WO2022089300A1 - 骨声纹传感器模组和电子设备 - Google Patents

骨声纹传感器模组和电子设备 Download PDF

Info

Publication number
WO2022089300A1
WO2022089300A1 PCT/CN2021/125313 CN2021125313W WO2022089300A1 WO 2022089300 A1 WO2022089300 A1 WO 2022089300A1 CN 2021125313 W CN2021125313 W CN 2021125313W WO 2022089300 A1 WO2022089300 A1 WO 2022089300A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
casing
sensor
sensor module
vibration transmission
Prior art date
Application number
PCT/CN2021/125313
Other languages
English (en)
French (fr)
Inventor
方华斌
端木鲁玉
Original Assignee
歌尔微电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔微电子股份有限公司 filed Critical 歌尔微电子股份有限公司
Publication of WO2022089300A1 publication Critical patent/WO2022089300A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R23/00Transducers other than those covered by groups H04R9/00 - H04R21/00
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones

Definitions

  • the present application relates to the technical field of sensors, and in particular, to a bone voiceprint sensor module and an electronic device.
  • the bone voiceprint sensor uses the slight vibration of the head and neck bones caused by people's speech to collect sound signals and convert them into electrical signals. Because it is different from traditional microphones that collect sound through air conduction, it can transmit sound with high definition in a very noisy environment. In many occasions, such as fire scenes, firefighters with anti-virus equipment cannot speak directly into the microphone with their mouths, so bone voiceprint sensors can be used at this time. With the development of electronic products, the application of bone voiceprint sensors is becoming more and more extensive.
  • a bone voiceprint sensor usually includes a vibration pickup unit and a sensor unit.
  • the vibration pickup unit is used to pick up the external bone vibration signal and transmit it to the sensor unit; the sensor unit is used to convert the vibration signal into an electrical signal.
  • the bone voiceprint sensor When the bone voiceprint sensor is applied to an electronic device, the bone voiceprint sensor is usually mounted on the electronic control board as a separate component. In this way, the vibration pickup unit and the sensor unit are stacked in sequence in a direction away from the electronic control board, which will have a great influence on the height of the electronic device.
  • the main purpose of this application is to propose a bone voiceprint sensor module, which aims to solve the technical problem in the related art that when the bone voiceprint sensor is applied to an electronic device, the height of the electronic device is greatly affected.
  • a bone voiceprint sensor module comprising:
  • the electric control board is provided with a vibration transmission channel, and the electric control board has a first surface;
  • the vibration pickup unit is mounted on the first surface, and the vibration pickup unit is used for picking up an external bone vibration signal to generate a response vibration signal;
  • the sensor unit is mounted on the first surface, and the vibration transmission channel communicates with the vibration pickup unit and the sensor unit, so that the response vibration signal is transmitted to the sensor through the vibration transmission channel unit.
  • the vibration transmission channel has a first vibration transmission port and a second vibration transmission port distributed on the first surface at intervals;
  • the sensor unit includes a first casing and a sensor chip arranged inside the first casing, the first casing is mounted on the first surface, and the back cavity of the sensor chip is connected to the The first vibration transmission port is connected;
  • the vibration pickup unit includes a second casing and an elastic vibration pickup member arranged in the second casing, the second casing is mounted on the first surface, and the inner space of the second casing is connected to the inner space of the second casing.
  • the second vibration transmission port is in communication.
  • one end of the first casing is open, the open end of the first casing is mounted on the first surface, and the sensor chip is mounted on the first surface to The back cavity of the sensor chip is communicated with the first vibration transmission port.
  • the first casing includes a base plate and a casing body with an open end, the base plate is disposed at the open end of the casing body, the sensor chip is disposed on the base plate, and the base plate is disposed at the open end of the casing body. It is mounted on the first surface, and the substrate is provided with a vibration transmission through hole connecting the back cavity of the sensor chip and the first vibration transmission port.
  • one end of the second casing is open, and the open end of the second casing is mounted on the first surface to communicate with the second vibration transmission port.
  • the vibration transmission channel is a U-shaped channel or a V-shaped channel.
  • the first surface is provided with an installation groove, and the vibration pickup unit is installed at the bottom of the installation groove.
  • the elastic vibration pickup member is a diaphragm.
  • the elastic vibration pickup member includes a mounting ring provided on the shell wall of the second housing, a vibration pickup sheet located in the mounting ring and spaced from the mounting ring, and connecting the mounting ring.
  • the present application also provides an electronic device, including the above-mentioned bone voiceprint sensor module.
  • the vibration pickup unit and the sensor unit are disassembled to be respectively installed on the first surface of the electric control board; and a vibration transmission channel is opened on the electric control board to communicate with the vibration pickup unit and the sensor unit, so that the response vibration signal generated by the vibration pickup unit picking up external vibration can be transmitted to the sensor unit through the vibration transmission channel, so that the sensor unit generates an electrical signal according to the received response vibration signal.
  • the vibration pickup unit and the sensor unit are installed on the same surface of the electric control board, it is not necessary to stack the sensor unit and the vibration pickup unit in sequence in a direction away from the electric control board, thereby reducing the overall size of the bone voiceprint sensor module. height, which is beneficial to reduce the height of electronic equipment.
  • the vibration pickup unit and the sensor unit are separated, the requirements for the sensor unit can be reduced, and the selection of the sensor unit can be wider, which is beneficial to reduce the cost and improve the practicability of the bone voiceprint sensor module.
  • FIG. 1 is a schematic structural diagram of an embodiment of a bone voiceprint sensor module according to the present application
  • FIG. 2 is a schematic structural diagram of another embodiment of the bone voiceprint sensor module of the present application.
  • FIG. 3 is a schematic structural diagram of another embodiment of a bone voiceprint sensor module according to the present application.
  • FIG. 4 is a schematic structural diagram of still another embodiment of the bone voiceprint sensor module of the present application.
  • the present application provides a bone voiceprint sensor module and an electronic device.
  • the bone voiceprint sensor module is used for electronic equipment, and the electronic equipment can be, but is not limited to, headsets, earphones, smart watches, smart bracelets, vehicle noise reduction equipment, and vibration sensing devices that are well known to those skilled in the art electronic equipment.
  • the bone voiceprint sensor module 100 includes an electronic control board 30 , a vibration pickup unit 10 and a sensor unit 20 .
  • the electronic control board 30 is a circuit board (such as a PCB board, etc.) of an electronic device, and the sensor unit 20 and the vibration pickup unit 10 are installed on the electronic control board 30 .
  • the electric control board 30 has a first surface 31 and a second surface 32 , and a vibration transmission channel 33 is provided on the electric control board 30 .
  • the vibration pickup unit 10 is installed on the first surface 31, and the vibration pickup unit 10 is used to pick up the bone vibration signal of the outside world (such as the wearer, or other vibration sources, and the wearer is used as an example for description below) to generate In response to the vibration signal, that is, the external bone vibration is transmitted to the vibration pickup unit 10, and the elastic vibration pickup member of the vibration pickup unit 10 vibrates to generate the response vibration signal.
  • the vibration signal such as the wearer, or other vibration sources, and the wearer is used as an example for description below
  • the sensor unit 20 is mounted on the first surface 31, and the vibration transmission channel 33 connects the vibration pickup unit 10 and the sensor unit 20, so that the response vibration signal is transmitted to the sensor unit 20 through the vibration transmission channel 33, and the The sensor unit 20 is used to generate an electrical signal according to the received vibration signal.
  • a closed vibration transmission air channel including a vibration transmission channel 33 is formed between the vibration pickup unit 10, the sensor unit 20 and the electronic control board 30, so that the response vibration signal is transmitted to the air through the closed vibration transmission channel. sensor unit 20.
  • the vibration pickup unit 10 and the sensor unit 20 are disassembled to be installed on the first surface 31 of the electric control board 30 respectively; and a vibration transmission channel is opened on the electric control board 30 33, to connect the vibration pickup unit 10 and the sensor unit 20, so that the response vibration signal generated by the vibration pickup unit 10 picking up external vibration can be transmitted to the sensor unit 20 through the vibration transmission channel 33, so that the sensor unit 20 An electrical signal is generated based on the received responsive vibration signal.
  • the vibration pickup unit 10 and the sensor unit 20 are installed on the same surface of the electric control board 30, respectively, it is not necessary to stack the sensor unit 20 and the vibration pickup unit 10 in sequence in a direction away from the electric control board 30, so that bone sound can be reduced.
  • the overall height of the pattern sensor module 100 is reduced, thereby helping to reduce the height of the electronic device.
  • the vibration pickup unit 10 and the sensor unit 20 are separated, the requirements for the sensor unit 20 can be reduced, and the selection of the sensor unit 20 can be wider, which is beneficial to reduce the cost and improve the practicality of the bone voiceprint sensor module 100. sex.
  • the overall height of the bone voiceprint sensor module 100 of the present application is relatively low, and the cost is also relatively low.
  • the vibration transmission channel 33 has a first vibration transmission port 331 and a second vibration transmission port 332 distributed on the first surface 31 at intervals, and the sensor unit 20 covers the first vibration transmission port port 331, so that the vibration transmission channel 33 communicates with the sensor unit 20 through the first vibration transmission port 331, and the vibration pickup unit 10 covers the second vibration transmission port 332, so that the vibration transmission channel 33 communicates with the sensor unit 20 through the second vibration transmission port 332.
  • the pickup unit 10 is connected.
  • the vibration pickup unit 10 includes a second casing 11 and an elastic vibration pickup member 12 disposed in the second casing 11 , and the second casing 11 is mounted on the first surface 31.
  • the inner space of the second housing 11 is communicated with the second vibration transmission port 332.
  • one end of the second casing 11 is open, and the open end of the second casing 11 is mounted on the first surface 31 to communicate with the second vibration transmission port 332 .
  • the second vibration transmission port 332 is located inside the opening of the second casing 11 so as to communicate with the second casing 11 . In this way, the structure of the second casing 11 can be simplified.
  • the elastic vibration pickup member 12 is installed on the peripheral wall of the second casing 11 to divide the space in the second casing 11 into a first cavity 111 and a second cavity 112 .
  • the first cavity 111 and the second cavity 112 are respectively located on two sides of the elastic vibration pickup member 12 , and the second vibration transmission port 332 communicates with the first cavity 111 .
  • the sensor unit 20 includes a first casing 21 and a sensor chip 22 disposed inside the first casing 21 , and the first casing 21 is mounted on the first surface 31 , and the back cavity 221 of the sensor chip 22 communicates with the first vibration transmission port 331 .
  • the back cavity 221 of the sensor chip 22 is disposed corresponding to the first vibration transmission port 331 , so that the back cavity 221 of the sensor chip 22 is connected to the first vibration transmission port 331 .
  • the first cavity 111 , the vibration transmission channel 33 and the back cavity 221 of the sensor chip 22 together form a closed vibration transmission air channel.
  • the external bone vibration is transmitted to the elastic vibration pickup member 12 through the second casing 11 , so that the elastic vibration pickup member 12 vibrates, thereby instigating the first cavity 111 , the vibration transmission channel 33 and the back cavity 221 of the sensor chip 22 .
  • the gas vibrates to transmit the vibration to the sensor chip 22 (ie, to vibrate the sensing membrane 222 of the sensor chip 22 ), and the sensor chip 22 thus generates an electrical signal, thus converting the bone vibration into an electrical signal.
  • the first casing 21 includes a base plate 212 and a casing body 213 with one end open, the base plate 212 is disposed at the open end of the casing body 213 , and the sensor chip 22 is disposed at The substrate 212 is mounted on the first surface 31 .
  • the substrate 212 is provided with a vibration transmission through hole 211 that communicates with the back cavity 221 of the sensor chip 22 and the first vibration transmission port 331 .
  • the shell body 213 includes a surrounding plate 2132 with open ends at both ends, and a top plate 2131 arranged at one end of the surrounding plate 2132 . for the PCB board.
  • the requirement for the housing body 213 can be reduced, instead of forming a three-layer PCB with the housing body 213 and the substrate 212 as in related designs
  • the board structure that is, the top board 2131, the surrounding board 2132 and the base board 212 are all PCB boards), so that the cost can be reduced, and the selection of the sensor unit 20 can be wider (that is, the requirements for the shell body 213 are reduced).
  • the case body 213 is a metal case or the like in which the enclosure plate 2132 and the top plate 2131 are integrally provided.
  • the sensor unit 20 further includes an ASIC (Application Specific Integrated Circuit) chip that is electrically connected to the sensor chip 22 , and the ASIC chip 23 is electrically connected to the sensor chip 22 to generate the sensor chip 22 . electrical signals are processed.
  • ASIC Application Specific Integrated Circuit
  • the ASIC chip 23 is installed in the first casing 21 and disposed on the surface of the substrate 212 .
  • the surface of the base plate 212 facing the electric control board 30 is provided with an electrical connection part 2121 , and the electric connection part 2121 is electrically connected with the electric control board 30 to realize the connection between the electric control board 30 and the bone
  • the electrical connection of the voiceprint sensor module is a soldering pin.
  • the vibration transmission channel 33 is a U-shaped channel.
  • the sensor unit 20 and the vibration pickup unit 10 are spaced apart in the first direction, and the vibration transmission channel 33 includes a first channel 333 extending along the first direction, which is arranged in the first One end of a channel 333 is connected to the first channel 333 and the second channel 334 of the first vibration transmission port 331, and the other end of the first channel 333 is connected to the first channel 333 and the second vibration transmission port 332.
  • the third channel 334 The first channel 333 , the second channel 334 and the third channel 335 form a U-shaped vibration transmission channel 33 .
  • the first channel 333 is provided inside the electronic control board 30 .
  • first channel 333 and the second channel 334 are connected by an arc-shaped transition; and/or, the first channel 333 and the third channel 335 are connected by an arc-shaped transition. In this way, energy loss during vibration transmission can be reduced.
  • both the second channel 334 and the third channel 335 both extend along the thickness direction of the electronic control board 30 .
  • both the second channel 334 and the third channel 335 may be vertical channels or inclined channels.
  • the vibration pickup unit 10 further includes a vibration adjustment member 13 disposed on the elastic vibration pickup member 12 .
  • the vibration adjustment member 13 is used to adjust the vibration of the elastic vibration pickup member 12, so that the vibration of the elastic vibration pickup member 12 has a better match with the wearer's bone vibration signal, thereby improving the bone voiceprint sensor module. 100 sensitivity. Moreover, the vibration adjusting member 13 vibrates together with the elastic vibration pickup member 12 , which can increase the quality of the elastic vibration pickup member 12 when vibrating, thereby effectively avoiding the interference of external factors (such as sound waves).
  • the vibration adjusting member 13 may be adhered to the elastic vibration pickup member 12 through glue.
  • the vibration adjusting member 13 may be disposed on any side of the elastic vibration pickup member 12; that is, the vibration adjusting member 13 may be disposed in the first cavity 111 or in the first cavity inside the second cavity 112 .
  • the vibration adjusting member 13 is a mass.
  • the elastic vibration pickup member 12 is a vibrating film
  • the vibration adjusting member 13 is disposed on the vibrating film.
  • the diaphragm can be a diaphragm with elastic deformation ability, including but not limited to a plastic diaphragm, a paper diaphragm, a metal diaphragm, a biological diaphragm, and the like.
  • the diaphragm can be a single-layer structure or a multi-layer composite diaphragm.
  • the diaphragm can be made of a single material or a composite of different materials. It will not be described in detail here.
  • the elastic vibration pick-up member 12 may also be configured in other structural forms.
  • the elastic vibration pick-up member 12 includes a The mounting ring of the shell wall of the two housings 11, the vibration pickup plate located in the mounting ring and spaced from the mounting ring, the connecting arm connecting the mounting ring and the vibration pickup plate, and the vibration pickup plate arranged between the mounting ring and the vibration pickup plate The elastic sealing film in the gap, and the vibration adjusting member 13 is arranged on the vibration pickup plate.
  • the sensor chip 22 can be a microphone chip or a pressure sensor chip 22 , that is, the sensor unit 20 can use a MEMS microphone or a MEMS pressure sensor, so that the design difficulty of the bone voiceprint sensor module 100 can be reduced.
  • the first housing 21 or the second housing 11 is provided with a vent hole 14 , and the vent hole 14 is used to vent pressure when the bone voiceprint sensor module 100 is assembled.
  • the vent hole 14 is opened on the second casing 11 and communicated with the second cavity 112 .
  • vent hole 14 is used to communicate the internal vibration space of the bone voiceprint sensor module 100 with the external environment, so that when the bone voiceprint sensor module 100 is assembled, the internal vibration space can be prevented from being There is an air pressure difference in the environment, which causes the sensor chip 22 to fail.
  • the vent hole 14 needs to be blocked to prevent it from affecting the performance of the bone voiceprint sensor module 100 .
  • the vent hole 14 may be blocked by sealing glue, adhering a sealing tape, or adding a sealing plug.
  • a bone voiceprint sensor module 100 is also proposed, which is different from the previous embodiment mainly in that the structure of the first casing 21 is different.
  • one end of the first casing 21 is open, and the open end of the first casing 21 is mounted on the first surface 31 , and the sensor The chip 22 is mounted on the first surface 31 so that the back cavity 221 of the sensor chip 22 communicates with the first vibration transmission port 331 .
  • the base plate 212 is eliminated, and the first open end and the sensor chip 22 are directly mounted on the first surface 31 of the electric control board 30 , on the one hand, the noise of the bone voiceprint sensor module 100 can be further reduced.
  • the base plate 212 since the base plate 212 is eliminated, the production cost can be further reduced and the assembly steps can be simplified.
  • the back cavity 221 of the sensor can be directly Communication with the first vibration transmission port 331 can reduce the energy loss during the vibration transmission process.
  • the ASIC chip 23 is disposed on the electronic control board 30 , and the ASIC chip 23 can be installed in the first casing 21 or in the first casing outside of body 21.
  • the first casing 21 can be selected as a metal casing.
  • a bone voiceprint sensor module 100 is also proposed. The installation makes further settings.
  • the first surface 31 is provided with an installation groove 34 , and the vibration pickup unit 10 is installed at the bottom of the installation groove 34 .
  • the second vibration transmission port 332 is provided at the bottom of the installation slot 34 , the open end of the second housing 11 is also installed at the bottom of the installation slot 34 , and the second vibration transmission port 332 is located in the second housing the inner side of the opening of the body 11 , so that the second vibration transmission port 332 is in direct communication with the first cavity 111 of the second housing 11 .
  • the thickness of the electric control board 30 can be used to embed the vibration pickup unit 10 in the electric control board 30 at least partially, so as to reduce bone sound
  • the overall height of the pattern sensor module 100 is at the vibration pickup unit 10 , and it is also convenient to protect the vibration pickup unit 10 to reduce external interference to the vibration pickup unit 10 .
  • the vibration transmission channel 33 can also be set in other shapes.
  • a bone voiceprint sensor module 100 is also proposed, which is different from the above embodiment mainly in that the shape of the vibration transmission channel 33 is different; in this In the embodiment, the vibration transmission channel 33 is a V-shaped channel.
  • the vibration transmission channel 33 includes a fourth channel 336 communicating with the first vibration transmission port 331 and extending obliquely toward the vibration pickup unit 10 , and a fourth channel 336 connected to the vibration pickup unit 10 .
  • the second vibration transmission port 332 communicates with a fifth channel 337 extending obliquely toward the sensor unit 20 , and the fourth channel 336 intersects and communicates with the fifth channel 337 . In this way, the fourth channel 336 and the fifth channel 337 form a V-shaped vibration transmission channel 33 .
  • both the fourth channel 336 and the fifth channel 337 may be configured as straight channels or arcuate channels.
  • the fourth channel 336 and the fifth channel 337 are connected by an arc transition connection.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Abstract

本申请公开一种骨声纹传感器模组和电子设备。所述骨声纹传感器模组包括:电控板,所述电控板上设有传振通道,所述电控板具有第一表面;拾振单元,所述拾振单元安装于所述第一表面,所述拾振单元用于拾取外界的骨振动信号而产生响应振动信号;以及传感器单元,所述传感器单元安装于所述第一表面,所述传感器单元与所述拾振单元在第一方向上依次分布,所述传振通道连通所述拾振单元与所述传感器单元,以使所述响应振动信号通过所述传振通道传递给所述传感器单元。

Description

骨声纹传感器模组和电子设备
本申请要求于2020年10月27日申请的、申请号为202011161647.4 的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及传感器技术领域,特别涉及一种骨声纹传感器模组和电子设备。
背景技术
骨声纹传感器是利用人讲话时引起的头颈部骨骼的轻微振动,来把声音信号收集起来转为电信号的。由于它不同于传统麦克风的通过空气传导采集声音,所以可以在很嘈杂的环境里也可以把声音高清晰的传出来。在许多场合如火灾现场,带着防毒而具的消防人员不能用嘴直接对着麦克风讲话,因此此时可以利用骨声纹传感器。随着电子产品的发展,骨声纹传感器的应用越来越广泛。
相关技术中,骨声纹传感器通常包括拾振单元和传感器单元,拾振单元用于拾取外界的骨振动信号,并传递给传感器单元;传感器单元用于将振动信号转化为电信号。
当将骨声纹传感器应用到电子设备上时,通常将骨声纹传感器作为一个单独的元器件贴装到电控板上使用。这样就会使拾振单元和传感器单元在远离电控板的方向上依次堆叠,从而会对电子设备的高度影响较大。
技术问题
本申请的主要目的是提出一种骨声纹传感器模组,旨在解决相关技术中,将骨声纹传感器应用到电子设备上时,对电子设备的高度影响较大的技术问题。
技术解决方案
为实现上述目的,本申请提出一种骨声纹传感器模组,包括:
电控板,所述电控板上设有传振通道,所述电控板具有第一表面;
拾振单元,所述拾振单元安装于所述第一表面,所述拾振单元用于拾取外界的骨振动信号而产生响应振动信号;以及
传感器单元,所述传感器单元安装于所述第一表面,所述传振通道连通所述拾振单元与所述传感器单元,以使所述响应振动信号通过所述传振通道传递给所述传感器单元。
在一实施例中,所述传振通道具有间隔分布在所述第一表面的第一传振口和第二传振口;
所述传感器单元包括第一壳体、及设于所述第一壳体的内侧的传感器芯片,所述第一壳体安装于所述第一表面,且所述传感器芯片的背腔与所述第一传振口连通;
所述拾振单元包括第二壳体、及设于所述第二壳体内的弹性拾振件,所述第二壳体安装于所述第一表面,所述第二壳体的内部空间与所述第二传振口连通。
在一实施例中,所述第一壳体的一端呈敞口设置,所述第一壳体的敞口端安装于所述第一表面,所述传感器芯片安装于所述第一表面,以使传感器芯片的背腔与所述第一传振口连通。
在一实施例中,所述第一壳体包括基板和一端敞口设置的壳本体,所述基板设于所述壳本体的敞口端,所述传感器芯片设于所述基板,所述基板安装于所述第一表面,所述基板上设有连通所述传感器芯片的背腔与所述第一传振口的传振通孔。
在一实施例中,所述第二壳体的一端呈敞口设置,所述第二壳体的敞口端安装于所述第一表面,以与所述第二传振口连通。
在一实施例中,所述传振通道为U形通道或V形通道。
在一实施例中,所述第一表面设有安装槽,所述拾振单元安装于所述安装槽的底部。
在一实施例中,所述弹性拾振件为振膜。
在一实施例中,所述弹性拾振件包括设于所述第二壳体的壳壁的安装环、位于所述安装环内且与所述安装环间隔设置的拾振片、连接所述安装环与所述拾振片的连接臂、及设于所述安装环与所述拾振片之间的间隙内的弹性密封膜。
本申请还提出一种电子设备,包括如上所述的骨声纹传感器模组。
有益效果
本申请中的骨声纹传感器模组,将拾振单元和传感器单元分拆,以分别安装到电控板的第一表面;并通过在电控板上开设传振通道,以连通拾振单元和传感器单元,从而可使所述拾振单元拾取外界振动而产生的响应振动信号可通过传振通道传递给传感器单元,以使所述传感器单元根据接收到的响应振动信号而产生电信号。
而且,通过使拾振单元和传感器单元分别安装在电控板的同一表面,可不用在远离电控板的方向上依次堆叠传感器单元和拾振单元,从而可降低骨声纹传感器模组的整体高度,从而有利于降低电子设备的高度。
同时,由于将拾振单元和传感器单元分拆,可降低对传感器单元的要求,可使传感器单元的选型更广,有利于降低成本和提高骨声纹传感器模组的实用性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请骨声纹传感器模组一实施例的结构示意图;
图2为本申请骨声纹传感器模组另一实施例的结构示意图;
图3为本申请骨声纹传感器模组又一实施例的结构示意图;
图4为本申请骨声纹传感器模组再一实施例的结构示意图。
附图标号说明:
标号 名称 标号 名称
100 骨声纹传感器模组 22 传感器芯片
10 拾振单元 221 背腔
11 第二壳体 222 感应膜
111 第一腔体 23 ASIC芯片
112 第二腔体 30 电控板
12 弹性拾振件 31 第一表面
13 振动调节件 32 第二表面
14 泄气孔 33 传振通道
20 传感器单元 331 第一传振口
21 第一壳体 332 第二传振口
211 传振通孔 333 第一通道
212 基板 334 第二通道
2121 电连接部 335 第三通道
213 壳本体 336 第四通道
2131 顶板 337 第五通道
2132 围板 34 安装槽
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。
另外,全文中出现的“和/或”的含义为,包括三个并列的方案,以“A和/或B”为例,包括A方案,或B方案,或A和B同时满足的方案。
本申请提出一种骨声纹传感器模组和电子设备。其中,骨声纹传感器模组用于电子设备,该电子设备可以是但不限于头戴设备、耳机、智能手表、智能手环、车载降噪设备及振动感测装置等本领域技术人员所熟知的电子设备。
在本申请一实施例中,如图1所示,所述骨声纹传感器模组100包括电控板30、拾振单元10和传感器单元20。
其中,所述电控板30即为电子设备的电路板(如PCB板等),传感器单元20和拾振单元10安装在电控板30上。
具体的,所述电控板30具有第一表面31和第二表面32,所述电控板30上设有传振通道33。
其中,所述拾振单元10安装于第一表面31,所述拾振单元10用于拾取外界(如佩戴者,或其他振动源,下文以佩戴者为例进行说明)的骨振动信号而产生响应振动信号,即是说,外界的骨振动传递给拾振单元10,拾振单元10的弹性拾振件振动而产生响应振动信号。
其中,所述传感器单元20安装于第一表面31,所述传振通道33连通拾振单元10与传感器单元20,以使所述响应振动信号通过传振通道33传递给传感器单元20,所述传感器单元20用于根据接收到的振动信号而产生电信号。
可以理解,所述拾振单元10、传感器单元20以及电控板30之间形成有包括传振通道33的密闭传振气道,以使所述响应振动信号通过该密闭传振气道传递给传感器单元20。
本申请中的骨声纹传感器模组100,将拾振单元10和传感器单元20分拆,以分别安装到电控板30的第一表面31;并通过在电控板30上开设传振通道33,以连通拾振单元10和传感器单元20,从而可使所述拾振单元10拾取外界振动而产生的响应振动信号可通过传振通道33传递给传感器单元20,以使所述传感器单元20根据接收到的响应振动信号而产生电信号。
而且,通过使拾振单元10和传感器单元20分别安装在电控板30的同一表面,可不用在远离电控板30的方向上依次堆叠传感器单元20和拾振单元10,从而可降低骨声纹传感器模组100的整体高度,从而有利于降低电子设备的高度。
同时,由于将拾振单元10和传感器单元20分拆,可降低对传感器单元20的要求,可使传感器单元20的选型更广,有利于降低成本和提高骨声纹传感器模组100的实用性。
即是说,本申请骨声纹传感器模组100的整体高度较低,且成本也较低。
具体来说,如图1所示,所述传振通道33具有间隔分布在第一表面31上的第一传振口331和第二传振口332,所述传感器单元20覆盖第一传振口331,以使传振通道33通过第一传振口331与传感器单元20连通,所述拾振单元10覆盖第二传振口332,以使传振通道33通过第二传振口332与拾振单元10连通。
进一步地,如图1所示,所述拾振单元10包括第二壳体11、及设于第二壳体11内的弹性拾振件12,所述第二壳体11安装于第一表面31,所述第二壳体11的内部空间与第二传振口332连通。
具体的,如图1所示,所述第二壳体11的一端呈敞口设置,所述第二壳体11的敞口端安装于第一表面31,以与第二传振口332连通。其中,所述第二传振口332位于所述第二壳体11的敞口的内侧,以使其与第二壳体11连通。如此,可简化第二壳体11的结构。
具体的,如图1所示,所述弹性拾振件12安装于第二壳体11的周壁,以将第二壳体11内的空间分隔成第一腔体111和第二腔体112,所述第一腔体111与第二腔体112分别位于弹性拾振件12的两侧,所述第二传振口332与第一腔体111连通。
具体的,如图1所示,所述传感器单元20包括第一壳体21、及设于所述第一壳体21的内侧的传感器芯片22,所述第一壳体21安装于第一表面31,且所述传感器芯片22的背腔221与第一传振口331连通。其中,所述传感器芯片22的背腔221对应第一传振口331设置,以使所述传感器芯片22的背腔221与第一传振口331连。
其中,所述第一腔体111、传振通道33和传感器芯片22的背腔221等共同形成密闭传振气道。
工作时,外界骨振动通过第二壳体11传递给弹性拾振件12,从而使弹性拾振件12振动,从而策动第一腔体111、传振通道33及传感器芯片22的背腔221内的气体振动,以将振动传递给传感器芯片22(即,使传感器芯片22的感应膜222振动),所述传感器芯片22从而产生电信号,如此实现将骨振动转换成电信号。
进一步地,如图1所示,所述第一壳体21包括基板212和一端敞口设置的壳本体213,所述基板212设于壳本体213的敞口端,所述传感器芯片22设于基板212,所述基板212安装于第一表面31,所述基板212上设有连通传感器芯片22的背腔221与第一传振口331的传振通孔211。
具体的,所述壳本体213包括两端敞口的围板2132、及设于围板2132一端的顶板2131,基板212设于围板2132的另一端,顶板2131与基板212相对设置,基板212为PCB板。
如此,通过使传感器芯片22安装于基板212,并使基板212安装于电控板30上,可降低对壳本体213的要求,而不用像相关设计中使壳本体213与基板212形成三层PCB板结构(即顶板2131、围板2132及基板212三者均为PCB板),从而可降低成本,而且还可使传感器单元20选型更广(即对壳本体213的要求降低),如可使壳本体213为围板2132与顶板2131一体设置的金属壳体等。
进一步地,如图1所示,所述传感器单元20还包括与传感器芯片22电连接的ASIC(Application Specific Integrated Circuit)芯片,所述ASIC芯片23与传感器芯片22电连接,以对传感器芯片22产生的电信号进行处理。
具体的,所述ASIC芯片23安装于第一壳体21内,并设于基板212的表面。
进一步地,如图1所示,所述基板212的朝向电控板30的表面设有电连接部2121,所述电连接部2121与电控板30电连接,以实现电控板30与骨声纹传感模组的电连接。在一实施例中,所述电连接部2121为焊接管脚。
进一步地,如图1所示,所述传振通道33为U形通道。
具体的,如图1所示,所述传感器单元20与拾振单元10在第一方向上间隔分布,所述传振通道33包括沿第一方向延伸的第一通道333、设于所述第一通道333的一端并连通第一通道333与第一传振口331的第二通道334、及设于第一通道333的另一端并连通第一通道333与第二传振口332的第三通道335,这样第一通道333、第二通道334和第三通道335三者形成U形的传振通道33。其中,所述第一通道333设于电控板30的内部。
在一实施例中,所述第一通道333与第二通道334连通处弧形过渡连接;和/或,所述第一通道333与第三通道335连通处弧形过渡连接。如此,可降低振动传递时的能量损耗。
具体的,所述第二通道334和第三通道335均沿电控板30的厚度方向延伸。在一实施例中,所述第二通道334和第三通道335均既可以为竖直通道,也可以为倾斜通道。
进一步地,如图1所示,所述拾振单元10还包括设置在弹性拾振件12上的振动调节件13。
其中,所述振动调节件13用于对弹性拾振件12的振动进行调节,使弹性拾振件12的振动与佩戴者的骨振动信号匹配性更好,从而可提高骨声纹传感器模组100的灵敏度。而且,振动调节件13随弹性拾振件12一同振动,可增加弹性拾振件12振动时的质量,从而可以有效避免外界因素(如声波)的干扰。
在一实施例中,所述振动调节件13可以通过胶体粘接在弹性拾振件12上。
在一实施例中,所述振动调节件13可以设于弹性拾振件12的任意一面;即是说,所述振动调节件13既可以设于第一腔体111内,也可以设于第二腔体112内。
在一实施例中,所述振动调节件13为质量块。
进一步地,所述弹性拾振件12为振膜,所述振动调节件13设于所述振膜。
其中,振膜可以采用具有弹性形变能力的膜片,包括但不限于塑料膜片、纸质膜片、金属膜片、生物膜片等。而且,振膜可以采用单层结构,也可以采用多层复合的膜片。而且,振膜可以采用单一材质,也可以采用不同材质复合而成。在此不再具体说明。
当然,于其他实施例中,所述弹性拾振件12也可设置为其他结构形式,如在弹性拾振件12的第二实施例中,所述弹性拾振件12包括设于所述第二壳体11的壳壁的安装环、位于所述安装环内且与安装环间隔设置的拾振片、连接安装环与拾振片的连接臂、及设于安装环与拾振片之间的间隙内的弹性密封膜,所述振动调节件13设于拾振片。
在一实施例中,所述传感器芯片22可以为麦克风芯片或压力传感器芯片22,也即传感器单元20可以采用MEMS麦克风或MEMS压力传感器,如此,可以降低骨声纹传感器模组100的设计难度。
进一步地,如图1所示,所述第一壳体21或者第二壳体11上设有泄气孔14,所述泄气孔14用于在装配骨声纹传感器模组100时泄压。在一实施例中,所述泄气孔14开设于第二壳体11上,并与第二腔体112连通。
具体来说,所述泄气孔14用于实现骨声纹传感器模组100的内部振动空间与外部环境连通,这样,在装配骨声纹传感器模组100时,可避免由于该内部振动空间与外部环境存在气压差而导致传感器芯片22失效。
但是,在骨声纹传感器模组100应用时,即将其应用到电子设备上时,泄气孔14需要被封堵,以免其影响骨声纹传感器模组100的性能。在一实施例中,可以通过密封胶水、或粘接密封胶带、或添加密封塞等形式将泄气孔14封堵。
在本申请的另一实施例中,如图2所示,也提出一种骨声纹传感器模组100,其与上一实施例的不同之处主要在于第一壳体21的结构形式不同。
在该实施例中,具体的,如图2所示,所述第一壳体21的一端呈敞口设置,所述第一壳体21的敞口端安装于第一表面31,所述传感器芯片22安装于第一表面31,以使传感器芯片22的背腔221与第一传振口331连通。
在该实施例中,取消了基板212,而使第一的敞口端和传感器芯片22直接安装在电控板30的第一表面31,一方面可以进一步地降低骨声纹传感器模组100的整体高度;另一方面由于取消了基板212,也可以进一步地降低生产成本、及简化组装步骤;再者,通过使传感器芯片22直接安装在电控板30上而可使传感器的背腔221直接与第一传振口331连通,可降低振动传递过程中的能量损失。
在该实施例中,具体的,如图2所示,所述ASIC芯片23设于电控板30上,且ASIC芯片23既可以安装在第一壳体21内,也可以设置在第一壳体21外。
在该实施例中,具体的,所述第一壳体21可选为金属壳体。
在本申请的又一实施例中,如图3所示,也提出一种骨声纹传感器模组100,其与以上实施例的不同之处主要在于对拾振单元10在第一表面31的安装作了进一步地设置。
具体来说,在该实施例中,如图3所示,所述第一表面31设有安装槽34,所述拾振单元10安装于安装槽34的底部。
具体的,所述第二传振口332设于安装槽34的底部,所述第二壳体11的敞口端也安装于安装槽34的底部,且第二传振口332位于第二壳体11的敞口的内侧,以使第二传振口332与第二壳体11的第一腔体111直接连通。
如此,通过在第一表面31设置安装槽34,以安装拾振单元10,可实现利用电控板30的厚度以将拾振单元10至少部分埋设在电控板30内,以便于降低骨声纹传感器模组100在拾振单元10处整体高度,而且,还可便于对拾振单元10进行保护,以减少外界对拾振单元10的干扰。
在具体实施例中,所述传振通道33也可以设置为其他形状。
如在本申请的再一实施例中,如图4所示,也提出一种骨声纹传感器模组100,其与以上实施例的不同之处主要在于传振通道33的形状不同;在该实施例中,所述传振通道33为V形通道。
在该实施例中,具体的,如图4所示,所述传振通道33包括与第一传振口331连通、并向靠近拾振单元10的方向倾斜延伸的第四通道336,以及与第二传振口332连通、并向靠近传感器单元20的方向倾斜延伸的第五通道337,所述第四通道336与第五通道337相交并连通。这样,所述第四通道336与第五通道337形成V形的传振通道33。
在该实施例中,所述第四通道336与第五通道337均既可以设置为直通道、也可设置为弧形通道。
在该实施例中,在一实施例中,所述第四通道336与第五通道337连通处圆弧过渡连接。
以上所述仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (10)

  1. 一种骨声纹传感器模组,其中,所述骨声纹传感器模组包括:
    电控板,所述电控板上设有传振通道,所述电控板具有第一表面;
    拾振单元,所述拾振单元安装于所述第一表面,所述拾振单元用于拾取外界的骨振动信号而产生响应振动信号;以及
    传感器单元,所述传感器单元安装于所述第一表面,所述传振通道连通所述拾振单元与所述传感器单元,以使所述响应振动信号通过所述传振通道传递给所述传感器单元。
  2. 如权利要求1所述的骨声纹传感器模组,其中,所述传振通道具有间隔分布在所述第一表面的第一传振口和第二传振口;
    所述传感器单元包括第一壳体、及设于所述第一壳体的内侧的传感器芯片,所述第一壳体安装于所述第一表面,且所述传感器芯片的背腔与所述第一传振口连通;
    所述拾振单元包括第二壳体、及设于所述第二壳体内的弹性拾振件,所述第二壳体安装于所述第一表面,所述第二壳体的内部空间与所述第二传振口连通。
  3. 如权利要求2所述的骨声纹传感器模组,其中,所述第一壳体的一端呈敞口设置,所述第一壳体的敞口端安装于所述第一表面,所述传感器芯片安装于所述第一表面,以使传感器芯片的背腔与所述第一传振口连通。
  4. 如权利要求2所述的骨声纹传感器模组,其中,所述第一壳体包括基板和一端敞口设置的壳本体,所述基板设于所述壳本体的敞口端,所述传感器芯片设于所述基板,所述基板安装于所述第一表面,所述基板上设有连通所述传感器芯片的背腔与所述第一传振口的传振通孔。
  5. 如权利要求2所述的骨声纹传感器模组,其中,所述第二壳体的一端呈敞口设置,所述第二壳体的敞口端安装于所述第一表面,以与所述第二传振口连通。
  6. 如权利要求1至5中任意一项所述的骨声纹传感器模组,其中,所述传振通道为U形通道或V形通道。
  7. 如权利要求1至5中任意一项所述的骨声纹传感器模组,其中,所述第一表面设有安装槽,所述拾振单元安装于所述安装槽的底部。
  8. 如权利要求1至5中任意一项所述的骨声纹传感器模组,其中,所述弹性拾振件为振膜。
  9. 如权利要求1至5中任意一项所述的骨声纹传感器模组,其中,所述弹性拾振件包括设于所述第二壳体的壳壁的安装环、位于所述安装环内且与所述安装环间隔设置的拾振片、连接所述安装环与所述拾振片的连接臂、及设于所述安装环与所述拾振片之间的间隙内的弹性密封膜。
  10. 一种电子设备,其中,所述电子设备包括如权利要求1至9中任意一项所述的骨声纹传感器模组。
PCT/CN2021/125313 2020-10-27 2021-10-21 骨声纹传感器模组和电子设备 WO2022089300A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011161647.4 2020-10-27
CN202011161647.4A CN112333618A (zh) 2020-10-27 2020-10-27 骨声纹传感器模组和电子设备

Publications (1)

Publication Number Publication Date
WO2022089300A1 true WO2022089300A1 (zh) 2022-05-05

Family

ID=74310500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125313 WO2022089300A1 (zh) 2020-10-27 2021-10-21 骨声纹传感器模组和电子设备

Country Status (2)

Country Link
CN (1) CN112333618A (zh)
WO (1) WO2022089300A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112333618A (zh) * 2020-10-27 2021-02-05 歌尔微电子有限公司 骨声纹传感器模组和电子设备
TWI773389B (zh) * 2021-06-18 2022-08-01 大陸商美律電子(深圳)有限公司 振動感測組件
CN114554327A (zh) * 2022-01-25 2022-05-27 上海感与执技术有限公司 一种骨声纹传感器和电子设备
CN114630236A (zh) * 2022-02-28 2022-06-14 歌尔微电子股份有限公司 振动传感器和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109916502A (zh) * 2018-04-30 2019-06-21 索尼昂荷兰有限公司 振动传感器
CN210670557U (zh) * 2019-12-25 2020-06-02 歌尔科技有限公司 一种多功能传感器及包括其的电子设备
CN111510834A (zh) * 2020-05-27 2020-08-07 潍坊歌尔微电子有限公司 骨声纹传感器模组和电子设备
CN111818409A (zh) * 2020-07-20 2020-10-23 潍坊歌尔微电子有限公司 骨声纹传感器和电子设备
CN112333618A (zh) * 2020-10-27 2021-02-05 歌尔微电子有限公司 骨声纹传感器模组和电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203504752U (zh) * 2013-09-12 2014-03-26 山东共达电声股份有限公司 一种传声器
CN204206460U (zh) * 2014-10-30 2015-03-11 歌尔声学股份有限公司 一种mems麦克风
CN204518088U (zh) * 2015-04-20 2015-07-29 歌尔声学股份有限公司 一种mems麦克风的封装结构
CN210958796U (zh) * 2019-12-30 2020-07-07 瑞声声学科技(深圳)有限公司 一种骨导式麦克风

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109916502A (zh) * 2018-04-30 2019-06-21 索尼昂荷兰有限公司 振动传感器
CN210670557U (zh) * 2019-12-25 2020-06-02 歌尔科技有限公司 一种多功能传感器及包括其的电子设备
CN111510834A (zh) * 2020-05-27 2020-08-07 潍坊歌尔微电子有限公司 骨声纹传感器模组和电子设备
CN111818409A (zh) * 2020-07-20 2020-10-23 潍坊歌尔微电子有限公司 骨声纹传感器和电子设备
CN112333618A (zh) * 2020-10-27 2021-02-05 歌尔微电子有限公司 骨声纹传感器模组和电子设备

Also Published As

Publication number Publication date
CN112333618A (zh) 2021-02-05

Similar Documents

Publication Publication Date Title
WO2022089300A1 (zh) 骨声纹传感器模组和电子设备
CN211930817U (zh) 骨声纹传感器和电子设备
CN111556419A (zh) 骨声纹传感器和电子设备
WO2022089299A1 (zh) 骨声纹传感器模组和电子设备
CN211930871U (zh) 骨声纹传感器和电子设备
CN111510834A (zh) 骨声纹传感器模组和电子设备
CN211930818U (zh) 振动组件、骨声纹传感器和电子设备
CN209945545U (zh) 骨声纹识别传感器
WO2020258172A1 (zh) 振动传感器、音频设备和振动传感器的组装方法
CN113709643B (zh) 拾振单元、骨声纹传感器和电子设备
TW200829056A (en) Microphone array with electromagnetic interference shielding means
WO2023000999A1 (zh) 振动传感器和电子设备
US11895452B2 (en) Bone conduction microphone
CN211930872U (zh) 骨声纹传感器和电子设备
CN112565995A (zh) 传感器芯片、骨声纹传感器和电子设备
CN213403413U (zh) 骨声纹传感器和电子设备
WO2023232033A1 (zh) 一种骨声纹传感器和电子设备
CN212486781U (zh) 骨声纹传感器模组和电子设备
CN212486782U (zh) 骨声纹传感器模组和电子设备
CN217389001U (zh) 一种麦克风结构和语音通讯设备
CN213342680U (zh) 一种骨传导麦克风
US20220349745A1 (en) Vibration Sensor
CN215217808U (zh) 振动传感器和电子设备
CN114786104A (zh) 一种麦克风结构和语音通讯设备
JP2007060228A (ja) シリコンマイクロホンパッケージ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885027

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21885027

Country of ref document: EP

Kind code of ref document: A1