WO2022091267A1 - 金属空気電池 - Google Patents

金属空気電池 Download PDF

Info

Publication number
WO2022091267A1
WO2022091267A1 PCT/JP2020/040518 JP2020040518W WO2022091267A1 WO 2022091267 A1 WO2022091267 A1 WO 2022091267A1 JP 2020040518 W JP2020040518 W JP 2020040518W WO 2022091267 A1 WO2022091267 A1 WO 2022091267A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
continuum
electrolytic solution
air
negative electrode
Prior art date
Application number
PCT/JP2020/040518
Other languages
English (en)
French (fr)
Inventor
柚子 小林
博章 田口
正也 野原
三佳誉 岩田
武志 小松
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/040518 priority Critical patent/WO2022091267A1/ja
Priority to US18/248,964 priority patent/US20230387510A1/en
Priority to JP2022558686A priority patent/JP7510084B2/ja
Publication of WO2022091267A1 publication Critical patent/WO2022091267A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • H01M4/466Magnesium based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/497Ionic conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a metal-air battery.
  • alkaline batteries, manganese batteries, etc. have been widely used as disposable primary batteries.
  • IoT Internet of Things
  • the development of scattered sensors that can be installed and used in all parts of the natural world such as in the soil and forests is progressing, and small size sensors that can be used for various purposes such as these sensors are being developed.
  • High-performance coin-type lithium primary batteries are in widespread use.
  • disposable batteries currently in general are often composed of rare metal metals such as lithium, nickel, manganese, and cobalt, and there is a problem of resource depletion. Further, since a strong alkaline electrolytic solution such as an aqueous solution of sodium hydroxide or an organic electrolytic solution is used as the electrolytic solution, there is a problem that final disposal is not easy. In addition, depending on the usage environment, such as when a disposable battery is used as a drive source for a sensor embedded in soil, there is a concern that it may affect the surrounding environment.
  • a metal-air battery can be mentioned as a candidate that can be a battery with a low environmental load.
  • Metal-air batteries use oxygen and water as the air polar active material and metals such as magnesium, aluminum, calcium, iron, and zinc as the negative electrode active material, so they also have an impact on soil contamination and the ecosystem. low. In addition, these are resource-rich materials and are cheaper than rare metals.
  • Such metal-air batteries are being researched and developed as batteries having a low environmental load (see Patent Document 1).
  • Non-Patent Documents 1 and 2 In a metal-air battery, the metal of the negative electrode is consumed moment by moment due to the corrosion reaction, and only a part of the input metal can be used for the battery reaction. It has been reported that the corrosion reaction of metals can be suppressed by adding a surfactant to the electrolytic solution (see Non-Patent Documents 1 and 2).
  • the surfactants in the non-patent documents have a limit in the corrosion suppressing effect, and there is a demand for a surfactant having a larger corrosion suppressing effect in order to improve the discharge capacity.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to suppress a corrosion reaction of a negative electrode and to improve the discharge capacity of a metal-air battery.
  • the metal-air battery of one aspect of the present invention includes an air electrode, a negative electrode, and an electrolytic solution arranged between the air electrode and the negative electrode, and the electrolytic solution has 18 or more and 22 or less carbon atoms. Contains alkyl glucosides.
  • the present invention it is possible to suppress the corrosion reaction of the negative electrode and improve the discharge capacity of the metal-air battery.
  • FIG. 1 is a diagram showing a basic configuration of a metal-air battery according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a basic configuration of another metal-air battery according to the embodiment of the present invention.
  • FIG. 3 is a flowchart for explaining the manufacturing method 1.
  • FIG. 4 is a flowchart for explaining the manufacturing method 2.
  • FIG. 5 is a flowchart for explaining the manufacturing method 3.
  • FIG. 6 is a flowchart for explaining the manufacturing method 4.
  • FIG. 7 is a flowchart for explaining the manufacturing methods 5, 6 and 7.
  • FIG. 8A is a cross-sectional view showing a configuration example of a coin cell type of the metal-air battery shown in FIG. FIG.
  • FIG. 8B is a plan view showing a configuration example of a coin cell type of the metal-air battery shown in FIG. 1.
  • FIG. 9A is a cross-sectional view showing a configuration example of a coin cell type of the metal-air battery shown in FIG.
  • FIG. 9B is a plan view showing a configuration example of a coin cell type of the metal-air battery shown in FIG. 2.
  • FIG. 10 is a configuration diagram showing a configuration example of the metal-air battery of FIG.
  • FIG. 11 is a configuration diagram showing a configuration example of the metal-air battery of FIG.
  • FIG. 12 is a graph showing the discharge curve in Example 1.
  • FIG. 1 is a configuration diagram showing a basic configuration of a metal-air battery according to the present embodiment.
  • FIG. 1 shows a metal-air battery in which magnesium is used for the negative electrode as an example, the present invention is not limited to the magnesium-air battery.
  • the metal-air battery shown in FIG. 1 includes a positive electrode and a gas diffusion type air electrode 101, a negative electrode 102, and an electrolytic solution 104 arranged between the air electrode 101 and the negative electrode 102.
  • One surface of the air electrode 101 is exposed to the atmosphere and the other surface is in contact with the electrolyte 104.
  • the surface of the negative electrode 102 on the side of the electrolytic solution 104 is in contact with the electrolytic solution 104.
  • Alkyl glucoside is dissolved in the electrolytic solution 104 as a surfactant.
  • the electrolytic solution 104 of the present embodiment contains an alkyl glucoside having 18 or more and 22 or less carbon atoms.
  • the carbon number is the carbon number of the whole molecule.
  • the carbon number of the alkyl glucoside includes, for example, the carbon number of the alkyl group.
  • Alkyl glucosides are nonionic surfactants.
  • the concentration of the alkyl glucoside is preferably 1 ⁇ 10 -1 to 1 ⁇ 10 -6 mol / L.
  • Alkyl glucosides having 24 or more carbon atoms are not preferable because they have low hydrophilicity and a saturation concentration of less than 1 ⁇ 10 -6 mol / L.
  • FIG. 2 is a configuration diagram showing a basic configuration of another metal-air battery in the present embodiment.
  • FIG. 2 shows a metal-air battery in which magnesium is used for the negative electrode as an example, the present invention is not limited to the magnesium-air battery.
  • the metal-air battery shown in FIG. 2 includes a positive electrode and a gas diffusion type air electrode 101, a negative electrode 102, an electrolytic solution 103 on the air electrode side, an electrolytic solution 104 on the negative electrode side, and an ion exchange membrane 105.
  • the ion exchange membrane 105 separates the electrolytic solution into the electrolytic solution 103 on the air electrode side and the electrolytic solution 104 on the negative electrode side.
  • the electrolytic solution 103 is arranged between the air electrode 101 and the ion exchange membrane 105.
  • the electrolytic solution 104 is arranged between the negative electrode 102 and the ion exchange membrane 105.
  • the above-mentioned alkyl glucoside having 18 or more and 22 or less carbon atoms is contained in the electrolytic solution 104 on the negative electrode side. That is, the alkyl glucoside is dissolved in the electrolytic solution 104.
  • the electrolytic solution 103 on the air electrode side does not contain an alkyl glucoside.
  • the ion exchange membrane 105 suppresses the diffusion of the alkyl glucoside (surfactant) and separates the electrolytic solution 103 on the air electrode side and the electrolytic solution 104 on the negative electrode side.
  • the air electrode 101 of the present embodiment includes a co-continuum having a three-dimensional network structure in which a plurality of nanostructures are integrated by non-covalent bonds.
  • the co-continuum is a porous body and has an integral structure.
  • the nanostructure is, for example, a nanosheet, a nanofiber, or the like.
  • the co-continuum of the three-dimensional network structure in which a plurality of nanostructures are integrated by non-covalent bonds has a stretchable structure in which the joints between the nanostructures are deformable.
  • the nanosheet may contain at least one selected from the group consisting of, for example, carbon, iron oxide, manganese oxide, magnesium oxide, molybdenum oxide, and a molybdenum sulfide compound.
  • the molybdenum sulfide compound is, for example, molybdenum disulfide, phosphorus-doped molybdenum sulfide, and the like.
  • the elements of the nanosheet material are 16 kinds of essential elements (C, O, H, N, P, K, S, Ca, Mg, Fe, Mn, B, Zn, Cu, Mo, Cl, which are indispensable for plant growth. ) May be included.
  • Nanosheets are defined as sheet-like substances having a thickness of 1 nm to 1 ⁇ m and having a plane length and width of 100 times or more the thickness.
  • graphene is a carbon nanosheet.
  • the nanosheet may be rolled or wavy, the nanosheet may be curved or bent, and may have any shape.
  • the nanofiber may contain at least one selected from the group consisting of carbon, iron oxide, manganese oxide, magnesium oxide, molybdenum oxide, molybdenum sulfide, and cellulose (carbonized cellulose).
  • the elements of these materials are 16 kinds of essential elements (C, O, H, N, P, K, S, Ca, Mg, Fe, Mn, B, Zn, Cu, Mo, Cl, which are indispensable for plant growth. ) May be included.
  • Nanofibers are defined as fibrous materials having a diameter of 1 nm to 1 ⁇ m and a length of 100 times or more the diameter. Further, the nanofibers may be hollow or coiled, and may have any shape. As for cellulose, as will be described later, it is used by carbonizing it to make it conductive.
  • a sol or gel in which nanostructures are dispersed is frozen to form a frozen body (freezing step), and the frozen body is dried in a vacuum (drying step) to prepare a co-continuum having an air electrode 101.
  • drying step a vacuum
  • Any gel in which nanofibers containing at least one of iron oxide, manganese oxide, silicon and cellulose are dispersed can be produced by a predetermined bacterium (gel production step).
  • a gel in which nanofibers made of cellulose are dispersed is produced by a predetermined bacterium (gel production step), and the gel is heated in an atmosphere of an inert gas and carbonized to obtain a co-continuum (carbonization step). You may do so.
  • the co-continuum constituting the air electrode 101 preferably has, for example, an average pore diameter of 0.1 to 50 ⁇ m, and more preferably 0.1 to 2 ⁇ m.
  • the average pore diameter is a value obtained by the mercury intrusion method.
  • the air electrode 101 using such a co-continuum eliminates the need for additional materials such as a binder required for the air electrode using carbon powder, which is advantageous in terms of cost and environment.
  • the negative electrode 102 contains at least one selected from the group consisting of magnesium, zinc, aluminum, iron and calcium.
  • the negative electrode 102 is composed of a negative electrode active material.
  • the negative electrode active material is not particularly limited as long as it is a material that can be used as a negative electrode material for a metal-air battery, that is, at least one metal selected from the group consisting of magnesium, zinc, aluminum, iron, and calcium.
  • the negative electrode active substance may be an alloy containing at least one metal selected from the above group as a main component.
  • the negative electrode 102 may be made of a metal as a negative electrode, a metal sheet, or a powder obtained by crimping a metal foil such as copper.
  • the negative electrode 102 can be formed by a known method.
  • the negative electrode 102 can be manufactured by stacking a plurality of metal magnesium foils and forming them into a predetermined shape.
  • the electrolytic solution 103 on the air electrode side shown in FIG. 2 may be a gel electrolytic solution containing an ion conductor capable of transferring hydroxide ions between the air electrode 101 (positive electrode) and the negative electrode 102.
  • an ion conductor capable of transferring hydroxide ions between the air electrode 101 (positive electrode) and the negative electrode 102.
  • a metal salt containing potassium or sodium which is abundant on the earth, can be used.
  • This metal salt contains 16 kinds of essential elements (C, O, H, N, P, K, S, Ca, Mg, Fe, Mn, B, Zn, Cu, Mo, Cl) that are indispensable for plant growth. ), It may be composed of elements contained in seawater or rainwater.
  • the electrolytic solution 103 includes, for example, chlorides such as sodium chloride and potassium chloride, acetates, carbonates, citrates, phosphates, HEPES (4- (2-hydroxyethyl) -1-piperazineethanesulfonic acid), and pyrophosphates. , At least one selected from the group consisting of metaphosphates may be used. It may also be composed of a mixture of these.
  • the ion conductor can be dissolved in ion-exchanged water at a concentration of 0.1 to 10 mol / L, preferably at a concentration of 0.1 to 2 mol / L to form the electrolytic solution 103.
  • the electrolytic solution 104 shown in FIG. 1 and the electrolytic solution 104 on the negative electrode side shown in FIG. 2 contain 1 ⁇ of an alkyl glucoside having 18 or more and 22 or less carbon atoms in the same solution as the electrolytic solution 103 (that is, the electrolytic solution 103). It was dissolved at a concentration of 10-5 to 1 mol / L.
  • Alkyl glucoside is a nonionic surfactant that is considered to have little effect on the battery reaction. By dissolving this alkyl glucoside, the corrosion reaction of the negative electrode 102 can be suppressed, and the battery performance is improved.
  • the ion exchange membrane 105 shown in FIG. 2 separates the electrolytic solution into the electrolytic solution 103 on the air electrode side and the electrolytic solution 104 on the negative electrode side. That is, the ion exchange membrane 105 is arranged so as to separate the electrolytic solution 103 and the electrolyte 104.
  • Various materials can be used for the ion exchange membrane 105.
  • the ion exchange film 105 preferably contains at least two selected from the group consisting of a carbon atom, a hydrogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, a sodium atom, a potassium atom and a phosphorus atom.
  • the ion exchange membrane 105 of the present embodiment allows only hydroxide ions to permeate and suppresses diffusion (movement) of the alkyl glucoside contained in the electrolyte 104 to the electrolyte 104 on the air electrode side.
  • an ion exchange membrane 105 is provided in which the alkyl glucoside is added only to the electrolytic solution 104 on the negative electrode side and the alkyl glucoside is suppressed from diffusing from the electrolytic solution 103 on the air electrode side.
  • the alkyl glucoside it is possible to prevent the alkyl glucoside from diffusing into the electrolytic solution 103 on the air electrode side, hydrophilizing the air electrode 101, submerging the air electrode 101 in the electrolyte 103, and lowering the battery voltage. ..
  • the metal-air battery can include structural members such as a separator, a battery case, and a metal mesh (for example, a copper mesh), and elements required for the metal-air battery.
  • structural members such as a separator, a battery case, and a metal mesh (for example, a copper mesh), and elements required for the metal-air battery.
  • a separator is not particularly limited as long as it is a fiber material, but a cellulosic separator made from plant fibers or bacteria is particularly preferable.
  • the metal-air battery of the present embodiment is suitable for the air electrode 101, the negative electrode 102, the electrolytes 103, 104, and the ion exchange film 105, together with other necessary elements based on the desired metal-air battery structure, such as a case. It can be produced by appropriately arranging it in a simple container. Conventionally known methods can be applied to the manufacturing procedure of these metal-air batteries.
  • FIG. 3 is a flowchart for explaining the manufacturing method 1.
  • step S101 the ion conductor of the electrolyte is dissolved in ion-exchanged water to prepare an aqueous solution.
  • step S102 the gelling agent is added to the prepared aqueous solution.
  • Gelling agents include plant-derived polysaccharides (corn starch, potato starch, tapioca starch, dextrin, tamarin seed gum, guar gum, locust bean gum, arabic gum, karaya gum, pectin, cellulose, konjak mannan, soybean polysaccharide) and seaweed-derived polysaccharides.
  • Polysaccharides (caraginan, agar, alginic acid), microbial-derived polysaccharides (xanthan gum, gellan gum, agrobacterium succinoglycan, cellulose), animal-derived polysaccharides (chitin, chitosan, gelatin) and the like can be used.
  • the weight% of the gelling agent may be 0.01 to 90%, preferably 0.01 to 20%, based on the aqueous solution of the ionic conductor.
  • the ionic conductor includes one or more of chloride, acetate, carbonate, citrate, phosphate, HEPES (4- (2-hydroxyethyl) -1-piperazineethanesulfonic acid), pyrophosphate, and metaphosphate. It may be composed of.
  • the gelling agent When the gelling agent is added to a solvent at about 50 ° C. to 90 ° C., the molecules of the gelling agent sufficiently swell and disperse, and as the temperature of the solvent decreases, the molecules are entangled with each other to form a cross-linking point. By forming a number of these cross-linking points, the gelling agent has a network-like structure, and the solvent becomes a gel.
  • the melting temperature (50 to 90 ° C.) required to dissolve the gelling agent and the cooling temperature (10 to 80 ° C.) required for gelation differ depending on the gelling agent used.
  • the electrolytic solution 104 of FIGS. 1 and 2 is prepared by dissolving an alkyl glucoside having 18 or more and 22 or less carbon atoms in an electrolytic solution produced in the same manner as the electrolytic solution 103.
  • FIG. 4 is a flowchart for explaining the manufacturing method 2.
  • step S201 a sol or gel in which nanostructures such as nanosheets and nanofibers are dispersed is frozen to obtain a frozen body (freezing step).
  • step S202 the obtained frozen body is dried in a vacuum to obtain a co-continuum (drying step).
  • drying step drying step
  • the freezing step of step S201 is a step of maintaining or constructing a three-dimensional network structure using a nanostructure that is a raw material of a co-continuum having elasticity.
  • the co-continuum has a three-dimensional network structure in which a plurality of nanostructures are integrated by non-covalent bonds.
  • the gel means a nanostructure in which the dispersion medium is a dispersoid, which loses fluidity due to a three-dimensional network structure and becomes a solid state. Specifically, it means a dispersion system having a shear modulus of 10 2 to 10 6 Pa.
  • the dispersion medium of the gel is an aqueous system such as water (H 2 O), carboxylic acid, methanol (CH 3 OH), ethanol (C 2 H 5 OH), propanol (C 3 H 7 OH), n-butanol, It is an organic system such as isobutanol, n-butylamine, dodecane, unsaturated fatty acid, ethylene glycol, heptane, hexadecane, isoamyl alcohol, octanol, isopropanol, acetone and glycerin, and two or more of them may be mixed.
  • aqueous system such as water (H 2 O), carboxylic acid, methanol (CH 3 OH), ethanol (C 2 H 5 OH), propanol (C 3 H 7 OH), n-butanol
  • It is an organic system such as isobutanol, n-butylamine, dodecane, unsaturated fatty
  • the sol means a colloid composed of a dispersion medium and a nanostructure which is a dispersoid. Specifically, it means a dispersion system having a shear modulus of 1 Pa or less.
  • the dispersion medium of the sol is an aqueous system such as water, or carboxylic acid, methanol, ethanol, propanol, n-butanol, isobutanol, n-butylamine, dodecane, unsaturated fatty acid, ethylene glycol, heptane, hexadecane, isoamyl alcohol, octanol. , Isopropanol, acetone, glycerin and the like, and two or more of them may be mixed.
  • a sol or gel in which nanostructures are dispersed is placed in a suitable container such as a test tube, and the surroundings of the test tube are cooled in a cooling material such as liquid nitrogen to be stored in the test tube. It is carried out by freezing the sol or gel.
  • the method of freezing is not particularly limited as long as the dispersion medium of the gel or sol can be cooled below the freezing point, and may be cooled in a freezer or the like.
  • the dispersion medium loses its fluidity and the dispersoid is fixed, and a three-dimensional network structure is constructed. Further, in the freezing step, the specific surface area can be freely adjusted by adjusting the concentration of the gel or sol, and the thinner the concentration of the gel or sol, the higher the specific surface area of the obtained cocoon. However, when the concentration is 0.01% by weight or less, it becomes difficult for the dispersoid to construct a three-dimensional network structure. Therefore, the concentration of the dispersoid is preferably 0.01 to 10% by weight or less.
  • the pores act as cushions during compression or tension, and have excellent elasticity.
  • the co-continuum preferably has a strain of 5% or more at the elastic limit, and more preferably 10% or more.
  • the dispersoid is not fixed by the freezing step, the dispersoid agglomerates as the dispersion medium evaporates in the subsequent drying step, so that a sufficiently high specific surface area cannot be obtained, and a three-dimensional network structure is formed. It is difficult to produce a co-continuum having a surface area.
  • the drying step is a step of taking out a dispersoid (a plurality of integrated microstructures) having a three-dimensional network structure maintained or constructed from the frozen body obtained in the freezing step from the dispersion medium.
  • the frozen body obtained in the freezing step is dried in a vacuum, and the frozen dispersion medium is sublimated from the solid state.
  • the drying step is carried out, for example, by placing the obtained frozen body in a suitable container such as a flask and evacuating the inside of the container. By arranging the frozen body in a vacuum atmosphere, the sublimation point of the dispersion medium is lowered, and it is possible to sublimate even a substance that does not sublimate under normal pressure.
  • the degree of vacuum in the drying step varies depending on the dispersion medium used, but is not particularly limited as long as the degree of vacuum is such that the dispersion medium sublimates.
  • the degree of vacuum is preferably 1.0 ⁇ 10 -6 to 1.0 ⁇ 10 ⁇ 2 Pa. Further, when drying, heat may be applied using a heater or the like.
  • the dispersion medium changes from a solid to a liquid, and then from a liquid to a gas, so that the frozen body becomes a liquid state and becomes fluid again in the dispersion medium, and is tertiary of multiple nanostructures.
  • the original network structure collapses. Therefore, it is difficult to produce a co-continuum having elasticity by drying in an atmospheric pressure atmosphere.
  • the nanostructure is cellulose nanofiber
  • a carbonization step (not shown) is carried out, and the co-continuum obtained in the drying step is carbonized to impart conductivity.
  • the nanostructures are not cellulose nanofibers, no carbonization step is required.
  • the carbonization of the co-continuum may be carried out by firing at 200 ° C. to 2000 ° C., more preferably 600 ° C. to 1800 ° C. in an inert gas atmosphere.
  • the gas on which the cellulose nanofibers do not burn may be, for example, an inert gas such as nitrogen gas or argon gas. Further, it may be a reducing gas such as hydrogen gas or carbon monoxide gas, or it may be carbon dioxide gas.
  • FIG. 5 is a flowchart for explaining the manufacturing method 3.
  • a predetermined bacterium is made to produce a gel in which nanofibers made of iron oxide, manganese oxide, or cellulose are dispersed (gel production step).
  • a co-continuum is prepared using the gel thus obtained.
  • the gel produced by bacteria has a basic structure of fibers on the order of nm, and by producing a co-continuum using this gel, the obtained co-continuum has a high specific surface area.
  • a gel produced by bacteria it is possible to synthesize an air electrode (co-continuum) having a specific surface area of 300 m 2 / g or more.
  • Bacterial gel has a structure in which fibers are entwined in a coil or mesh shape, and a structure in which nanofibers are branched based on the growth of bacteria. Therefore, the co-continuum that can be produced has an elastic limit. Achieves excellent elasticity with a distortion of 50% or more. Therefore, a co-continuum made using a bacterial production gel is suitable for the air electrode of a metal-air battery.
  • two or more types may be mixed from bacterial cellulose, iron oxide, and manganese oxide.
  • bacteria examples include known ones, for example, Acetbacter xylinum subspecies schcrofermenta, Acetbacter xylinum ATCC23768, Acetbacter xylinum ATCC23769, Acetbacter pasturianus ATCC10245, Acetbacter xylinum ATCC14851, Aceto.
  • Acetic bacteria such as Bacter xylinum ATCC11142, Acetbacter xylinum ATCC10821, Agrobacterium, Resovium, Sarcinia, Pseudomonas, Achromobacter, Alkalinegenes, Aerobacter, Azotobacter, Anlagenrea, Enterobactor , Clubera, Leptoslix, Galionella, Siderocapsa, Thiobatilus, and various mutant strains created by mutating them by a known method using NTG (nitrosoguanidine) and the like. Anything is fine.
  • the frozen product is frozen in step S302 to form a frozen product (freezing step), and the frozen product is vacuumed in step S303. It may be dried to form a co-continuum (drying step).
  • the produced co-continuum is heated and carbonized in an atmosphere of a gas in which cellulose does not burn in step S304 (carbonization step).
  • Bacterial cellulose which is a component contained in the Bacterial gel, does not have conductivity. Therefore, when used as an air electrode, it is carbonized by heat treatment in an inert gas atmosphere to carbonize it. The process is important.
  • the co-continuum carbonized in this way has high conductivity, corrosion resistance, high elasticity, and high specific surface area, and is suitable as an air electrode of a metal-air battery.
  • Bacterial cellulose calcination is carried out at 500 ° C. to 2000 ° C., more preferably 900 ° C. in an inert gas atmosphere after synthesizing a copolymer having a three-dimensional network structure composed of bacterial cellulose by the above-mentioned freezing step and drying step. It may be calcined by firing at ° C. to 1800 ° C.
  • the gas that does not burn cellulose may be, for example, an inert gas such as nitrogen gas or argon gas. Further, it may be a reducing gas such as hydrogen gas or carbon monoxide gas, or it may be carbon dioxide gas. In the present embodiment, carbon dioxide gas or carbon monoxide gas, which has an activating effect on the carbon material and is expected to have high activation of the co-continuum, is more preferable.
  • FIG. 6 is a flowchart for explaining the manufacturing method 4. It is preferable to support the catalyst on the air electrode 101.
  • step S401 the co-continuum obtained by the above-mentioned production method 2 or production method 3 is impregnated with an aqueous solution of a metal salt serving as a precursor of the catalyst (impregnation step).
  • the stretchable co-continuum containing the metal salt may be heat-treated in step S402 (heating step).
  • the preferred metal of the metal salt to be used is at least one metal selected from the group consisting of iron, manganese, zinc, copper and molybdenum. In particular, manganese is preferred.
  • sol-gel method in which a co-continuum is impregnated with a transition metal alkoxide solution and hydrolyzed.
  • the conditions of each method by these liquid phase methods are known, and these known conditions can be applied.
  • the liquid phase method is desirable.
  • the metal oxide supported by the above liquid phase method is in an amorphous state because crystallization has not progressed.
  • a crystalline metal oxide can be obtained by heat-treating the amorphous precursor in an inert atmosphere at a high temperature of about 500 ° C. Such crystalline metal oxides exhibit high performance even when used as a catalyst for an air electrode.
  • the precursor powder obtained when the above-mentioned amorphous precursor is dried at a relatively low temperature of about 100 to 200 ° C. is in a hydrated state while maintaining an amorphous state.
  • the hydrate of the metal oxide formally represents MexOy ⁇ nH 2 O (where Me means the above metal, and x and y represent the number of metal and oxygen contained in the metal oxide molecule, respectively. n can be expressed as the number of moles of H2O with respect to 1 mole of metal oxide).
  • the hydrate of the metal oxide obtained by such low temperature drying can be used as a catalyst.
  • Amorphous metal oxide (hydrate) has a large surface area because sintering has hardly progressed, and the particle size is also very small, about 30 nm. This is suitable as a catalyst, and by using this, excellent battery performance can be obtained.
  • crystalline metal oxides show high activity, but metal oxides crystallized by high-temperature heat treatment as described above may have a significantly reduced surface area, and the particle size also increases due to particle aggregation. It may be about 100 nm.
  • the particle size (average particle size) is a value obtained by magnifying and observing with a scanning electron microscope (SEM) or the like and measuring the diameter of the particles per 10 ⁇ m square (10 ⁇ m ⁇ 10 ⁇ m) to obtain an average value. ..
  • manufacturing method 5 manufacturing method 6, and manufacturing method 7 may be used.
  • FIG. 7 is a flowchart for explaining the manufacturing methods 5, 6 and 7.
  • the catalyst is supported on the co-continuum produced by the production method 2 or the production method 3.
  • the following catalyst-supporting step of supporting the catalyst is added.
  • the co-continuum is immersed in an aqueous solution of the surfactant, and the surfactant is adhered to the surface of the co-continuum.
  • the metal salt is attached to the surface of the co-continuum to which the surfactant is attached by using the aqueous solution of the metal salt.
  • the catalyst made of the metal (or metal oxide) constituting the metal salt is supported on the co-continuum by heat treatment on the co-continuum to which the metal salt is attached.
  • the metal is at least one metal of iron, manganese, zinc, copper and molybdenum, or a metal oxide composed of at least one metal of calcium, iron, manganese, zinc, copper and molybdenum.
  • manganese (Mn) or manganese oxide (MnO 2 ) is preferable.
  • the surfactant used in the first catalyst supporting step of the production method 5 is for supporting a metal or a transition metal oxide on an air electrode (co-continuum) with high dispersion. If the molecule has a hydrophobic group adsorbed on the carbon surface and a hydrophilic group adsorbed by transition metal ions like a surfactant, the metal ion which is a transition metal oxide precursor is high in the co-continuum. It can be adsorbed by the degree of dispersion.
  • the above-mentioned surfactant is not particularly limited as long as it has a hydrophobic group adsorbed on the carbon surface and a hydrophilic group adsorbed by manganese ions in the molecule, but a nonionic surfactant is preferable.
  • a nonionic surfactant for example, as an ester-type surfactant, there are glycerin laurate, glycerin monostearate, sorbitan fatty acid ester, sucrose fatty acid ester and the like.
  • an ether type surfactant there are polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene polyoxypropylene glycol and the like.
  • ester ether type surfactant there are polyoxyethylene sorbitan fatty acid ester, polyoxyethylene hextan fatty acid ester, sorbitan fatty acid ester polyethylene glycol and the like.
  • alkanolamide type surfactant there are laramide, cocamide DEA and the like.
  • surfactant of higher alcohol there are cetanol, stearyl alcohol, oleyl alcohol and the like.
  • poloxamer type surfactant poloxamer methacrylate and the like can be mentioned.
  • the concentration of the aqueous solution of the surfactant in the first catalyst supporting step of the production method 5 is preferably 0.1 to 20 g / L.
  • the immersion conditions such as the immersion time and the immersion temperature include, for example, immersing in a solution at room temperature to 50 ° C. for 1 to 48 hours.
  • the second catalyst-supporting step of the production method 5 includes further dissolving a metal salt that functions as a catalyst or adding an aqueous solution of the metal salt to the aqueous solution containing the surfactant in the first catalyst-supporting step.
  • a metal salt that functions as a catalyst or adding an aqueous solution of the metal salt to the aqueous solution containing the surfactant in the first catalyst-supporting step.
  • an aqueous solution in which a metal salt functioning as a catalyst is dissolved is prepared, and a co-continuum impregnated with (adhered to) the surfactant is immersed therein. May be.
  • the aqueous solution in which the metal salt is dissolved may be impregnated into the co-continuum to which the surfactant is attached. If necessary, an alkaline aqueous solution may be added dropwise to the co-continuum containing (attached) the obtained metal salt. These allow the metal or metal oxide precursor to adhere to the co-continuum.
  • the amount of the metal salt added in the second catalyst supporting step of the production method 5 is preferably an amount of 0.1 to 100 mmol / L.
  • the immersion conditions such as the immersion time and the immersion temperature include, for example, immersing in a solution at room temperature to 50 ° C. for 1 to 48 hours.
  • a manganese metal salt for example, manganese halide such as manganese chloride, a hydrate thereof, etc.
  • a surfactant for example, manganese halide such as manganese chloride, a hydrate thereof, etc.
  • Add to the aqueous solution by dropping an alkaline aqueous solution onto the obtained cocoon containing the manganese metal salt, manganese hydroxide as a metal or a metal oxide precursor can be supported on the cocoon.
  • the amount of the catalyst supported by the above-mentioned manganese oxide can be adjusted by adjusting the concentration of the metal salt (for example, manganese chloride) in the aqueous metal salt solution.
  • the metal salt for example, manganese chloride
  • alkali used in the above-mentioned alkaline aqueous solution examples include hydroxides of alkali metals or alkaline earth metals, aqueous ammonia, aqueous ammonium solution, and aqueous solution of tetramethylammonium hydroxide (TMAH).
  • TMAH tetramethylammonium hydroxide
  • the metal or metal oxide precursor (metal salt) adhered to the surface of the co-continuum is converted into the metal itself or the metal oxide by heat treatment.
  • the co-continuum to which the precursor is attached is dried at room temperature (about 25 ° C.) to 150 ° C., more preferably 50 ° C. to 100 ° C. for 1 to 24 hours, and then 100 to 600 ° C., preferably 110.
  • the heat treatment may be performed at ⁇ 300 ° C.
  • the air electrode is produced by a co-continuum having the metal itself as a catalyst and adhered to the surface by heat treatment in an inert atmosphere or a reducing atmosphere such as argon, helium, and nitrogen. be able to. Further, by heat-treating in a gas containing oxygen (oxidizing atmosphere), it is possible to produce an air electrode by a co-continuum having a metal oxide as a catalyst and adhering to the surface.
  • the heat treatment is performed under the above-mentioned reducing conditions to once prepare a co-continuum to which the metal itself is adhered as a catalyst, and then the heat treatment is carried out in an oxidizing atmosphere to adhere the metal oxide as a catalyst. It is also possible to manufacture an air electrode using a co-continuum that has been subjected to heat treatment.
  • the co-continuum to which the metal or metal oxide precursor (metal salt) is attached is dried at room temperature to 150 ° C., more preferably 50 ° C. to 100 ° C., and the metal itself is catalyzed on the co-continuum. May be adhered to to form a metal / co-continuum complex.
  • the adhesion amount (content) of the catalyst due to the metal or the metal oxide is 0.1 to 70% by weight, preferably 1 to 30% by weight, based on the total weight of the copolymer and the catalyst. ..
  • an air electrode in which a catalyst made of a metal or a metal oxide is highly dispersed on the surface of the co-continuum can be manufactured, and a metal-air battery having excellent electrical characteristics can be constructed.
  • the co-continuum is immersed in an aqueous solution of the metal salt to attach the metal salt to the surface of the co-continuum.
  • the catalyst made of the metal constituting the metal salt is supported on the co-continuum by heat treatment on the co-continuum to which the metal salt is attached.
  • the catalyst is made into a hydrate of a metal oxide by allowing the co-continuum on which the catalyst is supported to act on high-temperature and high-pressure water.
  • the metal (or metal oxide) constituting the metal salt is derived from at least one metal of iron, manganese, zinc, copper and molybdenum, or at least one metal of calcium, iron, manganese, zinc, copper and molybdenum. It is a metal oxide.
  • manganese (Mn) or manganese oxide (MnO 2 ) is preferable.
  • an aqueous solution of a metal salt as a precursor of a metal or a metal oxide finally used as a catalyst is attached (supported) to the surface of the co-continuum.
  • a metal salt as a precursor of a metal or a metal oxide finally used as a catalyst
  • an aqueous solution in which the above metal salt is dissolved may be separately prepared and the co-continuum may be impregnated with this aqueous solution.
  • the impregnation conditions and the like are the same as in the conventional case as described above.
  • the second catalyst supporting step in the manufacturing method 6 is the same as the third catalyst supporting step in the manufacturing method 5, and the heat treatment may be carried out in an inert atmosphere or a reducing atmosphere. Further, the co-continuum to which the precursor is attached, which was described as another method of the third catalyst supporting step of the production method 5, is heat-treated (dried) at a low temperature (room temperature to 150 ° C., more preferably 50 ° C. to 100 ° C.). Therefore, the metal may be attached to the co-continuum.
  • a low temperature room temperature to 150 ° C., more preferably 50 ° C. to 100 ° C.
  • the air electrode 101 using the metal itself as a catalyst exhibits high activity, but since the catalyst is a metal, it is vulnerable to corrosion and may lack long-term stability. On the other hand, long-term stability can be realized by heat-treating the metal into a hydrate of the metal oxide by the third catalyst supporting step of the production method 6 described in detail below.
  • the hydrate of the metal oxide is in a state of being attached to the co-continuum.
  • the metal-adhered co-continuum obtained in the second catalyst-supporting step of the production method 6 is immersed in high-temperature and high-pressure water, and the adhered metal is hydrated with a metal oxide. Converts to a catalyst consisting of.
  • a co-continuum to which a metal is attached is immersed in water at 100 ° C. to 250 ° C., more preferably 150 ° C. to 200 ° C., and the attached metal is oxidized to form a hydrate of a metal oxide. Just do it.
  • the boiling point of water under atmospheric pressure (0.1 MPa) is 100 ° C.
  • the pressure By increasing the pressure to, for example, about 10 to 50 MPa, preferably about 25 MPa, the boiling point of water rises in the closed container, and liquid water of 100 ° C. to 250 ° C. can be realized.
  • the metal By immersing the co-continuum to which the metal is attached in the high-temperature water thus obtained, the metal can be made into a hydrate of a metal oxide.
  • the co-continuum is immersed in an aqueous solution of the metal salt to attach the metal salt to the surface of the co-continuum.
  • the first catalyst supporting step in the manufacturing method 7 is the same as the first catalyst supporting step in the manufacturing method 6, and the description thereof is omitted here.
  • the precursor (metal salt) adhered to the surface of the co-continuum is converted into a hydrate of a metal oxide by heat treatment at a relatively low temperature.
  • the co-continuum to which the precursor is attached is allowed to act on high-temperature and high-pressure water, and then dried at a relatively low temperature of about 100 to 200 ° C.
  • the precursor becomes a hydrate in which water molecules are present in the particles while maintaining the amorphous state of the precursor.
  • the hydrate of the metal oxide obtained by such low temperature drying is used as a catalyst.
  • the metal may be at least one of iron, manganese, zinc, copper and molybdenum.
  • the hydrate of the metal oxide can be supported on the co-continuum in the form of nano-sized fine particles with high dispersion. Therefore, when such a co-continuum is used as an air electrode, it is possible to exhibit excellent battery performance.
  • the co-continuum obtained by each of the above manufacturing methods can be formed into a predetermined shape by a known procedure to form an air electrode.
  • the catalyst-unsupported co-continuum and the catalyst-supported co-continuum are processed into a plate-like body or a sheet, and the obtained co-continuum is formed into a circle having a desired diameter (for example, 23 mm) by a punching blade, a laser cutter, or the like. It may be cut out to make an air electrode.
  • FIG. 8A is a cross-sectional view showing a more detailed configuration example of the coin cell type metal-air battery.
  • FIG. 8B is a plan view showing a configuration example of a coin cell type metal-air battery.
  • the metal-air battery using the air electrode 101, the negative electrode 102, and the electrolytic solution 104 in the above-described embodiment can be manufactured in a conventional shape such as a coin shape, a cylindrical shape, or a laminated shape. As a method for manufacturing these batteries, the same method as before can be used.
  • the coin cell type battery includes an air electrode 101, a negative electrode 102, and an electrolytic solution 104.
  • the electrolytic solution 104 in this case is an electrolytic solution containing an ionic conductor and in which an alkyl glucoside is dissolved at a saturated concentration.
  • the air electrode case 201 is arranged on the air electrode side, and the negative electrode case 202 is arranged on the negative electrode side.
  • the air electrode case 201 is provided with an opening 201a so that the surrounding air can come into contact with the air electrode 101.
  • the air electrode case 201 and the negative electrode case 202 are fitted, and a gasket 203 is arranged at the fitted portion.
  • the electrolytic solution 104 is sandwiched between the air electrode 101 and the negative electrode 102, and these are used as battery cells.
  • This battery cell is arranged between the air electrode case 201 and the negative electrode case 202, and the air electrode case 201 and the negative electrode case 202 are fitted and integrated.
  • FIGS. 8A and 8B are cross-sectional views and plan views showing a configuration example of a coin cell type metal-air battery corresponding to another metal-air battery (see FIG. 2).
  • the illustrated metal-air battery can be manufactured in a conventional shape such as a coin shape, a cylindrical shape, or a laminated shape, similar to the coin cell type battery shown in FIGS. 8A and 8B.
  • a method for manufacturing these batteries the same method as before can be used.
  • the coin cell type battery shown in FIGS. 9A and 9B includes an air electrode 101, a negative electrode 102, an electrolytic solution 103 on the air electrode side, an electrolytic solution 104 on the negative electrode side, and an ion exchange membrane 105.
  • the electrolytic solutions 103 and 104 are aqueous solutions containing an ionic conductor, and the alkyl glucoside is dissolved in the electrolytic solution 104.
  • the electrolytic solution 103 on the air electrode side, the ion exchange membrane 105, and the electrolytic solution 104 on the negative electrode side are sandwiched between the air electrode 101 and the negative electrode 102, and these are used as a battery cell.
  • This battery cell is arranged between the air electrode case 201 and the negative electrode case 202, and the air electrode case 201 and the negative electrode case 202 are fitted and integrated.
  • the air electrode case 201 and the negative electrode case 202 are similar to the coin cell type batteries of FIGS. 8A and 8B.
  • a housing 300 that seals the inside of the battery cell other than the air electrode 101 may be used, and the battery cell may be housed in the housing 300.
  • the housing 300 includes a first housing 311 arranged on the side of the negative electrode 102 and a second housing 312 arranged on the side of the air electrode 101.
  • An opening 312a is formed in the second housing 312 so that the surrounding air can come into contact with the air electrode 101.
  • a negative electrode current collector 301 is provided between the first housing 311 and the negative electrode 102, and an air electrode current collector 302 is provided between the second housing 312 and the air electrode 101.
  • the terminals 321 and 322 are taken out of the housing 300. When a metal is used as the negative electrode 102, the terminal may be taken out directly from the negative electrode 102 without using the negative electrode current collector 301.
  • the housing 300 may be made of a material that can maintain the battery cell inside and is naturally decomposed.
  • the housing 300 may be made of a natural material, a microbial material, or a chemically synthesized material, and is composed of, for example, polylactic acid, polycaprolactone, polyhydroxyalkanoate, polyglycolic acid, modified polyvinyl alcohol, casein, modified starch, and the like. can do.
  • a chemically synthesized system such as polylactic acid derived from a plant is preferable.
  • the shape of the housing 300 is not limited as long as it is a shape obtained by processing a biodegradable plastic. Examples of materials that can be used for the housing 300 include commercially available biodegradable plastic films, papers on which a resin film such as polyethylene used for milk cartons and the like is formed, and agar films.
  • the bonding method include the use of a heat seal and an adhesive, and the bonding method is not particularly limited. It is preferable to use an adhesive composed of a biodegradable resin.
  • the air electrode 101, the negative electrode 102, the electrolytic solution 104, the first housing 311 and the second housing 312, the negative electrode current collector 301, and the air electrode current collector 302 are arranged to operate as a battery.
  • the shape is not limited as long as it is not impaired. For example, it can be used in a rectangular or circular sheet shape or a rolled shape in a plan view.
  • the metal-air battery with the housing 300 made of the above-mentioned naturally decomposed material is naturally decomposed over time when used in a disposable device such as a soil moisture sensor, and the battery does not need to be recovered. ..
  • a disposable device such as a soil moisture sensor
  • the burden on the environment is extremely low.
  • FIG. 11 is a configuration example in which the battery cell of the second metal-air battery (see FIG. 2) is housed in the housing 300.
  • Example 1 Example of air electrode of Ketjen black
  • carbon Ketjen Black EC600JD
  • the effect of adding an alkyl glucoside having 18 to 22 carbon atoms was confirmed.
  • Ketjen black powder manufactured by Lion
  • PTFE polytetrafluoroethylene
  • Ketjen Black EC600JD Ketjen Black EC600JD
  • a raker at a weight ratio of 80:20.
  • Roll molding to produce a sheet-shaped electrode (thickness: 0.6 mm). This sheet-shaped electrode was cut out into a circle having a diameter of 14 mm to obtain an air electrode.
  • the negative electrode was adjusted by cutting out a commercially available magnesium alloy AZ31 plate (thickness 200 ⁇ m, made by Nirako) into a circle with a diameter of 14 mm using a punching blade, a laser cutter, or the like.
  • sodium chloride NaCl, manufactured by Kanto Chemical Co., Inc.
  • aqueous sodium chloride solution was dissolved in pure water at a concentration of 1 mol / L.
  • Three types of alkyl glucosides having 18, 20 and 22 carbon atoms were dissolved in this aqueous sodium chloride solution at room temperature in an amount of 5 mg or more per 1 mL, respectively, to prepare an aqueous solution of alkyl glucoside having a saturated concentration.
  • the coin cell type magnesium-air battery described with reference to FIGS. 8A and 8B was produced.
  • the above air electrode was installed in an air electrode case in which the peripheral edge of a copper mesh foil (manufactured by MIT Japan) was fixed inside by spot welding. Further, in the negative electrode composed of a metal magnesium plate, the peripheral portion was fixed to a copper mesh foil (manufactured by MIT Japan) by spot welding, and further, this copper mesh foil was spot welded to the negative electrode case and fixed.
  • Example 1 as the electrolytic solution, an electrolytic solution in which an alkyl glucoside having 18 carbon atoms is dissolved, an electrolytic solution in which an alkyl glucoside having 20 carbon atoms is dissolved, and an electrolytic solution in which an alkyl glucoside having 22 carbon atoms is dissolved are used. Is used. Therefore, in Example 1, three types of magnesium-air batteries are manufactured.
  • the negative electrode case to which the negative electrode was fixed was put on the air electrode case, and the peripheral portions of the air electrode case and the negative electrode case were crimped with a coin cell caulking machine to prepare a coin cell type magnesium-air battery including a polypropylene gasket. ..
  • the battery performance of each of the produced magnesium-air batteries was measured.
  • a discharge test was carried out.
  • a commercially available charge / discharge measurement system (SD8 charge / discharge system manufactured by Hokuto Denko Co., Ltd.) is used, and 0.1 mA / cm 2 is energized at the current density per effective area of the air electrode to open the circuit. The measurement was performed from the voltage until the battery voltage dropped to 0V.
  • the discharge test was measured in a constant temperature bath at 25 ° C. (atmosphere is in a normal living environment). The discharge capacity was expressed as a value per weight (mAh / g) of the air electrode including the co-continuum.
  • the discharge curve in the battery of Example 1 using the alkyl glucoside having 18 carbon atoms is shown in FIG.
  • the average discharge voltage is 1.1 V and the discharge capacity is 1450 mAh / g.
  • the average discharge voltage is the battery voltage when the discharge capacity (here, 725 mAh / g) is 1/2 of the discharge capacity of the battery (here, 1450 mAh / g).
  • Table 1 shows the discharge capacity of a magnesium-air battery using an electrolytic solution containing each of the three types of alkyl glucosides.
  • Example 1 The discharge capacity of Example 1 was 1400 mAh / g or more, which was a larger value than that of Comparative Example 1 described later. It is considered that this is because the electrolytic solution containing the alkyl glucoside which is a surfactant suppresses the corrosion reaction of the negative electrode and the reaction time becomes long, and as a result, the discharge capacity becomes large. It is considered that the alkyl glucoside having 18 to 22 carbon atoms has a greater effect of suppressing corrosion than the alkyl glucoside having 16 carbon atoms and Triton-X100 used in Comparative Example 1.
  • the HLB values indicating the magnitude of hydrophilicity are 16 and 13.5 for the alkyl glucoside having 16 carbon atoms and Triton-X100, respectively.
  • the HLB values of the alkyl glucosides having 18, 20, and 22 carbon atoms are 9, 7, and 5, respectively, which are smaller than the HLB values of the alkyl glucosides having 16 carbon atoms and Triton-X100. Therefore, it can be said that the alkyl glucoside having 18 to 22 carbon atoms has a higher lipophilicity than the alkyl glucoside having 16 carbon atoms and Triton-X100.
  • Example 1 using the alkyl glucoside having 18 to 22 carbon atoms, the corrosion suppressing effect was increased. It is conceivable that. As described above, in any of the alkyl glucosides having the carbon number of Example 1, the discharge capacity was improved due to the effect of suppressing corrosion. Therefore, by adding an alkyl glucoside having 18 to 22 carbon atoms to the electrolytic solution, corrosion of the negative electrode can be suppressed and the discharge capacity can be improved.
  • Example 1 On the other hand, the voltage (average discharge voltage) of Example 1 was lower than the voltage (1.3 V) when the sodium chloride aqueous solution was used as the electrolytic solution of Comparative Example 1. It is considered that the voltage of Example 1 was lowered because the air electrode was easily submerged due to the hydrophilicization of the air electrode by the alkyl glucoside.
  • Example 2 (Example of air electrode of nanosheet co-continuum) Next, Example 2 will be described.
  • Example 2 is an example of using a co-continuum using nanosheets as an air electrode.
  • the discontinuity has a three-dimensional network structure consisting of multiple nanosheets united by non-covalent bonds.
  • the air poles were synthesized as follows. In the following description, a manufacturing method using graphene as a nanosheet will be shown as a representative, but by changing graphene to nanosheets of other materials, a co-continuum having a three-dimensional network structure can be prepared. The porosity shown below was calculated by modeling the pores as a cylinder from the pore size distribution obtained by the mercury intrusion method for the co-continuum. The method for producing the magnesium-air battery and the discharge test was the same as in Example 1.
  • a commercially available graphene sol [dispersion medium: water ( H2O ), 0.4% by weight, silicon "manufactured by Sigma-Aldrich] is placed in a test tube, and the test tube is immersed in liquid nitrogen for 30 minutes to form graphene.
  • the sol was completely frozen.
  • the frozen graphene sol was taken out into an eggplant flask and dried in a vacuum of 10 Pa or less by a freeze dryer (manufactured by Tokyo Science Instruments Co., Ltd.).
  • a stretchable co-continuum having a three-dimensional network structure containing graphene nanosheets was obtained.
  • the obtained co-continuum was evaluated by X-ray diffraction (XRD) measurement, scanning electron microscope (SEM) observation, pore ratio measurement, tensile test, and BET specific surface area measurement. It was confirmed by XRD measurement that the co-continuum produced in this example was a carbon (C, PDF card No. 01-075-0444) single phase.
  • the PDF card No. is a card number of PDF (Powder Diffraction File), which is a database collected by the International Center for Diffraction Data (ICDD), and the same applies hereinafter.
  • the obtained co-continuum was a co-continuum in which nanosheets (graphene pieces) were continuously connected and had an average pore size of 1 ⁇ m.
  • the BET specific surface area of the co-continuum was measured by the mercury intrusion method and found to be 510 m 2 / g.
  • the porosity of the co-continuum was measured by the mercury intrusion method, it was 90% or more.
  • the obtained co-continuum did not exceed the elastic region even when a strain of 20% was applied due to the tensile stress, and restored to the shape before the stress was applied.
  • Such a graphene co-continuum was cut out into a circle with a diameter of 14 mm using a punching blade, a laser cutter, etc. to obtain a gas diffusion type air electrode.
  • the negative electrode was adjusted by cutting out a commercially available magnesium alloy AZ31 plate (thickness 200 ⁇ m, made by Nirako) into a circle with a diameter of 14 mm using a punching blade, a laser cutter, or the like.
  • An alkyl glucoside having 18 carbon atoms was used as the electrolytic solution. Specifically, sodium chloride (NaCl, manufactured by Kanto Kagaku) was dissolved in pure water at a concentration of 1 mol / L, and 5 mg or more of alkyl glucoside having 18 carbon atoms was added to 1 mL of this aqueous sodium chloride solution to obtain an alkyl concentration. An aqueous glucoside solution was used as the electrolytic solution.
  • the battery performance of the coin cell type air battery was produced in the same manner as in Example 1, and the battery performance was evaluated.
  • Table 2 below shows nanosheets of graphene (C), iron oxide (Fe 2 O 3 ), manganese oxide (MnO 2 ), zinc oxide (ZnO), molybdenum oxide (MoO 3 ), and molybdenum sulfide (MoS 2 ).
  • Example 2 the discharge capacity was 1540 mAh / g, which was larger than that in the case of using the air electrode made of commercially available carbon (Ketchen Black EC600JD) of Example 1.
  • the discharge capacity of Example 2 was larger than 1450 mAh / g, which was larger than that of Example 1 using Ketjen Black.
  • Example 3 (Example of air electrode of nanosheet co-continuum) Next, Example 3 will be described.
  • Example 3 is an example of using a co-continuum using nanofibers as an air electrode.
  • Covalents have a three-dimensional network structure consisting of multiple nanofibers united by non-covalent bonds.
  • the air poles were synthesized as follows. In the following description, a manufacturing method using carbon nanofibers will be shown as a representative, but by changing the carbon nanofibers to nanofibers made of other materials, a co-continuum having a three-dimensional network structure can be prepared. ..
  • the co-continuum was prepared in the same manner as in the process shown in Example 2, and a carbon nanofiber sol [dispersion medium: water ( H2O ), 0.4% by weight, manufactured by Sigma-Aldrich] was used as a raw material. ..
  • the obtained co-continuum was evaluated by XRD measurement, SEM observation, porosity measurement, tensile test, and BET specific surface area measurement. It was confirmed by XRD measurement that the co-continuum produced in this example was a carbon (C, PDF card No. 00-0581-1638) single phase. In addition, by SEM observation and mercury intrusion method, it was confirmed that the nanofibers were continuously connected and the average pore size was 1 ⁇ m. Moreover, when the BET specific surface area measurement of the co-continuum was measured by the mercury intrusion method, it was 620 m 2 / g. Moreover, when the porosity of the co-continuum was measured by the mercury intrusion method, it was 93% or more. Furthermore, from the results of the tensile test, it was confirmed that the co-continuum of Example 3 did not exceed the elastic region even when a strain of 40% was applied due to the tensile stress, and restored to the shape before the stress was applied.
  • Example 3 shows the discharge capacity of the produced magnesium-air battery in Example 3.
  • the discharge capacity was 1570 mAh / g, which was larger than that in the case of using the graphene co-continuum of Example 2. It is considered that such improvement of the characteristics is due to the smooth reaction at the time of discharge by using the co-continuum having higher elasticity.
  • Table 3 shows carbon nanofibers (C), iron oxide (Fe 2 O 3 ), manganese oxide (MnO 2 ), zinc oxide (ZnO), molybdenum oxide (MoO 3 ), and molybdenum sulfide (MoS 2 ).
  • C carbon nanofibers
  • Fe 2 O 3 iron oxide
  • MnO 2 manganese oxide
  • ZnO zinc oxide
  • MoO 3 molybdenum oxide
  • MoS 2 molybdenum sulfide
  • the discharge capacity was 1500 mAh / g or more, which was generally larger than that of the co-continuum containing nanosheets as in Example 2.
  • the discharge capacity is improved because the elastic air electrode efficiently precipitates the discharge product [Mg (OH) 2 ] as in the case of the nanosheet.
  • Example 4 (Example of air electrode of a co-continuum of bacterially produced cellulose) Next, Example 4 will be described.
  • Example 4 is an example of using a co-continuum made of a gel in which cellulose produced by bacteria is dispersed as an air electrode. The method for evaluating the co-continuum, the method for producing the magnesium-air battery, and the method for the discharge test were carried out in the same manner as in Examples 1, 2 and 3.
  • nata de coco manufactured by Fujicco
  • nata de coco was used as a bacterial cellulose gel produced by Acetobacter xylinum, which is an acetic acid bacterium, to prepare a coin cell type magnesium-air battery similar to Example 1 and Example 2.
  • the co-continuum was carbonized by firing at 1200 ° C. for 2 hours in a nitrogen atmosphere to prepare an air electrode.
  • the obtained co-continuum was evaluated by XRD measurement, SEM observation, porosity measurement, tensile test, and BET specific surface area measurement. It was confirmed by XRD measurement that this co-continuum was a carbon (C, PDF card No. 01-071-4630) single phase. In addition, SEM observation confirmed that it was a co-continuum in which nanofibers having a diameter of 20 nm were continuously connected. The BET specific surface area of the co-continuum was measured by the mercury intrusion method and found to be 830 m 2 / g. Moreover, when the porosity of the co-continuum was measured by the mercury intrusion method, it was 99% or more.
  • Example 2 Using this bacterial-produced cellulose co-continuum as the air electrode, a coin-cell type magnesium-air battery similar to Example 2 was produced. As the electrolytic solution of Example 4, an alkyl glucoside having 18 carbon atoms was used as in Example 2.
  • Example 4 The discharge capacity of the magnesium-air battery in Example 4 is shown in Table 4 below. Table 4 also shows the results of Examples 1 to 3 using an alkyl glucoside having 18 carbon atoms. In Example 4, the discharge capacity was 1970 mAh / g, and the performance was improved as compared with Examples 1 to 3.
  • the improvement of the above-mentioned characteristics is that the discharge product [Mg (OH) 2 ] is efficiently precipitated at the time of discharge by using the co-continuum having higher elasticity, and the carbon (C) is excellent. It is considered that the reaction was carried out smoothly because of its conductivity.
  • a co-continuity having elasticity can be obtained by high porosity and BET specific surface area measurement, and according to a magnesium-air battery using this co-continuum as an air electrode. Efficient discharge product [Mg (OH) 2 ] precipitation during discharge is realized. It is considered that the improvement of the above-mentioned characteristics is due to various improvements by the present embodiment.
  • Example 5 Example in which the metal type of the negative electrode is changed with the air electrode of Ketjen Black
  • carbon (Ketjen Black EC600JD) known as an electrode for an air electrode was used, and the metal type used for the negative electrode was changed.
  • the method for producing the battery of Example 5 and the method for the discharge test were carried out in the same manner as in Example 1.
  • An alkyl glucoside having 18 carbon atoms was used as the electrolytic solution of Example 5.
  • magnesium alloy AZ31 plate (thickness 200 ⁇ m, made by Nirako), aluminum plate (thickness 200 ⁇ m, Niraco Co., Ltd.), zinc plate (thickness 200 ⁇ m, Niraco Co., Ltd.), and iron plate (thickness 200 ⁇ m) were used as negative electrodes. , Niraco Co., Ltd.), respectively, to manufacture a plurality of metal-air batteries.
  • Table 5 below shows the discharge capacity of the metal-air battery of Example 5.
  • Table 5 also shows the results of Example 1 using an alkyl glucoside having 18 carbon atoms.
  • the discharge capacity when zinc of Example 5 was used for the negative electrode was a larger value than that of Comparative Example 3 to which the alkyl glucoside to be described later was not added.
  • Example 6 (Example using an ion exchange membrane)
  • Example 6 is an example of a metal-air battery in which an ion exchange membrane is arranged between the negative electrode and the air electrode, and the electrolytic solution on the negative electrode side and the electrolytic solution on the air electrode side are separated by an ion exchange membrane.
  • the coin cell type magnesium-air battery described with reference to FIGS. 9A and 9B was produced.
  • an electrolytic solution in which sodium chloride was dissolved in pure water at a concentration of 1 mol / L was used as the electrolytic solution a on the air electrode side.
  • An electrolytic solution in which an alkyl glucoside having 18 carbon atoms was added to the electrolytic solution a on the air electrode side until saturated was used as the electrolytic solution b on the negative electrode side.
  • the electrolytic solution a was arranged on the air electrode side
  • the electrolytic solution b was arranged on the negative electrode side
  • an ion exchange membrane was arranged between them.
  • a neoceptor was used for the ion exchange membrane.
  • the same carbon (Ketjen Black EC600JD) and magnesium alloy AZ31 as in Example 1 were used for the air electrode and the negative electrode, respectively.
  • the method of the discharge test is the same as that of the first embodiment.
  • Table 6 below shows the discharge capacity of the metal-air battery of Example 6.
  • Table 6 also shows the results of Example 1 (alkyl glucoside having 18 carbon atoms) without using the ion exchange membrane 105.
  • Example 6 The discharge capacity of Example 6 was 1630 mAh / g and the voltage was 1.3 V, which were larger than those without the ion exchange membrane of Example 1.
  • the electrolytic solution b containing the alkyl glucoside suppresses the corrosion reaction of the negative electrode, the reaction time becomes long, and the ion exchange membrane prevents the alkyl glucoside from reaching the air electrode, so that the air electrode becomes hydrophilic and submerged. Therefore, it is considered that oxygen can be supplied for a long time and the voltage and discharge capacity are improved.
  • the ion exchange membrane allows only hydroxide ions to permeate and suppresses the diffusion (movement) of the alkyl glucoside contained in the electrolyte b to the electrolytic solution a on the air electrode side.
  • an ion exchange membrane is provided in which an alkyl glucoside is added only to the electrolytic solution b on the negative electrode side and the surfactant is suppressed from diffusing from the electrolytic solution a on the air electrode side.
  • Comparative Example 1 Next, Comparative Example 1 will be described.
  • a plurality of magnesium-air batteries were produced in the same manner as in Experimental Example 1 using each of the electrolytic solutions shown in Table 7.
  • the same carbon (Ketjen Black EC600JD) and magnesium alloy AZ31 as in Example 1 were used for the air electrode and the negative electrode of Comparative Example 1, respectively.
  • the electrolytic solution of Comparative Example 1 was an aqueous solution having a saturated concentration by adding 5 mg or more of Triton-X100 (nonionic surfactant) per 1 mL to a 1 mol / L sodium chloride aqueous solution and a 1 mol / L sodium chloride aqueous solution.
  • An aqueous solution to which glucoside was added to a saturated concentration and an aqueous solution were used.
  • the alkyl glucoside having 24 carbon atoms was hardly dissolved in the aqueous sodium chloride solution and was saturated at a concentration smaller than 1 ⁇ 10 -6 mol / L.
  • Example 7 shows the discharge capacity of the metal-air battery of Comparative Example 1. Table 7 also shows the results of Example 1 (alkyl glucoside having 18 carbon atoms).
  • the voltage of the battery using the sodium chloride aqueous solution as the electrolytic solution was 1.3 V, and the discharge capacity was 1030 mAh / g.
  • the voltage of the battery using the electrolytic solution to which Triton-X100 was added was 1.1 V, and the discharge capacity was 1210 mAh / g.
  • the voltage of the battery of the electrolytic solution to which the alkyl glucoside having 16 carbon atoms was added was 1.1 V, and the discharge capacity was 1320 mAh / g.
  • the voltage of the battery of the electrolytic solution to which the alkyl glucoside having 24 carbon atoms was added was 1.2 V, and the discharge capacity was 1050 mAh / g.
  • the discharge capacity showed a smaller value than that of Example 1.
  • the metal-air battery of the present embodiment has a better discharge capacity than the metal-air battery to which no alkyl glucoside is added. Further, the metal-air battery to which the alkyl glucoside having 18 to 22 carbon atoms of the present embodiment is added is the Triton-X100 which is a nonionic surfactant and the metal-air battery to which the alkyl glucoside having 16 or 24 carbon atoms is added. It was also confirmed that the discharge capacity was improved as compared with the above.
  • Comparative Example 2 Next, Comparative Example 2 will be described.
  • a plurality of magnesium-air batteries similar to those in Example 4 were prepared by using a co-continuum made of a gel in which cellulose produced by bacteria was dispersed as an electrode for an air electrode and using each of the electrolytic solutions shown below. bottom.
  • a magnesium alloy AZ31 was used for the negative electrode.
  • An alkyl glucoside having 18 carbon atoms was used as the electrolytic solution.
  • the electrolytic solution of Comparative Example 2 includes a 1 mol / L sodium chloride aqueous solution, an aqueous solution obtained by adding 5 mg or more of Triton-X100 per 1 mL to a 1 mol / L sodium chloride aqueous solution to a saturated concentration, and 1 mol / L chloride.
  • An aqueous solution in which 5 mg or more of an alkyl glucoside having 16 carbon atoms per mL was added to a saturated concentration was used, respectively.
  • Example 8 shows the discharge capacity of the metal-air battery of Comparative Example 2. Table 8 also shows the results of Example 4.
  • the voltage of the battery using the sodium chloride aqueous solution as the electrolytic solution was 1.3 V, and the discharge capacity was 1450 mAh / g.
  • the voltage of the battery using the electrolytic solution to which Triton-X100 was added was 1.1 V, and the discharge capacity was 1700 mAh / g.
  • the voltage of the battery of the electrolytic solution to which the alkyl glucoside having 16 carbon atoms was added was 1.1 V, and the discharge capacity was 1800 mAh / g.
  • the discharge capacity showed a smaller value than that of Example 4.
  • the metal-air battery of the present embodiment contains an alkyl glucoside having 18 to 22 carbon atoms even when an electrode for an air electrode is used for a co-continuum made of a gel in which cellulose produced by bacteria is dispersed. It was confirmed that the discharge capacity was superior to that of the metal-air battery without the addition.
  • Comparative Example 3 Next, Comparative Example 3 will be described.
  • a zinc-air battery cell similar to that in Example 5 was prepared using each of the following electrolytic solutions.
  • Carbon (Ketjen Black EC600JD) was used for the air electrode, and zinc was used for the negative electrode.
  • An alkyl glucoside having 18 carbon atoms was used as the electrolytic solution.
  • the electrolytic solution of Comparative Example 3 includes a 1 mol / L sodium chloride aqueous solution, an aqueous solution obtained by adding 5 mg or more of Triton-X100 per 1 mL to a 1 mol / L sodium chloride aqueous solution to a saturated concentration, and 1 mol / L chloride.
  • An aqueous solution in which 5 mg or more of an alkyl glucoside having 16 carbon atoms per mL was added to an aqueous sodium solution to a saturated concentration was used.
  • Example 9 shows the discharge capacity of the metal-air battery of Comparative Example 3. Table 9 also shows the results of Example 5.
  • the voltage of the battery using the sodium chloride aqueous solution as the electrolytic solution was 1.1 V, and the discharge capacity was 830 mAh / g.
  • the voltage of the battery using the electrolytic solution to which Triton-X100 was added was 0.9 V, and the discharge capacity was 980 mAh / g.
  • the voltage of the battery using the electrolytic solution to which the alkyl glucoside having 16 carbon atoms was added was 0.9 V, and the discharge capacity was 1090 mAh / g.
  • the discharge capacity showed a smaller value than that of Example 5.
  • the metal-air battery of the present embodiment has a better discharge capacity than the metal-air battery in the case where zinc having 18 to 22 carbon atoms is not added even when zinc is used for the negative electrode. Was confirmed.
  • the metal-air battery of the present embodiment described above is a metal-air battery, which includes an air electrode 101, a negative electrode 102, and an electrolytic solution 104 arranged between the air electrode 101 and the negative electrode 102.
  • the electrolytic solution 104 contains an alkyl glucoside having 18 or more and 22 or less carbon atoms.
  • the metal-air battery of the present embodiment suppresses the corrosion reaction of the negative electrode and has a high discharge capacity by using an electrolytic solution to which an alkyl glucoside having 18 or more and 22 or less carbon atoms is added as a surfactant.
  • a metal-air battery can be realized.
  • the metal-air battery of the present embodiment includes an ion exchange membrane 105 that separates the electrolytic solution from the positive electrode side electrolytic solution 103 and the negative electrode side electrolytic solution 104, and has 18 or more and 22 or less carbon atoms.
  • Alkyl glucoside may be contained in the negative electrode side electrolytic solution 104. Since the ion exchange membrane 105 suppresses the diffusion of the alkyl glucoside, the corrosion reaction of the negative electrode 102 is suppressed by the effect of the alkyl glucoside, and the alkyl glucoside does not permeate the ion exchange membrane 105, so that the air electrode 101 is hydrophilic. It can be prevented from becoming submerged. Therefore, the metal-air battery provided with the ion exchange membrane 105 can improve the battery performance by suppressing the corrosion reaction of the negative electrode 102 while minimizing the influence on the air electrode 101.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)

Abstract

金属空気電池であって、空気極101と、負極102と、前記空気極101と前記負極102との間に配置された電解液104と、を備え、前記電解液104は、炭素数が18以上22以下のアルキルグルコシドを含む。

Description

金属空気電池
 本発明は、金属空気電池に関する。
 従来、使い捨て一次電池としてアルカリ電池、マンガン電池などが広く使用されている。また、近年IoT(Internet of Things)の発展において、土壌や森の中など自然界のあらゆる所に設置して用いるばらまき型センサーの開発も進んでおり、これらのセンサーなど様々な用途に対応した小型の高性能なコイン型リチウム一次電池が普及している。
 しかしながら、現在一般に用いられている使い捨て電池は、リチウム、ニッケル、マンガン、コバルトなどのレアメタル金属で構成されている場合が多く、資源枯渇の問題がある。また、電解液として、水酸化ナトリウム水溶液などの強アルカリ電解液、または有機電解液が使用されているため、最終的な処分が容易ではないという問題がある。また、土壌に埋め込むようなセンサーの駆動源として使い捨て電池を使用する場合など、使用環境によっては、周辺環境への影響が懸念される。
 上述したような問題を解決するために、低環境負荷な電池になりうる候補として金属空気電池が挙げられる。金属空気電池は、空気極活物質に酸素と水を用い、負極活物質にマグネシウム、アルミニウム、カルシウム、鉄、亜鉛などの金属を用いることから、土壌汚染等への影響や生態系への影響も低い。また、これらは資源的に豊富な材料であり、レアメタルと比較し安価である。こうした金属空気電池は、環境負荷の低い電池として研究開発が進められている(特許文献1参照)。
国際公開第2018/003724号
M.A.Deyab,"Decyl glucoside as a corrosion inhibitor for magnesiumeair battery",Journal of Power Sources,vol. 325, pp. 98-103, 2016年. Salah Eid, "Measurement of Hydrogen Produced during Magnesium Corrosion in Hydrochloric Acid and the Effect of the TritonX-100 Surfactant on Hydrogen Production",J Surfact Deterg,vol. 22,pp. 153-160,2019年.
 金属空気電池は、腐食反応によって時々刻々と負極の金属が消費され、投入した金属の一部しか電池反応に利用できない。電解液に界面活性剤を添加することで、金属の腐食反応を抑制できることが報告されている(非特許文献1、2参照)。
 しかしながら、非特許文献の界面活性剤では、腐食抑制効果に限界があり、放電容量の向上に向けて、より腐食抑制効果の大きい界面活性剤が求められている。
 本発明は、上記事情に鑑みてなされたものであり、本発明の目的は、負極の腐食反応を抑制し、金属空気電池の放電容量を向上することにある。
 本発明の一態様の金属空気電池は、空気極と、負極と、前記空気極と前記負極との間に配置された電解液と、を備え、前記電解液は、炭素数が18以上22以下のアルキルグルコシドを含む。
 本発明によれば、負極の腐食反応を抑制し、金属空気電池の放電容量を向上することができる。
図1は、本発明の実施形態の金属空気電池の基本構成を示す図である。 図2は、本発明の実施形態の他の金属空気電池の基本構成を示す図である。 図3は、製造方法1を説明するためのフローチャートである。 図4は、製造方法2を説明するためのフローチャートである。 図5は、製造方法3を説明するためのフローチャートである。 図6は、製造方法4を説明するためのフローチャートである。 図7は、製造方法5、6、7を説明するためのフローチャートである。 図8Aは、図1に示す金属空気電池のコインセル型の構成例を示す断面図である。 図8Bは、図1に示す金属空気電池のコインセル型の構成例を示す平面図である。 図9Aは、図2に示す金属空気電池のコインセル型の構成例を示す断面図である。 図9Bは、図2に示す金属空気電池のコインセル型の構成例を示す平面図である。 図10は、図1の金属空気電池の構成例を示す構成図である。 図11は、図2の金属空気電池の構成例を示す構成図である。 図12は、実施例1における放電曲線を示すグラフである。
 以下、本発明の実施形態について、図を参照して説明する。
 [金属空気電池の構成]
 図1は、本実施形態における金属空気電池の基本構成を示す構成図である。なお、図1では、負極にマグネシウムを用いた金属空気電池を一例として示しているが、本発明はマグネシウム空気電池に限定されない。
 図1に示す金属空気電池は、正極及びガス拡散型の空気極101と、負極102と、空気極101と負極102との間に配置された電解液104とを備える。空気極101の一方の面は大気に曝され、他方の面は電解液104と接する。負極102の電解液104の側の面は、電解液104と接する。
 電解液104には、界面活性剤としてアルキルグルコシドが溶解されている。本実施形態の電解液104は、炭素数が18以上22以下のアルキルグルコシドを含む。炭素数は、分子全体の炭素数である。アルキルグルコシドの炭素数には、例えばアルキル基の炭素数などが含まれる。アルキルグルコシドは、非イオン性界面活性剤である。
 アルキルグルコシドの濃度は、1×10-1~1×10-6mol/Lであることが好ましい。炭素数24以上のアルキルグルコシドは、親水性が小さく、飽和濃度が1×10-6mol/Lを下回るため、好ましくない。
 図2は、本実施形態における他の金属空気電池の基本構成を示す構成図である。なお、図2では、負極にマグネシウムを用いた金属空気電池を一例として示しているが、本発明はマグネシウム空気電池に限定されない。
 図2に示す金属空気電池は、正極及びガス拡散型の空気極101と、負極102と、空気極側の電解液103と、負極側の電解液104と、イオン交換膜105とを備える。イオン交換膜105は、電解液を、空気極側の電解液103と負極側の電解液104とに隔てる。電解液103は、空気極101とイオン交換膜105との間に配置される。電解液104は、負極102とイオン交換膜105との間に配置される。
 前述の炭素数が18以上22以下のアルキルグルコシドは、負極側の電解液104に含まれる。すなわち、電解液104には、アルキルグルコシドが溶解している。一方、空気極側の電解液103には、アルキルグルコシドは含まれていない。イオン交換膜105は、アルキルグルコシド(界面活性剤)が拡散するのを抑制し、空気極側の電解液103と、負極側の電解液104とを隔てる。
 以下に、図1および図2に示す本実施形態の空気極101、負極102、電解液103、104、およびイオン交換膜105について説明する。
 (空気極)
 まず、空気極101について説明する。本実施形態の空気極101は、複数のナノ構造体が非共有結合によって一体化した三次元ネットワーク構造の共連続体を含む。共連続体は、多孔体であり、一体構造とされている。
 ナノ構造体は、例えばナノシート、ナノファイバーなどである。複数のナノ構造体が非共有結合によって一体化された三次元ネットワーク構造の共連続体は、ナノ構造体同士の結合部が変形可能とされており、伸縮性を有した構造となっている。
 ナノシートは、例えば、カーボン、酸化鉄、酸化マンガン、酸化マグネシウム、酸化モリブデン、および、硫化モリブデン化合物からなる群より選択される少なくとも1つを含むものであれば良い。硫化モリブデン化合物は、例えば、二硫化モリブデン、リンドープ硫化モリブデンなどである。ナノシートの材料の元素は、植物の生育に不可欠な16種類の必須元素(C,O,H,N,P,K,S,Ca,Mg,Fe,Mn,B,Zn,Cu,Mo,Cl)の少なくとも1つを含むものであれば良い。
 ナノシートは、導電性を有することが重要である。ナノシートは、厚さが1nmから1μmであり、平面縦横長さが、厚さの100倍以上のシート状物質と定義する。例えば、カーボンによるナノシートとしてグラフェンがある。ナノシートは、ロール状、波状であっても良く、ナノシートが湾曲や屈曲していても良く、どのような形状であってもよい。
 ナノファイバーは、カーボン、酸化鉄、酸化マンガン、酸化マグネシウム、酸化モリブデン、硫化モリブデン、およびセルロース(炭化したセルロース)からなる群より選択される少なくとも1つを含むものであれば良い。これらの材料の元素は、植物の生育に不可欠な16種類の必須元素(C,O,H,N,P,K,S,Ca,Mg,Fe,Mn,B,Zn,Cu,Mo,Cl)の少なくとも1つを含むものであれば良い。
 ナノファイバーも、導電性を有することが重要である。ナノファイバーは、直径が1nmから1μmであり、長さが直径の100倍以上の繊維状物質と定義する。また、ナノファイバーは、中空状、コイル状であっても良く、どのような形状であってもよい。なお、セルロースについては、後述するように、炭化により導電性を持たせて用いる。
 例えば、ナノ構造体が分散したゾルまたはゲルを凍結させて凍結体とし(凍結工程)、この凍結体を真空中で乾燥させる(乾燥工程)ことで、空気極101とする共連続体を作製することができる。鉄酸化物,マンガン酸化物,シリコンおよびセルロースの少なくとも1つを含むナノファイバーが分散したゲルであれば、所定のバクテリアに生産させることができる(ゲル生産工程)。
 また、所定のバクテリアに、セルロースによるナノファイバーが分散したゲルを生産させ(ゲル生産工程)、このゲルを不活性ガスの雰囲気で加熱して炭化することで、共連続体を得る(炭化工程)ようにしてもよい。
 空気極101を構成する共連続体は、例えば、平均孔径が0.1~50μmであることが好ましく、0.1~2μmであることが更に好ましい。ここで、平均孔径は、水銀圧入法により求めた値である。
 このような共連続体を用いた空気極101では、カーボン粉末を用いた空気極の場合に必要とされるバインダーなどの追加の材料が不要となり、コストおよび環境面で有利である。
 (負極)
 次に、負極102について説明する。負極102は、マグネシウム、亜鉛、アルミニウム、鉄、カルシウムからなる群より選択される少なくとも1つを含む。具体的には、負極102は、負極活性物質で構成される。この負極活性物質は、金属空気電池の負極材料として用いることができる材料、つまり、マグネシウム、亜鉛、アルミニウム、鉄、カルシウムからなる群より選択される少なくとも1つの金属であれば特に限定されない。また、負極活性物質は、前記群より選択される少なくとも1つの金属を主成分として含む合金であってもよい。例えば、負極102は、負極とする金属、金属のシート、または粉末を銅などの金属箔に圧着したものなどで構成すればよい。
 負極102は、公知の方法で形成することができる。例えば、マグネシウム金属を負極102とする場合には、複数枚の金属マグネシウム箔を重ねて所定の形状に成形することで、負極102を作製することができる。
 (電解液)
 次に、電解液について説明する。図2に示す空気極側の電解液103は、空気極101(正極)と負極102との間で水酸化物イオンの移動が可能なイオン伝導体を含んだゲル電解液であればよい。電解液103を構成するイオン伝導体として、例えば、地球上に豊富に存在するカリウムまたはナトリウムが含まれる金属塩を用いることができる。なお、この金属塩は、植物の生育に不可欠な16種類の必須元素(C,O,H,N,P,K,S,Ca,Mg,Fe,Mn,B,Zn,Cu,Mo,Cl)、海水や雨水に含まれる元素などから構成されていれば良い。
 電解液103は、例えば、塩化ナトリウムや塩化カリウムなどの塩化物、酢酸塩、炭酸塩、クエン酸塩、リン酸塩、HEPES(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)、ピロリン酸塩、メタリン酸塩からなる群より選択されるうち少なくとも1種を用いて構成すればよい。また、これらの混合物から構成してもよい。イオン伝導体は、0.1~10mol/Lの濃度で、好ましくは、0.1~2mol/Lの濃度でイオン交換水に溶解し、電解液103を形成することができる。
 図1に示す電解液104、および、図2に示す負極側の電解液104は、電解液103と同じ溶液(すなわち、電解液103)に、炭素数が18以上22以下のアルキルグルコシドを1×10-5 ~1mol/Lの濃度で溶解させたものである。アルキルグルコシドは、電池反応に影響を与えにくいと考えられる非イオン性界面活性剤である。このアルキルグルコシドを溶解させることで、負極102の腐食反応を抑制することができ、電池性能が向上する。
 (イオン交換膜)
 図2に示すイオン交換膜105は、電解液を、空気極側の電解液103と負極側の電解液104とに隔てる。すなわち、イオン交換膜105は電解液103と電解質104を隔てるように配置される。イオン交換膜105には、各種材料を使用することができる。例えば、イオン交換膜105は、炭素原子、水素原子、酸素原子、窒素原子、硫黄原子、ナトリウム原子、カリウム原子及びリン原子からなる群より選択される少なくとも2つを含むことが好ましい。本実施形態のイオン交換膜105は、水酸化物イオンのみを透過させ、電解質104に含まれるアルキルグルコシドが空気極側の電解液104に拡散(移動)することを抑制する。
 本実施形態では、負極側の電解液104のみにアルキルグルコシドを添加し、空気極側の電解液103との間に、アルキルグルコシドが拡散するのを抑制するイオン交換膜105を備える。これにより、本実施形態では、アルキルグルコシドが空気極側の電解液103に拡散し、空気極101を親水化して空気極101が電解質103に水没し、電池電圧が低下するのを防ぐことができる。
 (他の要素)
 なお、金属空気電池は、上記構成に加え、セパレータ、電池ケース、金属メッシュ(例えば銅メッシュ)などの構造部材、また、金属空気電池に要求される要素を含むことができる。これらは、従来公知のものを使用することができる。セパレータとしては、繊維材料であれば特に限定されないが、植物繊維またはバクテリアからつくられるセルロース系セパレータが特に好ましい。
 [製造方法]
 次に、金属空気電池の製造方法について説明する。本実施形態の金属空気電池は、空気極101、負極102、電解液103、104、およびイオン交換膜105を、所望の金属空気電池の構造に基づいた他の必要な要素と共に、ケースなどの適切な容器内に適切に配置することで作製することができる。これらの金属空気電池の製造手順は、従来知られている方法を適用することができる。
 以下、電解液103、104および空気極101の作製方法について説明する。
 [製造方法1](電解液の製造方法)
 はじめに、図2の正極側の電解液103の製造方法1について図3を用いて説明する。
 図3は、製造方法1を説明するためのフローチャートである。まず、ステップS101で、電解質のイオン伝導体を、イオン交換水へ溶解し水溶液を調製する。次にステップS102で、調整した水溶液にゲル化剤を入れる。ゲル化剤には、植物由来多糖類(コーンスターチ、ばれいしょ澱粉、タピオカ澱粉、デキストリン、タマリンシードガム、グァーガム、ローカストビーンガム、アラビアガム、カラヤガム、ペクチン、セルロース、コンニャクマンナン、大豆多糖類)、海藻由来多糖類(カラギナン、寒天、アルギン酸)、微生物由来多糖類(キサンタンガム、ジェランガム、アグロバクテリウムスクシノグリカン、セルロース)、動物由来多糖類(キチン、キトサン、ゼラチン)などを用いることができる。
 ゲル化剤の重量%は、イオン導電体の水溶液に対して、0.01~90%、好ましくは、0.01~20%であればよい。イオン伝導体には、塩化物、酢酸塩、炭酸塩、クエン酸塩、リン酸塩、HEPES(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)、ピロリン酸塩、メタリン酸塩のうち一種以上で構成されていればよい。
 ゲル化剤は、50℃~90℃程度の溶媒に加えると、ゲル化剤の分子が十分に膨潤および分散し、溶媒の温度の低下とともに、分子同士が絡まり架橋点を形成する。この架橋点がいくつも形成されることで、ゲル化剤が網目状の構造をとり、溶媒がゲルとなる。ゲル化剤を溶解するのに必要な溶解温度(50~90℃)、ゲル化するに必要な冷却温度(10~80℃)は使用するゲル化剤により異なる。
 図1および図2の電解液104は、電解液103と同様に製造した電解液に、炭素数が18以上22以下のアルキルグルコシドを溶解して作製する。
 [製造方法2](空気極の製造方法)
 次に、空気極101の製造方法2について図4用いて説明する。
 図4は、製造方法2を説明するためのフローチャートである。まず、ステップS201で、ナノシートやナノファイバーなどのナノ構造体が分散したゾルまたはゲルを凍結させて凍結体を得る(凍結工程)。次に、ステップS202で、得られた凍結体を真空中で乾燥させて共連続体を得る(乾燥工程)。以下、各工程についてより詳細に説明する。
 ステップS201の凍結工程は、伸縮性を有する共連続体の原料となるナノ構造体を用い、三次元ネットワーク構造を維持または構築する工程である。共連続体は、複数のナノ構造体が非共有結合によって一体化された三次元ネットワーク構造を有する。
 ここで、ゲルとは、分散媒が分散質であるナノ構造体が、三次元ネットワーク構造により流動性を失い固体状になったものを意味する。具体的には、ずり弾性率が102~106Paである分散系を意味する。ゲルの分散媒は、水(HO)などの水系、または、カルボン酸、メタノール(CHOH)、エタノール(COH)、プロパノール(COH)、n-ブタノール、イソブタノール、n-ブチルアミン、ドデカン、不飽和脂肪酸、エチレングリコール、ヘプタン、ヘキサデカン、イソアミルアルコール、オクタノール、イソプロパノール、アセトン、グリセリンなどの有機系であり、これらから2種類以上を混合してもよい。
 次に、ゾルとは、分散媒および分散質であるナノ構造体からなるコロイドを意味する。具体的には、ずり弾性率が1Pa以下である分散系を意味する。ゾルの分散媒は、水などの水系、または、カルボン酸、メタノール、エタノール、プロパノール、n-ブタノール、イソブタノール、n-ブチルアミン、ドデカン、不飽和脂肪酸、エチレングリコール、ヘプタン、ヘキサデカン、イソアミルアルコール、オクタノール、イソプロパノール、アセトン、グリセリンなどの有機系であり、これらから2種類以上を混合してもよい。
 凍結工程は、例えば、ナノ構造体が分散したゾルまたはゲルを試験管のような適切な容器に収容し、液体窒素などの冷却材中で試験管の周囲を冷却することで、試験管に収容したゾルまたはゲルを凍結することで実施される。凍結させる手法は、ゲルまたはゾルの分散媒を凝固点以下に冷却ができれば、特に限定されるものではなく、冷凍庫などで冷却してもよい。
 ゲルまたはゾルを凍結することで、分散媒が流動性を失い分散質が固定され、三次元ネットワーク構造が構築される。また、凍結工程では、ゲルまたはゾルの濃度を調整することで比表面積を自在に調整でき、ゲルまたはゾルの濃度を薄くするほど、得られる共連続体は高比表面積となる。ただし、濃度が0.01重量%以下となると、分散質が三次元ネットワーク構造を構築することが困難となるため、分散質の濃度は、0.01~10重量%以下が好適である。
 ナノファイバーまたはナノシートなどのナノ構造体で高比表面積な三次元ネットワーク構造を構築することで、圧縮または引張の際に、気孔がクッションの役割を果たし、優れた伸縮性を有する。具体的には、共連続体は、弾性限界での歪みが5%以上であることが望ましく、更に10%以上であることが更に望ましい。
 なお、凍結工程により分散質を固定しない場合、この後の乾燥工程において、分散媒の蒸発に伴い、分散質が凝集するため、十分な高比表面積を得ることができず、三次元ネットワーク構造を有する共連続体の作製は困難となる。
 次に、ステップS202の乾燥工程について説明する。乾燥工程では、凍結工程で得た凍結体より、三次元ネットワーク構造を維持または構築した分散質(一体とされている複数の微細構造体)を、分散媒から取り出す工程である。
 乾燥工程では、凍結工程で得られた凍結体を真空中で乾燥させ、凍結した分散媒を固体状態から昇華させる。乾燥工程は、例えば、得られた凍結体をフラスコのような適切な容器に収容し、容器内を真空引きすることで実施される。凍結体を真空雰囲気下に配置することで、分散媒の昇華点が低下し、常圧では昇華しない物質においても昇華させることが可能である。
 乾燥工程における真空度は、使用する分散媒によって異なるが、分散媒が昇華する真空度であれば特に制限されない。例えば、分散媒に水を使用した場合、圧力を0.06MPa以下とした真空度にする必要があるが、昇華潜熱として熱が奪われるため、乾燥に時間を有する。このため、真空度は、1.0×10-6~1.0×10-2Paが好適である。更に乾燥時に、ヒーターなどを用いて熱を加えても良い。
 大気中で乾燥させる方法は、分散媒が固体から液体になり、この後、液体から気体になるため、凍結体が液体状態となり分散媒中で再び流動的になり、複数のナノ構造体の三次元ネットワーク構造が崩れる。このため、大気圧雰囲気での乾燥では、伸縮性を有する共連続体の作製は困難である。
 なお、ナノ構造体がセルロースナノファイバーである場合に、図示しない炭化工程を実施し、乾燥工程で得た共連続体を炭化し、導電性を付与する。一方、ナノ構造体がセルロースナノファイバーでない場合、炭化工程は必要ない。
 共連続体の炭化は、不活性ガス雰囲気中で200℃~2000℃、より好ましくは、600℃~1800℃で焼成して炭化すればよい。セルロースナノファイバーが燃焼しないガスとしては、例えば、窒素ガス、アルゴンガスなどの不活性ガスであればよい。また、水素ガス、一酸化炭素ガスなどの還元性ガスであってもよく、また、二酸化炭素ガスであってもよい。
 [製造方法3](空気極の製造方法)
 次に、空気極101の他の製造方法3について図5を用いて説明する。
 図5は、製造方法3を説明するためのフローチャートである。まず、ステップS301で、所定のバクテリアに、酸化鉄、酸化マンガン、またはセルロースのいずれかにのよるナノファイバーが分散したゲルを生産させる(ゲル生産工程)。このようにして得られたゲルを用いて共連続体を作製する。
 バクテリアが産生するゲルは、nmオーダーのファイバーを基本構造としており、このゲルを用いて共連続体を作製することで、得られる共連続体は高比表面積を有するものとなる。前述したように、金属空気電池の空気極は高比表面積であることが望ましいため、バクテリアが生産したゲルを用いることは、好適である。具体的には、バクテリアが生産するゲルを用いることで、比表面積が300m/g以上を有する空気極(共連続体)の合成が可能である。
 バクテリア産生ゲルは、ファイバーがコイル状や網目状に絡まった構造を有し、更にバクテリアの増殖に基づいてナノファイバーが分岐した構造を有しているため、作製できる共連続体は、弾性限界での歪みが50%以上という優れた伸縮性を実現する。従って、バクテリア生産ゲルを用いて作製した共連続体は、金属空気電池の空気極に好適である。
 バクテリア産生ゲルとしては、バクテリアセルロース、酸化鉄、酸化マンガンの中から2種類以上を混合してもよい。
 バクテリアは、公知のものが挙げられ、例えば、アセトバクター・キシリナム・サブスピーシーズ・シュクロファーメンタ、アセトバクター・キシリナムATCC23768、アセトバクター・キシリナムATCC23769、アセトバクター・パスツリアヌスATCC10245、アセトバクター・キシリナムATCC14851、アセトバクター・キシリナムATCC11142、アセトバクター・キシリナムATCC10821などの酢酸菌、アグロバクテリウム属、リゾビウム属、サルシナ属、シュードモナス属、アクロモバクター属、アルカリゲネス属、アエロバクター属、アゾトバクター属、ズーグレア属、エンテロバクター属、クリューベラ属、レプトスリックス属、ガリオネラ属、シデロカプサ属、チオバチルス属、並びにこれらをNTG(ニトロソグアニジン)などを用いる公知の方法によって変異処理することにより創製される各種変異株を培養することにより生産されたものであればよい。
 上述したバクテリアにより生産させたゲルを用いて共連続体を得る方法としては、製造方法2と同様に、ステップS302で凍結させて凍結体とし(凍結工程)、ステップS303で凍結体を真空中で乾燥させて共連続体とすればよい(乾燥工程)。ただし、バクテリアにより生産させたセルロースによるナノファイバーが分散したゲルを用いる場合、ステップS304で、作製した共連続体をセルロースが燃焼しないガスの雰囲気で加熱して炭化する(炭化工程)。
 バクテリア産生ゲルに含まれる成分であるバクテリアセルロースは、導電性を有していないため、空気極として使用する際は、不活性ガス雰囲気下で熱処理して炭素化することで導電性を付与する炭化工程が重要となる。このようにして炭化した共連続体は、高導電性、耐腐食性、高伸縮性、高比表面積を有しており、金属空気電池の空気極として好適である。
 バクテリアセルロースの炭化は、前述した凍結工程および乾燥工程により、バクテリアセルロースからなる三次元ネットワーク構造を有する共連続体を合成した後に、不活性ガス雰囲気中で500℃~2000℃、より好ましくは、900℃~1800℃で焼成して炭化すればよい。セルロースが燃焼しないガスとしては、例えば、窒素ガス、アルゴンガスなどの不活性ガスであればよい。また、水素ガス、一酸化炭素ガスなどの還元性ガスであってもよく、また、二酸化炭素ガスであってもよい。本実施形態では、カーボン材料に対し賦活効果を有し、共連続体の高活性化が期待できる二酸化炭素ガスまたは一酸化炭素ガスがより好ましい。
 以下、空気極101への触媒担持方法について、製造方法4~7で説明する。
 [製造方法4](空気極への触媒担持方法)
 次に、空気極101への触媒担持方法である製造方法4について、図6を用いて説明する。
 図6は、製造方法4を説明するためのフローチャートである。空気極101に触媒を担持させるとよい。ステップS401で、上述した製造方法2または製造方法3で得られた共連続体を、触媒の前駆体となる金属塩の水溶液に含浸する(含浸工程)。このようにして金属塩を含む伸縮性共連続体を調製したら、次に、ステップS402で、金属塩を含む伸縮性共連続体を加熱処理すればよい(加熱工程)。なお、使用する金属塩の好ましい金属は、鉄、マンガン、亜鉛、銅、モリブデンからなる群から選択される少なくとも1種の金属である。特に、マンガンが好ましい。
 遷移金属酸化物を共連続体に担持するためには、従来知られている方法を用いることができる。例えば、共連続体を、遷移金属塩化物や遷移金属硝酸塩の水溶液に含浸させて蒸発乾固した後、高温高圧化の水(HO)中で水熱合成する方法がある。また、共連続体に、遷移金属塩化物または遷移金属硝酸塩の水溶液を含浸させ、ここにアルカリ水溶液を滴下する沈殿法がある。また、共連続体に遷移金属アルコキシド溶液に含浸させ、これを加水分解するゾルゲル法などがある。これらの液相法による各方法の条件は公知であり、これらの公知の条件を適用できる。本実施形態では、液相法が望ましい。
 上記の液相法で担持される金属酸化物は、多くの場合、結晶化が進んでいないためアモルファス状態である。アモルファス状態の前駆体を、不活性の雰囲気で、500℃程度の高温で熱処理を行うことで、結晶性の金属酸化物を得ることができる。このような結晶性の金属酸化物は、空気極の触媒として用いた場合においても高い性能を示す。
 一方、上記のアモルファス状の前駆体を100~200℃程度の比較的低温で乾燥した場合に得られる前駆体粉末は、アモルファス状態を維持しつつ、水和物の状態となる。金属酸化物の水和物は、形式的に、MexOy・nHO(ただし、Meは上記金属を意味し、xおよびyはそれぞれ金属酸化物分子中に含まれる金属および酸素の数を表し、nは1モルの金属酸化物に対するHOのモル数)と表すことができる。このような低温乾燥により得られた、金属酸化物の水和物を触媒として用いることができる。
 アモルファス状の金属酸化物(水和物)は、焼結がほとんど進んでいないため、大きな表面積を有し、粒子径も30nm程度と非常に小さい値を示す。これは、触媒として好適であり、これを用いることで、優れた電池性能を得ることができる。
 上述の通り、結晶性の金属酸化物は高い活性を示すが、上記のような高温の熱処理で結晶化させた金属酸化物は、表面積が著しく低下することがあり、粒子の凝集により粒子径も100nm程度となることがある。なお、この粒子径(平均粒径)は、走査型電子顕微鏡(SEM)などで拡大観察し、10μm四方(10μm×10μm)あたりの粒子の直径を計測して、平均値を求めた値である。
 また、特に高温で熱処理を行った金属酸化物による触媒は、粒子が凝集するため、共連続体の表面に高分散で触媒を添加させることが困難なことがある。十分な触媒効果を得るためには、空気極(共連続体)中に金属酸化物を大量に添加しなければならない場合があり、高温の熱処理による触媒作製は、コスト的に不利となることがある。
 この問題を解消するためには、以下の製造方法5,製造方法6,製造方法7を用いればよい。
 [製造方法5](空気極への触媒担持方法)
 次に、空気極への触媒担持方法である製造方法5について図7を用いて説明する。
 図7は、製造方法5,6,7を説明するためのフローチャートである。製造方法5では、製造方法2または製造方法3で作製した共連続体に、触媒を担持させる。製造方法5では、前述した共連続体の製造に加え、触媒を担持させる以下の触媒担持工程を加える。
 まず、ステップS501の第1触媒担持工程で、共連続体を界面活性剤の水溶液に浸漬し、共連続体の表面に界面活性剤を付着させる。
 次に、ステップS502の第2触媒担持工程で、金属塩の水溶液を用いて界面活性剤が付着した共連続体の表面に界面活性剤により金属塩を付着させる。
 次に、ステップS503の第3触媒担持工程で、金属塩が付着した共連続体に対する熱処理により、金属塩を構成する金属(または金属酸化物)からなる触媒を、共連続体に担持させる。
 なお、上記金属は、鉄、マンガン、亜鉛、銅、モリブデンの少なくとも1つの金属、あるいは、カルシウム、鉄、マンガン、亜鉛、銅、モリブデンの少なくとも1つの金属からなる金属酸化物である。特に、マンガン(Mn)または酸化マンガン(MnO)が好ましい。
 製造方法5の第1触媒担持工程で用いる界面活性剤は、空気極(共連続体)上に金属または遷移金属酸化物を高分散で担持するためのものである。界面活性剤のように、カーボン表面に吸着する疎水基と、遷移金属イオンが吸着する親水基を分子内に有していれば、共連続体に遷移金属酸化物前駆体である金属イオンを高い分散度で吸着させることができる。
 上述した界面活性剤としては、分子内にカーボン表面に吸着する疎水基とマンガンイオンが吸着する親水基を有していれば特に限定されないが、非イオン系の界面活性剤が好ましい。例えば、エステル型の界面活性剤として、ラウリン酸グリセリン、モノステアリン酸グリセリン、ソルビタン脂肪酸エステル、ショ糖脂肪酸エステルなどがある。また、エーテル型の界面活性剤として、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンポリオキシプロピレングリコールなどがある。
 また、エステルエーテル型の界面活性剤として、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンヘキシタン脂肪酸エステル、ソルビタン脂肪酸エステルポリエチレングリコールなどがある。また、アルカノールアミド型の界面活性剤として、ラルアミド、コカミドDEAなどがある。また、高級アルコールの界面活性剤として、セタノール、ステアリルアルコール、オレイルアルコールなどがある。また、ポロキサマー型の界面活性剤として、ポロキサマージメタクリレートなどを挙げることができる。
 製造方法5の第1触媒担持工程における界面活性剤の水溶液の濃度は、0.1~20g/Lであることが好ましい。また、浸漬時間、浸漬温度などの浸漬条件は、例えば、室温~50℃の溶液に、1~48時間浸漬することが含まれる。
 製造方法5の第2触媒担持工程では、第1触媒担持工程における界面活性剤を含有する水溶液に、触媒として機能する金属塩を更に溶解するか、または金属塩の水溶液を加えることを含む。あるいは、上述の界面活性剤を含有する水溶液とは別に、触媒として機能する金属塩を溶解させた水溶液を調製し、これに、界面活性剤を含浸した(付着させた)共連続体を浸漬してもよい。
 また、金属塩が溶解した水溶液を、界面活性剤を付着させた共連続体に含浸させてもよい。必要に応じて、得られた金属塩を含む(付着した)共連続体にアルカリ性水溶液を滴下してもよい。これらのことによって、金属または金属酸化物前駆体を共連続体に付着させることができる。
 製造方法5の第2触媒担持工程における金属塩の添加量は、0.1~100mmol/Lとなる量であることが好ましい。また、浸漬時間、浸漬温度などの浸漬条件は、例えば、室温~50℃の溶液に、1~48時間浸漬することが含まれる。
 より具体的には、金属としてマンガンを例にとって説明すれば、マンガン金属塩(例えば、塩化マンガンなどのハロゲン化マンガン、その水和物など)を、界面活性剤を含有し、共連続体に含浸している水溶液に加える。次いで、得られたマンガン金属塩を含む共連続体にアルカリ性水溶液を滴下することで、金属または金属酸化物前駆体としての水酸化マンガンを、共連続体に担持させることができる。
 上述した酸化マンガンによる触媒の担持量は、金属塩水溶液中の金属塩(例えば塩化マンガン)の濃度により調整できる。
 また、上述のアルカリ性水溶液に使用するアルカリは、アルカリ金属またはアルカリ土類金属の水酸化物、アンモニア水、アンモニウム水溶液、テトラメチルアンモニウムヒドロキシド(TMAH)水溶液などを挙げることができる。これらのアルカリ性水溶液の濃度は、0.1~10mol/Lであることが好ましい。
 製造方法5における第3触媒担持工程では、共連続体の表面に付着させた金属または金属酸化物の前駆体(金属塩)を、熱処理により、金属自体または金属酸化物に転化する。
 具体的には、前駆体が付着した共連続体を、室温(25℃程度)~150℃、より好ましくは50℃~100℃で1~24時間乾燥させ、次いで100~600℃、好ましくは110~300℃で熱処理すればよい。
 製造方法5における第3触媒担持工程では、アルゴン、ヘリウム、窒素などの不活性雰囲気や還元性雰囲気で熱処理することで、金属自体を触媒として表面に付着させた共連続体による空気極を製造することができる。また、酸素を含むガス中(酸化性雰囲気)で熱処理することで、金属酸化物を触媒として表面に付着させた共連続体による空気極を製造することができる。
 また、上述の還元条件下での熱処理を行い、一度、金属自体を触媒として付着させた共連続体を作製し、次いで、これを酸化性雰囲気で熱処理することで、金属酸化物を触媒として付着させた共連続体による空気極を製造することもできる。
 別法として、金属または金属酸化物の前駆体(金属塩)が付着した共連続体を、室温~150℃、より好ましくは50℃~100℃で乾燥させ、共連続体上に金属自体を触媒として付着させ、金属/共連続体の複合体を作製してもよい。
 製造方法5では、金属または金属酸化物による触媒の付着量(含有量)は、共連続体および触媒の総重量に基づいて、0.1~70重量%、好ましくは1~30重量%である。
 製造方法5によれば、共連続体の表面に、金属または金属酸化物による触媒を高分散させた空気極を製造することができ、電気特性の優れた金属空気電池が構成できるようになる。
 [製造方法6](空気極への触媒担持方法)
 次に、空気極への触媒担持方法である製造方法6について説明する。製造方法6では、製造方法2または製造方法3で作製した共連続体に、前述した製造方法5とは異なる方法で触媒を担持させる。製造方法6では、前述した共連続体に、触媒を担持させる触媒担持工程を加える。
 第1触媒担持工程では、共連続体を金属塩の水溶液に浸漬して共連続体の表面に金属塩を付着させる。
 次に、第2触媒担持工程では、金属塩が付着した共連続体に対する熱処理により、金属塩を構成する金属からなる触媒を共連続体に担持させる。
 次に、第3触媒担持工程では、触媒が担持された共連続体を高温高圧の水に作用させることで触媒を金属酸化物の水和物とする。
 なお、金属塩を構成する金属(または金属酸化物)は、鉄、マンガン、亜鉛、銅、モリブデンの少なくとも1つの金属、あるいは、カルシウム、鉄、マンガン、亜鉛、銅、モリブデンの少なくとも1つの金属からなる金属酸化物である。特に、マンガン(Mn)または酸化マンガン(MnO)が好ましい。
 製造方法6における第1触媒担持工程では、最終的に触媒とする金属または金属酸化物の前駆体となる金属塩の水溶液を、共連続体の表面に付着(担持)させる。例えば、上記金属塩を溶解した水溶液を別途調製し、この水溶液を共連続体に含浸させればよい。含浸の条件などは、前述したように従来と同じである。
 製造方法6における第2触媒担持工程は、製造方法5の第3触媒担持工程と同様であり、不活性雰囲気または還元性雰囲気による加熱処理を実施すればよい。また、製造方法5の第3触媒担持工程の別法として説明した、前駆体が付着した共連続体を低温(室温~150℃、より好ましくは50℃~100℃)で加熱処理(乾燥)することで、共連続体に金属を付着させてもよい。
 金属自体を触媒として用いた空気極101は、高活性を示すが、触媒が金属であるため、腐食に弱く、長期安定性に欠ける場合がある。これに対し、金属を以下に詳述する製造方法6の第3触媒担持工程により、加熱処理して金属酸化物の水和物とすることで、長期安定性を実現することができる。
 製造方法6の第3触媒担持工程では、金属酸化物の水和物が、共連続体に付着した状態とする。具体的には、製造方法6の第2触媒担持工程で得られた、金属が付着した共連続体を、高温高圧の水に浸漬させ、付着している金属を、金属酸化物の水和物からなる触媒に転化する。
 例えば、金属が付着した共連続体を、100℃~250℃、より好ましくは、150℃~200℃の水に浸漬させ、付着している金属を酸化させて金属酸化物の水和物とすればよい。
 大気圧下(0.1MPa)での水の沸点は100℃であるため、大気圧下では通常100℃以上の水に浸漬させることはできないが、所定の密閉容器を用い、この密閉容器内の圧力を、例えば、10~50MPa、好ましくは25MPa程度まで上昇させることで、密閉容器内では、水の沸点が上昇し、100℃~250℃の液体状の水を実現することができる。このようにして得た高温の水に、金属が付着した共連続体を浸漬すれば、金属を金属酸化物の水和物とすることができる。
 [製造方法7](空気極への触媒担持方法)
 次に、空気極への触媒担持方法である製造方法7について説明する。製造方法7では、製造方法2または製造方法3で作製した共連続体に、前述した製造方法5および6とは異なる方法で触媒を担持させる。製造方法7では、前述した共連続体に、触媒を担持させる以下の第1触媒担持工程および第2触媒担持工程を加える。
 第1触媒担持工程では、共連続体を金属塩の水溶液に浸漬して共連続体の表面に金属塩を付着させる。製造方法7における第1触媒担持工程は、製造方法6における第1触媒担持工程と同様であり、ここでは説明を省略する。
 次に、第2触媒担持工程では、共連続体の表面に付着させた前駆体(金属塩)を、比較的低温の熱処理により、金属酸化物の水和物に転化する。
 具体的には、前駆体が付着した共連続体を、高温高圧の水に作用させた後に、100~200℃程度の比較的低温で乾燥する。これにより、前駆体は、前駆体のアモルファス状態を維持しつつ、粒子中には水分子が存在する水和物となる。このような低温乾燥により得られた、金属酸化物の水和物を触媒として用いる。
 なお、上記金属は、鉄、マンガン、亜鉛、銅、モリブデンの少なくとも1つの金属であればよい。
 製造方法7により作製される空気極では、金属酸化物の水和物が、共連続体上にナノサイズの微粒子の状態で、高分散で担持されうる。従って、このような共連続体を空気極とした場合、優れた電池性能を示すことが可能となる。
 上記の各製造方法で得られた共連続体は、公知の手順で所定の形状に成形して空気極とすることができる。例えば、触媒未担持共連続体および触媒担持共連続体を、板状体またはシートに加工し、得られた共連続体を打ち抜き刃、レーザーカッターなどなどにより所望の直径(例えば23mm)の円形に切り抜いて空気極とすればよい。
 〔実施例〕
 以下、実施例を用いて、本実施形態の金属空気電池をより詳細に説明する。はじめに、実際に用いた金属空気電池(図1参照)の構成について図8A、図8Bを用いて説明する。図8Aは、コインセル型の金属空気電池のより詳細な構成例を示す断面図である。また、図8Bは、コインセル型の金属空気電池の構成例を示す平面図である。前述した実施形態における空気極101と、負極102と、電解液104とを使用する金属空気電池は、コイン形、円筒形、ラミネート形など従来の形状で作製することができる。これらの電池の製造方法は、従来と同様の方法を用いることができる。
 図8A、図8Bに示すように、コインセル型の電池は、空気極101と、負極102と、電解液104とを備える。この場合の電解液104は、イオン伝導体を含み、アルキルグルコシドが飽和濃度で溶解した電解液である。また、空気極側には空気極ケース201が配置され、負極側には負極ケース202が配置される。空気極ケース201は開口201aを備え、空気極101に対して周囲の空気が接触可能とされている。
 また、空気極ケース201と負極ケース202とは、嵌合され、嵌合している部分には、ガスケット203が配置されている。空気極101と負極102との間に、電解液104とが挾まれ、これらを電池セルとする。この電池セルを空気極ケース201と負極ケース202との間に配置し、空気極ケース201と負極ケース202とを嵌合させて一体とする。
 図9Aおよび図9Bは、他の金属空気電池(図2参照)に対応するコインセル型の金属空気電池の構成例を示す断面図および平面図である。図示する金属空気電池は、図8A、図8Bのコインセル型の電池と同様に、コイン形、円筒形、ラミネート形など従来の形状で作製することができる。これらの電池の製造方法は、従来と同様の方法を用いることができる。
 図9A、図9Bに示すコインセル型の電池は、空気極101と、負極102と、空気極側の電解液103と、負極側の電解液104と、イオン交換膜105とを備える。この場合の電解液103、104は、イオン伝導体を含む水溶液であり、電解液104にはアルキルグルコシドが溶解している。空気極101と負極102との間に、空気極側の電解液103と、イオン交換膜105と、負極側の電解液104とが挾まれ、これらを電池セルとする。この電池セルを空気極ケース201と負極ケース202との間に配置し、空気極ケース201と負極ケース202とを嵌合させて一体とする。空気極ケース201および負極ケース202は、図8A、図8Bのコインセル型の電池と同様である。
 また、図10に示すように、空気極101以外の電池セル内部を密閉する筐体300を用い、筐体300内に電池セルを収容してもよい。筐体300は、負極102の側に配置される第1筐体311と、空気極101の側に配置される第2筐体312とを備える。第2筐体312には、開口312aが形成され、空気極101に対して周囲の空気が接触可能とされている。
 第1筐体311と負極102との間には、負極集電体301が設けられ、第2筐体312と空気極101との間には、空気極集電体302が設けられ、各々から端子321、322が筐体300の外部に取り出されている。なお、負極102として金属を用いる場合は、負極集電体301を用いず負極102から直接端子を外部に取り出しても良い。
 また、筐体300を、電池セルを内部に維持することが可能で、自然分解される材料から構成するとよい。筐体300は、天然物系、微生物系、化学合成系のいずれの材料でも良く、例えば、ポリ乳酸、ポリカプロラクトン、ポリヒドロキシアルカノエート、ポリグリコール酸、変性ポリビニルアルコール、カゼイン、変性澱粉などから構成することができる。特に、植物由来のポリ乳酸などの化学合成系が好ましい。また、筐体300の形状は、生分解性プラスチックを加工することで得られる形状であれば限定されない。筐体300に使用可能な材料の例としては、市販の生分解性プラスチックフィルムの他、牛乳パックなどに用いられるポリエチレンなどの樹脂の被膜が形成されている用紙、また寒天フィルムなどがある。
 上述した材料で構成した第1筐体311と第2筐体312とを、周縁部で接着することで、空気極101以外の電池セル内部を密閉することが可能である。接着方法としては、熱シールや接着剤を使用する例が挙げられ、特に限定はされない。生分解性樹脂で構成される接着剤を使用することが好ましい。なお、空気極101、負極102、電解液104、第1筐体311、第2筐体312、負極集電体301、および、空気極集電体302は、電池として作動するためのこれらの配置が損なわれない限り、形状は限定されない。例えば、平面視で、四角形または円形のシート形状、あるいは、ロールした形状で使用することができる。
 上述した自然分解される材料から構成した筐体300による金属空気電池は、例えば、土壌の水分センサーなどの使い捨てデバイスで使用した際に、時間がたつにつれて自然分解され、電池を回収する必要がない。また、自然由来の材料や肥料成分で構成されているため、環境に対する負荷が極めて低い。
 図11は、第2の金属空気電池(図2参照)の電池セルを筐体300内に収容した構成例である。
 [実施例1](ケッチェンブラックの空気極の例)
 はじめに、実施例1について説明する。実施例1では、空気極として、電極として公知であるカーボン(ケッチェンブラックEC600JD)を用い、炭素数18から22のアルキルグルコシドの添加効果を確かめた。
 カーボン(ケッチェンブラックEC600JD)のケッチェンブラック粉末(ライオン製)およびポリテトラフルオロエチレン(PTFE)粉末(ダイキン製)を80:20の重量比で、らいかい機を用いて十分に粉砕および混合し、ロール成形して、シート状電極(厚さ:0.6mm)を作製した。このシート状電極を直径14mmの円形に切り抜き空気極を得た。
 負極は、市販のマグネシウム合金AZ31板(厚さ200μm、ニラコ製)を、打ち抜き刃、レーザーカッターなどにより直径14mmの円形に切り抜くことで調整した。
 電解液は、塩化ナトリウム(NaCl、関東化学製)を1mol/Lの濃度で純水に溶解した。この塩化ナトリウム水溶液に、炭素数18、20および22の3種類のアルキルグルコシドをそれぞれ1mLあたり5mg以上、室温で溶解し、飽和濃度のアルキルグルコシド水溶液をそれぞれ調製した。
 上述した空気極、負極を用い、図8Aおよび図8Bを用いて説明したコインセル型のマグネシウム空気電池を作製した。まず、スポット溶接により銅メッシュ箔(MIT Japan製)の周縁部を内側に固定した空気極ケースに、上記の空気極を設置した。また、金属マグネシウム板より構成した負極は、スポット溶接により周縁部を銅メッシュ箔(MIT Japan製)に固定し、更に、この銅メッシュ箔を負極ケースにスポット溶接して固定した。
 空気極ケースに設置した空気極の上に、電解液を2ml滴下したのち、電池用のセルロース系セパレータ(日本高度紙工業製)を直径14mmの円形に切り抜いたものを載置し、電解液を2ml滴下した。
 実施例1では、電解液として、炭素数18のアルキルグルコシドが溶解された電解液と、炭素数20のアルキルグルコシドが溶解された電解液と、炭素数22のアルキルグルコシドが溶解された電解液とを用いる。したがって、実施例1では、3種類のマグネシウム空気電池が作製される。
 次に、負極を固定した負極ケースを空気極ケースに被せ、コインセルかしめ機で空気極ケースおよび負極ケースの周縁部をかしめることにより、ポリプロピレン製ガスケットを含むコインセル型のマグネシウム空気電池をそれぞれ作製した。
 作製したマグネシウム空気電池の電池性能を、それぞれ測定した。まず、放電試験を実施した。マグネシウム空気電池の放電試験は、市販の充放電測定システム(北斗電工社製、SD8充放電システム)を用い、空気極の有効面積当たりの電流密度で0.1mA/cmを通電し、開回路電圧から電池電圧が、0Vに低下するまで測定を行った。放電試験は、25℃の恒温槽内(雰囲気は通常の生活環境下)で測定した。放電容量は、共連続体を含む空気極の重量当たりの値(mAh/g)で表した。炭素数18のアルキルグルコシドを用いた実施例1の電池における放電曲線を、図12に示す。
 図12に示すように、平均放電電圧は1.1Vであり、放電容量は1450mAh/gであることが分かる。なお、平均放電電圧は、電池の放電容量(ここでは1450mAh/g)の1/2の放電容量(ここでは725mAh/g)の時の電池電圧とする。
 以下の表1に、3種類のアルキルグルコシドをそれぞれ添加した電解液を用いたマグネシウム空気電池の放電容量を示す。
Figure JPOXMLDOC01-appb-T000001
 
 実施例1の放電容量は、いずれも1400mAh/g以上を示し、後述する比較例1に比べて大きい値であった。これは、界面活性剤であるアルキルグルコシドを含む電解液が、負極の腐食反応を抑制し、反応時間が長くなった結果、放電容量が大きくなったと考えらえる。炭素数18~22のアルキルグルコシドは、比較例1で利用した炭素数16のアルキルグルコシドおよびTriton-X100よりも腐食抑制の効果が大きいと考えられる。
 親水性の大きさを示すHLB値は、炭素数16のアルキルグルコシドとTriton-X100とでは、それぞれ16と13.5である。炭素数18、20、22のアルキルグルコシドのHLB値は、それぞれ9、7、5であり、炭素数16のアルキルグルコシドおよびTriton-X100のHLB値より小さい。したがって、炭素数18~22のアルキルグルコシドは、炭素数16のアルキルグルコシドおよびTriton-X100よりも親油性が大きいといえる。
 親油性が大きいほど金属表面への吸着力が大きく、負極表面をより大きい被覆面積で覆うことができることから、炭素数18~22のアルキルグルコシドを用いた実施例1では、腐食抑制効果が増大したと考えられる。このように、実施例1のいずれの炭素数のアルキルグルコシドにおいても、腐食抑制の効果により放電容量が向上した。したがって、電解液に炭素数18~22のアルキルグルコシドを添加することで、負極の腐食を抑制し、放電容量を向上させることができる。
 なお、親油性が大きいほど、水への溶解度は小さい。水への溶解度が小さいと、水溶液中の分子数が減少し、被覆面積が小さくなるという影響もある。表1に示す炭素数の中で炭素数18のアルキルグルコシドを添加した場合に最も大きい放電容量を示したのは、炭素鎖数18のときに、水への溶解度と負極表面への吸着力のつり合いが最適であるためと考えられる。
 一方、実施例1の電圧(平均放電電圧)は、いずれも比較例1の電解液に塩化ナトリウム水溶液を用いた場合の電圧(1.3V)よりも低下した。アルキルグルコシドが空気極を親水化することで空気極が水没しやすくなったことから、実施例1の電圧が低下したと考えられる。
 [実施例2](ナノシート共連続体の空気極の例)
 次に、実施例2について説明する。実施例2は、ナノシートを用いた共連続体を空気極として使用する例である。非連続体は、非共有結合によって一体とされた複数のナノシートからなる三次元ネットワーク構造を有する。
 空気極を、以下のようにして合成した。以下の説明では、代表として、グラフェンをナノシートとして使用する製造方法を示すが、グラフェンを他の材料のナノシートに変えることで、三次元ネットワーク構造を有する共連続体を調整することができる。なお、以下に示す気孔率は、共連続体を水銀圧入法により求めた細孔径分布から、細孔を円筒形とモデル化して算出した。マグネシウム空気電池の作製、および放電試験の方法は、実施例1と同様にして行った。
 まず、市販のグラフェンゾル[分散媒:水(HO)、0.4重量%、シリコン「Sigma-Aldrich製]を試験管に入れ、この試験管を液体窒素中に30分間浸すことでグラフェンゾルを完全に凍結させた。グラフェンゾルを完全に凍結させた後、凍結させたグラフェンゾルをナスフラスコに取り出し、これを凍結乾燥機(東京理科器械株式会社製)により10Pa以下の真空中で乾燥させることで、グラフェンナノシートを含む三次元ネットワーク構造を有する伸縮性共連続体を得た。
 得られた、共連続体をX線回折(XRD)測定、走査型電子顕微鏡(SEM)観察、気孔率測定、引張試験、BET比表面積測定を行い、評価した。本実施例で作製した共連続体は、XRD測定よりカーボン(C、PDFカードNo.01-075-0444)単相であることを確認した。なお、PDFカードNoは、国際回折データセンター(International Centre for Diffraction Data、ICDD)が収集したデータベースであるPDF(Powder Diffraction File)のカード番号であり、以下同様である。
 また、SEM観察および水銀圧入法により、得られた共連続体は、ナノシート(グラフェン片)が連続に連なった、平均孔径が1μmの共連続体であることを確認した。また、水銀圧入法により共連続体のBET比表面積測定を測定したところ、510m/gであった。また、水銀圧入法により共連続体の気孔率を測定したところ、90%以上であった。更に、引張試験の結果から、得られた共連続体は、引張応力により歪が20%加えられても、弾性領域を超えず、応力印加前の形状に復元することを確認した。
 このようなグラフェンによる共連続体を、打ち抜き刃、レーザーカッターなどにより直径14mmの円形に切り抜き、ガス拡散型の空気極を得た。
 負極は、市販のマグネシウム合金AZ31板(厚さ200μm、ニラコ製)を、打ち抜き刃、レーザーカッターなどにより直径14mmの円形に切り抜くことで調整した。
 電解液には、炭素数18のアルキルグルコシドを用いた。具体的には、塩化ナトリウム(NaCl、関東化学製)を1mol/Lの濃度で純水に溶解し、この塩化ナトリウム水溶液1mLあたりに5mg以上の炭素数18のアルキルグルコシドを入れ飽和濃度としたアルキルグルコシド水溶液を、電解液として用いた。
 実施例1と同様にコインセル型の空気電池の電池性能を作製し、電池性能評価を行った。
 以下の表2に、グラフェン(C)、酸化鉄(Fe)、酸化マンガン(MnO)、酸化亜鉛(ZnO)、酸化モリブデン(MoO)、および、硫化モリブデン(MoS)によるナノシートからそれぞれ共連続体を構成して空気極としたマグネシウム空気電池の放電容量を示す。
Figure JPOXMLDOC01-appb-T000002
 実施例2のグラフェンでは、放電容量は、1540mAh/gを示し、実施例1の市販カーボン(ケッチェンブラックEC600JD)による空気極を用いた場合よりも大きい値であった。実施例2の放電容量は、いずれも1450mAh/gより大きな値を示し、ケッチェンブラックを用いた実施例1に比べて大きい値であった。
 炭素以外の材料によるナノシートの例の場合も、グラフェン同様、高比表面積であるため、放電生成物[Mg(OH)]が効率的に析出したため、放電容量が改善されたものと考えられる。
 ナノシート共連続体を空気極として利用した場合でも、炭素数18~22のアルキルグルコシドを添加したことによる放電容量向上の効果が確認された。実施例1の評価結果を踏まえ、炭素数18以外の前記炭素数のアルキルグルコシドについても、放電容量が向上するといえる。
 [実施例3](ナノシート共連続体の空気極の例)
 次に、実施例3について説明する。実施例3は、ナノファイバーを用いた共連続体を空気極として使用する例である。共連続体は、非共有結合によって一体とされた複数のナノファイバーからなる三次元ネットワーク構造を有する。
 空気極を、以下のようにして合成した。以下の説明では、代表として、カーボンナノファイバーを使用する製造方法を示すが、カーボンナノファイバーを他の材料によるナノファイバーに変えることで、三次元ネットワーク構造を有する共連続体を調整することができる。
 共連続体の評価法、マグネシウム空気電池の作製、および放電試験の方法は、実施例1,2と同様にして行った。
 共連続体は、実施例2に示したプロセスと同様に作製し、原料にはカーボンナノファイバーゾル[分散媒:水(HO)、0.4重量%、Sigma-Aldrich製]を使用した。
 得られた共連続体は、XRD測定、SEM観察、気孔率測定、引張試験、BET比表面積測定を行い、評価した。本実施例で作製した共連続体はXRD測定よりカーボン(C、PDFカードNo.00-058-1638)単相であることを確認した。また、SEM観察および水銀圧入法により、ナノファイバーが連続に連なった平均孔径が1μmの共連続体であることを確認した。また、水銀圧入法により共連続体のBET比表面積測定を測定したところ、620m/gあった。また、水銀圧入法により共連続体の気孔率を測定したところ、93%以上であった。更に、引張試験の結果から、実施例3の共連続体は、引張応力により歪が40%加えられても、弾性領域を超えず、応力印加前の形状に復元することを確認した。
 このカーボンナノファイバーによる共連続体を空気極に用いて実施例2と同様のコインセル型のマグネシウム空気電池を作製した。実施例3の電解液には、実施例2と同様に炭素数18のアルキルグルコシドを用いた。作製した実施例3におけるマグネシウム空気電池の放電容量を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 
 実施例3のカーボンナノファイバー(C)では、放電容量は1570mAh/gを示し、実施例2のグラフェンによる共連続体を用いた場合よりも大きい値であった。このような特性の向上は、より伸縮性の高い共連続体を用いることにより、放電時においてスムーズに反応が行われたことによると考えられる。
 表3には、カーボンナノファイバー(C)、酸化鉄(Fe)、酸化マンガン(MnO)、酸化亜鉛(ZnO)、酸化モリブデン(MoO)、および、硫化モリブデン(MoS)によるナノファイバーからそれぞれ共連続体を構成して空気極としたマグネシウム空気電池の放電容量を示す。
 いずれも、放電容量は、1500mAh/g以上を示し、実施例2のようなナノシートを含む共連続体よりも全体的に大きい値であった。これらのナノファイバーの場合も、ナノシート同様、伸縮性を有する空気極が効率的に放電生成物[Mg(OH)]を析出したため、放電容量が改善されたものと考えられる。
 ナノファイバーによる共連続体を空気極として利用した場合でも、炭素数18~22のアルキルグルコシドを添加したことによる放電容量向上の効果が確認された。
 [実施例4](バクテリア産生セルロースの共連続体の空気極の例)
 次に、実施例4について説明する。実施例4は、バクテリアに産生させたセルロースが分散したゲルによる共連続体を空気極に使用する例である。共連続体の評価法、マグネシウム空気電池の作製法、および放電試験の方法は、実施例1、2、3と同様にして行った。
 まず、酢酸菌であるアセトバクター・キシリナム(Acetobacter xylinum)産生のバクテリアセルロースゲルとして、ナタデココ(フジッコ製)を用い、実施例1および実施例2と同様のコインセル型のマグネシウム空気電池を作製した。なお、実施例4では、真空中で乾燥させた後、窒素雰囲気下で1200℃、2時間の焼成により、共連続体を炭化させ、これにより空気極を作製した。
 得られた共連続体(炭化した共連続体)は、XRD測定、SEM観察、気孔率測定、引張試験、BET比表面積測定を行い、評価した。この共連続体は、XRD測定よりカーボン(C、PDFカードNo.01-071-4630)単相であることを確認した。また、SEM観察により、直径20nmのナノファイバーが連続に連なった、共連続体であることを確認した。また、水銀圧入法により共連続体のBET比表面積測定を測定したところ、830m/gであった。また、水銀圧入法により共連続体の気孔率を測定したところ、99%以上であった。更に、引張試験の結果から、引張応力により歪が80%加えられても、弾性領域を超えず、応力印加前の形状に復元することを確認し、炭化した後も優れた伸縮性を有する。
 このバクテリア産生セルロースによる共連続体を空気極に用いて、実施例2と同様のコインセル型のマグネシウム空気電池を作製した。実施例4の電解液には、実施例2と同様に炭素数18のアルキルグルコシドを用いた。
 実施例4におけるマグネシウム空気電池の放電容量を、以下の表4に示す。表4には、炭素数18のアルキルグルコシドを用いた実施例1~3の結果も示している。実施例4では、放電容量は1970mAh/gを示し、実施例1~3よりも性能が向上した。
Figure JPOXMLDOC01-appb-T000004
 
 上記のような特性の向上は、より伸縮性の高い共連続体を用いることにより、放電時において効率的に放電生成物[Mg(OH)]を析出したことと、カーボン(C)が優れた導電性を有するために、スムーズに反応が行われたと考えられる。
 上述したように、本実施例により、高気孔率、BET比表面積測定で、伸縮性を有する共連続体が得られ、また、この共連続体を空気極に用いたマグネシウム空気電池によれば、放電時の効率的な放電生成物[Mg(OH)]の析出が実現される。上記のような特性の向上は、本実施形態による各種の改善が理由と考えられる。
 炭化バクテリアセルロースによる共連続体を空気極として利用した場合でも、炭素数18~22のアルキルグルコシドを添加したことによる放電容量向上の効果が確認された。
 [実施例5](ケッチェンブラックの空気極で、負極の金属種を変更した例)
 実施例5は、空気極用の電極として公知であるカーボン(ケッチェンブラックEC600JD)を用い、負極に用いる金属種を変更した。実施例5の電池の作製法、および放電試験の方法は、実施例1と同様にして行った。実施例5の電解液には、炭素数18のアルキルグルコシドを用いた。
 実施例5では、負極に、マグネシウム合金AZ31板(厚さ200μm、ニラコ製)、アルミニウム板(厚さ200μm、ニラコ社)、亜鉛板(厚さ200μm、ニラコ社)、および、鉄板(厚さ200μm、ニラコ社)をそれぞれ用いて、複数の金属空気電池を作製した。
 以下の表5に、実施例5の金属空気電池の放電容量を示す。表5には、炭素数18のアルキルグルコシドを用いた実施例1の結果も示している。
Figure JPOXMLDOC01-appb-T000005
 
 上記のような特性の違いは、金属のイオン化傾向により、電解液への溶解のしやすさが影響したと考えられる。具体的には、負極にマグネシウム合金AZ31板を用いた場合(実施例1)に、負極金属の溶解に伴い発生する電子が、最も効率的に電池反応に利用されたためと考えられる。
 実施例5の亜鉛を負極に用いた場合の放電容量は、後述するアルキルグルコシドを添加しない比較例3に比べて大きい値であった。
 本実施例により、金属空気電池の負極にはマグネシウム合金AZ31板を用いることで、放電時に最も効率的な電子の流れが実現されるが、他の金属または合金を用いてもアルキルグルコシドを添加することにより放電容量が向上する効果が見られた。
 [実施例6](イオン交換膜を用いる例) 
 実施例6は、負極と空気極の間にイオン交換膜を配置し、負極側の電解液と空気極側の電解液をイオン交換膜で隔てた金属空気電池の例である。本実施例では、図9Aおよび図9Bで説明したコインセル型のマグネシウム空気電池を作製した。
 具体的には、純水に塩化ナトリウムを1mol/Lの濃度で溶解した電解液を、空気極側の電解液aとして用いた。この空気極側の電解液aに、炭素数18のアルキルグルコシドを飽和するまで添加した電解液を負極側の電解液bとして用いた。電解液aを空気極側に配置し、電解液bを負極側に配置し、その間にイオン交換膜を配置した。イオン交換膜には、ネオセプタを用いた。空気極および負極には、実施例1と同様のカーボン(ケッチェンブラックEC600JD)およびマグネシウム合金AZ31を、それぞれ用いた。放電試験の方法は、実施例1と同様である。
 以下の表6に、実施例6の金属空気電池の放電容量を示す。表6には、イオン交換膜105を用いない実施例1(炭素数18のアルキルグルコシド)の結果も示している。
Figure JPOXMLDOC01-appb-T000006
 
 実施例6の放電容量は、1630mAh/g、電圧は1.3 Vを示し、実施例1のイオン交換膜を用いない場合よりも大きい値を示した。アルキルグルコシドを含む電解液bが負極の腐食反応を抑制し、反応時間が長くなるとともに、イオン交換膜により空気極にアルキルグルコシドが到達せず、空気極が親水化して水没することが防がれたため、酸素供給が長時間可能となり、電圧と放電容量が改善されたものと考えられる。
 具体的には、イオン交換膜は、水酸化物イオンのみを透過させ、電解質bに含まれるアルキルグルコシドが空気極側の電解液aに拡散(移動)することを抑制する。本実施例では、負極側の電解液bのみにアルキルグルコシドを添加し、空気極側の電解液aとの間に、界面活性剤が拡散するのを抑制するイオン交換膜を備える。これにより、本実施例では、アルキルグルコシドが空気極側の電解液aに拡散し、空気極を親水化して空気極が電解質aに水没し、電池電圧が低下するのを防ぐことができる。
 [比較例1]
 次に、比較例1について説明する。比較例1では、表7に示す各電解液を用いて、実験例1と同様にマグネシウム空気電池を複数作製した。比較例1の空気極および負極には、実施例1と同様のカーボン(ケッチェンブラックEC600JD)およびマグネシウム合金AZ31を、それぞれ用いた。
 比較例1の電解液には、1mol/Lの塩化ナトリウム水溶液と、1mol/Lの塩化ナトリウム水溶液に1mLあたり5mg以上Triton-X100(非イオン系界面活性剤)を添加して飽和濃度とした水溶液と、1mol/Lの塩化ナトリウム水溶液に1mLあたり5mg以上の炭素数16のアルキルグルコシドを添加して飽和濃度とした水溶液と、1mol/Lの塩化ナトリウム水溶液に1mLあたり5mg以上の炭素数24のアルキルグルコシドを添加して飽和濃度とした水溶液と、をそれぞれ用いた。
 炭素数24のアルキルグルコシドは、塩化ナトリウム水溶液にほとんど溶解せず、1×10-6mol/Lより小さい濃度で飽和した。
 放電試験の方法は、実施例1と同様である。以下の表7に、比較例1の金属空気電池の放電容量を示す。表7には、実施例1(炭素数18のアルキルグルコシド)の結果も示している。
Figure JPOXMLDOC01-appb-T000007
 
 塩化ナトリウム水溶液を電解液に用いた電池の電圧は1.3Vで、放電容量は1030mAh/gであった。Triton-X100を添加した電解液を用いた電池の電圧は1.1Vで、放電容量は1210mAh/gであった。炭素数16のアルキルグルコシドを添加した電解液の電池の電圧は1.1Vで、放電容量は1320mAh/gであった。炭素数24のアルキルグルコシドを添加した電解液の電池の電圧は1.2Vで、放電容量は1050mAh/gであった。いずれの比較例も、放電容量は実施例1よりも小さな値を示した。
 以上の結果より、本実施形態の金属空気電池は、アルキルグルコシドを添加しない金属空気電池よりも、放電容量が優れていることが確認された。また、本実施形態の炭素数18~22のアルキルグルコシドを添加した金属空気電池は、非イオン性界面活性剤であるTriton-X100、および、炭素数16、24のアルキルグルコシドを添加した金属空気電池に比べ、放電容量が向上することも確認された。
 炭素数24のアルキルグルコシドのHLB値は3で、親水性が小さいため塩化ナトリウム水溶液にほとんど溶解せず、腐食抑制効果が見られなかったと考えられる。
 [比較例2]
 次に、比較例2について説明する。比較例2は、バクテリアに産生させたセルロースが分散したゲルによる共連続体を空気極用の電極として用い、以下に示す各電解液を用いて、実施例4と同様のマグネシウム空気電池を複数作製した。負極には、マグネシウム合金AZ31を用いた。電解液には、炭素数18のアルキルグルコシドを用いた。
 比較例2の電解液には、1mol/Lの塩化ナトリウム水溶液と、1mol/Lの塩化ナトリウム水溶液に1mLあたり5mg以上のTriton-X100を添加して飽和濃度とした水溶液と、1mol/Lの塩化ナトリウム水溶液に1mLあたり5mg以上の炭素数16のアルキルグルコシドを添加して飽和濃度とした水溶液と、をそれぞれ用いた。
 放電試験の方法は、実施例1と同様である。以下の表8に、比較例2の金属空気電池の放電容量を示す。表8には、実施例4の結果も示している。
Figure JPOXMLDOC01-appb-T000008
 
 塩化ナトリウム水溶液を電解液に用いた電池の電圧は1.3Vで、放電容量は1450mAh/gであった。Triton-X100を添加した電解液を用いた電池の電圧は1.1Vで、放電容量は1700mAh/gであった。炭素数16のアルキルグルコシドを添加した電解液の電池の電圧は1.1Vで、放電容量は1800mAh/gであった。いずれの比較例も、放電容量は実施例4よりも小さな値を示した。
 以上の結果より、本実施形態の金属空気電池は、バクテリアに産生させたセルロースが分散したゲルによる共連続体を空気極用の電極を用いた場合においても、炭素数18~22のアルキルグルコシドを添加しない場合の金属空気電池よりも、放電容量が優れていることが確認された。
 [比較例3]
 次に、比較例3について説明する。比較例3は、以下の各電解液を用いて、実施例5と同様の亜鉛空気電池セルを作製した。空気極にはカーボン(ケッチェンブラックEC600JD)を用い、負極には亜鉛を用いた。電解液には、炭素数18のアルキルグルコシドを用いた。
 比較例3の電解液には、1mol/Lの塩化ナトリウム水溶液と、1mol/Lの塩化ナトリウム水溶液に1mLあたり5mg以上のTriton-X100を添加して飽和濃度とした水溶液と、1mol/Lの塩化ナトリウム水溶液に1mLあたり5mg以上の炭素数16のアルキルグルコシドを添加して飽和濃度とした水溶液とをそれぞれ用いた。
 放電試験の方法は、実施例1と同様である。以下の表9に、比較例3の金属空気電池の放電容量を示す。表9には、実施例5の結果も示している。
Figure JPOXMLDOC01-appb-T000009
 
 塩化ナトリウム水溶液を電解液に用いた電池の電圧は1.1Vで、放電容量は830mAh/gであった。Triton-X100を添加した電解液を用いた電池の電圧は0.9V、放電容量は980mAh/gであった。炭素数16のアルキルグルコシドを添加した電解液を用いた電池の電圧は0.9Vで、放電容量は1090mAh/gであった。いずれの比較例も、放電容量は実施例5よりも小さな値を示した。
 以上の結果より、本実施形態の金属空気電池は、負極に亜鉛を用いた場合においても、炭素数18~22のアルキルグルコシドを添加しない場合の金属空気電池よりも、放電容量が優れていることが確認された。
 以上説明した本実施形態の金属空気電池は、金属空気電池であって、空気極101と、負極102と、前記空気極101と前記負極102との間に配置された電解液104と、を備え、前記電解液104は、炭素数が18以上22以下のアルキルグルコシドを含む。
 このように本実施形態の金属空気電池は、界面活性剤として炭素数が18以上22以下のアルキルグルコシドが添加された電解液を用いることで、負極の腐食反応を抑制し、高い放電容量をもつ金属空気電池を実現することができる。
 また、本実施形態の金属空気電池は、図2に示すように、電解液を正極側電解液103と、負極側電解液104とに隔てるイオン交換膜105を備え、炭素数が18以上22以下のアルキルグルコシドは負極側電解液104に含まれていてもよい。イオン交換膜105は前記アルキルグルコシドが拡散するのを抑制するため、アルキルグルコシドの効果により負極102の腐食反応が抑制されるとともに、アルキルグルコシドはイオン交換膜105を透過しないため、空気極101が親水化して水没することを防ぐことができる。したがって、イオン交換膜105を備える金属空気電池は、空気極101への影響を最小限に抑えつつ、負極102の腐食反応を抑制することで電池性能を向上することができる。
 なお、本発明は上記実施形態に限定されるものではなく、本発明の技術的思想内で、様々な変形および組み合わせが可能である。
 101:空気極
 102:負極
 103、104:電解液
 105:イオン交換膜

Claims (5)

  1.  空気極と、
     負極と、
     前記空気極と前記負極との間に配置された電解液と、を備え、
     前記電解液は、炭素数が18以上22以下のアルキルグルコシドを含む
     金属空気電池。
  2.  前記電解液を、正極側電解液と、負極側電解液とに隔てるイオン交換膜を備え、
     前記アルキルグルコシドは、前記負極側電解液に含まれる
     請求項1に記載の金属空気電池。
  3.  前記イオン交換膜は、炭素原子、水素原子、酸素原子、窒素原子、硫黄原子、ナトリウム原子、カリウム原子及びリン原子からなる群より選択される少なくとも2つを含む
     請求項2に記載の金属空気電池。
  4.  前記負極は、マグネシウム、亜鉛、アルミニウム、鉄、カルシウムからなる群より選択される少なくとも1つを含む
     請求項1から3のいずれか1項に記載の金属空気電池。
  5.  前記空気極は、複数のナノ構造体が非共有結合で一体化した三次元ネットワーク構造の共連続体を含む
     請求項1から4のいずれか1項に記載の金属空気電池。
PCT/JP2020/040518 2020-10-28 2020-10-28 金属空気電池 WO2022091267A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/040518 WO2022091267A1 (ja) 2020-10-28 2020-10-28 金属空気電池
US18/248,964 US20230387510A1 (en) 2020-10-28 2020-10-28 Metal Air Battery
JP2022558686A JP7510084B2 (ja) 2020-10-28 2020-10-28 金属空気電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/040518 WO2022091267A1 (ja) 2020-10-28 2020-10-28 金属空気電池

Publications (1)

Publication Number Publication Date
WO2022091267A1 true WO2022091267A1 (ja) 2022-05-05

Family

ID=81383757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040518 WO2022091267A1 (ja) 2020-10-28 2020-10-28 金属空気電池

Country Status (3)

Country Link
US (1) US20230387510A1 (ja)
JP (1) JP7510084B2 (ja)
WO (1) WO2022091267A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108388A (ja) * 2009-11-13 2011-06-02 Nippon Telegr & Teleph Corp <Ntt> リチウム空気電池
JP2013515362A (ja) * 2009-12-22 2013-05-02 メルク パテント ゲーエムベーハー エレクトロルミネセンス機能性界面活性剤
JP2017520075A (ja) * 2014-03-31 2017-07-20 テクニオン・リサーチ・アンド・ディベロップメント・ファウンデーション・リミテッド 不動態金属活性化の方法およびその使用
JP2020102399A (ja) * 2018-12-25 2020-07-02 日本電信電話株式会社 金属空気電池、及び、空気極製造方法
JP2020102381A (ja) * 2018-12-21 2020-07-02 学校法人大阪産業大学 電荷生成装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108388A (ja) * 2009-11-13 2011-06-02 Nippon Telegr & Teleph Corp <Ntt> リチウム空気電池
JP2013515362A (ja) * 2009-12-22 2013-05-02 メルク パテント ゲーエムベーハー エレクトロルミネセンス機能性界面活性剤
JP2017520075A (ja) * 2014-03-31 2017-07-20 テクニオン・リサーチ・アンド・ディベロップメント・ファウンデーション・リミテッド 不動態金属活性化の方法およびその使用
JP2020102381A (ja) * 2018-12-21 2020-07-02 学校法人大阪産業大学 電荷生成装置
JP2020102399A (ja) * 2018-12-25 2020-07-02 日本電信電話株式会社 金属空気電池、及び、空気極製造方法

Also Published As

Publication number Publication date
JPWO2022091267A1 (ja) 2022-05-05
US20230387510A1 (en) 2023-11-30
JP7510084B2 (ja) 2024-07-03

Similar Documents

Publication Publication Date Title
JP6951623B2 (ja) マグネシウム水電池およびその正極の製造方法
JP6711915B2 (ja) 電池およびその正極の製造方法
JP7025644B2 (ja) 金属空気電池及び空気極製造方法
JP7071643B2 (ja) 金属空気電池、及び、空気極製造方法
JP6695304B2 (ja) マグネシウム空気電池およびその正極、負極ならびにセパレータの製造方法
JP6563804B2 (ja) リチウム空気二次電池用空気極およびその製造方法並びにリチウム空気二次電池
JP6673759B2 (ja) マグネシウム空気電池の製造方法
JP7356053B2 (ja) 空気電池、および、空気電池の製造方法
JP7068585B2 (ja) バイポーラ型金属空気電池、空気極製造方法、及び、集電体製造方法
WO2022091267A1 (ja) 金属空気電池
WO2022070393A1 (ja) 金属空気電池
JP2018092854A (ja) 亜鉛空気電池の製造方法
WO2021111515A1 (ja) 金属空気電池、金属空気電池の正極の製造方法および金属空気電池の製造方法
WO2021240602A1 (ja) 金属空気電池および空気極の製造方法
WO2022097200A1 (ja) 金属空気電池および空気極の製造方法
TW202114281A (zh) 蓄電裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959785

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022558686

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18248964

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20959785

Country of ref document: EP

Kind code of ref document: A1