WO2022097200A1 - 金属空気電池および空気極の製造方法 - Google Patents

金属空気電池および空気極の製造方法 Download PDF

Info

Publication number
WO2022097200A1
WO2022097200A1 PCT/JP2020/041210 JP2020041210W WO2022097200A1 WO 2022097200 A1 WO2022097200 A1 WO 2022097200A1 JP 2020041210 W JP2020041210 W JP 2020041210W WO 2022097200 A1 WO2022097200 A1 WO 2022097200A1
Authority
WO
WIPO (PCT)
Prior art keywords
continuum
metal
air electrode
catalyst
air
Prior art date
Application number
PCT/JP2020/041210
Other languages
English (en)
French (fr)
Inventor
三佳誉 岩田
正也 野原
博章 田口
武志 小松
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2022560540A priority Critical patent/JPWO2022097200A1/ja
Priority to PCT/JP2020/041210 priority patent/WO2022097200A1/ja
Priority to US18/249,140 priority patent/US20230411634A1/en
Publication of WO2022097200A1 publication Critical patent/WO2022097200A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8842Coating using a catalyst salt precursor in solution followed by evaporation and reduction of the precursor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes

Definitions

  • the present invention relates to a method for manufacturing a metal-air battery and an air electrode.
  • metal-air batteries In recent years, research and development of metal-air batteries has been carried out as a candidate that can be a battery with a low environmental load. Since the metal-air battery uses oxygen and water as the positive electrode active material and metals such as magnesium, iron, aluminum, and zinc for the negative electrode, the influence on soil pollution and the influence on the ecosystem are low. In addition, these are resource-rich materials and are cheaper than rare metals.
  • Non-Patent Document 1 zinc-air batteries using zinc as the negative electrode have been commercialized as a drive source for hearing aids and the like. Further, a magnesium-air battery using magnesium as a negative electrode has been researched and developed as a battery having a low environmental load (see Non-Patent Document 1 and Non-Patent Document 2).
  • Non-Patent Document 1 a fluororesin is used as a binder for the air electrode, and in Non-Patent Document 2, a metal containing lead or indium is used for the negative electrode, which causes soil contamination and the like to the natural environment. Contains materials that may be affected by.
  • a metal-air battery made of a material that considers the natural environment can eliminate environmental problems by not using environmentally hazardous substances such as rare metal, but if a metal-air battery is made without using rare metal, the battery performance will be improved. There is the issue of going down.
  • the present invention has been made in view of this problem, and an object thereof is to improve the performance of a metal-air battery.
  • One aspect of the present invention is a metal-air battery, comprising an air electrode, a negative electrode containing a metal, and an electrolyte having ionic conductivity, and the air electrode is integrated with a plurality of nanostructures branched. It contains a co-continuum having a three-dimensional network structure and mesoporous carbon supported on the co-continuum.
  • One aspect of the present invention is a method for manufacturing an air electrode of a metal air cell, which is a method for manufacturing an air electrode of a metal air cell, which comprises a synthesis step for synthesizing mesoporous carbon, the mesoporous carbon, and a plurality of nanometers.
  • the present invention comprises a drying step of obtaining a co-continuum having a three-dimensional network structure in which the plurality of nanostructures are branched and integrated.
  • One aspect of the present invention is a method for producing an air electrode of a metal air cell, which comprises a precursor synthesis step of reacting with an organic compound using mesoporous silica as a template to obtain a precursor of mesoporous carbon, and a plurality of the precursors.
  • FIG. 1 is a configuration diagram showing a configuration of a metal-air battery according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of the manufacturing method 1.
  • FIG. 3 is a flowchart of the manufacturing method 2.
  • FIG. 4 is a flowchart of the manufacturing method 3.
  • FIG. 5 is a flowchart of the manufacturing methods 4, 5 and 6.
  • FIG. 6A is an external view of the coin cell type zinc-air battery of the first embodiment.
  • FIG. 6B is a bottom view of the coin cell type zinc-air battery of Example 1.
  • FIG. 7 is a diagram showing a discharge curve of the first embodiment.
  • FIG. 1 is a block diagram showing a configuration of a metal-air battery according to an embodiment of the present invention.
  • air oxygen
  • water is used as the positive electrode active material
  • metal is used as the negative electrode active material.
  • the illustrated metal-air battery includes a gas diffusion type air electrode 101 which is a positive electrode, a negative electrode 102 containing a metal, and an electrolyte 103 arranged between the air electrode 101 and the negative electrode 102.
  • the air electrode 101 contains a conductive material.
  • the air electrode 101 may include a catalyst.
  • the surface of the negative electrode 102 on the side of the electrolyte 103 is in contact with the electrolyte 103.
  • the negative electrode 102 contains a metal.
  • the electrolyte 103 has ionic conductivity and may be either an electrolytic solution or a solid electrolyte.
  • the electrolytic solution means a case where the electrolyte is in a liquid form.
  • the solid electrolyte means a case where the electrolyte is in a gel form or a solid form.
  • the air electrode 101 includes a conductive material and a catalyst.
  • the conductive material includes a co-continuum and mesoporous carbon supported on the co-continuum.
  • Mesoporous carbon is carbon with uniform pores.
  • a co-continuum of the conductive material of the air electrode 101 will be described.
  • a co-continuum is a material having a three-dimensional network structure in which a plurality of nanostructures are branched and integrated.
  • the co-continuum is a porous body and has an integral structure.
  • nanostructure for example, nanosheets or nanofibers can be used.
  • a co-continuum becomes a three-dimensional network structure by having a plurality of integrated nanostructures having branches. For this reason, the co-continuum has a stretchable structure in which the branched portions of the nanostructures are deformable.
  • the nanosheet may be composed of, for example, at least one selected from the group consisting of carbon, iron oxide, manganese oxide, magnesium oxide, molybdenum oxide, and molybdenum sulfide compound.
  • the molybdenum sulfide compound is, for example, molybdenum disulfide, phosphorus-doped molybdenum sulfide, and the like.
  • the elements of these materials are 16 kinds of essential elements (C, O, H, N, P, K, S, Ca, Mg, Fe, Mn, B, Zn, Cu, Mo, Cl, which are indispensable for plant growth. ) May be included.
  • Nanosheets are defined as sheet-like substances having a thickness of 1 nm to 1 ⁇ m and having a plane length and width of 100 times or more the thickness.
  • graphene is a carbon nanosheet.
  • the nanosheet may be rolled or wavy, the nanosheet may be curved or bent, and may have any shape.
  • the nanofiber contains at least one selected from the group consisting of carbon, iron oxide, manganese oxide, magnesium oxide, molybdenum oxide, molybdenum sulfide, and cellulose (carbonized cellulose). Further, the nanofiber may consist of at least one selected from the above group.
  • the elements of these materials are 16 kinds of essential elements (C, O, H, N, P, K, S, Ca, Mg, Fe, Mn, B, Zn, Cu, Mo, Cl, which are indispensable for plant growth. ) May be included.
  • Nanofibers are defined as fibrous substances having a diameter of 1 nm to 1 ⁇ m and a length of 100 times or more the diameter. Further, the nanofibers may be hollow or coiled, and may have any shape. As for cellulose, as will be described later, it is used by carbonizing it to make it conductive.
  • the mesoporous silica can be produced by a known production method, and is not particularly limited as long as it can be coated with carbon.
  • Mesoporous silica is, for example, SBA series (SBA-15, SBA-16, SBA-1, SBA-3, SBA-12) using block copolymers, MCM series (MCM-41) using small molecule cationic surfactants. , MCM-48, MCM-50), FMS-16, KIT-5, KIT-6, MSU-1, MSU-3, HMS and the like.
  • the mesoporous carbon may be synthesized without using mesoporous silica. Specifically, there is the STARBON series and the like.
  • Organic compounds can be produced by a known process of carbon coating by organically modifying mesoporous silica and carbonizing it.
  • An air electrode can be created by using the above-mentioned (I-1) conductive material (co-continuum) and (I-2) conductive material (mesoporous carbon).
  • mesoporous carbon is synthesized by a known fabrication process.
  • Mesoporous carbon is mixed with a sol or gel in which nanostructures are dispersed and frozen to obtain a frozen product (freezing step).
  • a conductive material having an air electrode 101 that is, a co-continuum on which mesoporous carbon is supported can be produced.
  • a gel in which nanofibers made of iron oxide, manganese oxide, silicon, or cellulose are dispersed can be produced by a predetermined bacterium (gel production process).
  • a gel in which nanofibers made of cellulose are dispersed is produced by a predetermined bacterium (gel production step), and the gel is heated in an atmosphere of an inert gas and carbonized to obtain a co-continuum (carbonization step). You may do so.
  • the co-continuum constituting the air electrode 101 preferably has an average pore diameter of, for example, 0.1 to 50 ⁇ m, and more preferably 0.1 to 2 ⁇ m.
  • the average pore diameter is a value obtained by the mercury intrusion method.
  • the electrode reaction at the air electrode 101 and the negative electrode 102 will be described.
  • oxygen in the air and an electrolyte come into contact with each other on the surface of the conductive air electrode 101, so that the reaction shown in "1 / 2O 2 + H 2 O + 2e- ⁇ 2OH -... ( 1)" is performed. proceed.
  • the reaction of "Me ⁇ Men + + ne -... ( 2) (Me means a metal and n is a valence of the metal)" proceeds in the negative electrode 102 in contact with the electrolyte 103.
  • the metal constituting the negative electrode 102 emits electrons and dissolves in the electrolyte 103 as n-valent metal ions.
  • the reaction represented by the formula (1) proceeds on the surface of the air electrode 101, so it is considered better to generate a large amount of reaction sites inside the air electrode 101.
  • the air electrode 101 which is a positive electrode, can be produced by a known process such as molding carbon powder with a binder, but as described above, in a metal-air battery, a large amount of reaction sites can be generated inside the air electrode 101. It is important that the air electrode 101 has a high specific surface area.
  • the specific surface area of the co-continuum constituting the air electrode 101 is preferably 200 m 2 / g% or more, and more preferably 300 m 2 / g or more.
  • the air electrode 101 of the present embodiment includes a co-continuum having a three-dimensional network structure in which a plurality of nanostructures are integrated by non-covalent bonds, the above-mentioned problems can be solved and the voltage is increased. become able to. Further, since the air electrode 101 of the present embodiment contains mesoporous carbon, not only the specific surface area is increased, but also the oxygen adsorption capacity is improved and the oxygen reduction reaction (discharge) at the air electrode 101 is promoted. Battery performance will be greatly improved.
  • the catalyst is selected from at least one metal selected from the group consisting of iron, manganese, zinc, copper and molybdenum, or from the group consisting of calcium, iron, manganese, zinc, copper and molybdenum. Includes at least one metal oxide (metal oxide).
  • the elements of these materials may be composed of metals contained in 16 kinds of essential elements essential for plant growth and have catalytic ability.
  • the metal iron, manganese, and zinc are preferable, and an oxide of one metal selected from these, or a composite oxide of two or more metals is preferable.
  • manganese oxide MnO 2
  • Manganese oxide is preferable because it exhibits particularly excellent catalytic performance in the present embodiment.
  • the metal oxide used as a catalyst is in the form of an amorphous hydrate.
  • it may be a hydrate of the transition metal oxide described above. More specifically, it may be manganese oxide (IV) -n hydrate.
  • n is the number of moles of H2O with respect to 1 mol of MnO2.
  • the content of the catalyst contained in the air electrode 101 is 0.1 to 70% by weight, preferably 1 to 30% by weight, based on the total weight of the air electrode 101.
  • the battery performance is greatly improved.
  • the air electrode 101 and the electrolyte 103 are in contact with each other, and at the same time, oxygen gas in the atmosphere is supplied to form a three-phase interface of the electrolyte-electrode-gas (oxygen). If the catalyst has high activity at this three-phase interface site, oxygen reduction (discharge) on the electrode surface proceeds smoothly, and the battery performance is greatly improved.
  • oxygen since the catalyst has a strong interaction with oxygen, which is a positive electrode active material, many oxygen species can be adsorbed on its own surface, or oxygen species can be occluded in oxygen vacancies.
  • the oxygen species adsorbed on the surface of the metal oxide constituting the catalyst or occluded in the oxygen pores are subjected to an oxygen reduction reaction as an oxygen source (active intermediate reactant) of the above formula (1). It is used in the above reaction to facilitate the above reaction.
  • an oxygen reduction reaction as an oxygen source (active intermediate reactant) of the above formula (1). It is used in the above reaction to facilitate the above reaction.
  • a metal oxide such as manganese oxide.
  • the metal itself can be used as a catalyst, and the metal functions in the same manner as the metal oxide.
  • the catalyst has a high specific surface area.
  • the specific surface area of the catalyst made of metal or metal oxide may be 0.1 to 1000 m 2 / g, preferably 1 to 500 m 2 / g.
  • the specific surface area is a known specific surface area obtained by the BET method by N2 adsorption.
  • the air electrode 101 to which the catalyst is added can be produced by the method for producing the air electrode 101, which will be described later.
  • the negative electrode 102 contains a negative electrode active material.
  • This negative electrode active material is a material that can be used as a negative electrode material for a metal-air battery, that is, one selected from the group consisting of magnesium, aluminum, calcium, iron and zinc, or one selected from the above group. It is not particularly limited as long as it is contained as a main component.
  • the negative electrode 102 may be formed by using a metal as a negative electrode, a metal sheet, or a powder obtained by crimping a metal foil such as copper.
  • the negative electrode 102 can be formed by a known method.
  • the negative electrode 102 can be manufactured by stacking a plurality of metal magnesium foils and forming them into a predetermined shape.
  • the electrolyte 103 of the metal-air battery may be a substance capable of transferring metal ions and hydroxide ions between the air electrode 101 (positive electrode) and the negative electrode 102.
  • metal salts containing potassium, sodium, etc., which are abundant on the earth can be mentioned.
  • This metal salt contains 16 kinds of essential elements (C, O, H, N, P, K, S, Ca, Mg, Fe, Mn, B, Zn, Cu, Mo, Cl) which are indispensable for plant growth. ), It may be composed of elements contained in seawater or rainwater.
  • the electrolyte 103 is, for example, acetic acid, carbonic acid, citric acid, malic acid, oxalic acid, phosphoric acid, or a salt thereof, HEPES (4- (2-hydroxyethyl) -1-piperazineethanesulfonic acid), pyrophosphate, metaphosphate. It may be composed of such as.
  • Citric acid, malic acid and oxalic acid are used as fertilizers and have a function of promoting phosphorus absorption into plants by forming a complex with phosphorus, which is one of the abundant elements among fertilizer components. Therefore, not only does it have no effect when the electrolyte leaks into the soil, but it also functions as a fertilizer. Therefore, citric acid, malic acid, oxalic acid or a salt composed of these is particularly preferable to be used for the electrolyte 103.
  • an aromatic anion exchange polymer solid electrolyte having ionic conductivity through which metal ions and hydroxide ions pass an inorganic layered compound-based solid electrolyte, and the like may be used.
  • the metal-air battery of the present embodiment includes a separator, a battery case, structural members such as a metal mesh (for example, titanium mesh), and other elements required for the metal-air battery. be able to.
  • a separator is not particularly limited as long as it is a fiber material, but a cellulosic separator made from plant fibers or bacteria is preferable.
  • the metal-air battery of the present embodiment has a case of an air electrode 101, a negative electrode 102, and an electrolyte 103 obtained by an air electrode manufacturing method described later, together with other necessary elements based on a desired metal-air battery structure. It can be produced by appropriately arranging it in an appropriate container such as. A conventionally known method can be applied to the manufacturing procedure of such a metal-air battery.
  • FIG. 2 is a flowchart for explaining the manufacturing method 1.
  • step S101 mesoporous carbon (hereinafter referred to as MPC) is synthesized using mesoporous silica as a precursor.
  • MPC mesoporous carbon
  • mesoporous silica can be used.
  • SBA-15 manufactured by Sigma-Aldrich
  • MCM-41 manufactured by Sigma-Aldrich
  • HMS manufactured by Sigma-Aldrich
  • other known production methods can be used, and SBA series (SBA-15, SBA-16, SBA-1, SBA-3, SBA-12) using block copolymers, small molecule-based cationic surfactants can be used.
  • SBA series SBA-15, SBA-16, SBA-1, SBA-3, SBA-12
  • small molecule-based cationic surfactants can be used.
  • MCM series MCM-41, MCM-48, MCM-50
  • FMS-16 FMS-16, KIT-5, MSU-1, MSU-3, HMS and the like
  • a known production method can be used for the synthesis of MPC.
  • carbon coating is possible by the CVD method by silanol groups on the surface of silica material using an organic silylating agent, desorbing organic groups by heat treatment, and generating Si radicals on the surface of silica material.
  • the carbon source used in the CVD method includes alcohols having hydroxyl groups such as methanol, ethanol, propanol and butanol, carboxylic acid groups such as pyrrolimetic acid anhydride, thiophene, pyridine, acrylonitrile and acetonitrile, and organics containing nitrogen and sulfur. Examples include compounds.
  • MPC obtained by filling mesoporous silica with sucrose and sulfuric acid, then firing under vacuum, and performing alkaline etching to remove the silica mold can also be applied.
  • the STARBON series which is an MPC obtained by gelling starch in water, drying and heating, may be used without using mesoporous silica.
  • step S102 a sol or gel in which the obtained MPC and a plurality of nanostructures are dispersed is prepared.
  • the MPC obtained in step S101 is dispersed in a sol or gel in which a plurality of nanostructures such as nanosheets and nanofibers are dispersed (gel production step).
  • the sol or gel produced here is a precursor of a co-continuum carrying MPC.
  • a sol or gel is obtained by adding a dispersion medium to the dispersoids MPC and nanostructures and stirring the mixture.
  • the sol means a colloid composed of a dispersion medium and a nanostructure which is a dispersoid. Specifically, it means a dispersion system having a shear modulus of 1 Pa or less.
  • the gel means that the dispersion medium loses fluidity due to a three-dimensional network structure such as a nanostructure which is a dispersoid and becomes a solid state. Specifically, it means a dispersion system having a shear modulus of 10 2 to 10 6 Pa.
  • an aqueous system such as water (H 2 O), carboxylic acid, methanol (CH 3 OH), ethanol (C 2 H 5 OH), propanol (C 3 H 7 OH), n-
  • organic systems such as butanol, isobutanol, n-butylamine, dodecane, unsaturated fatty acids, ethylene glycol, heptane, hexadecane, isoamyl alcohol, octanol, isopropanol, acetone and glycerin. Two or more kinds of these may be mixed as the dispersion medium.
  • nanosheets and nanofibers can be used as dispersoids.
  • graphene powder Sigma-Aldrich
  • iron oxide Kanto Chemical
  • manganese oxide Kanto Chemical
  • zinc oxide Kanto Chemical
  • molybdenum oxide Kanto Chemical
  • silica silica
  • It is a compound mainly composed of chemical
  • titanium oxide manufactured by Kanto Chemical Co., Ltd.
  • alumina manufactured by Kanto Chemical Co., Ltd.
  • iron oxide manufactured by Kanto Chemical
  • manganese oxide manufactured by Kanto Chemical
  • zinc oxide manufactured by Kanto Chemical
  • molybdenum oxide manufactured by Kanto Chemical
  • silica manufactured by Kanto Chemical
  • titanium oxide manufactured by Kanto Chemical
  • nanofibers containing at least one of these can be used.
  • the co-continuum By constructing a co-continuum of a three-dimensional network structure with a high specific surface area using nanostructures such as nanofibers or nanosheets, the pores act as cushions during compression or tension, providing excellent elasticity.
  • the co-continuum preferably has a strain of 5% or more at the elastic limit, and more preferably 10% or more.
  • concentration of the gel or sol By adjusting the concentration of the gel or sol, the specific surface area of the co-continuum can be freely adjusted. The thinner the concentration of the gel or sol, the higher the specific surface area of the resulting co-continuum.
  • the concentration of the dispersoid is preferably 0.01 to 10% by weight or less.
  • the freezing step of step S103 is a step of freezing the sol or gel to obtain a frozen body.
  • the freezing step is carried out, for example, by accommodating a sol or gel in which nanostructures are dispersed in a suitable container such as a test tube and cooling the periphery of the container in a cooling material such as liquid nitrogen.
  • the method of freezing is not particularly limited as long as the dispersion medium of the gel or sol can be cooled below the freezing point, and may be cooled in a freezer or the like. By freezing the gel or sol, the dispersion medium loses its fluidity and the dispersoid is fixed, and a three-dimensional network structure is constructed.
  • the dispersoid When the dispersoid is not fixed by the freezing step, a sufficiently high specific surface area cannot be obtained due to the aggregation of the dispersoid as the dispersion medium evaporates in the subsequent drying step, and the dispersion has a three-dimensional network structure. It is difficult to make a continuum.
  • step S104 the obtained frozen body is dried in a vacuum to obtain a co-continuum carrying MPC (drying step).
  • a co-continuum has a three-dimensional network structure in which a plurality of nanostructures are branched and integrated.
  • the drying step of step S104 is a step of taking out the dispersoid having a three-dimensional network structure maintained or constructed from the dispersion medium by drying the frozen body obtained in the freezing step in a vacuum.
  • the frozen body obtained in the freezing step is dried in a vacuum, and the frozen dispersion medium is sublimated from the solid state.
  • the frozen body is placed in an appropriate container such as a flask, and the inside of the container is evacuated.
  • the sublimation point of the dispersion medium is lowered, and it is possible to sublimate even a substance that does not sublimate under normal pressure.
  • the degree of vacuum in the drying step varies depending on the dispersion medium used, but is not particularly limited as long as the degree of vacuum is such that the dispersion medium sublimates.
  • the degree of vacuum is preferably 1.0 ⁇ 10 -6 to 1.0 ⁇ 10 -2- Pa. Further, heat may be applied using a heater or the like at the time of drying.
  • the dispersoid becomes fluid again in the dispersion medium, and the three-dimensional network structure of the plurality of nanostructures collapses. As described above, it is difficult to produce a co-continuum having elasticity by drying in the air.
  • step S105 The carbonization step of step S105 is carried out for the purpose of imparting conductivity by carbonizing when the nanostructure is cellulose nanofibers. If the nanostructures are not cellulose nanofibers, no carbonization step is required.
  • the carbonization of the co-continuum may be carried out by firing at 200 ° C. to 2000 ° C., more preferably 600 ° C. to 1800 ° C. in an inert gas atmosphere.
  • the gas that does not burn the cellulose nanofibers (cellulose) may be, for example, an inert gas such as nitrogen gas or argon gas. Further, it may be a reducing gas such as hydrogen gas or carbon monoxide gas, or it may be carbon dioxide gas.
  • the co-continuum thus obtained has high conductivity, corrosion resistance, and high specific surface area, and is used for batteries, capacitors, fuel cells, biofuel cells, microwave cells, catalysts, solar cells, and semiconductor manufacturing processes. , Medical equipment, beauty equipment, filters, heat resistant materials, flame resistant materials, heat insulating materials, conductive materials, electromagnetic wave shielding materials, electromagnetic wave noise absorbers, heating elements, microwave heating elements, cone paper, clothes, carpets, mirror anti-fog, Suitable as a sensor, touch panel, etc.
  • FIG. 3 is a flowchart for explaining the manufacturing method 2.
  • the conductive material of the air electrode is prepared by a method different from that of the manufacturing method 1.
  • mesoporous silica is used as a template to react with an organic compound to synthesize a precursor of MPC (MPC precursor synthesis step).
  • the precursor of MPC is a dispersion liquid using mesoporous silica as a template.
  • a preparation method using sucrose, starch, etc. as used in the hard template method for example, resorcinol, phloroglucinol, nonionic surfactant used in the soft template method, etc.
  • a production method using formaldehyde resin or the like can be applied.
  • Dispersion media for dispersing mesoporous silica and organic compounds include carboxylic acid, methanol (CH 3 OH), ethanol (C 2 H 5 OH), propanol (C 3 H 7 OH), n-butanol, isobutanol, n. -Butylamine, dodecane, unsaturated fatty acids, ethylene glycol, heptan, hexadecane, isoamyl alcohol, octanol, isopropanol, acetone, glycerin and the like can be used. However, since mesoporous silica has low water resistance, it is preferable to use a 50% to 100% organic solvent as the dispersion liquid.
  • the stirring time of the dispersion may be 1 to 7 days, preferably 1 to 3 days.
  • step S202 a sol or gel in which the obtained precursor of MPC and a plurality of nanostructures are dispersed is prepared.
  • the precursor of MPC obtained in step S201 is dispersed in a sol or gel in which a plurality of nanostructures such as nanosheets and nanofibers are dispersed (gel production step). That is, a sol or gel mixed with the precursor of MPC is prepared.
  • the sol or gel produced here is a precursor of a co-continuum in which a precursor of MPC is supported on a nanostructure.
  • step S203 the sol or gel prepared in step S202 is frozen to obtain a frozen body (freezing step).
  • step S204 the frozen product is dried in vacuum to obtain a co-continuum carrying a precursor of MPC (drying step).
  • the manufacturing method of steps S202 to S204 may be adjusted in the same manner as in steps S102 to S104 described in manufacturing method 1.
  • step S205 the produced co-continuity is carbonized under an inert atmosphere (carbonization step).
  • the carbonization step is aimed at removing organic matter from the precursor of MPC and imparting conductivity to the cellulose nanofibers when the cellulose nanofibers are used in the nanostructures.
  • the co-continuum carbonized in this way has high conductivity, corrosion resistance, high elasticity, and high specific surface area, and is suitable as an air electrode of a metal-air battery.
  • the co-continuum is heated at 200 ° C. to 2000 ° C., more preferably 600 ° C. to 1800 ° C. in an atmosphere of an inert gas.
  • the precursor of MPC supported on the co-continuum may be carbonized by firing (heating) in. This removes organic matter from the precursor of MPC.
  • the gas that does not burn cellulose may be, for example, an inert gas such as nitrogen gas or argon gas. Further, it may be a reducing gas such as hydrogen gas or carbon monoxide gas, or it may be carbon dioxide gas. In the present embodiment, carbon dioxide gas or carbon monoxide gas, which has an activating effect on the carbon material and is expected to have high activation of the co-continuum, is more preferable.
  • step S205 the carbonized co-continuum (precursor of MPC) is etched to remove mesoporous silica from the precursor of MPC, and MPC is synthesized.
  • Mesoporous silica can be removed from the precursor of MPC by etching with caustic soda (NaOH), hydrofluoric acid (HF) and the like. By removing the mesoporous silica, the weight of the air electrode can be reduced, and the weight energy density of the battery can be improved.
  • FIG. 4 is a flowchart for explaining the manufacturing method 3.
  • the catalyst is supported on the co-continuum on which the MPCs produced in the production methods 1 and 2 are supported.
  • the following catalyst-supporting step of supporting the catalyst is added.
  • step S301 the co-continuum obtained by the above-mentioned production method 1 or production method 2 is impregnated with an aqueous solution of a metal salt as a precursor of the catalyst (impregnation step).
  • the stretchable co-continuum containing the metal salt may be heat-treated in step S302 (heating step).
  • the preferred metal of the metal salt to be used is at least one metal selected from the group consisting of iron, manganese, zinc, copper and molybdenum. In particular, manganese is preferred.
  • sol-gel method in which a co-continuum is impregnated with a transition metal alkoxide solution and hydrolyzed.
  • the conditions of each method by these liquid phase methods are known, and these known conditions can be applied.
  • the liquid phase method is desirable.
  • the metal oxide supported by the above liquid phase method is in an amorphous state because crystallization has not progressed.
  • a crystalline metal oxide can be obtained by heat-treating the amorphous precursor in an inert atmosphere at a high temperature of about 500 ° C. Such crystalline metal oxides exhibit high performance even when used as a catalyst for an air electrode.
  • the precursor powder obtained when the above-mentioned amorphous precursor is dried at a relatively low temperature of about 100 to 200 ° C. is in a hydrated state while maintaining an amorphous state.
  • the hydrate of the metal oxide can be formally expressed as Me x O y ⁇ nH 2 O (where Me means the above metal, and x and y are contained in the metal oxide molecule, respectively. Represents the number of metals and oxygen, where n is the number of moles of H 2 O per mole of metal oxide).
  • the hydrate of the metal oxide obtained by such low temperature drying can be used as a catalyst.
  • Amorphous metal oxide (hydrate) has a large surface area because sintering has hardly progressed, and the particle size is also very small, about 30 nm. This is suitable as a catalyst, and by using this, excellent battery performance can be obtained.
  • crystalline metal oxides show high activity, but metal oxides crystallized by heat treatment at high temperatures as described above may have a significantly reduced surface area, and the particle size may be significantly reduced due to particle aggregation. May be about 100 nm.
  • the particle diameter is a value obtained by magnifying and observing with a scanning electron microscope (SEM) or the like and measuring the diameter of the particles per 10 ⁇ m square (10 ⁇ m ⁇ 10 ⁇ m) to obtain an average value. ..
  • a catalyst made of a metal oxide that has been heat-treated at a high temperature has particles that aggregate, so it may be difficult to add the catalyst to the surface of the co-continuum with high dispersion.
  • manufacturing method 4 manufacturing method 5, and manufacturing method 6 may be used.
  • FIG. 5 is a flowchart for explaining the manufacturing methods 4, 5 and 6.
  • the catalyst is supported on the co-continuum on which the MPCs produced in the manufacturing methods 1 and 2 are supported.
  • the following catalyst-supporting step of supporting the catalyst is added.
  • the co-continuum is immersed in an aqueous solution of the surfactant, and the surfactant is attached to the surface of the co-continuum.
  • the metal salt is attached to the surface of the co-continuum to which the surfactant is attached by using the aqueous solution of the metal salt by the surfactant.
  • the catalyst containing the metal or the metal oxide constituting the metal salt is supported on the co-continuum by heat treatment on the co-continuum to which the metal salt is attached.
  • the metal is at least one metal selected from the group consisting of iron, manganese, zinc, copper and molybdenum, or at least one selected from the group consisting of calcium, iron, manganese, zinc, copper and molybdenum. It is a metal oxide. In particular, manganese (Mn) or manganese oxide (MnO 2 ) is preferable.
  • the surfactant used in the first catalyst supporting step of the production method 4 is for supporting a metal or a transition metal oxide on an air electrode (co-continuum) with high dispersion. If the molecule has a hydrophobic group adsorbed on the carbon surface and a hydrophilic group adsorbed by transition metal ions like a surfactant, the metal ion which is a transition metal oxide precursor is high in the co-continuum. It can be adsorbed by the degree of dispersion.
  • the above-mentioned surfactant is not particularly limited as long as it has a hydrophobic group adsorbed on the carbon surface and a hydrophilic group adsorbed by manganese ions in the molecule, but a nonionic surfactant is preferable.
  • a nonionic surfactant for example, as an ester-type surfactant, there are glycerin laurate, glycerin monostearate, sorbitan fatty acid ester, sucrose fatty acid ester and the like.
  • an ether type surfactant there are polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene polyoxypropylene glycol and the like.
  • ester ether type surfactant there are polyoxyethylene sorbitan fatty acid ester, polyoxyethylene hextan fatty acid ester, sorbitan fatty acid ester polyethylene glycol and the like.
  • alkanolamide type surfactant there are lauric acid diethanolamide, oleic acid diethanolamide, stearic acid diethanolamide, cocamide DEA and the like.
  • surfactant of higher alcohol there are cetanol, stearyl alcohol, oleyl alcohol and the like.
  • poloxamer type surfactant poloxamer methacrylate and the like can be mentioned.
  • the concentration of the aqueous solution of the surfactant in the first catalyst supporting step of the production method 4 is preferably 0.1 to 20 g / L.
  • the immersion conditions such as the immersion time and the immersion temperature include, for example, immersing in a solution at room temperature to 50 ° C. for 1 to 48 hours.
  • the second catalyst-supporting step of the production method 4 includes further dissolving a metal salt that functions as a catalyst or adding an aqueous solution of the metal salt to the aqueous solution containing the surfactant in the first catalyst-supporting step.
  • a metal salt that functions as a catalyst or adding an aqueous solution of the metal salt to the aqueous solution containing the surfactant in the first catalyst-supporting step.
  • an aqueous solution in which a metal salt functioning as a catalyst is dissolved is prepared, and a co-continuum impregnated with (adhered to) the surfactant is immersed therein. May be.
  • the aqueous solution in which the metal salt is dissolved may be impregnated into the co-continuum to which the surfactant is attached. If necessary, an alkaline aqueous solution may be added dropwise to the co-continuum containing (attached) the obtained metal salt. These allow the metal or metal oxide precursor to adhere to the co-continuum.
  • the amount of the metal salt added in the second catalyst supporting step of the production method 4 is preferably an amount of 0.1 to 100 mmol / L.
  • the immersion conditions such as the immersion time and the immersion temperature include, for example, immersing in a solution at room temperature to 50 ° C. for 1 to 48 hours.
  • a manganese metal salt for example, manganese halide such as manganese chloride or a hydrate thereof
  • a surfactant for example, manganese halide such as manganese chloride or a hydrate thereof
  • an alkaline aqueous solution onto the obtained cocoon containing the manganese metal salt manganese hydroxide as a metal or a metal oxide precursor can be supported on the cocoon.
  • the amount of the catalyst supported by the above-mentioned manganese oxide can be adjusted by adjusting the concentration of the metal salt (for example, manganese chloride) in the aqueous metal salt solution.
  • the metal salt for example, manganese chloride
  • alkali used in the above-mentioned alkaline aqueous solution examples include hydroxides of alkali metals or alkaline earth metals, aqueous ammonia, aqueous ammonium solutions, and aqueous tetramethylammonium hydroxide (TMAH) solutions.
  • the concentration of these alkaline aqueous solutions is preferably 0.1 to 10 mol / L.
  • the metal or metal oxide precursor (metal salt) adhered to the surface of the co-continuum is converted into the metal itself or the metal oxide by heat treatment.
  • the co-continuum to which the precursor is attached is dried at room temperature (about 25 ° C.) to 150 ° C., more preferably 50 ° C. to 100 ° C. for 1 to 24 hours, and then 100 to 600 ° C., preferably 110.
  • the heat treatment may be performed at ⁇ 300 ° C.
  • the air electrode is produced by a co-continuum having the metal itself as a catalyst and adhered to the surface by heat treatment in an inert atmosphere or a reducing atmosphere such as argon, helium, and nitrogen. be able to. Further, by heat-treating in a gas containing oxygen (oxidizing atmosphere), it is possible to produce an air electrode by a co-continuum having a metal oxide as a catalyst and adhering to the surface.
  • the heat treatment is performed under the above-mentioned reducing conditions to once prepare a co-continuum to which the metal itself is adhered as a catalyst, and then the heat treatment is carried out in an oxidizing atmosphere to adhere the metal oxide as a catalyst. It is also possible to manufacture an air electrode using a co-continuum that has been subjected to heat treatment.
  • the co-continuum to which the metal or metal oxide precursor (metal salt) is attached is dried at room temperature to 150 ° C., more preferably 50 ° C. to 100 ° C., and the metal itself is catalyzed on the co-continuum. May be adhered to to form a metal / co-continuum complex.
  • the adhesion amount (content) of the catalyst due to the metal or the metal oxide is 0.1 to 70% by weight, preferably 1 to 30% by weight, based on the total weight of the eutectic and the catalyst. ..
  • the manufacturing method 4 it is possible to manufacture an air electrode in which a catalyst made of a metal or a metal oxide is highly dispersed on the surface of the co-continuum, and a metal-air battery having excellent battery characteristics can be constructed.
  • the co-continuum is immersed in an aqueous solution of the metal salt to attach the metal salt to the surface of the co-continuum.
  • the catalyst containing the metal constituting the metal salt is supported on the co-continuum by heat treatment on the co-continuum to which the metal salt is attached.
  • the catalyst is made into a hydrate of a metal oxide by allowing the co-continuum on which the catalyst is supported to act on high-temperature and high-pressure water.
  • the metal is at least one metal selected from the group consisting of iron, manganese, zinc, copper and molybdenum, or at least one selected from the group consisting of calcium, iron, manganese, zinc, copper and molybdenum. It is a metal oxide. In particular, manganese or manganese oxide (MnO 2 ) is preferable.
  • an aqueous solution of a metal salt as a precursor of a metal or a metal oxide finally used as a catalyst is attached (supported) to the surface of the co-continuum.
  • an aqueous solution in which the above metal salt is dissolved may be separately prepared and the co-continuum may be impregnated with this aqueous solution. The impregnation conditions and the like are the same as in the conventional case as described above.
  • the second catalyst supporting step in the manufacturing method 5 is the same as the third catalyst supporting step in the manufacturing method 4, and the heat treatment may be carried out in an inert atmosphere or a reducing atmosphere. Further, the co-continuum to which the precursor is attached, which was described as another method of the third catalyst supporting step of the production method 4, is heat-treated (dried) at a low temperature (room temperature to 150 ° C., more preferably 50 ° C. to 100 ° C.). Therefore, the metal may be attached to the co-continuum.
  • a low temperature room temperature to 150 ° C., more preferably 50 ° C. to 100 ° C.
  • the air electrode 101 using the metal itself as a catalyst exhibits high activity, but since the catalyst is a metal, it is vulnerable to corrosion and may lack long-term stability. On the other hand, long-term stability can be realized by heat-treating the metal into a hydrate of the metal oxide by the third catalyst supporting step of the production method 5 described in detail below.
  • the hydrate of the metal oxide is in a state of being attached to the co-continuum.
  • the metal-adhered co-continuum obtained in the second catalyst-supporting step of the production method 5 is immersed in high-temperature and high-pressure water, and the adhered metal is hydrated with a metal oxide. Converts to a catalyst consisting of.
  • a co-continuum to which a metal is attached is immersed in water at 100 ° C. to 250 ° C., more preferably 150 ° C. to 200 ° C., and the attached metal is oxidized to form a hydrate of a metal oxide. Just do it.
  • the boiling point of water under atmospheric pressure (0.1 MPa) is 100 ° C.
  • the pressure By increasing the pressure to, for example, about 10 to 50 MPa, preferably about 25 MPa, the boiling point of water rises in the closed container, and liquid water of 100 ° C. to 250 ° C. can be realized.
  • the metal By immersing the co-continuum to which the metal is attached in the high-temperature water thus obtained, the metal can be made into a hydrate of a metal oxide.
  • the co-continuum is immersed in an aqueous solution of the metal salt to attach the metal salt to the surface of the co-continuum.
  • the co-continuum to which the metal salt is attached is allowed to act on high-temperature and high-pressure water to obtain a catalyst composed of a hydrate of a metal oxide made of a metal constituting the metal salt. It is carried on a co-continuum.
  • the metal may be at least one metal selected from the group consisting of iron, manganese, zinc, copper and molybdenum.
  • the first catalyst supporting step in the manufacturing method 6 is the same as the first catalyst supporting step in the manufacturing method 5, and the description thereof is omitted here.
  • the precursor (metal salt) adhered to the surface of the co-continuum is converted into a hydrate of a metal oxide by heat treatment at a relatively low temperature.
  • the co-continuum to which the precursor is attached is allowed to act on high-temperature and high-pressure water, and then dried at a relatively low temperature of about 100 to 200 ° C.
  • the precursor becomes a hydrate in which water molecules are present in the particles while maintaining the amorphous state of the precursor.
  • the hydrate of the metal oxide obtained by such low temperature drying is used as a catalyst.
  • the hydrate of the metal oxide can be supported on the co-continuum in the form of nano-sized fine particles with high dispersion. Therefore, when such a co-continuum is used as an air electrode, it is possible to exhibit excellent battery performance.
  • the co-continuum obtained by each of the above manufacturing methods can be formed into a predetermined shape by a known procedure to form an air electrode.
  • Example 1 Air electrode: MPC-supported co-continuum
  • the first embodiment is an example in which the air electrode manufactured by the manufacturing method described in the manufacturing method 1 is used.
  • a co-continuum having a three-dimensional network structure on which MPC is supported is used as a conductive material.
  • Covalents are composed of multiple nanofibers united by non-covalent bonds and have a three-dimensional network structure.
  • the porosity shown below was calculated by modeling the pores as a cylinder from the pore size distribution obtained by the mercury intrusion method for the co-continuum.
  • a commercially available carbon nanofiber sol [dispersion medium: water ( H2O ), 0.4% by weight, manufactured by Sigma-Aldrich] was placed in a test tube, and the synthesized CMK-3 was further placed therein for 3 hours. Stirred. Then, the test tube was immersed in liquid nitrogen for 30 minutes to completely freeze the CMK-3 supported carbon nanofiber sol. After completely freezing the carbon nanofiber sol, the frozen carbon nanofiber sol is taken out into a eggplant flask and dried in a vacuum of 10 Pa or less by a freeze dryer (manufactured by Tokyo Science Instruments Co., Ltd.). An elastic co-continuum having a three-dimensional network structure containing carbon nanofibers carrying CMK-3 was obtained.
  • the obtained co-continuum was evaluated by X-ray diffraction (XRD) measurement, scanning electron microscope (SEM) observation, pore ratio measurement, tensile test, and BET specific surface area measurement. It was confirmed by XRD measurement that the co-continuum produced in this example was a carbon (C, PDF card No. 00-0581-1638) single phase.
  • the PDF card No. is a card number of PDF (Powder Diffraction File), which is a database collected by the International Center for Diffraction Data (ICDD), and the same applies hereinafter.
  • the co-continuum was a co-continuity in which nanofibers were continuously connected and the average pore size was 0.7 ⁇ m.
  • the BET specific surface area of the co-continuum was measured by the mercury intrusion method and found to be 880 m 2 / g.
  • the porosity of the co-continuum was measured by the mercury intrusion method, it was 85% or more. From the results of the tensile test, it was confirmed that the co-continuum did not exceed the elastic region even when a strain of 40% was applied due to the tensile stress, and restored to the shape before the stress was applied.
  • the negative electrode was adjusted by cutting out a commercially available metallic zinc plate (thickness 300 ⁇ m, made by Nirako) into a circle with a diameter of 14 mm using a punching blade, a laser cutter, or the like.
  • the electrolytic solution used was a solution of potassium chloride (KCl, manufactured by Kanto Chemical Co., Inc.) dissolved in pure water at a concentration of 1 mol / L.
  • KCl potassium chloride
  • As the separator a cellulosic separator for batteries (manufactured by Nippon Kodoshi Paper Industry Co., Ltd.) was used.
  • the coin-cell type zinc-air battery shown in FIGS. 6A and 6B was produced using the above-mentioned air electrode, negative electrode, electrolytic solution serving as an electrolyte, and a separator.
  • FIG. 6A is a cross-sectional view of the coin cell type zinc-air battery of this embodiment.
  • FIG. 6B is a bottom view of the coin cell type zinc-air battery of this embodiment as viewed from the air electrode side.
  • the above air electrode 101 was installed in an air electrode case 201 in which the peripheral edge of a copper mesh foil (manufactured by MIT Japan) was fixed inside by spot welding.
  • the air electrode case 201 has an air hole 201a.
  • the peripheral portion thereof was fixed to a copper mesh foil (manufactured by MIT Japan) by spot welding, and the copper mesh foil was spot welded to the negative electrode case 202 and fixed.
  • a separator was placed on the air electrode 101 installed in the air electrode case 201, and an electrolytic solution was injected into the placed separator to obtain an electrolyte 103.
  • the negative electrode case 202 to which the negative electrode 102 is fixed is put on the air electrode case 201, and the peripheral portions of the air electrode case 201 and the negative electrode case 202 are crimped with a coin cell caulking machine to obtain a coin cell type zinc containing a polypropylene gasket 203.
  • An air battery was manufactured.
  • the battery performance of the manufactured coin cell type zinc-air battery was measured.
  • a discharge test was carried out.
  • a commercially available charge / discharge measurement system (SD8 charge / discharge system manufactured by Hokuto Denko Co., Ltd.) is used, and 0.1 mA / cm 2 is energized at the current density per effective area of the air electrode to open the circuit. It was measured from the voltage until the discharge voltage dropped to 0V.
  • the discharge test of the zinc-air battery was measured in a constant temperature bath at 25 ° C. (atmosphere is in a normal living environment). The discharge capacity was expressed as a value per weight (mAh / g) of the air electrode including the co-continuum.
  • the discharge curve in the zinc-air battery of this example is shown in FIG.
  • the average discharge voltage when the co-continuum is used for the air electrode is 1.1 V, and the discharge capacity is 1100 mAh / g.
  • the average discharge voltage is the battery voltage at the time of the discharge capacity (550 mAh / g in Example 1) which is 1/2 of the discharge capacity of the battery (1100 mAh / g in this embodiment).
  • the average discharge voltage and the discharge capacity were larger than those of Comparative Example 1 in which the air electrode using powdered carbon, which will be described later, was evaluated. Since the co-continuum carrying MPC has a higher specific surface area than powdered carbon, the oxygen reduction reaction is promoted, and the discharge product [Zn (OH) 2 ] can be efficiently precipitated, resulting in an average discharge. It is considered that the voltage and discharge capacity have been improved. The same evaluation as in this example can be obtained for the co-continuum carrying MPC according to the above-mentioned production method 2.
  • Example 2 Air electrode: MPC-supported co-continuum carrying a catalyst
  • a positive electrode in which an oxide or a metal is supported as a catalyst on a co-continuum on which MPC is supported will be described.
  • MnO 2 is supported on the co-continuum as a catalyst
  • any oxide can be supported on the co-continuum as a catalyst.
  • any metal can be supported on the co-continuum as a catalyst.
  • Example 2 a commercially available manganese ( II) chloride tetrahydrate (MnCl 2.4H 2 O ; manufactured by Kanto Chemical Co., Inc.) was dissolved in distilled water, impregnated with the co-continuum prepared in Example 1, and co-continuous. Manganese chloride was carried on the body. Next, ammonia water (28%) was gradually added dropwise to the manganese chloride-supporting co-continuum (manganese chloride supported by the co-continuum) until the pH reached 7.0, and the mixture was neutralized to precipitate manganese hydroxide. I let you. The precipitate was washed with distilled water 5 times so that chlorine did not remain. The obtained manganese hydroxide-supported co-continuum was heat-treated at 500 ° C. for 6 hours in an argon atmosphere to prepare a manganese oxide - supported co-continuum.
  • MnCl 2.4H 2 O manufactured by Kanto Chemical Co., Inc.
  • the prepared manganese oxide-supported copolymer was evaluated by XRD measurement and TEM observation. From the XRD measurement, the peak of manganese oxide (MnO 2 , PDF file No. 00-011-079) could be observed. It was confirmed that the catalyst supported on the co-continuum was a manganese oxide single phase. Further, it was observed by TEM that manganese oxide was deposited on the surface of the co-continuum in the form of particles having an average particle size of 100 nm.
  • a zinc-air battery was manufactured using this manganese oxide-supporting co-continuum as the positive electrode.
  • Table 1 below also shows the results when other catalysts were used.
  • the discharge capacity is 1250 mAh / g and the average discharge voltage is 1.20 V. It was a larger value than when was used. It is considered that not only the elasticity of the positive electrode but also the reaction resistance at the positive electrode was lowered and the discharge voltage was improved by supporting the catalyst on the positive electrode.
  • Comparative Example 1 Air electrode: powdered carbon
  • Comparative Example 1 a coin cell type zinc-air battery was produced in the same manner as in Example 1 using an air electrode different from that in Example 1.
  • potassium chloride (1 mol / L) similar to that in Example 1 was used.
  • Comparative Example 1 a zinc-air battery was prepared and evaluated by using carbon (Ketchen Black EC600JD) and manganese oxide known as electrodes for the air electrode as the air electrode.
  • the discharge capacity of Comparative Example 1 was 680 mAh / g, and the average discharge voltage was 0.83 V, which were smaller than those of Example 1. Further, when the air electrode of Comparative Example 1 was observed after the measurement, it was observed that a part of the air electrode collapsed and was dispersed in the electrolytic solution, and the electrode structure of the air electrode was destroyed. From the above results, it was confirmed that the metal-air battery of the present embodiment is superior in capacity and voltage to the metal-air battery using an air electrode made of a known material.
  • Comparative Example 2 Air electrode: co-continuum
  • Comparative Example 2 Air electrode: co-continuum
  • the obtained co-continuum was evaluated by XRD measurement, SEM observation, porosity measurement, tensile test, and BET specific surface area measurement. It was confirmed by XRD measurement that the co-continuum produced in this comparative example was a carbon (C, PDF card No. 00-0581-1638) single phase. In addition, by SEM observation and mercury intrusion method, it was confirmed that the nanofibers were continuously connected and the average pore size was 1 ⁇ m. Moreover, when the BET specific surface area measurement of the co-continuum was measured by the mercury intrusion method, it was 620 m2 / g. Moreover, when the porosity of the co-continuum was measured by the mercury intrusion method, it was 93% or more. Furthermore, from the results of the tensile test, it was confirmed that the co-continuum of this comparative example does not exceed the elastic region even when a strain of 40% is applied due to the tensile stress, and is restored to the shape before the stress is applied.
  • the discharge capacity is 850 mAh / g and the average discharge voltage is 1.02 V, which is larger than that of Comparative Example 1 in which carbon powder is used for the air electrode.
  • the value was smaller than that of Example 1 using the co-continuum in which the MPC was carried on the air electrode.
  • the metal-air battery of the present embodiment is superior in terms of voltage and capacity to the metal-air battery using a positive electrode made of a known material. Further, since the reaction of the positive electrode in the water-based metal-air battery has the same reaction mechanism, it can be expected that the battery performance will be improved by improving the efficiency of the positive electrode reaction even when the negative electrode is changed from zinc to another metal.
  • the metal-air battery of the present embodiment includes an air electrode, a negative electrode containing a metal, and an electrolyte having ionic conductivity, and the air electrode has a plurality of nanostructures branched. It contains a co-continuum having an integrated three-dimensional network structure and mesoporous carbon supported on the co-continuum.
  • the method for producing an air electrode of the present embodiment is a synthesis step of synthesizing mesoporous carbon using mesoporous silica as a precursor, and production of producing a sol or gel in which the mesoporous carbon and a plurality of nanostructures are dispersed.
  • a precursor synthesis step of reacting with an organic compound using mesoporous silica as a template to obtain a precursor of mesoporous carbon, the precursor and a plurality of nanostructures are dispersed.
  • the precursor is mesoporous silica is removed by etching, and a synthetic step of synthesizing mesoporous carbon is provided.
  • the metal-air battery of the present embodiment does not contain elements used for soil fertilizer or metal elements other than metals contained in rainwater or seawater, and is naturally decomposed, so that the environmental load is extremely low.
  • Such batteries can be effectively used as various drive sources such as disposable batteries in daily environments and sensors used in soil.
  • the discharge capacity and the discharge voltage of the metal-air battery can be increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)

Abstract

金属空気電池であって、空気極101と、金属を含む負極102と、イオン導電性を有する電解質103と、を備え、前記空気極101は、複数のナノ構造体が分岐して一体化された三次元ネットワーク構造の共連続体と、前記共連続体に担持されたメソポーラスカーボンとを含む。

Description

金属空気電池および空気極の製造方法
 本発明は、金属空気電池および空気極の製造方法に関する。
 近年、低環境負荷な電池になりうる候補として、金属空気電池の研究開発が行われている。金属空気電池は、正極活物質に酸素と水を用い、負極にマグネシウム、鉄、アルミニウム、亜鉛などの金属を用いることから、土壌汚染等への影響や生態系への影響も低い。また、これらは資源的に豊富な材料であり、レアメタルと比較し安価である。
 特に、亜鉛を負極に用いた亜鉛空気電池は、補聴器などの駆動源として商用化されている。また、マグネシウムを負極に用いたマグネシウム空気電池は、環境負荷の低い電池として研究開発が行われている(非特許文献1、非特許文献2参照)。
Y.Xue,他2名,"Template-directed fabrication of porous gas diffusion layer for magnesium air batteries",Journal of Power Sources,vol. 297, pp. 202-207, 2015年. N.Wang,他5名,"Discharge behavior of Mg-Al-Pb and Mg-Al-Pb-In alloys as anodes for Mg-air battery",Electrochimica Acta,vol. 149,pp. 193-205,2014年.
 しかしながら、非特許文献1では、空気極に結着剤としてフッ素樹脂が使用され、また、非特許文献2では、負極に鉛やインジウムを含む金属が用いられており、土壌汚染等、自然環境への影響が懸念される材料が含まれている。
 それに対し、自然環境に配慮した材料で作製した金属空気電池は、レアメタル等の環境負荷物質の不使用により環境問題を排除できるが、レアメタル等を用いずに金属空気電池を作製すると、電池性能が下がるという課題がある。
 本発明は、この課題に鑑みてなされたものであり、金属空気電池の性能向上を目的とする。
 本発明の一態様は、金属空気電池であって、空気極と、金属を含む負極と、イオン導電性を有する電解質と、を備え、前記空気極は、複数のナノ構造体が分岐して一体化された三次元ネットワーク構造の共連続体と、前記共連続体に担持されたメソポーラスカーボンとを含む。
 本発明の一態様は、金属空気電池の空気極の製造方法であって、金属空気電池の空気極の製造方法であって、メソポーラスカーボンを合成する合成工程と、前記メソポーラスカーボンと、複数のナノ構造体とが分散したゾルまたはゲルを作製する生産工程と、前記ゾルまたはゲルを凍結させて凍結体を得る凍結工程と、前記凍結体を真空中で乾燥させて、前記メソポーラスカーボンが担持され、前記複数のナノ構造体が分岐して一体化された三次元ネットワーク構造の共連続体を得る乾燥工程と、を備える。
 本発明の一態様は、金属空気電池の空気極の製造方法であって、メソポーラスシリカを鋳型として有機化合物と反応させ、メソポーラスカーボンの前駆体を得る前駆体合成工程と、前記前駆体と、複数のナノ構造体とが分散したゾルまたはゲルを作製する生産工程と、前記ゾルまたはゲルを凍結させて凍結体を得る凍結工程と、前記凍結体を真空中で乾燥させて、前記前駆体が担持され、前記複数のナノ構造体が分岐して一体化された三次元ネットワーク構造の共連続体を得る乾燥工程と、前記共連続体を不活性ガスの雰囲気で加熱して、前記共連続体に担持された前記前駆体を炭化する炭化工程と、炭化した前駆体をエッチングすることで前記前駆体のメソポーラスシリカを除去し、メソポーラスカーボンを合成する合成工程と、を備える。
 本発明によれば、環境負荷の低い金属空気電池の性能を向上することができる。
図1は、本発明の実施の形態に係る金属空気電池の構成を示す構成図である。 図2は、製造方法1のフローチャートである。 図3は、製造方法2のフローチャートである。 図4は、製造方法3のフローチャートである。 図5は、製造方法4,5,6のフローチャートである。 図6Aは、実施例1のコインセル型の亜鉛空気電池の外観図である。 図6Bは、実施例1のコインセル型の亜鉛空気電池の底面図である。 図7は、実施例1の放電曲線を示す図である。
 以下、本発明の実施の形態について図面を参照して説明する。
 [金属空気電池の構成]
 図1は、本発明の実施の形態における金属空気電池の構成を示す構成図である。金属空気電池は、正極活物質に空気(酸素)および水を用い、負極活物質に金属を用いる。図示する金属空気電池は、正極でありガス拡散型の空気極101と、金属を含む負極102と、空気極101と負極102に挟まれて配置された電解質103と、を備える。
 空気極101の一方の面は大気に曝され、他方の面は電解質103と接する。空気極101は、導電材料を含む。空気極101は、触媒を含んでもよい。負極102の電解質103の側の面は、電解質103と接する。負極102は金属を含む。電解質103は、イオン導電性を有し、電解液または固体電解質のいずれであってもよい。電解液とは、電解質が液体形態である場合をいう。また、固体電解質とは、電解質がゲル形態または固体形態である場合をいう。以下に、上記の各構成要素について説明する。
 (I)空気極(正極)
 本実施形態では、空気極101は、導電材料と、触媒とを含む。導電材料には、共連続体と、前記共連続体に担持されたメソポーラスカーボンとが含まれる。メソポーラスカーボンは、均一な細孔を持つカーボンである。
 (I-1)導電材料(共連続体)
 空気極101の導電材料の共連続体について説明する。共連続体は、複数のナノ構造体が分岐して一体化された、三次元ネットワーク構造を有する材料である。共連続体は、多孔体であり、一体構造とされている。ナノ構造体には、例えばナノシートあるいはナノファイバーなどを用いることができる。共連続体は、一体とされた複数のナノ構造体が分岐を有することで、三次元ネットワーク構造となる。このため、共連続体は、ナノ構造体同士の分岐部が変形可能とされており、伸縮性を有した構造となっている。
 ナノシートには、例えば、カーボン、酸化鉄、酸化マンガン、酸化マグネシウム、酸化モリブデン、硫化モリブデン化合物からなる群より選択される少なくとも1種を用いて構成されたものであればよい。硫化モリブデン化合物は、例えば、二硫化モリブデン、リンドープ硫化モリブデンなどである。これらの材料の元素は、植物の生育に不可欠な16種類の必須元素(C、O、H、N、P、K、S、Ca、Mg、Fe、Mn、B、Zn、Cu、Mo、Cl)の少なくとの1つを含むものであれば良い。
 ナノシートは、導電性を有することが重要である。ナノシートは、厚さが1nmから1μmであり、平面縦横長さが、厚さの100倍以上のシート状物質と定義する。例えば、カーボンによるナノシートとしてグラフェンがある。また、ナノシートは、ロール状、波状であっても良く、ナノシートが湾曲や屈曲していても良く、どのような形状であってもよい。
 ナノファイバーは、カーボン、酸化鉄、酸化マンガン、酸化マグネシウム、酸化モリブデン、硫化モリブデン、およびセルロース(炭化したセルロース)からなる群より選択される少なくとも1種を含む。また、ナノファイバーは、前記群より選択される少なくとも1種からなるものでもよい。これらの材料の元素は、植物の生育に不可欠な16種類の必須元素(C、O、H、N、P、K、S、Ca、Mg、Fe、Mn、B、Zn、Cu、Mo、Cl)の少なくとの1つを含むものであれば良い。
 ナノファイバーも、導電性を有することが重要である。ナノファイバーは、直径が1nmから1μmであり、長さが直径の100倍以上の繊維状物質と定義する。また、ナノファイバーは、中空状、コイル状であっても良く、どのような形状であってもよい。なお、セルロースについては、後述するように、炭化により導電性を持たせて用いる。
 (I-2)導電材料(メソポーラスカーボン)
 次に、空気極101の導電材料のうち共連続体に担持されたメソポーラスカーボンについて説明する。メソポーラスカーボンは、メソポーラスシリカ表面に有機化合物を修飾し、炭化することで得られる。
 メソポーラスシリカは、公知の作製方法を用いることができ、カーボン被覆ができるものであれば特に限定されない。メソポーラスシリカは、例えば、ブロックコポリマーを用いるSBAシリーズ(SBA-15、SBA-16、SBA-1,SBA-3、SBA-12)、小分子系カチオン性界面活性剤を用いるMCMシリーズ(MCM-41、MCM-48、MCM-50)、FMS-16、KIT-5、KIT-6、MSU-1、MSU-3、HMSなどから構成されていてもよい。
 また、メソポーラスカーボンは、メソポーラスシリカを使用せずに合成したものであってもよい。具体的には、STARBONシリーズなどがある。
 有機化合物は、メソポーラスシリカに有機修飾し炭化することでカーボン被覆するという公知のプロセスで作製することができる。
 上述した(I-1)導電材料(共連続体)と(I-2)導電材料(メソポーラスカーボン)とを用いて、空気極を作成することができる。
 例えば、まず、公知の作製プロセスによりメソポーラスカーボンを合成する。ナノ構造体が分散したゾルまたはゲルに、メソポーラスカーボンを混合し、凍結させて凍結体とする(凍結工程)。この凍結体を真空中で乾燥させる(乾燥工程)ことで、空気極101とする導電材料、つまり、メソポーラスカーボンが担持された共連続体を作製することができる。
 鉄酸化物、マンガン酸化物、シリコン、セルロースのいずれかによるナノファイバーが分散したゲルであれば、所定のバクテリアに生産させることができる(ゲル生産工程)。また、所定のバクテリアに、セルロースによるナノファイバーが分散したゲルを生産させ(ゲル生産工程)、このゲルを不活性ガスの雰囲気で加熱して炭化することで、共連続体を得る(炭化工程)ようにしてもよい。
 空気極101(導電材料)を構成する共連続体は、例えば、平均孔径が0.1~50μmであることが好ましく、0.1~2μmであることが更に好ましい。ここで、平均孔径は、水銀圧入法により求めた値である。
 空気極101には、カーボン粉末を用いた場合のようなバインダーなどの追加の材料を用いる必要がなく、コスト的に有利であり環境面でも有利である。
 ここで、空気極101および負極102における電極反応について説明する。空気極反応は、導電性を有する空気極101の表面において、空気中の酸素および電解質が接することで、「1/2O+HO+2e→2OH・・・(1)」で示す反応が進行する。一方、負極反応は、電解質103に接している負極102において「Me→Men++ne・・・(2)(Meは金属を意味し、nは金属の価数とする)」の反応が進行し、負極102を構成している金属が電子を放出し、電解質103中にn価の金属イオンとして溶解する。
 これらの反応により、放電を行うことが可能である。全反応は、「Me+1/2O+HO→Me(OH)・・・(3)」となり、水酸化物が生成(析出)する反応である。以上の反応に関わる化合物を、図1の構成要素と共に示している。
 このように、金属空気電池は、空気極101の表面において式(1)で示す反応が進行するため、空気極101の内部に反応サイトを多量に生成する方がよいものと考えられる。
 正極である空気極101は、カーボン粉末をバインダーで成形するといった公知のプロセスで作製することができるが、上述した通り、金属空気電池では、空気極101内部に反応サイトを多量に生成することが重要であり、空気極101は、高比表面積であることが望ましい。例えば、本実施形態においては、空気極101を構成する共連続体の比表面積が200m/g%以上であることが好ましく300m/g以上であることがより好ましい。
 カーボン粉末をバインダーで成形してペレット化することで作製する従来の空気極の場合、高比表面積化した際に、カーボン粉末同士の結着強度が低下し、構造が劣化することで、安定して放電することが困難であり、電圧が低下する。
 これに対し、本実施形態の空気極101は、複数のナノ構造体が非共有結合によって一体とされている三次元ネットワーク構造の共連続体を含むため、上述した問題が解消でき、電圧を大きくできるようになる。さらに、本実施形態の空気極101は、メソポーラスカーボンを含むため、比表面積が増大するだけでなく、酸素吸着能が向上し、空気極101での酸素還元反応(放電)が促進されるため、電池性能が大きく向上することになる。
 (I-3)触媒
 触媒は、鉄、マンガン、亜鉛、銅およびモリブデンからなる群より選択される少なくとも1つの金属、あるいは、カルシウム、鉄、マンガン、亜鉛、銅およびモリブデンからなる群より選択される少なくとも1つの金属の酸化物(金属酸化物)を含む。
 なお、これらの材料の元素は、植物の生育に不可欠な16種類の必須元素に含まれる金属から構成され、触媒能を有していれば良い。金属としては、鉄、マンガン、亜鉛が好ましく、これらから選択される1つの金属の酸化物、または2つ以上の金属の複合酸化物が好ましい。特に、酸化マンガン(MnO)が好適である。酸化マンガンは、本実施形態において特に優れた触媒性能を示すので好ましい。
 また、触媒とする金属酸化物は、水和物としたアモルファス状のものであることも好ましい。例えば、上述した遷移金属酸化物の水和物であればよい。より具体的には、酸化マンガン(IV)-n水和物であればよい。なお、nは、1molのMnOに対するHOのモル数である。空気極101を構成する共連続体の表面に、酸化マンガンの水和物を、ナノサイズの微粒子として高分散で担持させることで、優れた電池性能とすることが可能となる。
 例えば、空気極101の導電材料上に、酸化マンガン水和物(MnO・nHO)をナノサイズの微粒子として高分散で付着させた(添加した)ものを空気極101として使用することで、優れた電池性能を示すことが可能となる。空気極101に含まれる触媒の含有量は、空気極101の総重量に基づいて、0.1~70重量%、好ましくは1~30重量%である。
 空気極101に、遷移金属酸化物を触媒として添加することによって、電池性能は大きく向上する。空気極101と電解質103が接し、同時に大気中の酸素ガスが供給され、電解質-電極-ガス(酸素)の三相界面が形成される。この三相界面サイトにおいて、触媒が高活性であれば、電極表面における酸素還元(放電)がスムーズに進行し、電池性能は大きく向上することになる。このとき、触媒は、正極活物質である酸素との相互作用が強いので、多くの酸素種を自身の表面に吸着でき、または酸素空孔内に酸素種を吸蔵することができる。
 このように、触媒を構成する金属酸化物表面上に吸着された、または酸素空孔内に吸蔵された酸素種は、上記式(1)の酸素源(活性な中間反応体)として酸素還元反応に使用され、上記反応が容易に進むようになる。触媒として有効に機能する材料として、上述のとおり、酸化マンガンなどの金属酸化物がある。金属酸化物の他には、金属自体を触媒とすることもでき、金属も金属酸化物と同様に機能する。
 金属空気電池では、上述した通り、電池の効率を上げるために、電極反応を引き起こす反応部位[電解質/電極/空気(酸素)の三相部分]がより多く存在することが望ましい。このような観点から、上述の三相部位が触媒の表面にも多量に存在することが重要であり、触媒は比表面積が高い方が好ましい。金属または金属酸化物による触媒の比表面積は、0.1~1000m/g、好ましくは1~500m/gであればよい。なお、比表面積は、公知のN2吸着によるBET法により求めた比表面積である。
 触媒を添加した空気極101は、後述する空気極101の製造方法により製造することができる。
 (II)負極
 次に、負極102について説明する。負極102は負極活性物質を含む。この負極活性物質は、金属空気電池の負極材料として用いることができる材料、つまり、マグネシウム、アルミニウム、カルシウム、鉄および亜鉛からなる群より選択される1種、または前記群より選択される1種を主成分として含むものであれば特に限定されない。例えば、負極102は、負極とする金属、金属のシート、または粉末を銅などの金属箔に圧着したものなどを用いて構成すればよい。
 負極102は、公知の方法で形成することができる。例えば、マグネシウム金属を負極102とする場合には、複数枚の金属マグネシウム箔を重ねて所定の形状に成形することで、負極102を作製することができる。
 (III)電解質
 金属空気電池の電解質103は、空気極101(正極)および負極102間で金属イオンおよび水酸化物イオンの移動が可能な物質であればよい。例えば、地球上に豊富に存在するカリウム、ナトリウムなどが含まれる金属塩を挙げることができる。なお、この金属塩は、植物の生育に不可欠な16種類の必須元素(C、O、H、N、P、K、S、Ca、Mg、Fe、Mn、B、Zn、Cu、Mo、Cl)、海水または雨水に含まれる元素などから構成されていれば良い。
 電解質103は、例えば、酢酸、炭酸、クエン酸、リンゴ酸、シュウ酸、リン酸、またはそれらの塩、HEPES(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)、ピロリン酸塩、メタリン酸塩などから構成すればよい。クエン酸、リンゴ酸およびシュウ酸は、肥料として用いられており、肥料成分の中でも多量要素の1つであるリンと錯体を形成することで、植物へのリン吸収を促進するはたらきがある。そのため、仮に電解質が土壌に漏れ出たときの影響を与えないのみならず、肥料として機能する。このため、電解質103に用いるのは、特にクエン酸、リンゴ酸、シュウ酸またはこれらからなる塩が好ましい。
 また、電解質103を構成する他の材料として、金属イオンおよび水酸化物イオンを通すイオン導電性を有する芳香族系アニオン交換ポリマー固体電解質、無機層状化合物系固体電解質などを用いても良い。
 (IV)ほかの要素
 本実施形態の金属空気電池は、上記構成要素に加え、セパレータ、電池ケース、金属メッシュ(例えばチタンメッシュ)などの構造部材、その他の金属空気電池に要求される要素を含むことができる。これらは、公知のものを使用することができる。セパレータとしては、繊維材料であれば特に限定されないが、植物繊維またはバクテリアからつくられるセルロース系セパレータが好ましい。
 次に、金属空気電池の製造方法について説明する。本実施形態の金属空気電池は、後述する空気極製造方法により得られる空気極101と、負極102と、電解質103とを、所望の金属空気電池の構造に基づいた他の必要な要素と共に、ケースなどの適切な容器内に適切に配置することで作製することができる。このような金属空気電池の製造手順は、従来知られている方法を適用することができる。
 以下、空気極101の作製について説明する。
 (V-1)空気極に用いる導電材料の製造方法
  <製造方法1>
 はじめに、製造方法1について図2を用いて説明する。図2は、製造方法1を説明するためのフローチャートである。
 まず、ステップS101で、メソポーラスシリカを前駆体として、メソポーラスカーボン(以下、MPCと記載)を合成する。
 メソポーラスシリカは、市販のものを使用できる。例えば、SBA-15(Sigma-Aldrich製)、MCM-41(Sigma-Aldrich製)、HMS(Sigma-Aldrich製)などが挙げられる。また、ほかにも公知の作製方法を用いることができ、ブロックコポリマーを用いるSBAシリーズ(SBA-15、SBA-16、SBA-1,SBA-3、SBA-12)、小分子系カチオン性界面活性剤を用いるMCMシリーズ(MCM-41、MCM-48、MCM-50)のほか、FMS-16、KIT-5、MSU-1、MSU-3、HMSなどを使用することができる。
 MPCの合成は、公知の作製方法を用いることができる。例えば、有機シリル化剤を用いてシリカ材料表面のシラノール基をシリル化し、熱処理をすることで有機基を脱離させ、シリカ材料表面にSiラジカルを生成させることで、CVD法で炭素被覆が可能である。CVD法で用いる炭素源としては、メタノール、エタノール、プロパノール、ブタノールなどの水酸基を有するアルコール、ピロリメット酸無水物、チオフェン、ピリジン、アクリロニトリル、アセトニトリルなどのカルボン酸基や、窒素及び硫黄などを含有する有機化合物等が挙げられる。
 また、MPCのその他の作製方法として、スクロースと硫酸とをメソポーラスシリカに充填したのち、真空下での焼成、アルカリエッチングを行うことでシリカ鋳型を除去することで得られるMPCなども適用できる。また、メソポーラスシリカを使用せず、デンプンを水中でゲル化し、乾燥および加熱することで得られるMPCであるSTARBONシリーズを使用してもよい。
 次に、ステップS102で、得られたMPCと、複数のナノ構造体とが分散したゾルまたはゲルを作製する。具体的には、ナノシート、ナノファイバーなどの複数のナノ構造体が分散したゾルまたはゲルに、ステップS101で得られたMPCを分散させる(ゲル生産工程)。ここで作製するゾルまたはゲルは、MPCを担持した共連続体の前駆体である。分散質であるMPCおよびナノ構造体に分散媒を加えて撹拌することでゾルまたはゲルを得る。
 ゾルとは、分散媒および分散質であるナノ構造体などからなるコロイドを意味する。具体的には、ずり弾性率が1Pa以下である分散系を意味する。ゲルとは、分散媒が分散質であるナノ構造体などの三次元ネットワーク構造により流動性を失い固体状になったものを意味する。具体的には、ずり弾性率が102~106Paである分散系を意味する。
 ゾルまたはゲルの分散媒としては、水(H2O)などの水系または、カルボン酸、メタノール(CH3OH)、エタノール(C25OH)、プロパノール(C37OH)、n-ブタノール、イソブタノール、n-ブチルアミン、ドデカン、不飽和脂肪酸、エチレングリコール、ヘプタン、ヘキサデカン、イソアミルアルコール、オクタノール、イソプロパノール、アセトン、グリセリンなどの有機系が挙げられる。分散媒として、これらから2種類以上を混合してもよい。
 分散質であるナノシートおよびナノファイバーは市販のものを使用できる。例えば、グラフェン粉末[Sigma-Aldrich製]、鉄酸化物(関東化学製)、マンガン酸化物(関東化学製)、亜鉛酸化物(関東化学製)、モリブデン酸化物(関東化学製)、シリカ(関東化学製)、酸化チタン(関東化学製)、アルミナ(関東化学製)を主とする化合物であり、少なくともこれらの1つから構成されたナノシートを使用できる。または、鉄酸化物(関東化学製)、マンガン酸化物(関東化学製)、亜鉛酸化物(関東化学製)、モリブデン酸化物(関東化学製)、シリカ(関東化学製)、酸化チタン(関東化学製)、アルミナ(関東化学製)、セルロース(日本製紙)を主とする化合物であり、少なくともこれらの1つを含むナノファイバーを使用できる。
 ナノファイバーまたはナノシートなどのナノ構造体を用いて、高比表面積な三次元ネットワーク構造の共連続体を構築することで、圧縮または引張の際に、気孔がクッションの役割を果たし、優れた伸縮性を有する。具体的には、共連続体は、弾性限界での歪みが5%以上であることが望ましく、更に10%以上であることが更に望ましい。ゲルまたはゾルの濃度を調整することで、共連続体の比表面積を自在に調整できる。ゲルまたはゾルの濃度を薄くするほど、得られる共連続体は高比表面積となる。ただし、濃度が0.01重量%以下となると、分散質が三次元ネットワーク構造を構築することが困難となるため、分散質の濃度は、0.01~10重量%以下が好適である。
 ステップS103の凍結工程は、ゾルまたはゲルを凍結させて凍結体を得る工程である。凍結工程は、例えば、ナノ構造体が分散したゾルまたはゲルを試験管等の適切な容器に収容し、液体窒素などの冷却材中で容器の周囲を冷却することで実施される。凍結させる手法は、ゲルまたはゾルの分散媒を凝固点以下に冷却ができれば、特に限定されるものではなく、冷凍庫などで冷却してもよい。ゲルまたはゾルを凍結することで、分散媒が流動性を失い分散質が固定されて、三次元ネットワーク構造が構築される。
 凍結工程により分散質を固定しない場合、この後の乾燥工程において、分散媒の蒸発に伴い、分散質が凝集するため、十分な高比表面積を得ることができず、三次元ネットワーク構造を有する共連続体の作製は困難となる。
 次に、ステップS104で、得られた凍結体を真空中で乾燥させて、MPCを担持した共連続体を得る(乾燥工程)。共連続体は、複数のナノ構造体が分岐して一体化された三次元ネットワーク構造を有するものである。ステップS104の乾燥工程は、凍結工程で得た凍結体を真空中で乾燥させることで、三次元ネットワーク構造を維持または構築した分散質を分散媒から取り出す工程である。
 乾燥工程では、凍結工程で得られた凍結体を真空中で乾燥させ、凍結した分散媒を固体状態から昇華させる。例えば、凍結体をフラスコ等の適切な容器に収容し、容器内を真空引きすることで実施される。凍結体を真空雰囲気下に配置することで、分散媒の昇華点が低下し、常圧では昇華しない物質においても昇華させることが可能である。
 乾燥工程における真空度は、使用する分散媒によって異なるが、分散媒が昇華する真空度であれば特に制限されない。例えば、分散媒に水を使用した場合、圧力を0.06MPa以下とした真空度にする必要があるが、昇華潜熱として熱が奪われるため、乾燥に時間を有する。このため、真空度は1.0×10-6~1.0×10-2Paが好適である。更に乾燥時にヒーターなどを用いて熱を加えても良い。
 大気中で乾燥させる方法は、分散媒が固体から液体になった後に液体から気体になるため、凍結体が液体状態となる。そのため、分散質が分散媒中で再び流動的になり、複数のナノ構造体の三次元的なネットワーク構造が崩れる。このように、大気中での乾燥では、伸縮性を有する共連続体の作製は困難である。
 ステップS105の炭化工程は、ナノ構造体がセルロースナノファイバーである場合に、炭化することで導電性を付与する目的で実施する。ナノ構造体がセルロースナノファイバーでない場合、炭化工程は必要ない。
 共連続体の炭化は、不活性ガス雰囲気中で200℃~2000℃、より好ましくは、600℃~1800℃で焼成して炭化すればよい。セルロースナノファイバー(セルロース)が燃焼しないガスとしては、例えば、窒素ガス、アルゴンガスなどの不活性ガスであればよい。また、水素ガス、一酸化炭素ガスなどの還元性ガスであってもよく、また、二酸化炭素ガスであってもよい。
 このようにして得た共連続体は、高導電性、耐腐食性、高比表面積を有しており、電池、キャパシター、燃料電池、バイオ燃料電池、微生物電池、触媒、太陽電池、半導体製造プロセス、医療用機器、美容器具、フィルター、耐熱材、耐炎材、断熱材、導電材、電磁波シールド材、電磁波ノイズ吸収材、発熱体、マイクロ波発熱体、コーンペーパー、衣服、カーペット、ミラー曇り防止、センサー、タッチパネル等として好適である。
 <製造方法2>
 次に、製造方法2について図3を用いて説明する。図3は、製造方法2を説明するためのフローチャートである。製造方法2では、製造方法1と異なる方法で空気極の導電材料を作成する。
 まず、ステップS201で、メソポーラスシリカを鋳型として有機化合物と反応させ、MPCの前駆体を合成する(MPC前駆体合成工程)。MPCの前駆体は、メソポーラスシリカを鋳型として利用した分散液である。前駆体の合成には、例えば、ハードテンプレート法で用いられているようなスクロース、デンプンなどによる作製方法、また、ソフトテンプレート法で用いられているレゾシノール、フロログルシノール、非イオン性界面活性剤、ホルムアルデヒド樹脂などによる作製方法を適用することができる。
 メソポーラスシリカと有機化合物とを分散する分散媒には、カルボン酸、メタノール(CH3OH)、エタノール(C25OH)、プロパノール(C37OH)、n-ブタノール、イソブタノール、n-ブチルアミン、ドデカン、不飽和脂肪酸、エチレングリコール、ヘプタン、ヘキサデカン、イソアミルアルコール、オクタノール、イソプロパノール、アセトン、グリセリンなどを用いることができる。ただし、メソポーラスシリカは、耐水性が低いため、分散液には50%~100%の有機溶媒を用いたほうが好ましい。分散液の攪拌時間は、1日~7日、好ましくは1日~3日攪拌すればよい。
 次に、ステップS202で、得られたMPCの前駆体と、複数のナノ構造体とが分散したゾルまたはゲルを作製する。具体的には、ナノシート、ナノファイバーなどの複数のナノ構造体が分散したゾルまたはゲルに、ステップS201で得られたMPCの前駆体を分散させる(ゲル生産工程)。すなわち、MPCの前駆体が混合したゾルまたはゲルを作製する。ここで作製するゾルまたはゲルは、MPCの前駆体がナノ構造体に担持されている共連続体の前駆体ある。
 ステップS203で、ステップS202で作製したゾルまたはゲルを凍結させて、凍結体を得る(凍結工程)。ステップS204で、凍結体を真空中で乾燥させて、MPCの前駆体が担持された共連続体を得る(乾燥工程)。ステップS202~S204の製造方法は、製造方法1で記載したステップS102~S104と同様に調整すればよい。
 次にステップS205で、作製した共連続を不活性雰囲気下で炭化する(炭化工程)。炭化工程は、MPCの前駆体から有機物を除去することと、ナノ構造体にセルロースナノファイバーを用いているときに、セルロースナノファイバーに導電性を付与することとを目的とする。このようにして炭化した共連続体は、高導電性、耐腐食性、高伸縮性、高比表面積を有しており、金属空気電池の空気極として好適である。
 炭化は、前述した凍結工程および乾燥工程で三次元ネットワーク構造を有する共連続体を合成した後に、当該共連続体を不活性ガスの雰囲気で200℃~2000℃、より好ましくは600℃~1800℃で焼成(加熱)して、前記共連続体に担持されたMPCの前駆体を炭化すればよい。これにより、MPCの前駆体から有機物が除去される。
 また、ナノ構造体にセルロースナノファイバーを用いた場合、炭化工程によりMPCの前駆体だけでなく、共連続体も炭化される。この場合、セルロースが燃焼しないガスとしては、例えば、窒素ガス、アルゴンガスなどの不活性ガスであればよい。また、水素ガス、一酸化炭素ガスなどの還元性ガスであってもよく、また、二酸化炭素ガスであってもよい。本実施形態では、カーボン材料に対し賦活効果を有し、共連続体の高活性化が期待できる二酸化炭素ガスまたは一酸化炭素ガスがより好ましい。
 次に、ステップS205で、炭化した共連続体(MPCの前駆体)をエッチングすることで、MPCの前駆体からメソポーラスシリカを除去し、MPCを合成する。メソポーラスシリカは、苛性ソーダ(NaOH)、フッ化水素酸(HF)などを用いてエッチングすることにより、MPCの前駆体から除去することができる。メソポーラスシリカを除去することで、空気極の重量を減少することができ、電池としての重量エネルギー密度を向上することができる。
 (V-2)空気極に用いる、触媒を担持した導電材料の製造方法
 <製造方法3>(触媒)
 次に、製造方法3について、図4を用いて説明する。図4は製造方法3を説明するためのフローチャートである。
 前述したように、空気極には触媒を担持させるとよい。製造方法3では、製造方法1,製造方法2で作製したMPCを担持した共連続体に、触媒を担持させる。製造方法3では、前述した共連続体の製造に加え、触媒を担持させる以下の触媒担持工程を加える。
 ステップS301で、上述した製造方法1または製造方法2で得られた共連続体を、触媒の前駆体となる金属塩の水溶液に含浸させる(含浸工程)。このようにして金属塩を含む伸縮性共連続体を調製したら、次に、ステップS302で、金属塩を含む伸縮性共連続体を加熱処理すればよい(加熱工程)。なお、使用する金属塩の好ましい金属は、鉄、マンガン、亜鉛、銅、モリブデンからなる群から選ばれる少なくとも1種の金属である。特に、マンガンが好ましい。
 遷移金属酸化物を共連続体に担持するためには、従来知られている方法を用いることができる。例えば、共連続体を、遷移金属塩化物や遷移金属硝酸塩の水溶液に含浸させて蒸発乾固した後、高温高圧化の水(H2O)中で水熱合成する方法がある。また、共連続体に、遷移金属塩化物や遷移金属硝酸塩の水溶液を含浸させ、ここにアルカリ水溶液を滴下する沈殿法がある。また、共連続体に遷移金属アルコキシド溶液に含浸させ、これを加水分解するゾルゲル法などがある。これらの液相法による各方法の条件は公知であり、これらの公知の条件を適用できる。本実施形態では、液相法が望ましい。
 上記の液相法で担持される金属酸化物は、多くの場合、結晶化が進んでいないためアモルファス状態である。アモルファス状態の前駆体を、不活性の雰囲気で、500℃程度の高温で熱処理を行うことで、結晶性の金属酸化物を得ることができる。このような結晶性の金属酸化物は、空気極の触媒として用いた場合においても高い性能を示す。
 一方、上記のアモルファス状の前駆体を100~200℃程度の比較的低温で乾燥した場合に得られる前駆体粉末は、アモルファス状態を維持しつつ、水和物の状態となる。金属酸化物の水和物は、形式的に、Mexy・nH2Oと表すことができる(ただし、Meは上記金属を意味し、xおよびyはそれぞれ金属酸化物分子中に含まれる金属および酸素の数を表し、nは1モルの金属酸化物に対するH2Oのモル数)。このような低温乾燥により得られた、金属酸化物の水和物を触媒として用いることができる。
 アモルファス状の金属酸化物(水和物)は、焼結がほとんど進んでいないため、大きな表面積を有し、粒子径も30nm程度と非常に小さい値を示す。これは、触媒として好適であり、これを用いることで、優れた電池性能を得ることができる。
 上述の通り、結晶性の金属酸化物は高い活性を示すが、上記のような高温での熱処理で結晶化させた金属酸化物は、表面積が著しく低下することがあり、粒子の凝集により粒子径も100nm程度となることがある。なお、この粒子径(平均粒径)は、走査型電子顕微鏡(SEM)などで拡大観察し、10μm四方(10μm×10μm)あたりの粒子の直径を計測して、平均値を求めた値である。
 特に、高温で熱処理を行った金属酸化物による触媒は、粒子が凝集するため、共連続体の表面に高分散で触媒を添加させることが困難なことがある。十分な触媒効果を得るためには、空気極(共連続体)中に金属酸化物を大量に添加しなければならない場合があり、高温の熱処理による触媒作製は、コスト的に不利となることがある。
 この問題を解消するためには、以下の製造方法4,製造方法5,製造方法6を用いればよい。
 <製造方法4>(触媒)
 次に、製造方法4について図5を用いて説明する。図5は、製造方法4,5,6を説明するためのフローチャートである。
 製造方法4では、製造方法1,製造方法2で作製したMPCを担持した共連続体に、触媒を担持させる。製造方法4では、前述した共連続体の製造に加え、触媒を担持させる以下の触媒担持工程を加える。
 まず、ステップS401の第1触媒担持工程で、共連続体を界面活性剤の水溶液に浸漬し、共連続体の表面に界面活性剤を付着させる。
 次に、ステップS402の第2触媒担持工程で、金属塩の水溶液を用いて界面活性剤が付着した共連続体の表面に界面活性剤により金属塩を付着させる。
 次に、ステップS403の第3触媒担持工程で、金属塩が付着した共連続体に対する熱処理により、金属塩を構成する金属または金属の酸化物を含む触媒を共連続体に担持させる。
 なお、上記金属は、鉄、マンガン、亜鉛、銅およびモリブデンからなる群より選択される少なくとも1つの金属、あるいは、カルシウム、鉄、マンガン、亜鉛、銅およびモリブデンからなる群より選択される少なくとも1つの金属の酸化物である。特に、マンガン(Mn)または酸化マンガン(MnO)が好ましい。
 製造方法4の第1触媒担持工程で用いる界面活性剤は、空気極(共連続体)上に金属または遷移金属酸化物を高分散で担持するためのものである。界面活性剤のように、分子内にカーボン表面に吸着する疎水基と遷移金属イオンが吸着する親水基とを有していれば、共連続体に遷移金属酸化物前駆体である金属イオンを高い分散度で吸着させることができる。
 上述した界面活性剤としては、分子内にカーボン表面に吸着する疎水基とマンガンイオンが吸着する親水基とを有していれば特に限定されないが、非イオン系の界面活性剤が好ましい。例えば、エステル型の界面活性剤として、ラウリン酸グリセリン、モノステアリン酸グリセリン、ソルビタン脂肪酸エステル、ショ糖脂肪酸エステルなどがある。また、エーテル型の界面活性剤として、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンポリオキシプロピレングリコールなどがある。
 また、エステルエーテル型の界面活性剤として、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンヘキシタン脂肪酸エステル、ソルビタン脂肪酸エステルポリエチレングリコールなどがある。また、アルカノールアミド型の界面活性剤として、ラウリン酸ジエタノールアミド、オレイン酸ジエタノールアミド、ステアリン酸ジエタノールアミド、コカミドDEAなどがある。また、高級アルコールの界面活性剤として、セタノール、ステアリルアルコール、オレイルアルコールなどがある。また、ポロキサマー型の界面活性剤として、ポロキサマージメタクリレートなどを挙げることができる。
 製造方法4の第1触媒担持工程における界面活性剤の水溶液の濃度は、0.1~20g/Lであることが好ましい。また、浸漬時間、浸漬温度などの浸漬条件は、例えば、室温~50℃の溶液に、1~48時間浸漬することが含まれる。
 製造方法4の第2触媒担持工程では、第1触媒担持工程における界面活性剤を含有する水溶液に、触媒として機能する金属塩を更に溶解するか、または金属塩の水溶液を加えることを含む。あるいは、上述の界面活性剤を含有する水溶液とは別に、触媒として機能する金属塩を溶解させた水溶液を調製し、これに、界面活性剤を含浸した(付着させた)共連続体を浸漬してもよい。
 また、金属塩が溶解した水溶液を、界面活性剤を付着させた共連続体に含浸させてもよい。必要に応じて、得られた金属塩を含む(付着した)共連続体にアルカリ性水溶液を滴下してもよい。これらのことによって、金属または金属酸化物前駆体を共連続体に付着させることができる。
 製造方法4の第2触媒担持工程における金属塩の添加量は、0.1~100mmol/Lとなる量であることが好ましい。また、浸漬時間、浸漬温度などの浸漬条件は、例えば、室温~50℃の溶液に、1~48時間浸漬することが含まれる。
 より具体的には、金属としてマンガンを例にとって説明すれば、例えば、マンガン金属塩(例えば、塩化マンガンなどのハロゲン化マンガンやその水和物)を、界面活性剤を含有し、共連続体に含浸している水溶液に加える。次いで、得られたマンガン金属塩を含む共連続体にアルカリ性水溶液を滴下することで、金属または金属酸化物前駆体としての水酸化マンガンを、共連続体に担持させることができる。
 上述した酸化マンガンによる触媒の担持量は、金属塩水溶液中の金属塩(例えば塩化マンガン)の濃度により調整できる。
 また、上述のアルカリ性水溶液に使用するアルカリは、アルカリ金属またはアルカリ土類金属の水酸化物、アンモニア水、アンモニウム水溶液、テトラメチルアンモニウムヒドロキシド(TMAH)水溶液などを挙げることができる。これらのアルカリ性水溶液の濃度は、0.1~10mol/Lであることが好ましい。
 製造方法4における第3触媒担持工程では、共連続体の表面に付着させた金属または金属酸化物の前駆体(金属塩)を、熱処理により、金属自体または金属酸化物に転化する。
 具体的には、前駆体が付着した共連続体を、室温(25℃程度)~150℃、より好ましくは50℃~100℃で1~24時間乾燥させ、次いで100~600℃、好ましくは110~300℃で熱処理すればよい。
 製造方法4における第3触媒担持工程では、アルゴン、ヘリウム、窒素などの不活性雰囲気や還元性雰囲気で熱処理することで、金属自体を触媒として表面に付着させた共連続体による空気極を製造することができる。また、酸素を含むガス中(酸化性雰囲気)で熱処理することで、金属酸化物を触媒として表面に付着させた共連続体による空気極を製造することができる。
 また、上述の還元条件下での熱処理を行い、一度、金属自体を触媒として付着させた共連続体を作製し、次いで、これを酸化性雰囲気で熱処理することで、金属酸化物を触媒として付着させた共連続体による空気極を製造することもできる。
 別法として、金属または金属酸化物の前駆体(金属塩)が付着した共連続体を、室温~150℃、より好ましくは50℃~100℃で乾燥させ、共連続体上に金属自体を触媒として付着させ、金属/共連続体の複合体を作製してもよい。
 製造方法4では、金属または金属酸化物による触媒の付着量(含有量)は、共連続体および触媒の総重量に基づいて、0.1~70重量%、好ましくは1~30重量%である。
 製造方法4によれば、共連続体の表面に、金属または金属酸化物による触媒を高分散させた空気極を製造することができ、電池特性の優れた金属空気電池が構成できるようになる。
 <製造方法5>(触媒)
 次に、製造方法5について図5を用いて説明する。製造方法5では、製造方法1,製造方法2で説明したことにより作製した共連続体に、前述した製造方法4とは異なる方法で触媒を担持させる。製造方法5では、前述した共連続体の製造に加え、触媒を担持させる以下の触媒担持工程を加える。
 まず、ステップS401の第1触媒担持工程で、共連続体を金属塩の水溶液に浸漬して共連続体の表面に金属塩を付着させる。
 次に、ステップS402の第2触媒担持工程で、金属塩が付着した共連続体に対する熱処理により、金属塩を構成する金属を含む触媒を共連続体に担持させる。
 次に、第3触媒担持工程では、触媒が担持された共連続体を高温高圧の水に作用させることで触媒を金属酸化物の水和物とする。
 なお、上記金属は、鉄、マンガン、亜鉛、銅およびモリブデンからなる群より選択される少なくとも1つの金属、あるいは、カルシウム、鉄、マンガン、亜鉛、銅およびモリブデンからなる群より選択される少なくとも1つの金属の酸化物である。特に、マンガンまたは酸化マンガン(MnO)が好ましい。 製造方法5における第1触媒担持工程では、最終的に触媒とする金属または金属酸化物の前駆体となる金属塩の水溶液を、共連続体の表面に付着(担持)させる。例えば、上記金属塩を溶解した水溶液を別途調製し、この水溶液を共連続体に含浸させればよい。含浸の条件などは、前述したように従来と同じである。
 製造方法5における第2触媒担持工程は、製造方法4の第3触媒担持工程と同様であり、不活性雰囲気または還元性雰囲気による加熱処理を実施すればよい。また、製造方法4の第3触媒担持工程の別法として説明した、前駆体が付着した共連続体を低温(室温~150℃、より好ましくは50℃~100℃)で加熱処理(乾燥)することで、共連続体に金属を付着させてもよい。
 金属自体を触媒として用いた空気極101は、高活性を示すが、触媒が金属であるため、腐食に弱く、長期安定性に欠ける場合がある。これに対し、金属を以下に詳述する製造方法5の第3触媒担持工程により、加熱処理して金属酸化物の水和物とすることで、長期安定性を実現することができる。
 次に、ステップS403の製造方法5の第3触媒担持工程では、金属酸化物の水和物が、共連続体に付着した状態とする。具体的には、製造方法5の第2触媒担持工程で得られた、金属が付着した共連続体を、高温高圧の水に浸漬させ、付着している金属を、金属酸化物の水和物からなる触媒に転化する。
 例えば、金属が付着した共連続体を、100℃~250℃、より好ましくは、150℃~200℃の水に浸漬させ、付着している金属を酸化させて金属酸化物の水和物とすればよい。
 大気圧下(0.1MPa)での水の沸点は100℃であるため、大気圧下では通常100℃以上の水に浸漬させることはできないが、所定の密閉容器を用い、この密閉容器内の圧力を、例えば、10~50MPa、好ましくは25MPa程度まで上昇させることで、密閉容器内では、水の沸点が上昇し、100℃~250℃の液体状の水を実現することができる。このようにして得た高温の水に、金属が付着した共連続体を浸漬すれば、金属を金属酸化物の水和物とすることができる。
 <製造方法6>(触媒)
 次に、製造方法6について説明する。製造方法6では、製造方法1,製造方法2で説明したことにより作製した共連続体に、前述した製造方法4、5とは異なる方法で触媒を担持させる。製造方法6では、前述した共連続体の製造に加え、触媒を担持させる以下の触媒担持工程を加える。なお、製造方法6では、第2触媒担持工程までであり、第3触媒担持工程はない。
 まず、ステップS401の第1触媒担持工程で、共連続体を金属塩の水溶液に浸漬して共連続体の表面に金属塩を付着させる。
 次に、ステップS402の第2触媒担持工程では、金属塩が付着した共連続体を高温高圧の水に作用させることで、金属塩を構成する金属による金属酸化物の水和物からなる触媒を共連続体に担持させる。
 なお、上記金属は、鉄、マンガン、亜鉛、銅およびモリブデンからなる群より選択される少なくとも1つの金属であればよい。
 製造方法6における第1触媒担持工程は、製造方法5における第1触媒担持工程と同様であり、ここでは説明を省略する。
 製造方法6における第2触媒担持工程は、共連続体の表面に付着させた前駆体(金属塩)を、比較的低温の熱処理により、金属酸化物の水和物に転化する。
 具体的には、前駆体が付着した共連続体を、高温高圧の水に作用させた後に、100~200℃程度の比較的低温で乾燥する。これにより、前駆体は、前駆体のアモルファス状態を維持しつつ、粒子中には水分子が存在する水和物となる。このような低温乾燥により得られた、金属酸化物の水和物を触媒として用いる。
 製造方法6により作製される空気極では、金属酸化物の水和物が、共連続体上にナノサイズの微粒子の状態で、高分散で担持されうる。従って、このような共連続体を空気極とした場合、優れた電池性能を示すことが可能となる。
 上記の各製造方法で得られた共連続体は、公知の手順で所定の形状に成形して空気極とすることができる。
 [実施例1] (空気極:MPC担持共連続体)
 実施例1は、製造方法1に記載の製造方法において製造した空気極を使用する例である。空気極には、MPCを担持させた三次元ネットワーク構造の共連続体を、導電材料として使用する。共連続体は、非共有結合によって一体とされた複数のナノファイバーを用いて構成され、三次元ネットワーク構造を有する。
 以下の説明では、一例として、共連続体にカーボンナノファイバーを、MPCにCMK-3を使用する製造方法を示すが、カーボンナノファイバーおよびCMK-3を、他の材料に変えることで、MPCを担持した三次元ネットワーク構造を有する共連続体を調整することができる。
 なお、以下に示す気孔率は、共連続体を水銀圧入法により求めた細孔径分布から、細孔を円筒形とモデル化して算出した。
 ≪正極作製方法≫
 まず、市販のSBA-15[Sigma-Aldrich製]をビーカーに入れ、フルフリルアルコールを含浸し、ドラフト内で3時間乾燥した後、窒素雰囲気下で昇温速度4度/分で6時間加熱することで、炭素被覆を行った。これに、フッ酸を加えることでシリカを除去しCMK-3を得た。
 次に、市販のカーボンナノファイバーゾル[分散媒:水(HO)、0.4重量%、Sigma-Aldrich製]を試験管に入れ、更にここに合成したCMK-3を入れ、3時間攪拌した。その後、試験管を液体窒素中に30分間浸し、CMK-3担持カーボンナノファイバーゾルを完全に凍結させた。カーボンナノファイバーゾルを完全に凍結させた後、凍結させたカーボンナノファイバーゾルをナスフラスコに取り出し、これを凍結乾燥機(東京理科器械株式会社製)により10Pa以下の真空中で乾燥させることで、CMK-3を担持したカーボンナノファイバーを含む三次元ネットワーク構造を有する伸縮性共連続体を得た。
 得られた共連続体を、X線回折(XRD)測定、走査型電子顕微鏡(SEM)観察、気孔率測定、引張試験、BET比表面積測定し、評価した。本実施例で作製した共連続体は、XRD測定よりカーボン(C、PDFカードNo.00-058-1638)単相であることを確認した。なお、PDFカードNoは、国際回折データセンター(International Centre for Diffraction Data、ICDD)が収集したデータベースであるPDF(Powder Diffraction File)のカード番号であり、以下同様である。
 また、SEM観察および水銀圧入法により、共連続体は、ナノファイバーが連続に連なった、平均孔径が0.7μmの共連続体であることを確認した。また、水銀圧入法により共連続体のBET比表面積測定を測定したところ、880m2/gであった。また、水銀圧入法により、共連続体の気孔率を測定したところ、85%以上であった。引張試験の結果から、共連続体は、引張応力により歪が40%加えられても、弾性領域を超えず、応力印加前の形状に復元することを確認した。
 ≪電池の作製方法、放電試験の方法≫
 このようなカーボンナノファイバーによる共連続体を、打ち抜き刃、レーザーカッターなどにより直径14mmの円形に切り抜き、ガス拡散型の空気極を得た。
 負極は、市販の金属亜鉛板(厚さ300μm、ニラコ製)を、打ち抜き刃、レーザーカッターなどにより直径14mmの円形に切り抜くことで調整した。
 電解液は、塩化カリウム(KCl、関東化学製)を1mol/Lの濃度で純水に溶解した溶液を用いた。セパレータは、電池用のセルロース系セパレータ(日本高度紙工業製)を用いた。上述した空気極、負極、電解質となる電解液およびセパレータを用い、図6A、図6Bに示すコインセル型の亜鉛空気電池を作製した。
 図6Aは、本実施例のコインセル型の亜鉛空気電池の断面図である。図6Bは、本実施例のコインセル型の亜鉛空気電池を空気極側からみた底面図である。まず、スポット溶接により、銅メッシュ箔(MIT Japan製)の周縁部を内側に固定した空気極ケース201に、上記の空気極101を設置した。空気極ケース201は、空気孔201aを有する。また、金属亜鉛板を用いた負極102は、スポット溶接により周縁部を銅メッシュ箔(MIT Japan製)に固定し、この銅メッシュ箔を負極ケース202にスポット溶接して固定した。
 次に、空気極ケース201に設置した空気極101の上に、セパレータを載置し、載置したセパレータに電解液を注入し電解質103とした。次に、負極102を固定した負極ケース202を空気極ケース201に被せ、コインセルかしめ機で空気極ケース201および負極ケース202の周縁部をかしめることにより、ポリプロピレン製ガスケット203を含むコインセル型の亜鉛空気電池を作製した。
 作製したコインセル型の亜鉛空気電池の電池性能を測定した。まず、放電試験を実施した。亜鉛空気電池の放電試験は、市販の充放電測定システム(北斗電工社製、SD8充放電システム)を用い、空気極の有効面積当たりの電流密度で0.1mA/cm2を通電し、開回路電圧から放電電圧が、0Vに低下するまで測定した。亜鉛空気電池の放電試験は、25℃の恒温槽内(雰囲気は通常の生活環境下)で測定した。放電容量は、共連続体を含む空気極の重量当たりの値(mAh/g)で表した。本実施例の亜鉛空気電池における放電曲線を図7に示す。
 図7に示すように、共連続体を空気極に用いたときの平均放電電圧は1.1Vであり、放電容量は1100mAh/gであることが分かる。なお、平均放電電圧は、電池の放電容量(本実施例では1100mAh/g)の1/2の放電容量(実施例1では550mAh/g)の時の電池電圧とする。
 平均放電電圧および放電容量は、後述する粉末カーボンを用いた空気極について評価した比較例1に比べて大きい値であった。MPCを担持した共連続体は、粉末カーボンより高比表面積であるため、酸素還元反応が促進され、また、放電生成物[Zn(OH)2]が効率的に析出することができ、平均放電電圧及び放電容量が改善されたものと考えられる。前述の製造方法2によるMPCを担持した共連続体についても、本実施例と同様の評価が得られる。
 [実施例2](空気極:触媒を担持したMPC担持共連続体)
 実施例2では、MPCを担持した共連続体料に、酸化物または金属を触媒として担持させた正極について説明する。以下では、触媒としてMnOを共連続体に担持させる場合を一例として説明するが、Mnを任意の金属に変えることで、任意の酸化物を触媒として共連続体に担持させることができる。また、中和の工程を行わないことで、任意の金属を触媒として共連続体に担持させることができる。
 共連続体の作製および評価法、亜鉛空気電池の作製、放電試験方法は、実施例1と同様にして行った。
 実施例2では、市販の塩化マンガン(II)4水和物(MnCl・4HO;関東化学製)を蒸留水に溶解し、実施例1で作製した共連続体を含浸させ、共連続体に塩化マンガンを担持させた。次いで、塩化マンガンを担持する共連続体(共連続体が担持する塩化マンガン)に、徐々にアンモニア水(28%)をpH7.0になるまで滴下し、中和することで水酸化マンガンを析出させた。析出物は、塩素が残留しないように、蒸留水による洗浄を5回繰り返した。得られた水酸化マンガン担持共連続体を、アルゴン雰囲気中500℃で6時間熱処理し、酸化マンガン(MnO)を担持した共連続体を作製した。
 作製した酸化マンガン担持共連続体を、XRD測定、TEM観察を行い、評価した。XRD測定より、酸化マンガン(MnO,PDFファイルNo.00-011-079)のピークを観察することができた。共連続体に担持された触媒は、酸化マンガン単相であることを確認した。また、TEMにより酸化マンガンは、共連続体の表面に平均粒径100nmの粒子状で析出しているのが観察された。
 この酸化マンガンを担持した共連続体を正極に用いて亜鉛空気電池を作製した。以下の表1に、他の触媒を用いた場合の結果も合わせて示す。
Figure JPOXMLDOC01-appb-T000001
 
 実施例2の酸化マンガン担持共連続体を用いた金属空気電池では、放電容量は、1250mAh/g、平均放電電圧は、1.20Vとなり、実施例1の、触媒を担持していない共連続体を用いた場合よりも大きい値であった。正極の伸縮性だけでなく、正極に触媒を担持することで、正極における反応抵抗が下がり、放電電圧が改善されたと考えられる。
 [比較例1](空気極:粉末カーボン)
 次に、比較例1について説明する。比較例では、実施例1とは異なる空気極を用いて、実施例1と同様にコインセル型の亜鉛空気電池を作製した。電解質には、実施例1と同様の塩化カリウム(1mol/L)を用いた。
 比較例1では、空気極に、空気極用電極として公知なカーボン(ケッチェンブラックEC600JD)および酸化マンガンを用いて、亜鉛空気電池を作製して評価した。
 酸化マンガン粉末(関東化学製)、ケッチェンブラック粉末(ライオン製)およびポリテトラフルオロエチレン(PTFE)粉末(ダイキン製)を、50:30:20の重量比で、らいかい機を用いて十分に粉砕および混合し、ロール成形して、シート状電極(厚さ:0.5mm)を作製した。このシート状電極を直径14mmの円形に切り抜き、空気極を得た。電池の放電試験の条件は、実施例1と同様である。
 比較例1に係る亜鉛空気電池の平均放電電圧を、実施例1,2の結果とともに表2に示す。
Figure JPOXMLDOC01-appb-T000002
 
 表2に示すように、比較例1の放電容量は、680mAh/g、平均放電電圧は、0.83Vであり、実施例1よりも小さな値を示した。また、測定後に比較例1の空気極を観察したところ、空気極の一部が崩れて電解液中に分散しており、空気極の電極構造が破壊されている様子が見られた。以上の結果より、本実施形態の金属空気電池は、公知の材料による空気極を用いた金属空気電池よりも、容量および電圧に関して優れていることが確認された。
 [比較例2](空気極:共連続体)
 次に、比較例2について説明する。比較例2では、実施例1のカーボンナノファイバーを用い、ゲル生産工程でMPCを混合せずに作製した共連続体を空気極に使用した。すなわち、比較例2の空気極には、MPCを担持しない共連続体を用いた。
 得られた共連続体は、XRD測定、SEM観察、気孔率測定、引張試験、BET比表面積測定を行い、評価した。本比較例で作製した共連続体はXRD測定よりカーボン(C、PDFカードNo.00-058-1638)単相であることを確認した。また、SEM観察および水銀圧入法により、ナノファイバーが連続に連なった平均孔径が1μmの共連続体であることを確認した。また、水銀圧入法により共連続体のBET比表面積測定を測定したところ、620m2/gあった。また、水銀圧入法により共連続体の気孔率を測定したところ、93%以上であった。更に、引張試験の結果から、本比較例の共連続体は、引張応力により歪が40%加えられても、弾性領域を超えず、応力印加前の形状に復元することを確認した。
 表2に示すように、比較例2の亜鉛空気電池では、放電容量は、850mAh/g、平均放電電圧は、1.02Vであり、空気極にカーボン粉末を用いた比較例1よりも大きく、空気極にMPCを担持した共連続体を用いた実施例1よりも小さな値を示した。
 これは、比較例1の空気極よりも伸縮性を有する比較例2の空気極が、効率的に放電生成物[Zn(OH)]を析出したため、放電容量が改善されたと考えられる。また、比較例2は、MPCが担持されていないことで、実施例1よりも比表面積が小さくなったことから、正極反応の抵抗があがり、平均放電電圧の低下が起きたと考えられる。
 これらの結果より、本実施形態の金属空気電池は、公知の材料による正極を用いた金属空気電池よりも、電圧および容量に関して優れていることが確認された。また、水系の金属空気電池における正極の反応は同様の反応機構であるため,負極が亜鉛からほかの金属に変更された場合についても,正極反応の効率向上による電池性能の向上が期待できる。
 以上に説明したように、本実施形態の金属空気電池は、空気極と、金属を含む負極と、 イオン導電性を有する電解質と、を備え、前記空気極は、複数のナノ構造体が分岐して一体化された三次元ネットワーク構造の共連続体と、前記共連続体に担持されたメソポーラスカーボンとを含む。
 また、本実施形態の空気極の製造方法は、メソポーラスシリカを前駆体として、メソポーラスカーボンを合成する合成工程と、前記メソポーラスカーボンと、複数のナノ構造体とが分散したゾルまたはゲルを作製する生産工程と、前記ゾルまたはゲルを凍結させて凍結体を得る凍結工程と、前記凍結体を真空中で乾燥させて、前記メソポーラスカーボンが担持され、前記複数のナノ構造体が分岐して一体化された三次元ネットワーク構造の共連続体を得る乾燥工程と、前記共連続体をセルロースが燃焼しないガスの雰囲気で加熱して炭化する炭化工程と、を備える。
 また、本実施形態の空気極の製造方法は、メソポーラスシリカを鋳型として有機化合物と反応させ、メソポーラスカーボンの前駆体を得る前駆体合成工程と、前記前駆体と、複数のナノ構造体とが分散したゾルまたはゲルを作製する生産工程と、前記ゾルまたはゲルを凍結させて凍結体を得る凍結工程と、前記凍結体を真空中で乾燥させて、前記前駆体が担持され、前記複数のナノ構造体が分岐して一体化された三次元ネットワーク構造の共連続体を得る乾燥工程と、前記共連続体をセルロースが燃焼しないガスの雰囲気で加熱して炭化する炭化工程と、炭化した共連続体をエッチングすることで前記前駆体のメソポーラスシリカを除去し、メソポーラスカーボンを合成する合成工程と、を備える。
 このように、本実施形態では、複数のナノ構造体が非共有結合によって一体化された三次元ネットワーク構造を有する共連続体に、MPCを担持させた空気極を用いることで、より高性能な金属空気電池が得られる。
 また、本実施形態の金属空気電池は、土壌の肥料に用いられる元素や雨水や海水中に含まれる金属以外の金属元素が含まれず、また、自然分解されるため、極めて環境負荷が低い。このような電池は、日常環境の使い捨て電池を始め、土壌中で用いるセンサーなどの様々な駆動源として有効利用することができる。また、本実施形態によれば、金属空気電池の放電容量および放電電圧を大きくすることができる。
 なお、本発明は上述した実施形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。
 101…空気極
 102…負極
 103…電解質

Claims (5)

  1.  空気極と、
     金属を含む負極と、
     イオン導電性を有する電解質と、を備え、
     前記空気極は、複数のナノ構造体が分岐して一体化された三次元ネットワーク構造の共連続体と、前記共連続体に担持されたメソポーラスカーボンとを含む
     金属空気電池。
  2.  前記空気極は、触媒を備え、
     前記触媒は、鉄、マンガン、亜鉛、銅およびモリブデンからなる群より選択される少なくとも1つの金属、または、カルシウム、鉄、マンガン、亜鉛、銅およびモリブデンからなる群より選択される少なくとも1つの金属の酸化物を含む
     請求項1記載の金属空気電池。
  3.  金属空気電池の空気極の製造方法であって、
     メソポーラスカーボンを合成する合成工程と、
     前記メソポーラスカーボンと、複数のナノ構造体とが分散したゾルまたはゲルを作製する生産工程と、
     前記ゾルまたはゲルを凍結させて凍結体を得る凍結工程と、
     前記凍結体を真空中で乾燥させて、前記メソポーラスカーボンが担持され、前記複数のナノ構造体が分岐して一体化された三次元ネットワーク構造の共連続体を得る乾燥工程と、を備える
     空気極の製造方法。
  4.  金属空気電池の空気極の製造方法であって、
     メソポーラスシリカを鋳型として有機化合物と反応させ、メソポーラスカーボンの前駆体を得る前駆体合成工程と、
     前記前駆体と、複数のナノ構造体とが分散したゾルまたはゲルを作製する生産工程と、
     前記ゾルまたはゲルを凍結させて凍結体を得る凍結工程と、
     前記凍結体を真空中で乾燥させて、前記前駆体が担持され、前記複数のナノ構造体が分岐して一体化された三次元ネットワーク構造の共連続体を得る乾燥工程と、
     前記共連続体を不活性ガスの雰囲気で加熱して、前記共連続体に担持された前記前駆体を炭化する炭化工程と、
     炭化した前駆体をエッチングすることで前記前駆体のメソポーラスシリカを除去し、メソポーラスカーボンを合成する合成工程と、を備える
     空気極の製造方法。
  5.  前記共連続体に触媒を担持する触媒担持工程を備える
     請求項3または請求項4記載の空気極の製造方法。
PCT/JP2020/041210 2020-11-04 2020-11-04 金属空気電池および空気極の製造方法 WO2022097200A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022560540A JPWO2022097200A1 (ja) 2020-11-04 2020-11-04
PCT/JP2020/041210 WO2022097200A1 (ja) 2020-11-04 2020-11-04 金属空気電池および空気極の製造方法
US18/249,140 US20230411634A1 (en) 2020-11-04 2020-11-04 Metal Air Battery and Manufacturing Method of Air Electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/041210 WO2022097200A1 (ja) 2020-11-04 2020-11-04 金属空気電池および空気極の製造方法

Publications (1)

Publication Number Publication Date
WO2022097200A1 true WO2022097200A1 (ja) 2022-05-12

Family

ID=81457616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041210 WO2022097200A1 (ja) 2020-11-04 2020-11-04 金属空気電池および空気極の製造方法

Country Status (3)

Country Link
US (1) US20230411634A1 (ja)
JP (1) JPWO2022097200A1 (ja)
WO (1) WO2022097200A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014087894A1 (ja) * 2012-12-03 2014-06-12 独立行政法人物質・材料研究機構 燃料電池カソード用非白金触媒及びその製造方法
JP2016032802A (ja) * 2014-07-31 2016-03-10 旭化成ケミカルズ株式会社 炭素触媒及びその製造方法
WO2018003724A1 (ja) * 2016-07-01 2018-01-04 日本電信電話株式会社 電池およびその正極の製造方法
WO2019013051A1 (ja) * 2017-07-13 2019-01-17 日清紡ホールディングス株式会社 炭素触媒、電池電極及び電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014087894A1 (ja) * 2012-12-03 2014-06-12 独立行政法人物質・材料研究機構 燃料電池カソード用非白金触媒及びその製造方法
JP2016032802A (ja) * 2014-07-31 2016-03-10 旭化成ケミカルズ株式会社 炭素触媒及びその製造方法
WO2018003724A1 (ja) * 2016-07-01 2018-01-04 日本電信電話株式会社 電池およびその正極の製造方法
WO2019013051A1 (ja) * 2017-07-13 2019-01-17 日清紡ホールディングス株式会社 炭素触媒、電池電極及び電池

Also Published As

Publication number Publication date
JPWO2022097200A1 (ja) 2022-05-12
US20230411634A1 (en) 2023-12-21

Similar Documents

Publication Publication Date Title
Ge et al. Efficient and durable oxygen reduction and evolution of a hydrothermally synthesized La (Co 0.55 Mn 0.45) 0.99 O 3− δ nanorod/graphene hybrid in alkaline media
Yu et al. 3D ordered porous Mo x C (x= 1 or 2) for advanced hydrogen evolution and Li storage
JP5675989B2 (ja) リチウム空気二次電池用正極材の製造方法及びリチウム空気二次電池
JP6951623B2 (ja) マグネシウム水電池およびその正極の製造方法
EP3518338B1 (en) Battery and method for producing positive electrode for same
JP7025644B2 (ja) 金属空気電池及び空気極製造方法
JP2013518395A (ja) 二酸化マンガンを含む触媒電極を有する電気化学電池を製造する方法
KR102528307B1 (ko) 산소가 존재하는 다공성 탄소에 고정화된 셀레늄, 재충전식 전지에서 고정화된 셀레늄의 제조 방법 및 이의 용도
JP7071643B2 (ja) 金属空気電池、及び、空気極製造方法
EP2619137A1 (en) A two-step synthesis method for the preparation of composites of insertion active compounds for lithium-ion batteries
JP2018206513A (ja) マグネシウム空気電池およびその正極、負極ならびにセパレータの製造方法
Duraia et al. Humic acid-derived graphene–SnO2 nanocomposites for high capacity lithium-ion battery anodes
Liu et al. MOF-derived Co3O4 nanoparticles embedded in NiO nanosheet arrays as heterostructure cathode for rechargeable lithium-oxygen batteries
Kamali et al. A novel electrocatalyst composed of graphene oxide/graphitic carbon nitride and CuFe/NC@ Co nanoparticles-embedded in nitrogen-doped carbon nanotube for oxygen reduction reaction and supercapacitor
Rong et al. Mn single-atoms decorated CNT electrodes for high-performance supercapacitors
Chen et al. Binary transition metal sulfides MoS2–NiS2 anchored on biomass-derived carbon for improved performance of lithium–sulfur batteries
Liu et al. Highly efficient solid-state synthesis of carbon-encapsulated ultrafine MoO 2 nanocrystals as high rate lithium-ion battery anode
WO2022097200A1 (ja) 金属空気電池および空気極の製造方法
JP7356053B2 (ja) 空気電池、および、空気電池の製造方法
Li et al. Carbon-coated hollow CoO microporous nanospheres synthesized by CoF 2 as the intermediates as anode materials for lithium-ion batteries
JP7068585B2 (ja) バイポーラ型金属空気電池、空気極製造方法、及び、集電体製造方法
JP7464857B2 (ja) 金属空気電池、および金属空気電池の製造方法
Liu et al. Synthesis of hierarchically porous MnO/C composites via a sol–gel process followed by two-step combustion for lithium-ion batteries
JP7510084B2 (ja) 金属空気電池
JP7510081B2 (ja) 金属空気電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960754

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022560540

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20960754

Country of ref document: EP

Kind code of ref document: A1