにそれらの製造方法 |
JP7131719B1 (ja) * | 2020-10-27 | 2022-09-06 | Jfeスチール株式会社 | 熱間プレス部材および熱間プレス用鋼板ならびにそれらの製造方法 |
JP7243949B1 (ja) * | 2021-10-29 | 2023-03-22 | Jfeスチール株式会社 | 熱間プレス部材 |
WO2023074115A1 (ja) * | 2021-10-29 | 2023-05-04 | Jfeスチール株式会社 | 熱間プレス部材 |
WO2023176100A1 (ja) * | 2022-03-14 | 2023-09-21 | Jfeスチール株式会社 | 熱間プレス部材および熱間プレス用鋼板、ならびにそれらの製造方法 |
JP7485219B2 (ja) | 2022-03-14 | 2024-05-16 | Jfeスチール株式会社 | 熱間プレス部材および熱間プレス用鋼板、ならびにそれらの製造方法 |
JP7315129B1 (ja) * | 2022-03-29 | 2023-07-26 | Jfeスチール株式会社 | 熱間プレス部材および熱間プレス用鋼板 |
WO2023188792A1 (ja) * | 2022-03-29 | 2023-10-05 | Jfeスチール株式会社 | 熱間プレス部材および熱間プレス用鋼板 |
WO2024136357A1 (ko) * | 2022-12-21 | 2024-06-27 | 주식회사 포스코 | 알루미늄 도금강판, 이를 이용한 열간 성형 부재 및 이들의 제조방법 |
Also Published As
Publication number | Publication date |
---|---|
US20200032360A1 (en) | 2020-01-30 |
KR20190133754A (ko) | 2019-12-03 |
JP6819771B2 (ja) | 2021-01-27 |
EP3604602A4 (en) | 2020-08-05 |
CN110475898A (zh) | 2019-11-19 |
RU2019134830A3 (ja) | 2021-04-30 |
CA3057006A1 (en) | 2018-10-04 |
BR112019019587A2 (pt) | 2020-04-14 |
MX2019011731A (es) | 2019-11-21 |
EP3604602A1 (en) | 2020-02-05 |
JPWO2018179395A1 (ja) | 2019-12-12 |
RU2019134830A (ru) | 2021-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018179395A1 (ja) | ホットスタンプ成形体 | |
JP6566128B2 (ja) | ホットスタンプ成形体 | |
CN111868290B (zh) | 热冲压成型体 | |
JP6515356B2 (ja) | ホットスタンプ用鋼板およびその製造方法、並びにホットスタンプ成形体 | |
JP6897757B2 (ja) | 表面処理鋼板 | |
CN111868291B (zh) | 热冲压成型体 | |
JP6326761B2 (ja) | ホットスタンプ鋼材の製造方法、ホットスタンプ用鋼板の製造方法及びホットスタンプ用鋼板 | |
JPWO2019097729A1 (ja) | 焼入れ用Alめっき溶接管、並びにAlめっき中空部材及びその製造方法 | |
JP6947335B1 (ja) | ホットスタンプ用鋼板およびホットスタンプ成形体 | |
WO2022091351A1 (ja) | Zn系めっきホットスタンプ成形品 | |
TWI637069B (zh) | Surface treated steel | |
JP7173368B2 (ja) | 熱間プレス部材および熱間プレス用鋼板ならびに熱間プレス部材の製造方法 | |
TW201837208A (zh) | 熱沖壓成形體 | |
WO2024122121A1 (ja) | めっき鋼板 | |
WO2020213201A1 (ja) | 熱間プレス用鋼板および熱間プレス部材 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17903939 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019508151 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 3057006 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112019019587 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 20197032185 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2017903939 Country of ref document: EP Effective date: 20191031 |
|
ENP | Entry into the national phase |
Ref document number: 112019019587 Country of ref document: BR Kind code of ref document: A2 Effective date: 20190919 |