WO2022091218A1 - 半導体装置、電力変換装置及び半導体装置の製造方法 - Google Patents

半導体装置、電力変換装置及び半導体装置の製造方法 Download PDF

Info

Publication number
WO2022091218A1
WO2022091218A1 PCT/JP2020/040267 JP2020040267W WO2022091218A1 WO 2022091218 A1 WO2022091218 A1 WO 2022091218A1 JP 2020040267 W JP2020040267 W JP 2020040267W WO 2022091218 A1 WO2022091218 A1 WO 2022091218A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
trench
drift layer
semiconductor device
conductive type
Prior art date
Application number
PCT/JP2020/040267
Other languages
English (en)
French (fr)
Inventor
梨菜 田中
英之 八田
基 吉田
裕 福井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/040267 priority Critical patent/WO2022091218A1/ja
Priority to JP2021570524A priority patent/JP7074267B1/ja
Publication of WO2022091218A1 publication Critical patent/WO2022091218A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Definitions

  • the present disclosure relates to a semiconductor device, a power conversion device to which the semiconductor device is applied, and a method for manufacturing the semiconductor device.
  • an insulated gate type semiconductor device such as a MOSFET (Metal Oxide Semiconductor Field Effect Transistor / metal oxide semiconductor field effect transistor) is widely used.
  • a trench gate type semiconductor device is being developed.
  • a trench gate type semiconductor device there is a MOSFET having a gate trench in which a gate electrode is formed and a Schottky trench in which a Schottky electrode is formed, and a built-in SBD (Schottky barrier diode) (for example). See Patent Document 1).
  • SBD Schottky barrier diode
  • a body region is formed adjacent to the gate trench and a body region is formed adjacent to the Schottky trench, so that a region in which a Schottky interface can be formed is formed. It was limited and was a constraint on increasing the Schottky current density.
  • the present disclosure has been made to solve the above-mentioned problems, and an object of the present disclosure is to obtain a semiconductor device capable of increasing the Schottky current density.
  • the semiconductor device includes a first conductive type drift layer, a second conductive type body region provided in a part of the drift layer, and a first conductive type source region provided on the body region.
  • a second conductive type well region formed in a direction shallower than the body region in the thickness direction of the drift layer, and a shot provided in a shot key trench penetrating the well region in the thickness direction of the drift layer. It is equipped with a key electrode and.
  • the semiconductor device according to the present disclosure has an effect that the Schottky current density can be increased in a MOSFET having a built-in SBD.
  • FIG. 1 is a 1st figure which shows each process of the manufacturing method of the semiconductor device of Embodiment 1.
  • FIG. It is a 2nd figure which shows each process of the manufacturing method of the semiconductor device of Embodiment 1.
  • FIG. It is a 3rd figure which shows each process of the manufacturing method of the semiconductor device of Embodiment 1.
  • FIG. It is a 4th figure which shows each process of the manufacturing method of the semiconductor device of Embodiment 1.
  • FIG. It is a figure which shows each process of another example of the manufacturing method of the semiconductor device of Embodiment 1.
  • FIG. It is a 5th figure which shows each process of the manufacturing method of the semiconductor device of Embodiment 1.
  • FIG. It is a 6th figure which shows each process of the manufacturing method of the semiconductor device of Embodiment 1.
  • FIG. It is a 7th figure which shows each process of the manufacturing method of the semiconductor device of Embodiment 1.
  • FIG. It is sectional drawing which shows the cell region of the semiconductor device of Embodiment 2.
  • It is a 1st figure which shows each process of the manufacturing method of the semiconductor device of Embodiment 2.
  • FIG. It is a figure which shows each process of another example of the manufacturing method of the semiconductor device of Embodiment 2.
  • FIG. It is a 2nd figure which shows each process of the manufacturing method of the semiconductor device of Embodiment 2.
  • FIG. It is a 3rd figure which shows each process of the manufacturing method of the semiconductor device of Embodiment 2.
  • FIG. It is a 4th figure which shows each process of the manufacturing method of the semiconductor device of Embodiment 2.
  • FIG. It is a plane schematic diagram which shows the layout of the cell area of the semiconductor device of Embodiment 3.
  • FIG. It is sectional drawing which shows the cell region of the semiconductor device of Embodiment 3.
  • FIG. It is a figure which shows each process of the manufacturing method of the semiconductor device of Embodiment 3.
  • top, bottom, side, bottom, front, and back may be used to mean a specific position and direction.
  • the term is used for convenience in order to facilitate understanding of the contents of the embodiment, and has nothing to do with the direction in which it is actually implemented.
  • the conductive type of impurities the case where the first conductive type is n-type and the second conductive type is p-type will be described, but the first conductive type is p-type and the second conductive type is n-type. It doesn't matter.
  • the “impurity concentration” indicates the maximum value of impurities in each region.
  • the description of "n - type” indicates that the impurity concentration is lower than that of the description of "n-type", and the description of "n + type” is described as "n-type”. It shows that the impurity concentration is higher than that of the above.
  • the description "p - type” indicates that the impurity concentration is lower than that described as "p-type”
  • the description "p + type” is described as "p-type”. It shows that the impurity concentration is higher than that of the one.
  • MOS Metal-Oxide-Semiconductor
  • polycrystalline silicon has been adopted as the material for gate electrodes, mainly from the viewpoint of forming source and drain in a self-aligned manner. Further, from the viewpoint of improving the electrical characteristics, a material having a high dielectric constant is adopted as the material of the gate insulating film, but this material is not necessarily limited to the oxide.
  • MOS is not necessarily limited to the metal / oxide / semiconductor laminated structure, and the present specification does not presuppose such limitation. That is, in view of common general technical knowledge, "MOS” has a meaning not only as an abbreviation derived from the etymology but also broadly including a laminated structure of a conductor / insulator / semiconductor.
  • Embodiment 1 The semiconductor device of the first embodiment will be described with reference to FIGS. 1 to 12.
  • FIG. 1 is a schematic plan view schematically showing a top surface configuration of the entire semiconductor device 101 of the present embodiment.
  • FIG. 2 is an enlarged view of the region X shown in FIG. 1, and is a schematic plan view schematically showing the layout of MOSFET cells in the semiconductor device 101.
  • FIG. 3 is a cross-sectional view taken along the line AA'of FIG. 2, which is a schematic cross-sectional view showing a partial cross section of the active region 40 in the semiconductor device 101 of the present embodiment.
  • FIG. 2 corresponds to a top view of a lateral cross section at a certain depth between the body region 3 and the first bottom protection region 15 shown in FIG.
  • the semiconductor device 101 has a quadrangular outer shape, and in the central portion thereof, an active region 40 in which a plurality of minimum unit structures (MOSFET cells) of MOSFETs called “unit cells” are arranged. Is provided, and the outside of the active region 40 is surrounded by the terminal region 41.
  • a plurality of gate trenches 6 and a plurality of shot key trenches 11 are provided in parallel in the active region 40 at intervals from each other.
  • the plurality of gate trenches 6 are connected to the gate wiring provided in the active region 40, and the gate wiring is connected to the gate pad, but the illustration and description thereof will be omitted.
  • the gate trench 6 and the shot key trench 11 are formed in a striped shape in a plan view. Further, in a plan view, the extending direction of the gate trench 6 and the extending direction of the shot key trench 11 are formed to be the same direction.
  • the shotkey interface 22 is formed on the side surface of the shotkey trench 11 exposed to the drift layer 2.
  • the structure may be such that two MOS regions 19 sandwich two SBD regions 20, two gate trenches 6 in the MOS region 19, two shotkey trenches 11 in the SBD region 20, and a gate trench 6 in the MOS region 19.
  • the structure may be such that the arrangement of one shot key trench 11 in the SBD region 20 is repeated, and the structure is not limited to these examples.
  • a plurality of MOSFET cell structures as shown in FIG. 3 are repeatedly and periodically provided in the active region 40.
  • the characteristic configuration shown in the region X shown in FIG. 1 will be described as each embodiment and its modification, and FIG. 1 is common to each embodiment and its modification.
  • the semiconductor device 101 includes a substrate 1, a drift layer 2, a body region 3, a source region 4, a body contact region 5, a gate trench 6, a gate insulating film 7, a gate electrode 8, and an interlayer insulating film 9. It includes a well region 10, a shot key trench 11, a shot key electrode 12, a source electrode 13, a drain electrode 14, a first bottom protection region 15, and a contact region 17.
  • the MOS region 19 has a gate trench 6, a gate insulating film 7, a gate electrode 8, and an interlayer insulating film 9.
  • the SBD region 20 has a Schottky trench 11 and a Schottky electrode 12.
  • the semiconductor layer 21 includes a body region 3, a source region 4, a body contact region 5, a well region 10 and a first bottom protection region 15, which are an impurity region formed above or inside the drift layer 2 and the drift layer 2.
  • the substrate 1 is an n + type SiC (silicon carbide) semiconductor substrate, and has, for example, a 4H polytype.
  • the substrate 1 may be a (0001) surface having an off angle ⁇ inclined in the ⁇ 11-20> axial direction. In this case, the off angle ⁇ may be, for example, 10 ° or less.
  • n - type drift layer 2 having an n-type impurity concentration lower than that of the substrate 1 is provided on the substrate 1.
  • SiC silicon carbide
  • the drift layer 2 occupies most of the semiconductor layer 21 and constitutes a main part of the semiconductor layer 21.
  • the main surface of the substrate 1 is a (0001) surface having an off angle ⁇ inclined in the ⁇ 11-20> axial direction
  • the main surface of the drift layer 2 is also a (0001) surface having the same off angle ⁇ . That is, the drift layer 2 has a main surface provided with an off angle larger than 0 ° in the ⁇ 11-20> axial direction.
  • a p-shaped body region 3 is provided in the MOS region 19 on the upper part of the drift layer 2.
  • the body region 3 is provided adjacent to the gate trench 6.
  • the body region 3 is not provided in the SBD region 20.
  • An n + type source region 4 is selectively provided in the upper part of the body region 3.
  • the source region 4 is a semiconductor region in which the concentration of n-type impurities is higher than that of the drift layer 2.
  • a p + type body contact region 5 is selectively provided adjacent to the source region 4.
  • the body contact region 5 is a semiconductor region in which the concentration of p-type impurities is higher than that of the body region 3. That is, the body region 3, the source region 4, and the body contact region 5 are not provided in the SBD region 20, but are provided only in the MOS region 19.
  • a p + type well region 10 is provided in the SBD region 20, that is, a region of the upper layer of the drift layer 2, which is different from the region where the body region 3, the source region 4, and the body contact region 5 are provided.
  • the well region 10 is a semiconductor region having a higher p-type impurity concentration than the body region 3, and is provided adjacent to the Schottky trench 11.
  • the lower surface of the well region 10 is provided on the upper side of the lower surface of the body region 3, that is, on the front surface (first main surface) side on which the source electrode 13 of the semiconductor layer 21 is provided. In other words, the depth of the well region 10 is provided shallower than the depth of the body region 3.
  • FIG. 3 illustrates a structure in which the lower surface of the well region 10 is provided at the same position as the upper surface of the body region 3 and the lower surfaces of the source region 4 and the body contact region 5, but the structure is not limited to this.
  • the lower surface of the well region 10 may be provided on the source electrode 13 side of the lower surface of the body region 3. That is, the well region 10 may be provided shallower than the body region 3.
  • the MOS region 19 is provided with a gate trench 6 that penetrates the body region 3 in the thickness direction of the drift layer 2.
  • the gate trench 6 is formed so as to penetrate the source region 4 and the body region 3 from the surface of the semiconductor layer 21 and reach the drift layer 2.
  • the bottom of the gate trench 6 typically has a surface, but may have a tapered shape with a tapered tip. Further, the side surfaces of the gate trench 6 are typically substantially parallel, but may have a tapered shape that is inclined with respect to each other.
  • a gate insulating film 7 is provided on the bottom and side surfaces of the gate trench 6. Further, in the gate trench 6, a gate electrode 8 is provided so as to fill the inside of the gate trench 6 via the gate insulating film 7. The gate electrode 8 is provided so as to face the drift layer 2, the body region 3, and the source region 4 via the gate insulating film 7. An interlayer insulating film 9 is provided on the gate trench 6 so as to cover the gate electrode 8.
  • the SBD region 20 is provided with a shot key trench 11 that penetrates the well region 10 in the thickness direction of the drift layer 2.
  • the Schottky trench 11 is formed so as to penetrate the well region 10 from the surface of the semiconductor layer 21 and reach the drift layer 2.
  • the shot key trench 11 is formed so that the depth of the drift layer 2 in the thickness direction is the same as that of the gate trench 6.
  • the shot key trench 11 is formed so that the trench width in the direction orthogonal to the thickness direction of the drift layer 2 is the same as that of the gate trench 6.
  • the bottom of the shot key trench 11 typically has a surface, but may have a tapered shape with a tapered tip. Further, the side surfaces of the shot key trench 11 are typically substantially parallel, but may have a tapered shape that is inclined with respect to each other.
  • the shot key trench 11 is not limited to the one formed so that the depth of the drift layer 2 in the thickness direction is the same as that of the gate trench 6. Further, the shot key trench 11 is not limited to the one formed so that the trench width in the direction orthogonal to the thickness direction of the drift layer 2 is the same as that of the gate trench 6.
  • the gate trench 6 and the shot key trench 11 may have different depths in the thickness direction of the drift layer 2, or may have different trench widths in the direction orthogonal to the thickness direction of the drift layer 2. These trenches may have either a thick or narrow trench width or either deep or shallow depth, and differ depending on the specifications of each semiconductor device.
  • a shot key electrode 12 is provided in the shot key trench 11.
  • the shotkey electrode 12 is formed of a metal such as Ti (titanium) or Mo (molybdenum).
  • the shot key electrode 12 is in contact with the drift layer 2 and the well region 10 at the bottom or side surface of the shot key trench 11 and is electrically connected to these.
  • the Schottky electrode 12 forms a Schottky junction with the drift layer 2 on the side surface of the Schottky trench 11. That is, as shown in FIG. 2, the shot key electrode 12 forms a shot key interface 22 with the drift layer 2 on the side surface and the bottom surface of the shot key trench 11.
  • a parasitic Schottky barrier diode hereinafter, simply referred to as SBD
  • a contact region 17 is formed on the source region 4, the body contact region 5, and the well region 10.
  • the contact region 17 is a silicide of a metal such as Ni (nickel) or Ti (titanium) and the semiconductor layer 21, and is in contact with the source region 4, the body contact region 5 and the well region 10 to form ohmic contact with them. ..
  • a source electrode 13 is provided on the interlayer insulating film 9, the contact region 17, and the shotkey electrode 12 so as to cover them.
  • the source electrode 13 is an electrode made of a metal whose main component is Al (aluminum).
  • the source electrode 13 functions as a main electrode on the front surface side together with the contact region 17.
  • the source electrode 13 is electrically connected to the source region 4 and the body contact region 5 via the contact region 17. Further, in the SBD region 20, the source electrode 13 is connected to the Schottky electrode 12, and together with the Schottky electrode 12, constitutes the anode electrode of the SBD.
  • a drain electrode 14 containing a metal such as Ni (nickel) is provided on the surface of the substrate 1 opposite to the surface on which the source electrode 13 is provided.
  • the source electrode 13 is provided on the front surface (first main surface) side of the substrate 1 (semiconductor layer 21), and the drain electrode 14 faces the front surface of the substrate 1 (semiconductor layer 21). It is provided on the back surface (second main surface) side.
  • a p + -shaped first bottom protective region 15 is provided below the gate trench 6 (gate insulating film 7).
  • the first bottom protection region 15 is in contact with the bottom of the gate trench 6 and is provided so as to cover the entire bottom of the gate trench 6.
  • the first bottom protection region 15 is not limited to the one provided in contact with the bottom of the gate trench 6, and may be provided in the drift layer 2 below the bottom of the gate trench 6.
  • the first bottom protection area 15 is not limited to covering the entire bottom of the gate trench 6, and may be provided so as to cover at least a part of the bottom of the gate trench 6.
  • the first bottom protection region 15 is spaced along the extending direction of the gate trench 6 (the direction is defined for each of the longitudinal direction in a plan view in the case of a stripe shape and for each gate trench 6 in the case of a grid shape). It may be arranged periodically, or it may be provided so as to cover about half of the bottom of the gate trench 6 in a cross section orthogonal to the stretching direction.
  • the first bottom protected area 15 is configured so that the width of the first bottom protected area 15 is larger than the width of the gate trench 6 by covering the entire bottom so as to protrude in the width direction of the gate trench 6. You may.
  • the first bottom protection region 15 is not limited to the one provided along the extending direction of the gate trench 6, and is provided by extending in a direction orthogonal to the extending direction of the gate trench 6 so that the gate trench 6 is provided in the extending direction.
  • the bottom of the may be partially and periodically covered.
  • the concentration of n-type impurities in the drift layer 2 is 1.0 ⁇ 10 14 to 1.0 ⁇ 10 17 cm -3 , and is set based on the withstand voltage of the semiconductor device and the like.
  • the concentration of p-type impurities in the body region 3 is 1.0 ⁇ 10 14 to 1.0 ⁇ 10 18 cm -3 .
  • the concentration of n-type impurities in the source region 4 is 1.0 ⁇ 10 18 to 1.0 ⁇ 10 21 cm -3 .
  • the concentration of p-type impurities in the body contact region 5 is 1.0 ⁇ 10 18 to 1.0 ⁇ 10 21 cm -3 , and in order to reduce the contact resistance with the source electrode 13, it is more p-type than the body region 3.
  • the concentration of p-type impurities in the first bottom protection region 15 is preferably 1.0 ⁇ 10 14 or more and 1.0 ⁇ 10 20 cm -3 or less, and the concentration profile does not have to be uniform.
  • the p-type impurity concentration in the well region 10 is 1.0 ⁇ 10 14 to 1.0 ⁇ 10 20 cm -3 , and the p-type impurity concentration is set to be higher than that in the body region 3.
  • the operation of the semiconductor device 101 according to the first embodiment will be briefly described.
  • the conductive type is inverted in the body region 3, that is, an n-type channel is formed along the side surface of the gate trench 6.
  • the same conductive type (n type in the first embodiment) current path is formed between the source electrode 13 and the drain electrode 14, so that a current flows.
  • the state in which the voltage equal to or higher than the threshold voltage is applied to the gate electrode 8 in this way is the on state of the semiconductor device 101.
  • the semiconductor device 101 operates by switching between the on state and the off state by controlling the voltage applied to the gate electrode 8.
  • the semiconductor device 101 has a MOSFET structure composed of a gate electrode 8, a gate insulating film 7, a drift layer 2, a body region 3, a source region 4, a source electrode 13, a drain electrode 14, and the like. Has.
  • the gate trench 6 and the shot key trench 11 are formed so that their extension directions are parallel to the ⁇ 11-20> axial direction. This is because the side surfaces of the gate trench 6 and the Schottky trench 11 serve as current paths, so that when the semiconductor layer 21 has an off angle ⁇ inclined in the ⁇ 11-20> axial direction, both side surfaces facing each other of the trenches are off. This is to avoid a difference in characteristics on both side surfaces due to different crystal planes due to the influence of the angle.
  • the first bottom protection region 15 promotes the depletion of the n-type region of the drift layer 2 by the depletion layer extending from the first bottom protection region 15, and also to the bottom of the gate trench 6.
  • the electric field applied to the gate insulating film 7 is reduced, and the gate insulating film 7 is prevented from being destroyed.
  • the electric field concentration at the bottom of the gate trench 6 can be further relaxed.
  • a p-shaped connection region (not shown) in contact with the first bottom protection region 15 and the body region 3 may be formed on the side surface of the gate trench 6.
  • the potential of the first bottom protection region 15 is grounded by being electrically connected to the source electrode 13 via the connection region, the body region 3, and the source region 4. This electrical connection is provided, for example, through adjacent cells.
  • the connection region may have, for example, a p-type impurity concentration of 1.0 ⁇ 10 14 or more and 1.0 ⁇ 10 20 cm -3 or less.
  • the gate trench 6 is formed in a line shape, the gate trench 6 is formed by extending a low-concentration p-type connection region (p --- region) on the side surface of the longitudinal end portion of the gate trench 6.
  • the first bottom protection region 15 at the bottom of the gate trench 6 and the body region 3 above it can be electrically connected through the p-- region.
  • the gate trench 6 may be formed in a grid pattern, and in this case, the first bottom protection region 15 at the bottom of the gate trench 6 and the gate electrode 8 pass through the gate electrode 8 at the intersection of the gate electrodes 8.
  • the first bottom protection region 15 can be electrically connected to the body region 3 through the contact and the source electrode 13.
  • the elongation of the depletion layer is promoted from the first bottom protection region 15 toward the drift layer 2 when the semiconductor device 101 is turned off, and the electric field strength of the bottom surface of the gate trench 6 is increased. Can be reduced. Further, during the on / off operation of the semiconductor device 101, a current path for charging / discharging the pn junction formed by the first bottom protection region 15 and the drift layer 2 is secured, and the electric charge is drawn out to the source electrode 13 so that the semiconductor device 101 is depleted. The response of the layer becomes faster, and the switching loss can be reduced.
  • FIGS. 4 to 11 are diagrams showing each process of the manufacturing method of the semiconductor device 101 of the present embodiment.
  • a substrate 1 on which an n - type semiconductor layer 21 made of silicon carbide is formed is prepared. More specifically, the n - type semiconductor layer 21 may be formed by the epitaxial growth method on the substrate 1 which is an n + type silicon carbide substrate. Further, the n-type impurity concentration of the semiconductor layer 21 is formed so as to correspond to the n-type impurity concentration of the drift layer 2 described above.
  • a p-type body region 3 is formed by ion implantation in the MOS region 19 which is a part of the upper layer portion in the semiconductor layer 21 (drift layer 2), and the upper layer portion of the body region 3 is formed.
  • an n + type source region 4 and a p + type body contact region 5 are selectively formed by ion implantation.
  • p + so as to be adjacent to the body contact region 5 in the SBD region 20, which is a part of the upper layer portion of the semiconductor layer 21 (drift layer 2) and is a region different from the region provided with the body region 3.
  • the well region 10 of the mold is formed by ion implantation. At this time, the well region 10 is formed shallower than the body region 3.
  • ions such as N (nitrogen) and P (phosphorus) are implanted as donors when forming an n-type region, and Al (aluminum) and B are used as acceptors when forming a p-type region.
  • Inject ions such as (boron).
  • the impurity concentration in each region is formed so as to have the above-mentioned value. If the impurity concentrations of the body contact region 5 and the well region 10 are the same, the body contact region 5 and the well region 10 may be formed at the same time.
  • the order of forming the body region 3, the source region 4, the body contact region 5, and the well region 10 may be different, and all or some of the regions may be formed by epitaxial growth instead of ion implantation. ..
  • the body region 3, the source region 4, the body contact region 5, and the well region 10 are formed by epitaxial growth, each region is laminated on the drift layer 2.
  • forming the body region 3 on the upper part of the drift layer 2 means including those formed by any of the above-mentioned ion implantation or epitaxial growth manufacturing methods, and "the body region 3 is the drift layer.”
  • “Provided on 2” means that the region occupied by the body region 3 is the drift layer 2 in the finally completed semiconductor device 101 regardless of whether it is formed by the above-mentioned ion implantation or epitaxial growth manufacturing method. It shall mean that it is located on the area occupied by.
  • “forming the source region 4 on the upper part of the body region 3” means including those formed by any of the above-mentioned ion implantation or epitaxial growth manufacturing methods, and “the source region 4 is the body”.
  • “Provided on the region 3” means that the region occupied by the source region 4 is located on the region occupied by the body region 3 in the semiconductor device 101. The same applies to other areas.
  • the surface of the semiconductor layer 21 is penetrated through the source region 4 and the body region 3 to the drift layer 2 by reactive ion etching (RIE).
  • RIE reactive ion etching
  • the gate trench 6 that reaches the gate trench 6 and the shot key trench 11 that penetrates the well region 10 and reaches the drift layer 2 are formed.
  • the width of the gate trench 6 and the width of the shot key trench 11 may be different from each other.
  • a plurality of masks may be used to form the gate trench 6 in the MOS region 19 and the shot key trench 11 in the SBD region 20 by using individual etching steps. In this case, the depth of the gate trench 6 and the depth of the shot key trench 11 may be different from each other.
  • the second mask 52 is a mask provided so as to cover the shot key trench 11 and open only the gate trench 6. In this way, the p-type ion implantation is performed into the bottom of the gate trench 6 to form the p + -type first bottom protection region 15.
  • an n ⁇ type first drift layer 25 is formed on the substrate 1 by epitaxial growth, and then ions are implanted into the upper layer of the first drift layer 25 in advance. It may be selectively formed or embedded by epitaxial growth.
  • the n - type second drift layer 26 is formed on the first drift layer 25 and the first bottom protection region 15 by epitaxial growth, and then each semiconductor region or trench is formed. Will be formed.
  • the body region 3 is formed in the MOS region which is a part of the upper layer portion of the second drift layer 26, and the well region 10 is formed in the SBD region where the body region 3 is not formed.
  • the combination of the first drift layer 25 and the second drift layer 26 corresponds to the above drift layer 2.
  • the first bottom protection region 15 formed in this way projects toward the drift layer 2 side (direction orthogonal to the thickness direction of the drift layer 2) with respect to the side surface of the gate trench 6. ..
  • the side surface of the first bottom protection region 15 may not project toward the drift layer 2 side from the side surface of the gate trench 6.
  • the first bottom protection region 15 may be formed by epitaxial growth in the trench after forming the gate trench 6 extra deep by the thickness for forming the first bottom protection region 15.
  • the first mask 51 and the second mask 52 are removed by selective etching or the like using a resist mask or the like, and an insulating film is formed entirely on the semiconductor layer 21.
  • a gate insulating film 7 is formed on the bottom and side surfaces in the gate trench 6.
  • a third mask 53 having an opening at least above the gate trench 6 in the MOS region 19 is formed while covering the SBD region 20.
  • polysilicon Poly-Si
  • the gate electrode 8 is formed.
  • an interlayer insulating film 9 is formed so as to cover the gate electrode 8.
  • the fourth mask 54 is formed on the interlayer insulating film 9 covering the gate trench 6.
  • the gate insulating film 7 is also patterned together with the interlayer insulating film 9 to expose the surface of the semiconductor layer 21. As a result, a contact hole can be opened in the interlayer insulating film 9.
  • a metal such as Ni (nickel) is used on the surface of the semiconductor layer 21 exposed by the opening of the contact hole (the surface of the source region 4, the body contact region 5 and the well region 10).
  • the contact area 17 is formed.
  • the contact region 17 is a silicide of the metal and the semiconductor layer 21.
  • the insulating film formed on the bottom and side surfaces in the Schottky trench 11 is removed to expose the surface of the semiconductor layer 21.
  • a metal such as Ti (titanium) or Mo (molybdenum)
  • the shotkey electrode 12 is formed in the shotkey trench 11 in the SBD region 20.
  • the source electrode 13 is formed by depositing a metal such as Al (aluminum) on the shotkey electrode 12, the contact region 17, and the interlayer insulating film 9 so as to cover them. do.
  • the drain electrode 14 is formed so as to cover the back surface of the substrate 1.
  • the gate insulating film 7 and the interlayer insulating film 9 are typically both formed as an oxide film. Therefore, in FIG. 9 and the like, the portion of the gate insulating film 7 that overhangs the gate trench 6 (protrudes onto the surface of the semiconductor layer 21) is described as the same layer as the interlayer insulating film 9. ing.
  • the semiconductor device 101 is a switching element for electric power in which an SBD is built in antiparallel in a MOSFET, which is a unipolar type semiconductor device, as a unipolar type freewheeling diode. Therefore, the cost can be reduced as compared with the case where individual diodes are externally used.
  • the semiconductor device 101 is a MOSFET in which silicon carbide (SiC) is used as a base material for the substrate 1 and the semiconductor layer 21, the bipolar operation due to the parasitic pn diode can be suppressed by incorporating the SBD. This is because, in a semiconductor device using silicon carbide, the reliability of the device may be impaired due to the expansion of crystal defects caused by the carrier recombination energy due to the operation of the parasitic pn diode.
  • SiC silicon carbide
  • the semiconductor device 101 is a so-called trench gate type MOSFET having a gate electrode 8 in the gate trench 6 formed in the element. Therefore, as compared with the planar MOSFET having the gate electrode 8 on the surface of the element, the channel width density can be improved and the on-resistance can be reduced by the amount that the channel can be formed on the side wall portion of the gate trench 6.
  • the semiconductor device 101 is a trench gate type MOSFET, and has a structure in which a Schottky electrode 12 is embedded in the Schottky trench 11 in the SBD region 20 and a Schottky interface 22 is formed on the side surface of the Schottky trench 11. be. Therefore, since both the gate electrode 8 and the shot key electrode 12 are formed inside the gate trench 6 and the shot key trench 11, respectively, the distance between the trenches, that is, the cell pitch of each cell can be kept small, and a high current density can be obtained. can.
  • the semiconductor device 101 is a trench gate type MOSFET with a built-in SBD having the above characteristics.
  • the area of the Schottky interface that is, the portion exposed to the drift layer in the Schottky trench side wall is expanded with respect to the area of the active region of the semiconductor device.
  • the body region formed adjacent to the gate trench is also formed adjacent to the shot key trench, the area of the portion exposed to the drift layer on the side wall of the shot key trench is limited. Was there.
  • the body region 3 is not formed in the SBD region 20, and the well region 10 provided adjacent to the Schottky trench 11 in the SBD region 20 is the body region of the MOS region 19. Since it is formed shallower than 3, the Schottky current density can be increased even when the Schottky trench 11 is formed to have the same depth as the conventional one. That is, regardless of whether the Schottky trench 11 is deeper or shallower than the gate trench 6 or has the same depth, even if the depth of the Schottky trench 11 is not changed from the conventional semiconductor device, it is more than before. Also, the Schottky interface area can be expanded and the Schottky current density can be increased.
  • the shot key trench deeper.
  • the Schottky interface area formed on the side surface of the trench can be expanded, and the Schottky current density can be improved.
  • the deeper the Schottky trench the higher the electric field tends to be near the bottom, and the Schottky interface is formed near the bottom, which increases the reverse leakage current. It will be easier to do.
  • the body region 3 is not formed in the SBD region 20, and the well region 10 provided adjacent to the Schottky trench 11 in the SBD region 20 is the body region of the MOS region 19. Since it is formed shallower than 3, the Schottky interface area can be expanded without making the depth of the Schottky trench 11 larger than the depth of the gate trench 6, or even if the Schottky trench 11 is formed shallower. Can be done. Therefore, by forming the well region 10 shallower than the body region 3 of the MOS region 19 in the SBD region 20, the trade-off between the Schottky current density and the reverse leakage current can be improved. Further, by forming the depth of the Schottky trench 11 to be equal to or less than the depth of the gate trench 6, the reverse leakage current in the vicinity of the bottom of the Schottky trench 11 can be reduced.
  • the depth of the shot key trench 11 is not limited to being formed below the depth of the gate trench 6.
  • the Schottky trench 11 may be formed deeper than the gate trench 6. By forming the Schottky trench 11 deeper, the Schottky interface area can be further expanded and the Schottky current density can be further increased.
  • the semiconductor device 101 forms a first bottom protection region 15 below the gate trench 6 in the MOS region 19. Since a depletion layer is formed around the first bottom protection region 15, the electric field strength of the portion is reduced. Therefore, in the MOS region 19, it is possible to suppress the occurrence of dielectric breakdown of the gate insulating film 7 due to the electric field concentration at the bottom of the gate trench 6.
  • the drift layer 2 has a main surface having an off angle larger than 0 ° in the ⁇ 11-20> axial direction, and the gate trench 6 and the shot key trench 11 are provided. , ⁇ 11-20> Since it is provided parallel to the axial direction, it is possible to reduce the variation in characteristics due to the side surface of the trench and to obtain the effect of stabilizing the operation of the semiconductor device 101.
  • the p-type impurity concentration in the well region 10 through which the Schottky trench 11 penetrates is higher than the p-type impurity concentration in the body region 3 through which the gate trench 6 penetrates. Even if the same voltage is applied to each of them at the time of off, the extension of the depletion layer extending toward the source electrode 13 side in the well region 10 having a small thickness becomes smaller than that in the body region 3, which has an effect of preventing the occurrence of punch-through. ..
  • the gate trench 6 and the shot key trench 11 are formed in a striped shape in a plan view, but the present invention is not limited to this.
  • either the gate trench 6 or the shot key trench 11 may have a grid shape.
  • FIG. 12 is a schematic cross-sectional view showing a partial cross section of the active region 40 in the semiconductor device 201 of the present embodiment, corresponding to the cross-sectional view taken along the line AA'in FIG. 13 to 17 are diagrams showing each process of the manufacturing method of the semiconductor device 201 of the present embodiment.
  • the semiconductor device 201 of the present embodiment is different from the semiconductor device 101 of the first embodiment in that a second bottom protection region 16 is formed on the bottom surface of the shot key trench 11. Since the other configurations of the semiconductor device 201 of the present embodiment are the same as those of the semiconductor device 101 of the first embodiment, the differences from the semiconductor device 101 will be mainly described below.
  • a p + -shaped second bottom protection region 16 is provided below the Schottky trench 11 (Schottky electrode 12) along the stretching direction of the Schottky trench 11.
  • the second bottom protection area 16 is in contact with the bottom of the shot key trench 11 and is provided so as to cover the entire bottom of the shot key trench 11.
  • the second bottom protection area 16 is not limited to the one provided in contact with the bottom of the shot key trench 11, and is below the bottom of the shot key trench 11 in the drift layer 2. It may be provided apart from each other.
  • the second bottom protection area 16 is not limited to covering the entire bottom of the shot key trench 11, but is provided so as to cover at least a part of the bottom of the shot key trench 11. I just need to be there.
  • the second bottom protection region 16 is spaced along the stretching direction of the shot key trench 11 (the direction is defined for each longitudinal direction in a plan view in the case of a striped shape, and for each shot key trench 11 in the case of a grid shape). It may be arranged periodically with an opening, or it may be provided so as to cover about half of the bottom of the shot key trench 11 in a cross section orthogonal to the stretching direction.
  • the second bottom protected area 16 is configured so that the width of the second bottom protected area 16 is larger than the width of the shot key trench 11 by covering the entire bottom so as to protrude in the width direction of the shot key trench 11. It may have been done.
  • the second bottom protection region 16 is not limited to the one provided along the stretching direction of the shot key trench 11, and is stretched in a direction orthogonal to the stretching direction of the shot key trench 11.
  • the bottom portion of the shot key trench 11 may be partially and periodically covered.
  • the gate trench 6 and the Schottky trench 11 are formed as shown in FIG. 6 in the same manner as in the manufacturing method of the semiconductor device 101 described in the first embodiment, and then the first mask is formed as shown in FIG. Using 51, ion implantation is performed in an oblique direction slightly inclined from the vertical direction with respect to the surface of the semiconductor layer 21. In this way, the p-type ion implantation is performed at the bottom of the gate trench 6 to form the p + type first bottom protection region 15, and the p-type ion implantation is performed at the bottom of the shot key trench 11. A p + -shaped second bottom protection region 16 is formed.
  • an n ⁇ type first drift layer 25 is formed on the substrate 1 by epitaxial growth, and then the first drift layer 25 is formed in advance. It may be selectively formed by ion implantation in the upper layer portion or embedded by epitaxial growth. In this case, after the formation of the first bottom protected area 15 and the second bottom protected area 16, the n - type first is placed on the first drift layer 25, the first bottom protected area 15, and the second bottom protected area 16. After the 2 drift layer 26 is formed by epitaxial growth, each semiconductor region or trench is formed.
  • the body region 3 is formed in the MOS region which is a part of the upper layer portion of the second drift layer 26, and the well region 10 is formed in the SBD region where the body region 3 is not formed.
  • the combination of the first drift layer 25 and the second drift layer 26 corresponds to the above drift layer 2.
  • the first bottom protection region 15 and the second bottom protection region 16 formed in this way are on the drift layer 2 side (of the drift layer 2) with respect to the side surfaces of the gate trench 6 and the shot key trench 11. Overhangs in the direction orthogonal to the thickness direction).
  • the side surfaces of the first bottom protection region 15 and the second bottom protection region 16 project to the drift layer 2 side from the side surface of the gate trench 6. It may be configured without.
  • the first bottom protection region 15 and the second bottom protection region 16 are formed by epitaxial growth in the trench after forming the gate trench 6 and the Schottky trench 11 extra deeply by the thickness for forming them. May be.
  • the first mask 51 is removed by selective etching or the like using a resist mask or the like, and an insulating film is formed entirely on the semiconductor layer 21 to form a gate trench.
  • a gate insulating film 7 is formed on the bottom and side surfaces of the inside 6.
  • polysilicon Poly-Si
  • 8 is formed.
  • an interlayer insulating film 9 is formed so as to cover the gate electrode 8.
  • the fourth mask 54 is formed on the interlayer insulating film 9 that covers the gate trench 6 in the same manner as in the manufacturing method of the semiconductor device 101 described in the first embodiment.
  • the gate insulating film 7 is also patterned together with the interlayer insulating film 9 to expose the surface of the semiconductor layer 21 and open a contact hole in the interlayer insulating film 9.
  • a metal such as Ni (nickel) is used on the surface of the semiconductor layer 21 exposed by the opening of the contact hole (the surface of the source region 4, the body contact region 5 and the well region 10).
  • the contact area 17 is formed.
  • the Schottky electrode 12 is formed in the Schottky trench 11 in the same manner as in the manufacturing method of the semiconductor device 101 described in the first embodiment, and is placed on the Schottky electrode 12, the contact region 17, and the interlayer insulating film 9.
  • the source electrode 13 is formed in the above.
  • the drain electrode 14 is formed so as to cover the back surface of the substrate 1.
  • the semiconductor device 201 configured in this way has the same effect as the semiconductor device 101 of the first embodiment. Further, in the semiconductor device 201 of the present embodiment, in the SBD region 20, by forming the second bottom protection region 16 below the Schottky trench 11, the shot is made by the depletion layer spreading around the second bottom protection region 16. It has the effect of reducing the electric field at the key interface 22 and further suppressing the increase in the reverse leakage current.
  • FIG. 18 is an enlarged view of the region X shown in FIG. 1, and is a schematic plan view schematically showing the layout of MOSFET cells in the semiconductor device 301.
  • FIG. 19 is a cross-sectional view taken along the line BB'of FIG. 18 and is a schematic cross-sectional view showing a partial cross section of the active region 40 in the semiconductor device 301 of the present embodiment.
  • FIG. 18 corresponds to a top view of a lateral cross section at a certain depth between the body region 3 and the first bottom protection region 15 shown in FIG. 20 and 21 are diagrams showing the process of the manufacturing method of the semiconductor device 301 of the present embodiment.
  • the semiconductor device 301 of the present embodiment as shown in FIGS. 18 and 19, the first low resistance region 31 and the second low resistance region 32 are formed in the MOS region 19 and the SBD region 20, respectively. It is different from the semiconductor device 201 of the second embodiment. Since the other configurations of the semiconductor device 301 of the present embodiment are the same as those of the semiconductor device 201 of the second embodiment, the differences from the semiconductor device 201 will be mainly described below.
  • the first low resistance region 31 is an n + type semiconductor region provided along the gate trench 6 in the stretching direction of the gate trench 6 and having an n-type impurity concentration higher than that of the drift layer 2.
  • the first low resistance region 31 is provided on the side of the gate trench 6 as shown in FIGS. 18 and 19. More specifically, as shown in FIG. 18, the first low resistance region 31 is formed so as to be in contact with the entire region of the side surface of the gate trench 6 and cover the side surface of the gate trench 6 in the extending direction of the gate trench 6. .. Further, as shown in FIG. 19, the first low resistance region 31 is formed so as to be in contact with the body region 3 and the first bottom protection region 15.
  • the second low resistance region 32 is an n + type semiconductor region provided along the shot key trench 11 in the stretching direction of the shot key trench 11 and having an n-type impurity concentration higher than that of the drift layer 2.
  • the second low resistance region 32 is provided on the side of the shot key trench 11 as shown in FIGS. 18 and 19. More specifically, the second low resistance region 32 is formed so as to be in contact with the entire region of the side surface of the shot key trench 11 and to cover the side surface of the shot key trench 11 in the extending direction of the shot key trench 11. Further, as shown in FIG. 19, the second low resistance region 32 is formed so as to be in contact with the well region 10 and the second bottom protection region 16.
  • FIGS. 18 and 19 show a case where the first low resistance region 31 in the MOS region 19 and the second low resistance region 32 in the SBD region 20 are separated from each other. It may be in contact.
  • the first low resistance region 31 is not limited to being provided on both side surfaces facing each other of the gate trench 6, and may be formed on only one of the side surfaces. Further, the first low resistance region 31 may not be formed so as to be in contact with the entire region on the side surface of the gate trench 6 in the extending direction of the gate trench 6, or may be partially formed such as only a part of the region. ..
  • the second low resistance region 32 is not limited to being provided on both side surfaces facing each other of the shot key trench 11, and may be formed on only one of the side surfaces. Further, the second low resistance region 32 does not have to be formed so as to be in contact with the entire region on the side surface of the shot key trench 11 in the extending direction of the shot key trench 11, and is partially formed such as only a part of the region. May be good.
  • the first low resistance region 31 is not limited to the one provided in contact with the side surface of the gate trench 6, and may be provided at a position in the drift layer 2 away from the side surface of the gate trench 6.
  • the second low resistance region 32 is not limited to being provided in contact with the side surface of the shot key trench 11, and may be provided at a position in the drift layer 2 away from the side surface of the shot key trench 11.
  • the first low resistance region 31 is not limited to the one provided in contact with the body region 3 and the first bottom protection region 15, and may be provided at a position away from these regions in the drift layer 2.
  • the second low resistance region 32 is not limited to the one provided in contact with the well region 10 and the second bottom protection region 16, and may be provided at a position away from these regions in the drift layer 2. ..
  • the semiconductor device 301 has a first bottom protection region 15 and a first low resistance region 31 on the gate trench 6 side, and a second bottom protection region 16 and a second low on the shotkey trench 11 side.
  • the case where the resistance region 32 is provided will be described, but the present invention is not limited to this, and the semiconductor device 101 according to the first embodiment is further provided with only the first low resistance region 31, that is, the second bottom protection region 16. And the configuration may not have the second low resistance region 32.
  • the gate trench 6, the Schottky trench 11, the first bottom protection region 15, and the second bottom protection region 16 are formed in the same manner as in the manufacturing method of the semiconductor device 201 described in the second embodiment.
  • the first mask 51 is still formed, or the first mask 51 is removed as shown in FIG.
  • the n + type first low resistance region 31 and the second low resistance region 32 are formed by injecting gradient ions such as phosphorus).
  • the first low resistance region 31 and the second low resistance region 32 are formed so that the concentration of n-type impurities in these regions is lower than the concentration of p-type impurities in the body region 3. By doing so, it is possible to prevent the conductive type of the body region 3 from being inverted to the n type.
  • connection region When a p-type connection region (not shown) is formed on the side surface of the gate trench 6, the p-type impurity concentration in the connection region is formed to be higher than the n-type impurity concentration in the first low resistance region 31. By doing so, the conductive type of the region originally the first low resistance region 31 can be inverted to the p type to form the connection region. Since the connection region is usually set so that the concentration of p-type impurities is higher than that of the body region 3, the connection region is formed even in the region that was originally the body region 3.
  • the first low resistance region 31 can be formed so as to cover the side surface of the gate trench 6, and the second low resistance region 32 can be formed so as to cover the side surface of the shot key trench 11.
  • Other parts can be manufactured in the same manner as the semiconductor device 201 of the second embodiment.
  • the configuration does not have the second bottom protection region 16 and the second low resistance region 32, as shown in FIG. 7, the same as the manufacturing method of the semiconductor device 101 described in the first embodiment,
  • the first mask 51 is still formed with the first mask 51 and the second mask 52, or the first mask 51 is formed as shown in FIG.
  • the n + type first low resistance region 31 is formed by implanting inclined ions such as N (nitrogen) and P (phosphorus) from the inner walls of the gate trench 6 and the Schottky trench 11.
  • inclined ions such as N (nitrogen) and P (phosphorus
  • the semiconductor device 301 configured in this way has the same effect as the semiconductor device 201 of the second embodiment. Further, in the semiconductor device 301 of the present embodiment, since the first low resistance region 31 having a higher n-type impurity concentration than the drift layer 2 is formed adjacent to the first bottom protection region 15, the first is formed. The resistance around the bottom protection region 15 is reduced, and the on-resistance of the MOSFET can be reduced. Similarly, since the second low resistance region 32 having a higher n-type impurity concentration than the drift layer 2 is formed adjacent to the second bottom protection region 16, the periphery of the second bottom protection region 16 is formed during the operation of the SBD. The resistance is reduced and a high Schottky current can be obtained.
  • the first low resistance region 31 and the second low resistance region 32 are formed around the first bottom protection region 15 and the second bottom protection region 16, the first bottom protection region 15 and the second bottom protection region 15 are protected.
  • the concentration of n-type impurities around the region 16 is high. That is, the pn junction composed of the first bottom protection region 15 and the first low resistance region 31 and the pn junction composed of the second bottom protection region 16 and the second low resistance region 32 are the drift layer.
  • the potential of the n-type region of the pn junction increases as compared with the case of being composed of 2. As the potential of the n-type region of the pn junction increases, the built-in voltage of the body diode composed of the pn junction also increases, so that it becomes difficult for current to flow through the body diode.
  • the body diode made of a pn junction is composed of SiC (silicon carbide)
  • a current usually flows through the body diode at about 3.5 V from the band gap of silicon carbide.
  • the potential of the n-type region of the pn junction is high, the body diode does not turn on unless a bias corresponding to that is applied. Therefore, when a forward bias is applied to the body diode, in the pn junction of the first bottom protection region 15 and the second bottom protection region 16 adjacent to the first low resistance region 31 and the second low resistance region 32, more Bipolar operation is suppressed up to high voltage.
  • the SBD can be turned on by applying a bias due to the Schottky barrier, and is usually turned on at a voltage lower than that of the body diode made of a pn junction, such as about 1 to 2 V. Therefore, when the forward bias is applied, the Schottky current, which is the unipolar current due to the SBD, begins to flow first, and when the bias becomes higher, the bipolar current due to the body diode starts to flow.
  • the first low resistance region 31 and the second low resistance region 32 having a higher n-type impurity concentration than the drift layer 2 around the first bottom protection region 15 and the second bottom protection region 16. Since the potential of the n-type region of the pn junction can be increased and the operating voltage of the body diode composed of the pn junction can be increased, a higher maximum unipolar current can be obtained in the SBD.
  • FIG. 22 is a schematic cross-sectional view showing a partial cross section of the active region 40 in the semiconductor device 401 of the present embodiment, corresponding to the cross-sectional view taken along the line AA' in FIG.
  • FIG. 23 is a diagram showing each process of the manufacturing method of the semiconductor device 401 of the present embodiment.
  • the semiconductor device 201 of the present embodiment is different from the semiconductor device 201 of the second embodiment in that the current diffusion region 34 is formed in the lower part of the body region 3. Since the other configurations of the semiconductor device of the present embodiment are the same as those of the semiconductor device 201 of the second embodiment, the differences from the semiconductor device 201 will be mainly described below.
  • the current diffusion region 34 is an n + type semiconductor region formed in the lower part of the body region 3 so that the upper surface is in contact with the lower surface of the body region 3.
  • the current diffusion region 34 is formed only in the MOS region 19 in which the body region 3 is formed, and is not formed in the SBD region 20.
  • the concentration of n-type impurities in the current diffusion region 34 is higher than the concentration of n-type impurities in the drift layer 2. That is, the current diffusion region 34 has a lower resistance than the drift layer 2.
  • the manufacturing method of the semiconductor device 401 will be described with reference to FIG. 23, focusing on the differences from the manufacturing method of the semiconductor device 101 of the first embodiment or the manufacturing method of the semiconductor device 201 of the second embodiment.
  • the body region 3, the source region 4, and the body are formed as shown in FIG. 23 in the same manner as in the manufacturing method of the semiconductor device 101 described in the first embodiment.
  • the contact region 5, the well region 10, and the current diffusion region 34 are each formed by ion implantation. It should be noted that all or part of the region may be formed by epitaxial growth instead of ion implantation.
  • n + type current diffusion region 34 can be formed below the body region 3.
  • Other parts can be manufactured in the same manner as the semiconductor device 201 of the second embodiment.
  • the semiconductor device 401 configured in this way has the same effect as the semiconductor device 201 of the second embodiment. Further, in the semiconductor device 401 of the present embodiment, since the current diffusion region 34 is formed at the bottom of the body region 3, the JFET resistance between the body region 3 and the first bottom protection region 15 can be reduced. , It has the effect that the loss can be reduced by lowering the on-resistance.
  • the Schottky current also flows in the vicinity of the body region 3 during the reflux operation, the bipolar operation in which the current flows in the pn junction between the body region 3 and the drift layer 2 is suppressed. It has the effect that it can.
  • Embodiment 5 the semiconductor device according to any one of the above-described first to fourth embodiments is applied to a power conversion device.
  • the present disclosure is not limited to a specific power conversion device, the case where the present disclosure is applied to a three-phase inverter will be described below as the fifth embodiment.
  • FIG. 24 is a block diagram showing a configuration of a power conversion system to which the power conversion device according to the present embodiment is applied.
  • the power conversion system shown in FIG. 24 includes a power supply 500, a power conversion device 600, and a load 700.
  • the power supply 500 is a DC power supply, and supplies DC power to the power conversion device 600.
  • the power supply 500 can be configured with various things, for example, it can be configured with a DC system, a solar cell, a storage battery, or it can be configured with a rectifier circuit or an AC / DC converter connected to an AC system. May be good.
  • the power supply 500 may be configured by a DC / DC converter that converts the DC power output from the DC system into a predetermined power.
  • the power conversion device 600 is a three-phase inverter connected between the power supply 500 and the load 700, converts the DC power supplied from the power supply 500 into AC power, and supplies AC power to the load 700. As shown in FIG. 24, the power conversion device 600 converts the input DC power into AC power and outputs the main conversion circuit 601 and drives to output a drive signal for driving each switching element of the main conversion circuit 601. It includes a circuit 602 and a control circuit 603 that outputs a control signal for controlling the drive circuit 602 to the drive circuit 602.
  • the load 700 is a three-phase electric motor driven by AC power supplied from the power converter 600.
  • the load 700 is not limited to a specific application, and is an electric motor mounted on various electric devices.
  • the load 700 is used as an electric motor for a hybrid vehicle, an electric vehicle, a railroad vehicle, an elevator, or an air conditioner.
  • the main conversion circuit 601 includes a switching element and a freewheeling diode (not shown), and by switching the switching element, the DC power supplied from the power supply 500 is converted into AC power and supplied to the load 700.
  • the main conversion circuit 601 is a two-level three-phase full bridge circuit, and has six switching elements and each switching element. It can consist of six freewheeling diodes connected in antiparallel.
  • a semiconductor device according to any one of the above-described embodiments 1 to 4 is applied to at least one of each switching element and each freewheeling diode of the main conversion circuit 601.
  • the MOSFET structure arranged in the MOS region 19 can be used as a switching element, and the SBD arranged in the SBD region 20 can be used as a freewheeling diode.
  • the six switching elements are connected in series for each of the two switching elements to form an upper and lower arm, and each upper and lower arm constitutes each phase (U phase, V phase, W phase) of the full bridge circuit. Then, the output terminals of each upper and lower arm, that is, the three output terminals of the main conversion circuit 601 are connected to the load 700.
  • the semiconductor device has an integrated structure in which a switching element and a freewheeling diode are built in one chip. Therefore, by using the MOSFET structure arranged in the MOS region 19 as the switching element of the main conversion circuit 601 and using the SBD arranged in the SBD region 20 as the freewheeling diode, the switching element and the freewheeling diode are formed separately.
  • the mounting area can be reduced as compared with the case of using two or more chips.
  • the drive circuit 602 generates a drive signal for driving the switching element of the main conversion circuit 601 and supplies it to the gate electrode of the switching element of the main conversion circuit 601. Specifically, according to the control signal from the control circuit 603 described later, a drive signal for turning on the switching element and a drive signal for turning off the switching element are output to the gate electrode of each switching element.
  • the drive signal is a voltage signal (on signal) equal to or higher than the threshold voltage of the switching element
  • the drive signal is a voltage equal to or lower than the threshold voltage of the switching element. It becomes a signal (off signal).
  • the control circuit 603 controls the switching element of the main conversion circuit 601 so that the desired power is supplied to the load 700. Specifically, the time (on time) for each switching element of the main conversion circuit 601 to be in the on state is calculated based on the electric power to be supplied to the load 700.
  • the main conversion circuit 601 can be controlled by PWM control that modulates the on-time of the switching element according to the voltage to be output. Then, a control command (control signal) is output to the drive circuit 602 so that an on signal is output to the switching element that should be turned on at each time point and an off signal is output to the switching element that should be turned off.
  • the drive circuit 602 outputs an on signal or an off signal as a drive signal to the gate electrode of each switching element according to this control signal.
  • the semiconductor device according to any one of the first to fourth embodiments is applied as the switching element of the main conversion circuit 601. Therefore, the semiconductor device has high reliability in which bipolar deterioration is suppressed. By using it, the reliability of the power conversion device can be improved. Further, by applying the semiconductor device according to any one of the first to fourth embodiments as the switching element of the main conversion circuit 601 it is possible to reduce the mounting area, so that the size of the entire device can be reduced. can.
  • any of the semiconductor devices of the first to fourth embodiments can increase the Schottky current density. Therefore, the power conversion device according to the present embodiment can carry a larger return current without increasing the size of the device by applying the semiconductor device according to any one of the first to fourth embodiments. It works. If the return current is about the same as the conventional one, the size of the device can be reduced. Further, any of the semiconductor devices of the first to fourth embodiments can reduce the reverse leakage current. Therefore, the power conversion device according to the present embodiment has an effect that the withstand voltage can be improved and the reliability can be improved by applying the semiconductor device according to any one of the first to fourth embodiments. Play.
  • the present disclosure is not limited to this, and can be applied to various power conversion devices.
  • a two-level power conversion device is used, but a three-level or multi-level power conversion device may be used, and when power is supplied to a single-phase load, the present disclosure is disclosed to a single-phase inverter. You may apply it.
  • the present disclosure can be applied to a DC / DC converter or an AC / DC converter.
  • the power conversion device to which the present disclosure is applied is not limited to the case where the above-mentioned load is an electric motor, and is, for example, a power supply device of a discharge machine, a laser machine, an induction heating cooker, or a non-contact power supply system. It can also be used as a power conditioner for a photovoltaic power generation system, a power storage system, or the like.
  • the semiconductor material is silicon carbide
  • the semiconductor layer 21 including the substrate 1, the drift layer 2, the body region 3, the source region 4, the body contact region 5, and the like can be made of other semiconductor materials.
  • other semiconductor materials include so-called wide bandgap semiconductors, which have a wider bandgap than silicon.
  • the wide bandgap semiconductor other than silicon carbide include gallium nitride, aluminum nitride, aluminum gallium nitride, gallium oxide, and diamond. The same effect can be obtained even when these wide bandgap semiconductors are used.
  • each component may be described, but all of them are described. It is an example in the aspect of, and is not limited to the one in which each embodiment is described. Therefore, innumerable variations not illustrated are assumed within the scope of each embodiment. For example, it includes a case where an arbitrary component is modified, a case where it is added or omitted, and a case where at least one component in at least one embodiment is extracted and combined with a component in another embodiment. ..
  • each component is a conceptual unit, and includes a case where one component is composed of a plurality of structures and a case where one component corresponds to a part of a structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

SBDを内蔵したMOSFETにおいて、ショットキー電流密度を増大することができる半導体装置を提供する。 半導体装置(101)は、第1導電型のドリフト層(2)と、ドリフト層上の一部のMOS領域(19)に設けられた第2導電型のボディ領域(3)と、ボディ領域上に設けられた第1導電型のソース領域(4)と、ゲートトレンチ(6)内に設けられたゲート絶縁膜(7)と、ゲートトレンチ内に設けられたゲート電極(8)と、ゲート絶縁膜の下方に設けられた第2導電型の第1底部保護領域(15)と、ドリフト層上の一部であってボディ領域が設けられた領域とは異なる領域であるSBD領域(20)に設けられ、ボディ領域よりも浅く形成された第2導電型のウェル領域(10)と、ウェル領域を貫通するショットキートレンチ(11)内に設けられたショットキー電極(12)と、を備える。

Description

半導体装置、電力変換装置及び半導体装置の製造方法
 本開示は、半導体装置、半導体装置を適用した電力変換装置及び半導体装置の製造方法に関する。
 電力用スイッチング素子として、MOSFET(Metal Oxide Semiconductor Field Effect Transistor/金属酸化物半導体電界効果トランジスタ)等の絶縁ゲート型半導体装置が広く使用されている。絶縁ゲート型半導体装置としては、トレンチゲート型半導体装置について開発が進められている。
 このようなトレンチゲート型半導体装置として、ゲート電極が形成されたゲートトレンチと、ショットキー電極が形成されたショットキートレンチとを備え、SBD(ショットキーバリアダイオード)を内蔵したMOSFETがある(例えば、特許文献1参照)。
2019-216224号公報
 しかしながら、このような従来の半導体装置では、ゲートトレンチに隣接してボディ領域が形成されるとともに、ショットキートレンチにも隣接してボディ領域が形成されるため、ショットキー界面を形成可能な領域が限られ、ショットキー電流密度を増大させるうえでの制約になっていた。
 本開示は、上記した課題を解決するためになされたものであり、ショットキー電流密度を増大することができる半導体装置を得ることを目的とするものである。
 本開示に係る半導体装置は、第1導電型のドリフト層と、ドリフト層上の一部に設けられた第2導電型のボディ領域と、ボディ領域上に設けられた第1導電型のソース領域と、ボディ領域及びソース領域をドリフト層の厚さ方向に貫通するゲートトレンチ内に設けられたゲート絶縁膜と、ゲートトレンチ内に設けられ、ソース領域に対して、ゲート絶縁膜を介して対向するように設けられたゲート電極と、ゲート絶縁膜の下方に設けられた第2導電型の第1底部保護領域と、ドリフト層上の一部であってボディ領域が設けられた領域とは異なる領域に設けられ、ドリフト層の厚さ方向においてボディ領域よりも浅く形成された第2導電型のウェル領域と、ウェル領域を前記ドリフト層の厚さ方向に貫通するショットキートレンチ内に設けられたショットキー電極と、とを備える。
 本開示に係る半導体装置は、SBDを内蔵したMOSFETにおいて、ショットキー電流密度を増大することができるという効果を有する。
実施の形態1の半導体装置の全体構成を示す平面模式図である。 実施の形態1の半導体装置のセル領域のレイアウトを示す平面模式図である。 実施の形態1の半導体装置のセル領域を示す断面模式図である。 実施の形態1の半導体装置の製造方法の各工程を示す第1の図である。 実施の形態1の半導体装置の製造方法の各工程を示す第2の図である。 実施の形態1の半導体装置の製造方法の各工程を示す第3の図である。 実施の形態1の半導体装置の製造方法の各工程を示す第4の図である。 実施の形態1の半導体装置の製造方法の別の例の各工程を示す図である。 実施の形態1の半導体装置の製造方法の各工程を示す第5の図である。 実施の形態1の半導体装置の製造方法の各工程を示す第6の図である。 実施の形態1の半導体装置の製造方法の各工程を示す第7の図である。 実施の形態2の半導体装置のセル領域を示す断面模式図である。 実施の形態2の半導体装置の製造方法の各工程を示す第1の図である。 実施の形態2の半導体装置の製造方法の別の例の各工程を示す図である。 実施の形態2の半導体装置の製造方法の各工程を示す第2の図である。 実施の形態2の半導体装置の製造方法の各工程を示す第3の図である。 実施の形態2の半導体装置の製造方法の各工程を示す第4の図である。 実施の形態3の半導体装置のセル領域のレイアウトを示す平面模式図である。 実施の形態3の半導体装置のセル領域を示す断面模式図である。 実施の形態3の半導体装置の製造方法の各工程を示す図である。 実施の形態3の半導体装置の変形例の製造方法の各工程を示す図である。 実施の形態4の半導体装置のセル領域を示す断面模式図である。 実施の形態4の半導体装置の製造方法の各工程を示す図である。 実施の形態5の電力変換装置を適用した電力変換システムの構成を示すブロック図である。
 以下、図面に基づいて本開示の実施の形態について説明する。なお、図面は模式的に示されたものであり、異なる図面にそれぞれ示されている画像のサイズ及び位置の相互関係は、必ずしも正確に記載されたものではなく、適宜変更され得る。また、以下の図面において同一又は相当する部分には同一の符号を付し、その説明は繰り返さない。
 また、各図面においては、特定の領域や各領域間の境界を示すために破線を図示している場合があるが、これらは説明の便宜上、又は図面の理解を容易にするために記載しているものであって、各実施の形態の内容を何ら限定するものではない。
 また、以下の説明では、「上」、「下」、「側」、「底」、「表」及び「裏」などの特定の位置及び方向を意味する用語が用いられる場合があるが、これらの用語は、実施の形態の内容を理解することを容易にするため便宜上用いられているものであり、実際に実施される際の方向とは関係しない。
 本開示において、構成要素の相互関係を「~上」や「~下」などの用語を用いて表現する場合、構成要素間に介在物が存在することを妨げるものではない。例えば、「A上に設けられたB」と記載している場合、AとBとの間に他の構成要素Cが設けられたものも、設けられていないものも含む。また、本開示において、「~上」や「~下」などの用語を用いて表現する場合、積層構造を念頭に置いた上下の概念も含む。例えば、「溝を覆うA上に設けられたB」と記載している場合、BはAから見た溝面と逆方向に存在することの意味を含み、その意味の範囲内で横方向や斜め方向も含む。
 以下の記載では、不純物の導電型に関して、第1導電型をn型、第2導電型をp型とした場合について説明するが、第1導電型をp型、第2導電型をn型としても構わない。また、「不純物濃度」とは各領域における不純物の最高値を示すものとする。また、「n型」との記載は「n型」と記載しているものよりも不純物濃度が低濃度であることを示し、「n型」との記載は「n型」と記載しているものよりも不純物濃度が高濃度であることを示す。同様に、「p型」との記載は「p型」と記載しているものよりも不純物濃度が低濃度であることを示し、「p型」との記載は「p型」と記載しているものよりも不純物濃度が高濃度であることを示す。
 以下の記載において、MOSFETのドレインからソースに向けて流れる電流を順方向電流、その方向を順方向、またソースからドレインに向けて流れる電流を還流電流、その方向を逆方向などと呼ぶことにする。なお、「MOS」という用語は、古くは金属/酸化物/半導体の接合構造に用いられており、Metal-Oxide-Semiconductorの頭文字を採ったものとされている。しかしながら特にMOS構造を有する電界効果トランジスタ(以下、単に「MOSトランジスタ」と称する)においては、近年の集積化や製造プロセスの改善などの観点からゲート絶縁膜やゲート電極の材料が改善されている。
 例えばMOSトランジスタにおいては、主としてソース・ドレインを自己整合的に形成する観点から、ゲート電極の材料として金属の代わりに多結晶シリコンが採用されてきている。また電気的特性を改善する観点から、ゲート絶縁膜の材料として高誘電率の材料が採用されるが、この材料は必ずしも酸化物には限定されない。
 従って「MOS」という用語は必ずしも金属/酸化物/半導体の積層構造のみに限定されて採用されているわけではなく、本明細書でもそのような限定を前提としない。すなわち、技術常識に鑑みて、ここでは「MOS」とはその語源に起因した略語としてのみならず、広く導電体/絶縁体/半導体の積層構造をも含む意義を有する。
実施の形態1.
 実施の形態1の半導体装置について、図1から図12を用いて説明する。
 まず、実施の形態1の半導体装置の構成について、図1から図3を用いて説明する。図1は、本実施の形態の半導体装置101全体の上面構成を模式的に示す平面模式図である。図2は、図1に示す領域Xを拡大して示した図であり、半導体装置101におけるMOSFETセルのレイアウトを模式的に示す平面模式図である。図3は、図2のA-A’線での矢視断面図であり、本実施の形態の半導体装置101における活性領域40の一部の断面を示す断面模式図である。なお、図2は、図3に示したボディ領域3と第1底部保護領域15との間におけるある深さでの横方向の断面を上から見た図に相当する。
 図1に示すように、半導体装置101は四角形状の外形を有し、その中央部には、「ユニットセル」と呼称されるMOSFETの最小単位構造(MOSFETセル)が複数配置された活性領域40が設けられ、活性領域40の外側は終端領域41で囲まれている。活性領域40には複数のゲートトレンチ6及び複数のショットキートレンチ11が互いに間隔を開けて並列に設けられている。なお、複数のゲートトレンチ6は、活性領域40内に設けられたゲート配線に接続され、ゲート配線はゲートパッドに接続されるが、これらの図示及び説明は省略する。
 図2に示すように、ゲートトレンチ6及びショットキートレンチ11は、平面視においてストライプ状に形成されている。また、平面視において、ゲートトレンチ6の延伸方向とショットキートレンチ11の延伸方向とは、同一の方向となるように形成されている。SBD領域20では、ドリフト層2に露出するショットキートレンチ11の側面に、ショットキー界面22が形成されている。
 図1及び図2においては、2つのMOS領域19が1つのSBD領域20を挟んだ構造を示しているが、各領域の配置はこれに限られない。例えば、2つのMOS領域19が2つのSBD領域20を挟む構造でもよいし、MOS領域19のゲートトレンチ6が2本、SBD領域20のショットキートレンチ11が2本、MOS領域19のゲートトレンチ6が1本、SBD領域20のショットキートレンチ11が1本、のような配置が繰り返される構造であってもよく、またこれらの例示に何ら限定されるものではない。
 半導体装置101は、図3に示すようなMOSFETセルの構造が、活性領域40において繰り返し周期的に複数設けられている。なお、以下においては、図1に示す領域Xに示される特徴的な構成を各実施の形態及びその変形例として説明し、図1は、各実施の形態及びその変形例において共通とする。
 図3に示すように、半導体装置101は、基板1、ドリフト層2、ボディ領域3、ソース領域4、ボディコンタクト領域5、ゲートトレンチ6、ゲート絶縁膜7、ゲート電極8、層間絶縁膜9、ウェル領域10、ショットキートレンチ11、ショットキー電極12、ソース電極13、ドレイン電極14、第1底部保護領域15、及びコンタクト領域17を備えている。
 MOS領域19は、ゲートトレンチ6、ゲート絶縁膜7、ゲート電極8、及び層間絶縁膜9を有する。SBD領域20は、ショットキートレンチ11、及びショットキー電極12を有する。また、半導体層21は、ドリフト層2とその上部又は内部に形成された不純物領域である、ボディ領域3、ソース領域4、ボディコンタクト領域5、ウェル領域10及び第1底部保護領域15を含む。
 基板1は、n型のSiC(炭化珪素)半導体基板であり、例えば4Hのポリタイプを有する。基板1は、<11-20>軸方向に傾斜するオフ角θを有する(0001)面としてもよい。この場合オフ角θとしては、例えば、10°以下であれば良い。
 基板1上には、n型の不純物濃度が基板1よりも低い、n型のドリフト層2が設けられている。ドリフト層2は、半導体材料としてSiC(炭化珪素)が用いられる。ドリフト層2は、半導体層21の大部分を占めており、半導体層21の主要部を構成する。基板1の主面が<11-20>軸方向に傾斜するオフ角θを有する(0001)面である場合、ドリフト層2の主面も同様のオフ角θを有する(0001)面となる。すなわち、ドリフト層2は、<11-20>軸方向に0°より大きいオフ角が設けられた主面を有することになる。
 ドリフト層2の上部には、MOS領域19にp型のボディ領域3が設けられている。ボディ領域3は、ゲートトレンチ6に隣接して設けられる。一方、ドリフト層2の上部のうち、SBD領域20には、ボディ領域3が設けられない。ボディ領域3の上部には、n型のソース領域4が選択的に設けられている。ソース領域4は、n型の不純物濃度がドリフト層2よりも高い半導体領域である。また、ボディ領域3の上部には、ソース領域4に隣接して、p型のボディコンタクト領域5が選択的に設けられている。ボディコンタクト領域5は、p型の不純物濃度がボディ領域3よりも高い半導体領域である。つまり、ボディ領域3、ソース領域4及びボディコンタクト領域5は、SBD領域20には設けられず、MOS領域19のみに設けられる。
 また、SBD領域20、すなわちドリフト層2の上層部のうちボディ領域3、ソース領域4及びボディコンタクト領域5が設けられた領域とは異なる領域には、p型のウェル領域10が設けられている。ウェル領域10は、p型の不純物濃度がボディ領域3よりも高い半導体領域であり、ショットキートレンチ11に隣接して設けられる。また、ウェル領域10の下面は、ボディ領域3の下面よりも上側、すなわち半導体層21のソース電極13が設けられる側であるおもて面(第1主面)側に設けられる。言い換えれば、ウェル領域10の深さは、ボディ領域3の深さよりも浅く設けられる。
 なお、図3では、ウェル領域10の下面が、ボディ領域3の上面並びにソース領域4及びボディコンタクト領域5の下面と同じ位置に設けられる構造を図示しているが、これに限られるものではなく、ウェル領域10の下面は、ボディ領域3の下面よりもソース電極13側に設けられればよい。つまり、ウェル領域10は、ボディ領域3よりも浅く設けられればよい。
 MOS領域19には、ボディ領域3をドリフト層2の厚さ方向に貫通するゲートトレンチ6が設けられている。ゲートトレンチ6は、半導体層21の表面からソース領域4、ボディ領域3を貫通してドリフト層2に達するように形成されている。ゲートトレンチ6の底部は、典型的には面をなしているが、先端が細く尖った先細り形状であってもよい。また、ゲートトレンチ6の側面は、典型的には実質的に平行であるが、互いに傾斜しているテーパ形状であってもよい。
 ゲートトレンチ6の底部及び側面には、ゲート絶縁膜7が設けられている。また、ゲートトレンチ6内には、ゲート絶縁膜7を介してゲートトレンチ6内を充填するようにゲート電極8が設けられている。ゲート電極8は、ドリフト層2、ボディ領域3、及びソース領域4に対して、ゲート絶縁膜7を介して対向するように設けられる。ゲートトレンチ6上には、ゲート電極8を覆うように層間絶縁膜9が設けられている。
 SBD領域20には、ウェル領域10をドリフト層2の厚さ方向に貫通するショットキートレンチ11が設けられている。ショットキートレンチ11は、半導体層21の表面からウェル領域10を貫通してドリフト層2に達するように形成されている。ショットキートレンチ11は、ドリフト層2の厚さ方向における深さがゲートトレンチ6と同じ深さになるように形成されている。ショットキートレンチ11は、ドリフト層2の厚さ方向に直交する方向におけるトレンチ幅が、ゲートトレンチ6と同じ幅になるように形成されている。ショットキートレンチ11の底部は、典型的には面をなしているが、先端が細く尖った先細り形状であってもよい。また、ショットキートレンチ11の側面は、典型的には実質的に平行であるが、互いに傾斜しているテーパ形状であってもよい。
 なお、ショットキートレンチ11は、ドリフト層2の厚さ方向における深さがゲートトレンチ6と同じ深さになるように形成されるものに限られない。また、ショットキートレンチ11は、ドリフト層2の厚さ方向に直交する方向におけるトレンチ幅が、ゲートトレンチ6と同じ幅になるように形成されるものに限られない。ゲートトレンチ6とショットキートレンチ11とは、ドリフト層2の厚さ方向における深さが異なっていてもよいし、ドリフト層2の厚さ方向に直交する方向におけるトレンチ幅が異なっていてもよい。これらのトレンチは、どちらのトレンチ幅が太くても細くてもよいし、どちらの深さが深くても浅くてもよく、各半導体装置の仕様によりそれぞれ異なる。
 ショットキートレンチ11内には、ショットキー電極12が設けられている。ショットキー電極12は、Ti(チタン)やMo(モリブデン)等の金属から形成される。ショットキー電極12は、ショットキートレンチ11の底部又は側面において、ドリフト層2及びウェル領域10に接しており、これらに電気的に接続されている。
 ショットキー電極12は、ショットキートレンチ11の側面において、ドリフト層2とのショットキー接合を形成する。すなわち、ショットキー電極12は、図2に示すように、ショットキートレンチ11の側面及び底面にドリフト層2とのショットキー界面22を形成する。これにより、ショットキートレンチ11の側面及び底面には、ショットキー電極12とドリフト層2との寄生ショットキーバリアダイオード(以下、単にSBDと称する)が形成される。
 また、ソース領域4、ボディコンタクト領域5及びウェル領域10の上には、コンタクト領域17が形成されている。コンタクト領域17は、Ni(ニッケル)やTi(チタン)等の金属と半導体層21とのシリサイドであり、ソース領域4、ボディコンタクト領域5及びウェル領域10と接して、これらとオーミックコンタクトを形成する。
 層間絶縁膜9、コンタクト領域17、及びショットキー電極12の上には、これらを覆うようにソース電極13が設けられている。ソース電極13は、主成分がAl(アルミニウム)である金属からなる電極である。MOS領域19において、ソース電極13は、コンタクト領域17とともにおもて面側の主電極として機能する。ソース電極13は、コンタクト領域17を介してソース領域4及びボディコンタクト領域5に電気的に接続されている。また、SBD領域20において、ソース電極13は、ショットキー電極12に接続されており、ショットキー電極12とともにSBDのアノード電極を構成する。
 基板1において、ソース電極13が設けられた面とは反対側の面には、Ni(ニッケル)等の金属を含むドレイン電極14が設けられている。ソース電極13は、基板1(半導体層21)のおもて面(第1主面)側に設けられており、ドレイン電極14は、基板1(半導体層21)のおもて面に対向する裏面(第2主面)側に設けられる。
 ゲートトレンチ6(ゲート絶縁膜7)の下方には、ゲートトレンチ6の延伸方向に沿ってp型の第1底部保護領域15が設けられている。第1底部保護領域15は、ゲートトレンチ6の底部に接しており、ゲートトレンチ6の底部全体を覆うように設けられている。
 なお、第1底部保護領域15は、ゲートトレンチ6の底部に接して設けられるものに限られず、ドリフト層2内においてゲートトレンチ6の底部よりも下方に離れて設けられていてもよい。
 第1底部保護領域15は、ゲートトレンチ6の底部全体を覆うものに限られず、ゲートトレンチ6の底部の少なくとも一部を覆うように設けられていればよい。例えば、第1底部保護領域15は、ゲートトレンチ6の延伸方向(ストライプ形状のときは平面視における長手方向、格子形状のときはゲートトレンチ6ごとに方向が定義される)に沿って間隔をあけて周期的に配置されていてもよいし、延伸方向と直交する断面においてゲートトレンチ6の底部の半分程度を覆うように設けられていてもよい。又は、第1底部保護領域15は、ゲートトレンチ6の幅方向にはみ出すように底部全体を覆うことによって、第1底部保護領域15の幅がゲートトレンチ6の幅よりも大きくなるように構成されていてもよい。
 第1底部保護領域15は、ゲートトレンチ6の延伸方向に沿って設けられるものに限られず、ゲートトレンチ6の延伸方向と直交する方向に延伸して複数設けられることによって、延伸方向においてゲートトレンチ6の底部を部分的に周期的に覆っていてもよい。
 次に、実施の形態1の半導体装置101における各半導体領域の不純物濃度について説明する。ドリフト層2のn型の不純物濃度は1.0×1014~1.0×1017cm-3であり、半導体装置の耐圧等に基づいて設定する。ボディ領域3のp型の不純物濃度は、1.0×1014~1.0×1018cm-3とする。ソース領域4のn型の不純物濃度は1.0×1018~1.0×1021cm-3とする。ボディコンタクト領域5のp型の不純物濃度は、1.0×1018~1.0×1021cm-3とし、ソース電極13とのコンタクト抵抗を低減するため、ボディ領域3よりもp型の不純物濃度が高濃度となるように設定する。第1底部保護領域15のp型の不純物濃度は、1.0×1014以上、1.0×1020cm-3以下とすることが好ましく、濃度プロファイルは均一でなくてもよい。ウェル領域10のp型の不純物濃度は、1.0×1014~1.0×1020cm-3とし、ボディ領域3よりもp型の不純物濃度が高濃度となるように設定する。
 次に、実施の形態1に係る半導体装置101の動作について簡単に説明する。MOS領域19では、ゲート電極8に閾値電圧以上の電圧が印加されている場合、ボディ領域3において導電型が反転し、すなわち、n型のチャネルがゲートトレンチ6の側面に沿って形成される。そうすると、ソース電極13からドレイン電極14までの間に同一導電型(実施の形態1においてはn型)の電流経路が形成されるため、電流が流れることとなる。このようにゲート電極8に閾値電圧以上の電圧が印加された状態が、半導体装置101のオン状態となる。
 一方、ゲート電極8に閾値電圧未満の電圧が印加されている場合、ボディ領域3にはチャネルが形成されないため、オン状態の場合のような電流経路が形成されない。そのため、ドレイン電極14とソース電極13との間に電圧を印加したとしても、ドレイン電極14からソース電極13へと電流がほとんど流れない。このようにゲート電極8の電圧が閾値電圧未満の状態が、半導体装置101のオフ状態となる。
 そして、半導体装置101は、ゲート電極8に印加する電圧を制御することで、オン状態とオフ状態とが切り換わり動作する。このように、半導体装置101は、MOS領域19において、ゲート電極8、ゲート絶縁膜7、ドリフト層2、ボディ領域3、ソース領域4、ソース電極13、及びドレイン電極14などから構成されるMOSFET構造を有する。
 一方、半導体装置101のオフ状態において、SBD領域20におけるSBDに順方向電圧が印加された場合、ショットキー電極12とドレイン電極14間にユニポーラ電流が流れる。さらにバイアスをかけるとボディ領域3や第1底部保護領域15等に形成された寄生pnダイオードにバイポーラ電流が流れ始める。この寄生pnダイオードがバイポーラ動作を始めるまでに得られる電流値が素子の最大ユニポーラ電流となる。
 なお、図1及び図2において、ゲートトレンチ6及びショットキートレンチ11は、その延伸方向が<11-20>軸方向と平行となるように形成されることが望ましい。これは、ゲートトレンチ6及びショットキートレンチ11の側面が電流経路となるため、半導体層21が<11-20>軸方向に傾斜するオフ角θを有する場合において、各トレンチの向かい合う両側面がオフ角の影響により異なる結晶面となってしまい、両側面において特性に差が出ることを回避するためである。
 第1底部保護領域15は、半導体装置101のオフ時において、第1底部保護領域15から伸張する空乏層によりドリフト層2のn型領域の空乏化を促進するとともに、ゲートトレンチ6の底部への電界集中を緩和することによってゲート絶縁膜7に印加される電界を低減し、ゲート絶縁膜7の破壊を防止する。
 なお、第1底部保護領域15をMOS領域19のボディ領域3と電気的に接続させて、第1底部保護領域15の電位を固定することにより、ゲートトレンチ6底部の電界集中の更なる緩和を図ることができる。例えば、ゲートトレンチ6の側面に、第1底部保護領域15及びボディ領域3に接する図示しないp型の接続領域を形成してもよい。第1底部保護領域15は、接続領域、ボディ領域3、及びソース領域4を介してソース電極13と電気的に接続されることにより、その電位が接地される。この電気的接続は、例えば、隣接するセルなどを通じて設けられている。接続領域は、例えばp型の不純物濃度が1.0×1014以上、1.0×1020cm-3以下としてもよい。
 また、ゲートトレンチ6がライン状に形成されている場合、そのゲートトレンチ6の長手方向の端部の側面に低濃度のp型の接続領域(p--領域)を延在させることで、このp--領域を通してゲートトレンチ6底部の第1底部保護領域15と上方にあるボディ領域3とを電気的に接続させることができる。
 ゲートトレンチ6は、格子状に形成されていてもよく、この場合にはゲート電極8の交差部分に、当該ゲート電極8を貫通してゲートトレンチ6底部の第1底部保護領域15とゲート電極8の上層のソース電極13とを接続するコンタクトを設けることで、第1底部保護領域15を、当該コンタクトとソース電極13を通してボディ領域3に電気的に接続できる。
 第1底部保護領域15をソース電位に接続することにより、半導体装置101のオフ時に第1底部保護領域15からドリフト層2に向かって空乏層の伸びが促進され、ゲートトレンチ6底面の電界強度を低減できる。また、半導体装置101のオン、オフ動作時には、第1底部保護領域15とドリフト層2により形成されるpn接合の充放電用の電流経路が確保され、ソース電極13へ電荷が引き抜かれるため、空乏層の応答が速くなり、スイッチング損失を低減できる。
 次に、実施の形態1に係る半導体装置の製造方法について、図4から図11を用いて説明する。図4から図11は、本実施の形態の半導体装置101の製造方法の各工程を示す図である。
 図4に示すように、まず、炭化珪素からなるn型の半導体層21が形成された基板1を用意する。より具体的には、n型の炭化珪素基板である基板1上にn型の半導体層21をエピタキシャル成長法によって形成すればよい。また、半導体層21のn型不純物濃度は、上述したドリフト層2のn型不純物濃度に対応するよう形成する。
 そして、図5に示すように、半導体層21(ドリフト層2)内の上層部の一部であるMOS領域19に、p型のボディ領域3をイオン注入により形成し、ボディ領域3の上層部に、n型のソース領域4とp型のボディコンタクト領域5とをイオン注入により選択的に形成する。また、半導体層21(ドリフト層2)の上層部の一部であって、ボディ領域3が設けられた領域とは異なる領域であるSBD領域20に、ボディコンタクト領域5に隣接するようにp型のウェル領域10をイオン注入により形成する。このとき、ウェル領域10は、ボディ領域3よりも浅く形成される。イオン注入は、n型領域を形成する場合にはドナーとして例えばN(窒素)やP(リン)等のイオンを注入し、p型領域を形成する場合にはアクセプタとして例えばAl(アルミニウム)やB(ボロン)等のイオンを注入する。各領域における不純物濃度は、上述した値となるように形成する。なお、ボディコンタクト領域5及びウェル領域10の不純物濃度が同じであれば、ボディコンタクト領域5とウェル領域10とを同時に形成してもよい。
 なお、ボディ領域3、ソース領域4、ボディコンタクト領域5、及びウェル領域10を形成する順序は前後してもよく、全て又は一部の領域についてイオン注入に代えてエピタキシャル成長によって形成することとしてもよい。ボディ領域3、ソース領域4、ボディコンタクト領域5、及びウェル領域10をエピタキシャル成長によって形成する場合は、各領域はドリフト層2上に積層される。
 以上を踏まえ、「ドリフト層2の上部にボディ領域3を形成する」とは、上述したイオン注入又はエピタキシャル成長のいずれの製造方法によって形成されるものも含む意味であり、「ボディ領域3がドリフト層2上に設けられる」とは、上述したイオン注入又はエピタキシャル成長のいずれの製造方法によって形成されるかを問わず、最終的に完成する半導体装置101において、ボディ領域3の占める領域が、ドリフト層2の占める領域上に位置することを意味するものとする。また、同様に、「ボディ領域3の上部にソース領域4を形成する」とは、上述したイオン注入又はエピタキシャル成長のいずれの製造方法によって形成されるものも含む意味であり、「ソース領域4がボディ領域3上に設けられる」とは、半導体装置101において、ソース領域4の占める領域が、ボディ領域3の占める領域上に位置することを意味するものとする。その他の領域についても同様である。
 次に、図6に示すように、第1のマスク51を用いて、反応性イオンエッチング(RIE)によって、半導体層21の表面からソース領域4及びボディ領域3を貫通してドリフト層2へと達するゲートトレンチ6、並びにウェル領域10を貫通してドリフト層2へと達するショットキートレンチ11を形成する。このとき、ゲートトレンチ6の幅とショットキートレンチ11の幅はそれぞれ異なっていてもよい。また、複数のマスクを利用して、MOS領域19におけるゲートトレンチ6とSBD領域20におけるショットキートレンチ11とを個別のエッチング工程を用いて形成してもよい。この場合、ゲートトレンチ6の深さとショットキートレンチ11の深さはそれぞれ異なっていてもよい。
 そして、図7に示すように、第1のマスク51及び第2のマスク52を用いて、半導体層21の表面に対して垂直方向から少し傾斜した斜め方向(例えば、10~50°の傾斜角)にイオン注入を行う。なお、第2のマスク52は、ショットキートレンチ11を覆い、ゲートトレンチ6のみ開口するように設けられたマスクである。このようにして、ゲートトレンチ6の底部にp型のイオン注入を行うことでp型の第1底部保護領域15を形成する。
 あるいは、図8に示すように、第1底部保護領域15は、基板1上にn型の第1ドリフト層25をエピタキシャル成長により形成した後、あらかじめ第1ドリフト層25の上層部にイオン注入により選択的に形成、又はエピタキシャル成長によって埋め込み形成することとしてもよい。この場合、第1底部保護領域15の形成後、第1ドリフト層25及び第1底部保護領域15の上に、n型の第2ドリフト層26をエピタキシャル成長により形成した後に、各半導体領域やトレンチを形成することとなる。例えば、ボディ領域3は、第2ドリフト層26の上層部の一部であるMOS領域に形成され、ボディ領域3が形成されないSBD領域にはウェル領域10が形成される。なお、第1ドリフト層25と第2ドリフト層26とを合わせたものが上記のドリフト層2に相当する。
 このようにして形成される第1底部保護領域15は、図7に示すように、ゲートトレンチ6の側面よりもドリフト層2側(ドリフト層2の厚さ方向に直交する方向)に張り出している。なお、半導体層21の表面に対して垂直方向にイオン注入を行うことで、第1底部保護領域15の側面がゲートトレンチ6の側面よりもドリフト層2側に張り出していない構成としてもよい。また、第1底部保護領域15は、これを形成するための厚み分だけゲートトレンチ6を余分に深く形成した後、トレンチ内にエピタキシャル成長により形成してもよい。
 次に、図9に示すように、レジストマスク等を用いた選択的なエッチング等により第1のマスク51及び第2のマスク52を除去して、半導体層21上に全面的に絶縁膜を形成することで、ゲートトレンチ6内の底部及び側面にゲート絶縁膜7を形成する。その後、SBD領域20上を覆うとともに、MOS領域19において少なくともゲートトレンチ6の上方に開口を有する第3のマスク53を形成する。当該第3のマスク53を用いて、ゲート絶縁膜7を介してゲートトレンチ6を埋め込むように、例えばポリシリコン(Poly-Si)を充填して、ゲート電極8を形成する。
 その後、図10に示すように、ゲート電極8を覆うように、層間絶縁膜9を形成する。そして、レジストマスク等を用いた選択的なエッチング等により第3のマスク53を除去した後、ゲートトレンチ6を覆う層間絶縁膜9上に第4のマスク54を形成する。当該第4のマスク54を用いて、層間絶縁膜9とともにゲート絶縁膜7もパターニングして、半導体層21の表面を露出させる。これにより、層間絶縁膜9にコンタクトホールを開口することができる。
 次に、図11に示すように、コンタクトホールの開口により露出した半導体層21の表面(ソース領域4、ボディコンタクト領域5及びウェル領域10の表面)に、Ni(ニッケル)等の金属を用いてコンタクト領域17を形成する。コンタクト領域17は、金属と半導体層21とのシリサイドである。
 その後、ショットキートレンチ11内の底部及び側面に形成された絶縁膜を除去し、半導体層21の表面を露出させる。そして、露出した半導体層21上にTi(チタン)やMo(モリブデン)等の金属を堆積することで、SBD領域20において、ショットキートレンチ11内にショットキー電極12を形成する。SBD領域20及びMOS領域19において、ショットキー電極12、コンタクト領域17、及び層間絶縁膜9の上に、これらを覆うようにAl(アルミニウム)等の金属を堆積することで、ソース電極13を形成する。そして、基板1の裏面を覆うようにドレイン電極14を形成する。以上の工程により、図1から図3に示す半導体装置101を作製できる。
 なお、ゲート絶縁膜7と層間絶縁膜9とは、典型的にはともに酸化膜として形成される。そのため、図9等において、ゲート絶縁膜7のうちゲートトレンチ6の外へ張り出している(半導体層21の表面に乗り出している)部分については、層間絶縁膜9と同一層のようにして記載している。
 このように構成された実施の形態1に係る半導体装置101の特徴及び効果について説明する。
 半導体装置101は、ユニポーラ型の半導体装置であるMOSFETに、ユニポーラ型の還流ダイオードとしてSBDを逆並列に内蔵させた電力用のスイッチング素子である。そのため、個別のダイオードを外付けして使用する場合に比べてコストを低減できる。
 また、半導体装置101は、炭化珪素(SiC)を基板1や半導体層21の母材として用いたMOSFETであるため、SBDを内蔵することにより、寄生pnダイオードによるバイポーラ動作を抑制できる。これは、炭化珪素を用いた半導体装置においては、寄生pnダイオード動作によるキャリアの再結合エネルギーに起因する結晶欠陥の拡張により、素子の信頼性が損なわれることがあるからである。
 また、半導体装置101は、素子に形成されたゲートトレンチ6内にゲート電極8を有する、いわゆるトレンチゲート型のMOSFETである。そのため、素子表面にゲート電極8を有するプレーナ型MOSFETに比べ、ゲートトレンチ6の側壁部分にチャネルを形成できる分、チャネル幅密度を向上でき、オン抵抗を低減できる。
 さらに、半導体装置101は、トレンチゲート型のMOSFETであり、かつ、SBD領域20におけるショットキートレンチ11内にショットキー電極12を埋め込み、ショットキートレンチ11の側面にショットキー界面22を形成した構造である。そのため、ゲート電極8とショットキー電極12の両者がそれぞれゲートトレンチ6とショットキートレンチ11の内部に形成されるので、トレンチ間距離、すなわち各セルのセルピッチを小さく保ち、高い電流密度を得ることができる。
 半導体装置101は、以上のような特徴を有するSBDを内蔵したトレンチゲート型のMOSFETである。このような半導体装置においてショットキー電流密度をさらに向上するためには、半導体装置の活性領域の面積に対して、ショットキー界面、すなわちショットキートレンチ側壁におけるドリフト層に露出した部分の面積を拡大する必要がある。この点、従来の半導体装置では、ゲートトレンチに隣接して形成されるボディ領域がショットキートレンチにも隣接して形成されていたため、ショットキートレンチ側壁におけるドリフト層に露出した部分の面積が限られていた。
 そこで、本実施の形態の半導体装置101では、SBD領域20にボディ領域3が形成されず、SBD領域20においてショットキートレンチ11に隣接して設けられたウェル領域10が、MOS領域19のボディ領域3よりも浅く形成されるため、ショットキートレンチ11の深さを従来と同一の深さに形成した場合でもショットキー電流密度を増大することができる効果を奏する。つまり、ショットキートレンチ11がゲートトレンチ6よりも深い若しくは浅い、又は同じ深さであるかを問わず、ショットキートレンチ11の深さを従来の半導体装置から変更しない場合であっても、従来よりもショットキー界面面積を拡大することができ、ショットキー電流密度を増大させることができる。
 ここで、ショットキートレンチ側壁におけるドリフト層に露出した部分の面積を拡大するためには、ショットキートレンチをより深く形成することも考えられる。ショットキートレンチを深く形成することで、トレンチ側面に形成されるショットキー界面面積を拡大することができ、ショットキー電流密度を向上することができる。しかしながら、SBDを内蔵したトレンチゲート型のMOSFETである半導体装置では、ショットキートレンチが深いほど底部近辺が高電界となりやすく、底部近辺にショットキー界面が形成されることで、逆方向リーク電流が増大しやすくなる。つまり、逆方向リーク電流を低減するためには、ショットキートレンチをより深く形成することは好ましくないため、ショットキー界面面積を拡大してショットキー電流密度を増大させることの制約となっていた。以上のように、ショットキー電流密度の増大と逆方向リーク電流の低減にはトレードオフの関係があり、このトレードオフを改善することが求められていた。
 そこで、本実施の形態の半導体装置101は、SBD領域20にボディ領域3が形成されず、SBD領域20においてショットキートレンチ11に隣接して設けられたウェル領域10が、MOS領域19のボディ領域3よりも浅く形成されるため、ショットキートレンチ11の深さをゲートトレンチ6の深さよりも大きくすることなく、或いはショットキートレンチ11をさらに浅く形成したとしても、ショットキー界面面積を拡大することができる。したがって、SBD領域20においてウェル領域10をMOS領域19のボディ領域3よりも浅く形成することで、ショットキー電流密度と逆方向リーク電流とのトレードオフを改善することができる効果を奏する。また、ショットキートレンチ11の深さをゲートトレンチ6の深さ以下に形成することで、ショットキートレンチ11の底部近辺における逆方向リーク電流を低減することができる。
 なお、本実施の形態の半導体装置101において、ショットキートレンチ11の深さは、ゲートトレンチ6の深さ以下に形成されることに限られるものではない。半導体装置101において、ショットキー電流密度の増大のほうが逆方向リーク電流の低減よりも重要な場合には、ショットキートレンチ11をゲートトレンチ6よりも深く形成してもよい。ショットキートレンチ11をより深く形成することで、ショットキー界面面積をさらに拡大し、ショットキー電流密度をさらに増大できる効果を奏する。
 また、上述したように、トレンチ型のデバイス構造では、半導体装置のオフ状態において高い電圧が印加された際に、トレンチ底部において電界集中が発生することが問題となる。特に、トレンチ型の炭化珪素半導体装置では、SiCが高い絶縁破壊強度を有するため、MOS領域については、ドリフト層内でのアバランシェ破壊よりも先に、トレンチ底部の電界集中に起因するゲート絶縁膜破壊が生じやすい問題があり、SBD領域についてはトレンチ側面及び底面のショットキー界面が高電界となることによる逆方向リーク電流が増大しやすい問題がある。
 これに対し、実施の形態1に係る半導体装置101は、MOS領域19において、ゲートトレンチ6の下方に第1底部保護領域15を形成している。第1底部保護領域15の周辺には、空乏層が形成されるため、当該部分の電界強度が低下する。そのため、MOS領域19において、ゲートトレンチ6底部の電界集中に起因するゲート絶縁膜7の絶縁破壊の発生を抑制できる効果を奏する。
 また、実施の形態1の半導体装置101は、ドリフト層2が、<11-20>軸方向に0°より大きいオフ角が設けられた主面を有し、ゲートトレンチ6及びショットキートレンチ11が、<11-20>軸方向に平行に設けられているため、トレンチ側面による特性のばらつきを低減し、半導体装置101の動作を安定させることができる効果を奏する。
 さらに、実施の形態1の半導体装置101は、ショットキートレンチ11が貫通するウェル領域10のp型の不純物濃度が、ゲートトレンチ6が貫通するボディ領域3のp型の不純物濃度よりも高いため、オフ時にそれぞれに同じ電圧がかかったとしても、厚さが小さいウェル領域10においてソース電極13側へと伸びる空乏層の延びがボディ領域3よりも小さくなり、パンチスルーの発生を防止できる効果を奏する。
 なお、上記の実施の形態1において、ゲートトレンチ6及びショットキートレンチ11は、平面視においてストライプ状に形成されるものとしたが、これに限られるものではない。例えば、ゲートトレンチ6やショットキートレンチ11のどちらかが格子形状であってもよい。
実施の形態2.
 実施の形態2の半導体装置及び半導体装置の製造方法について、図12から図17を用いて説明する。図12は、図2のA-A’線での矢視断面図に対応し、本実施の形態の半導体装置201における活性領域40の一部の断面を示す断面模式図である。また、図13から図17は、本実施の形態の半導体装置201の製造方法の各工程を示す図である。
 本実施の形態の半導体装置201は、図12に示すように、ショットキートレンチ11の底面に第2底部保護領域16が形成されている点で、実施の形態1の半導体装置101と異なる。本実施の形態の半導体装置201のその他の構成は、実施の形態1の半導体装置101と同様であるため、以下では半導体装置101と異なる点を中心に説明する。
 半導体装置201において、ショットキートレンチ11(ショットキー電極12)の下方には、ショットキートレンチ11の延伸方向に沿ってp型の第2底部保護領域16が設けられている。第2底部保護領域16は、ショットキートレンチ11の底部に接しており、ショットキートレンチ11の底部全体を覆うように設けられている。
 なお、第1底部保護領域15と同様に、第2底部保護領域16は、ショットキートレンチ11の底部に接して設けられるものに限られず、ドリフト層2内においてショットキートレンチ11の底部よりも下方に離れて設けられていてもよい。
 また、第1底部保護領域15と同様に、第2底部保護領域16は、ショットキートレンチ11の底部全体を覆うものに限られず、ショットキートレンチ11の底部の少なくとも一部を覆うように設けられていればよい。例えば、第2底部保護領域16は、ショットキートレンチ11の延伸方向(ストライプ形状のときは平面視における長手方向、格子形状のときはショットキートレンチ11ごとに方向が定義される)に沿って間隔をあけて周期的に配置されていてもよいし、延伸方向と直交する断面においてショットキートレンチ11の底部の半分程度を覆うように設けられていてもよい。或いは、第2底部保護領域16は、ショットキートレンチ11の幅方向にはみ出すように底部全体を覆うことによって、第2底部保護領域16の幅がショットキートレンチ11の幅よりも大きくなるように構成されていてもよい。
 また、第1底部保護領域15と同様に、第2底部保護領域16は、ショットキートレンチ11の延伸方向に沿って設けられるものに限られず、ショットキートレンチ11の延伸方向と直交する方向に延伸して複数設けられることによって、延伸方向においてショットキートレンチ11の底部を部分的に周期的に覆っていてもよい。
 次に、半導体装置201の製造方法について、図13から図17を用いて、実施の形態1の半導体装置101の製造方法と異なる点を中心に説明する。
 まず、実施の形態1で説明した半導体装置101の製造方法と同様にして、図6に示すようにゲートトレンチ6及びショットキートレンチ11を形成した後、図13に示すように、第1のマスク51を用いて、半導体層21の表面に対して垂直方向から少し傾斜した斜め方向にイオン注入を行う。このようにして、ゲートトレンチ6の底部にp型のイオン注入を行うことでp型の第1底部保護領域15を形成し、ショットキートレンチ11の底部にp型のイオン注入を行うことでp型の第2底部保護領域16を形成する。
 あるいは、図14に示すように、第1底部保護領域15及び第2底部保護領域16は、基板1上にn型の第1ドリフト層25をエピタキシャル成長により形成した後、あらかじめ第1ドリフト層25の上層部にイオン注入により選択的に形成、又はエピタキシャル成長によって埋め込み形成することとしてもよい。この場合、第1底部保護領域15及び第2底部保護領域16の形成後、第1ドリフト層25、及び第1底部保護領域15、及び第2底部保護領域16の上に、n型の第2ドリフト層26をエピタキシャル成長により形成した後に、各半導体領域やトレンチを形成することとなる。例えば、ボディ領域3は、第2ドリフト層26の上層部の一部であるMOS領域に形成され、ボディ領域3が形成されないSBD領域にはウェル領域10が形成される。なお、第1ドリフト層25と第2ドリフト層26とを合わせたものが上記のドリフト層2に相当する。
 このようにして形成される第1底部保護領域15及び第2底部保護領域16は、図13に示すように、ゲートトレンチ6及びショットキートレンチ11の側面よりもドリフト層2側(ドリフト層2の厚さ方向に直交する方向)に張り出している。なお、半導体層21の表面に対して垂直方向にイオン注入を行うことで、第1底部保護領域15及び第2底部保護領域16の側面がゲートトレンチ6の側面よりもドリフト層2側に張り出していない構成としてもよい。また、第1底部保護領域15及び第2底部保護領域16は、これらを形成するための厚み分だけゲートトレンチ6及びショットキートレンチ11を余分に深く形成した後、トレンチ内にエピタキシャル成長によりそれぞれ形成してもよい。
 次に、図15に示すように、レジストマスク等を用いた選択的なエッチング等により第1のマスク51を除去して、半導体層21上に全面的に絶縁膜を形成することで、ゲートトレンチ6内の底部及び側面にゲート絶縁膜7を形成する。その後、実施の形態1で説明した半導体装置101の製造方法と同様にして、ゲート絶縁膜7を介してゲートトレンチ6を埋め込むように、例えばポリシリコン(Poly-Si)を充填して、ゲート電極8を形成する。
 その後、図16に示すように、ゲート電極8を覆うように、層間絶縁膜9を形成する。そして、実施の形態1で説明した半導体装置101の製造方法と同様にゲートトレンチ6を覆う層間絶縁膜9上に第4のマスク54を形成する。当該第4のマスク54を用いて、層間絶縁膜9とともにゲート絶縁膜7もパターニングして、半導体層21の表面を露出させ、層間絶縁膜9にコンタクトホールを開口する。
 次に、図17に示すように、コンタクトホールの開口により露出した半導体層21の表面(ソース領域4、ボディコンタクト領域5及びウェル領域10の表面)に、Ni(ニッケル)等の金属を用いてコンタクト領域17を形成する。
 その後、実施の形態1で説明した半導体装置101の製造方法と同様にして、ショットキートレンチ11内にショットキー電極12を形成し、ショットキー電極12、コンタクト領域17、及び層間絶縁膜9の上に、ソース電極13を形成する。そして、基板1の裏面を覆うようにドレイン電極14を形成する。以上の工程により、図12に示す半導体装置201を作製できる。
 このように構成された半導体装置201であっても、実施の形態1の半導体装置101と同様の効果を奏する。さらに、本実施の形態の半導体装置201は、SBD領域20において、ショットキートレンチ11の下方に第2底部保護領域16を形成することで、第2底部保護領域16の周辺に広がる空乏層によりショットキー界面22の電界を低減し、逆方向リーク電流の増大をさらに抑制できる効果を奏する。
実施の形態3.
 実施の形態3の半導体装置及び半導体装置の製造方法について、図18から図21を用いて説明する。図18は、図1に示す領域Xを拡大して示した図であり、半導体装置301におけるMOSFETセルのレイアウトを模式的に示す平面模式図である。図19は、図18のB-B’線での矢視断面図であり、本実施の形態の半導体装置301における活性領域40の一部の断面を示す断面模式図である。なお、図18は、図19に示したボディ領域3と第1底部保護領域15との間におけるある深さでの横方向の断面を上から見た図に相当する。また、図20及び図21は、本実施の形態の半導体装置301の製造方法の工程を示す図である。
 本実施の形態の半導体装置301は、図18及び図19に示すように、MOS領域19とSBD領域20において第1低抵抗領域31及び第2低抵抗領域32がそれぞれ形成されている点で、実施の形態2の半導体装置201と異なる。本実施の形態の半導体装置301のその他の構成は、実施の形態2の半導体装置201と同様であるため、以下では半導体装置201と異なる点を中心に説明する。
 第1低抵抗領域31は、ゲートトレンチ6の延伸方向において、ゲートトレンチ6に沿って設けられ、n型の不純物濃度がドリフト層2よりも高い、n型の半導体領域である。第1低抵抗領域31は、図18及び図19に示すように、ゲートトレンチ6の側方に設けられている。より詳しくは、図18に示すように、第1低抵抗領域31は、ゲートトレンチ6の延伸方向において、ゲートトレンチ6側面の全領域に接して、ゲートトレンチ6の側面を覆うように形成される。また、第1低抵抗領域31は、図19に示すように、ボディ領域3及び第1底部保護領域15に接するように形成されている。
 第2低抵抗領域32は、ショットキートレンチ11の延伸方向において、ショットキートレンチ11に沿って設けられ、n型の不純物濃度がドリフト層2よりも高い、n型の半導体領域である。第2低抵抗領域32は、図18及び図19に示すように、ショットキートレンチ11の側方に設けられている。より詳しくは、第2低抵抗領域32は、ショットキートレンチ11の延伸方向において、ショットキートレンチ11側面の全領域に接して、ショットキートレンチ11の側面を覆うように形成される。また、第2低抵抗領域32は、図19に示すように、ウェル領域10及び第2底部保護領域16に接するように形成されている。
 なお、図18及び図19においては、MOS領域19内の第1低抵抗領域31とSBD領域20内の第2低抵抗領域32とが互いに離れている場合を図示しているが、これらは互いに接していてもよい。
 また、第1低抵抗領域31は、ゲートトレンチ6の向かい合う両側面にそれぞれ設けられるものに限られず、いずれか一方の側面のみに形成されていてもよい。また、第1低抵抗領域31は、ゲートトレンチ6の延伸方向においてゲートトレンチ6側面の全領域に接するように形成されなくてもよく、一部の領域のみなど部分的に形成されていてもよい。
 同様に、第2低抵抗領域32も、ショットキートレンチ11の向かい合う両側面にそれぞれ設けられるものに限られず、いずれか一方の側面のみに形成されていてもよい。また、第2低抵抗領域32は、ショットキートレンチ11の延伸方向においてショットキートレンチ11側面の全領域に接するように形成されなくてもよく、一部の領域のみなど部分的に形成されていてもよい。
 第1低抵抗領域31は、ゲートトレンチ6の側面に接して設けられるものに限られず、ドリフト層2内においてゲートトレンチ6の側面から離れた位置に設けられていてもよい。同様に、第2低抵抗領域32も、ショットキートレンチ11の側面に接して設けられるものに限られず、ドリフト層2内においてショットキートレンチ11の側面から離れた位置に設けられていてもよい。
 第1低抵抗領域31は、ボディ領域3及び第1底部保護領域15に接して設けられるものに限られず、ドリフト層2内においてこれらの領域から離れた位置に設けられていてもよい。同様に、第2低抵抗領域32も、ウェル領域10及び第2底部保護領域16に接して設けられるものに限られず、ドリフト層2内においてこれらの領域から離れた位置に設けられていてもよい。
 なお、本実施の形態では、半導体装置301がゲートトレンチ6側に第1底部保護領域15及び第1低抵抗領域31を有し、ショットキートレンチ11側に第2底部保護領域16及び第2低抵抗領域32を有する場合について説明するが、これに限られるものではなく、実施の形態1に記載の半導体装置101にさらに第1低抵抗領域31のみを設けたもの、すなわち第2底部保護領域16及び第2低抵抗領域32を有しない構成であってもよい。
 次に、半導体装置301の製造方法について、図20を用いて、実施の形態2の半導体装置201の製造方法と異なる点を中心に説明する。
 まず、実施の形態2で説明した半導体装置201の製造方法と同様にして、図13に示すようにゲートトレンチ6、ショットキートレンチ11、第1底部保護領域15、及び第2底部保護領域16を形成した後、第1のマスク51を形成したまま、もしくは図20に示すように第1のマスク51を除去してから、ゲートトレンチ6及びショットキートレンチ11の内壁からN(窒素)やP(リン)等の傾斜イオン注入によりn型の第1低抵抗領域31及び第2低抵抗領域32を形成する。ここで、第1低抵抗領域31及び第2低抵抗領域32は、これらの領域におけるn型の不純物濃度がボディ領域3のp型の不純物濃度よりも低くなるように形成する。このようにすることで、ボディ領域3の導電型がn型に反転されないようにすることができる。
 なお、ゲートトレンチ6の側面に図示しないp型の接続領域を形成する場合、接続領域におけるp型の不純物濃度が第1低抵抗領域31のn型の不純物濃度よりも高くなるように形成する。このようにすることで、元々第1低抵抗領域31であった領域の導電型をp型に反転させて、接続領域を形成することができる。なお、接続領域は、通常ボディ領域3よりもp型の不純物濃度が高くなるように設定されるため、元々ボディ領域3であった領域においても接続領域が形成されることになる。
 このようにすることで、ゲートトレンチ6の側面を覆うように第1低抵抗領域31を、ショットキートレンチ11の側面を覆うように第2低抵抗領域32を、それぞれ形成することができる。その他の部分については、実施の形態2の半導体装置201と同様にして製造することができる。
 なお、第2底部保護領域16及び第2低抵抗領域32を有しない構成とする場合には、実施の形態1で説明した半導体装置101の製造方法と同様にして、図7に示すように、ゲートトレンチ6、ショットキートレンチ11、及び第1底部保護領域15を形成した後、第1のマスク51及び第2のマスク52を形成したまま、もしくは図21に示すように第1のマスク51を一部除去してから、ゲートトレンチ6及びショットキートレンチ11の内壁からN(窒素)やP(リン)等の傾斜イオン注入によりn型の第1低抵抗領域31を形成する。その他の部分については、実施の形態1の半導体装置101と同様にして製造することができる。
 このように構成された半導体装置301であっても、実施の形態2の半導体装置201と同様の効果を奏する。さらに、本実施の形態の半導体装置301は、第1底部保護領域15に隣接して、ドリフト層2よりもn型の不純物濃度が高い第1低抵抗領域31が形成されているため、第1底部保護領域15周辺の抵抗が低減され、MOSFETのオン抵抗を低減できる。同様に、第2底部保護領域16に隣接して、ドリフト層2よりもn型の不純物濃度が高い第2低抵抗領域32が形成されているため、SBDの動作時に第2底部保護領域16周辺の抵抗が低減され、高いショットキー電流を得ることができる。
 さらに、第1底部保護領域15及び第2底部保護領域16の周辺に第1低抵抗領域31及び第2低抵抗領域32が形成されていることにより、第1底部保護領域15及び第2底部保護領域16の周辺のn型の不純物濃度が高くなっている。すなわち、第1底部保護領域15と第1低抵抗領域31とから構成されるpn接合部、及び第2底部保護領域16と第2低抵抗領域32とから構成されるpn接合部は、ドリフト層2とから構成される場合よりもpn接合部のn型領域のポテンシャルが増大する。pn接合部のn型領域のポテンシャルが増大することにより、当該pn接合部からなるボディダイオードのビルトイン電圧も増加するため、ボディダイオードに電流が流れにくくなる
 ここで、pn接合からなるボディダイオードがSiC(炭化珪素)から構成されている場合、ボディダイオードには、炭化珪素のバンドギャップから通常3.5V程度で電流が流れる。しかし、pn接合部のn型領域のポテンシャルが高い場合には、その分高いバイアスを印加しなければ、ボディダイオードがオンしない。そのため、ボディダイオードに順方向バイアスが印加された際、第1低抵抗領域31及び第2低抵抗領域32に隣接する第1底部保護領域15及び第2底部保護領域16のpn接合においては、より高い電圧までバイポーラ動作が抑制されることとなる。
 一方、SBDは、ショットキー障壁によるバイアスを印加することでオンでき、通常1~2V程度など、pn接合からなるボディダイオードよりも低い電圧でオンする。そのため、順方向バイアス印加時には、まずSBDによるユニポーラ電流であるショットキー電流が流れ始め、より高いバイアスになるとボディダイオードによるバイポーラ電流が流れ始めることとなる。
 したがって、第1底部保護領域15及び第2底部保護領域16の周辺に、ドリフト層2よりもn型の不純物濃度が高い第1低抵抗領域31及び第2低抵抗領域32を形成することで、pn接合部のn型領域のポテンシャルを増大でき、pn接合からなるボディダイオードの動作電圧を増大させることができるので、SBDにおいてより高い最大ユニポーラ電流を得ることができる。
実施の形態4.
 実施の形態4の半導体装置及び半導体装置の製造方法について、図22及び図23を用いて説明する。図22は、図2のA-A’線での矢視断面図に対応し、本実施の形態の半導体装置401における活性領域40の一部の断面を示す断面模式図である。また、図23は、本実施の形態の半導体装置401の製造方法の各工程を示す図である。
 本実施の形態の半導体装置201は、図22に示すように、ボディ領域3の下部に電流拡散領域34が形成されている点で、実施の形態2の半導体装置201と異なる。本実施の形態の半導体装置のその他の構成は、実施の形態2の半導体装置201と同様であるため、以下では半導体装置201と異なる点を中心に説明する。
 電流拡散領域34は、ボディ領域3の下部に、ボディ領域3の下面に上面が接するように形成されるn型の半導体領域である。電流拡散領域34は、ボディ領域3が形成されているMOS領域19にのみ形成され、SBD領域20には形成されない。電流拡散領域34のn型の不純物濃度は、ドリフト層2のn型の不純物濃度よりも高い。つまり、電流拡散領域34は、ドリフト層2よりも低抵抗である。
 次に、半導体装置401の製造方法について、図23を用いて、実施の形態1の半導体装置101の製造方法又は実施の形態2の半導体装置201の製造方法と異なる点を中心に説明する。
 まず、実施の形態1で説明した半導体装置101の製造方法と同様にして、図4に示すようにドリフト層2を形成した後に、図23に示すように、ボディ領域3、ソース領域4、ボディコンタクト領域5、ウェル領域10、及び電流拡散領域34を、それぞれイオン注入により形成する。なお、全て又は一部の領域についてイオン注入に代えてエピタキシャル成長によって形成することとしてもよい。
 このようにすることで、ボディ領域3の下方にn型の電流拡散領域34を形成することができる。その他の部分については、実施の形態2の半導体装置201と同様にして製造することができる。
 このように構成された半導体装置401であっても、実施の形態2の半導体装置201と同様の効果を奏する。さらに、本実施の形態の半導体装置401は、ボディ領域3の底部に電流拡散領域34が形成されているため、ボディ領域3と第1底部保護領域15の間のJFET抵抗を低減することができ、オン抵抗を低下することで損失を減少することができる効果を奏する。
 また、本実施の形態の半導体装置401は、還流動作時にボディ領域3近辺にもショットキー電流が流れるので、ボディ領域3とドリフト層2との間のpn接合に電流が流れるバイポーラ動作を抑制することができる効果を奏する。
 実施の形態5.
 本実施の形態は、上述した実施の形態1から4のいずれかにかかる半導体装置を電力変換装置に適用したものである。本開示は特定の電力変換装置に限定されるものではないが、以下、実施の形態5として、三相のインバータに本開示を適用した場合について説明する。
 図24は、本実施の形態にかかる電力変換装置を適用した電力変換システムの構成を示すブロック図である。
 図24に示す電力変換システムは、電源500、電力変換装置600、負荷700から構成される。電源500は、直流電源であり、電力変換装置600に直流電力を供給する。電源500は種々のもので構成することが可能であり、例えば、直流系統、太陽電池、蓄電池で構成することができるし、交流系統に接続された整流回路やAC/DCコンバータで構成することとしてもよい。また、電源500を、直流系統から出力される直流電力を所定の電力に変換するDC/DCコンバータによって構成することとしてもよい。
 電力変換装置600は、電源500と負荷700の間に接続された三相のインバータであり、電源500から供給された直流電力を交流電力に変換し、負荷700に交流電力を供給する。電力変換装置600は、図24に示すように、入力される直流電力を交流電力に変換して出力する主変換回路601と、主変換回路601の各スイッチング素子を駆動する駆動信号を出力する駆動回路602と、駆動回路602を制御する制御信号を駆動回路602に出力する制御回路603とを備えている。
 負荷700は、電力変換装置600から供給された交流電力によって駆動される三相の電動機である。なお、負荷700は特定の用途に限られるものではなく、各種電気機器に搭載された電動機であり、例えば、ハイブリッド自動車や電気自動車、鉄道車両、エレベーター、もしくは、空調機器向けの電動機として用いられる。
 以下、電力変換装置600の詳細を説明する。主変換回路601は、スイッチング素子と還流ダイオードを備えており(図示せず)、スイッチング素子がスイッチングすることによって、電源500から供給される直流電力を交流電力に変換し、負荷700に供給する。主変換回路601の具体的な回路構成は種々のものがあるが、本実施の形態にかかる主変換回路601は2レベルの三相フルブリッジ回路であり、6つのスイッチング素子とそれぞれのスイッチング素子に逆並列に接続された6つの還流ダイオードから構成することができる。主変換回路601の各スイッチング素子と各還流ダイオードの少なくともいずれかに、上述した実施の形態1から4のいずれかにかかる半導体装置を適用する。このうち、MOS領域19に配置されたMOSFET構造をスイッチング素子として、SBD領域20に配置されたSBDを還流ダイオードとして、それぞれ使用できる。6つのスイッチング素子は2つのスイッチング素子ごとに直列接続され上下アームを構成し、各上下アームはフルブリッジ回路の各相(U相、V相、W相)を構成する。そして、各上下アームの出力端子、すなわち主変換回路601の3つの出力端子は、負荷700に接続される。
 なお、実施の形態1から4にかかる半導体装置は、スイッチング素子と還流ダイオードが1つのチップ内に内蔵された一体構造となっている。そのため、主変換回路601のスイッチング素子としてMOS領域19に配置されたMOSFET構造を用い、還流ダイオードとしてSBD領域20に配置されたSBDを用いることで、スイッチング素子と還流ダイオードが別個に形成された異なる2つ以上のチップを用いるときと比較して、実装面積を縮小できる。
 駆動回路602は、主変換回路601のスイッチング素子を駆動する駆動信号を生成し、主変換回路601のスイッチング素子のゲート電極に供給する。具体的には、後述する制御回路603からの制御信号に従い、スイッチング素子をオン状態にする駆動信号とスイッチング素子をオフ状態にする駆動信号とを各スイッチング素子のゲート電極に出力する。スイッチング素子をオン状態に維持する場合、駆動信号はスイッチング素子の閾値電圧以上の電圧信号(オン信号)であり、スイッチング素子をオフ状態に維持する場合、駆動信号はスイッチング素子の閾値電圧以下の電圧信号(オフ信号)となる。
 制御回路603は、負荷700に所望の電力が供給されるよう主変換回路601のスイッチング素子を制御する。具体的には、負荷700に供給すべき電力に基づいて主変換回路601の各スイッチング素子がオン状態となるべき時間(オン時間)を算出する。例えば、出力すべき電圧に応じてスイッチング素子のオン時間を変調するPWM制御によって主変換回路601を制御することができる。そして、各時点においてオン状態となるべきスイッチング素子にはオン信号を、オフ状態となるべきスイッチング素子にはオフ信号が出力されるよう、駆動回路602に制御指令(制御信号)を出力する。駆動回路602は、この制御信号に従い、各スイッチング素子のゲート電極にオン信号又はオフ信号を駆動信号として出力する。
 本実施の形態に係る電力変換装置では、主変換回路601のスイッチング素子として実施の形態1から4のいずれかにかかる半導体装置を適用するため、バイポーラ劣化が抑制された信頼性の高い半導体装置の使用により、電力変換装置の信頼性向上を実現することができる。また、主変換回路601のスイッチング素子として実施の形態1から4のいずれかにかかる半導体装置を適用することで、実装面積の縮小が可能となるため、装置全体の大きさを小型化することができる。
 さらに、実施の形態1から4のいずれの半導体装置も、ショットキー電流密度の増大をすることができる。したがって、本実施の形態に係る電力変換装置は、実施の形態1から4のいずれかにかかる半導体装置を適用することで、装置サイズを大きくすることなく、より大きな還流電流を通電することができる効果を奏する。還流電流を従来と同程度とするのであれば、装置サイズを小型化することができる。また、実施の形態1から4のいずれの半導体装置も、逆方向リーク電流を低減することができる。したがって、本実施の形態に係る電力変換装置は、実施の形態1から4のいずれかにかかる半導体装置を適用することで、耐圧を向上することができ、信頼性を向上することができるという効果を奏する。
 本実施の形態では、2レベルの三相インバータに本開示を適用する例を説明したが、本開示は、これに限られるものではなく、種々の電力変換装置に適用することができる。本実施の形態では、2レベルの電力変換装置としたが3レベルやマルチレベルの電力変換装置であっても構わないし、単相負荷に電力を供給する場合には単相のインバータに本開示を適用しても構わない。また、直流負荷等に電力を供給する場合にはDC/DCコンバータやAC/DCコンバータに本開示を適用することも可能である。
 また、本開示を適用した電力変換装置は、上述した負荷が電動機の場合に限定されるものではなく、例えば、放電加工機やレーザー加工機、又は誘導加熱調理器や非接触給電システムの電源装置として用いることもでき、さらには太陽光発電システムや蓄電システム等のパワーコンディショナーとして用いることも可能である。
 以上説明した本開示に係る実施の形態1から5においては、半導体材料が炭化珪素である場合について説明したが、その他の半導体材料を用いてもよい。すなわち、基板1、及びドリフト層2、ボディ領域3、ソース領域4、ボディコンタクト領域5などを含む半導体層21は、その他の半導体材料から構成することができる。その他の半導体材料としては、例えば、シリコンと比べてバンドギャップが広い、いわゆるワイドバンドギャップ半導体が挙げられる。炭化珪素以外のワイドバンドギャップ半導体としては、窒化ガリウム、窒化アルミニウム、窒化アルミニウムガリウム、酸化ガリウム、ダイヤモンドなどが挙げられる。これらのワイドバンドギャップ半導体を用いた場合であっても同様の効果を得ることができる。
 なお、本明細書で説明した上記の各実施の形態では、各構成要素の材質、材料、寸法、形状、相対的配置関係又は実施の条件等について記載している場合があるが、これらは全ての局面において例示であって、各実施の形態が記載されたものに限られることはない。よって、例示されていない無数の変形例が、各実施の形態の範囲内において想定される。例えば、任意の構成要素を変形する場合、追加する場合又は省略する場合、さらには、少なくとも1つの実施形態における少なくとも1つの構成要素を抽出し、他の実施形態の構成要素と組み合わせる場合が含まれる。
 また、矛盾が生じない限り、上記各実施形態において「1つ」備えられるものとして記載された構成要素は、「1つ以上」備えられていても良い。さらに、各構成要素は概念的な単位であって、1つの構成要素が複数の構造物で構成される場合、及び1つの構成要素がある構造物の一部に対応する場合を含む。
 また、本明細書における説明は、何れも、従来技術であると認めるものではない。
 なお、各実施の形態を、適宜、組み合わせたり、変形や省略することも、本開示の範囲に含まれる。
1 基板、2 ドリフト層、3 ボディ領域、4 ソース領域、5 ボディコンタクト領域、6 ゲートトレンチ、7 ゲート絶縁膜、8 ゲート電極、9 層間絶縁膜、10 ウェル領域、11 ショットキートレンチ、 12 ショットキー電極、13 ソース電極、14 ドレイン電極、15 第1底部保護領域、16 第2底部保護領域、17 コンタクト領域、19 MOS領域、20 SBD領域、21 半導体層、22 ショットキー界面、25 第1ドリフト層、26 第2ドリフト層、31 第1低抵抗領域、32 第2低抵抗領域、34 電流拡散領域、40 活性領域、41 終端領域、
101、201、301、401 半導体装置、
500 電源、600 電力変換装置、601 主変換回路、602 駆動回路、603 制御回路、700 負荷

Claims (12)

  1.  第1導電型のドリフト層と、
     前記ドリフト層上の一部に設けられた第2導電型のボディ領域と、
     前記ボディ領域上に設けられた第1導電型のソース領域と、
     前記ボディ領域及び前記ソース領域を前記ドリフト層の厚さ方向に貫通するゲートトレンチ内に設けられたゲート絶縁膜と、
     前記ゲートトレンチ内に設けられ、前記ソース領域に対して、前記ゲート絶縁膜を介して対向するように設けられたゲート電極と、
     前記ゲート絶縁膜の下方に設けられた第2導電型の第1底部保護領域と、
     前記ドリフト層上の一部であって前記ボディ領域が設けられた領域とは異なる領域に設けられ、前記ドリフト層の厚さ方向において前記ボディ領域よりも浅く形成された第2導電型のウェル領域と、
     前記ウェル領域を前記ドリフト層の厚さ方向に貫通するショットキートレンチ内に設けられたショットキー電極と、
     を備えた半導体装置。
  2.  前記ウェル領域の第2導電型の不純物濃度は、前記ボディ領域の第2導電型の不純物濃度よりも高いこと
     を特徴とする請求項1に記載の半導体装置。
  3.  前記ショットキートレンチの深さは、前記ゲートトレンチの深さ以下に形成されていること
     を特徴とする請求項1又は2に記載の半導体装置。
  4.  前記ショットキー電極の下方に設けられた第2導電型の第2底部保護領域をさらに備えること
     を特徴とする請求項1から3のいずれか1項に記載の半導体装置。
  5.  前記ショットキートレンチの側方に設けられ、第1導電型の不純物濃度が前記ドリフト層よりも高い第1導電型の第2低抵抗領域をさらに備えること
     を特徴とする請求項4に記載の半導体装置。
  6.  前記ゲートトレンチの側方に設けられ、第1導電型の不純物濃度が前記ドリフト層よりも高い第1導電型の第1低抵抗領域をさらに備えること
     を特徴とする請求項1から5のいずれか1項に記載の半導体装置。
  7.  前記ボディ領域の下方に設けられ、第1導電型の不純物濃度が前記ドリフト層よりも高い第1導電型の電流拡散領域をさらに備えること
     を特徴とする請求項1から4のいずれか1項に記載の半導体装置。
  8.  前記ドリフト層は、<11-20>軸方向に0°より大きいオフ角が設けられた主面を有し、
     前記ゲートトレンチ及び前記ショットキートレンチは、延伸方向が<11-20>軸方向に平行に形成されていること
     を特徴とする請求項1から7のいずれか1項に記載の半導体装置。
  9.  前記ドリフト層は、半導体材料としてワイドバンドギャップ半導体が用いられること
     を特徴とする請求項1から8のいずれか1項に記載の半導体装置。
  10.  請求項1から9のいずれか1項に記載の半導体装置を有し、入力される電力を変換して出力する主変換回路と、
     前記半導体装置に駆動信号を出力する駆動回路と、
     前記駆動回路に制御信号を出力する制御回路と、
     を備えた電力変換装置。
  11.  第1導電型のドリフト層の上部の一部に第2導電型のボディ領域を形成する工程と、
     前記ボディ領域の上部に選択的に第1導電型のソース領域を形成する工程と、
     前記ドリフト層の上部の一部であって前記ボディ領域が形成された領域と異なる領域に、前記ドリフト層の厚さ方向において前記ボディ領域よりも浅い第2導電型のウェル領域を形成する工程と、
     前記ソース領域及び前記ボディ領域を貫通して前記ドリフト層へと達するゲートトレンチを形成する工程と、
     前記ウェル領域を貫通して前記ドリフト層へと達するショットキートレンチを形成する工程と、
     前記ゲートトレンチの下方に第2導電型の第1底部保護領域を形成する工程と、
     前記ゲートトレンチの底部及び側面にゲート絶縁膜を形成する工程と、
     前記ゲート絶縁膜を介して前記ゲートトレンチを埋め込むようにゲート電極を形成する工程と、
     前記ショットキートレンチ内にショットキー電極を形成する工程と、
     を含む半導体装置の製造方法。
  12.  第1導電型の第1ドリフト層の上部に、第2導電型の第1底部保護領域を選択的に形成する工程と、
     前記第1ドリフト層及び前記第1底部保護領域の上に、第1導電型の第2ドリフト層をエピタキシャル成長により形成する工程と、
     前記第2ドリフト層の上部の一部に第2導電型のボディ領域を形成する工程と、
     前記ボディ領域の上部に選択的に第1導電型のソース領域を形成する工程と、
     前記第2ドリフト層の上部の一部であって前記ボディ領域が形成された領域と異なる領域に、前記第2ドリフト層の厚さ方向において前記ボディ領域よりも浅い第2導電型のウェル領域を形成する工程と、
     前記ソース領域及び前記ボディ領域を貫通して前記第1底部保護領域へと達するゲートトレンチを形成する工程と、
     前記ウェル領域を貫通して前記第2ドリフト層へと達するショットキートレンチを形成する工程と、
     前記ゲートトレンチの底部及び側面にゲート絶縁膜を形成する工程と、
     前記ゲート絶縁膜を介して前記ゲートトレンチを埋め込むようにゲート電極を形成する工程と、
     前記ショットキートレンチ内にショットキー電極を形成する工程と、
     を含む半導体装置の製造方法。
PCT/JP2020/040267 2020-10-27 2020-10-27 半導体装置、電力変換装置及び半導体装置の製造方法 WO2022091218A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/040267 WO2022091218A1 (ja) 2020-10-27 2020-10-27 半導体装置、電力変換装置及び半導体装置の製造方法
JP2021570524A JP7074267B1 (ja) 2020-10-27 2020-10-27 半導体装置、電力変換装置及び半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/040267 WO2022091218A1 (ja) 2020-10-27 2020-10-27 半導体装置、電力変換装置及び半導体装置の製造方法

Publications (1)

Publication Number Publication Date
WO2022091218A1 true WO2022091218A1 (ja) 2022-05-05

Family

ID=81382034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040267 WO2022091218A1 (ja) 2020-10-27 2020-10-27 半導体装置、電力変換装置及び半導体装置の製造方法

Country Status (2)

Country Link
JP (1) JP7074267B1 (ja)
WO (1) WO2022091218A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014003191A (ja) * 2012-06-20 2014-01-09 Hitachi Ltd 半導体装置
JP2018107167A (ja) * 2016-12-22 2018-07-05 国立研究開発法人産業技術総合研究所 半導体装置および半導体装置の製造方法
JP2019216224A (ja) * 2018-06-14 2019-12-19 富士電機株式会社 半導体装置
WO2020188686A1 (ja) * 2019-03-18 2020-09-24 三菱電機株式会社 炭化珪素半導体装置および電力変換装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6946764B2 (ja) * 2017-06-09 2021-10-06 富士電機株式会社 半導体装置および半導体装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014003191A (ja) * 2012-06-20 2014-01-09 Hitachi Ltd 半導体装置
JP2018107167A (ja) * 2016-12-22 2018-07-05 国立研究開発法人産業技術総合研究所 半導体装置および半導体装置の製造方法
JP2019216224A (ja) * 2018-06-14 2019-12-19 富士電機株式会社 半導体装置
WO2020188686A1 (ja) * 2019-03-18 2020-09-24 三菱電機株式会社 炭化珪素半導体装置および電力変換装置

Also Published As

Publication number Publication date
JP7074267B1 (ja) 2022-05-24
JPWO2022091218A1 (ja) 2022-05-05

Similar Documents

Publication Publication Date Title
JP6964950B2 (ja) 半導体装置および電力変換装置
JP6678810B2 (ja) 炭化珪素半導体装置および電力変換装置
JP5089191B2 (ja) 半導体装置およびその製造方法
US6750508B2 (en) Power semiconductor switching element provided with buried electrode
US7723783B2 (en) Semiconductor device
US8816355B2 (en) Semiconductor device
CN110718546B (zh) 绝缘栅极半导体器件及其制造方法
JP7170781B2 (ja) 炭化珪素半導体装置および電力変換装置
US20200127098A1 (en) Silicon carbide semiconductor device and power conversion device
WO2017098547A1 (ja) 炭化珪素半導体装置
JP6981585B1 (ja) 半導体装置、電力変換装置、および半導体装置の製造方法
JP7074267B1 (ja) 半導体装置、電力変換装置及び半導体装置の製造方法
WO2022097221A1 (ja) 半導体装置、電力変換装置及び半導体装置の製造方法
JP7094439B2 (ja) 炭化珪素半導体装置および電力変換装置
WO2024024073A1 (ja) 半導体装置、電力変換装置および半導体装置の製造方法
JP7337469B1 (ja) 半導体装置および電力変換装置
US20230139229A1 (en) Semiconductor device and power converter
WO2021106152A1 (ja) 炭化珪素半導体装置、電力変換装置および炭化珪素半導体装置の製造方法
CN116137935A (zh) 碳化硅半导体装置以及电力变换装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021570524

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20959736

Country of ref document: EP

Kind code of ref document: A1