WO2022088952A1 - 阵列基板及其制造方法、显示装置 - Google Patents

阵列基板及其制造方法、显示装置 Download PDF

Info

Publication number
WO2022088952A1
WO2022088952A1 PCT/CN2021/115955 CN2021115955W WO2022088952A1 WO 2022088952 A1 WO2022088952 A1 WO 2022088952A1 CN 2021115955 W CN2021115955 W CN 2021115955W WO 2022088952 A1 WO2022088952 A1 WO 2022088952A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
electrode
pixels
layer
columns
Prior art date
Application number
PCT/CN2021/115955
Other languages
English (en)
French (fr)
Inventor
侯文杰
缪应蒙
苏秋杰
赵重阳
曲峰
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/792,264 priority Critical patent/US11921388B2/en
Publication of WO2022088952A1 publication Critical patent/WO2022088952A1/zh
Priority to US18/425,819 priority patent/US20240168348A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136213Storage capacitors associated with the pixel electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136222Colour filters incorporated in the active matrix substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0286Details of a shift registers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3677Details of drivers for scan electrodes suitable for active matrices only

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to an array substrate, a manufacturing method thereof, and a display device.
  • the number of sub-pixels in the liquid crystal display device is increasing, and the size of a single sub-pixel is also getting smaller and smaller.
  • an array substrate including a first base substrate, a plurality of data lines, and a plurality of sub-pixels connected to the plurality of data lines, at least one of the plurality of sub-pixels includes : a first insulating layer, located on one side of the first base substrate; a gate, located between the first base substrate and the first insulating layer; an active layer, located on the first insulating layer the side away from the gate; the pixel electrode is located at the side of the first insulating layer away from the first substrate; the first electrode is located at the active layer and the pixel electrode away from the first One side of a base substrate, the first electrode is connected to the active layer and is in contact with the pixel electrode; the second electrode is spaced apart from the first electrode and connected to the active layer and one of the plurality of data lines; a second insulating layer, located on the side of the pixel electrode, the first electrode and the second electrode away from the first base substrate, and has a second insulating layer, located on the side of the pixel electrode, the
  • the orthographic projection of the first opening on the first base substrate partially overlaps with the orthographic projection of the pixel electrode on the first base substrate, and is located where the first electrode is located
  • the orthographic projections on the first base substrate overlap; a connection electrode is in contact with the pixel electrode and the first electrode through the first opening; and a common electrode is located on the second insulating layer away from the one side of the pixel electrode and spaced apart from the connection electrode.
  • common electrodes of some of the sub-pixels are connected to each other, and common electrodes of the remaining sub-pixels are spaced apart from each other.
  • the plurality of sub-pixels include multiple columns of sub-pixels
  • the partial sub-pixels include at least one column of sub-pixels in the multiple columns of sub-pixels
  • each column of sub-pixels in the at least one column of sub-pixels includes two adjacent sub-pixels. There are two sub-pixels, and the two common electrodes of the two adjacent sub-pixels are connected through a common electrode connecting member.
  • the plurality of sub-pixels includes a plurality of rows of sub-pixels, and two gates of two adjacent sub-pixels in each row of sub-pixels in the plurality of rows of sub-pixels are connected by gate connectors, and the gates A pole connector partially overlaps the common electrode connector and the data line.
  • the data line extends along a first direction
  • the data line includes: a first data line portion that does not overlap with the gate connection member; and abuts the first data line portion the second data line portion of the length in the second direction.
  • an included angle between the extending direction of the gate connection member and the first direction is greater than or equal to 45 degrees and less than 90 degrees.
  • a ratio of the length of the second data line portion in the second direction to the length of the first data line portion in the second direction is greater than 1 and less than or equal to 1.4.
  • the columns of subpixels include columns of first subpixels configured to emit light of a first color, columns of second subpixels configured to emit light of a second color, and columns of second subpixels configured to emit light of a second color
  • a plurality of columns of third sub-pixels for light of a third color two adjacent columns of third sub-pixels in the plurality of columns of third sub-pixels are replaced by a column of first sub-pixels in the plurality of columns of first sub-pixels and the a column of second sub-pixels of the plurality of columns of second sub-pixels is spaced apart, the first color, the second color and the third color are different from each other; and the at least one column of sub-pixels includes the plurality of columns of third colors Two or more columns of third sub-pixels in the sub-pixels.
  • adjacent two columns of third sub-pixels in the two or more columns of third sub-pixels are divided by the two or more columns of third sub-pixels in the plurality of columns of third sub-pixels A column of third sub-pixels outside the pixels is spaced apart.
  • the two common electrodes are integrally provided with the common electrode connector.
  • the plurality of sub-pixels includes a plurality of rows of sub-pixels; and the array substrate further includes a plurality of common voltage lines connected to the plurality of rows of sub-pixels, each of the plurality of common voltage lines The common voltage line is configured to apply a common voltage to common electrodes of subpixels in corresponding rows of the plurality of rows of subpixels.
  • the array substrate further includes: a first alignment layer located on a side of the common electrode away from the first base substrate; each sub-pixel in each row of sub-pixels in the plurality of rows of sub-pixels the second insulating layer of the pixel has a second opening; and the common electrode of each of the sub-pixels in each row passes through the second opening and the plurality of common voltage lines and the each row A common voltage line corresponding to the sub-pixels is in contact with the first base substrate.
  • the common voltage line includes a first common voltage line part, a second common voltage line part and a third common voltage line part
  • the third common voltage line part is located at the first common voltage line part and the second common voltage line part, and respectively adjacent to the first common voltage line part and the second common voltage line part, the second common voltage line part extending between the common voltage line
  • the length in the first direction perpendicular to the second direction is greater than the length of the first common voltage line part in the first direction, and the length of the first common voltage line part in the first direction is greater than the length of the third common voltage line portion in the first direction; and the common electrode of each subpixel in each row of subpixels is in contact with the second common voltage line portion through the second opening .
  • the plurality of common voltage lines and the gate are located on the same layer.
  • the common electrode and the connection electrode are located on the same layer.
  • the common electrode includes: a first electrode part with a slit, located on a side of the connection electrode away from the gate; and a second electrode part adjacent to the first electrode part, It does not have a slit and is located on the side of the connection electrode away from the data line.
  • a display device including: the array substrate according to any one of the above embodiments.
  • the display device further includes a color filter substrate disposed opposite to the array substrate, the color filter substrate includes: a second base substrate; a black matrix and a filter layer, located on the second substrate a side of the base substrate close to the array substrate, the filter layer includes a plurality of filter units, and adjacent filter units in the plurality of filter units are separated by the black matrix; the planarization layer is located on the a side of the black matrix and the filter layer close to the array substrate; and a plurality of spacers located between the planarization layer and the array substrate, each of the plurality of spacers The orthographic projection of the spacers on the second base substrate is within the orthographic projection of the black matrix on the second base substrate.
  • the plurality of subpixels include columns of first subpixels configured to emit light of a first color, columns of second subpixels configured to emit light of a second color, and columns of second subpixels configured to emit light of a second color
  • a plurality of columns of third sub-pixels for light of a third color two adjacent columns of second sub-pixels in the plurality of columns of second sub-pixels are separated by a column of first sub-pixels in the plurality of columns of first sub-pixels and the a column of third subpixels in the plurality of columns of third subpixels is spaced apart, the first color, the second color and the third color are different from each other; and the plurality of spacers include For the plurality of rows of spacers corresponding to the second sub-pixels, the orthographic projection of each spacer in each row of spacers in the plurality of rows of spacers on the first base substrate is the first projection, The orthographic projection of the gate of one second sub-pixel in one column of second sub-pixels in
  • the second color is red.
  • each first subpixel of the plurality of columns of first subpixels, each second subpixel of the plurality of columns of second subpixels, and each of the plurality of columns of third subpixels The area of each third sub-pixel not covered by the black matrix is a light-emitting area, and the area of the light-emitting area of each second sub-pixel is smaller than the area of the light-emitting area of each first sub-pixel and the The area of the light-emitting region of the three sub-pixels.
  • the second sub-pixel further includes a plurality of blocking portions, and an orthographic projection of each blocking portion in the plurality of blocking portions on the first base substrate is located where the black matrix is located.
  • the plurality of blocking parts include: a first blocking part, one of the plurality of spacers corresponding to the second sub-pixel is located close to the spacer. one side of the pixel electrode; and a second blocking portion located on the side of the first blocking portion away from the spacer, and the height of the second blocking portion is greater than that of the first blocking portion.
  • a region of the second sub-pixel not covered by the black matrix is a light-emitting region; the first blocking portion and the second blocking portion are located on a first side of the light-emitting region; and the The plurality of blocking portions further include a third blocking portion located on a second side of the light emitting region opposite to the first side.
  • the first blocking portion includes a first layer, a second layer, a third layer, a fourth layer and a fifth layer sequentially disposed on the one side of the first base substrate;
  • the At least one of the second blocking part and the third blocking part includes a sixth layer, a seventh layer, an eighth layer, a ninth layer, a sixth layer, a sixth layer, a seventh layer, a ninth layer, and a sixth layer arranged in sequence on the side of the first base substrate.
  • a method for manufacturing an array substrate including forming a plurality of data lines and a plurality of sub-pixels on one side of a first base substrate, and forming at least one of the plurality of sub-pixels includes: : forming a gate on the side of the first base substrate; forming a first insulating layer on a side of the gate away from the first base substrate; forming a first insulating layer on the first insulating layer away from the An active layer is formed on one side of the gate; a pixel electrode is formed on a side of the first insulating layer away from the first base substrate; a first electrode and a second electrode are formed, wherein: the first electrode is located at the a side of the active layer and the pixel electrode away from the first base substrate, connected to the active layer, and in contact with the pixel electrode, the second electrode is spaced apart from the first electrode , and connected to the active layer and one of the plurality of data lines; formed on
  • forming the second insulating layer includes: forming an insulating material layer covering the pixel electrode, the first electrode and the second electrode; and forming the insulating material layer away from the first substrate A mask having a third opening is formed on one side of the base substrate; and the insulating material layer is patterned using the mask to obtain the second insulating layer.
  • the distance between the pixel electrode and the common electrode is reduced, the storage capacitance of the sub-pixel is increased, and the vertical crosstalk of the array substrate is reduced.
  • the first electrode is in contact with the pixel electrode, and both the first electrode and the pixel electrode are in contact with the connection electrode in the first opening, which increases the contact area between the first electrode and the pixel electrode and reduces the
  • the resistance between an electrode and the pixel electrode is beneficial to improve the driving capability of the sub-pixel and improve the display effect of the array substrate.
  • FIG. 1A is a schematic structural diagram illustrating an array substrate according to an embodiment of the present disclosure
  • FIG. 1B is a partially enlarged schematic view showing the array substrate shown in FIG. 1A;
  • Figure 2A is a schematic cross-sectional view taken along A-A' shown in Figure 1B;
  • Figure 2B is a schematic cross-sectional view taken along B-B' shown in Figure 1B;
  • Figure 2C is a schematic cross-sectional view taken along C-C' shown in Figure 1A;
  • FIG. 3 is a schematic structural diagram illustrating a display device according to an embodiment of the present disclosure
  • Figure 4 is a schematic cross-sectional view taken along D-D' shown in Figure 1B;
  • FIG. 5 is a schematic flowchart illustrating a method for manufacturing a sub-pixel according to an embodiment of the present disclosure
  • 6-8 are schematic diagrams illustrating the structure of a shift register unit according to some embodiments of the present disclosure.
  • first,” “second,” and similar words do not denote any order, quantity, or importance, but are merely used to distinguish the different parts.
  • “Comprising” or “comprising” and similar words mean that the element preceding the word covers the elements listed after the word, and does not exclude the possibility that other elements are also covered.
  • “Up”, “down”, etc. are only used to indicate the relative positional relationship, and when the absolute position of the described object changes, the relative positional relationship may also change accordingly.
  • a specific component when a specific component is described as being between a first component and a second component, there may or may not be an intervening component between the specific component and the first component or the second component.
  • the specific component When it is described that a specific component is connected to other components, the specific component may be directly connected to the other components without intervening components, or may not be directly connected to the other components but have intervening components.
  • the inventor has noticed that as the size of the sub-pixel becomes smaller and smaller, the storage capacitance in the sub-pixel also becomes smaller and smaller, so that the sub-pixel is vulnerable to the leakage current of the thin film transistor in the sub-pixel and the gap between the sub-pixel and the data line.
  • the interference of capacitive coupling effect resulting in vertical crosstalk (Vertical Crosstalk).
  • FIG. 1A is a schematic diagram illustrating the layout of an array substrate according to an embodiment of the present disclosure.
  • the array substrate TA includes a first base substrate 100 , a plurality of data lines DL, and a plurality of sub-pixels 10 connected to the plurality of data lines DL.
  • the sub-pixels 10 connected to the same data line DL among the plurality of sub-pixels 10 are located on the same side of the data line DL, that is, the sub-pixels 10 of the same column are connected to the same data line DL.
  • FIG. 1B is a partially enlarged schematic view showing the array substrate shown in FIG. 1A .
  • Fig. 2A is a schematic cross-sectional view taken along A-A' shown in Fig. 1B;
  • Fig. 2B is a cross-sectional schematic view taken along B-B' shown in Fig. 1B.
  • the structure of the sub-pixel 10 will be described below with reference to FIGS. 1B , 2A and 2B.
  • the structure of at least one of the plurality of sub-pixels 10 of the array substrate TA may be the structure of the sub-pixel 10 described below.
  • the structure of each sub-pixel 10 of the array substrate TA may be the structure of the sub-pixel 10 described below.
  • the sub-pixel 10 includes a gate electrode 101, a first insulating layer 102, an active layer 103, a pixel electrode 104, a first electrode 105, a second electrode 106, a second insulating layer 107, a connection electrode 108 and common electrode 109.
  • the gate 101 is located on one side of the first base substrate 100, as shown in FIG. 2A.
  • the gate electrode 101 is shown as being located on the upper side of the first base substrate 100 .
  • the first base substrate 100 may be, for example, a glass substrate or the like.
  • the material of the gate 101 may include, for example, metals such as aluminum and copper.
  • the first insulating layer 102 is located on one side of the first base substrate 100 , and the gate electrode 101 is located between the first base substrate 100 and the first insulating layer 102 , as shown in FIG. 2A . It should be understood that the first insulating layer 102 also covers a part of the first base substrate 100 , as shown in FIG. 2B .
  • the material of the first insulating layer 102 may include silicon oxide, silicon nitride (eg, SiN x ), silicon oxynitride, and the like.
  • the active layer 103 is located on the side of the first insulating layer 102 away from the gate electrode 101 , as shown in FIG. 2A .
  • the material of the active layer 103 may include semiconductor materials such as amorphous silicon, low temperature polysilicon, and oxide semiconductor.
  • the material of the active layer 103 may include a P-type semiconductor material.
  • the pixel electrode 104 is located on the side of the first insulating layer 102 away from the first base substrate 100 , as shown in FIG. 2B . In addition, for example, the pixel electrode 104 is spaced apart from the active layer 103 as shown in FIG. 1B .
  • the material of the pixel electrode 104 may include a transparent material such as indium tin oxide (ITO). It should be understood that, in this disclosure, part A and part B are spaced apart to indicate insulation between part A and part B.
  • the first electrode 105 is located on the side of the active layer 103 and the pixel electrode 104 away from the first base substrate 100 , as shown in FIGS. 2A and 2B .
  • the first electrode 105 is connected to the active layer 103 .
  • the first electrode 105 may be in contact with the active layer 103 .
  • the first electrode 105 is in contact with the pixel electrode 104 .
  • the second electrode 106 is spaced apart from the first electrode 105, as shown in FIGS. 1B and 2A.
  • the second electrode 106 is connected to the active layer 103 .
  • the second electrode 106 is in contact with the active layer 103 .
  • the second electrode 106 is also connected to one data line DL among the plurality of data lines DL.
  • the second electrode 106 may be integrally provided with the connected data line DL.
  • one of the first electrode 105 and the second electrode 106 is a source electrode, and the other is a drain electrode.
  • the first electrode 105 is a drain electrode
  • the second electrode 106 is a source electrode.
  • the second insulating layer 107 covers the pixel electrode 104 , the first electrode 105 and the second electrode 106 , as shown in FIGS. 2A and 2B .
  • the second insulating layer 107 has a first opening V1.
  • the orthographic projection of the first opening V1 on the first base substrate 100 partially overlaps with the orthographic projection of the pixel electrode 104 on the first base substrate 100 , and overlaps with the orthographic projection of the first electrode 105 on the first base substrate 100 .
  • the projections partially overlap.
  • the first opening V1 exposes a part of the pixel electrode 104 and exposes a part of the first electrode 105 .
  • a part of the orthographic projection of the first opening V1 on the first base substrate 100 overlaps with the orthographic projection of the pixel electrode 104 on the first base substrate 100 and overlaps with the first electrode
  • the orthographic projection of 105 on the first base substrate 100 does not overlap; another part of the orthographic projection of the first opening V1 on the first base substrate 100 (for example, referred to as the second part) and the first electrode 105 on the first
  • the orthographic projections on the base substrate 100 overlap. It should be understood that although the area of the first part of the orthographic projection of the first opening V1 on the first base substrate 100 shown in FIG. 1B is larger than that of the second part, this is not limitative.
  • the area of the first part of the orthographic projection of the first opening V1 on the first base substrate 100 may also be smaller than or equal to the area of the second part.
  • the material of the first insulating layer 102 may include silicon oxide, silicon nitride (eg, SiN x ), silicon oxynitride, and the like.
  • connection electrode 108 is in contact with the pixel electrode 104 and the first electrode 105 through the first opening V1, as shown in FIG. 2B.
  • the connection electrode 108 is located at least partially in the first opening V1 and is in contact with the exposed portion of the pixel electrode 104 and the exposed portion of the first electrode 105 .
  • the material of the connection electrode 108 may include a transparent material such as ITO.
  • the common electrode 109 is located on the side of the second insulating layer 107 away from the pixel electrode 104, and is spaced apart from the connection electrode 108, as shown in FIGS. 1B and 2B.
  • the material of the connection electrode 108 may include a transparent material such as indium tin oxide.
  • the common electrode 109 and the connection electrode 108 are located on the same layer. It should be noted that, in the embodiments of the present disclosure, the multiple components are located in the same layer means that the multiple components are formed by performing a patterning process on the same material layer.
  • the materials of the common electrode 109 and the connection electrode 108 both include indium tin oxide. In some embodiments, by patterning the same indium tin oxide material layer, the common electrode 109 and the connection electrode 108 may be formed spaced apart from each other.
  • the distance between the pixel electrode 104 and the common electrode 109 is reduced, which increases the storage capacitance of the sub-pixel 10 and reduces the vertical crosstalk of the array substrate.
  • the first electrode 105 is in contact with the pixel electrode 104, and both the first electrode 105 and the pixel electrode 104 are in contact with the connection electrode 108 in the first opening V1, increasing the gap between the first electrode 105 and the pixel electrode 104
  • the contact area is small, which reduces the resistance between the first electrode 105 and the pixel electrode 104, which is beneficial to improve the driving capability of the sub-pixel 10 and improve the display effect of the array substrate.
  • the array substrate of the above-mentioned embodiments can be manufactured by using an existing reticle, and there is no need to increase the number of reticle, which is convenient for process implementation.
  • the common electrode 109 of the sub-pixel 10 may include a first common electrode part 109A and a second common electrode part 109B adjacent to the first common electrode part 109A.
  • the first common electrode portion 109A is located on the side of the connection electrode 108 away from the gate 101 , such as the upper side;
  • the second common electrode portion 109B is located on the side of the connection electrode 108 away from the data line DL connected to the sub-pixel 10 , such as the left side.
  • the second common electrode part 109B can be regarded as protruding outward with respect to the first common electrode part 109A.
  • the first common electrode part 109A has the slit SL, and the second common electrode part 109B does not have the slit. In this way, the luminous efficiency of the sub-pixel 10 can be improved, and the capacitance between the pixel electrode 104 and the common electrode 109 can be further increased, thereby further reducing the vertical crosstalk of the array substrate.
  • the common electrodes 109 of some of the sub-pixels 10 of the plurality of sub-pixels 10 are connected to each other, and the common electrodes 109 of the remaining sub-pixels 10 are spaced apart from each other. In this way, it is beneficial to improve the uniformity of the common voltage applied on the common electrode 109, so as to improve the display uniformity of the array substrate.
  • the plurality of subpixels 10 includes multiple columns of subpixels. At least one column of sub-pixels in the plurality of columns of sub-pixels includes two adjacent sub-pixels, and two common electrodes 109 of the two adjacent sub-pixels are connected to each other. That is, the above-mentioned part of the sub-pixels 10 may include at least one column of sub-pixels in a plurality of columns of sub-pixels. In the at least one column of sub-pixels, the two common electrodes 109 of two adjacent sub-pixels 10 in each column of sub-pixels are connected through a common electrode connection member CCL.
  • the columns of sub-pixels may include columns of first sub-pixels P1 configured to emit light of a first color, columns of second sub-pixels P2 configured to emit light of a second color, and columns of second sub-pixels P2 configured to emit light of a second color
  • two adjacent columns of third sub-pixels P3 in the plurality of columns of third sub-pixels P3 are divided by one column of first sub-pixels P1 in the plurality of columns of first sub-pixels P1 and one column of second sub-pixels in the plurality of columns of second sub-pixels P2.
  • the pixels P2 are spaced apart.
  • a plurality of columns of sub-pixels are repeatedly arranged in the order of the first column of sub-pixels P1, the second column of sub-pixels P2, and the third sub-pixels P3.
  • the first color, the second color and the third color are different from each other.
  • one of the first, second, and third colors is red and the other two are green and blue.
  • the second color is red
  • one of the first and third colors is blue
  • the other is green.
  • the common electrodes 109 of each of the two or more columns of third subpixels P3 are connected to each other, while the common electrodes 109 of other columns of subpixels are spaced apart from each other.
  • the third subpixel P3 may be a blue subpixel or a green subpixel.
  • the two common electrodes 109 of two adjacent sub-pixels 10 are connected through a common electrode connection member CCL.
  • two adjacent common electrodes 109 are integrally provided with the common electrode connector CCL.
  • the common electrode connection CCL may be formed simultaneously in the process of forming the common electrode 109 .
  • the common electrode 109 can be formed integrally with the common electrode connection CCL by patterning the same material layer.
  • two adjacent columns of third sub-pixels P3 are separated by multiple columns of third sub-pixels P3.
  • a column of third sub-pixels P3 in the pixel P3 is spaced apart.
  • one column of third subpixels P3 among the plurality of columns of third subpixels P3 is one column of third subpixels P3 other than two or more columns of third subpixels P3 in which the common electrodes 109 are connected to each other. That is, the common electrodes 109 in the third sub-pixels P3 of the column are spaced apart from each other.
  • the plurality of columns of third sub-pixels P3 include a first column of third sub-pixels P3, a second column of third sub-pixels P3, and a third column of third sub-pixels P3 arranged from left to right.
  • the common electrodes 109 of each of the third subpixels P3 in the first column and the third subpixels P3 in the third column are connected to each other, and the common electrodes 109 of the third subpixels P3 in the second column are spaced apart from each other. In this way, the display uniformity of the array substrate can be improved, and the excessive coupling capacitance between too many common electrode connectors CCL and other metal layers can be avoided, thereby further improving the display effect of the array substrate.
  • the plurality of sub-pixels 10 includes multiple rows of sub-pixels, such as R1 rows of sub-pixels, R2 rows of sub-pixels, and the like. It should be understood that FIG. 1A only schematically shows two rows of sub-pixels.
  • the two gate electrodes 101 of two adjacent sub-pixels 10 in each row of sub-pixels in the plurality of rows of sub-pixels are connected through a gate connection member GCL.
  • the orthographic projection of the gate connector GCL on the first substrate 100 partially overlaps with the orthographic projection of the common electrode connector CCL on the first substrate 100 , and overlaps with the orthographic projection of the data line DL on the first substrate 100 .
  • the orthographic projections partially overlap.
  • the embodiments of the present disclosure also propose the following solutions.
  • the data lines DL extend along a first direction (eg, a column direction).
  • the data line DL may include a first data line part DL11 and a second data line part DL12 adjacent to the first data line part DL11.
  • the first data line portion DL11 does not overlap with the gate connection member GCL
  • the second data line portion DL12 partially overlaps with the gate connection member GCL.
  • the length L2 of the second data line portion DL12 in the second direction (eg, the row direction) perpendicular to the first direction is greater than the length L1 of the first data line portion DL11 in the second direction. In this way, the area where the data line DL overlaps with the gate connection member GCL can be increased, thereby reducing the possibility of the data line DL being broken at the position overlapping with the gate connection member GCL.
  • part A adjoining part B may be understood as part A adjoining and connecting part B.
  • part A and part B may be provided integrally.
  • Part A and Part B are different parts of the same part.
  • the ratio of the length L2 of the second data line portion DL12 in the second direction to the length L1 of the first data line portion DL11 in the second direction is greater than 1 and less than or equal to 1.4, for example, 1.2, 1.3 Wait.
  • L2 is 1 to 2 microns larger than L1, eg, 1 micron, 1.5 microns, 1.18 microns, 2 microns, and the like. In this way, the possibility of breaking the data line DL at the position overlapping the gate connector GCL can be reduced, and the coupling capacitance between the data line DL that is too wide and the surrounding metal can be prevented from being too large.
  • the extending direction of the gate connection member GCL is not perpendicular to and parallel to the first direction in which the data line DL extends.
  • the included angle between the extending direction of the gate connector GCL and the first direction in which the data line DL extends is greater than or equal to 45 degrees and less than 90 degrees, such as 60 degrees, 80 degrees, and the like. In this way, the overlapping area of the gate connection member GCL and the data line DL can be increased, thereby reducing the possibility that the data line DL is broken at the position overlapping the gate connection member GCL.
  • the length L2 of the second data line portion DL12 in the second direction perpendicular to the first direction in which the data line DL extends is greater than the length L1 of the first data line portion DL11 in the second direction, and, The extension direction of the gate connection member GCL is not perpendicular to and not parallel to the first direction in which the data line DL extends. In this way, the possibility that the data line DL is broken at the position overlapping with the gate connection member GCL can be further reduced.
  • the array substrate further includes a plurality of common voltage lines 11 connected to the plurality of rows of sub-pixels.
  • Each of the plurality of common voltage lines 11 is configured to apply a common voltage to a common electrode of a corresponding row of subpixels among the plurality of rows of subpixels.
  • the number of the multiple common voltage lines 11 is the same as the number of the multiple rows of sub-pixels, and one common voltage line 11 corresponds to one row of sub-pixels.
  • each common voltage line 11 applies a common voltage to the common electrodes of a corresponding row of sub-pixels.
  • the orthographic projection of the common voltage line 11 on the first base substrate 100 does not overlap with the orthographic projection of the pixel electrode 104 on the first base substrate 100 .
  • connection manner of the common voltage line 11 and the common electrode 109 will affect the thickness uniformity of the alignment layer, thereby affecting the display uniformity of the array substrate. Accordingly, the embodiments of the present disclosure also provide the following solutions.
  • Fig. 2C is a schematic cross-sectional view taken along C-C' shown in Fig. 1A.
  • the array substrate TA further includes a first alignment layer 12 .
  • the first alignment layer 12 is located on the side of the common electrode 109 away from the first base substrate 100 .
  • the material of the first alignment layer 12 may include polyimide (PI).
  • the second insulating layer 107 of each subpixel 10 in each row of subpixels in the plurality of rows of subpixels has a second opening V2, as shown in FIG. 1A .
  • the common electrode 109 of each sub-pixel 10 in each row of sub-pixels is in contact with one of the plurality of common voltage lines 11 corresponding to each row of sub-pixels and the first base substrate 100 through the second opening V2.
  • the plurality of common voltage lines 11 are located on the same layer as the gate electrode 101 .
  • each sub-pixel 10 exposes a part of the common electrode line 11 corresponding to the row of sub-pixels, and exposes a part of the first base substrate 100, as shown in FIG. 2C is shown.
  • the common electrode 109 is partially located in the second opening V2 and is in contact with the exposed portion of the common electrode line 11 and the exposed portion of the first base substrate 100 .
  • the common electrode 109 is in contact with both the common voltage line 11 and the first base substrate 100 through the second opening V2.
  • the second opening V2 exposes only a part of the common voltage line 11
  • the liquid flows into the second opening V2, so that the flow of the liquid is more uniform, so that the thickness of the first alignment layer 12 is more uniform, thereby improving the display uniformity of the array substrate.
  • the position of the second opening V2 may deviate from the desired position.
  • the common electrode 109 may only be in contact with the first base substrate 100 through the second opening V2, but cannot be in contact with the corresponding common voltage line 11 .
  • the embodiments of the present disclosure propose the following solutions.
  • the common voltage line 11 connected to each row of sub-pixels 10 includes a first common voltage line part 111 , a second common voltage line part 112 and a third common voltage line part 113 .
  • the third common voltage line part 113 is located between the first common voltage line part 111 and the second common voltage line part 112, and is adjacent to the first common voltage line part 111 and the second common voltage line part 112, respectively.
  • the length L4 of the second common voltage line part 112 in the first direction perpendicular to the second direction in which the common voltage line 11 extends is greater than the length L3 of the first common voltage line part 111 in the first direction, and the first common voltage line part The length L3 of the 111 in the first direction is greater than the length L5 of the third common voltage line part 113 in the first direction.
  • the common electrode 109 of each subpixel 10 in each row of subpixels is in contact with the second common voltage line portion 112 through the second opening V2.
  • the wider second common voltage line portion 112 is more conducive to ensuring that the common electrode 109 is in contact with the first base substrate 100 .
  • the third common voltage line part 113 is relatively narrower than the first common voltage line part 111 and the second common voltage line part 112 , it is more favorable to ensure that the common electrode 109 is in contact with the first base substrate 100 . As such, such a structure is more favorable for the common electrode 109 to be in contact with both the first base substrate 100 and the common voltage line 11 .
  • the common voltage line 11 further includes a fourth common voltage line part 114 overlapping with the data line DL, and the fourth common voltage line part 112 is adjacent to the second common voltage line part 112 .
  • the length L6 of the fourth common voltage line part 114 in the first direction is smaller than the length L4 of the second common voltage line part 112 in the first direction. In this way, the coupling capacitance between the common voltage line 11 and the data line DL can be reduced.
  • An embodiment of the present disclosure further provides a display device, and the display device may include the array substrate of any one of the foregoing embodiments.
  • the display device may be, for example, a display panel, a mobile terminal, a television, a monitor, a notebook computer, a digital photo frame, a navigator, an electronic paper, or any other product or component with a display function.
  • the size of the display device may be 55 inches, 65 inches, 75 inches, etc., and the resolution may be 4K, 8K or higher.
  • FIG. 3 is a schematic structural diagram illustrating a display device according to an embodiment of the present disclosure.
  • the display device includes an array substrate TA and a color filter substrate TB disposed opposite to the array substrate TA.
  • the color filter substrate TB includes a second base substrate 200 , a black matrix 201 , a filter layer 202 , a planarization layer 203 and a plurality of spacers 204 . It should be understood that liquid crystal is disposed between the array substrate TA and the color filter substrate TB.
  • the second base substrate 200 may be, for example, a glass substrate. Both the black matrix 201 and the filter layer 202 are located on the side of the second base substrate 200 close to the array substrate TA.
  • Figure 1A shows the black matrix 201 in dashed lines. It should be understood that the area of the sub-pixel 10 not covered by the black matrix 201 is the light-emitting area.
  • the filter layer 202 includes a plurality of filter units, such as a red filter unit R, a green filter unit G, and a blue filter unit B. Adjacent filter units among the plurality of filter units are spaced apart by the black matrix 201 . For example, the red filter unit R and the green filter unit G are separated by the black matrix 201 , and the green filter unit G and the blue filter unit B are separated by the black matrix 201 .
  • the planarization layer 203 is located on the side of the black matrix 201 and the filter layer 202 close to the array substrate TA.
  • the material of the planarization layer 203 includes resin, photoresist, and the like.
  • a plurality of spacers 204 are located between the planarization layer 203 and the array substrate TA.
  • the orthographic projection of each of the plurality of spacers 204 on the second base substrate 200 is located within the orthographic projection of the black matrix 201 on the second base substrate 100 .
  • the material of the spacer 204 may include resin, photoresist.
  • the spacers 204 may move under the action of external force, thereby causing damage to the array substrate TA.
  • the first alignment layer 12 of the array substrate TA may be damaged, thereby affecting the display device. display effect. Since the orthographic projection of the spacer 204 on the second base substrate 100 is within the orthographic projection of the black matrix 201 on the second base substrate 100 , even if the spacer 204 moves, as long as it is covered by the black matrix 201 , the display effect of the display device will not be adversely affected. Therefore, such a structure is beneficial to reduce the adverse effect of the movement of the spacer 204 on the display effect of the display device.
  • each first subpixel of the plurality of columns of first subpixels P1, each of the second subpixels of the plurality of columns of second subpixels P2, and each of the plurality of columns of third subpixels P3 The area of the three sub-pixels not covered by the black matrix 201 is the light-emitting area.
  • the area of the light emitting area of each second subpixel is smaller than the area of the light emitting area of each first subpixel and the area of the light emitting area of each third subpixel.
  • the color filter substrate TB further includes a second alignment layer 205 located on the side of the planarization layer 203 close to the array substrate TA and on the surface of the spacer 204 .
  • the material of the second alignment layer 205 may include polyimide (PI).
  • the plurality of subpixels 10 includes a plurality of columns of first subpixels P1 configured to emit light of a first color, columns of second subpixels P2 configured to emit light of a second color, and columns of second subpixels P2 configured to emit light of a second color A plurality of columns of third sub-pixels P3 that emit light of a third color. Two adjacent columns of second sub-pixels P2 in the plurality of columns of second sub-pixels P2 are divided by a column of first sub-pixels P1 in the plurality of columns of first sub-pixels P1 and a column of third sub-pixels P3 in the plurality of columns of third sub-pixels P3. spaced apart.
  • the plurality of spacers 204 include a plurality of columns of spacers corresponding to the plurality of columns of the second sub-pixels P2.
  • the number of columns of the second sub-pixels P2 in the plurality of columns is the same as that of the spacers in the plurality of columns, that is, one column of the second sub-pixels P2 corresponds to one column of spacers.
  • the orthographic projection of each spacer 204 in each of the plurality of columns of spacers on the first base substrate 100 is defined as the first projection
  • the second sub-pixel P2 of the plurality of columns is defined as the first projection
  • the orthographic projection of the gate electrode 101 of one second sub-pixel P2 in a row of second sub-pixels P2 corresponding to each column of spacers on the first base substrate 100 is defined as the second projection
  • the orthographic projection of the active layer 103 of P2 on the first base substrate 100 is defined as the third projection
  • the orthographic projection of the data line DL connected to the second sub-pixel P2 on the first base substrate 100 is defined as the fourth projection projection.
  • the first projection of the spacer 204 is located within the second projection of the gate 101 , and the third projection of the active layer 103 is located away from the fourth projection of the data line DL side. Under such a structure, the adverse effect of the spacer 204 on the light emission of the sub-pixel 10 is small.
  • FIGS. 1A and 1B the first projection of the spacer 204 is shown to coincide with the spacer 204 .
  • other components shown in FIG. 1A and FIG. 1B can also be understood as orthographic projections of other components on the first base substrate 100 .
  • the first projection of the spacer 204 shown in FIGS. 1A and 1B can be understood as the orthographic projection of the surface of the spacer 204 close to the planarization layer 203 on the first base substrate 100 .
  • the shape of the first projection of the spacer 204 shown in FIGS. 1A and 1B is an octagon, this is not a limitation, and the shape of the first projection of the spacer 204 may also be Is a circle, or other polygon.
  • the second color is red, that is, the second sub-pixel P2 is a red sub-pixel.
  • the brightness of the red sub-pixel is smaller than the brightness of the blue sub-pixel and the green sub-pixel. Setting the positions of the plurality of spacers to correspond to the plurality of columns of red sub-pixels can reduce the impact of the plurality of spacers 204 on the display device as much as possible. Display adverse effects.
  • each second subpixel P2 in each column of second subpixels further includes a plurality of blocking portions 110 configured to block movement of the spacers 204 , each blocking portion
  • the orthographic projection of 110 on the first base substrate 100 is located within the orthographic projection of the black matrix 201 on the first base substrate 100 .
  • the plurality of blocking portions 110 include a first blocking portion 110A and a second blocking portion 110B.
  • the first blocking portion 110A is located on the side of the spacer 204 corresponding to the second sub-pixel P2 close to the pixel electrode 104 among the plurality of spacers 204
  • the second blocking portion 110B is located on the first blocking portion 110A away from the spacer one side of object 204.
  • the height of the second blocking portion 110B is greater than the height of the first blocking portion 110A. It should be understood that, in the present disclosure, the height of a certain component may be understood as the length of the component extending in a direction perpendicular to the surface of the first base substrate 100 .
  • the first blocking portion 110A with a smaller height can block the spacer 204 from moving. Even if the spacer 204 crosses the first blocking portion 110A, the first blocking portion 110A also plays a buffering role, reducing the barrier.
  • the moving speed of the spacer 204 is such that the second blocking portion 110B with a larger height can more effectively block the spacer 204 from moving. In this way, the spacer 204 can be more effectively blocked from moving to the light emitting area of the second sub-pixel P2, thereby preventing the spacer 204 from adversely affecting the second sub-pixel P2.
  • the plurality of blocking parts 110 of the second sub-pixel P2 further includes a third blocking part 110C.
  • the first blocking part 110A and the second blocking part 110B are located on the first side of the light emitting area of the second sub-pixel P2.
  • the third blocking portion 110C is located on the second side opposite to the first side of the light emitting region of the second sub-pixel P2.
  • the third blocking portion 110C can block the spacer 204 in the adjacent second sub-pixel P2 located in the same column as the second sub-pixel P2 from moving to the light-emitting area of the second sub-pixel P2, thereby further preventing the spacer 204 from moving to the light-emitting area of the second sub-pixel P2 204 Influence on the second sub-pixel P2.
  • the plurality of blocking portions 110 may be formed during the formation of other layers of the array substrate. The following description will be made with reference to FIG. 4 , FIG. 2A and FIG. 2B .
  • Fig. 4 is a schematic cross-sectional view taken along D-D' shown in Fig. 1B .
  • the first blocking part 110A includes a first layer LY1 , a second layer LY2 , a third layer LY3 , a fourth layer LY4 and a fifth layer LY5 which are sequentially arranged on one side of the first base substrate 100 ,
  • At least one of the second barrier portion 110B and the third barrier portion 110C includes a sixth layer LY6 , a seventh layer LY7 , an eighth layer LY8 , a ninth layer LY9 , a sixth layer LY6 , a seventh layer LY7 , an eighth layer LY8 , a ninth layer LY9 ,
  • the tenth floor is LY10 and the eleventh floor is LY11.
  • the first layer LY1, the seventh layer LY7 and the first insulating layer 102 shown in FIG. 2B are located on the same layer
  • the second layer LY2 the eighth layer LY8 and the pixel electrode 104 shown in FIG. 2B are located on the same layer
  • the third layer LY3 , the ninth layer LY9 and the first electrode 105 shown in FIG. 2B are located in the same layer
  • the fourth layer LY4 the tenth layer LY10 and the second insulating layer 107 shown in FIG. 2B are located in the same layer
  • the first layer LY11 and the common electrode 109 shown in FIG. 2B are located on the same layer
  • the sixth layer LY6 is located on the same layer as the gate electrode 101 shown in FIG. 2A .
  • Embodiments of the present disclosure also provide a method for manufacturing an array substrate, which includes forming a plurality of data lines and a plurality of sub-pixels on one side of a first base substrate. The process of forming at least one of the plurality of sub-pixels will be described below with reference to FIG. 5 .
  • FIG. 5 is a schematic flowchart illustrating a method for manufacturing a sub-pixel according to an embodiment of the present disclosure.
  • a gate is formed on one side of the first base substrate.
  • a first insulating layer is formed on a side of the gate away from the first base substrate.
  • an active layer is formed on a side of the first insulating layer away from the gate.
  • a pixel electrode is formed on a side of the first insulating layer away from the first base substrate.
  • a first electrode and a second electrode are formed.
  • the first electrode and the second electrode may be formed through the same patterning process.
  • the first electrode is located on a side of the active layer and the pixel electrode away from the first base substrate, and is connected to the active layer. In addition, the first electrode is in contact with the pixel electrode.
  • the second electrode is spaced apart from the first electrode and connected to the active layer and one of the plurality of data lines.
  • a second insulating layer is formed on a side of the pixel electrode, the first electrode and the second electrode away from the first base substrate.
  • the second insulating layer has a first opening, and the orthographic projection of the first opening on the first base substrate partially overlaps the orthographic projection of the pixel electrode on the first base substrate, and overlaps with the orthographic projection of the first electrode on the first base substrate The orthographic projections on are partially overlapped.
  • connection electrode and a common electrode spaced from the connection electrode are formed.
  • the common electrode and the connection electrode may be formed through the same patterning process.
  • connection electrode is in contact with the pixel electrode and the first electrode through the first opening, and the common electrode is located on the side of the second insulating layer away from the pixel electrode.
  • the distance between the pixel electrode and the common electrode is reduced, the storage capacitance of the sub-pixel is increased, and the vertical crosstalk of the array substrate is reduced.
  • the first electrode is in direct contact with the pixel electrode, and both the first electrode and the pixel electrode are in contact with the connection electrode in the first opening, which increases the contact area between the first electrode and the pixel electrode and reduces the
  • the resistance between the first electrode and the pixel electrode is beneficial to improve the driving capability of the sub-pixel and improve the display effect of the array substrate.
  • the second insulating layer can be formed as follows. First, an insulating material layer covering the pixel electrode, the first electrode and the second electrode is formed; then, a mask with a third opening is formed on the side of the insulating material layer away from the first base substrate; The insulating material layer is patterned to obtain a second insulating layer having a second opening.
  • the above-mentioned mask with the third opening can be manufactured by using an existing reticle, and there is no need to increase the number of reticle, which is convenient for process realization.
  • the gate scan signal can be written to the gate line line by line, and the data voltage signal can be written to the data line at the same time, so that the sub-pixels in the display panel are lit line by line. .
  • the gate scanning signal is provided by the gate driving circuit, and the data voltage signal is provided by the source driving circuit.
  • the gate driver circuit can be integrated in the gate driver chip, and the source driver circuit can be integrated in the source driver chip.
  • the gate driving circuit in order to reduce the number of chips and realize a narrow frame or no frame, can be integrated on the array substrate.
  • the gate driving circuit includes a plurality of cascaded shift register units integrated on the array substrate, and the plurality of shift register units are connected with the plurality of gate lines in one-to-one correspondence. Each shift register unit is used to provide gate scan signals for the gate lines connected thereto.
  • 6-8 are schematic diagrams illustrating the structure of a shift register unit according to some embodiments of the present disclosure.
  • the shift register unit includes an input subcircuit 1 , an output subcircuit 2 , a pull-up reset subcircuit 3 and an output reset subcircuit 4 .
  • the input sub-circuit 1 charges the pull-up node PU in response to the input signal input from the signal input terminal INPUT.
  • the output subcircuit 2 outputs the clock signal input from the clock signal terminal CLK through the signal output terminal OUTPUT in response to the potential of the pull-up node PU.
  • the pull-up reset subcircuit 3 resets the pull-up node PU in response to the pull-up reset signal output from the pull-up reset signal terminal RESET_PU, for example, resets the potential of the pull-up node PU to a low level.
  • the output reset sub-circuit 4 resets the signal output terminal OUTPUT in response to the output reset signal, for example, resets the potential of the signal output terminal OUTPUT to a low level.
  • the input sub-circuit 1 includes a first transistor M1
  • the pull-up reset sub-circuit 3 includes a second transistor M2
  • the output sub-circuit 2 includes a third transistor M3 and a storage capacitor C
  • the output reset The subcircuit 4 includes a fourth transistor M4.
  • the gate and source of the first transistor M1 are connected to the signal input terminal INPUT, and the drain of the first transistor M1 is connected to the pull-up node PU.
  • the gate of the second transistor M2 is connected to the pull-up reset signal terminal RESET_PU, the source of the second transistor M2 is connected to the pull-up node PU, and the drain of the second transistor M2 is connected to the low-level signal terminal VSS.
  • the gate of the third transistor M3 is connected to the pull-up node PU, the source of the third transistor M3 is connected to the clock signal terminal CLK, and the drain of the third transistor M3 is connected to the signal output terminal OUTPUT.
  • the first terminal of the storage capacitor C is connected to the pull-up node PU, and the second terminal of the storage capacitor C is connected to the signal output terminal OUTPUT.
  • the gate of the fourth transistor M4 is connected to the output reset signal terminal RESET_OUTPUT, the source of the fourth transistor M4 is connected to the signal output terminal OUTPUT, and the drain of the fourth transistor M4 is connected to the low-level signal terminal VSS.
  • the signal input terminal INPUT is written with a high level signal, and the first transistor M1 is turned on.
  • the high-level signal pulls up the potential of the pull-up node PU and charges the storage capacitor C.
  • the third transistor M3 is turned on, and the high-level signal input from the clock signal terminal CLK is output to the signal output terminal OUTPUT to the switch register unit connected to the shift register unit. grid line.
  • a high-level signal is input to the output reset signal terminal RESET_OUTPUT, the fourth transistor M4 is turned on, and the low-level signal input from the low-level signal terminal VSS pulls down the output potential of the signal output terminal OUTPUT.
  • a high-level signal is input to the pull-up reset signal terminal RESET_PU, the second transistor M2 is turned on, and the potential of the pull-up node PU is pulled down through the low-level signal input from the low-level signal terminal VSS. This completes the reset of the pull-up node PU and the signal output terminal OUTPUT.
  • the output reset subcircuit 4 may not be set in the shift register unit.
  • the potential of the pull-up node PU is at a low level.
  • the third transistor M3 is turned off, and the signal output terminal OUTPUT no longer outputs the high-level signal input by the clock signal terminal CLK. , so as to realize the reset of the signal output terminal OUTPUT.
  • the signal output terminal OUTPUT of a shift register unit of a certain stage in the gate driving circuit including the above shift register unit is connected to the pull-up reset signal terminal RESET_PU of the shift register unit of the previous stage, and the next Signal input terminal INPUT of the stage shift register unit.
  • the shift register unit further includes a first pull-down control sub-circuit and a second pull-down control sub-circuit circuit, a first pull-down sub-circuit, a second pull-down sub-circuit, a first noise reduction sub-circuit, a second noise-reduction sub-circuit, a discharge sub-circuit, a first auxiliary sub-circuit, and a second auxiliary sub-circuit.
  • the discharge circuit discharges the pull-up node PU through the low-level signal input from the low-level signal terminal VGL.
  • the first pull-down control sub-circuit and the second pull-down control sub-circuit have the same structure and function, and work in time division.
  • the first pull-down subcircuit and the second pull-down subcircuit have the same structure and function
  • the first auxiliary subcircuit and the second auxiliary subcircuit have the same structure and function
  • the first noise reduction subcircuit and the second noise reduction subcircuit have the same structure and function. structure and function are the same.
  • the input sub-circuit, output sub-circuit, and pull-up reset sub-circuit are the same in structure and function as described above, and will not be repeated here.
  • Both the first auxiliary sub-circuit and the second auxiliary sub-circuit respectively pull down the potentials of the first pull-down node PD1 and the second pull-down node PD2 through a low-level signal in response to the input signal input from the signal input terminal INPUT.
  • the first pull-down control sub-circuit controls the potential of the first pull-down node PD1 in response to the first power supply voltage input by the first power-supply voltage signal terminal VDDO; the second pull-down control sub-circuit is in response to the second power supply voltage signal terminal VDDE.
  • the inputted second power supply voltage controls the potential of the second pull-down node PD2.
  • the first pull-down subcircuit pulls down the potentials of the first pull-down node PD1 and the first pull-down control node PD_CN1 through a low-level signal input from the low-level signal terminal VGL.
  • the second pull-down subcircuit pulls down the potentials of the second pull-down node PD2 and the second pull-down control node PD_CN2 through the level signal input from the low-level signal terminal VGL.
  • the first noise reduction subcircuit In response to the potential of the first pull-down node PD1, the first noise reduction subcircuit performs noise reduction on the signal output from the pull-up node PU and the signal output terminal OUTPUT through the low-level signal input from the low-level signal terminal VGL.
  • the first pull-down control sub-circuit and the second pull-down control sub-circuit each include a fifth transistor and a ninth transistor.
  • the fifth transistors in the first pull-down control sub-circuit and the second control sub-circuit are represented by M5 and M5', respectively, and the ninth transistors are represented by M9 and M9', respectively.
  • the first pull-down subcircuit and the second pull-down subcircuit each include a sixth transistor and an eighth transistor.
  • the sixth transistors in the first pull-down sub-circuit and the second pull-down sub-circuit are represented by M6 and M6 ′, respectively, and the eighth transistors are represented by M8 and M8 ′, respectively.
  • the first noise reduction sub-circuit and the second noise reduction sub-circuit each include a tenth transistor and an eleventh transistor.
  • the tenth transistors in the first noise reduction sub-circuit and the second noise reduction sub-circuit are represented by M10 and M10' respectively, and the eleventh transistors are represented by M11 and M11' respectively.
  • the discharge sub-circuit includes a seventh transistor M7.
  • Both the first auxiliary sub-circuit and the second auxiliary sub-circuit include sixth transistors, which are represented by M16 and M16', respectively.
  • the gate and source of the first transistor M1 are connected to the signal input terminal INPUT, and the drain of the first transistor M1 is connected to the pull-up node PU.
  • the gate of the second transistor M2 is connected to the pull-up reset signal terminal RESET_PU, the source of the second transistor M2 is connected to the pull-up node PU, and the drain of the second transistor M2 is connected to the low-level signal terminal VGL.
  • the gate of the third transistor M3 is connected to the pull-up node PU, the source of the third transistor M3 is connected to the clock signal terminal CLK, and the drain of the third transistor M3 is connected to the signal output terminal OUTPUT.
  • the first terminal of the storage capacitor C is connected to the pull-up node PU, and the second terminal of the storage capacitor C is connected to the signal output terminal OUTPUT.
  • the gate and source of the ninth transistor M9 are both connected to the first power supply voltage terminal VDDO, and the drain of the ninth transistor M9 is connected to the first pull-down control node PD_CN1.
  • the gate of the fifth transistor M5 is connected to the first pull-down control node PD_CN1, the source of the fifth transistor M5 is connected to the first power supply voltage terminal VDDO, and the drain of the fifth transistor M5 is connected to the first pull-down node PD1.
  • the gate and source of the ninth transistor M9' are both connected to the second power supply voltage terminal VDDE, the drain of the ninth transistor M9' is connected to the second pull-down control node PD_CN2; the gate of the fifth transistor M5' is connected to the second pull-down For the control node PD_CN2, the source of the fifth transistor M5' is connected to the second power supply voltage terminal VDDE, and the drain of the fifth transistor M5' is connected to the second pull-down node PD2.
  • the gate of the sixth transistor M6 is connected to the pull-up node PU, the source of the sixth transistor M6 is connected to the first pull-down node PD1, and the drain of the sixth transistor M6 is connected to the low-level signal terminal VGL.
  • the gate of the eighth transistor M8 is connected to the pull-up node PU, the source of the eighth transistor M8 is connected to the first pull-down control node PD_CN1, and the drain of the eighth transistor M8 is connected to the low-level signal terminal VGL.
  • the gate of the sixth transistor M6' is connected to the pull-up node PU, the source of the sixth transistor M6' is connected to the second pull-down node PD2, and the drain of the sixth transistor M6' is connected to the low-level signal terminal VGL.
  • the gate of the eighth transistor M8' is connected to the pull-up node PU, the source of the eighth transistor M8' is connected to the second pull-down control node PD_CN2, and the drain of the eighth transistor M8' is connected to the low-level signal terminal VGL.
  • the gate of the tenth transistor M10 is connected to the first pull-down node PD1, the source of the tenth transistor M10 is connected to the pull-up node PU, and the drain of the tenth transistor M10 is connected to the low-level signal terminal VGL.
  • the gate of the eleventh transistor M11 is connected to the first pull-down node PD1, the source of the eleventh transistor M11 is connected to the signal output terminal OUTPUT, and the drain of the eleventh transistor M11 is connected to the low-level signal terminal VGL.
  • the gate of the tenth transistor M10' is connected to the second pull-down node PD2, the source of the tenth transistor M10' is connected to the pull-up node PU, and the drain of the tenth transistor M10' is connected to the low-level signal terminal VGL.
  • the gate of the eleventh transistor M11' is connected to the second pull-down node PD2, the source of the eleventh transistor M11' is connected to the signal output terminal OUTPUT, and the drain of the eleventh transistor M11' is connected to the low-level signal terminal VGL .
  • the gate of the seventh transistor M7 is connected to the signal terminal STV0, the source of the seventh transistor M7 is connected to the pull-up node PU, and the drain of the seventh transistor M7 is connected to the low-level signal terminal VGL.
  • the gate of the sixteenth transistor M16 is connected to the signal input terminal INPUT, the source of the sixteenth transistor M16 is connected to the first pull-down node PD1, and the drain of the sixteenth transistor M16 is connected to the low-level signal terminal VGL.
  • the gate of the sixteenth transistor M16' is connected to the signal input terminal INPUT, the source of the sixteenth transistor M16' is connected to the second pull-down node PD2, and the drain of the sixteenth transistor M16' is connected to the low-level signal terminal VGL .
  • the fifth transistor M5 and the ninth transistor M9 form a first pull-down control sub-circuit
  • the fifth transistor M5' and the ninth transistor M9' form a second pull-down control sub-circuit
  • the first pull-down control sub-circuit and the second pull-down control sub-circuit The circuits work in time-sharing, that is, take turns.
  • the first noise reduction subcircuit composed of the tenth transistor M10 and the eleventh transistor M11 is composed of a first pull-down control subcircuit
  • the second noise reduction subcircuit composed of the tenth transistor M10' and the eleventh transistor M11M11' is composed of a second
  • the pull-down control sub-circuit is controlled, so the first noise reduction sub-circuit and the second noise reduction sub-circuit also work in a time-sharing manner.
  • the working principles of the first pull-down control sub-circuit and the second pull-down control sub-circuit are the same, and the working principles of the first noise-reduction sub-circuit and the second noise-reduction sub-circuit are the same.
  • the working principle of the shift register unit will be described below only when the first pull-down control sub-circuit and the first noise reduction sub-circuit work.
  • a high-level signal is input to the signal terminal STV0, and the seventh transistor M7 is turned on.
  • the pull-up node PU is discharged through the low-level signal input by the low-level signal terminal VGL, so as to prevent abnormal display caused by the residual charge of the pull-up node PU.
  • a high level signal is input to the signal input terminal INPUT, and the first transistor M1 is turned on.
  • the potential of the pull-up node PU is pulled up by a high-level signal, and the storage capacitor C is charged.
  • the third transistor M3 is turned on.
  • the high level signal input from the clock signal terminal CLK is output to the corresponding gate line through the signal output terminal OUTPUT.
  • a high level signal is input to the pull-up reset signal terminal RESET_PU, and the second transistor M2 is turned on.
  • the potential of the pull-up node PU is pulled down by a low-level signal input from the low-level signal terminal VGL, so as to reset the pull-up node PU. Since the potential of the pull-up node PU is pulled down, the third transistor M3 is turned off, and both the signal output terminal OUTPUT and the cascaded signal output terminal OUT_C no longer output a high-level signal.
  • the first pull-down control node PD_CN1 and the first pull-down node PD1 are both high-level signals, and the tenth transistor M10 and the eleventh transistor M11 are turned on, so that the pull-up node PU and the signal output terminal OUTPUT are connected. Noise reduction, until the next frame starts, the pull-up node PU potential is pulled up again.
  • a cascaded sub-circuit is further provided in the shift register.
  • the cascade sub-circuit In response to the potential of the pull-up node PU, the cascade sub-circuit outputs the clock signal input from the clock signal terminal CLK through the cascade signal output terminal OUT_C.
  • the cascaded signal output terminal OUT_C and the signal output terminal OUTPUT output the same signal.
  • the cascade signal output terminal OUT_C outputs a high level signal to the pull-up reset signal terminal RESET_PU of the shift register unit of the previous stage, and the signal input terminal INPUT of the shift register unit of the next stage.
  • the cascaded sub-circuit includes a thirteenth transistor M13, the gate of the thirteenth transistor M13 is connected to the pull-up node PU, the source of the thirteenth transistor M13 is connected to the clock signal terminal CLK, and the drain of the thirteenth transistor M13 is connected to Cascade signal terminal OUT_C.
  • twelfth transistors are also set in both the first noise reduction sub-circuit and the second noise reduction sub-circuit, respectively denoted by M12 and M12', for noise reduction of the signal output by the cascaded signal output terminal OUT_C.
  • the gate of the twelfth transistor M12 is connected to the first pull-down node PD1, the source of the twelfth transistor M12 is connected to the cascade signal output terminal OUT_C, and the drain of the twelfth transistor M12 is connected to the low-level signal terminal LVGL.
  • the gate of the twelfth transistor M12' is connected to the second pull-down node PD2, the source of the twelfth transistor M12' is connected to the cascade signal output terminal OUT_C, and the drain of the twelfth transistor M12' is connected to the low-level signal terminal LVGL.
  • the cascade signal output terminal OUT_C of the shift register unit of this stage is connected to the pull-up reset signal terminal RESET_PU of the shift register of the previous stage, and Signal input terminal INPUT of the next stage shift register unit.
  • the above-mentioned shift register unit may not be provided with a cascaded sub-circuit.
  • the signal output terminal OUTPUT of the shift register unit of this stage is connected to the pull-up reset signal terminal RESET_PU of the shift register of the previous stage, and the lower Signal input terminal INPUT of the first-stage shift register unit.
  • the drains of the eleventh transistors M11 and M11 ′ are connected to the low-level signal terminal VGL, and the drains of other transistors that need to be connected to the low-level signal terminal are connected to the low-level signal terminal.
  • Level signal terminal LVGL Level signal terminal

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geometry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种阵列基板,包括多条数据线(DL)和多个子像素(10)。至少一子像素(10)包括:第一衬底基板(100)、栅极(101)、第一绝缘层(102)、有源层(103)、像素电极(104)、第一电极(105)、第二电极(106)、第二绝缘层(107)、连接电极(108)和公共电极(109)。第一电极(105)位于有源层(103)和像素电极(104)远离第一衬底基板(100)一侧,且连接至有源层(103)并与像素电极(104)接触。第二电极(106)连接至有源层(103)和一数据线(DL)。第二绝缘层(107)具有第一开口(V1),第一开口(V1)与像素电极(104)和第一电极(105)在第一衬底基板(100)上的正投影部分交叠。连接电极(108)通过第一开口(V1)与像素电极(104)和第一电极(105)接触。公共电极(109)远离像素电极(104)一侧且与连接电极(108)间隔开。还提供了一种阵列基板的制造方法和包括该阵列基板的显示装置。

Description

阵列基板及其制造方法、显示装置
相关申请的交叉引用
本公开以中国申请号为202011189386.7,申请日为2020年10月30日的申请为基础,并主张其优先权,该中国申请的公开内容在此作为整体引入本公开中。
技术领域
本公开涉及显示技术领域,尤其涉及一种阵列基板及其制造方法、显示装置。
背景技术
随着显示技术的快速发展,人们对液晶显示装置例如电视机等的分辨率的要求也越来越高,8K分辨率的液晶显示装置逐步成为了研究的热点。
随着液晶显示装置的分辨率的提高,液晶显示装置中的子像素数目越来越多,单个子像素的尺寸也越来越小。
发明内容
根据本公开实施例的一方面,提供一种阵列基板,包括第一衬底基板、多条数据线和连接至所述多条数据线的多个子像素,所述多个子像素中的至少一个包括:第一绝缘层,位于所述第一衬底基板的一侧;栅极,位于所述第一衬底基板与所述第一绝缘层之间;有源层,位于所述第一绝缘层远离所述栅极的一侧;像素电极,位于所述第一绝缘层远离所述第一衬底基板的一侧;第一电极,位于所述有源层和所述像素电极远离所述第一衬底基板的一侧,所述第一电极连接至所述有源层,并且与所述像素电极接触;第二电极,与所述第一电极间隔开,并且连接至所述有源层和所述多条数据线中的一条数据线;第二绝缘层,位于所述像素电极、所述第一电极和所述第二电极远离所述第一衬底基板的一侧,并且具有第一开口,所述第一开口在所述第一衬底基板上的正投影与所述像素电极在所述第一衬底基板上的正投影部分交叠,并且与所述第一电极在所述第一衬底基板上的正投影部分交叠;连接电极,通过所述第一开口与所述像素电极和所述第一电极接触;和公共电极,位于所述第二绝缘层远离所述像素电极的一侧,并且与所述连接电极间隔开。
在一些实施例中,所述多个子像素中的部分子像素的公共电极彼此连接,其余子 像素的公共电极彼此间隔开。
在一些实施例中,所述多个子像素包括多列子像素,所述部分子像素包括所述多列子像素中的至少一列子像素,所述至少一列子像素中的每列子像素包括相邻的两个子像素,所述相邻的两个子像素的两个公共电极通过公共电极连接件连接。
在一些实施例中,所述多个子像素包括多行子像素,所述多行子像素中每行子像素中相邻的两个子像素的两个栅极通过栅极连接件连接,所述栅极连接件与所述公共电极连接件和所述数据线部分交叠。
在一些实施例中,所述数据线沿着第一方向延伸,所述数据线包括:第一数据线部,与所述栅极连接件不交叠;和与所述第一数据线部邻接的第二数据线部,与所述栅极连接件部分交叠,其中,所述第二数据线部在与所述第一方向垂直的第二方向上的长度大于所述第一数据线部在所述第二方向上的长度。
在一些实施例中,所述栅极连接件的延伸方向与所述第一方向的夹角大于或等于45度且小于90度。
在一些实施例中,所述第二数据线部在所述第二方向上的长度与所述第一数据线部在所述第二方向上的长度之比大于1且小于或等于1.4。
在一些实施例中,所述多列子像素包括被配置为发出第一颜色的光的多列第一子像素、被配置为发出第二颜色的光的多列第二子像素和被配置为发出第三颜色的光的多列第三子像素,所述多列第三子像素中相邻的两列第三子像素被所述多列第一子像素中的一列第一子像素和所述多列第二子像素中的一列第二子像素间隔开,所述第一颜色、所述第二颜色和所述第三颜色彼此不同;以及所述至少一列子像素包括所述多列第三子像素中的两列或两列以上第三子像素。
在一些实施例中,所述两列或两列以上第三子像素中相邻的两列第三子像素被所述多列第三子像素中除所述两列或两列以上第三子像素之外的一列第三子像素间隔开。
在一些实施例中,所述两个公共电极与所述公共电极连接件一体设置。
在一些实施例中,所述多个子像素包括多行子像素;以及所述阵列基板还包括与所述多行子像素连接的多条公共电压线,所述多条公共电压线中的每条公共电压线被配置为向所述多行子像素中的对应行子像素的公共电极施加公共电压。
在一些实施例中,所述阵列基板还包括:第一配向层,位于所述公共电极远离所述第一衬底基板的一侧;所述多行子像素中每行子像素中的每个子像素的所述第二绝 缘层具有第二开口;以及所述每行子像素中的每个子像素的所述公共电极通过所述第二开口与所述多条公共电压线中与所述每行子像素对应的一条公共电压线和所述第一衬底基板接触。
在一些实施例中,所述公共电压线包括第一公共电压线部、第二公共电压线部和第三公共电压线部,所述第三公共电压线部位于所述第一公共电压线部和所述第二公共电压线部之间,并且分别与所述第一公共电压线部和所述第二公共电压线部邻接,所述第二公共电压线部在与所述公共电压线延伸的第二方向垂直的第一方向上的长度大于所述第一公共电压线部在所述第一方向上的长度,所述第一公共电压线部在所述第一方向上的长度大于所述第三公共电压线部在所述第一方向上的长度;以及所述每行子像素中的每个子像素的所述公共电极通过所述第二开口与所述第二公共电压线部接触。
在一些实施例中,所述多条公共电压线与所述栅极位于同一层。
在一些实施例中,所述公共电极与所述连接电极位于同一层。
在一些实施例中,所述公共电极包括:第一电极部,具有狭缝,位于所述连接电极远离所述栅极的一侧;和与所述第一电极部邻接的第二电极部,不具有狭缝,位于所述连接电极远离所述数据线的一侧。
根据本公开实施例的另一方面,提供一种显示装置,包括:上述任意一个实施例所述的阵列基板。
在一些实施例中,所述显示装置还包括与所述阵列基板相对设置的彩膜基板,所述彩膜基板包括:第二衬底基板;黑矩阵和滤光层,位于所述第二衬底基板靠近所述阵列基板的一侧,所述滤光层包括多个滤光单元,所述多个滤光单元中相邻的滤光单元被所述黑矩阵间隔开;平坦化层,位于所述黑矩阵和所述滤光层靠近所述阵列基板的一侧;和多个隔垫物,位于所述平坦化层与所述阵列基板之间,所述多个隔垫物中的每个隔垫物在所述第二衬底基板上的正投影位于所述黑矩阵在所述第二衬底基板上的正投影之内。
在一些实施例中,所述多个子像素包括被配置为发出第一颜色的光的多列第一子像素、被配置为发出第二颜色的光的多列第二子像素和被配置为发出第三颜色的光的多列第三子像素,所述多列第二子像素中相邻的两列第二子像素被所述多列第一子像素中的一列第一子像素和所述多列第三子像素中的一列第三子像素间隔开,所述第一颜色、所述第二颜色和所述第三颜色彼此不同;以及所述多个隔垫物包括与所述多列 第二子像素对应的多列隔垫物,所述多列隔垫物中的每列隔垫物中的每个隔垫物在所述第一衬底基板上的正投影为第一投影,所述多列第二子像素中与所述每列隔垫物对应的一列第二子像素中的一个第二子像素的所述栅极在所述第一衬底基板上的正投影为第二投影,所述第二子像素的所述有源层在所述第一衬底基板上的正投影为第三投影,所述第二子像素连接的所述数据线在所述第一衬底基板上的正投影为第四投影,所述第一投影位于所述第二投影之内,并且位于所述第三投影远离所述第四投影的一侧。
在一些实施例中,所述第二颜色为红色。
在一些实施例中,所述多列第一子像素中的每个第一子像素、所述多列第二子像素中的每个第二子像素和所述多列第三子像素中的每个第三子像素未被所述黑矩阵覆盖的区域为发光区域,每个第二子像素的所述发光区域的面积小于每个第一子像素的所述发光区域的面积和每个第三子像素的所述发光区域的面积。
在一些实施例中,所述第二子像素还包括多个阻挡部,所述多个阻挡部中的每个阻挡部在所述第一衬底基板上的正投影位于所述黑矩阵在所述第一衬底基板上的正投影之内,所述多个阻挡部包括:第一阻挡部,位于所述多个隔垫物中与所述第二子像素对应的一个隔垫物靠近所述像素电极的一侧;和第二阻挡部,位于所述第一阻挡部远离所述隔垫物的一侧,所述第二阻挡部的高度大于所述第一阻挡部的高度。
在一些实施例中,所述第二子像素未被所述黑矩阵覆盖的区域为发光区域;所述第一阻挡部和所述第二阻挡部位于所述发光区域的第一侧;以及所述多个阻挡部还包括第三阻挡部,位于所述发光区域与所述第一侧相对的第二侧。
在一些实施例中,所述第一阻挡部包括在所述第一衬底基板的所述一侧依次设置的第一层、第二层、第三层、第四层和第五层;所述第二阻挡部和所述第三阻挡部中的至少一个包括在所述第一衬底基板的所述一侧依次设置的第六层、第七层、第八层、第九层、第十层和第十一层;以及所述第一层、所述第七层和所述第一绝缘层位于同一层,所述第二层、所述第八层和所述像素电极位于同一层,所述第三层、所述第九层和所述第一电极位于同一层,所述第四层、所述第十层和所述第二绝缘层位于同一层,所述第五层、所述第十一层和所述公共电极位于同一层,所述第六层与所述栅极位于同一层。
根据本公开实施例的又一方面,提供一种阵列基板的制造方法,包括在第一衬底基板的一侧形成多条数据线和多个子像素,形成所述多个子像素中的至少一个包括: 在所述第一衬底基板的所述一侧形成栅极;在所述栅极远离所述第一衬底基板的一侧形成第一绝缘层;在所述第一绝缘层远离所述栅极的一侧形成有源层;在所述第一绝缘层远离所述第一衬底基板的一侧形成像素电极;形成第一电极和第二电极,其中:所述第一电极位于所述有源层和所述像素电极远离所述第一衬底基板的一侧,连接至所述有源层,并且与所述像素电极接触,所述第二电极与所述第一电极间隔开,并且连接至所述有源层和所述多条数据线中的一条数据线;在所述像素电极、所述第一电极和所述第二电极远离所述第一衬底基板一侧形成第二绝缘层,所述第二绝缘层具有第一开口,所述第一开口在所述第一衬底基板上的正投影与所述像素电极在所述第一衬底基板上的正投影部分交叠,并且与所述第一电极在所述第一衬底基板上的正投影部分交叠;和形成连接电极和与所述连接电极间隔开的公共电极,所述连接电极通过所述第一开口与所述像素电极和所述第一电极接触,所述公共电极位于所述第二绝缘层远离所述像素电极的一侧。
在一些实施例中,形成所述第二绝缘层包括:形成覆盖所述像素电极、所述第一电极和所述第二电极的绝缘材料层;在所述绝缘材料层远离所述第一衬底基板的一侧形成具有第三开口的掩模;和利用所述掩模对所述绝缘材料层进行图案化,以得到所述第二绝缘层。
本公开实施例提供的阵列基板中,一方面,像素电极与公共电极之间的距离减小,增大了子像素的存储电容,减小了阵列基板的垂直串扰。另一方面,第一电极与像素电极接触,并且,第一电极与像素电极均与第一开口中的连接电极接触,增大了第一电极与像素电极之间的接触面积,减小了第一电极与像素电极之间的电阻,有利于提高子像素的驱动能力,提高阵列基板的显示效果。
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征、方面及其优点将会变得清楚。
附图说明
附图构成本说明书的一部分,其描述了本公开的示例性实施例,并且连同说明书一起用于解释本公开的原理。
参照附图,根据下面的详细描述,可以更加清楚地理解本公开,在附图中:
图1A是示出根据本公开一个实施例的阵列基板的结构示意图;
图1B是示出图1A所示阵列基板的局部放大示意图;
图2A是沿着图1B所示的A-A’截取的截面示意图;
图2B是沿着图1B所示的B-B’截取的截面示意图;
图2C是沿着图1A所示的C-C’截取的截面示意图;
图3是示出根据本公开一个实施例的显示装置的结构示意图;
图4是沿着图1B所示的D-D’截取的截面示意图;
图5是示出根据本公开一个实施例的子像素的制造方法的流程示意图;
图6-图8是示出根据本公开一些实施例的移位寄存器单元的结构示意图。
应当明白,附图中所示出的各个部分的尺寸并不必然是按照实际的比例关系绘制的。此外,相同或类似的参考标号表示相同或类似的构件。
具体实施方式
现在将参照附图来详细描述本公开的各种示例性实施例。对示例性实施例的描述仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。本公开可以以许多不同的形式实现,不限于这里所述的实施例。提供这些实施例是为了使本公开透彻且完整,并且向本领域技术人员充分表达本公开的范围。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、材料的组分、数字表达式和数值应被解释为仅仅是示例性的,而不是作为限制。
本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的部分。“包括”或者“包含”等类似的词语意指在该词前的要素涵盖在该词后列举的要素,并不排除也涵盖其他要素的可能。“上”、“下”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在本公开中,当描述到特定部件位于第一部件和第二部件之间时,在该特定部件与第一部件或第二部件之间可以存在居间部件,也可以不存在居间部件。当描述到特定部件连接其它部件时,该特定部件可以与所述其它部件直接连接而不具有居间部件,也可以不与所述其它部件直接连接而具有居间部件。
本公开使用的所有术语(包括技术术语或者科学术语)与本公开所属领域的普通技术人员理解的含义相同,除非另外特别定义。还应当理解,在诸如通用字典中定义的术语应当被解释为具有与它们在相关技术的上下文中的含义相一致的含义,而不应用理想化或极度形式化的意义来解释,除非这里明确地这样定义。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
发明人注意到,子像素的尺寸越来越小后,子像素中的存储电容也越来越小,从而导致子像素容易受到子像素中薄膜晶体管的漏电流、以及子像素与数据线之间的电容耦合作用的干扰,从而产生垂直串扰(Vertical Crosstalk)。
图1A是示出根据本公开一个实施例的阵列基板的布局示意图。
如图1A所示,阵列基板TA包括第一衬底基板100、多条数据线DL和连接至多条数据线DL的多个子像素10。例如,多个子像素10中连接至同一数据线DL的子像素10位于该数据线DL的同一侧,即,同一列子像素10连接至同一数据线DL。
图1B是示出图1A所示阵列基板的局部放大示意图。图2A是沿着图1B所示的A-A’截取的截面示意图;图2B是沿着图1B所示的B-B’截取的截面示意图。
下面结合图1B、图2A和图2B介绍根据本公开一些实施例的子像素10的结构。阵列基板TA的多个子像素10中的至少一个的结构可以是下文所描述的子像素10的结构。在一些实施例中,阵列基板TA的每个子像素10的结构均可以是下文所描述的子像素10的结构。
参见图1B、图2A和图2B,子像素10包括栅极101、第一绝缘层102、有源层103、像素电极104、第一电极105、第二电极106、第二绝缘层107、连接电极108和公共电极109。
栅极101位于第一衬底基板100的一侧,如图2A所示。这里,栅极101被示出为位于第一衬底基板100的上侧。第一衬底基板100例如可以是玻璃基板等。栅极101的材料例如可以包括铝、铜等金属。
第一绝缘层102位于第一衬底基板100的一侧,并且栅极101位于第一衬底基板100与第一绝缘层102之间,如图2A所示。应理解,第一绝缘层102还覆盖第一衬底基板100的一部分,如图2B所示。作为一些实现方式,第一绝缘层102的材料可以包括硅的氧化物、硅的氮化物(例如SiN x)或硅的氮氧化物等。
有源层103位于第一绝缘层102远离栅极101的一侧,如图2A所示。例如,有源层103的材料可以包括非晶硅、低温多晶硅、氧化物半导体等半导体材料。在一些实施例中,有源层103的材料可以包括P型半导体材料。
像素电极104位于第一绝缘层102远离第一衬底基板100的一侧,如图2B所示。另外,例如,像素电极104与有源层103间隔开,如图1B所示。作为一些实现方式,像素 电极104的材料可以包括氧化铟锡(ITO)等透明材料。应理解,在本公开中,部件A与部件B间隔开表示部件A与部件B之间绝缘。
第一电极105位于有源层103和像素电极104远离第一衬底基板100的一侧,如图2A和图2B所示。参见图2A,第一电极105连接至有源层103。例如,第一电极105可以与有源层103接触。参见图2B,第一电极105与像素电极104接触。
第二电极106与第一电极105间隔开,如图1B和图2A所示。第二电极106连接至有源层103。例如,第二电极106与有源层103接触。此外,第二电极106还连接至多条数据线DL中的一条数据线DL。例如,第二电极106可以与所连接的数据线DL一体设置。这里,第一电极105和第二电极106中的一个为源极,另一个为漏极。例如,第一电极105为漏极,第二电极106为源极。
第二绝缘层107覆盖像素电极104、第一电极105和第二电极106,如图2A和图2B所示。参见图1B和图2B,第二绝缘层107具有第一开口V1。第一开口V1在第一衬底基板100上的正投影与像素电极104在第一衬底基板100上的正投影部分交叠,并且与第一电极105在第一衬底基板100上的正投影部分交叠。换言之,第一开口V1使得像素电极104的一部分露出,并且使得第一电极105的一部分露出。也即,第一开口V1在第一衬底基板100上的正投影的一部分(例如称为第一部分)与像素电极104在第一衬底基板100上的正投影交叠,并且与第一电极105在第一衬底基板100上的正投影不交叠;第一开口V1在第一衬底基板100上的正投影的另一部分(例如称为第二部分)与第一电极105在第一衬底基板100上的正投影交叠。应理解,虽然图1B示出的第一开口V1在第一衬底基板100上的正投影的第一部分的面积大于第二部分的面积,但这并非是限制性的。例如,第一开口V1在第一衬底基板100上的正投影的第一部分的面积也可以小于或等于第二部分的面积。作为一些实现方式,第一绝缘层102的材料可以包括硅的氧化物、硅的氮化物(例如SiN x)或硅的氮氧化物等。
连接电极108通过第一开口V1与像素电极104和第一电极105接触,如图2B所示。换言之,连接电极108至少部分地位于第一开口V1中,并且与像素电极104的露出部分和第一电极105的露出部分接触。作为一些实现方式,连接电极108的材料可以包括ITO等透明材料。
公共电极109位于第二绝缘层107远离像素电极104的一侧,并且与连接电极108间隔开,如图1B和图2B所示。作为一些实现方式,连接电极108的材料可以包括氧化铟锡等透明材料。
在一些实施例中,公共电极109与连接电极108位于同一层。需要说明的是,在本公开实施例中,多个部件位于同一层是指多个部件是通过对同一材料层进行构图工艺而形成的。例如,公共电极109和连接电极108的材料均包括氧化铟锡。在一些实施例中,通过对同一氧化铟锡材料层进行图案化,可以形成彼此间隔开的公共电极109和连接电极108。
上述实施例中,一方面,像素电极104与公共电极109之间的距离减小,增大了子像素10的存储电容,减小了阵列基板的垂直串扰。另一方面,第一电极105与像素电极104接触,并且,第一电极105与像素电极104均与第一开口V1中的连接电极108接触,增大了第一电极105与像素电极104之间的接触面积,减小了第一电极105与像素电极104之间的电阻,有利于提高子像素10的驱动能力,提高阵列基板的显示效果。
在一些实施例中,上述实施例的阵列基板可以利用现有的掩模版来制造,无需额外增加掩模版的数量,便于工艺实现。
在一些实施例中,参见图1A,子像素10的公共电极109可以包括第一公共电极部109A和与第一公共电极部109A邻接的第二公共电极部109B。第一公共电极部109A位于连接电极108远离栅极101的一侧,例如上侧;第二公共电极部109B位于连接电极108远离子像素10连接的数据线DL的一侧,例如左侧。这里,第二公共电极部109B可以视为相对于第一公共电极部109A而向外凸出。第一公共电极部109A具有狭缝SL,而第二公共电极部109B不具有狭缝。这样的方式下,既可以提高子像素10的发光效率,又可以进一步增大像素电极104与公共电极109之间的电容,从而进一步减小阵列基板的垂直串扰。
在一些实施例中,多个子像素10中的部分子像素10的公共电极109彼此连接,其余子像素10的公共电极109彼此间隔开。这样的方式下,有利于提高公共电极109上施加的公共电压的均一性,以提高阵列基板的显示均一性。
在一些实施例中,多个子像素10包括多列子像素。多列子像素中的至少一列子像素包括相邻两个的子像素,这两个相邻的子像素的两个公共电极109彼此连接。即,上述部分子像素10可以包括多列子像素中的至少一列子像素。在该至少一列子像素中,每列子像素中相邻的两个子像素10的两个公共电极109通过公共电极连接件CCL连接。
例如,参见图1A,多列子像素可以包括被配置为发出第一颜色的光的多列第一子像素P1、被配置为发出第二颜色的光的多列第二子像素P2和被配置为发出第三颜色的光的多列第三子像素P3。这里,多列第三子像素P3中相邻的两列第三子像素P3被多列第 一子像素P1中的一列第一子像素P1和多列第二子像素P2中的一列第二子像素P2间隔开。例如,多列子像素按照第一列子像素P1、第二列子像素P2、第三子像素P3的顺序重复排列。第一颜色、第二颜色和第三颜色彼此不同。在一些实施例中,第一颜色、第二颜色和第三颜色中的一个是红色,另外两个是绿色和蓝色。例如,第二颜色是红色,第一颜色和第三颜色中的一个是蓝色,另一个是绿色。
在一些实施例中,两列或两列以上第三子像素P3中的每列第三子像素P3的公共电极109彼此连接,而其他列子像素的公共电极109彼此间隔开。例如,第三子像素P3可以是蓝色子像素或绿色子像素。参见图1A,在每列第三子像素P3中,相邻的两个子像素10的两个公共电极109通过公共电极连接件CCL连接。在一些实施例中,相邻的两个公共电极109与公共电极连接件CCL一体设置。例如,可以在形成公共电极109的过程中,同时形成公共电极连接件CCL。例如,可以通过对同一材料层进行图案化,以使得形成的公共电极109与公共电极连接件CCL为一体。
在一些实施例中,在每列第三子像素P3的公共电极109彼此连接的两列或两列以上第三子像素P3中,相邻的两列第三子像素P3被多列第三子像素P3中的一列第三子像素P3间隔开。这里,多列第三子像素P3中的一列第三子像素P3是除公共电极109彼此连接的两列或两列以上第三子像素P3之外的一列第三子像素P3。也即,该列第三子像素P3中的公共电极109彼此间隔开。例如,多列第三子像素P3包括从左至右排列的第一列第三子像素P3、第二列第三子像素P3、第三列第三子像素P3。第一列第三子像素P3和第三列第三子像素P3中的每列第三子像素P3的公共电极109彼此连接,而第二列第三子像素P3的公共电极109彼此间隔开。这样的方式下,既可以提高阵列基板的显示均一性,又可以避免过多的公共电极连接件CCL与其他金属层之间的耦合电容过大,进一步提高了阵列基板的显示效果。
在一些实施例中,参见图1A,多个子像素10包括多行子像素,例如R1行子像素、R2行子像素等。应理解,图1A仅示意性地示出了两行子像素。多行子像素中每行子像素中相邻的两个子像素10的两个栅极101通过栅极连接件GCL连接。这里,栅极连接件GCL在第一衬底100上的正投影与公共电极连接件CCL在第一衬底100上的正投影部分交叠,并且与数据线DL在第一衬底100上的正投影部分交叠。
发明人还注意到,数据线DL与栅极连接件GCL交叠的位置处存在断裂的可能性,从而可能影响阵列基板的显示效果。据此,本公开实施例还提出了如下解决方案。
在一些实施例中,数据线DL沿着第一方向(例如列方向)延伸。参见图1B,数据 线DL可以包括第一数据线部DL11和与第一数据线部DL11邻接的第二数据线部DL12。这里,第一数据线部DL11与栅极连接件GCL不交叠,第二数据线部DL12与栅极连接件GCL部分交叠。另外,第二数据线部DL12在与第一方向垂直的第二方向(例如行方向)上的长度L2大于第一数据线部DL11在第二方向上的长度L1。这样的方式下,可以增大数据线DL与栅极连接件GCL交叠的区域,从而减小数据线DL在与栅极连接件GCL交叠的位置处断裂的可能性。
应理解,在本公开中,部件A与部件B邻接可以理解为部件A与部件B相邻并且连接。在一些实施例中,部件A与部件B可以一体设置。这种情况下,部件A和部件B是同一部件的不同部分。
作为一些实现方式,第二数据线部DL12在第二方向上的长度L2与第一数据线部DL11在第二方向上的长度L1之比大于1且小于或等于1.4,例如,为1.2、1.3等。作为一些实现方式,L2比L1大1微米至2微米,例如,1微米、1.5微米、1.18微米、2微米等。这样的方式下,既可以减小数据线DL在与栅极连接件GCL交叠的位置处断裂的可能性,又可以避免过宽的数据线DL与周边金属之间的耦合电容过大。
在另一些实施例中,栅极连接件GCL的延伸方向与数据线DL延伸的第一方向不垂直、且不平行。例如,栅极连接件GCL的延伸方向与数据线DL延伸的第一方向的夹角大于或等于45度且小于90度,例如为60度、80度等。这样的方式下,可以增大栅极连接件GCL与数据线DL交叠的区域,从而减小数据线DL在与栅极连接件GCL交叠的位置处断裂的可能性。
在又一些实施例中,第二数据线部DL12在与数据线DL延伸的第一方向垂直的第二方向上的长度L2大于第一数据线部DL11在第二方向上的长度L1,并且,栅极连接件GCL的延伸方向与数据线DL延伸的第一方向不垂直、且不平行。这样的方式下,可以进一步减小数据线DL在与栅极连接件GCL交叠的位置处断裂的可能性。
在一些实施例中,参见图1A,阵列基板还包括与多行子像素连接的多条公共电压线11。多条公共电压线11中的每条公共电压线11被配置为向多行子像素中的对应行子像素的公共电极施加公共电压。例如,多条公共电压线11的数量与多行子像素的行数相同,一条公共电压线11对应一行子像素。这种情况下,每条公共电压线11向对应的一行子像素的公共电极施加公共电压。
在一些实施例中,公共电压线11在第一衬底基板100上的正投影与像素电极104在第一衬底基板100上的正投影不交叠。
发明人还注意到,公共电压线11与公共电极109的连接方式会影响配向层的厚度均一性,进而影响阵列基板的显示均一性。据此,本公开实施例还提供了如下解决方案。
图2C是沿着图1A所示的C-C’截取的截面示意图。
如图2C所示,在一些实施例中,阵列基板TA还包括第一配向层12。第一配向层12位于公共电极109远离第一衬底基板100的一侧。作为一些实现方式,第一配向层12的材料可以包括聚酰亚胺(PI)。
多行子像素中每行子像素中的每个子像素10的第二绝缘层107具有第二开口V2,如图1A所示。每行子像素中的每个子像素10的公共电极109通过第二开口V2与多条公共电压线11中与每行子像素对应的一条公共电压线11和第一衬底基板100接触。在一些实施例中,多条公共电压线11与栅极101位于同一层。
应理解,对于某一行子像素来说,每个子像素10的第二开口V2使得与该行子像素对应的公共电极线11的一部分露出,并且使得第一衬底基板100的一部分露出,如图2C所示。公共电极109部分地位于第二开口V2中,并且与公共电极线11的露出部分和第一衬底基板100的露出部分接触。
上述实施例中,公共电极109通过第二开口V2与公共电压线11和第一衬底基板100均接触。与公共电极109通过第二开口V2仅与公共电压线11接触(即,第二开口V2仅使得公共电压线11的一部分露出)相比,这样的结构有利于用于形成第一配向层12的液体流入第二开口V2,使得该液体的流动更为均匀,从而使得第一配向层12的厚度更为均匀,进而提高阵列基板的显示均一性。
发明人注意到,在某些情况下,第二开口V2的位置可能会偏移期望的位置。这种情况下,公共电极109通过第二开口V2可能只能与第一衬底基板100接触,而无法与对应的公共电压线11接触。有鉴于此,本公开实施例提出了如下解决方案。
在一些实施例中,参见图1A,每行子像素10连接的公共电压线11包括第一公共电压线部111、第二公共电压线部112和第三公共电压线部113。第三公共电压线部113位于第一公共电压线部111和第二公共电压线部112之间,并且分别与第一公共电压线部111和第二公共电压线部112邻接。第二公共电压线部112在与公共电压线11延伸的第二方向垂直的第一方向上的长度L4大于第一公共电压线部111在第一方向上的长度L3,第一公共电压线部111在第一方向上的长度L3大于第三公共电压线部113在第一方向上的长度L5。每行子像素中的每个子像素10的公共电极109通过第二开口V2与第二公共电压线部112接触。
这样的方式下,更宽的第二公共电压线部112更利于确保公共电极109与第一衬底基板100接触。另外,由于第三公共电压线部113比第一公共电压线部111和第二公共电压线部112相对更窄,故,更有利于确保公共电极109与第一衬底基板100接触。如此,这样的结构更有利于公共电极109与第一衬底基板100和公共电压线11两者均接触。
在一些实施例中,公共电压线11还包括与数据线DL交叠的第四公共电压线部114,第四公共电压线部112与第二公共电压线部112邻接。第四公共电压线部114在第一方向上的长度L6小于第二公共电压线部112在第一方向上的长度L4。如此可以减小公共电压线11与数据线DL之间的耦合电容。
本公开实施例还提供了一种显示装置,显示装置可以包括上述任意一个实施例的阵列基板。在一些实施例中,显示装置例如可以是显示面板、移动终端、电视机、显示器、笔记本电脑、数码相框、导航仪、电子纸等任何具有显示功能的产品或部件。例如,显示装置的尺寸可以是55寸、65寸、75寸等,分辨率可以是4K、8K或更高。
图3是示出根据本公开一个实施例的显示装置的结构示意图。
如图3所示,显示装置包括阵列基板TA和与阵列基板TA相对设置的彩膜基板TB。彩膜基板TB包括第二衬底基板200、黑矩阵201、滤光层202、平坦化层203和多个隔垫物204。应理解,阵列基板TA和彩膜基板TB之间设置有液晶。
第二衬底基板200例如可以是玻璃基板。黑矩阵201和滤光层202均位于第二衬底基板200靠近阵列基板TA的一侧。图1A以虚线示出了黑矩阵201。应理解,子像素10未被黑矩阵201覆盖的区域为发光区域。
滤光层202包括多个滤光单元,例如红色滤光单元R、绿色滤光单元G和蓝色滤光单元B。多个滤光单元中相邻的滤光单元被黑矩阵201间隔开。例如,红色滤光单元R和绿色滤光单元G被黑矩阵201间隔开,绿色滤光单元G和蓝色滤光单元B被黑矩阵201间隔开。
平坦化层203位于黑矩阵201和滤光层202靠近阵列基板TA的一侧。例如,平坦化层203的材料包括树脂、光刻胶等。
多个隔垫物204位于平坦化层203和阵列基板TA之间。多个隔垫物204中的每个隔垫物在第二衬底基板200上的正投影位于黑矩阵201在第二衬底基板100上的正投影之内。例如,隔垫物204的材料可以包括树脂、光刻胶。
发明人注意到,多个隔垫物204在外力的作用下可能会移动,从而对阵列基板TA的造成损伤,例如,可能会对阵列基板TA的第一配向层12造成损伤,从而影响显示装置 的显示效果。由于隔垫物204在第二衬底基板100上的正投影位于黑矩阵201在第二衬底基板100上的正投影之内,因此,即便隔垫物204移动,只要在被黑矩阵201覆盖,则不会对显示装置的显示效果产生不利影响。因此,这样的结构有利于减小隔垫物204的移动对显示装置的显示效果的不利影响。
在一些实施例中,多列第一子像素P1中的每个第一子像素、多列第二子像素P2中的每个第二子像素和多列第三子像素P3中的每个第三子像素未被黑矩阵201覆盖的区域为发光区域。每个第二子像素的发光区域的面积小于每个第一子像素的发光区域的面积和每个第三子像素的发光区域的面积。
在一些实施例中,彩膜基板TB还包括位于平坦化层203靠近阵列基板TA一侧以及隔垫物204表面的第二配向层205。作为一些实现方式,第二配向层205的材料可以包括聚酰亚胺(PI)。
在一些实施例中,多个子像素10包括被配置为发出第一颜色的光的多列第一子像素P1、被配置为发出第二颜色的光的多列第二子像素P2和被配置为发出第三颜色的光的多列第三子像素P3。多列第二子像素P2中相邻的两列第二子像素P2被多列第一子像素P1中的一列第一子像素P1和多列第三子像素P3中的一列第三子像素P3间隔开。多个隔垫物204包括与多列第二子像素P2对应的多列隔垫物。例如,多列第二子像素P2的列数和多列隔垫物的列数相同,即,一列第二子像素P2对应一列隔垫物。
为了便于说明,将多列隔垫物中的每列隔垫物中的每个隔垫物204在第一衬底基板100上的正投影定义为第一投影,将多列第二子像素P2中与每列隔垫物对应的一列第二子像素P2中的一个第二子像素P2的栅极101在第一衬底基板100上的正投影定义为第二投影,将该第二子像素P2的有源层103在第一衬底基板100上的正投影定义为第三投影,将该第二子像素P2连接的数据线DL在第一衬底基板100上的正投影定义为第四投影。
参见图1A和图1B,在一些实施例中,隔垫物204的第一投影位于栅极101的第二投影之内,并且位于有源层103的第三投影远离数据线DL的第四投影的一侧。这样的结构下,隔垫物204对子像素10的发光的不利影响较小。
需要说明的是,在图1A和图1B中,隔垫物204的第一投影被示出为与隔垫物204一致。类似地,图1A和图1B示出的其他部件也同时可以理解为其他部件在第一衬底基板100上的正投影。图1A和图1B示出的隔垫物204的第一投影可以理解为是隔垫物204靠近平坦化层203的表面在第一衬底基板100上的正投影。
还需要说明的是,虽然图1A和图1B示出的隔垫物204的第一投影的形状为八边形,但这并非是限制性的,隔垫物204的第一投影的形状也可以是圆形、或者其他多边形。
在一些实施例中,第二颜色为红色,即第二子像素P2为红色子像素。红色子像素的亮度小于蓝色子像素和绿色子像素的亮度,将多列隔垫物的位置设置为与多列红色子像素对应,可以尽可能减小多个隔垫物204对显示装置的显示效果的不利影响。
在一些实施例中,参见图1A和图1B,每列第二子像素中的每个第二子像素P2还包括被配置为阻挡隔垫物204移动的多个阻挡部110,每个阻挡部110在第一衬底基板100上的正投影位于黑矩阵201在第一衬底基板100上的正投影之内。多个阻挡部110包括第一阻挡部110A和第二阻挡部110B。第一阻挡部110A位于多个隔垫物204中与该第二子像素P2对应的一个隔垫物204靠近像素电极104的一侧,第二阻挡部110B位于第一阻挡部110A远离该隔垫物204的一侧。另外,第二阻挡部110B的高度大于第一阻挡部110A的高度。应理解,在本公开中,某个部件的高度可以理解为该部件在与第一衬底基板100的表面垂直的方向上延伸的长度。
上述实施例中,高度较小的第一阻挡部110A可以阻挡隔垫物204移动,即便隔垫物204跨过第一阻挡部110A,第一阻挡部110A也起到了缓冲作用,减小了隔垫物204的移动速度,从而使得高度较大的第二阻挡部110B可以更有效地阻挡隔垫物204移动。这样的方式下,可以更有效地阻挡隔垫物204移动至第二子像素P2的发光区域,从而防止隔垫物204对该第二子像素P2的不利影响。
在一些实施例中,参见图1A,第二子像素P2的多个阻挡部110还包括第三阻挡部110C。第一阻挡部110A和第二阻挡部110B位于第二子像素P2的发光区域的第一侧。第三阻挡部110C位于第二子像素P2的发光区域的与第一侧相对的第二侧。第三阻挡部110C可以阻挡与该第二子像素P2位于同一列的相邻的第二子像素P2中的隔垫物204移动至该第二子像素P2的发光区域,从而进一步防止隔垫物204对该第二子像素P2的影响。
在一些实施例中,多个阻挡部110可以在形成阵列基板的其他层的过程中形成。下面结合图4、图2A和图2B进行介绍。
图4是沿着图1B所示的D-D’截取的截面示意图。
如图4所示,第一阻挡部110A包括在第一衬底基板100的一侧依次设置的第一层LY1、第二层LY2、第三层LY3、第四层LY4和第五层LY5,第二阻挡部110B和第三阻挡部110C中的至少一个包括在第一衬底基板100的一侧依次设置的第六层LY6、第七层 LY7、第八层LY8、第九层LY9、第十层LY10和第十一层LY11。
第一层LY1、第七层LY7和图2B所示的第一绝缘层102位于同一层,第二层LY2、第八层LY8和图2B所示的像素电极104位于同一层,第三层LY3、第九层LY9和图2B所示的第一电极105位于同一层,第四层LY4、第十层LY10和图2B所示的第二绝缘层107位于同一层,第五层LY5、第十一层LY11和图2B所示的公共电极109位于同一层,第六层LY6与图2A所示的栅极101位于同一层。
本公开实施例还提供了一种阵列基板的制造方法,包括在第一衬底基板的一侧形成多条数据线和多个子像素。下面结合图5介绍形成多个子像素中的至少一个的过程。
图5是示出根据本公开一个实施例的子像素的制造方法的流程示意图。
在步骤502,在第一衬底基板的一侧形成栅极。
在步骤504,在栅极远离第一衬底基板的一侧形成第一绝缘层。
在步骤506,在第一绝缘层远离栅极的一侧形成有源层。
在步骤508,在第一绝缘层远离第一衬底基板的一侧形成像素电极。
在步骤510,形成第一电极和第二电极。例如,第一电极和第二电极可以通过同一构图工艺来形成。
第一电极位于有源层和像素电极远离第一衬底基板的一侧,并且连接至有源层。另外,第一电极与像素电极接触。
第二电极与第一电极间隔开,并且连接至有源层和多条数据线中的一条数据线。
在步骤512,在像素电极、第一电极和第二电极远离第一衬底基板的一侧形成第二绝缘层。第二绝缘层具有第一开口,第一开口在第一衬底基板上的正投影与像素电极在第一衬底基板上的正投影部分交叠,并且与第一电极在第一衬底基板上的正投影部分交叠。
在步骤514,形成连接电极和与连接电极间隔开的公共电极。例如,公共电极和连接电极可以通过同一构图工艺来形成。
这里,连接电极通过第一开口与像素电极和第一电极接触,公共电极位于第二绝缘层远离像素电极的一侧。
上述实施例形成的阵列基板中,一方面,像素电极与公共电极之间的距离减小,增大了子像素的存储电容,减小了阵列基板的垂直串扰。另一方面,第一电极与像素电极直接接触,并且,第一电极与像素电极均与第一开口中的连接电极接触,增大了第一电极与像素电极之间的接触面积,减小了第一电极与像素电极之间的电阻,有利于提高子像素的驱动能力,提高阵列基板的显示效果。
在一些实现方式中,可以通过如下方式形成第二绝缘层。首先,形成覆盖像素电极、第一电极和第二电极的绝缘材料层;然后,在绝缘材料层远离第一衬底基板的一侧形成具有第三开口的掩模;之后,利用该掩模对绝缘材料层进行图案化,以得到具有第二开口的第二绝缘层。
上述具有第三开口的掩模可以利用现有的掩模版来制造,无需额外增加掩模版的数量,便于工艺实现。
在驱动显示面板进行显示时,可以根据待显示画面,逐行给栅极线写入栅极扫描信号,同时给数据线写入数据电压信号,以使显示面板中的子像素逐行被点亮。
栅极扫描信号由栅极驱动电路提供,数据电压信号由源极驱动电路提供。在一些实施例中,可以将栅极驱动电路集成在栅极驱动芯片中,将源极驱动电路集成在源极驱动芯片中。在另一些实施例中,为了较少芯片数量,以及实现窄边框或者无边框,可以将栅极驱动电路集成在阵列基板上。栅极驱动电路包括集成在阵列基板上的多个级联的移位寄存器单元,多个移位寄存器单元与多条栅极线一一对应连接。每个移位寄存器单元用于为与之连接的栅极线线提供栅扫描信号。
为了更清楚说明移位寄存器单元如何实现栅极扫描信号的输出,以下结合移位寄存器单元的一些示例进行说明。
图6-图8是示出根据本公开一些实施例的移位寄存器单元的结构示意图。
在一些实施例中,如图6所示,移位寄存器单元包括输入子电路1、输出子电路2、上拉复位子电路3和输出复位子电路4。输入子电路1响应于信号输入端INPUT所输入的输入信号,给上拉节点PU进行充电。输出子电路2响应于上拉节点PU的电位,将时钟信号端CLK所输入的时钟信号通过信号输出端OUTPUT输出。上拉复位子电路3响应于上拉复位信号端RESET_PU输出的上拉复位信号,对上拉节点PU进行复位,例如将上拉节点PU的电位复位至低电平。输出复位子电路4响应于输出复位信号,对信号输出端OUTPUT进行复位,例如将信号输出端OUTPUT的电位复位至低电平。
在一些实施例中,如图6所示,输入子电路1包括第一晶体管M1,上拉复位子电路3包括第二晶体管M2,输出子电路2包括第三晶体管M3和存储电容器C,输出复位子电路4包括第四晶体管M4。第一晶体管M1的栅极和源极连接至信号输入端INPUT,第一晶体管M1的漏极连接至上拉节点PU。第二晶体管M2的栅极连接至上拉复位信号端RESET_PU,第二晶体管M2的源极连接至上拉节点PU,第二晶体管M2的漏极连接低电平信号端VSS。第三晶体管M3的栅极连接至上拉节点PU,第三晶体管M3的源极 连接至时钟信号端CLK,第三晶体管M3的漏极连接至信号输出端OUTPUT。存储电容器C的第一端连接至上拉节点PU,存储电容器C的第二端连接至信号输出端OUTPUT。第四晶体管M4的栅极连接至输出复位信号端RESET_OUTPUT,第四晶体管M4的源极连接至信号输出端OUTPUT,第四晶体管M4的漏极连接至低电平信号端VSS。
下面介绍图6所示移位寄存器单元的工作过程。
在输入阶段,信号输入端INPUT被写入高电平信号,第一晶体管M1导通。高电平信号拉高上拉节点PU的电位,并对存储电容器C进行充电。
在输出阶段,由于在输入阶段上拉节点PU的电位被拉高,第三晶体管M3导通,将时钟信号端CLK输入的高电平信号通过信号输出端OUTPUT输出至与移位寄存器单元连接的栅极线。
在复位阶段,输出复位信号端RESET_OUTPUT被输入高电平信号,第四晶体管M4导通,通过低电平信号端VSS输入的低电平信号拉低信号输出端OUTPUT的输出的电位。上拉复位信号端RESET_PU被输入高电平信号,第二晶体管M2导通,通过低电平信号端VSS输入的低电平信号拉低上拉节点PU的电位。如此完成上拉节点PU和信号输出端OUTPUT的复位。
需要说明的是,在一些实施例中,移位寄存器单元中可以不设置输出复位子电路4。在复位阶段,对上拉节点PU进行复位后,上拉节点PU的电位为低电平,此时第三晶体管M3关断,信号输出端OUTPUT不再输出时钟信号端CLK输入的高电平信号,从而实现对信号输出端OUTPUT的复位。
在一些实施例中,包括上述移位寄存器单元的栅极驱动电路中的某一级移位寄存器单元的信号输出端OUTPUT连接上一级移位寄存器单元的上拉复位信号端RESET_PU,以及下一级移位寄存器单元的信号输入端INPUT。
在另一些实施例中,如图7所示,移位寄存器单元除了包括上述输入子电路、输出子电路、上拉复位子电路外,还包括第一下拉控制子电路、第二下拉控制子电路、第一下拉子电路、第二下拉子电路、第一降噪子电路、第二降噪子电路、放电子电路、第一辅助子电路和第二辅助子电路。放电子电路响应于信号端STV0输入的信号,通过低平信号端VGL所输入的低电平信号对上拉节点PU进行放电。第一下拉控制子电路和第二下拉控制子电路的结构和功能相同,并且分时工作。类似地,第一下拉子电路和第二下拉子电路的结构和功能相同,第一辅助子电路和第二辅助子电路结构和功能相同,第一降噪子电路和第二降噪子电路的结构和功能相同。输入子电路、输出子电路、上拉复位 子电路与上文描述的结构和功能相同,在此不再赘述。
第一辅助子电路和第二辅助子电路均响应于信号输入端INPUT所输入的输入信号,分别通过低电平信号拉低第一下拉节点PD1和第二下拉节点PD2的电位。第一下拉控制子电路响应于第一电源电压信号端VDDO所输入的第一电源电压,控制第一下拉节点PD1的电位;第二下拉控制子电路响应于第二电源电压信号端VDDE所输入的第二电源电压,控制第二下拉节点PD2的电位。第一下拉子电路响应于上拉节点PU的电位,通过低电平信号端VGL输入的低电平信号下拉第一下拉节点PD1和第一下拉控制节点PD_CN1的电位。第二下拉子电路响应于上拉节点PU的电位,通过低电平信号端VGL输入的电平信号下拉第二下拉节点PD2和第二下拉控制节点PD_CN2的电位。第一降噪子电路响应于第一下拉节点PD1的电位,通过低电平信号端VGL输入的低电平信号对上拉节点PU、信号输出端OUTPUT所输出的信号进行降噪。
在一些实施例中,如图7所示,第一下拉控制子电路和第二下拉控制子电路均包括第五晶体管和第九晶体管。第一下拉控制子电路和第二控制子电路中的第五晶体管分别用M5和M5'表示,第九晶体管分别用M9和M9'表示。第一下拉子电路和第二下拉子电路均包括第六晶体管和第八晶体管。第一下拉子电路和第二下拉子电路中的第六晶体管分别用M6和M6'表示,第八晶体管分别用M8和M8'表示。第一降噪子电路和第二降噪子电路均包括第十晶体管和第十一晶体管。第一降噪子电路和第二降噪子电路中的第十晶体管分别用M10和M10'表示,第十一晶体管分别用M11和M11'表示。放电子电路包括第七晶体管M7。第一辅助子电路和第二辅助子电路均包括第是六晶体管,分别用M16和M16'表示。
参见图7,第一晶体管M1的栅极和源极连接至信号输入端INPUT,第一晶体管M1的漏极连接至上拉节点PU。第二晶体管M2的栅极连接至上拉复位信号端RESET_PU,第二晶体管M2的源极连接至上拉节点PU,第二晶体管M2的漏极连接至低电平信号端VGL。第三晶体管M3的栅极连接至上拉节点PU,第三晶体管M3的源极连接至时钟信号端CLK,第三晶体管M3的漏极连接至信号输出端OUTPUT。存储电容器C的第一端连接至上拉节点PU,存储电容器C的第二端连接至信号输出端OUTPUT。第九晶体管M9的栅极和源极均连接至第一电源电压端VDDO,第九晶体管M9的漏极连接至第一下拉控制节点PD_CN1。第五晶体管M5的栅极连接至第一下拉控制节点PD_CN1,第五晶体管M5的源极连接至第一电源电压端VDDO,第五晶体管M5的漏极连接至第一下拉节点PD1。第九晶体管M9'的栅极和源极均连接第二电源电压端VDDE,第九晶 体管M9'的漏极连接至第二下拉控制节点PD_CN2;第五晶体管M5'的栅极连接至第二下拉控制节点PD_CN2,第五晶体管M5'的源极连接第二电源电压端VDDE,第五晶体管M5'的漏极连接至第二下拉节点PD2。第六晶体管M6的栅极连接至上拉节点PU,第六晶体管M6的源极连接至第一下拉节点PD1,第六晶体管M6的漏极连接低电平信号端VGL。第八晶体管M8的栅极连接至上拉节点PU,第八晶体管M8的源极连接至第一下拉控制节点PD_CN1,第八晶体管M8的漏极连接至低电平信号端VGL。第六晶体管M6'的栅极连接至上拉节点PU,第六晶体管M6'的源极连接至第二下拉节点PD2,第六晶体管M6'的漏极连接至低电平信号端VGL。第八晶体管M8'的栅极连接至上拉节点PU,第八晶体管M8'的源极连接至第二下拉控制节点PD_CN2,第八晶体管M8'的漏极连接低电平信号端VGL。第十晶体管M10的栅极连接至第一下拉节点PD1,第十晶体管M10的源极连接至上拉节点PU,第十晶体管M10的漏极连接低电平信号端VGL。第十一晶体管M11的栅极连接至第一下拉节点PD1,第十一晶体管M11的源极连接至信号输出端OUTPUT,第十一晶体管M11的漏极连接至低电平信号端VGL。第十晶体管M10'的栅极连接第二下拉节点PD2,第十晶体管M10'的源极连接至上拉节点PU,第十晶体管M10'的漏极连接至低电平信号端VGL。第十一晶体管M11'的栅极连接至第二下拉节点PD2,第十一晶体管M11'的源极连接至信号输出端OUTPUT,第十一晶体管M11'的漏极连接至低电平信号端VGL。第七晶体管M7的栅极连接至信号端STV0,第七晶体管M7的源极连接至上拉节点PU,第七晶体管M7的漏极连接至低电平信号端VGL。第十六晶体管M16的栅极连接至信号输入端INPUT,第十六晶体管M16的源极连接第一下拉节点PD1,第十六晶体管M16的漏极连接至低电平信号端VGL。第十六晶体管M16'的栅极连接至信号输入端INPUT,第十六晶体管M16'的源极连接至第二下拉节点PD2,第十六晶体管M16'的漏极连接至低电平信号端VGL。
第五晶体管M5和第九晶体管M9组成第一下拉控制子电路,第五晶体管M5'和第九晶体管M9'组成第二下拉控制子电路,第一下拉控制子电路和第二下拉控制子电路分时工作,也即轮流工作。第十晶体管M10和第十一晶体管M11组成的第一降噪子电路由第一下拉控制子电路,第十晶体管M10'和第十一晶体管M11M11'组成的第二降噪子电路由第二下拉控制子电路控制,故第一降噪子电路和第二降噪子电路也分时工作。
第一下拉控制子电路和第二下拉控制子电路的工作原理相同,第一降噪子电路和第二降噪子电路的工作原理相同。下面仅以第一下拉控制子电路和第一降噪子电路工作时,对移位寄存器单元的工作原理进行说明。
在放电阶段,即一帧画面显示之前,信号端STV0被输入高电平信号,第七晶体管M7导通。通过低电平信号端VGL所输入的低电平信号,对上拉节点PU进行放电,防止上拉节点PU残留的电荷造成显示异常。
在输入阶段,信号输入端INPUT被输入高电平信号,第一晶体管M1导通。通过高电平信号拉高上拉节点PU的电位,并对存储电容器C进行充电。
在输出阶段,由于在输入阶段上拉节点PU的电位被拉高,故第三晶体管M3导通。时钟信号端CLK输入的高电平信号通过信号输出端OUTPUT输出至对应的栅极线。
在复位阶段,上拉复位信号端RESET_PU被输入高电平信号,第二晶体管M2导通。通过低电平信号端VGL输入的低电平信号拉低上拉节点PU的电位,以对上拉节点PU进行复位。由于上拉节点PU的电位被拉低,故第三晶体管M3关断,信号输出端OUTPUT和级联信号输出端OUT_C均不再输出高电平信号。与此同时,第一下拉控制节点PD_CN1和第一下拉节点PD1均为高电平信号,第十晶体管M10和第十一晶体管M11导通,从而对上拉节点PU和信号输出端OUTPUT进行降噪,直至下一帧画面开始,上拉节点PU电位再次被拉高。
在一些实施例中,如图8所示,为了降低信号输出端OUTPUT的负载,移位寄存器中还设置有级联子电路。级联子电路响应于上拉节点PU的电位,将时钟信号端CLK所输入的时钟信号通过级联信号输出端OUT_C输出。级联信号输出端OUT_C与信号输出端OUTPUT所输出的信号相同。例如,级联信号输出端OUT_C输出高电平信号至上一级移位寄存器单元的上拉复位信号端RESET_PU,以及下一级移位寄存器单元的信号输入端INPUT。级联子电路包括第十三晶体管M13,第十三晶体管M13的栅极连接至上拉节点PU,第十三晶体管M13的源极连接至时钟信号端CLK,第十三晶体管M13的漏极连接至级联信号端OUT_C。此外,在第一降噪子电路和第二降噪子电路中均还设置第十二晶体管,分别用M12和M12'表示,用于对级联信号输出端OUT_C所输出的信号进行降噪。第十二晶体管M12的栅极连接至第一下拉节点PD1,第十二晶体管M12的源极连接至级联信号输出端OUT_C,第十二晶体管M12的漏极连接低电平信号端LVGL。第十二晶体管M12'的栅极连接至第二下拉节点PD2,第十二晶体管M12'的源极连接至级联信号输出端OUT_C,第十二晶体管M12'的漏极连接低电平信号端LVGL。
单独设置级联子电路可以降低信号输出端OUTPUT的负载,以避免影响信号输出端OUTPUT所输出的栅扫描信号。
对于采用上述移位寄存器单元的栅极驱动电路而言,如图8所示,本级移位寄存器 单元的级联信号输出端OUT_C连接至上一级移位寄存器的上拉复位信号端RESET_PU,以及下一级移位寄存器单元的信号输入端INPUT。应当理解的是,上述移位寄存器单元中也可以不设置级联子电路,此时本级移位寄存器单元的信号输出端OUTPUT连接至上一级移位寄存器的上拉复位信号端RESET_PU,以及下一级移位寄存器单元的信号输入端INPUT。
另外,与图7相比,在图8中,第十一晶体管M11和M11’的漏极连接至低电平信号端VGL,其他需要连接到低电平信号端的晶体管的漏极均连接到低电平信号端LVGL。
至此,已经详细描述了本公开的各实施例。为了避免遮蔽本公开的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。
虽然已经通过示例对本公开的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本公开的范围。本领域的技术人员应该理解,可在不脱离本公开的范围和精神的情况下,对以上实施例进行修改或者对部分技术特征进行等同替换。本公开的范围由所附权利要求来限定。

Claims (26)

  1. 一种阵列基板,包括第一衬底基板、多条数据线和连接至所述多条数据线的多个子像素,所述多个子像素中的至少一个包括:
    第一绝缘层,位于所述第一衬底基板的一侧;
    栅极,位于所述第一衬底基板与所述第一绝缘层之间;
    有源层,位于所述第一绝缘层远离所述栅极的一侧;
    像素电极,位于所述第一绝缘层远离所述第一衬底基板的一侧;
    第一电极,位于所述有源层和所述像素电极远离所述第一衬底基板的一侧,所述第一电极连接至所述有源层,并且与所述像素电极接触;
    第二电极,与所述第一电极间隔开,并且连接至所述有源层和所述多条数据线中的一条数据线;
    第二绝缘层,位于所述像素电极、所述第一电极和所述第二电极远离所述第一衬底基板的一侧,并且具有第一开口,所述第一开口在所述第一衬底基板上的正投影与所述像素电极在所述第一衬底基板上的正投影部分交叠,并且与所述第一电极在所述第一衬底基板上的正投影部分交叠;
    连接电极,通过所述第一开口与所述像素电极和所述第一电极接触;和
    公共电极,位于所述第二绝缘层远离所述像素电极的一侧,并且与所述连接电极间隔开。
  2. 根据权利要求1所述的阵列基板,其中,所述多个子像素中的部分子像素的公共电极彼此连接,其余子像素的公共电极彼此间隔开。
  3. 根据权利要求2所述的阵列基板,其中,所述多个子像素包括多列子像素,所述部分子像素包括所述多列子像素中的至少一列子像素,所述至少一列子像素中的每列子像素包括相邻的两个子像素,所述相邻的两个子像素的两个公共电极通过公共电极连接件连接。
  4. 根据权利要求3所述的阵列基板,其中,所述多个子像素包括多行子像素,所述多行子像素中每行子像素中相邻的两个子像素的两个栅极通过栅极连接件连接,所述栅 极连接件与所述公共电极连接件和所述数据线部分交叠。
  5. 根据权利要求4所述的阵列基板,其中,所述数据线沿着第一方向延伸,所述数据线包括:
    第一数据线部,与所述栅极连接件不交叠;和
    与所述第一数据线部邻接的第二数据线部,与所述栅极连接件部分交叠,其中,所述第二数据线部在与所述第一方向垂直的第二方向上的长度大于所述第一数据线部在所述第二方向上的长度。
  6. 根据权利要求4或5所述的阵列基板,其中,所述栅极连接件的延伸方向与所述第一方向的夹角大于或等于45度且小于90度。
  7. 根据权利要求5所述的阵列基板,其中,所述第二数据线部在所述第二方向上的长度与所述第一数据线部在所述第二方向上的长度之比大于1且小于或等于1.4。
  8. 根据权利要求3所述的阵列基板,其中:
    所述多列子像素包括被配置为发出第一颜色的光的多列第一子像素、被配置为发出第二颜色的光的多列第二子像素和被配置为发出第三颜色的光的多列第三子像素,所述多列第三子像素中相邻的两列第三子像素被所述多列第一子像素中的一列第一子像素和所述多列第二子像素中的一列第二子像素间隔开,所述第一颜色、所述第二颜色和所述第三颜色彼此不同;以及
    所述至少一列子像素包括所述多列第三子像素中的两列或两列以上第三子像素。
  9. 根据权利要求8所述的阵列基板,其中,所述两列或两列以上第三子像素中相邻的两列第三子像素被所述多列第三子像素中除所述两列或两列以上第三子像素之外的一列第三子像素间隔开。
  10. 根据权利要求3所述的阵列基板,其中,所述两个公共电极与所述公共电极连接件一体设置。
  11. 根据权利要求1-10任意一项所述的阵列基板,其中:
    所述多个子像素包括多行子像素;以及
    所述阵列基板还包括与所述多行子像素连接的多条公共电压线,所述多条公共电压线中的每条公共电压线被配置为向所述多行子像素中的对应行子像素的公共电极施加公共电压。
  12. 根据权利要求11所述的阵列基板,还包括:
    第一配向层,位于所述公共电极远离所述第一衬底基板的一侧;
    所述多行子像素中每行子像素中的每个子像素的所述第二绝缘层具有第二开口;以及
    所述每行子像素中的每个子像素的所述公共电极通过所述第二开口与所述多条公共电压线中与所述每行子像素对应的一条公共电压线和所述第一衬底基板接触。
  13. 根据权利要求12所述的阵列基板,其中:
    所述公共电压线包括第一公共电压线部、第二公共电压线部和第三公共电压线部,所述第三公共电压线部位于所述第一公共电压线部和所述第二公共电压线部之间,并且分别与所述第一公共电压线部和所述第二公共电压线部邻接,所述第二公共电压线部在与所述公共电压线延伸的第二方向垂直的第一方向上的长度大于所述第一公共电压线部在所述第一方向上的长度,所述第一公共电压线部在所述第一方向上的长度大于所述第三公共电压线部在所述第一方向上的长度;以及
    所述每行子像素中的每个子像素的所述公共电极通过所述第二开口与所述第二公共电压线部接触。
  14. 根据权利要求11所述的阵列基板,其中,所述多条公共电压线与所述栅极位于同一层。
  15. 根据权利要求1-14任意一项所述的阵列基板,其中,所述公共电极与所述连接电极位于同一层。
  16. 根据权利要求1-15任意一项所述的阵列基板,其中,所述公共电极包括:
    第一电极部,具有狭缝,位于所述连接电极远离所述栅极的一侧;和
    与所述第一电极部邻接的第二电极部,不具有狭缝,位于所述连接电极远离所述数据线的一侧。
  17. 一种显示装置,包括:如权利要求1-16任意一项所述的阵列基板。
  18. 根据权利要求17所述的显示装置,还包括与所述阵列基板相对设置的彩膜基板,所述彩膜基板包括:
    第二衬底基板;
    黑矩阵和滤光层,位于所述第二衬底基板靠近所述阵列基板的一侧,所述滤光层包括多个滤光单元,所述多个滤光单元中相邻的滤光单元被所述黑矩阵间隔开;
    平坦化层,位于所述黑矩阵和所述滤光层靠近所述阵列基板的一侧;和
    多个隔垫物,位于所述平坦化层与所述阵列基板之间,所述多个隔垫物中的每个隔垫物在所述第二衬底基板上的正投影位于所述黑矩阵在所述第二衬底基板上的正投影之内。
  19. 根据权利要求18所述的显示装置,其中:
    所述多个子像素包括被配置为发出第一颜色的光的多列第一子像素、被配置为发出第二颜色的光的多列第二子像素和被配置为发出第三颜色的光的多列第三子像素,所述多列第二子像素中相邻的两列第二子像素被所述多列第一子像素中的一列第一子像素和所述多列第三子像素中的一列第三子像素间隔开,所述第一颜色、所述第二颜色和所述第三颜色彼此不同;以及
    所述多个隔垫物包括与所述多列第二子像素对应的多列隔垫物,所述多列隔垫物中的每列隔垫物中的每个隔垫物在所述第一衬底基板上的正投影为第一投影,所述多列第二子像素中与所述每列隔垫物对应的一列第二子像素中的一个第二子像素的所述栅极在所述第一衬底基板上的正投影为第二投影,所述第二子像素的所述有源层在所述第一衬底基板上的正投影为第三投影,所述第二子像素连接的所述数据线在所述第一衬底基板上的正投影为第四投影,所述第一投影位于所述第二投影之内,并且位于所述第三投影远离所述第四投影的一侧。
  20. 根据权利要求19所述的显示装置,其中,所述第二颜色为红色。
  21. 根据权利要求19所述的显示装置,其中,所述多列第一子像素中的每个第一子像素、所述多列第二子像素中的每个第二子像素和所述多列第三子像素中的每个第三子像素未被所述黑矩阵覆盖的区域为发光区域,每个第二子像素的所述发光区域的面积小于每个第一子像素的所述发光区域的面积和每个第三子像素的所述发光区域的面积。
  22. 根据权利要求19所述的显示装置,其中,所述第二子像素还包括多个阻挡部,所述多个阻挡部中的每个阻挡部在所述第一衬底基板上的正投影位于所述黑矩阵在所述第一衬底基板上的正投影之内,所述多个阻挡部包括:
    第一阻挡部,位于所述多个隔垫物中与所述第二子像素对应的一个隔垫物靠近所述像素电极的一侧;和
    第二阻挡部,位于所述第一阻挡部远离所述隔垫物的一侧,所述第二阻挡部的高度大于所述第一阻挡部的高度。
  23. 根据权利要求22所述的显示装置,其中:
    所述第二子像素未被所述黑矩阵覆盖的区域为发光区域;
    所述第一阻挡部和所述第二阻挡部位于所述发光区域的第一侧;以及
    所述多个阻挡部还包括第三阻挡部,位于所述发光区域与所述第一侧相对的第二侧。
  24. 根据权利要求23所述的显示装置,其中:
    所述第一阻挡部包括在所述第一衬底基板的所述一侧依次设置的第一层、第二层、第三层、第四层和第五层;
    所述第二阻挡部和所述第三阻挡部中的至少一个包括在所述第一衬底基板的所述一侧依次设置的第六层、第七层、第八层、第九层、第十层和第十一层;以及
    所述第一层、所述第七层和所述第一绝缘层位于同一层,所述第二层、所述第八层和所述像素电极位于同一层,所述第三层、所述第九层和所述第一电极位于同一层,所述第四层、所述第十层和所述第二绝缘层位于同一层,所述第五层、所述第十一层和所述公共电极位于同一层,所述第六层与所述栅极位于同一层。
  25. 一种阵列基板的制造方法,包括在第一衬底基板的一侧形成多条数据线和多个子像素,形成所述多个子像素中的至少一个包括:
    在所述第一衬底基板的所述一侧形成栅极;
    在所述栅极远离所述第一衬底基板的一侧形成第一绝缘层;
    在所述第一绝缘层远离所述栅极的一侧形成有源层;
    在所述第一绝缘层远离所述第一衬底基板的一侧形成像素电极;
    形成第一电极和第二电极,其中:
    所述第一电极位于所述有源层和所述像素电极远离所述第一衬底基板的一侧,连接至所述有源层,并且与所述像素电极接触,
    所述第二电极与所述第一电极间隔开,并且连接至所述有源层和所述多条数据线中的一条数据线;
    在所述像素电极、所述第一电极和所述第二电极远离所述第一衬底基板一侧形成第二绝缘层,所述第二绝缘层具有第一开口,所述第一开口在所述第一衬底基板上的正投影与所述像素电极在所述第一衬底基板上的正投影部分交叠,并且与所述第一电极在所述第一衬底基板上的正投影部分交叠;和
    形成连接电极和与所述连接电极间隔开的公共电极,所述连接电极通过所述第一开口与所述像素电极和所述第一电极接触,所述公共电极位于所述第二绝缘层远离所述像素电极的一侧。
  26. 根据权利要求25所述的方法,其中,形成所述第二绝缘层包括:
    形成覆盖所述像素电极、所述第一电极和所述第二电极的绝缘材料层;
    在所述绝缘材料层远离所述第一衬底基板的一侧形成具有第三开口的掩模;和
    利用所述掩模对所述绝缘材料层进行图案化,以得到所述第二绝缘层。
PCT/CN2021/115955 2020-10-30 2021-09-01 阵列基板及其制造方法、显示装置 WO2022088952A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/792,264 US11921388B2 (en) 2020-10-30 2021-09-01 Array substrate and manufacturing method thereof, and display device
US18/425,819 US20240168348A1 (en) 2020-10-30 2024-01-29 Array Substrate and Manufacturing Method Thereof, and Display Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011189386.7A CN114442387A (zh) 2020-10-30 2020-10-30 阵列基板及其制造方法、显示装置
CN202011189386.7 2020-10-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/792,264 A-371-Of-International US11921388B2 (en) 2020-10-30 2021-09-01 Array substrate and manufacturing method thereof, and display device
US18/425,819 Continuation US20240168348A1 (en) 2020-10-30 2024-01-29 Array Substrate and Manufacturing Method Thereof, and Display Device

Publications (1)

Publication Number Publication Date
WO2022088952A1 true WO2022088952A1 (zh) 2022-05-05

Family

ID=81357848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115955 WO2022088952A1 (zh) 2020-10-30 2021-09-01 阵列基板及其制造方法、显示装置

Country Status (3)

Country Link
US (2) US11921388B2 (zh)
CN (1) CN114442387A (zh)
WO (1) WO2022088952A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102402090A (zh) * 2011-12-05 2012-04-04 深圳市华星光电技术有限公司 一种阵列基板及液晶显示装置、阵列基板的制造方法
CN103365012A (zh) * 2013-04-03 2013-10-23 友达光电股份有限公司 像素结构及其制作方法
CN103413810A (zh) * 2013-05-20 2013-11-27 友达光电股份有限公司 像素结构、显示面板与像素结构的制作方法
CN104216183A (zh) * 2014-08-28 2014-12-17 合肥鑫晟光电科技有限公司 一种阵列基板及其制备方法、显示装置
CN105528964A (zh) * 2016-01-19 2016-04-27 友达光电股份有限公司 显示器
CN105552028A (zh) * 2016-02-18 2016-05-04 京东方科技集团股份有限公司 阵列基板及其制作方法、显示面板及显示装置
CN105679763A (zh) * 2016-01-05 2016-06-15 深圳市华星光电技术有限公司 一种阵列基板及其制作方法、显示面板
CN107991796A (zh) * 2018-01-04 2018-05-04 昆山龙腾光电有限公司 阵列基板及其修复方法和液晶显示装置
US20190056609A1 (en) * 2017-08-21 2019-02-21 Samsung Display Co., Ltd. Display apparatus
CN110515244A (zh) * 2019-08-30 2019-11-29 厦门天马微电子有限公司 一种曲面显示面板及显示装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4550484B2 (ja) * 2003-05-13 2010-09-22 三星電子株式会社 薄膜トランジスタ表示板及びこれを含む多重ドメイン液晶表示装置
KR20070034280A (ko) * 2005-09-23 2007-03-28 삼성전자주식회사 가요성 표시 장치용 표시판의 제조 방법
KR20070070726A (ko) * 2005-12-29 2007-07-04 엘지.필립스 엘시디 주식회사 횡전계 방식 액정표시장치용 어레이 기판과 그 제조방법
JP5235363B2 (ja) 2007-09-04 2013-07-10 株式会社ジャパンディスプレイイースト 液晶表示装置
US20110085121A1 (en) 2009-10-08 2011-04-14 Hydis Technologies Co., Ltd. Fringe Field Switching Mode Liquid Crystal Display Device and Method of Fabricating the Same
US20130140712A1 (en) 2011-12-05 2013-06-06 Shenzhen China Star Optoelectronics Technology Co., Ltd. Array Substrate, LCD Device, and Method for Manufacturing Array Substrate
KR101985481B1 (ko) * 2012-07-23 2019-06-05 삼성디스플레이 주식회사 표시 장치 및 표시 장치 제조 방법
JP6203575B2 (ja) * 2013-08-29 2017-09-27 パナソニック液晶ディスプレイ株式会社 表示装置
KR102185786B1 (ko) * 2014-02-27 2020-12-03 삼성디스플레이 주식회사 액정 표시 장치 및 및 액정 표시 장치의 구동 방법
CN203870366U (zh) * 2014-06-12 2014-10-08 京东方科技集团股份有限公司 一种阵列基板及显示装置
CN104280951A (zh) 2014-09-23 2015-01-14 京东方科技集团股份有限公司 阵列基板及其制造方法、显示装置
CN105204252A (zh) 2015-09-23 2015-12-30 深超光电(深圳)有限公司 薄膜晶体管阵列基板及液晶显示面板
CN106298809B (zh) 2016-09-22 2019-04-05 昆山龙腾光电有限公司 薄膜晶体管阵列基板及其制作方法、液晶显示装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102402090A (zh) * 2011-12-05 2012-04-04 深圳市华星光电技术有限公司 一种阵列基板及液晶显示装置、阵列基板的制造方法
CN103365012A (zh) * 2013-04-03 2013-10-23 友达光电股份有限公司 像素结构及其制作方法
CN103413810A (zh) * 2013-05-20 2013-11-27 友达光电股份有限公司 像素结构、显示面板与像素结构的制作方法
CN104216183A (zh) * 2014-08-28 2014-12-17 合肥鑫晟光电科技有限公司 一种阵列基板及其制备方法、显示装置
CN105679763A (zh) * 2016-01-05 2016-06-15 深圳市华星光电技术有限公司 一种阵列基板及其制作方法、显示面板
CN105528964A (zh) * 2016-01-19 2016-04-27 友达光电股份有限公司 显示器
CN105552028A (zh) * 2016-02-18 2016-05-04 京东方科技集团股份有限公司 阵列基板及其制作方法、显示面板及显示装置
US20190056609A1 (en) * 2017-08-21 2019-02-21 Samsung Display Co., Ltd. Display apparatus
CN107991796A (zh) * 2018-01-04 2018-05-04 昆山龙腾光电有限公司 阵列基板及其修复方法和液晶显示装置
CN110515244A (zh) * 2019-08-30 2019-11-29 厦门天马微电子有限公司 一种曲面显示面板及显示装置

Also Published As

Publication number Publication date
US11921388B2 (en) 2024-03-05
US20240168348A1 (en) 2024-05-23
CN114442387A (zh) 2022-05-06
US20230041639A1 (en) 2023-02-09

Similar Documents

Publication Publication Date Title
WO2019095764A1 (zh) 阵列基板、显示面板及显示装置
WO2022193712A1 (zh) 显示面板、显示装置
US11616116B2 (en) Display device including dummy lines overlapping connection lines
WO2023159868A1 (zh) 显示面板及显示装置
WO2021102996A1 (zh) 显示基板及显示装置
WO2022067634A1 (zh) 显示基板及其制作方法、显示装置
KR20180036333A (ko) 표시패널 및 이를 포함하는 보더리스 타입의 표시장치
WO2021184300A1 (zh) 显示基板及显示装置
WO2021102997A1 (zh) 显示基板及其制作方法、显示装置
EP4319536A1 (en) Display device
WO2021102995A1 (zh) 显示基板及显示装置
WO2022088952A1 (zh) 阵列基板及其制造方法、显示装置
WO2021081814A1 (zh) 阵列基板和显示装置
WO2021103015A1 (zh) 显示基板及其制作方法、显示装置
US20230306904A1 (en) Display panel and display device
CN213023866U (zh) 阵列基板和显示装置
WO2022174404A1 (zh) 显示面板及显示装置
WO2021184307A1 (zh) 显示基板及显示装置
WO2023230810A1 (zh) 显示面板及显示装置
WO2024045059A1 (zh) 显示面板及显示装置
WO2022204995A1 (zh) 显示面板及其制备方法、显示装置
CN115039165B (zh) 阵列基板和显示设备
WO2023159561A1 (zh) 显示基板和显示装置
WO2024045037A1 (zh) 显示面板及显示装置
CN219553632U (zh) 显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21884683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/08/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21884683

Country of ref document: EP

Kind code of ref document: A1