WO2022089310A1 - 寻星方法及装置 - Google Patents

寻星方法及装置 Download PDF

Info

Publication number
WO2022089310A1
WO2022089310A1 PCT/CN2021/125565 CN2021125565W WO2022089310A1 WO 2022089310 A1 WO2022089310 A1 WO 2022089310A1 CN 2021125565 W CN2021125565 W CN 2021125565W WO 2022089310 A1 WO2022089310 A1 WO 2022089310A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile terminal
information
star
target area
available
Prior art date
Application number
PCT/CN2021/125565
Other languages
English (en)
French (fr)
Inventor
张广煜
刘永祥
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2023525103A priority Critical patent/JP2023546616A/ja
Priority to EP21885037.8A priority patent/EP4216165A4/en
Priority to US18/250,425 priority patent/US20230400326A1/en
Publication of WO2022089310A1 publication Critical patent/WO2022089310A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G3/00Observing or tracking cosmonautic vehicles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/27Monitoring; Testing of receivers for locating or positioning the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18517Transmission equipment in earth stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/021Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/024Guidance services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services

Definitions

  • the present application relates to the field of communications, and in particular, to a method and device for finding a satellite.
  • Satellite communication technology is a technology that uses artificial earth satellites as relay stations to realize communication between ground stations. Satellite communication technology has many advantages such as wide coverage, large communication capacity, good transmission quality, convenient and rapid networking, and easy to achieve global seamless links, which can provide great convenience for mobile users. For establishing a communication connection between the mobile terminal and the satellite, it is required that there is no obstacle (ie, there is a direct line of sight) on the connection between the antenna of the mobile terminal and the satellite, so as to ensure the signal quality of the communication between the mobile terminal and the satellite.
  • medium and large communication equipment (the main body of the device is separated from the antenna) needs to rely on external equipment (such as a star finder) to find satellites, and this method is not suitable for mobile terminals (the antenna of the mobile terminal is integrated with the main body).
  • star operation For a mobile terminal that supports star finder, it is usually necessary to place the antenna outside or the antenna occupies a large space inside the mobile terminal, and this method requires high equipment cost, high power consumption, and the size of the mobile terminal itself. .
  • there is no satellite-finding method that is not only suitable for mobile terminals, but also takes into account low cost, small size, and low power consumption.
  • the embodiments of the present application provide a method and device for finding a satellite, which can solve the problem that the method for finding a satellite is not suitable for mobile terminals and mobile terminals that can find satellites, and that the method for finding a satellite that is suitable for mobile terminals requires an external antenna or an antenna on the mobile terminal. Because of the problem of large internal occupied space, the star-finding method is suitable for mobile terminals, and the mobile terminal is low-cost, small in size and low in power consumption.
  • the present application provides a method for finding a satellite, which is applicable to a mobile terminal, including: determining the direct line of sight between the mobile terminal and the available satellites according to the location information of the mobile terminal, the location information of the available satellites, and the three-dimensional 3D map information. Is it blocked by an obstacle. If the direct line of sight has been blocked by an obstacle, the location information of the target area is determined according to the 3D map information.
  • the target area is an area in which there is a direct line of sight between the mobile terminal and the available satellites.
  • the satellite finding method Based on the satellite finding method provided in the first aspect, it is determined that the direct line of sight between the mobile terminal and the available satellites has been blocked by obstacles according to the location information of the mobile terminal, the location information of the available satellites, and the three-dimensional 3D map information. According to the 3D map information, the location information of the target area is determined.
  • the target area is an area in which there is a direct line of sight between the mobile terminal and the available satellites. Therefore, the above-mentioned satellite searching method is suitable for the mobile terminal, without requiring an external antenna or occupying a large space inside the mobile terminal, thereby making the mobile terminal low cost, small size, and low power consumption.
  • the target area may be an area whose distance from the mobile terminal is less than or equal to a preset distance. Therefore, the target area is an area whose distance from the mobile terminal is less than or equal to the preset distance, so that the time it takes for the user to reach the target area from the location of the mobile terminal is the shortest, and the user's operational experience is improved.
  • the above-mentioned determining the location information of the target area according to the 3D map information may include: determining a candidate area.
  • the candidate area may be an area whose distance from the mobile terminal is less than or equal to a preset distance.
  • the candidate area may include multiple sub-areas.
  • the target area is determined according to the location information of at least one sub-area, the location information of available satellites, and the 3D map information.
  • the target area may be a sub-area with a direct line of sight between the multiple sub-areas and the available satellites.
  • the above-mentioned determining the location information of the target area according to the 3D map information may include: determining the first angle between the first connection line and the second connection line according to the 3D map information.
  • the first connection may be a connection between the top of the obstacle and an available satellite
  • the second connection may be a connection between the projection of the available satellite on the ground and the mobile terminal.
  • the target area may be an area located on an extension of the second connecting line, and the difference between the first included angle and the second included angle is greater than the included angle threshold, and the second included angle may be the third connecting line and the first included angle.
  • the included angle between the extension lines of the second connection line, and the third connection line may be the connection line between the available satellite and the extension line of the second connection line.
  • the star finding method provided in the first aspect may further include: outputting navigation information, where the navigation information is used to move from a position corresponding to the position information of the mobile terminal to the target area according to the 3D map information. Therefore, the navigation information can clearly and clearly guide the user how to reach the target area from the position of the mobile terminal, which is convenient to operate and improves the user experience.
  • the star finding method provided in the first aspect may further include: if the mobile terminal is already in the target area, acquiring attitude information of the mobile terminal.
  • the maximum gain direction angle of the antenna is determined according to the antenna pattern of the antenna of the mobile terminal and the attitude information of the mobile terminal.
  • the target direction angle of the available satellites is determined.
  • the first attitude adjustment parameter is determined according to the difference between the maximum gain direction angle and the target direction angle. Outputting prompt information corresponding to the first attitude adjustment parameter; wherein the prompt information is used to adjust the difference between the maximum gain direction angle and the target direction angle to be less than or equal to the angle threshold.
  • the user can adjust the attitude of the mobile terminal according to the prompt information corresponding to the output first attitude adjustment parameter, which is convenient and quick, and the determined first attitude adjustment parameter refers to the factor of the antenna pattern, so the determined first attitude
  • the reliability of tuning parameters is also high.
  • the prompt information may include one or more of the following: display information, PTZ control information, voice prompt information, or vibration prompt information.
  • the satellite finding method provided by the first aspect may further include: if the difference between the maximum gain direction angle and the target direction angle is less than or equal to an angle threshold, establishing a communication connection between the mobile terminal and the available satellites. ; If the signal strength of the signals sent by the available satellites received by the mobile terminal is less than or equal to the strength threshold, the second attitude adjustment parameter is determined; if the actual adjustment times are greater than or equal to the preset adjustment times, the second prompt information is output. Wherein, each time the first attitude adjustment parameter or the second attitude adjustment parameter is determined, the actual adjustment times are counted once, and the second prompt information may be information representing the failure of star search.
  • the output characterizing the satellite search can be output.
  • the failure information is used to prompt the user to change the position, which can prevent the user from wasting time by adjusting the attitude of the mobile terminal to search for a satellite at the same position, can improve the reliability of the search, and can reduce the power consumption of the mobile terminal.
  • an embodiment of the present application further provides a star finder, which is suitable for a mobile terminal and includes a determination unit and an acquisition unit.
  • the determining unit is configured to determine whether the direct line of sight between the mobile terminal and the available satellites has been blocked by obstacles according to the location information of the mobile terminal, the location information of the available satellites and the three-dimensional 3D map information.
  • the obtaining unit is configured to obtain the location information of the target area according to the 3D map information if the direct line of sight has been blocked by an obstacle.
  • the target area may be an area in which there is a direct line of sight between the mobile terminal and the available satellites.
  • the target area is an area whose distance from the mobile terminal is less than or equal to a preset distance.
  • the obtaining unit is used to determine a candidate area.
  • the candidate area is an area whose distance from the mobile terminal is less than or equal to a preset distance.
  • the candidate area may include multiple sub-areas.
  • the obtaining unit is further configured to obtain the position information of the target area according to the position information of the at least one sub-area, the position information of the available satellites, and the 3D map information.
  • the target area may be a sub-area with a direct line of sight between the multiple sub-areas and the available satellites.
  • the acquiring unit is configured to determine the first angle between the first connection line and the second connection line according to the 3D map information.
  • the first connection may be a connection between the top of the obstacle and an available satellite
  • the second connection may be a connection between the projection of the available satellite on the ground and the mobile terminal.
  • the acquiring unit is also used to acquire the location information of the target area.
  • the target area may be an area located on an extension of the second connecting line, and the difference between the first included angle and the second included angle is greater than the included angle threshold, and the second included angle may be an extension of the third connecting line
  • the included angle between the line and the extension line of the second connecting line, and the third connecting line may be the connecting line between the available satellite and the top of the obstacle.
  • the apparatus may further include: an output unit for outputting navigation information, where the navigation information is used to move from the position corresponding to the position information of the mobile terminal to the target area according to the 3D map information.
  • the star finding device provided in the second aspect may further include: an acquisition unit, further configured to acquire attitude information of the mobile terminal if the mobile terminal is already in the target area.
  • the determining unit is further configured to determine the maximum gain direction angle of the antenna according to the antenna pattern of the antenna of the mobile terminal and the attitude information of the mobile terminal.
  • the determining unit is further configured to determine the target direction angle of the available satellites according to the position information of the mobile terminal and the position information of the available satellites.
  • the determining unit is further configured to determine the first attitude adjustment parameter according to the difference between the maximum gain direction angle and the target direction angle.
  • the star finding device provided in the second aspect may further include: an output unit for outputting prompt information corresponding to the first attitude adjustment parameter; wherein the prompt information is used to compare the maximum gain direction angle with the target direction. The difference between the angles is adjusted to be less than or equal to the angle threshold.
  • the prompt information may include one or more of the following: display information, PTZ control information, voice prompt information, or vibration prompt information.
  • the apparatus may further include: a communication unit, configured to establish a communication connection between the mobile terminal and the available satellite if the difference between the maximum gain direction angle and the target direction angle is less than or equal to an angle threshold. .
  • the determining unit is further configured to determine the second attitude adjustment parameter if the signal strength of the signal sent by the available satellite received by the mobile terminal is less than or equal to the strength threshold.
  • the output unit is further configured to output second prompt information if the actual adjustment times are greater than or equal to the preset adjustment times. Wherein, each time the first attitude adjustment parameter or the second attitude adjustment parameter is determined, the actual adjustment times are counted once, and the second prompt information may be information representing the failure of star search.
  • determination unit and acquisition unit may be integrated into one processing module, or may be set up separately and independently, which are not limited herein.
  • the apparatus provided in the second aspect may further include a storage module.
  • the storage module stores programs or instructions.
  • the processing module executes the program or instruction
  • the star-finding device provided in the second aspect can execute the star-finding method described in the first aspect.
  • the apparatus provided in the second aspect may further include a transceiver module.
  • the transceiver module is used for the transceiver function of the apparatus provided in the second aspect.
  • the transceiver module may be used to transmit and receive communication signals that may be transmitted by satellites.
  • the transceiver module may include a receiving module and a sending module.
  • the sending module is configured to implement the sending function of the star finding device provided in the second aspect.
  • the receiving module is configured to implement the receiving function of the satellite finder provided by the second aspect.
  • the star-finding device provided in the second aspect may be a mobile terminal, a chip (system) or other components or components that can be set in the mobile terminal, or a device including a mobile terminal. This is not limited.
  • an embodiment of the present application further provides a star finding apparatus, where the star finding apparatus is configured to execute the star finding method described in the first aspect of the embodiment of the present application.
  • an embodiment of the present application further provides another star finding apparatus, where the star finding apparatus includes: a processor; wherein the processor is configured to execute the star finding method provided by the first aspect of the embodiment of the present application.
  • an embodiment of the present application further provides another star finding device, comprising: a processor, where the processor is coupled to a memory;
  • the processor is configured to execute the computer program stored in the memory, so that the star-finding apparatus executes the star-finding method according to the first aspect of the embodiments of the present application.
  • an embodiment of the present application further provides a star finding device, including: a processor and a memory; the memory is used for storing computer instructions, and when the processor executes the instructions, the star finding device executes The method for finding a star according to the first aspect of the embodiments of the present application.
  • the star-seeking device described in the seventh aspect may be a server device or a network device, or a chip (system) or other components or components that can be installed in a mobile terminal, or a mobile terminal. device, which is not limited in this application.
  • an embodiment of the present application further provides a star finding device, including: a processor and an interface circuit; wherein,
  • the processor is configured to execute the code instructions to execute the method according to the first aspect of the embodiments of the present application.
  • an embodiment of the present application further provides a star finder device, the star finder device includes a processor and a transceiver, the transceiver is used for information interaction between the star finder device and other star finder devices, and the processor executes Program instructions for executing the star finding method according to the first aspect.
  • an embodiment of the present application further provides a computer-readable storage medium, where the computer-readable storage medium includes a computer program or an instruction, and when the computer program or instruction is run on a computer, the computer executes the first embodiment of the present application. Aspects of star-finding methods.
  • an embodiment of the present application further provides a computer program product, the computer program product includes: a computer program or an instruction, when the computer program or instruction is run on a computer, the computer executes the search according to the first aspect of the embodiment of the present application. star method.
  • FIG. 1 is a schematic diagram of the architecture of a satellite communication system provided by an embodiment of the present application.
  • FIG. 2 is a circuit connection block diagram of a mobile phone provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a method for finding a star provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an application scenario to which the star finding method provided by the embodiment of the present application is applicable;
  • FIG. 5 is one of the applicable application scenarios for determining the target area provided by the embodiment of the present application.
  • FIG. 6 is the second application scenario to which the target area determination provided by the embodiment of the present application is applicable.
  • FIG. 7 is a schematic diagram of a display state when prompt information provided by an embodiment of the present application is displayed on a mobile terminal;
  • FIG. 8 is one of the structural block diagrams of the star finder provided by the embodiment of the present application.
  • FIG. 9 is the second structural block diagram of the star finder provided by the embodiment of the present application.
  • Satellite search Find the position and attitude of the mobile terminal when the communication signal quality is high when communicating with the satellite.
  • Direct line of sight the direct path between the location of the mobile terminal and the location of the satellite without obstructions.
  • Satellite ephemeris Also known as two-line orbital element (TLE), satellite ephemeris can accurately predict, describe and track the time, position, speed and other operating states of satellites; it can express the time, position, Accurate parameters such as speed; can place satellites in three-dimensional space; use time to three-dimensionally depict the past, present and future of satellites.
  • TLE two-line orbital element
  • Maximum gain direction the direction in which the antenna has the greatest ability to send and receive signals to and from the satellite.
  • Polarization angle The direction in which the strength of the electric field is formed when the antenna radiates.
  • Azimuth the connection line between the mobile terminal and the satellite on the ground, and the angle between the X-axis of the preset ground coordinate system.
  • Elevation angle the angle between the connection line between the mobile terminal and the satellite on the ground projection, and the connection line between the mobile terminal and the satellite.
  • LBS Location-based services
  • the satellite finder system may include available satellites 102 and mobile terminals 101 . After the terminal 101 captures the communication signal sent by the available satellite 102, it can send a search signal to the available satellite 102. After the available satellite 102 receives the search signal, it sends feedback information to the mobile terminal 101, and the mobile terminal 101 uses the received feedback information and the available information. Satellite 102 establishes a communication connection.
  • the network architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the evolution of the architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • the mobile terminal 101 may also be referred to as a user equipment, access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user equipment .
  • the mobile terminal 101 in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a virtual reality (VR) mobile terminal 101, an augmented reality (AR) mobile terminal 101, an industrial control Wireless terminals in (industrial control), wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, and transportation safety wireless terminals, wireless terminals in smart cities, wireless terminals in smart homes, in-vehicle terminals, RSUs with terminal functions, smart wearable devices (such as smart watches, smart bracelets, smart Headphones, smart glasses, smart helmets, etc.)
  • the mobile terminal 101 of the present application may also be an in-vehicle module, an in-vehicle module, an in-vehicle component, an in
  • communications satellites artificial earth satellites used as relay stations for radio communications.
  • Communication satellites forward radio signals to realize communication between satellite communication ground stations (including mobile terminals) or between ground stations and spacecraft.
  • the mobile terminal 101 in this embodiment of the present application may be a mobile phone 200 .
  • the embodiment will be specifically described below by taking the mobile phone 200 as an example. It should be understood that the illustrated mobile phone 200 is only an example of the above-mentioned mobile terminal 101, and the mobile phone 200 may have more or less components than those shown in the figure, and two or more components may be combined, Or can have different component configurations.
  • the mobile phone 200 may specifically include: a processor 201, a radio frequency (RF) circuit 202, a memory 203, a touch screen 204, a Bluetooth device 205, one or more sensors 206, wireless fidelity, Wi-Fi) device 207, positioning device 208, audio circuit 209, peripheral interface 210, power supply device 211 and other components. These components may communicate via one or more communication buses or signal lines (not shown in Figure 2). Those skilled in the art can understand that the hardware structure shown in FIG. 2 does not constitute a limitation on the mobile phone, and the mobile phone 200 may include more or less components than shown, or combine some components, or arrange different components.
  • RF radio frequency
  • the processor 201 is the control center of the mobile phone 200, and uses various interfaces and lines to connect various parts of the mobile phone 200. functions and processing data.
  • the above-mentioned processor 201 may further include a fingerprint verification chip, which is used to verify the collected fingerprints.
  • the radio frequency circuit 202 may be used for the reception and transmission of wireless signals (eg, for signal interaction with the available satellites 102 ) during the transmission and reception of information or calls.
  • the radio frequency circuit 202 can process the downlink data of the base station to the processor 201 for processing; in addition, send the uplink data to the base station.
  • radio frequency circuits include, but are not limited to, antennas, at least one amplifier, transceivers, couplers, low noise amplifiers, duplexers, and the like.
  • the radio frequency circuit 202 may also communicate with other devices through wireless communication.
  • the wireless communication may use any wireless communication standard or protocol, including but not limited to Global System for Mobile Communications, General Packet Radio Service, Code Division Multiple Access, Wideband Code Division Multiple Access, Long Term Evolution, email, short message service, and the like.
  • the memory 203 is used to store applications and data, and the processor 201 executes various functions of the mobile phone 200 and data processing by running the applications and data stored in the memory 203 .
  • the memory 203 mainly includes a stored program area and a stored data area, wherein the stored program area can store the operating system and the application required for at least one function (such as a sound playback function, an image playback function, etc.); data (such as audio data, phone book, etc.)
  • the memory 203 may include a high-speed random access memory (RAM), and may also include a non-volatile memory, such as a magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the memory 203 can store various operating systems, for example, developed by Apple operating system, developed by Google operating system, etc.
  • the above-mentioned memory 203 may be independent and connected to the processor 201 through the above-mentioned communication bus; the memory 203 may also be integrated with the processor 201 .
  • the touch screen 204 may specifically include a touch pad 204-1 and a display 204-2.
  • the touchpad 204-1 can collect touch events on or near the user of the mobile phone 200 (for example, the user uses any suitable object such as a finger, a stylus, etc. on the touchpad 204-1 or on the touchpad 204). -1 operation near), and send the collected touch information to other devices (for example, the processor 201).
  • the user's touch events near the touchpad 204-1 may be called floating touch; the floating touch may refer to the fact that the user does not need to directly touch the touchpad in order to select, move or drag objects (such as controls, etc.). , but only if the user is near the terminal in order to perform the desired function.
  • various types of resistive, capacitive, infrared, and surface acoustic waves can be used to implement the touch panel 204-1.
  • a display (also referred to as a display screen) 204 - 2 may be used to display information entered by or provided to the user as well as various menus of the cell phone 200 .
  • the display 204-2 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the touchpad 204-1 can be overlaid on the display 204-2. When the touchpad 204-1 detects a touch event on or near it, it is transmitted to the processor 201 to determine the type of the touch event, and then the processor 201 may provide corresponding visual output on display 204-2 according to the type of touch event.
  • the touchpad 204-1 and the display screen 204-2 are used as two independent components to realize the input and output functions of the mobile phone 200, in some embodiments, the touchpad 204- 1 is integrated with the display screen 204-2 to realize the input and output functions of the mobile phone 200. It can be understood that the touch screen 204 is formed by stacking multiple layers of materials. Only the touch panel (layer) and the display screen (layer) are shown in the embodiments of the present application, and other layers are not described in the embodiments of the present application. .
  • the touch panel 204-1 can be configured on the front of the mobile phone 200 in the form of a full panel
  • the display screen 204-2 can also be configured on the front of the mobile phone 200 in the form of a full panel, so that no The structure of the border.
  • the mobile phone 200 may also have a fingerprint recognition function.
  • the fingerprint acquisition device 212 may be configured on the back of the mobile phone 200 (eg, below the rear camera), or the fingerprint acquisition device 212 may be configured on the front of the mobile phone 200 (eg, below the touch screen 204 ).
  • the fingerprint collection device 212 can be configured in the touch screen 204 to realize the fingerprint identification function, that is, the fingerprint collection device 212 can be integrated with the touch screen 204 to realize the fingerprint identification function of the mobile phone 200 .
  • the fingerprint collection device 212 is configured in the touch screen 204, which may be a part of the touch screen 204, or may be configured in the touch screen 204 in other ways.
  • the main component of the fingerprint collection device 212 in this embodiment of the present application is a fingerprint sensor, and the fingerprint sensor may adopt any type of sensing technology, including but not limited to optical, capacitive, piezoelectric, or ultrasonic sensing technology.
  • the mobile phone 200 may also include a Bluetooth device 205 for realizing data exchange (eg, sending and receiving translated text and original text) between the mobile phone 200 and other short-distance terminals (eg, mobile phones, smart watches, etc.).
  • the Bluetooth device 205 in this embodiment of the present application may be an integrated circuit or a Bluetooth chip or the like.
  • Cell phone 200 may also include at least one sensor 206, such as light sensors, motion sensors, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor, wherein the ambient light sensor may adjust the brightness of the display of the touch screen 204 according to the brightness of the ambient light, and the proximity sensor may turn off the power of the display when the mobile phone 200 is moved to the ear .
  • the accelerometer sensor can detect the magnitude of acceleration in all directions (usually three axes), and can detect the magnitude and direction of gravity when it is stationary.
  • the Wi-Fi device 207 is used to provide the mobile phone 200 with network access that complies with Wi-Fi related standard protocols.
  • the mobile phone 200 can access the Wi-Fi access point through the Wi-Fi device 207, thereby helping the user to send and receive information, and at the same time It provides users with wireless broadband Internet access.
  • the Wi-Fi device 207 can also serve as a Wi-Fi wireless access point, and can provide Wi-Fi network access for other terminals.
  • the positioning device 208 is used to provide the mobile phone 200 with a geographic location. It can be understood that the positioning device 208 may specifically be a receiver of a global positioning system (global positioning system, GPS), a Beidou satellite navigation system, a Russian GLONASS or other positioning systems. After receiving the geographic location sent by the positioning system, the positioning device 208 sends the information to the processor 201 for processing, or sends the information to the memory 203 for storage.
  • a global positioning system global positioning system
  • GPS global positioning system
  • Beidou satellite navigation system Beidou satellite navigation system
  • Russian GLONASS Russian GLONASS
  • the positioning device 208 may also be a receiver of an assisted global positioning system (AGPS), and the AGPS system serves as an auxiliary server to assist the positioning device 208 to complete ranging and positioning services,
  • the assisted positioning server communicates with the positioning device 208 (ie, the GPS receiver) of the terminal such as the mobile phone 200 through a wireless communication network to provide positioning assistance.
  • the positioning device 208 may also be a positioning technology based on a Wi-Fi access point. Since each Wi-Fi access point has a globally unique media access control (MAC) address, the terminal can scan and collect the surrounding Wi-Fi access points when Wi-Fi is turned on.
  • MAC media access control
  • the terminal sends these data (such as MAC address) that can identify the Wi-Fi access point to the location server through the wireless communication network, and the location server retrieves The geographic location of each Wi-Fi access point is calculated, and combined with the strength of the Wi-Fi broadcast signal, the geographic location of the terminal is calculated and sent to the positioning device 208 of the terminal.
  • the audio circuit 209 , the speaker 213 , and the microphone 214 may provide an audio interface between the user and the cell phone 200 .
  • the audio circuit 209 can convert the received audio data into an electrical signal, and transmit it to the speaker 213, and the speaker 213 converts it into a sound signal for output; on the other hand, the microphone 214 converts the collected sound signal into an electrical signal, which is converted by the audio circuit 209 After receiving, it is converted into audio data, and then the audio data is output to the RF circuit 202 for transmission to, for example, another mobile phone, or the audio data is output to the memory 203 for further processing.
  • the peripheral interface 210 is used to provide various interfaces for external input/output devices (eg keyboard, mouse, external display, external memory, user identification module card, etc.).
  • external input/output devices eg keyboard, mouse, external display, external memory, user identification module card, etc.
  • the mouse is connected to the mouse through the universal serial bus (USB) interface
  • SIM subscriber identification module
  • the peripheral interface 210 may be used to couple the aforementioned external input/output peripherals to the processor 201 and the memory 203 .
  • the mobile phone 200 may also include a power supply device 211 (such as a battery and a power management chip) for supplying power to various components, and the battery may be logically connected to the processor 201 through the power management chip, so as to manage charging, discharging, and power consumption management through the power supply device 211. and other functions.
  • a power supply device 211 such as a battery and a power management chip
  • the battery may be logically connected to the processor 201 through the power management chip, so as to manage charging, discharging, and power consumption management through the power supply device 211. and other functions.
  • FIG. 3 is a schematic flowchart of a method for finding a star according to an embodiment of the present application.
  • the star finding method can be applied to the above-mentioned mobile terminal 101, and the mobile terminal 101 is located in the above-mentioned star finding system.
  • the star finding method includes:
  • S301 According to the location information of the mobile terminal 101, the location information of the available satellites 102 and the three-dimensional 3D map information, determine whether the direct line of sight between the mobile terminal 101 and the available satellites 102 has been blocked by obstacles, and if so, perform S302.
  • the location information of the mobile terminal 101 may include, but is not limited to, longitude and latitude information obtained from available satellites 102, and identification information of a base station with which the mobile terminal 101 communicates obtained from a wireless network.
  • the 3D 3D map information can be obtained from pre-stored information, wherein the 3D 3D map information includes the position, height and shape outline of each obstacle in the 3D map.
  • the satellite position information includes satellite operation parameters (eg, including orbital plane inclination, satellite distance from the ground, eccentricity, average perigee angle, etc.).
  • the user can click on the system main interface of the mobile terminal 101 to enter the home page interface of the target application, and then click the "start star search" touch button in the home page interface to execute S301.
  • the location information of the mobile terminal 101, the location information of the available satellites 102, and the three-dimensional (3-dimensional, 3D) map information may be acquired first.
  • the method of acquiring the location information of the mobile terminal 101 may be, but not limited to, acquisition based on the LBS service and acquisition based on the GPS positioning module; the method of acquiring the location information of the available satellites 102 may be, but not limited to, acquiring from pre-stored satellite ephemeris The location information of the available satellites 102; it should be noted that before acquiring the location information of the available satellites 102, it is necessary to operate according to the location information of the mobile terminal 101 and the pre-stored ephemeris information contained in a plurality of satellites related to satellite signal coverage. Parameters, available satellites 102 are determined from a plurality of satellites. The satellite operation parameters may also include the coverage area on the earth of the signals transmitted by each satellite at different times and the signal strength of the coverage area.
  • the method of determining the available satellites 102 may be: selecting the satellites whose coverage area includes the location information of the mobile terminal 101 and the signal strength of the coverage area is greater than a preset threshold at the current time and within a preset time after the current time, and determine are available satellites 102 .
  • the location information of the mobile terminal 101, the location information of the available satellites 102 and the location, height and shape outline of each obstacle in the 3D map are known, the direct distance between the mobile terminal 101 and the available satellites 102 can be determined by using the geometric relationship. The line of sight is blocked by an obstacle.
  • the obstacles may be dense vegetation, landform protrusions or buildings caused by geological movements, etc., which are not limited herein.
  • FIG. 4 includes mobile terminal A, mobile terminal B, mobile terminal C, obstacle a, obstacle b, obstacle c, obstacle d, and the projection position of the available satellite 102 on the ground is point S.
  • the specific instructions are as follows:
  • the obstacle a is located on the line connecting the mobile terminal A and the point S, therefore, the obstacle a may block the direct line of sight between the mobile terminal A and the available satellite 102 . Therefore, according to the distance between the obstacle a and the mobile terminal A, the ratio of the distance between the mobile terminal A and the point S, and the distance between the available satellite 102 and the point S, the similar triangle principle can be used to determine the direct line of sight where the obstacle a is located. and identify that the height of the obstacle a is higher than the height of the direct line of sight at the position of the obstacle a, so that it can be determined that the direct line of sight between the mobile terminal A and the available satellite 102 has been blocked by the obstacle.
  • the obstacle d is located on the line connecting the mobile terminal C and the point S. Therefore, the obstacle d may block the direct line of sight between the mobile terminal C and the available satellites 102 .
  • the similar triangle principle is used to determine the height of the direct line of sight at the position of the obstacle d , and identify that the height of the obstacle d is lower than the height of the direct line of sight at the position of the obstacle d, so that it can be determined that there is a direct line of sight between the mobile terminal C and the available satellite 102 .
  • obstacle b and obstacle c are not located on the connection line between point S and any mobile terminal 101, therefore, it can be directly determined that obstacle b and obstacle c will not affect the communication between any mobile terminal and available satellite 102. Direct line of sight causes occlusion.
  • S302 Determine the location information of the target area according to the 3D map information.
  • the target area is an area where there is a direct line of sight between the mobile terminal 101 and the available satellites 102 . Since the position information of the available satellites 102 and the position, height and shape outline of each obstacle in the 3D map are known, the geometrical relationship can be used to determine the area with direct line of sight to the available satellites 102 .
  • the target area may be an area whose distance from the mobile terminal 101 is less than or equal to a preset distance. Since the target area can be an area whose distance from the mobile terminal 101 is less than or equal to the preset distance, the time taken for the user to reach the target area from the location of the mobile terminal 101 can be minimized, thereby improving the user's operational experience.
  • determining the location information of the target area according to the 3D map information which may include:
  • Step A1 Determine the candidate area.
  • the candidate area may be an area whose distance from the mobile terminal 101 is less than or equal to a preset distance.
  • the candidate area may include multiple sub-areas.
  • a circular area or a regular polygon area centered on the location of the mobile terminal 101 and the distance between the mobile terminal 101 and the mobile terminal 101 is less than a preset distance may be divided to obtain a candidate area including multiple sub-areas.
  • the candidate regions may include 3, 4, 8, 9 sub-regions, etc., which are not limited herein.
  • the candidate area is a circular area with a distance from the mobile terminal 101 less than a preset distance, and the circular area includes 3 sub-areas (ie, sub-area Q1, sub-area Q2, and sub-area Q3).
  • Step A2 Determine the target area according to the location information of at least one sub-area, the location information of the available satellites 102, and the 3D map information.
  • the target area may be a sub-area with a direct line of sight between the multiple sub-areas and the available satellite 102 .
  • the target area may be determined according to the location information of the sub-areas, the location information of the available satellites 102, and the 3D map information in sequence (eg, from left to right or from top to bottom).
  • the area covered by the shaded part is the determined target area (ie, the sub-area Q1 ).
  • the location information of the sub-region may be the location information of the geometric center of the sub-region.
  • the method of determining the target area may be to determine whether the direct line of sight between the sub-area and the available satellites 102 is blocked by obstacles according to the location information of the sub-area, the location information of the available satellites 102 and the three-dimensional 3D map information. occlusion, the sub-area is determined as the target area.
  • the target region is no longer determined according to the position information of the sub-regions in the subsequent sequence, the position information of the available satellites 102, and the 3D map information. It should be understood that if the sub-region selected for the first time is not determined as the target region, the next sub-region is selected to determine whether it can be used as the target region, and so on until the selected sub-region is determined as the target region.
  • the candidate area includes 4 sub-areas, traverse to the first sub-area in order, if the first sub-area is not determined as the target area; then traverse the second sub-area, if the second sub-area is determined as the target area area, stop the traversal and use the second sub-area as the finalized target area.
  • the candidate area includes 4 sub-areas, and all the sub-areas in the 4 areas are traversed in sequence. If the sub-region traversed the second time is closest to the position of the mobile terminal 101 , the sub-region traversed for the second time is used as the final determined target region.
  • determining the location information of the target area may include:
  • Step B1 Determine the first angle between the first connection line and the second connection line according to the 3D map information.
  • the first connection may be the connection between the top of the obstacle and the available satellite 102
  • the second connection may be the connection between the projection of the available satellite 102 on the ground and the mobile terminal 101 .
  • the target area may be an area located on an extension of the second connecting line, and the difference between the first included angle and the second included angle is greater than the included angle threshold, and the second included angle may be the third connecting line and the first included angle.
  • the included angle between the extension lines of the second connection line, and the third connection line may be the connection line between the available satellite 102 and the extension line of the second connection line.
  • the principles of steps B1 to B2 are described.
  • the projection of the available satellite 102 on the ground is the S point
  • the connection between the S point and the mobile terminal 101A is the second connection
  • the connection between the obstacle a and the available satellite 102 is the first connection
  • the first connection The angle between the first connecting line and the second connecting line is K1. It can be understood that the position of the intersection of the first connecting line and the second connecting line and the direct line of sight of the available satellite 102 are just blocked by the top of the obstacle a.
  • the included angle threshold area away from the obstacle a on the extension line of the second connection line
  • the direct line of sight to the available satellite 102 will not be blocked by the obstacle a. Therefore, the area located on the extension line of the second connecting line, and the difference between the first included angle and the second included angle is greater than the included angle threshold is determined as the target area (the part with the bold line in FIG. 6 ), where , the included angle between the third connecting line and the extension line of the second connecting line is K2.
  • the method may further include:
  • the navigation information is used to move from the position corresponding to the position information of the mobile terminal 101 to the target area according to the 3D map information.
  • the navigation information can clearly guide the user how to reach the target area from the location of the mobile terminal 101 .
  • the navigation information is displayed on the display interface of the target application program, broadcast by the speaker of the mobile terminal 101 , or a combination of the display interface displayed on the application program and the speaker broadcast of the mobile terminal 101 .
  • the method may further include:
  • the user can hold the mobile terminal 101 and move to the target area according to the navigation information, and obtain the location information of the mobile terminal 101 in the process of moving.
  • the attitude information of the mobile terminal 101 may include the elevation angle, the azimuth angle and the polarization angle of the antenna of the mobile terminal 101 .
  • S305 Determine the maximum gain direction angle of the antenna according to the antenna pattern of the antenna of the mobile terminal 101 and the attitude information of the mobile terminal 101.
  • the antenna pattern of the antenna refers to the included angle of the antenna with respect to the vertical direction when the mobile terminal 101 is placed vertically along the long side.
  • S306 Determine the target direction angle of the available satellite 102 according to the location information of the mobile terminal 101 and the location information of the available satellite 102.
  • the target azimuth angle includes the target azimuth angle, the target pitch angle, and the target polarization angle.
  • the target azimuth angle can be the connection line between the antenna and the satellite on the ground when the mobile terminal 101 is placed vertically along the long side. , the included angle with the X-axis of the preset ground coordinate system.
  • the target pitch angle can be the included angle between the line connecting the antenna and the satellite on the ground when the mobile terminal 101 is vertically placed along the long side, and the line connecting the mobile terminal 101 and the satellite.
  • the target pitch angle may be the direction in which the electric field strength is formed when the antenna radiates when the mobile terminal 101 is vertically placed along the long side and the antenna arrangement is also in the vertical direction.
  • S307 Determine the first attitude adjustment parameter according to the difference between the maximum gain direction angle and the target direction angle.
  • the first attitude adjustment parameter may be "5 degrees forward, 10 degrees left, and 20 degrees downward".
  • the prompt information is used to adjust the difference between the maximum gain direction angle and the target direction angle to be less than or equal to the angle threshold.
  • the user can adjust the attitude of the mobile terminal 101 according to the prompt information corresponding to the output first attitude adjustment parameter, which is convenient and quick, and the first attitude adjustment parameter is determined with reference to the factor of the antenna pattern, so the determined first attitude adjustment parameter reliability is also high.
  • the angle threshold may be 2 degrees, 3 degrees, 5 degrees, etc., which is not limited here.
  • the prompt information may include one or more of the following: display information, PTZ control information, voice prompt information, or vibration prompt information.
  • the displayed information may be an adjustment direction guide (eg, an arrow) and an adjustment range (eg, an adjustment angle).
  • the gimbal control information can be an analog signal carrying the adjustment direction and adjustment range.
  • the analog signal carrying the adjustment direction and adjustment range is output to the gimbal controller.
  • the gimbal controller can control the motor drive according to the adjustment direction and adjustment range.
  • the pan/tilt on which the mobile terminal 101 is mounted adjusts the posture, thereby realizing automatic adjustment of the posture of the mobile terminal 101 .
  • the voice prompt information can be: "turn 10 degrees clockwise", “flip up 5 degrees", and so on.
  • the vibration prompt information may be: controlling the vibration motor of the mobile terminal 101 to vibrate, so as to prompt the user to adjust the posture of the mobile terminal 101 .
  • the output prompt information may be different.
  • the display information can become smaller or the color changes to green, and the adjustment error display information can become larger or the color changes to red; for another example, if the adjustment is correct, the vibration/amplitude frequency of the vibration motor changes. The smaller it is, if the adjustment is wrong, the vibration frequency/amplitude of the vibration motor will become larger and larger.
  • the method may further include:
  • the mobile terminal 101 After the communication connection is established, the mobile terminal 101 sends a communication request to the available satellite 102, and after receiving the communication request, the available satellite 102 sends feedback information to the mobile terminal 101, and the mobile terminal 101 establishes a communication connection with the available satellite 102 according to the feedback information, thereby moving
  • the terminal 101 may transmit communication signals to or receive communication signals transmitted by the available satellites 102 .
  • the second attitude adjustment parameter is the parameter that needs to be readjusted. It should be noted that, for the process of determining the second attitude adjustment parameter, please refer to S304-S308, which will not be repeated here.
  • each time the first attitude adjustment parameter or the second attitude adjustment parameter is determined the actual adjustment times are counted once, and the second prompt information may be information representing the failure of star search.
  • the signal strength of the received signal from the available satellite 102 cannot be made greater than the strength threshold by adjusting the attitude of the mobile terminal 101 at the current position. Therefore, it is possible to The information representing the failure of the star search is output to prompt the user to change the position, and the user is prevented from adjusting the posture of the mobile terminal 101 for star search, thereby reducing power consumption.
  • the satellite finding method it is determined whether the direct line of sight between the mobile terminal and the available satellites has been blocked by obstacles according to the location information of the mobile terminal, the location information of the available satellites, and the three-dimensional 3D map information. If the direct line of sight has been blocked, the location information of the target area is determined according to the 3D map information.
  • the target area is an area in which there is a direct line of sight between the mobile terminal and the available satellites. Therefore, the above-mentioned satellite searching method is suitable for the mobile terminal, without requiring an external antenna or occupying a large space inside the mobile terminal, thereby making the mobile terminal low cost, small size, and low power consumption.
  • the star finding method provided by the embodiments of the present application has been described in detail above with reference to FIGS. 3 to 7 .
  • the following describes in detail a star finding apparatus for executing the star finding method provided by the embodiments of the present application with reference to FIG. 8 and FIG. 9 .
  • an embodiment of the present application further provides a star finding device 800 , which can be applied to a mobile terminal 101 , where the mobile terminal 101 is located in the above-mentioned star finding system.
  • a star finding device 800 which can be applied to a mobile terminal 101 , where the mobile terminal 101 is located in the above-mentioned star finding system.
  • the apparatus 800 includes a determination unit 801 and an acquisition unit 802 . in,
  • the determining unit 801 is configured to determine whether the direct line of sight between the mobile terminal 101 and the available satellites 102 has been blocked by obstacles according to the location information of the mobile terminal 101, the location information of the available satellites 102 and the three-dimensional 3D map information.
  • the obtaining unit 802 is configured to obtain the position information of the target area according to the 3D map information if the direct line of sight has been blocked by an obstacle.
  • the target area is an area where there is a direct line of sight between the mobile terminal 101 and the available satellites 102 .
  • the target area is an area whose distance from the mobile terminal 101 is less than or equal to a preset distance.
  • the obtaining unit 802 is configured to determine a candidate area, wherein the candidate area is an area whose distance from the mobile terminal 101 is less than or equal to a preset distance.
  • the candidate area may include multiple sub-areas.
  • the obtaining unit 802 is further configured to obtain the position information of the target area according to the position information of at least one sub-area, the position information of the available satellites 102 and the 3D map information.
  • the target area is a sub-area with a direct line of sight between the multiple sub-areas and the available satellites 102 .
  • the obtaining unit 802 is configured to determine the first included angle between the first connection line and the second connection line according to the 3D map information.
  • the first connection is the connection between the top of the obstacle and the available satellite 102
  • the second connection is the connection between the projection of the available satellite 102 on the ground and the mobile terminal 101 .
  • the obtaining unit 802 is further configured to obtain the location information of the target area.
  • the target area is located on the extension line of the second connection line, and the difference between the first included angle and the second included angle is greater than the included angle threshold, and the second included angle is the extension line of the third connection line and The included angle between the extension lines of the second connecting line, and the third connecting line is the connecting line between the available satellite 102 and the top of the obstacle.
  • the apparatus 800 may further include: an output unit 803 for outputting navigation information, where the navigation information is used for corresponding to the location information of the mobile terminal 101 according to the 3D map information. The position moves to the target area.
  • the obtaining unit 802 may also be configured to obtain the posture information of the mobile terminal 101 if the mobile terminal 101 is already in the target area.
  • the determining unit 801 may also be configured to determine the maximum gain direction angle of the antenna according to the antenna pattern of the antenna of the mobile terminal 101 and the attitude information of the mobile terminal 101 .
  • the determining unit 801 may also be configured to determine the target direction angle of the available satellites 102 according to the position information of the mobile terminal 101 and the position information of the available satellites 102 .
  • the determining unit 801 may also be configured to determine the first attitude adjustment parameter according to the difference between the maximum gain direction angle and the target direction angle.
  • the output unit 803 may be configured to output prompt information corresponding to the first attitude adjustment parameter; wherein the prompt information is used to adjust the difference between the maximum gain direction angle and the target direction angle to be less than or equal to the angle threshold.
  • the prompt information may include one or more of the following: display information, PTZ control information, voice prompt information, or vibration prompt information.
  • the apparatus 800 may further include: a communication unit 804 for establishing a mobile terminal if the difference between the maximum gain direction angle and the target direction angle is less than or equal to an angle threshold. Communication link between 101 and available satellites 102 .
  • the determining unit 801 may also be configured to determine the second attitude adjustment parameter if the signal strength of the signal sent by the available satellite 102 received by the mobile terminal 101 is less than or equal to the strength threshold.
  • the output unit 803 may also be configured to output second prompt information if the actual adjustment times are greater than or equal to the preset adjustment times. Wherein, each time the first attitude adjustment parameter or the second attitude adjustment parameter is determined, the actual adjustment times are counted once, and the second prompt information is information representing the failure of the star search.
  • determining unit 801 and obtaining unit 802 may be integrated into one processing module, or may be set up separately and independently, which are not limited herein.
  • the star finding apparatus 800 may further include a storage module (not shown in FIG. 8 ), and the storage module stores programs or instructions.
  • the processing module executes the program or the instruction, the star-finding device 800 can perform the functions of the star-finding method shown in FIG. 1 .
  • the apparatus 800 may further include a sending module and a receiving module (not shown in FIG. 8 ), the receiving module is used for receiving communication signals transmitted by available satellites, and the sending module is used for sending communication signals.
  • the receiving module and the sending module can be integrated into one transceiver module.
  • the transceiver module is used to realize the sending function and the receiving function of the star finder 800 .
  • the processing module involved in the star finding device 800 may be implemented by a processor or a processor-related circuit component, and may be a processor or a processing unit;
  • the transceiver module may be implemented by a transceiver or a transceiver-related circuit component, and may be a transceiver or transceiver unit.
  • the star-finding device 800 may be the mobile terminal 101, a chip (system) or other components or components that can be set in the mobile terminal 101, and may also be the device 800 including the mobile terminal 101. This is not limited.
  • FIG. 9 is a schematic structural diagram of a star finding apparatus 900 provided by an embodiment of the present application.
  • the star-finding device 900 may be the mobile terminal 101 , or may be a chip (system) or other components or assemblies that may be provided in the mobile terminal 101 .
  • the star finding apparatus 900 may include a processor 901 .
  • the star finding apparatus 900 may further include a memory 902 and/or a transceiver 903 .
  • the processor 901 is coupled with the memory 902 and the transceiver 903, such as can be connected through a communication bus.
  • the processor 901 is the control center of the star finder device 900, which may be one processor, or may be a general term for multiple processing elements.
  • the processor 901 is one or more central processing units (CPUs), may also be a specific integrated circuit (application specific integrated circuit, ASIC), or is configured to implement one or more of the embodiments of the present application
  • An integrated circuit such as: one or more microprocessors (digital signal processor, DSP), or, one or more field programmable gate array (field programmable gate array, FPGA).
  • the processor 901 may execute various functions of the star finding apparatus 900 by running or executing software programs stored in the memory 902 and calling data stored in the memory 902 .
  • the processor 901 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG. 9 .
  • the star finding apparatus 900 may also include multiple processors, for example, the processor 901 and the processor 904 shown in FIG. 2 .
  • processors can be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the memory 902 is used to store the software program for executing the solution of the present application, and is controlled and executed by the processor 901.
  • the memory 902 is used to store the software program for executing the solution of the present application, and is controlled and executed by the processor 901.
  • the processor 901. For the specific implementation, reference may be made to the above method embodiments, which will not be repeated here.
  • memory 902 may be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types of static storage devices that can store information and instructions.
  • ROM read-only memory
  • RAM random access memory
  • Other types of dynamic storage devices for instructions which may also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM), or other optical disks storage, optical disc storage (including compact disc, laser disc, optical disc, digital versatile disc, blu-ray disc, etc.), magnetic disk storage medium or other magnetic storage device, or capable of carrying or storing desired program code in the form of instructions or data structures and any other medium that can be accessed by a computer, but is not limited thereto.
  • the memory 902 may be integrated with the processor 901, or may exist independently, and be coupled to the processor 901 through an interface circuit (not shown in FIG. 9 ) of the star finding device 900, which is not specifically limited in this embodiment of the present application.
  • the transceiver 903 is used for communication with other satellite seeking devices.
  • the star finder 900 is the mobile terminal 101 , and the transceiver 903 can be used to communicate with a network device or communicate with another mobile terminal 101 .
  • the star finding apparatus 900 is a network device, and the transceiver 903 may be used to communicate with the mobile terminal 101 or communicate with another network device.
  • transceiver 903 may include a receiver and a transmitter (not shown separately in FIG. 9). Among them, the receiver is used to realize the receiving function, and the transmitter is used to realize the sending function.
  • the transceiver 903 may be integrated with the processor 901, or may exist independently, and be coupled to the processor 901 through an interface circuit (not shown in FIG. 9 ) of the star finding device 900, to which this embodiment of the present application There is no specific limitation.
  • the structure of the star finder device 900 shown in FIG. 9 does not constitute a limitation of the star finder device, and the actual star finder device may include more or less components than those shown in the figure, or a combination of some components, or a different arrangement of components.
  • An embodiment of the present application further provides a chip system, including: a processor, where the processor is coupled with a memory, the memory is used to store a program or an instruction, and when the program or instruction is executed by the processor, the The chip system implements the method in any of the foregoing method embodiments.
  • the number of processors in the chip system may be one or more.
  • the processor can be implemented by hardware or by software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor implemented by reading software codes stored in memory.
  • the memory may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory can be a non-transitory processor, such as a read-only memory ROM, which can be integrated with the processor on the same chip, or can be provided on different chips.
  • the setting method of the processor is not particularly limited.
  • the system-on-chip may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or a system on chip (SoC), It can also be a central processing unit (CPU), a network processor (NP), a digital signal processing circuit (DSP), or a microcontroller (microcontroller).
  • controller unit, MCU it can also be a programmable logic device (PLD) or other integrated chips.
  • Embodiments of the present application provide a satellite communication system.
  • the satellite communication system includes one or more mobile terminals as described above, and one or more available satellites.
  • processors in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), dedicated integrated Circuit (application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory Fetch memory
  • direct memory bus random access memory direct rambus RAM, DR RAM
  • the above embodiments may be implemented in whole or in part by software, hardware (eg, circuits), firmware, or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs. When the computer instructions or computer programs are loaded or executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server or data center by wire (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that contains one or more sets of available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • At least one means one or more, and “plurality” means two or more.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • at least one item (a) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c may be single or multiple .
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Automation & Control Theory (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephone Function (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

一种寻星方法及装置,可应用于卫星通信系统中,使得寻星方式适用于移动终端,又兼顾使得移动终端低成本、小体积、低功耗。该方法包括:根据移动终端的位置信息、可用卫星的位置信息以及三维3D地图信息,确定移动终端与可用卫星之间的直视径是否已被障碍物遮挡。若直视径已被障碍物遮挡,则根据3D地图信息,确定目标区域的位置信息。其中,目标区域为移动终端与可用卫星之间存在直视径的区域。

Description

寻星方法及装置
本申请要求于2020年10月26日提交国家知识产权局、申请号为202011158431.2、申请名称为“寻星方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种寻星方法及装置。
背景技术
卫星通信技术(Satellite communication technology)是一种利用人造地球卫星作为中继站实现地面站之间的通信的技术。卫星通信技术具有覆盖范围广、通信容量大、传输质量好、组网方便迅速、便于实现全球无缝链接等众多优点,可以为移动用户提供极大的方便。对于移动终端与卫星建立通信连接,需要移动终端的天线与卫星之间的连线上不存在障碍物(即存在直视径),才能保证移动终端与卫星通信的信号质量。
目前,中大型通信设备(设备的主体与天线分离)需要依赖外部设备(如,寻星仪)寻星,而这样的方式不适用于移动终端(移动终端的天线与主体集成到一起)的寻星操作。对于支持寻星的移动终端,通常需要将天线外置或天线在移动终端的内部的占用空间较大,而这样的方式需要的设备成本高昂,功耗高、移动终端本身的体积也会增大。目前,没有既适用于移动终端,又兼顾低成本、小体积、低功耗的移动终端的寻星方式。
发明内容
本申请实施例提供一种寻星方法及装置,能够解决寻星方式不适用于移动终端及可以寻星的移动终端,及适用于移动终端的寻星方式需要将天线外置或天线在移动终端的内部的占用空间较大的问题,从而使得寻星方式适用于移动终端,又兼顾使得移动终端低成本、小体积、低功耗。
为达到上述目的,本申请采用如下技术方案:
第一方面,本申请提供一种寻星方法,适用于移动终端,包括:根据移动终端的位置信息、可用卫星的位置信息以及三维3D地图信息,确定移动终端与可用卫星之间的直视径是否已被障碍物遮挡。若直视径已被障碍物遮挡,则根据3D地图信息,确定目标区域的位置信息。其中,目标区域为移动终端与可用卫星之间存在直视径的区域。
基于第一方面提供的寻星方法,根据移动终端的位置信息、可用卫星的位置信息以及三维3D地图信息,确定移动终端与可用卫星之间的直视径已被障碍物遮挡。根据3D地图信息,确定目标区域的位置信息。其中,目标区域为移动终端与可用卫星之间存在直视径的区域。由此,上述的寻星方式适用于移动终端,无需天线外置或天线在移动终端的内部占用空间较大,从而兼顾使得移动终端低成本、小体积、低功耗。
一种可能的设计方式中,目标区域可以为与移动终端之间的距离小于或等于预设距离的区域。由此,目标区域为与移动终端之间的距离小于或等于预设距离的区域,可以使得用户从移动终端所在的位置到达目标区域的花费的时间最短,提高用户的操作体验感。
可选地,上述根据3D地图信息,确定目标区域的位置信息,可以包括:确定候选区 域。其中,候选区域可以为与移动终端之间的距离小于或等于预设距离的区域。其中,候选区域可以包括多个子区域。根据至少一个子区域的位置信息、可用卫星的位置信息、3D地图信息,确定目标区域。其中,目标区域可以为多个子区域中与可用卫星之间存在直视径的子区域。
或者,可选地,上述根据3D地图信息,确定目标区域的位置信息,可以包括:根据3D地图信息,确定第一连线与第二连线之间的第一夹角。其中,第一连线可以为障碍物的顶部与可用卫星之间的连线,第二连线可以为可用卫星在地面的投影与移动终端的之间的连线。确定目标区域。其中,目标区域可以为位于第二连线的延长线上,且第一夹角与第二夹角之间的差值大于夹角阈值的区域,第二夹角可以为第三连线与第二连线的延长线之间的夹角,第三连线可以为可用卫星与第二连线的延长线之间的连线。
一种可能的设计方式中,第一方面提供的寻星方法还可以包括:输出导航信息,导航信息用于根据3D地图信息,从移动终端的位置信息对应的位置移动至目标区域。由此,导航信息可以清晰明了的指引用户如何从移动终端的位置到达目标区域,操作方便,提升了用户体验。
一种可能的设计方式中,第一方面提供的寻星方法还可以包括:若移动终端已处于目标区域,则获取移动终端的姿态信息。根据移动终端的天线的天线方向图和移动终端的姿态信息,确定天线的最大增益方向角。根据移动终端的位置信息及可用卫星的位置信息,确定可用卫星的目标方向角。根据最大增益方向角与目标方向角的差值,确定第一姿态调整参数。输出第一姿态调整参数对应的提示信息;其中,提示信息用于将最大增益方向角与目标方向角之间的差值调整至小于或等于角度阈值。由此,用户可以根据输出的第一姿态调整参数对应的提示信息,对移动终端的姿态进行调整,方便快捷,且确定第一姿态调整参数参考了天线方向图的因素,因而确定的第一姿态调整参数的可靠性也很高。
一种可能的设计方式中,提示信息可以包括如下一项或多项:显示信息、云台控制信息、语音提示信息、或震动提示信息。
一种可能的设计方式中,第一方面提供的寻星方法还可以包括:若最大增益方向角与目标方向角的差值小于或等于角度阈值,则建立移动终端与可用卫星之间的通信连接;若移动终端接收到的可用卫星发出的信号的信号强度小于或等于强度阈值,则确定第二姿态调整参数;若实际调整次数大于或等于预设调整次数,则输出第二提示信息。其中,每确定一次第一姿态调整参数或第二姿态调整参数对实际调整次数计数一次,第二提示信息可以为表征寻星失败的信息。由此,在实际调整次数大于或等于预设调整次数的情况下,说明在当前的位置通过调整移动终端的姿态已经不能够满足移动终端与可用卫星之间的通信需求,则可以输出表征寻星失败的信息,以提示用户更换位置,可以避免用户在同一位置一直调整移动终端的姿态寻星而浪费时间,可以提高寻星可靠性,且可以降低移动终端的功耗。
第二方面,本申请实施例还提供一种寻星装置,适用于移动终端,包括确定单元、获取单元。其中,确定单元,用于根据移动终端的位置信息、可用卫星的位置信息以及三维3D地图信息,确定移动终端与可用卫星之间的直视径是否已被障碍物遮挡。获取单元,用于若直视径已被障碍物遮挡,则根据3D地图信息,获取目标区域的位置信息。其 中,目标区域可以为移动终端与可用卫星之间存在直视径的区域。
进一步地,目标区域为与移动终端之间的距离小于或等于预设距离的区域。
可选地,一种可能的设计方式中,所述获取单元用于确定候选区域。其中,候选区域为与移动终端之间的距离小于或等于预设距离的区域。其中,候选区域可以包括多个子区域。获取单元,还用于根据至少一个子区域的位置信息、可用卫星的位置信息、3D地图信息,获取目标区域的位置信息。其中,目标区域可以为多个子区域中与可用卫星之间存在直视径的子区域。
或者,可选地,在另一种可能的设计方式中,获取单元用于根据3D地图信息,确定第一连线与第二连线之间的第一夹角。其中,第一连线可以为障碍物的顶部与可用卫星之间的连线,第二连线可以为可用卫星在地面的投影与移动终端的之间的连线。获取单元,还用于获取目标区域的位置信息。其中,目标区域可以为位于第二连线的延长线上,且第一夹角与第二夹角之间的差值大于夹角阈值的区域,第二夹角可以为第三连线的延长线与第二连线的延长线之间的夹角,第三连线可以为可用卫星与障碍物的顶部之间的连线。
一种可能的设计方式中,所述装置还可以包括:输出单元,用于输出导航信息,导航信息用于根据3D地图信息,从移动终端的位置信息对应的位置移动至目标区域。
一种可能的设计方式中,第二方面提供的寻星装置还可以包括:获取单元,还用于若移动终端已处于目标区域,则获取移动终端的姿态信息。确定单元,还用于根据移动终端的天线的天线方向图和移动终端的姿态信息,确定天线的最大增益方向角。确定单元,还用于根据移动终端的位置信息及所述可用卫星的位置信息,确定可用卫星的目标方向角。确定单元,还用于根据最大增益方向角与目标方向角的差值,确定第一姿态调整参数。
一种可能的设计方式中,第二方面提供的寻星装置还可以包括:输出单元,用于输出第一姿态调整参数对应的提示信息;其中,提示信息用于将最大增益方向角与目标方向角之间的差值调整至小于或等于角度阈值。
一种可能的设计方式中,提示信息可以包括如下一项或多项:显示信息、云台控制信息、语音提示信息、或震动提示信息。
一种可能的设计方式中,所述装置还可以包括:通信单元,用于若最大增益方向角与目标方向角的差值小于或等于角度阈值,则建立移动终端与可用卫星之间的通信连接。确定单元,还用于若移动终端接收到的可用卫星发出的信号的信号强度小于或等于强度阈值,则确定第二姿态调整参数。输出单元,还用于若实际调整次数大于或等于预设调整次数,则输出第二提示信息。其中,每确定一次第一姿态调整参数或第二姿态调整参数对实际调整次数计数一次,第二提示信息可以为表征寻星失败的信息。
可以理解地,上述的确定单元、获取单元可以集成于一个处理模块,也可以分别单独独立设置,在此不做限定。
可选地,第二方面提供的装置还可以包括存储模块。该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得第二方面提供的寻星装置可以执行第一方面所述的寻星方法。
可选地,第二方面提供的装置还可以包括收发模块。其中,收发模块用于第二方面 提供的装置的收发功能。例如,收发模块可以用于收发可用卫星发射的通信信号。进一步地,收发模块可以包括接收模块和发送模块。其中,发送模块用于执行实现第二方面提供的寻星装置的发送功能。接收模块用于执行实现第二方面提供的寻星装置的接收功能。
需要说明的是,第二方面提供的寻星装置可以是移动终端,也可以是可设置于移动终端中的芯片(系统)或其他部件或组件,还可以是包含移动终端的装置,本申请对此不做限定。
此外,第二方面提供的寻星装置的技术效果可以参考第一方面所述的寻星方法的技术效果,此处不再赘述。
第三方面,本申请实施例还提供一种寻星装置,所述寻星装置用于执行如本申请实施例第一方面所述的寻星方法。
此外,第三方面所述的寻星装置的技术效果可以参考第一方面所述的寻星方法的技术效果,此处不再赘述。
第四方面,本申请实施例还提供另一种寻星装置,所述寻星装置包括:处理器;其中,处理器,用于执行如本申请实施例第一方面提供的寻星方法。
此外,第四方面的寻星装置的技术效果可以参考第一方面的寻星方法的技术效果,此处不再赘述。
第五方面,本申请实施例还提供另一种寻星装置包括:处理器,所述处理器与存储器耦合;
处理器,用于执行存储器中存储的计算机程序,以使得寻星装置执行如本申请实施例第一方面的寻星方法。
此外,第五方面所述的寻星装置的技术效果可以参考第一方面的寻星方法的技术效果,此处不再赘述。
第六方面,本申请实施例还提供一种寻星装置,包括:处理器和存储器;所述存储器用于存储计算机指令,当所述处理器执行该指令时,以使所述寻星装置执行如本申请实施例第一方面所述的寻星方法。
此外,第六方面所述的寻星装置的技术效果可以参考第一方面所述的寻星方法的技术效果,此处不再赘述。需要说明的是,第七方面所述的寻星装置可以是服务端设备或网络设备,也可以是可设置于移动终端中的芯片(系统)或其他部件或组件,还可以是包含移动终端的装置,本申请对此不做限定。
第七方面,本申请实施例还提供一种寻星装置,包括:处理器和接口电路;其中,
接口电路,用于接收代码指令并传输至所述处理器;
处理器用于运行所述代码指令以执行如本申请实施例第一方面所述的方法。
此外,第七方面所述的寻星装置的技术效果可以参考第一方面所述的寻星方法的技术效果,此处不再赘述。
第八方面,本申请实施例还提供一种寻星装置,所述寻星装置包括处理器和收发器,收发器用于所述寻星装置和其他寻星装置之间进行信息交互,处理器执行程序指令,用以执行如第一方面的寻星方法。
此外,第八方面所述的寻星装置的技术效果可以参考第一方面所述的寻星方法的技 术效果,此处不再赘述。
第九方面,本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质包括计算机程序或指令,当计算机程序或指令在计算机上运行时,使得计算机执行如本申请实施例第一方面的寻星方法。
此外,第九方面所述的计算机可读存储介质的技术效果可以参考第一方面所述的寻星方法的技术效果,此处不再赘述。
第十方面,本申请实施例还提供一种计算机程序产品,计算机程序产品包括:计算机程序或指令,当计算机程序或指令在计算机上运行时,使得计算机执行如本申请实施例第一方面的寻星方法。
此外,第十方面所述的计算机程序产品的技术效果可以参考第一方面所述的寻星方法的技术效果,此处不再赘述。
附图说明
图1为本申请实施例提供的卫星通信系统的架构示意图;
图2为本申请实施例提供的手机的电路连接框图;
图3为本申请实施例提供的寻星方法的流程示意图;
图4为本申请实施例提供的寻星方法所适用的应用场景的示意图;
图5为本申请实施例提供的确定目标区域所适用的应用场景之一;
图6为本申请实施例提供的确定目标区域所适用的应用场景之二;
图7为本申请实施例提供的提示信息显示于移动终端时的显示状态示意图;
图8为本申请实施例提供的寻星装置的结构框图之一;
图9为本申请实施例提供的寻星装置的结构框图之二。
具体实施方式
下面介绍本申请实施例所涉及的技术术语。
寻星:寻找与卫星通信时通信信号质量高的情况下,移动终端的位置与姿态。
直视径:移动终端的位置与卫星的位置之间的不存在遮挡物的直连路径。
卫星星历:又称为两行轨道数据(two-line orbital element,TLE),卫星星历能精确预测、描绘、跟踪卫星的时间、位置、速度等运行状态;能表达卫星的时间、位置、速度等精确参数;能将卫星置于三维的空间;用时间立体描绘卫星的过去、现在和将来。
最大增益方向:天线朝卫星收发信号的能力最大的方向。
极化角:天线辐射时形成电场强度的方向。
方位角:移动终端与卫星在地面上的投影上的连线,与预设的地面坐标系的X轴的夹角。
俯仰角:移动终端与卫星在地面上的投影上的连线,与移动终端与卫星的连线的夹角。
基于位置的服务(location based services,LBS):利用各类型的定位技术来获取移动终端当前的所在位置,通过移动互联网向移动终端提供信息资源和基础服务。
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于卫星通信系统,如图1所示,寻星系统可以包括可用卫星102和移动终端101,在移动终端101与可用卫星102存在直视径的情况下, 移动终端101在捕获到可用卫星102发出的通信信号后,可以发送搜索信号至可用卫星102,可用卫星102接收到搜索信号后发送反馈信息至移动终端101,移动终端101通过接收到的反馈信息与可用卫星102建立通信连接。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例地”、“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例中,“信息(information)”,“信号(signal)”,“消息(message)”,“信道(channel)”、“信令(signaling)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例中,有时候下标如W1可能会笔误为非下标的形式如W1,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
该移动终端101也可以称为用户装置、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的移动终端101可以是手机(mobile phone)、平板电脑(Pad)、虚拟现实(virtual reality,VR)移动终端101、增强现实(augmented reality,AR)移动终端101、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、车载终端、具有终端功能的RSU、智能穿戴设备(如,智能腕表、智能手环、智能头戴耳机、智能眼镜、智能头盔等)等。本申请的移动终端101还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请提供的寻星方法。
应当指出的是,本申请实施例中的方案还可以应用于其他移动终端中,相应的名称也可以用其他移动终端101中的对应功能的名称进行替代。
本申请实施例中的可用卫星为通信卫星(communications satellite):用作无线电通信中继站的人造地球卫星。通信卫星转发无线电信号,实现卫星通信地面站(含移动终端)之间或地面站与航天器之间的通信。
如图2所示,本申请实施例中的移动终端101可以为手机200。下面以手机200为 例对实施例进行具体说明。应该理解的是,图示手机200仅是上述移动终端101的一个范例,并且手机200可以具有比图中所示出的更多的或者更少的部件,可以组合两个或更多的部件,或者可以具有不同的部件配置。
如图2所示,手机200具体可以包括:处理器201、射频(radio frequency,RF)电路202、存储器203、触摸屏204、蓝牙装置205、一个或多个传感器206、无线保真(wireless fidelity,Wi-Fi)装置207、定位装置208、音频电路209、外设接口210以及电源装置211等部件。这些部件可通过一根或多根通信总线或信号线(图2中未示出)进行通信。本领域技术人员可以理解,图2中示出的硬件结构并不构成对手机的限定,手机200可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图2对手机200的各个部件进行具体的介绍:
处理器201是手机200的控制中心,利用各种接口和线路连接手机200的各个部分,通过运行或执行存储在存储器203内的应用,以及调用存储在存储器203内的数据,执行手机200的各种功能和处理数据。在本申请一些实施例中,上述处理器201还可以包括指纹验证芯片,用于对采集到的指纹进行验证。
射频电路202可用于在收发信息或通话过程中,无线信号的接收和发送(如,与可用卫星102之间进行信号交互)。特别地,射频电路202可以将基站的下行数据接收后,给处理器201处理;另外,将涉及上行的数据发送给基站。通常,射频电路包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频电路202还可以通过无线通信和其他设备通信。所述无线通信可以使用任一无线通信标准或协议,包括但不限于全球移动通信系统、通用分组无线服务、码分多址、宽带码分多址、长期演进、电子邮件、短消息服务等。
存储器203用于存储应用以及数据,处理器201通过运行存储在存储器203的应用以及数据,执行手机200的各种功能以及数据处理。存储器203主要包括存储程序区以及存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用(比如声音播放功能、图像播放功能等);存储数据区可以存储根据使用手机200时所创建的数据(比如音频数据、电话本等)。此外,存储器203可以包括高速随机存取存储器(ramdom access memory,RAM),还可以包括非易失存储器,例如磁盘存储器件、闪存器件或其他易失性固态存储器件等。存储器203可以存储各种操作系统,例如,苹果公司所开发的
Figure PCTCN2021125565-appb-000001
操作系统,谷歌公司所开发的
Figure PCTCN2021125565-appb-000002
操作系统等。上述存储器203可以是独立的,通过上述通信总线与处理器201相连接;存储器203也可以和处理器201集成在一起。
触摸屏204具体可以包括触控板204-1和显示器204-2。
其中,触控板204-1可采集手机200的用户在其上或附近的触摸事件(比如用户使用手指、触控笔等任何适合的物体在触控板204-1上或在触控板204-1附近的操作),并将采集到的触摸信息发送给其他器件(例如处理器201)。其中,用户在触控板204-1附近的触摸事件可以称之为悬浮触控;悬浮触控可以是指,用户无需为了选择、移动或拖动目标(例如控件等)而直接接触触控板,而只需用户位于终端附近以便执行所想要的功能。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型来实现触控板204-1。
显示器(也称为显示屏)204-2可用于显示由用户输入的信息或提供给用户的信息以及手机200的各种菜单。可以采用液晶显示器、有机发光二极管等形式来配置显示器204-2。触控板204-1可以覆盖在显示器204-2之上,当触控板204-1检测到在其上或附近的触摸事件后,传送给处理器201以确定触摸事件的类型,随后处理器201可以根据触摸事件的类型在显示器204-2上提供相应的视觉输出。虽然在图2中,触控板204-1与显示屏204-2是作为两个独立的部件来实现手机200的输入和输出功能,但是在某些实施例中,可以将触控板204-1与显示屏204-2集成而实现手机200的输入和输出功能。可以理解的是,触摸屏204是由多层的材料堆叠而成,本申请实施例中只展示出了触控板(层)和显示屏(层),其他层在本申请实施例中不予记载。另外,触控板204-1可以以全面板的形式配置在手机200的正面,显示屏204-2也可以以全面板的形式配置在手机200的正面,这样在手机200的正面就能够实现无边框的结构。
另外,手机200还可以具有指纹识别功能。例如,可以在手机200的背面(例如后置摄像头的下方)配置指纹采集器件212,或者在手机200的正面(例如触摸屏204的下方)配置指纹采集器件212。又例如,可以在触摸屏204中配置指纹采集器件212来实现指纹识别功能,即指纹采集器件212可以与触摸屏204集成在一起来实现手机200的指纹识别功能。在这种情况下,该指纹采集器件212配置在触摸屏204中,可以是触摸屏204的一部分,也可以以其他方式配置在触摸屏204中。本申请实施例中的指纹采集器件212的主要部件是指纹传感器,该指纹传感器可以采用任何类型的感测技术,包括但不限于光学式、电容式、压电式或超声波传感技术等。
手机200还可以包括蓝牙装置205,用于实现手机200与其他短距离的终端(例如手机、智能手表等)之间的数据交换(例如,收发译文文本和原文文本)。本申请实施例中的蓝牙装置205可以是集成电路或者蓝牙芯片等。
手机200还可以包括至少一种传感器206,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节触摸屏204的显示器的亮度,接近传感器可在手机200移动到耳边时,关闭显示器的电源。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机200还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
Wi-Fi装置207,用于为手机200提供遵循Wi-Fi相关标准协议的网络接入,手机200可以通过Wi-Fi装置207接入到Wi-Fi接入点,进而帮助用户收发信息,同时它为用户提供无线的宽带互联网访问。在其他一些实施例中,该Wi-Fi装置207也可以作为Wi-Fi无线接入点,可以为其他终端提供Wi-Fi网络接入。
定位装置208,用于为手机200提供地理位置。可以理解的是,该定位装置208具体可以是全球定位系统(global positioning system,GPS)或北斗卫星导航系统、俄罗斯GLONASS等定位系统的接收器。定位装置208在接收到上述定位系统发送的地理位置后,将该信息发送给处理器201进行处理,或者发送给存储器203进行保存。在另外的一些实施例中,该定位装置208还可以是辅助全球卫星定位系统(assisted global  positioning system,AGPS)的接收器,AGPS系统通过作为辅助服务器来协助定位装置208完成测距和定位服务,在这种情况下,辅助定位服务器通过无线通信网络与终端例如手机200的定位装置208(即GPS接收器)通信而提供定位协助。在另外的一些实施例中,该定位装置208也可以是基于Wi-Fi接入点的定位技术。由于每一个Wi-Fi接入点都有一个全球唯一的媒体介入控制(media access control,MAC)地址,终端在开启Wi-Fi的情况下即可扫描并收集周围的Wi-Fi接入点的广播信号,因此可以获取到Wi-Fi接入点广播出来的MAC地址;终端将这些能够标示Wi-Fi接入点的数据(例如MAC地址)通过无线通信网络发送给位置服务器,由位置服务器检索出每一个Wi-Fi接入点的地理位置,并结合Wi-Fi广播信号的强弱程度,计算出该终端的地理位置并发送到该终端的定位装置208中。
音频电路209、扬声器213、麦克风214可提供用户与手机200之间的音频接口。音频电路209可将接收到的音频数据转换后的电信号,传输到扬声器213,由扬声器213转换为声音信号输出;另一方面,麦克风214将收集的声音信号转换为电信号,由音频电路209接收后转换为音频数据,再将音频数据输出至RF电路202以发送给比如另一手机,或者将音频数据输出至存储器203以便进一步处理。
外设接口210,用于为外部的输入/输出设备(例如键盘、鼠标、外接显示器、外部存储器、用户识别模块卡等)提供各种接口。例如通过通用串行总线(universal serial bus,USB)接口与鼠标连接,通过用户识别模块卡卡槽上的金属触点与电信运营商提供的用户识别模块卡(subscriber identification module,SIM)卡进行连接。外设接口210可以被用来将上述外部的输入/输出外围设备耦接到处理器201和存储器203。
手机200还可以包括给各个部件供电的电源装置211(比如电池和电源管理芯片),电池可以通过电源管理芯片与处理器201逻辑相连,从而通过电源装置211实现管理充电、放电、以及功耗管理等功能。
应当指出的是,本申请实施例中的方案还可以应用于其他移动终端101中,相应的名称也可以用其他移动终端101中的对应功能的名称进行替代。
下面将结合图3对本申请实施例提供的寻星方法进行具体阐述。
示例性地,图3为本申请实施例提供的寻星方法的流程示意图。该寻星方法可以适用于上述的移动终端101,该移动终端101位于上述的寻星系统中。请参阅图3,该寻星方法包括:
S301:根据移动终端101的位置信息、可用卫星102的位置信息以及三维3D地图信息,确定移动终端101与可用卫星102之间的直视径是否已被障碍物遮挡,如果是,则执行S302。
具体地,移动终端101的位置信息可以包括但不限于从可用卫星102获取的经纬度信息、从无线网络中获取的移动终端101进行通信的基站的标识信息。三维3D地图信息可以从预存储的信息中获取,其中,三维3D地图信息包含3D地图中各个障碍物的位置、高度及形状轮廓。卫星位置信息包括卫星运行参数(如包括轨道面倾角、卫星离地距离、偏心率、平均近点角等等)。
对于用户的操作而言,用户可以在移动终端101的系统主界面点击进入目标应用程序的首页界面,然后点击首页界面中的“开始寻星”触控按钮,即可执行S301。其中,可 以先获取移动终端101的位置信息、可用卫星102的位置信息以及三维3D(three-dimensional,3D)地图信息。具体地,获取移动终端101的位置信息方式可以为但不限于基于LBS服务获取、基于GPS定位模块获取;获取可用卫星102的位置信息的方式可以为但不限于从预存储的卫星星历中获取可用卫星102的位置信息;需要说明的是,在获取可用卫星102的位置信息之前,需要根据移动终端101的位置信息、预存储的星历信息中包含的多个与卫星信号覆盖关联的卫星运行参数,从多个卫星中确定出可用卫星102。其中,卫星运行参数还可以包括不同时刻各个卫星发射信号在地球上的覆盖区域以及覆盖区域的信号强度。
另外,确定可用卫星102的方式可以为:选择在当前时刻及当前时刻后预设定的时间内,覆盖区域包括移动终端101的位置信息且覆盖区域的信号强度大于预设的阈值的卫星,确定为可用卫星102。在已知移动终端101的位置信息、可用卫星102的位置信息及3D地图中各个障碍物的位置、高度及形状轮廓的情况下,可用利用几何关系确定移动终端101与可用卫星102之间的直视径已被障碍物遮挡。其中,障碍物可以为生长茂密的植被、地质运动造成的地貌凸起或建筑物等,在此不作限定。
具体地,如图4所示,图4中包括移动终端A、移动终端B、移动终端C,障碍物a、障碍物b,障碍物c,障碍物d,可用卫星102在地面上的投影位置为S点。下面具体说明:
例如,障碍物a位于移动终端A与S点的连线上,因此,障碍物a可能会遮挡移动终端A与可用卫星102之间的直视径。由此,可以根据障碍物a到移动终端A的距离、移动终端A到S点的距离之间比例及可用卫星102与S点的距离,运用相似三角形原理确定出直视径在障碍物a所在的位置的高度,并识别出障碍物a的高度高于直视径在障碍物a所在的位置的高度,从而可以确定移动终端A与可用卫星102之间的直视径已被障碍物遮挡。
又例如,障碍物d位于移动终端C与S点的连线上,因此,障碍物d可能会对移动终端C与可用卫星102之间的直视径造成遮挡。根据障碍物d到移动终端C的距离、移动终端C到S点的距离之间比例及可用卫星102与S点的距离,运用相似三角形原理确定出直视径在障碍物d所在的位置的高度,并识别出障碍物d的高度低于直视径在障碍物d所在的位置的高度,从而可以确定移动终端C与可用卫星102之间存在直视径。
再例如,障碍物b、障碍物c均未位于S点与任意一个移动终端101的连线上,因此,可以直接确定障碍物b、障碍物c不会对任意一个移动终端与可用卫星102的直视径造成遮挡。
S302:根据3D地图信息,确定目标区域的位置信息。
其中,目标区域为移动终端101与可用卫星102之间存在直视径的区域。由于已知可用卫星102的位置信息、3D地图中各个障碍物的位置、高度及形状轮廓,可用利用几何关系确定与可用卫星102之间存在直视径的区域。
进一步地,目标区域可以为与移动终端101之间的距离小于或等于预设距离的区域。由于目标区域可以为与移动终端101之间的距离小于或等于预设距离的区域,因而可以使得用户从移动终端101所在的位置到达目标区域的花费的时间最短,提高用户的操作体验感。
更进一步地,一种可能的设计方式中,S302,根据3D地图信息,确定目标区域的位置信息,可以包括:
步骤A1:确定候选区域。
其中,候选区域可以为与移动终端101之间的距离小于或等于预设距离的区域。可选地,候选区域可以包括多个子区域。
具体地,可以对以移动终端101的位置为中心,且与移动终端101之间的距离小于预设距离的圆形区域或正多边形区域进行划分,从而得到包括多个子区域的候选区域。例如,候选区域可以包括3个、4个、8个、9个子区域等,在此不做限定。如图5所示,候选区域为与移动终端101之间的距离小于预设距离的圆形区域,且圆形区域包括3个子区域(即子区域Q1、子区域Q2、子区域Q3)。
步骤A2:根据至少一个子区域的位置信息、可用卫星102的位置信息、3D地图信息,确定目标区域。
其中,目标区域可以为多个子区域中与可用卫星102之间存在直视径的子区域。
具体地,可以依次序(如从左到右的次序或从上到下的次序)根据子区域的位置信息、可用卫星102的位置信息、3D地图信息,确定目标区域。如图5所示,阴影部分覆盖的区域为确定的目标区域(即子区域Q1)。其中,子区域的位置信息可以为子区域的几何中心的位置信息。另外,确定目标区域的方式可以为根据子区域的位置信息、可用卫星102的位置信息以及三维3D地图信息,确定子区域与可用卫星102之间的直视径是否被障碍物遮挡,如果未被遮挡,则将该子区域确定为目标区域。
作为其中一种实施方式,如果第一次选择的子区域被确定为目标区域,则不再根据后续次序子区域的位置信息、可用卫星102的位置信息、3D地图信息,确定目标区域。应理解,如果第一次选择的子区域没有被确定为目标区域,则选择下一个子区域确定是否可以作为目标区域,以此类推,直到将选择的子区域确定为目标区域为止。具体地,假设候选区域包括4个子区域,依次序遍历到第一个子区域,如果第一个子区域未被确定为目标区域;则遍历第二个子区域,如果第二个子区域被确定为目标区域,则停止遍历,并将第二个子区域作为最终确定的目标区域。
作为另一种实施方式,无论第一次选择的子区域是否被确定为目标区域,继续根据第二次选择的子区域的位置信息、可用卫星102的位置信息、3D地图信息,是否为目标区域;以此类推,直到将选择的子区域确定为目标区域为止,并从被确定为目标区域的子区域中选择与移动终端101的位置最近的子区域作为最终的结果。具体地,假设候选区域包括4个子区域,依次序遍历到4个区域中所有的子区域,如果第二次遍历到的子区域、第四次遍历到的子区域被确定为目标区域且第二次遍历到的子区域与移动终端101的位置最近,则将第二次遍历到的子区域作为最终确定的目标区域。
更进一步地,在另一种可能的设计方式中,S302,根据3D地图信息,确定目标区域的位置信息可以包括:
步骤B1:根据3D地图信息,确定第一连线与第二连线之间的第一夹角。
其中,第一连线可以为障碍物的顶部与可用卫星102之间的连线,第二连线可以为可用卫星102在地面的投影与移动终端101的之间的连线。步骤B2:确定目标区域。
其中,目标区域可以为位于第二连线的延长线上,且第一夹角与第二夹角之间的差 值大于夹角阈值的区域,第二夹角可以为第三连线与第二连线的延长线之间的夹角,第三连线可以为可用卫星102与第二连线的延长线之间的连线。
结合图6,说明步骤B1至步骤B2的原理。如图6所示,可用卫星102在地面上的投影为S点,S点与移动终端101A的连线为第二连线,障碍物a与可用卫星102的连线为第一连线,第一连线与第二连线的夹角为K1,可以理解地,第一连线在第二连线的交点所在的位置与可用卫星102的直视径恰好被障碍物a的顶部遮挡,由此,在第二连线的延长线上,且第一夹角与第二夹角之间的差值大于夹角阈值的区域(在第二连线的延长线上远离障碍物a的区域),与可用卫星102的直视径不会被障碍物a遮挡。因此,将位于第二连线的延长线上,且第一夹角与第二夹角之间的差值大于夹角阈值的区域确定为目标区域(如图6中的加粗线条部分),其中,第三连线与第二连线的延长线之间的夹角为K2。
一种可能的设计方式中,如图3所示,在S302,根据3D地图信息,确定目标区域的位置信息之后,所述方法还可以包括:
S303:输出导航信息。
其中,导航信息用于根据3D地图信息,从移动终端101的位置信息对应的位置移动至目标区域。导航信息可以清晰明了的指引用户如何从移动终端101的位置到达目标区域。其中,导航信息显示于目标应用程序的显示界面、由移动终端101的扬声器播报、或者显示于应用程序的显示界面与移动终端101的扬声器播报二者的结合。
一种可能的设计方式中,如图3所示,在S303,输出导航信息之后,所述方法还可以包括:
S304:若移动终端101已处于目标区域,则获取移动终端101的姿态信息。
具体地,用户可以手持移动终端101根据导航信息向目标区域移动,在移动的过程中,获取移动终端101的位置信息。由此,可以确定移动终端101是否已处于目标区域,如果已处于目标区域,则获取移动终端101的姿态信息。其中,移动终端101的姿态信息可以包括移动终端101的俯仰角、方位角及天线的极化角。
S305:根据移动终端101的天线的天线方向图和移动终端101的姿态信息,确定天线的最大增益方向角。
其中,天线的天线方向图是指在移动终端101沿长边竖直放置时,天线相对于竖直方向的夹角。
S306:根据移动终端101的位置信息及可用卫星102的位置信息,确定可用卫星102的目标方向角。
其中,目标方向角包括目标方位角、目标俯仰角、目标极化角,具体地,目标方位角可以为移动终端101沿长边竖直放置时,天线与卫星在地面上的投影上的连线,与预设的地面坐标系的X轴的夹角。目标俯仰角可以为移动终端101沿长边竖直放置时,天线与卫星在地面上的投影上的连线,与移动终端101与卫星的连线的夹角。目标俯仰角可以为在移动终端101沿长边竖直放置且天线排布也为竖直方向时,天线辐射时形成电场强度的方向。
S307:根据最大增益方向角与目标方向角的差值,确定第一姿态调整参数。
例如,差值为(5度、10度、20度)时,第一姿态调整参数可以为“朝前反转5度、 向左翻转10度、向下翻转20度”。
S308:输出第一姿态调整参数对应的提示信息。
其中,提示信息用于将最大增益方向角与目标方向角之间的差值调整至小于或等于角度阈值。用户可以根据输出的第一姿态调整参数对应的提示信息,对移动终端101的姿态进行调整,方便快捷,且确定第一姿态调整参数参考了天线方向图的因素,因而确定的第一姿态调整参数的可靠性也很高。其中,角度阈值可以为2度、3度、5度等,在此不作限定。
一种可能的设计方式中,提示信息可以包括如下一项或多项:显示信息、云台控制信息、语音提示信息、或震动提示信息。其中,如图7所示,显示信息可以为调整的方向指引(如箭头)及调整的幅度(如,调整的角度)。云台控制信息可以为携带有调整方向及调整幅度的模拟信号,将携带有调整方向及调整幅度的模拟信号输出至云台控制器,云台控制器可以根据调整方向及调整幅度,控制电机驱动搭载有移动终端101的云台调整姿态,从而实现自动对移动终端101的姿态的调整。语音提示信息可以为:“顺时针转动10度”、“向上翻转5度”等等。震动提示信息可以为:控制移动终端101的震动马达震动,以提示用户对移动终端101的姿态进行调整。
需要说明的是,在调整的过程中,调整的方向正确或错误,输出的提示信息可以不同。例如,如果调整正确,显示信息可以越变越小或颜色渐变为绿色,调整错误显示信息可以越变越大或颜色渐变为红色;再例如,如果调整正确,震动马达的震动/幅度频率越变越小,如果调整错误,震动马达的震动频率/幅度越来越大。
一种可能的设计方式中,如图3所示,在S308,输出第一姿态调整参数对应的提示信息之后,所述方法还可以包括:
S309:若最大增益方向角与目标方向角的差值小于或等于角度阈值,则建立移动终端101与可用卫星102之间的通信连接。
在建立通信连接后,移动终端101发送通信请求至可用卫星102,可用卫星102接收到通信请求后,发送反馈信息至移动终端101,移动终端101根据反馈信息与可用卫星102建立通信连接,从而移动终端101可以向可用卫星102发送通信信号或接受可用卫星102发送的通信信号。
S310:若移动终端101接收到的可用卫星102发出的信号的信号强度小于或等于强度阈值,则确定第二姿态调整参数。
在信号强度小于或等于强度阈值的情况下,说明移动终端101与可用卫星102之间的通信质量差,需要重新调整移动终端101的姿态,第二姿态调整参数即为需要重新调整的参数。需要说明的是,确定第二姿态调整参数的过程请参照S304-S308,在此不再赘述。
S311:若实际调整次数大于或等于预设调整次数,则输出第二提示信息。
其中,每确定一次第一姿态调整参数或第二姿态调整参数对实际调整次数计数一次,第二提示信息可以为表征寻星失败的信息。
在实际调整次数大于或等于预设调整次数的情况下,说明在当前的位置通过调整移动终端101的姿态已经不能够使得接收到的可用卫星102发出的信号的信号强度大于强度阈值,因此,可以输出表征寻星失败的信息,以提示用户更换位置,且避免用户一直 调整移动终端101的姿态进行寻星,减少了功耗。
基于图3中提供的寻星方法,根据移动终端的位置信息、可用卫星的位置信息以及三维3D地图信息,确定移动终端与可用卫星之间的直视径是否已被障碍物遮挡。若直视径已被遮挡,则根据3D地图信息,确定目标区域的位置信息。其中,目标区域为移动终端与可用卫星之间存在直视径的区域。由此,上述的寻星方式适用于移动终端,无需天线外置或天线在移动终端的内部占用空间较大,从而兼顾使得移动终端低成本、小体积、低功耗。
以上结合图3-图7详细说明了本申请实施例提供的寻星方法。以下结合图8和图9详细说明用于执行本申请实施例提供的寻星方法的寻星装置。
请参阅图8,本申请实施例还提供一种寻星装置800,可以适用于移动终端101,该移动终端101位于上述的寻星系统中。需要说明的是,本申请实施例所提供的寻星装置800,其基本原理及产生的技术效果和上述实施例相同,为简要描述,本实施例部分未提及之处,可参考上述的实施例中相应内容。所述装置800包括确定单元801、获取单元802。其中,
确定单元801,用于根据移动终端101的位置信息、可用卫星102的位置信息以及三维3D地图信息,确定移动终端101与可用卫星102之间的直视径是否已被障碍物遮挡。
获取单元802,用于若直视径已被障碍物遮挡,则根据3D地图信息,获取目标区域的位置信息。其中,目标区域为移动终端101与可用卫星102之间存在直视径的区域。
进一步地,目标区域为与移动终端101之间的距离小于或等于预设距离的区域。
更进一步地,一种可能的设计方式中,如图8所示,获取单元802用于确定候选区域,其中,候选区域为与移动终端101之间的距离小于或等于预设距离的区域。其中,候选区域可以包括多个子区域。
获取单元802,还用于根据至少一个子区域的位置信息、可用卫星102的位置信息、3D地图信息,获取目标区域的位置信息。其中,目标区域为多个子区域中与可用卫星102之间存在直视径的子区域。
更进一步地,在另一种可能的设计方式中,如图8所示,获取单元802用于根据3D地图信息,确定第一连线与第二连线之间的第一夹角。其中,第一连线为障碍物的顶部与可用卫星102之间的连线,第二连线为可用卫星102在地面的投影与移动终端101的之间的连线。
获取单元802,还用于获取目标区域的位置信息。其中,目标区域为位于第二连线的延长线上,且第一夹角与第二夹角之间的差值大于夹角阈值的区域,第二夹角为第三连线的延长线与第二连线的延长线之间的夹角,第三连线为可用卫星102与障碍物的顶部之间的连线。
一种可能的设计方式中,如图8所示,所述装置800还可以包括:输出单元803,用于输出导航信息,导航信息用于根据3D地图信息,从移动终端101的位置信息对应的位置移动至目标区域。
一种可能的设计方式中,如图8所示,获取单元802,还可以用于若移动终端101已处于所述目标区域,则获取移动终端101的姿态信息。
确定单元801,还可以用于根据移动终端101的天线的天线方向图和移动终端101 的姿态信息,确定天线的最大增益方向角。
确定单元801,还可以用于根据移动终端101的位置信息及可用卫星102的位置信息,确定可用卫星102的目标方向角。
确定单元801,还可以用于根据最大增益方向角与所述目标方向角的差值,确定第一姿态调整参数。
输出单元803,可以用于输出第一姿态调整参数对应的提示信息;其中,提示信息用于将最大增益方向角与目标方向角之间的差值调整至小于或等于角度阈值。
一种可能的设计方式中,提示信息可以包括如下一项或多项:显示信息、云台控制信息、语音提示信息、或震动提示信息。
一种可能的设计方式中,如图8所示,所述装置800还可以包括:通信单元804,用于若最大增益方向角与目标方向角的差值小于或等于角度阈值,则建立移动终端101与可用卫星102之间的通信连接。
确定单元801,还可以用于若移动终端101接收到的可用卫星102发出的信号的信号强度小于或等于强度阈值,则确定第二姿态调整参数。
输出单元803,还可以用于若实际调整次数大于或等于预设调整次数,则输出第二提示信息。其中,每确定一次第一姿态调整参数或第二姿态调整参数对实际调整次数计数一次,第二提示信息为表征寻星失败的信息。
可以理解地,上述的确定单元801、获取单元802可以集成于一个处理模块,也可以分别单独独立设置,在此不做限定。
可选地,寻星装置800还可以包括存储模块(图8中未示出),该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得寻星装置800可以执行图1中所示出的寻星方法的功能。
可选地,所述装置800还可以包括发送模块和接收模块(图8中未示出),接收模块用于接收可用卫星发射的通讯信号,发送模块用于发出通信信号。可选地,接收模块和发送模块可以集成为一个收发模块。其中,收发模块用于实现寻星装置800的发送功能和接收功能。
应理解,寻星装置800中涉及的处理模块可以由处理器或处理器相关电路组件实现,可以为处理器或处理单元;收发模块可以由收发器或收发器相关电路组件实现,可以为收发器或收发单元。
需要说明的是,寻星装置800可以是移动终端101,也可以是可设置于移动终端101中的芯片(系统)或其他部件或组件,还可以是包含移动终端101的装置800,本申请对此不做限定。
此外,寻星装置800的技术效果可以参考第图2所示出的寻星方法的技术效果,此处不再赘述。
示例性地,图9为本申请实施例提供的寻星装置900的结构示意图。该寻星装置900可以是移动终端101,也可以是可设置于移动终端101的芯片(系统)或其他部件或组件。如图9所示,寻星装置900可以包括处理器901。可选地,寻星装置900还可以包括存储器902和/或收发器903。其中,处理器901与存储器902和收发器903耦合,如可以通过通信总线连接。
下面结合图9对寻星装置900的各个构成部件进行具体的介绍:
其中,处理器901是寻星装置900的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器901是一个或多个中央处理器(central processing unit,CPU),也可以是特定集成电路(application specific integrated circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。
可选地,处理器901可以通过运行或执行存储在存储器902内的软件程序,以及调用存储在存储器902内的数据,执行寻星装置900的各种功能。
在具体的实现中,作为一种实施例,处理器901可以包括一个或多个CPU,例如图9中所示出的CPU0和CPU1。
在具体实现中,作为一种实施例,寻星装置900也可以包括多个处理器,例如图2中所示的处理器901和处理器904。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
其中,存储器902用于存储执行本申请方案的软件程序,并由处理器901来控制执行,具体实现方式可以参考上述方法实施例,此处不再赘述。
可选地,存储器902可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器902可以和处理器901集成在一起,也可以独立存在,并通过寻星装置900的接口电路(图9中未示出)与处理器901耦合,本申请实施例对此不作具体限定。
收发器903,用于与其他寻星装置之间的通信。例如,寻星装置900为移动终端101,收发器903可以用于与网络设备通信,或者与另一个移动终端101通信。又例如,寻星装置900为网络设备,收发器903可以用于与移动终端101通信,或者与另一个网络设备通信。
可选地,收发器903可以包括接收器和发送器(图9中未单独示出)。其中,接收器用于实现接收功能,发送器用于实现发送功能。
可选地,收发器903可以和处理器901集成在一起,也可以独立存在,并通过寻星装置900的接口电路(图9中未示出)与处理器901耦合,本申请实施例对此不作具体限定。
需要说明的是,图9中示出的寻星装置900的结构并不构成对该寻星装置的限定,实际的寻星装置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
此外,寻星装置900的技术效果可以参考上述方法实施例所述的通信方法的技术效果,此处不再赘述。
本申请实施例还提供一种芯片系统,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片系统实现上述任一方法实施例中的方法。
可选地,该芯片系统中的处理器可以为一个或多个。该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置,本申请并不限定。示例性的,存储器可以是非瞬时性处理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型,以及存储器与处理器的设置方式不作具体限定。
示例性的,该芯片系统可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
本申请实施例提供一种卫星通信系统。该卫星通信系统包括上述一个或多个移动终端,以及一个或多个可用卫星。
应理解,在本申请实施例中的处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM, DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件(如电路)、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示 的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种寻星方法,其特征在于,适用于移动终端,所述方法包括:
    根据移动终端的位置信息、可用卫星的位置信息以及三维3D地图信息,确定所述移动终端与所述可用卫星之间的直视径是否已被障碍物遮挡;
    若所述直视径已被障碍物遮挡,则根据所述3D地图信息,确定目标区域的位置信息,其中,所述目标区域为所述移动终端与所述可用卫星之间存在直视径的区域。
  2. 根据权利要求1所述的方法,其特征在于,所述目标区域与所述移动终端之间的距离小于或等于预设距离的区域。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述3D地图信息,确定目标区域的位置信息,包括:
    确定候选区域,其中,所述候选区域为与所述移动终端之间的距离小于或等于所述预设距离的区域,其中,所述候选区域包括多个子区域;
    根据至少一个所述子区域的位置信息、所述可用卫星的位置信息、所述3D地图信息,确定目标区域,其中,所述目标区域为所述多个子区域中与所述可用卫星之间存在直视径的子区域。
  4. 根据权利要求2所述的方法,其特征在于,所述根据所述3D地图信息,确定目标区域的位置信息,包括:
    根据所述3D地图信息,确定第一连线与第二连线之间的第一夹角;其中,所述第一连线为障碍物的顶部与所述可用卫星之间的连线,所述第二连线为所述可用卫星在地面的投影与所述移动终端的之间的连线;
    确定目标区域,其中,所述目标区域为位于所述第二连线的延长线上,且所述第一夹角与第二夹角之间的差值大于夹角阈值的区域,所述第二夹角为第三连线与所述第二连线的延长线之间的夹角,所述第三连线为所述可用卫星与第二连线的延长线之间的连线。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述方法还包括:
    输出导航信息,所述导航信息用于根据3D地图信息,从所述移动终端的位置信息对应的位置移动至所述目标区域。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述方法还包括:
    若所述移动终端已处于所述目标区域,则获取所述移动终端的姿态信息;
    根据所述移动终端的天线的天线方向图和所述移动终端的姿态信息,确定所述天线的最大增益方向角;
    根据移动终端的位置信息及所述可用卫星的位置信息,确定所述可用卫星的目标方向角;
    根据所述最大增益方向角与所述目标方向角的差值,确定第一姿态调整参数;
    输出所述第一姿态调整参数对应的提示信息;其中,所述提示信息用于将所述最大增益方向角与所述目标方向角之间的差值调整至小于或等于角度阈值。
  7. 根据权利要求6所述的方法,其特征在于,所述提示信息包括如下一项或多项:显示信息、云台控制信息、语音提示信息、或震动提示信息。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    若所述最大增益方向角与所述目标方向角的差值小于或等于所述角度阈值,则建立所述移动终端与所述可用卫星之间的通信连接;
    若所述移动终端接收到的所述可用卫星发出的信号的信号强度小于或等于强度阈值,则确定第二姿态调整参数;
    若实际调整次数大于或等于预设调整次数,则输出第二提示信息,其中,每确定一次所述第一姿态调整参数或所述第二姿态调整参数对所述实际调整次数计数一次,所述第二提示信息为表征寻星失败的信息。
  9. 一种寻星装置,其特征在于,适用于移动终端,所述装置包括确定单元、获取单元,其中,
    所述确定单元,用于根据移动终端的位置信息、可用卫星的位置信息以及三维3D地图信息,确定所述移动终端与所述可用卫星之间的直视径是否已被障碍物遮挡;
    所述获取单元,用于若所述直视径已被遮挡,则根据所述3D地图信息,获取目标区域的位置信息,其中,所述目标区域为所述移动终端与所述可用卫星之间存在直视径的区域。
  10. 根据权利要求9所述的装置,其特征在于,所述目标区域与所述移动终端之间的距离小于或等于预设距离。
  11. 根据权利要求10所述的装置,其特征在于,所述获取单元,用于确定候选区域,其中,所述候选区域为与所述移动终端之间的距离小于或等于所述预设距离的区域,其中,所述候选区域包括多个子区域;
    所述获取单元,还用于根据至少一个所述子区域的位置信息、所述可用卫星的位置信息、所述3D地图信息,获取目标区域的位置信息,其中,所述目标区域为所述多个子区域中与所述可用卫星之间存在直视径的子区域。
  12. 根据权利要求10所述的装置,其特征在于,所述获取单元,用于根据所述3D地图信息,确定第一连线与第二连线之间的第一夹角;其中,所述第一连线为障碍物的顶部与所述可用卫星之间的连线,所述第二连线为所述可用卫星在地面的投影与所述移动终端的之间的连线;
    所述获取单元,还用于获取目标区域的位置信息,其中,所述目标区域为位于所述第二连线的延长线上,且所述第一夹角与第二夹角之间的差值大于夹角阈值的区域,所述第二夹角为第三连线与所述第二连线的延长线之间的夹角,所述第三连线为所述可用卫星与第二连线的延长线之间的连线。
  13. 根据权利要求9-12中任一项所述的装置,其特征在于,所述装置还包括:
    输出单元,用于输出导航信息,所述导航信息用于根据3D地图信息,从所述移动终端的位置信息对应的位置移动至所述目标区域。
  14. 根据权利要求9-13中任一项所述的装置,其特征在于,
    所述获取单元,还用于若所述移动终端已处于所述目标区域,则获取所述移动终端的姿态信息;
    所述确定单元,还用于根据所述移动终端的天线的天线方向图和所述移动终端的姿态信息,确定所述天线的最大增益方向角;
    所述确定单元,还用于根据移动终端的位置信息及所述可用卫星的位置信息,确定 所述可用卫星的目标方向角;
    所述确定单元,还用于根据所述最大增益方向角与所述目标方向角的差值,确定第一姿态调整参数;
    输出单元,用于输出所述第一姿态调整参数对应的提示信息;其中,所述提示信息用于将所述最大增益方向角与所述目标方向角之间的差值调整至小于或等于角度阈值。
  15. 根据权利要求14所述的装置,其特征在于,所述提示信息包括如下一项或多项:显示信息、云台控制信息、语音提示信息、或震动提示信息。
  16. 根据权利要求15所述的装置,其特征在于,所述装置还包括:
    通信单元,用于若所述最大增益方向角与所述目标方向角的差值小于或等于所述角度阈值,则建立所述移动终端与所述可用卫星之间的通信连接;
    所述确定单元,还用于若所述移动终端接收到的所述可用卫星发出的信号的信号强度小于或等于强度阈值,则确定第二姿态调整参数;
    所述输出单元,还用于若实际调整次数大于或等于预设调整次数,则输出第二提示信息,其中,每确定一次所述第一姿态调整参数或所述第二姿态调整参数对所述实际调整次数计数一次,所述第二提示信息为表征寻星失败的信息。
  17. 一种寻星装置,其特征在于,包括:处理器,所述处理器与存储器耦合;
    所述处理器,用于执行所述存储器中存储的计算机程序,以使得所述寻星装置执行如权利要求1-8中任一项所述的寻星方法。
  18. 一种寻星装置,其特征在于,包括:处理器和存储器;所述存储器用于存储计算机指令,当所述处理器执行该指令时,以使所述寻星装置执行如权利要求1-8中任一项所述的寻星方法。
  19. 一种寻星装置,其特征在于,包括:处理器和接口电路;其中,
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器用于运行所述代码指令以执行如权利要求1至8中任一项所述的方法。
  20. 一种寻星装置,其特征在于,所述寻星装置包括处理器和收发器,所述收发器用于所述寻星装置和其他寻星装置之间进行信息交互,所述处理器执行程序指令,用以执行如权利要求1-8中任一项所述的寻星方法。
  21. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机执行如权利要求1-8中任一项所述的寻星方法。
  22. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机执行如权利要求1-8中任一项所述的寻星方法。
PCT/CN2021/125565 2020-10-26 2021-10-22 寻星方法及装置 WO2022089310A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023525103A JP2023546616A (ja) 2020-10-26 2021-10-22 衛星探索方法および装置
EP21885037.8A EP4216165A4 (en) 2020-10-26 2021-10-22 METHOD AND DEVICE FOR SATELLITE FINDING
US18/250,425 US20230400326A1 (en) 2020-10-26 2021-10-22 Satellite Search Method and Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011158431.2A CN114494408A (zh) 2020-10-26 2020-10-26 寻星方法及装置
CN202011158431.2 2020-10-26

Publications (1)

Publication Number Publication Date
WO2022089310A1 true WO2022089310A1 (zh) 2022-05-05

Family

ID=81383328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125565 WO2022089310A1 (zh) 2020-10-26 2021-10-22 寻星方法及装置

Country Status (5)

Country Link
US (1) US20230400326A1 (zh)
EP (1) EP4216165A4 (zh)
JP (1) JP2023546616A (zh)
CN (1) CN114494408A (zh)
WO (1) WO2022089310A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023241271A1 (zh) * 2022-06-14 2023-12-21 华为技术有限公司 一种寻呼方法及通信装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115051747B (zh) * 2022-05-17 2023-03-03 爱浦路网络技术(北京)有限公司 卫星通信终端静默控制方法、计算机装置及存储介质
CN115914455A (zh) * 2022-10-18 2023-04-04 湖北星纪时代科技有限公司 信息提示方法、装置、电子设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2634599A1 (en) * 2012-02-29 2013-09-04 Nxp B.V. Satellite positioning using a sky-occlusion map
CN104391313A (zh) * 2014-08-29 2015-03-04 北京中电华远科技有限公司 一种移动终端室外定位装置和移动终端
CN106954223A (zh) * 2017-04-17 2017-07-14 京信通信系统(中国)有限公司 一种动中通端站系统及动中通端站系统的通信方法
CN109284532A (zh) * 2018-08-06 2019-01-29 中国人民解放军海军大连舰艇学院 舰船载卫星通信天线受遮挡航向的预测方法
CN111443365A (zh) * 2020-03-27 2020-07-24 维沃移动通信有限公司 一种定位方法及电子设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9893799B2 (en) * 2012-12-17 2018-02-13 Higher Ground Llc Personal communications device for reliable satellite communications
US10164723B2 (en) * 2017-03-17 2018-12-25 Higher Ground Llc Adaptive augmented reality satellite acquisition
US10116893B1 (en) * 2017-04-28 2018-10-30 Higher Ground Llc Selectively controlling a direction of signal transmission using adaptive augmented reality

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2634599A1 (en) * 2012-02-29 2013-09-04 Nxp B.V. Satellite positioning using a sky-occlusion map
CN104391313A (zh) * 2014-08-29 2015-03-04 北京中电华远科技有限公司 一种移动终端室外定位装置和移动终端
CN106954223A (zh) * 2017-04-17 2017-07-14 京信通信系统(中国)有限公司 一种动中通端站系统及动中通端站系统的通信方法
CN109284532A (zh) * 2018-08-06 2019-01-29 中国人民解放军海军大连舰艇学院 舰船载卫星通信天线受遮挡航向的预测方法
CN111443365A (zh) * 2020-03-27 2020-07-24 维沃移动通信有限公司 一种定位方法及电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4216165A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023241271A1 (zh) * 2022-06-14 2023-12-21 华为技术有限公司 一种寻呼方法及通信装置

Also Published As

Publication number Publication date
US20230400326A1 (en) 2023-12-14
JP2023546616A (ja) 2023-11-06
EP4216165A1 (en) 2023-07-26
CN114494408A (zh) 2022-05-13
EP4216165A4 (en) 2024-04-10

Similar Documents

Publication Publication Date Title
WO2022089310A1 (zh) 寻星方法及装置
CN109891934B (zh) 一种定位方法及装置
US9503857B2 (en) Method and apparatus for providing location information in mobile device
US10043314B2 (en) Display control method and information processing apparatus
AU2021204449B2 (en) Image sharing method and electronic device
EP3683665B1 (en) Touch control method and device
CN107688638B (zh) 应用列表的推荐方法、装置、存储介质及移动终端
WO2019196837A1 (zh) 一种终端检测方法及终端
JP2021520540A (ja) カメラの位置決め方法および装置、端末並びにコンピュータプログラム
JP6816492B2 (ja) 表示制御プログラム、表示制御方法および表示制御装置
US20160284130A1 (en) Display control method and information processing apparatus
CN108055644B (zh) 定位控制方法、装置、存储介质及终端设备
US10192332B2 (en) Display control method and information processing apparatus
CN108055635B (zh) 位置信息的获取方法、装置、存储介质及终端
US20200158528A1 (en) Full-vision navigation and positioning method, intelligent terminal and storage device
JP2023057120A (ja) 飛行体の制御に関する情報表示方法
CN107490380B (zh) 导航方法、装置、存储介质及移动终端
JP6938904B2 (ja) 送信制御プログラム、送信制御方法および情報処理装置
CN108156313B (zh) 定位控制方法、装置、存储介质及终端设备
US9338578B2 (en) Localization control method of sound for portable device and portable device thereof
CN112817337A (zh) 获取路径的方法、装置、设备和可读存储介质
CN114449647B (zh) 定位方法及装置
CN111795697B (zh) 设备定位方法、装置、电子设备及存储介质
CN117372320A (zh) 定位地图的质量检测方法、装置、设备及可读存储介质
CN115290094A (zh) 导航方法、装置、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885037

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023525103

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2021885037

Country of ref document: EP

Effective date: 20230421

NENP Non-entry into the national phase

Ref country code: DE