WO2022089506A1 - 一种三维轨迹规划方法、装置、设备及存储介质 - Google Patents

一种三维轨迹规划方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2022089506A1
WO2022089506A1 PCT/CN2021/126874 CN2021126874W WO2022089506A1 WO 2022089506 A1 WO2022089506 A1 WO 2022089506A1 CN 2021126874 W CN2021126874 W CN 2021126874W WO 2022089506 A1 WO2022089506 A1 WO 2022089506A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
doberman
starting point
target point
dimensional
Prior art date
Application number
PCT/CN2021/126874
Other languages
English (en)
French (fr)
Inventor
鞠涵
Original Assignee
深圳市领峰电动智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市领峰电动智能科技有限公司 filed Critical 深圳市领峰电动智能科技有限公司
Priority to EP21885233.3A priority Critical patent/EP4239432A1/en
Priority to US18/309,747 priority patent/US20240028052A1/en
Publication of WO2022089506A1 publication Critical patent/WO2022089506A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/04Control of altitude or depth
    • G05D1/06Rate of change of altitude or depth
    • G05D1/0607Rate of change of altitude or depth specially adapted for aircraft
    • G05D1/0653Rate of change of altitude or depth specially adapted for aircraft during a phase of take-off or landing
    • G05D1/0676Rate of change of altitude or depth specially adapted for aircraft during a phase of take-off or landing specially adapted for landing

Definitions

  • the embodiments of the present application relate to UAV navigation technology, and in particular, to a three-dimensional trajectory planning method, device, device, and storage medium.
  • the embodiments of the present application provide a three-dimensional trajectory planning method, device, device, and storage medium, so as to accurately plan a three-dimensional driving trajectory.
  • an embodiment of the present application provides a three-dimensional trajectory planning method, and the method includes:
  • the height information of the starting point and the height information of the target point determine the vertical Doberman path from the starting point to the target point
  • a three-dimensional driving trajectory from the starting point to the target point is determined.
  • an embodiment of the present application provides a three-dimensional trajectory planning device, which includes: a horizontal Doberman path determination module, a vertical Doberman path determination module, and a three-dimensional travel trajectory determination module; wherein,
  • the horizontal Doberman path determination module is used to determine the horizontal Doberman from the starting point to the target point according to the driving mode, the horizontal position information and heading information of the starting point, and the horizontal position information and heading information of the target point path;
  • the vertical Doberman path determination module is used to determine the vertical Doberman path from the starting point to the target point according to the height information of the starting point and the height information of the target point;
  • the three-dimensional driving trajectory determination module is configured to determine the three-dimensional driving trajectory from the starting point to the target point according to the horizontal Doberman path and the vertical Doberman path.
  • an embodiment of the present application provides an electronic device, the electronic device comprising:
  • processors one or more processors
  • a storage device for storing one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors implement the three-dimensional trajectory planning method described in any embodiment of the present application.
  • an embodiment of the present application provides a computer-readable storage medium on which a computer program is stored, wherein when the program is executed by a processor, the three-dimensional trajectory planning method described in any embodiment of the present application is implemented.
  • the embodiments of the present application provide a three-dimensional trajectory planning method, device, device, and storage medium.
  • the starting point is determined according to the driving mode, the horizontal position information and heading information of the starting point, and the horizontal position information and heading information of the target point.
  • the present application can accurately plan a three-dimensional driving trajectory when the starting position information and heading information, as well as the target position information and heading information are given.
  • FIG. 1 is a first schematic flowchart of a three-dimensional trajectory planning method provided by an embodiment of the present application
  • FIG. 2 is a second schematic flowchart of a three-dimensional trajectory planning method provided by an embodiment of the present application
  • FIG. 3 is a third schematic flowchart of a three-dimensional trajectory planning method provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a three-dimensional trajectory planning device according to an embodiment of the present application.
  • FIG. 5 is a block diagram of an electronic device used to implement the three-dimensional trajectory planning method according to the embodiment of the present application.
  • FIG. 1 is a first schematic flow chart of a three-dimensional trajectory planning method provided by an embodiment of the present application. This embodiment can be applied to a situation where a flying device plans a three-dimensional trajectory for navigation before sailing, and makes the flying device navigate according to the planned trajectory .
  • the three-dimensional trajectory planning method provided in this embodiment may be executed by the three-dimensional trajectory planning apparatus provided in this embodiment of the present application, and the apparatus may be implemented in software and/or hardware, and integrated in an electronic device that executes the method.
  • the method of this embodiment includes but is not limited to the following steps:
  • the flying device in this embodiment may be a device with a flying function, such as a drone or an airplane.
  • the starting point and the target point are respectively the starting point and the ending point of the traveling trajectory planned by the flying device.
  • Obtain the three-dimensional position and heading information of the starting point of the flight equipment, as well as the three-dimensional position and heading information of the target point, wherein the three-dimensional position includes horizontal position information (ie longitude information and latitude information) and vertical position information (ie height information), heading information Refers to the navigation direction of the flight equipment.
  • the travel mode includes a landing guidance mode and a non-landing guidance mode.
  • a Dobin curve is used to fit the horizontal direction between the starting point and the target point.
  • the shortest path in the horizontal direction is taken as the horizontal Doberman path.
  • S120 Determine a vertical Doberman path from the starting point to the target point according to the height information of the starting point and the height information of the target point.
  • the height of the starting point is compared with the height of the target point, and the starting point is determined according to the comparison result.
  • the vertical shortest path to the target point that is, the vertical Doberman path.
  • the first sub-path of the vertical Doberman path from the starting point to the target point spirals upward, and the remaining sub-paths remain unchanged; If the difference between the height information of the target point and the height information of the starting point is less than or equal to the second threshold, the end sub-path of the vertical Doberman path from the starting point to the target point hovers down, and the rest of the sub-paths remain unchanged; if the target point The difference between the height information of the starting point and the height information of the starting point is greater than the second threshold value and less than the first threshold value, then the vertical Doberman path from the starting point to the target point climbs or descends in the whole process; wherein, the first threshold value is greater than the second threshold value.
  • the first threshold and the second threshold are determined by the height control law.
  • the altitude control law is used to control the head-up state and thrust strength of the flying equipment, so that the flying equipment can reach the height of the target point.
  • the altitude control law is related to the altitude control accuracy.
  • the altitude control accuracy refers to the error range between the commanded altitude of the flight equipment and the measured altitude.
  • the commanded altitude refers to the height of the target point set by the user, and the measured altitude refers to the The actual altitude traveled when the commanded altitude command was executed. Exemplarily, if the altitude control accuracy for controlling the flight of the flying device is 3 meters, the threshold setting should exceed 3 meters, such as 5 meters.
  • the horizontal Doberman path between the starting point and the target point is obtained through the driving mode, the horizontal position information and heading information of the starting point, and the horizontal position information and heading information of the target point.
  • the vertical Doberman path between the starting point and the target point is obtained.
  • the horizontal position information and heading information of the starting point, and the horizontal position information and heading information of the target point determine the horizontal Doberman path from the starting point to the target point; then, according to The height information of the starting point and the height information of the target point determine the vertical Doberman path from the starting point to the target point; finally, according to the horizontal Doberman path and the vertical Doberman path, determine the three-dimensional driving trajectory from the starting point to the target point.
  • the embodiment of the present application can extend the two-dimensional Doberman path algorithm to the three-dimensional space, and can accurately plan a three-dimensional driving trajectory when the starting position information and heading information, as well as the target position information and heading information are given, and the present application implements
  • the technical solution of the example is simple and convenient to implement, easy to popularize, and has better versatility.
  • FIG. 2 is a second schematic flowchart of a three-dimensional trajectory planning method provided by an embodiment of the present application.
  • the embodiments of the present application are optimized on the basis of the above-mentioned embodiments.
  • the process of planning the horizontal Doberman path from the starting point to the target point is explained in detail.
  • the method of this embodiment includes but is not limited to the following steps:
  • S220 Determine whether the driving module of the flight equipment is in the landing guidance mode, if yes, execute S230, and if not, execute S240.
  • the driving mode is the landing guidance mode
  • determine the driving direction of the final sub-path of the horizontal Doberman path and according to the driving direction of the final sub-path, the horizontal position information and heading information of the starting point, and the horizontal position information and heading information of the target point information to determine the horizontal Doberman path from the start point to the target point from a combination of preset landing guidance travel directions.
  • the driving direction of the final sub-path of the horizontal Doberman path is determined, that is, the flying device finally lands to the target point clockwise or counterclockwise.
  • the driving direction of the last sub-path of the horizontal Doberman path can be set by the user according to the airspace conditions of the target point location, and the user can specify that the driving direction of the last sub-path is a left turn or a right turn.
  • the user can specify the driving direction of the final sub-path as a right turn to ensure that the circling descent will not hit the obstacle.
  • the preset landing guidance driving direction combination when the horizontal Doberman path includes three sub-paths, if the driving direction of the last sub-path is a left turn, the preset landing guidance driving direction combination includes: right turn, left turn, right turn, right turn Turn straight, turn right and turn left, go straight and turn right; if the driving direction of the last sub-path is a right turn, the preset landing guidance driving direction combination includes: turn left, turn right, turn left, turn left, turn left, and turn right, go straight and turn left. It should be noted that, taking a right turn, a left turn and a right turn as an example, it represents a right turn on the first sub-path, a left turn on the second sub-path, and a right turn on the third sub-path.
  • the horizontal Doberman path from the starting point to the target point is determined from the combination of preset landing guidance driving directions.
  • the determination method of determining the horizontal Doberman path from the starting point to the target point from the preset landing guidance driving direction combination may use a screening mechanism in the related art, which is not limited in this embodiment of the present application.
  • the driving mode is the non-landing guidance mode, that is, the user does not specify the driving direction of the final sub-path, such as tasks such as surveying and mapping. Therefore, when the horizontal Doberman path includes three sub-paths, the preset non-landing guidance driving direction combination includes: turn right, turn left, turn right, turn right, turn left, turn right, turn left, turn right, turn left , turn right, turn left , go straight, turn left and turn right, go straight and turn left. According to the horizontal position information and heading information of the starting point and the horizontal position information and heading information of the target point, the horizontal Doberman path from the starting point to the target point is determined from the preset non-landing guidance driving direction combination.
  • the determination method of determining the horizontal Doberman path from the starting point to the target point from the preset landing guidance driving direction combination may use a screening mechanism in the related art, which is not limited in this embodiment of the present application.
  • the horizontal Doberman path of the flying device may also include two sub-paths.
  • the shortest path of the horizontal Doberman path is three sub-paths, for example, turn left by 5 degrees, go straight, and turn right. Since the left turn angle of the first sub-path is very small or the time of the left turn is very short and can be ignored, then the flight equipment can directly execute the second sub-path to go straight, and then execute the third sub-path right change.
  • the method further includes: controlling the flying device to travel according to the three-dimensional travel trajectory.
  • controlling the flying device to travel according to the three-dimensional travel trajectory includes: calling a straight-line travel thread to control the flight device to travel on a straight section in the three-dimensional travel trajectory; left-turn and right-turn sections.
  • the straight travel thread may be controlled by a linear guidance law;
  • the circling travel thread may be controlled by a circling guidance law.
  • the travel thread corresponding to the travel direction may be selected according to the travel direction corresponding to the sub-track segment currently to be traveled.
  • Controlling the flight device to travel according to the three-dimensional travel trajectory includes: in the process of controlling the flight device to travel according to the current sub-track segment, if it is detected that the remaining travel distance of the current sub-track segment is less than the preset distance, then travel according to the next sub-track segment.
  • the flight device in the process of driving according to the current sub-track segment, if the remaining travel distance of the current sub-track segment is detected to be less than the preset distance, the flight device will drive according to the next sub-track segment.
  • the preset distance is related to the straight-line guidance law
  • the preset distance is related to the circling guidance law.
  • the driving mode is divided into a landing guidance mode and a non-landing guidance mode. If the driving mode is the landing guidance mode, the driving direction of the final sub-path of the horizontal Doberman path is determined, and the driving is performed according to the final sub-path. The direction, the horizontal position information and heading information of the starting point, as well as the horizontal position information and heading information of the target point, determine the horizontal Doberman path from the starting point to the target point from the preset landing guidance driving direction combination; if the driving mode is non-landing In guidance mode, the horizontal Doberman path from the starting point to the target point is determined from a combination of preset non-landing guidance driving directions.
  • the embodiment of the present application can accurately plan the horizontal Doberman path from the starting point to the target point for different driving modes according to the actual application situation, so that the technical solution of the embodiment of the present application has a better general type, which can be used for both landing guidance tasks and For tasks such as surveying and mapping, and the user can specify whether the flying device will eventually land on the target point clockwise or counterclockwise.
  • FIG. 3 is a third schematic flowchart of a three-dimensional trajectory planning method provided by an embodiment of the present application.
  • the embodiments of the present application are optimized on the basis of the above-mentioned embodiments.
  • the process of planning the vertical Doberman path from the starting point to the target point is explained in detail.
  • the method of this embodiment includes but is not limited to the following steps:
  • S310 Determine the horizontal Doberman path from the starting point to the target point according to the driving mode, the horizontal position information and heading information of the starting point, and the horizontal position information and heading information of the target point.
  • S320 determine the difference between the height information of the target point and the height information of the starting point, and the relationship between the first threshold and the second threshold, if it is greater than or equal to the first threshold, execute S330; if it is less than or equal to the second threshold , then execute S340; if it is greater than the second threshold and less than the first threshold, execute S350.
  • the height of the starting point is compared with the height of the target point, and the starting point is determined according to the comparison result.
  • Vertical Doberman path to the target point If the difference between the height information of the target point and the height information of the starting point is greater than or equal to the first threshold, that is, the difference between the height of the target point and the height of the starting point is large, then the first segment of the vertical Doberman path from the starting point to the target point The path spirals upward, and the vertical height of the remaining sub-paths remains unchanged.
  • the first threshold is determined by the height control law.
  • the flying equipment hovers in the first sub-path to reach the height of the target position; in the remaining sub-paths, the flight height remains unchanged, and only needs to follow the horizontal Doberman path. path flight.
  • the advantage of this setting is that in the entire three-dimensional trajectory, the average height of the flying equipment can be maximized, thereby improving the safety of the flying equipment in performing tasks.
  • the vertical Doberman path includes three sub-paths. If the difference between the height of the target point and the height of the starting point is greater than or equal to 10 meters, the first sub-path of the vertical Doberman path from the starting point to the target point spirals upward, and the vertical heights of the second and third sub-paths constant.
  • the height of the starting point is compared with the height of the target point, and according to the comparison result, the vertical Doberman path between the starting point and the target point is determined. If the difference between the height information of the target point and the height information of the starting point is less than or equal to the second threshold, that is, the difference between the height of the target point and the height of the starting point is larger, then the final segment of the vertical Doberman path from the starting point to the target point The path spirals down, and the vertical height of the remaining sub-paths remains unchanged.
  • the second threshold is determined by the height control law.
  • the flight height of the flying equipment remains unchanged at first, and it flies along the horizontal Doberman path; at the end of the sub-path, it hovers and descends to the height of the target position.
  • the advantage of this setting is that in the entire three-dimensional trajectory, the average height of the flying equipment can be maximized, thereby improving the safety of the flying equipment in performing tasks.
  • the vertical Doberman path includes three sub-paths. If the difference between the height of the target point and the height of the starting point is less than or equal to minus 10 meters, the vertical heights of the first sub-path and the second sub-path of the vertical Doberman path from the starting point to the target point remain unchanged, and the third The subpath spirals down.
  • the height of the starting point is compared with the height of the target point, and according to the comparison result, the vertical Doberman path between the starting point and the target point is determined. If the difference between the height information of the target point and the height information of the starting point is greater than the second threshold and less than the first threshold, that is, the height of the target point is not much different from the height of the starting point. If the height of the target point is slightly higher than the height of the starting point, the vertical Doberman path from the starting point to the target point is accompanied by a brief climb; if the height of the target point is slightly lower than the height of the starting point, the starting point to the target point The point is accompanied by a brief drop during the vertical Doberman path. It should be noted that, in the horizontal direction, the horizontal Doberman path in the above embodiment is still used.
  • the second threshold is negative 10 meters.
  • the difference between the height information of the target point and the height information of the starting point is greater than minus 10 meters and less than 10 meters
  • the difference between the height information of the target point and the height information of the starting point is greater than 0 meters and less than 10 meters
  • the The vertical Doberman path from the start point to the target point is accompanied by a brief climb
  • the difference between the height information of the target point and the height information of the start point is greater than minus 10 meters and less than 0 meters
  • the vertical Doberman path from the start point to the target point The period was accompanied by a brief decline.
  • the starting point by comparing the difference between the height information of the starting point and the height information of the target point, if the difference between the height information of the target point and the height information of the starting point is greater than or equal to the first threshold, the starting point The first sub-path of the vertical Doberman path to the target point spirals upward, and the rest of the sub-paths remain unchanged; if the difference between the height information of the target point and the height information of the starting point is less than or equal to the second threshold, then the starting point reaches the target point.
  • the end sub-path of the vertical Doberman path spirals down, and the rest of the sub-paths remain unchanged; if the difference between the height information of the target point and the height information of the starting point is greater than the second threshold and less than the first threshold, then the starting point to the target point
  • the vertical Doberman path climbs or descends all the way; wherein, the first threshold is greater than the second threshold.
  • FIG. 4 is a schematic structural diagram of a three-dimensional trajectory planning apparatus provided by an embodiment of the present application. As shown in FIG. 4 , the three-dimensional trajectory planning apparatus 400 may include:
  • the horizontal Doberman path determination module 410 is configured to determine the horizontal Doberman path from the starting point to the target point according to the driving mode, the horizontal position information and heading information of the starting point, and the horizontal position information and heading information of the target point .
  • the vertical Doberman path determining module 420 is configured to determine the vertical Doberman path from the starting point to the target point according to the height information of the starting point and the height information of the target point.
  • the three-dimensional driving trajectory determination module 430 is configured to determine the three-dimensional driving trajectory from the starting point to the target point according to the horizontal Doberman path and the vertical Doberman path.
  • the above-mentioned horizontal Doberman path determination module 410 can be specifically used to: when the horizontal Doberman path includes three sub-paths, the horizontal position information and heading information of the starting point according to the driving mode, the starting point, and the target point horizontal position information and heading information, and determining the horizontal Doberman path from the starting point to the target point, including: if the driving mode is the landing guidance mode, determining the driving direction of the last sub-path of the horizontal Doberman path, And according to the driving direction of the last sub-path, the horizontal position information and heading information of the starting point, and the horizontal position information and heading information of the target point, the starting point to the target point is determined from the preset landing guidance driving direction combination. If the driving mode is the non-landing guidance mode, the horizontal Doberman path from the starting point to the target point is determined from the preset non-landing guidance driving direction combination.
  • the preset landing guidance driving direction combination includes: a right turn, a left turn, a right turn, and a right turn. Go straight and turn right and turn left, go straight and turn right; if the driving direction of the last sub-path is a right turn, the preset landing guidance driving direction combination includes: turn left, turn right, turn left, turn left, turn left, and turn right and go straight. Turn left; the preset non-landing guidance driving direction combination includes: turn right, turn left, turn right, turn right, turn left, turn right, turn left, turn right, turn left, turn left, turn right, and turn right. Turn left.
  • the above-mentioned vertical Doberman path determination module 420 may be specifically configured to: when the vertical Doberman path includes three sub-paths, according to the height information of the starting point and the height information of the target point, determine the The vertical Doberman path from the starting point to the target point includes: if the height information of the target point exceeds the threshold value of the height information of the starting point, then the vertical Doberman path from the starting point to the target point is The first sub-path spirals upward, and the rest of the sub-paths remain unchanged; if the height information of the target point is lower than the height information of the starting point by a threshold, then the end of the vertical Doberman path from the starting point to the target point is The segment sub-path spirals down, and the rest of the segment sub-paths remain unchanged; if the difference between the height information of the target point and the height information of the starting point is within the threshold range, then the vertical Durbin from the starting point to the target point The path climbs or descends all the way.
  • the above-mentioned three-dimensional trajectory planning device may further include: a flight equipment control module, configured to control the flight equipment to travel according to the three-dimensional travel trajectory.
  • the above-mentioned flight device control module can be specifically used to control the flight device to travel according to the three-dimensional travel trajectory, including: calling a straight-line travel thread to control the flight device to travel on a straight road section in the three-dimensional travel track; calling a circling travel thread, The flight device is controlled to drive the left-turn and right-turn sections in the three-dimensional travel trajectory.
  • controlling the flight device to travel according to the three-dimensional traveling track includes: during the process of controlling the flight device to travel according to the current sub-track segment, If it is detected that the remaining travel distance of the current sub-track segment is less than the preset distance, the vehicle is driven according to the next sub-track segment.
  • the three-dimensional trajectory planning device provided in this embodiment is applicable to the three-dimensional trajectory planning method provided in any of the above-mentioned embodiments, and has corresponding functions and beneficial effects.
  • the present application further provides an electronic device and a readable storage medium.
  • FIG. 5 it is a block diagram of an electronic device of a method for three-dimensional trajectory planning according to an embodiment of the present application.
  • Electronic devices are intended to represent various forms of digital computers, such as laptops, desktops, workstations, personal digital assistants, servers, blade servers, mainframe computers, and other suitable computers.
  • Electronic devices may also represent various forms of mobile devices, such as personal digital processors, cellular phones, smart phones, wearable devices, and other similar computing devices.
  • the components shown herein, their connections and relationships, and their functions are by way of example only, and are not intended to limit implementations of the application described and/or claimed herein.
  • the electronic device includes: one or more processors 510, a memory 520, and interfaces for connecting various components, including a high-speed interface and a low-speed interface.
  • the various components are interconnected using different buses and may be mounted on a common motherboard or otherwise as desired.
  • the processor may process instructions executed within the electronic device, including instructions stored in or on memory to display graphical information of the GUI on an external input/output device, such as a display device coupled to the interface.
  • multiple processors and/or multiple buses may be used with multiple memories and multiple memories, if desired.
  • multiple electronic devices may be connected, each providing some of the necessary operations (e.g., as a server array, a group of blade servers, or a multiprocessor system).
  • a processor 510 is taken as an example in FIG. 5 .
  • the memory 520 is the non-transitory computer-readable storage medium provided by the present application.
  • the memory stores instructions executable by at least one processor, so that the at least one processor executes the three-dimensional trajectory planning method provided by the present application.
  • the non-transitory computer-readable storage medium of the present application stores computer instructions, and the computer instructions are used to make a computer execute the method for three-dimensional trajectory planning provided by the present application.
  • the memory 520 can be used to store non-transitory software programs, non-transitory computer-executable programs and modules, such as program instructions/modules corresponding to a method for three-dimensional trajectory planning in the embodiments of the present application.
  • the processor 510 executes various functional applications and data processing of the server by running the non-transitory software programs, instructions and modules stored in the memory 520 , that is, implementing a three-dimensional trajectory planning method in the above method embodiments.
  • the memory 520 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of an electronic device planned for a three-dimensional trajectory. data etc. Additionally, memory 520 may include high-speed random access memory, and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid-state storage device. In some embodiments, memory 520 may optionally include memory located remotely from processor 510, and these remote memories may be connected to a three-dimensional trajectory planning electronic device via a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the electronic device of the method for three-dimensional trajectory planning may further include: an input device 530 and an output device 540 .
  • the processor 510, the memory 520, the input device 530, and the output device 540 may be connected by a bus or in other ways, and the connection by a bus is taken as an example in FIG. 5 .
  • the input device 530 can receive input numerical or character information, and generate key signal input related to user settings and function control of a three-dimensional trajectory planning electronic device, such as touch screen, keypad, mouse, track pad, touch pad, pointer A stick, one or more mouse buttons, a trackball, a joystick, and other input devices.
  • the output device 540 may include a display device, auxiliary lighting devices (eg, LEDs), and haptic feedback devices (eg, vibration motors), and the like.
  • the display device may include, but is not limited to, a liquid crystal display (LCD), a light emitting diode (LED) display, and a plasma display. In some implementations, the display device may be a touch screen.
  • Various implementations of the systems and techniques described herein can be implemented in digital electronic circuitry, integrated circuit systems, application specific ASICs (application specific integrated circuits), computer hardware, firmware, software, and/or combinations thereof. These various embodiments may include being implemented in one or more computer programs executable and/or interpretable on a programmable system including at least one programmable processor that The processor, which may be a special purpose or general-purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device an output device.
  • the processor which may be a special purpose or general-purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device an output device.
  • machine-readable medium and “computer-readable medium” refer to any computer program product, apparatus, and/or apparatus for providing machine instructions and/or data to a programmable processor ( For example, magnetic disks, optical disks, memories, programmable logic devices (PLDs), including machine-readable media that receive machine instructions as machine-readable signals.
  • machine-readable signal refers to any signal used to provide machine instructions and/or data to a programmable processor.
  • the systems and techniques described herein may be implemented on a computer having a display device (eg, a CRT (cathode ray tube) or LCD (liquid crystal display) monitor) for displaying information to the user ); and a keyboard and pointing device (eg, a mouse or trackball) through which a user can provide input to the computer.
  • a display device eg, a CRT (cathode ray tube) or LCD (liquid crystal display) monitor
  • a keyboard and pointing device eg, a mouse or trackball
  • Other kinds of devices can also be used to provide interaction with the user; for example, the feedback provided to the user can be any form of sensory feedback (eg, visual feedback, auditory feedback, or tactile feedback); and can be in any form (including acoustic input, voice input, or tactile input) to receive input from the user.
  • the systems and techniques described herein may be implemented on a computing system that includes back-end components (eg, as a data server), or a computing system that includes middleware components (eg, an application server), or a computing system that includes front-end components (eg, a user's computer having a graphical user interface or web browser through which a user may interact with implementations of the systems and techniques described herein), or including such backend components, middleware components, Or any combination of front-end components in a computing system.
  • the components of the system may be interconnected by any form or medium of digital data communication (eg, a communication network). Examples of communication networks include: Local Area Networks (LANs), Wide Area Networks (WANs), the Internet, and blockchain networks.
  • a computer system can include clients and servers. Clients and servers are generally remote from each other and usually interact through a communication network. The relationship of client and server arises by computer programs running on the respective computers and having a client-server relationship to each other.
  • the server can be a cloud server, also known as a cloud computing server or a cloud host. It is a host product in the cloud computing service system to solve the traditional physical host and VPS services, which are difficult to manage and weak in business scalability. defect.
  • the horizontal position information and heading information of the starting point, and the horizontal position information and heading information of the target point determine the horizontal Doberman path from the starting point to the target point; then, According to the height information of the starting point and the height information of the target point, determine the vertical Doberman path from the starting point to the target point; finally, according to the horizontal Doberman path and the vertical Doberman path, determine the three-dimensional driving trajectory from the starting point to the target point .
  • the embodiment of the present application can extend the two-dimensional Doberman path algorithm to the three-dimensional space, and can accurately plan a three-dimensional driving trajectory when the starting position information and heading information, as well as the target position information and heading information are given, and the present application implements
  • the technical solution of the example is simple and convenient to implement, easy to popularize, and has better versatility.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Navigation (AREA)
  • Traffic Control Systems (AREA)
  • Processing Or Creating Images (AREA)

Abstract

本申请实施例公开了一种三维轨迹规划方法、装置、设备及存储介质。该方法包括:根据行驶模式、起始点的水平位置信息和航向信息,以及目标点的水平位置信息和航向信息,确定所述起始点到所述目标点的水平杜宾路径;根据所述起始点的高度信息和所述目标点的高度信息,确定所述起始点到所述目标点的垂直杜宾路径;根据所述水平杜宾路径和所述垂直杜宾路径,确定所述起始点到所述目标点的三维行驶轨迹。

Description

一种三维轨迹规划方法、装置、设备及存储介质
本申请要求在2020年10月28日提交中国专利局、申请号为202011173488.X的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及无人机航行技术,尤其涉及一种三维轨迹规划方法、装置、设备及存储介质。
背景技术
随着测绘、巡检等自动任务在无人机领域获得越来越广泛的应用,如何更有效、更智能地为飞机自主规划好飞行轨迹是一个很重要的问题。目前多基于传统的侧偏距跟踪或者L1制导等方式跟踪两个相邻航点,但这样无法保证飞机的航向也符合到达下一航点的需求。因此,急需一种能够准确规划三维行驶轨迹的方法。
发明内容
本申请实施例提供了一种三维轨迹规划方法、装置、设备及存储介质,以实现能够准确规划一条三维行驶轨迹。
第一方面,本申请实施例提供了一种三维轨迹规划方法,该方法包括:
根据行驶模式、起始点的水平位置信息和航向信息,以及目标点的水平位置信息和航向信息,确定所述起始点到所述目标点的水平杜宾路径;
根据所述起始点的高度信息和所述目标点的高度信息,确定所述起始点到所述目标点的垂直杜宾路径;
根据所述水平杜宾路径和所述垂直杜宾路径,确定所述起始点到所述目标点的三维行驶轨迹。
第二方面,本申请实施例提供了一种三维轨迹规划装置,该装置包括:水平杜宾路径确定模块、垂直杜宾路径确定模块和三维行驶轨迹确定模块;其中,
所述水平杜宾路径确定模块,用于根据行驶模式、起始点的水平位置信息和航向信息,以及目标点的水平位置信息和航向信息,确定所述起始点到所述目标点的水平杜宾路径;
所述垂直杜宾路径确定模块,用于根据所述起始点的高度信息和所述目标 点的高度信息,确定所述起始点到所述目标点的垂直杜宾路径;
所述三维行驶轨迹确定模块,用于根据所述水平杜宾路径和所述垂直杜宾路径,确定所述起始点到所述目标点的三维行驶轨迹。
第三方面,本申请实施例提供了一种电子设备,该电子设备包括:
一个或多个处理器;
存储装置,用于存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现本申请任意实施例所述的三维轨迹规划方法。
第四方面,本申请实施例提供了一种计算机可读存储介质,其上存储有计算机程序,其中,该程序被处理器执行时实现本申请任意实施例所述的三维轨迹规划方法。
本申请实施例提供了一种三维轨迹规划方法、装置、设备及存储介质,首先,根据行驶模式、起始点的水平位置信息和航向信息,以及目标点的水平位置信息和航向信息,确定起始点到目标点的水平杜宾路径;然后,根据起始点的高度信息和目标点的高度信息,确定起始点到目标点的垂直杜宾路径;最后,根据水平杜宾路径和所述垂直杜宾路径,确定起始点到目标点的三维行驶轨迹。本申请在给定起始位置信息和航向信息,以及目标位置信息和航向信息时,能够准确规划一条三维行驶轨迹。
附图说明
图1为本申请实施例提供的一种三维轨迹规划方法的第一流程示意图;
图2为本申请实施例提供的一种三维轨迹规划方法的第二流程示意图;
图3为本申请实施例提供的一种三维轨迹规划方法的第三流程示意图;
图4为本申请实施例提供的一种三维轨迹规划装置的结构示意图;
图5是用来实现本申请实施例的三维轨迹规划方法的电子设备的框图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。
实施例一
图1为本申请实施例提供的一种三维轨迹规划方法的第一流程示意图,本实施例可适用于飞行设备在航行之前规划航行的三维轨迹,并使飞行设备按照所规划的轨迹航行的情况。本实施例提供的一种三维轨迹规划方法可以由本申请实施例提供的三维轨迹规划装置来执行,该装置可以通过软件和/或硬件的方式实现,并集成在执行本方法的电子设备中。
参见图1,本实施例的方法包括但不限于如下步骤:
S110、根据行驶模式、起始点的水平位置信息和航向信息,以及目标点的水平位置信息和航向信息,确定起始点到目标点的水平杜宾路径。
其中,本实施例的飞行设备可为无人机或者飞机等具有飞行功能的设备。起始点和目标点分别是飞行设备规划的行驶轨迹的起始点和终止点。获取飞行设备起始点的三维位置和航向信息,以及目标点的三维位置和航向信息,其中,三维位置包含水平位置信息(即经度信息和纬度信息)和垂直位置信息(即高度信息),航向信息是指飞行设备的航行方向。行驶模式包含着陆引导模式和非着陆引导模式。
在本申请的具体实施例中,根据行驶模式、起始点的水平位置信息和航向信息,以及目标点的水平位置信息和航向信息,使用杜宾曲线拟合起始点和目标点之间的水平方向最短路径,并将该水平方向最短路径作为水平杜宾路径。
S120、根据起始点的高度信息和目标点的高度信息,确定起始点到目标点的垂直杜宾路径。
在本申请的具体实施例中,根据获取到的飞行设备轨迹起始点的高度信息和目标点的高度信息,将起始点的高度与目标点的高度相比较,依照比较后的结果,确定起始点到目标点之间的垂直方向最短路径,即垂直杜宾路径。具体的,如果目标点的高度信息与起始点的高度信息的差值大于或等于第一阈值,则起始点到目标点的垂直杜宾路径的首段子路径盘旋上升,其余段子路径保持不变;如果目标点的高度信息与起始点的高度信息的差值小于或等于第二阈值,则起始点到目标点的垂直杜宾路径的末段子路径盘旋下降,其余段子路径保持不变;如果目标点的高度信息与起始点的高度信息的差值大于第二阈值且小于第一阈值,则所述起始点到所述目标点的垂直杜宾路径全程爬升或者下降;其中,第一阈值大于第二阈值。其中,第一阈值和第二阈值是由高度控制律决定。高度控制律是用于控制飞行设备抬头状态和推力强度,使飞行设备能够达到目标点的高度。高度控制律与高度控制精度有关,其中,高度控制精度是指飞行设备指令高度与测得高度的误差范围,其中,指令高度是指用户设置的目标点的高度,测得高度是指飞行设备在执行指令高度命令时实际所行驶的高度。示例性的,若控制飞行设备飞行的高度控制精度为3米,则阈值设置应超过3米, 如5米。
S130、根据水平杜宾路径和垂直杜宾路径,确定起始点到目标点的三维行驶轨迹。
在本申请的具体实施例中,通过行驶模式、起始点的水平位置信息和航向信息,以及目标点的水平位置信息和航向信息,得到起始点到目标点之间的水平杜宾路径。通过起始点的高度信息和目标点的高度信息,得到起始点到目标点之间的垂直杜宾路径。将水平杜宾路径和垂直杜宾路径进行融合,便可确定起始点到目标点之间的三维行驶轨迹。
本实施例提供的技术方案,首先,根据行驶模式、起始点的水平位置信息和航向信息,以及目标点的水平位置信息和航向信息,确定起始点到目标点的水平杜宾路径;然后,根据起始点的高度信息和目标点的高度信息,确定起始点到目标点的垂直杜宾路径;最后,根据水平杜宾路径和所述垂直杜宾路径,确定起始点到目标点的三维行驶轨迹。本申请实施例能够将二维杜宾路径算法拓展到三维空间中,在给定起始位置信息和航向信息,以及目标位置信息和航向信息时,能够准确规划一条三维行驶轨迹,并且本申请实施例的技术方案实现简单方便、便于普及,具有更好的通用性。
实施例二
图2为本申请实施例提供的一种三维轨迹规划方法的第二流程示意图。本申请实施例是在上述实施例的基础上进行优化。可选的,本实施例对规划起始点到目标点的水平杜宾路径的过程进行详细的解释说明。
参见图2,本实施例的方法包括但不限于如下步骤:
S210、开始。
S220、判断飞行设备的行驶模块是否为着陆引导模式,若是,则执行S230,若否,则执行S240。
S230、若行驶模式为着陆引导模式,则确定水平杜宾路径的末段子路径行驶方向,并根据末段子路径行驶方向、起始点的水平位置信息和航向信息,以及目标点的水平位置信息和航向信息,从预设着陆引导行驶方向组合中确定起始点到目标点的水平杜宾路径。
在本申请的具体实施例中,若行驶模式为着陆引导模式,则确定水平杜宾路径的末段子路径行驶方向,即飞行设备最终以顺时针还是逆时针降落至目标点。具体的,当行驶模式为着陆引导模式时,水平杜宾路径的末段子路径行驶 方向可由用户根据目标点位置的空域情况来设置的,用户可以指定末段子路径行驶方向是左转或者右转。示例性的,如果目标点位置左转的盘旋区域有障碍物,右边的盘旋区域无障碍物,用户就可以指定末段子路径行驶方向为右转,保证盘旋下降不会撞到障碍物。
在本申请的具体实施例中,当所述水平杜宾路径包括三段子路径时,若末段子路径行驶方向为左转,则预设着陆引导行驶方向组合包括:右转左转右转、右转直行右转和左转直行右转;若末段子路径行驶方向为右转,则预设着陆引导行驶方向组合包括:左转右转左转、左转直行左转和右转直行左转。需要说明的是,以右转左转右转为例,其表征第一段子路径右转、第二段子路径左转、第三段子路径右转。根据末段子路径行驶方向、起始点的水平位置信息和航向信息,以及目标点的水平位置信息和航向信息,从预设着陆引导行驶方向组合中确定起始点到目标点的水平杜宾路径。可选的,从预设着陆引导行驶方向组合中确定起始点到目标点的水平杜宾路径的确定方式可使用相关技术中筛选机制,在本申请实施例中对此确定方式不做限定。
S240、若行驶模式为非着陆引导模式,则从预设非着陆引导行驶方向组合中确定起始点到目标点的水平杜宾路径。
在本申请的具体实施例中,行驶模式为非着陆引导模式,即用户不指定末段子路径行驶方向,例如:测绘等任务。因此,当所述水平杜宾路径包括三段子路径时,预设非着陆引导行驶方向组合包括:右转左转右转、右转直行右转、左转直行右转、左转右转左转、左转直行左转和右转直行左转。根据起始点的水平位置信息和航向信息,以及目标点的水平位置信息和航向信息,从预设非着陆引导行驶方向组合中确定起始点到目标点的水平杜宾路径。可选的,从预设着陆引导行驶方向组合中确定起始点到目标点的水平杜宾路径的确定方式可使用相关技术中筛选机制,在本申请实施例中对此确定方式不做限定。
可选的,飞行设备的水平杜宾路径也可以包含两段子路径。示例性的,如果水平杜宾路径的最短路径是三段子路径,例如:左转5度,直行,右转。由于第一子路径左转的角度很小或者左转的时间很短暂,可忽略不计,这时飞行设备就可不执行左转5度,直接执行第二子路径直行,然后执行第三子路径右转。
S250、根据起始点的高度信息和目标点的高度信息,确定起始点到目标点的垂直杜宾路径。
S260、根据水平杜宾路径和垂直杜宾路径,确定起始点到目标点的三维行驶轨迹。
可选的,在确定起始点到目标点的三维行驶轨迹之后,还包括:控制飞行设备按照三维行驶轨迹行驶。
在本申请的具体实施例中,控制飞行设备按照三维行驶轨迹行驶,包括:调用直线行驶线程,控制飞行设备行驶三维行驶轨迹中的直行路段;调用盘旋行驶线程,控制飞行设备行驶三维行驶轨迹中的左转路段和右转路段。可选的,直线行驶线程可以由直线制导律控制;盘旋行驶线程可以由是盘旋制导律控制。可以根据当前待行驶的子轨迹段对应的行驶方向,选择该行驶方向对应的行驶线程。
控制飞行设备按照三维行驶轨迹行驶,包括:控制飞行设备按照当前子轨迹段行驶的过程中,若检测到当前子轨迹段的剩余行驶距离小于预设距离,则按照下一子轨迹段行驶。
在本申请的具体实施例中,飞行设备按照当前子轨迹段行驶的过程中,若检测到当前子轨迹段的剩余行驶距离小于预设距离,则按照下一子轨迹段行驶。其中,当前子轨迹段为直行路段时,预设距离与直线制导律有关;当前子轨迹段为左转路段或者右转路段时,预设距离与盘旋制导律有关。这样设置好处在于可以保证制导律的柔和过渡,使得整个三维行驶轨迹更加平缓。示例性的,当前子轨迹段为左转路段且下一子轨迹为直行路段时,在左转弯度还差25°的时候,就会提前进入直行路段。
本实施例提供的技术方案,通过将行驶模式分为着陆引导模式和非着陆引导模式,若行驶模式为着陆引导模式,则确定水平杜宾路径的末段子路径行驶方向,并根据末段子路径行驶方向、起始点的水平位置信息和航向信息,以及目标点的水平位置信息和航向信息,从预设着陆引导行驶方向组合中确定起始点到目标点的水平杜宾路径;若行驶模式为非着陆引导模式,则从预设非着陆引导行驶方向组合中确定起始点到目标点的水平杜宾路径。本申请实施例能够针对实际应用情况对不同行驶模式准确规划起始点到目标点的水平杜宾路径,使得本申请实施例的技术方案具有更好的通用型,既可用于着陆引导任务,也可用于测绘等任务,并且用户可指定飞行设备最终以顺时针还是逆时针降落至目标点。
实施例三
图3为本申请实施例提供的一种三维轨迹规划方法的第三流程示意图。本申请实施例是在上述实施例的基础上进行优化。可选的,本实施例对规划起始点到目标点的垂直杜宾路径过程进行详细的解释说明。
参考图3,本实施例的方法包括但不限于如下步骤:
S310、根据行驶模式、起始点的水平位置信息和航向信息,以及目标点的水平位置信息和航向信息,确定起始点到目标点的水平杜宾路径。
S320、判断目标点的高度信息比起始点的高度信息的差值,与第一阈值和第二阈值之间的关系,若大于或等于第一阈值,则执行S330;若小于或等于第二阈值,则执行S340;若大于第二阈值且小于第一阈值,则执行S350。
S330、如果目标点的高度信息与起始点的高度信息的差值大于或等于第一阈值,则起始点到目标点的垂直杜宾路径的首段子路径盘旋上升,其余段子路径保持不变。
在本申请的具体实施例中,根据获取到的飞行设备轨迹起始点的高度信息和目标点的高度信息,将起始点的高度与目标点的高度相比较,依照比较后的结果,确定起始点到目标点之间的垂直杜宾路径。如果目标点的高度信息与起始点的高度信息的差值大于或等于第一阈值,即目标点的高度与起始点的高度相差较大,则起始点到目标点的垂直杜宾路径的首段子路径盘旋上升,其余段子路径垂直高度保持不变。其中,第一阈值是由高度控制律决定。在水平杜宾路径的基础上,再结合垂直杜宾路径,飞行设备在第一子路径中盘旋上升达到目标位置的高度;在其余子路径中飞行高度保持不变,仅需要沿着水平杜宾路径飞行。这样设置的好处在于,在整个三维轨迹中,能够满足飞行设备行驶的平均高度最大化,从而提升飞行设备在执行任务中的安全性。
示例性的,若第一阈值为10米,垂直杜宾路径包括三段子路径。如果目标点的高度与起始点的高度的差值大于或等于10米,则起始点到目标点的垂直杜宾路径的第一子路径盘旋上升,第二子路径和第三子路径的垂直高度保持不变。
S340、如果目标点的高度信息与起始点的高度信息的差值小于或等于第二阈值,则起始点到目标点的垂直杜宾路径的末段子路径盘旋下降,其余段子路径保持不变。
在本申请的具体实施例中,将起始点的高度与目标点的高度相比较,依照比较后的结果,确定起始点到目标点之间的垂直杜宾路径。如果目标点的高度信息与起始点的高度信息的差值小于或等于第二阈值,即目标点的高度与起始点的高度相差较大,则起始点到目标点的垂直杜宾路径的末段子路径盘旋下降,其余段子路径垂直高度保持不变。其中,第二阈值是由高度控制律决定。在水平杜宾路径的基础上,再结合垂直杜宾路径,飞行设备的飞行高度先保持不变,沿着水平杜宾路径飞行;在末段子路径时,盘旋下降至目标位置的高度。这样设置的好处在于,在整个三维轨迹中,能够满足飞行设备行驶的平均高度最大 化,从而提升飞行设备在执行任务中的安全性。
示例性的,若第二阈值为负10米,垂直杜宾路径包括三段子路径。如果目标点的高度与起始点的高度的差值小于或等于负10米,则起始点到目标点的垂直杜宾路径的第一子路径和第二子路径的垂直高度保持不变,第三子路径盘旋下降。
S350、如果目标点的高度信息与起始点的高度信息的差值大于第二阈值且小于第一阈值,则起始点到目标点的垂直杜宾路径全程爬升或者下降;其中,第一阈值大于第二阈值。
在本申请的具体实施例中,将起始点的高度与目标点的高度相比较,依照比较后的结果,确定起始点到目标点之间的垂直杜宾路径。如果目标点的高度信息与起始点的高度信息的差值大于第二阈值且小于第一阈值,即目标点的高度与起始点的高度相差不大。若目标点的高度比起始点的高度稍高一些,则起始点到目标点的垂直杜宾路径期间伴随短暂的爬升;若目标点的高度比起始点的高度稍低一些,则起始点到目标点的垂直杜宾路径期间伴随短暂的下降。需要说明的是,水平方向上,仍使用的是上述实施例中的水平杜宾路径。
示例性的,若第一阈值为10米,第二阈值为负10米。当目标点的高度信息与起始点的高度信息的差值大于负10米且小于10米时,如果目标点的高度信息与起始点的高度信息的差值大于0米且小于10米,则起始点到目标点的垂直杜宾路径期间伴随短暂的爬升;如果目标点的高度信息与起始点的高度信息的差值大于负10米且小于0米,则起始点到目标点的垂直杜宾路径期间伴随短暂的下降。
S360、根据水平杜宾路径和垂直杜宾路径,确定起始点到目标点的三维行驶轨迹。
本实施例提供的技术方案,通过比较起始点的高度信息与目标点的高度信息的差值,如果目标点的高度信息与起始点的高度信息的差值大于或等于第一阈值,则起始点到目标点的垂直杜宾路径的首段子路径盘旋上升,其余段子路径保持不变;如果目标点的高度信息与起始点的高度信息的差值小于或等于第二阈值,则起始点到目标点的垂直杜宾路径的末段子路径盘旋下降,其余段子路径保持不变;如果目标点的高度信息与起始点的高度信息的差值大于第二阈值且小于第一阈值,则起始点到目标点的垂直杜宾路径全程爬升或者下降;其中,第一阈值大于第二阈值。本申请实施例通过比较起始点的高度信息与目标点的高度信息的差值,能够针对实际应用情况准确规划起始点到目标点的垂直杜宾路径,使得本申请实施例的技术方案具有更好的通用型。本申请实施例中,在整个三维轨迹中,能够满足飞行设备行驶的平均高度最大化,从而提升飞行 设备在执行任务中的安全性。
实施例四
图4本申请实施例提供的一种三维轨迹规划装置的结构示意图,如图4所示,该三维轨迹规划装置400可以包括:
水平杜宾路径确定模块410,用于根据行驶模式、起始点的水平位置信息和航向信息,以及目标点的水平位置信息和航向信息,确定所述起始点到所述目标点的水平杜宾路径。
垂直杜宾路径确定模块420,用于根据所述起始点的高度信息和所述目标点的高度信息,确定所述起始点到所述目标点的垂直杜宾路径。
三维行驶轨迹确定模块430,用于根据所述水平杜宾路径和所述垂直杜宾路径,确定所述起始点到所述目标点的三维行驶轨迹。
进一步的,上述水平杜宾路径确定模块410,可以具体用于:当所述水平杜宾路径包括三段子路径时,所述根据行驶模式、起始点的水平位置信息和航向信息,以及目标点的水平位置信息和航向信息,确定所述起始点到所述目标点的水平杜宾路径,包括:若所述行驶模式为着陆引导模式,则确定所述水平杜宾路径的末段子路径行驶方向,并根据所述末段子路径行驶方向、起始点的水平位置信息和航向信息,以及目标点的水平位置信息和航向信息,从预设着陆引导行驶方向组合中确定所述起始点到所述目标点的水平杜宾路径;若所述行驶模式为非着陆引导模式,则从预设非着陆引导行驶方向组合中确定所述起始点到所述目标点的水平杜宾路径。
可选的,当所述水平杜宾路径包括三段子路径时,若所述末段子路径行驶方向为左转,则所述预设着陆引导行驶方向组合包括:右转左转右转、右转直行右转和左转直行右转;若所述末段子路径行驶方向为右转,则所述预设着陆引导行驶方向组合包括:左转右转左转、左转直行左转和右转直行左转;所述预设非着陆引导行驶方向组合包括:右转左转右转、右转直行右转、左转直行右转、左转右转左转、左转直行左转和右转直行左转。
进一步的,上述垂直杜宾路径确定模块420,可以具体用于:当所述垂直杜宾路径包括三段子路径时,根据所述起始点的高度信息和所述目标点的高度信息,确定所述起始点到所述目标点的垂直杜宾路径,包括:如果所述目标点的高度信息比所述起始点的高度信息超出阈值,则所述起始点到所述目标点的垂直杜宾路径的首段子路径盘旋上升,其余段子路径保持不变;如果所述目标点的高度信息比所述起始点的高度信息低于阈值,则所述起始点到所述目标点的 垂直杜宾路径的末段子路径盘旋下降,其余段子路径保持不变;如果所述目标点的高度信息与所述起始点的高度信息的差值在阈值范围内,则所述起始点到所述目标点的垂直杜宾路径全程爬升或者下降。
进一步的,上述三维轨迹规划装置,还可以包括:飞行设备控制模块,用于控制飞行设备按照所述三维行驶轨迹行驶。
进一步的,上述飞行设备控制模块,可以具体用于控制飞行设备按照所述三维行驶轨迹行驶,包括:调用直线行驶线程,控制飞行设备行驶所述三维行驶轨迹中的直行路段;调用盘旋行驶线程,控制所述飞行设备行驶所述三维行驶轨迹中的左转和右转路段。
进一步的,上述飞行设备控制模块,还可以具体用于所述行驶轨迹包括三段子轨迹段;控制飞行设备按照所述三维行驶轨迹行驶,包括:控制飞行设备按照当前子轨迹段行驶的过程中,若检测到所述当前子轨迹段的剩余行驶距离小于预设距离,则按照下一子轨迹段行驶。
本实施例提供的一种三维轨迹规划装置可适用于上述任意实施例提供的一种三维轨迹规划方法,具备相应的功能和有益效果。
实施例五
根据本申请的实施例,本申请还提供了一种电子设备和一种可读存储介质。
如图5所示,是根据本申请实施例的一种三维轨迹规划的方法的电子设备的框图。电子设备旨在表示各种形式的数字计算机,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。电子设备还可以表示各种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本申请的实现。
如图5所示,该电子设备包括:一个或多个处理器510、存储器520,以及用于连接各部件的接口,包括高速接口和低速接口。各个部件利用不同的总线互相连接,并且可以被安装在公共主板上或者根据需要以其它方式安装。处理器可以对在电子设备内执行的指令进行处理,包括存储在存储器中或者存储器上以在外部输入/输出装置(诸如,耦合至接口的显示设备)上显示GUI的图形信息的指令。在其它实施方式中,若需要,可以将多个处理器和/或多条总线与多个存储器和多个存储器一起使用。同样,可以连接多个电子设备,各个设备提供部分必要的操作(例如,作为服务器阵列、一组刀片式服务器、或者多处 理器系统)。图5中以一个处理器510为例。
存储器520即为本申请所提供的非瞬时计算机可读存储介质。其中,所述存储器存储有可由至少一个处理器执行的指令,以使所述至少一个处理器执行本申请所提供的一种三维轨迹规划的方法。本申请的非瞬时计算机可读存储介质存储计算机指令,该计算机指令用于使计算机执行本申请所提供的一种三维轨迹规划的方法。
存储器520作为一种非瞬时计算机可读存储介质,可用于存储非瞬时软件程序、非瞬时计算机可执行程序以及模块,如本申请实施例中的一种三维轨迹规划的方法对应的程序指令/模块(例如,附图4所示的水平杜宾路径确定模块410、垂直杜宾路径确定模块420和三维行驶轨迹确定模块430)。处理器510通过运行存储在存储器520中的非瞬时软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现上述方法实施例中的一种三维轨迹规划的方法。
存储器520可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据一种三维轨迹规划的电子设备的使用所创建的数据等。此外,存储器520可以包括高速随机存取存储器,还可以包括非瞬时存储器,例如至少一个磁盘存储器件、闪存器件、或其他非瞬时固态存储器件。在一些实施例中,存储器520可选包括相对于处理器510远程设置的存储器,这些远程存储器可以通过网络连接至一种三维轨迹规划的电子设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
一种三维轨迹规划的方法的电子设备还可以包括:输入装置530和输出装置540。处理器510、存储器520、输入装置530和输出装置540可以通过总线或者其他方式连接,图5中以通过总线连接为例。
输入装置530可接收输入的数字或字符信息,以及产生与一种三维轨迹规划的电子设备的用户设置以及功能控制有关的键信号输入,例如触摸屏、小键盘、鼠标、轨迹板、触摸板、指示杆、一个或者多个鼠标按钮、轨迹球、操纵杆等输入装置。输出装置540可以包括显示设备、辅助照明装置(例如,LED)和触觉反馈装置(例如,振动电机)等。该显示设备可以包括但不限于,液晶显示器(LCD)、发光二极管(LED)显示器和等离子体显示器。在一些实施方式中,显示设备可以是触摸屏。
此处描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、专用ASIC(专用集成电路)、计算机硬件、固件、软件、和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序中, 该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置、和该至少一个输出装置。
这些计算程序(也称作程序、软件、软件应用、或者代码)包括可编程处理器的机器指令,并且可以利用高级过程和/或面向对象的编程语言、和/或汇编/机器语言来实施这些计算程序。如本文使用的,术语“机器可读介质”和“计算机可读介质”指的是用于将机器指令和/或数据提供给可编程处理器的任何计算机程序产品、设备、和/或装置(例如,磁盘、光盘、存储器、可编程逻辑装置(PLD)),包括,接收作为机器可读信号的机器指令的机器可读介质。术语“机器可读信号”指的是用于将机器指令和/或数据提供给可编程处理器的任何信号。
为了提供与用户的交互,可以在计算机上实施此处描述的系统和技术,该计算机具有:用于向用户显示信息的显示装置(例如,CRT(阴极射线管)或者LCD(液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给计算机。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)、互联网和区块链网络。
计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。服务器可以是云服务器,又称为云计算服务器或云主机,是云计算服务体系中的一项主机产品,以解决了传统物理主机与VPS服务中,存在的管理难度大,业务扩展性弱的缺陷。
根据本申请实施例的技术方案,首先,根据行驶模式、起始点的水平位置信息和航向信息,以及目标点的水平位置信息和航向信息,确定起始点到目标 点的水平杜宾路径;然后,根据起始点的高度信息和目标点的高度信息,确定起始点到目标点的垂直杜宾路径;最后,根据水平杜宾路径和所述垂直杜宾路径,确定起始点到目标点的三维行驶轨迹。本申请实施例能够将二维杜宾路径算法拓展到三维空间中,在给定起始位置信息和航向信息,以及目标位置信息和航向信息时,能够准确规划一条三维行驶轨迹,并且本申请实施例的技术方案实现简单方便、便于普及,具有更好的通用性。
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本发申请中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本申请公开的技术方案所期望的结果,本文在此不进行限制。

Claims (10)

  1. 一种三维轨迹规划方法,包括:
    根据行驶模式、起始点的水平位置信息和航向信息,以及目标点的水平位置信息和航向信息,确定所述起始点到所述目标点的水平杜宾路径;
    根据所述起始点的高度信息和所述目标点的高度信息,确定所述起始点到所述目标点的垂直杜宾路径;
    根据所述水平杜宾路径和所述垂直杜宾路径,确定所述起始点到所述目标点的三维行驶轨迹。
  2. 根据权利要求1所述的三维轨迹规划方法,其中,当所述水平杜宾路径包括三段子路径时,所述根据行驶模式、起始点的水平位置信息和航向信息,以及目标点的水平位置信息和航向信息,确定所述起始点到所述目标点的水平杜宾路径,包括:
    若所述行驶模式为着陆引导模式,则确定所述水平杜宾路径的末段子路径行驶方向,并根据所述末段子路径行驶方向、起始点的水平位置信息和航向信息,以及目标点的水平位置信息和航向信息,从预设着陆引导行驶方向组合中确定所述起始点到所述目标点的水平杜宾路径;
    若所述行驶模式为非着陆引导模式,则从预设非着陆引导行驶方向组合中确定所述起始点到所述目标点的水平杜宾路径。
  3. 根据权利要求2所述的方法,其中,若所述末段子路径行驶方向为左转,则所述预设着陆引导行驶方向组合包括:右转左转右转、右转直行右转和左转直行右转;
    若所述末段子路径行驶方向为右转,则所述预设着陆引导行驶方向组合包括:左转右转左转、左转直行左转和右转直行左转;
    所述预设非着陆引导行驶方向组合包括:右转左转右转、右转直行右转、左转直行右转、左转右转左转、左转直行左转和右转直行左转。
  4. 根据权利要求1所述的三维轨迹规划方法,其中,当所述垂直杜宾路径包括三段子路径时,根据所述起始点的高度信息和所述目标点的高度信息,确定所述起始点到所述目标点的垂直杜宾路径,包括:
    如果所述目标点的高度信息与所述起始点的高度信息的差值大于或等于第一阈值,则所述起始点到所述目标点的垂直杜宾路径的首段子路径盘旋上升,其余段子路径保持不变;
    如果所述目标点的高度信息与所述起始点的高度信息的差值小于或等于第 二阈值,则所述起始点到所述目标点的垂直杜宾路径的末段子路径盘旋下降,其余段子路径保持不变;
    如果所述目标点的高度信息与所述起始点的高度信息的差值大于所述第二阈值且小于所述第一阈值,则所述起始点到所述目标点的垂直杜宾路径全程爬升或者下降;其中,所述第一阈值大于所述第二阈值。
  5. 根据权利要求1所述的方法,在确定所述起始点到所述目标点的三维行驶轨迹之后,还包括:
    控制飞行设备按照所述三维行驶轨迹行驶。
  6. 根据权利要求5所述的方法,其中,控制飞行设备按照所述三维行驶轨迹行驶,包括:
    调用直线行驶线程,控制飞行设备行驶所述三维行驶轨迹中的直行路段;
    调用盘旋行驶线程,控制所述飞行设备行驶所述三维行驶轨迹中的左转和右转路段。
  7. 根据权利要求5所述的三维轨迹规划方法,其中,所述行驶轨迹包括三段子轨迹段;控制飞行设备按照所述三维行驶轨迹行驶,包括:
    控制飞行设备按照当前子轨迹段行驶的过程中,若检测到所述当前子轨迹段的剩余行驶距离小于预设距离,则按照下一子轨迹段行驶。
  8. 一种三维轨迹规划装置,包括:水平杜宾路径确定模块、垂直杜宾路径确定模块和三维行驶轨迹确定模块;其中,
    所述水平杜宾路径确定模块,用于根据行驶模式、起始点的水平位置信息和航向信息,以及目标点的水平位置信息和航向信息,确定所述起始点到所述目标点的水平杜宾路径;
    所述垂直杜宾路径确定模块,用于根据所述起始点的高度信息和所述目标点的高度信息,确定所述起始点到所述目标点的垂直杜宾路径;
    所述三维行驶轨迹确定模块,用于根据所述水平杜宾路径和所述垂直杜宾路径,确定所述起始点到所述目标点的三维行驶轨迹。
  9. 一种电子设备,包括:
    一个或多个处理器;
    存储装置,用于存储一个或多个程序;
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-7中任一项所述的三维轨迹规划方法。
  10. 一种计算机可读存储介质,存储有计算机程序,其中,该程序被处理器执行时实现如权利要求1-7中任一项所述的三维轨迹规划方法。
PCT/CN2021/126874 2020-10-28 2021-10-28 一种三维轨迹规划方法、装置、设备及存储介质 WO2022089506A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21885233.3A EP4239432A1 (en) 2020-10-28 2021-10-28 Three-dimensional trajectory planning method and apparatus, device, and storage medium
US18/309,747 US20240028052A1 (en) 2020-10-28 2021-10-28 Method and an Apparatus of Three-Dimensional Trajectory Planning

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011173488.X 2020-10-28
CN202011173488.XA CN112306091B (zh) 2020-10-28 2020-10-28 一种三维轨迹规划方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022089506A1 true WO2022089506A1 (zh) 2022-05-05

Family

ID=74331348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126874 WO2022089506A1 (zh) 2020-10-28 2021-10-28 一种三维轨迹规划方法、装置、设备及存储介质

Country Status (4)

Country Link
US (1) US20240028052A1 (zh)
EP (1) EP4239432A1 (zh)
CN (1) CN112306091B (zh)
WO (1) WO2022089506A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115097863A (zh) * 2022-06-24 2022-09-23 西北工业大学 一种基于Dubins方法的水平引导过渡路径构建方法
CN115097863B (zh) * 2022-06-24 2024-05-31 西北工业大学 一种基于Dubins方法的水平引导过渡路径构建方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112306091B (zh) * 2020-10-28 2023-06-20 峰飞航空科技(昆山)有限公司 一种三维轨迹规划方法、装置、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108958292A (zh) * 2018-08-23 2018-12-07 北京理工大学 一种基于rrt*算法的飞行器突防轨迹规划方法
CN109656264A (zh) * 2017-10-11 2019-04-19 波音公司 用于为飞行器生成到着陆地点的3d路径的计算机实施的方法和系统
CN111650958A (zh) * 2019-12-15 2020-09-11 湖北航天飞行器研究所 一种固定翼无人机起飞段切入航路点的在线路径规划方法
CN111897364A (zh) * 2020-08-14 2020-11-06 深圳大学 一种无人机区域轨迹规划方法、装置及可读存储介质
CN112306091A (zh) * 2020-10-28 2021-02-02 深圳市领峰电动智能科技有限公司 一种三维轨迹规划方法、装置、设备及存储介质
CN113358116A (zh) * 2020-03-04 2021-09-07 沃科波特有限公司 飞行器及其路线规划方法和路线规划算法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105319969A (zh) * 2015-07-27 2016-02-10 李翔宇 无人机协同对地覆盖系统
CN106843281B (zh) * 2017-03-09 2019-07-12 北京航天控制仪器研究所 一种智能精确空降空投系统
US10663966B2 (en) * 2017-03-29 2020-05-26 Mitsubishi Electric Research Laboratories, Inc. Vehicle motion control system and method
CN108332753B (zh) * 2018-01-30 2020-09-08 北京航空航天大学 一种无人机电力巡检路径规划方法
US10878706B2 (en) * 2018-10-12 2020-12-29 Aurora Flight Sciences Corporation Trajectory planner for a vehicle
WO2020258066A1 (zh) * 2019-06-26 2020-12-30 深圳市大疆创新科技有限公司 无人机的控制方法、设备、无人机及存储介质
CN110764527A (zh) * 2019-10-17 2020-02-07 南京航空航天大学 一种无人机无动力应急返场在线航迹规划方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109656264A (zh) * 2017-10-11 2019-04-19 波音公司 用于为飞行器生成到着陆地点的3d路径的计算机实施的方法和系统
CN108958292A (zh) * 2018-08-23 2018-12-07 北京理工大学 一种基于rrt*算法的飞行器突防轨迹规划方法
CN111650958A (zh) * 2019-12-15 2020-09-11 湖北航天飞行器研究所 一种固定翼无人机起飞段切入航路点的在线路径规划方法
CN113358116A (zh) * 2020-03-04 2021-09-07 沃科波特有限公司 飞行器及其路线规划方法和路线规划算法
CN111897364A (zh) * 2020-08-14 2020-11-06 深圳大学 一种无人机区域轨迹规划方法、装置及可读存储介质
CN112306091A (zh) * 2020-10-28 2021-02-02 深圳市领峰电动智能科技有限公司 一种三维轨迹规划方法、装置、设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VANA PETR; ALVES NETO ARMANDO; FAIGL JAN; MACHARET DOUGLAS G.: "Minimal 3D Dubins Path with Bounded Curvature and Pitch Angle", 2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 31 May 2020 (2020-05-31), pages 8497 - 8503, XP033826417, DOI: 10.1109/ICRA40945.2020.9197084 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115097863A (zh) * 2022-06-24 2022-09-23 西北工业大学 一种基于Dubins方法的水平引导过渡路径构建方法
CN115097863B (zh) * 2022-06-24 2024-05-31 西北工业大学 一种基于Dubins方法的水平引导过渡路径构建方法

Also Published As

Publication number Publication date
EP4239432A1 (en) 2023-09-06
US20240028052A1 (en) 2024-01-25
CN112306091B (zh) 2023-06-20
CN112306091A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
CN110667576B (zh) 自动驾驶车辆的弯道通行控制方法、装置、设备和介质
CN110657818B (zh) 自动驾驶车辆的路径规划方法、装置、设备及存储介质
CN110929702B (zh) 一种轨迹规划方法、装置、电子设备和存储介质
KR102559269B1 (ko) 실경 내비게이션 아이콘 표시 방법, 장치, 기기 및 매체
CN110542436B (zh) 车辆定位系统的评测方法、装置、设备及存储介质
CN111368760B (zh) 一种障碍物检测方法、装置、电子设备及存储介质
CN112050824A (zh) 用于车辆导航的路线规划方法、装置、系统及电子设备
KR20210089603A (ko) 차량 순항 제어 방법, 장치, 전자 기기 및 저장 매체
CN110879395B (zh) 障碍物位置预测方法、装置和电子设备
CN110796884A (zh) 编队行驶的决策方法、装置、设备及计算机可读存储介质
CN111735457B (zh) 室内导航方法、装置、电子设备及可读存储介质
CN110986980B (zh) 一种自动驾驶规划路线检测方法、装置和电子设备
CN111216738B (zh) 自动驾驶中车辆的控制方法、装置、电子设备及车辆
CN111413968B (zh) 车辆的控制方法、装置及电子设备
US11447153B2 (en) Method and apparatus for annotating virtual lane at crossing
CN112578788B (zh) 车辆避障二次规划方法、装置、设备和可读存储介质
CN112258873B (zh) 用于控制车辆的方法、装置、电子设备及存储介质
CN113844463B (zh) 基于自动驾驶系统的车辆控制方法、装置及车辆
WO2022089506A1 (zh) 一种三维轨迹规划方法、装置、设备及存储介质
CN105138004A (zh) 用于在飞机降落和进场期间节省飞行支出的系统和方法
CN111693059A (zh) 环岛的导航方法、装置、设备及存储介质
CN111637899A (zh) 导航方法、装置、电子设备以及存储介质
CN112859829B (zh) 一种车辆控制方法、装置、电子设备和介质
CN114047760A (zh) 路径规划方法、装置、电子设备及自动驾驶车辆
CN111231952B (zh) 车辆控制方法、装置及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885233

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18309747

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021885233

Country of ref document: EP

Effective date: 20230530