WO2022083798A1 - 一种直流支撑电容器用金属化聚丙烯薄膜的检验方法 - Google Patents

一种直流支撑电容器用金属化聚丙烯薄膜的检验方法 Download PDF

Info

Publication number
WO2022083798A1
WO2022083798A1 PCT/CN2021/141230 CN2021141230W WO2022083798A1 WO 2022083798 A1 WO2022083798 A1 WO 2022083798A1 CN 2021141230 W CN2021141230 W CN 2021141230W WO 2022083798 A1 WO2022083798 A1 WO 2022083798A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
polypropylene film
value
metallized polypropylene
voltage
Prior art date
Application number
PCT/CN2021/141230
Other languages
English (en)
French (fr)
Inventor
孙晓武
李印达
张剑
冯申荣
Original Assignee
无锡市电力滤波有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡市电力滤波有限公司 filed Critical 无锡市电力滤波有限公司
Publication of WO2022083798A1 publication Critical patent/WO2022083798A1/zh
Priority to ZA2022/05427A priority Critical patent/ZA202205427B/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass

Definitions

  • the invention relates to the technical field of metallized films, in particular to an inspection method of metallized polypropylene films for DC support capacitors.
  • the DC support capacitor is the key component of the converter, and plays the role of stabilizing the voltage and filtering on the DC side of the converter.
  • high-voltage and large-capacity DC supports are required in high-power converters such as high-voltage converters with tens of megawatts, high-speed train converters, high-power STATCOMs, and DC capacitors for flexible DC transmission projects. capacitor.
  • DC support capacitors all use metallized polypropylene film, and the weight of metallized polypropylene film for each capacitor ranges from 1kg to 80kg.
  • the quantity of each batch of metallized polypropylene film into storage varies from 1 to 10 tons, or even more.
  • Metallized polypropylene films are also widely used throughout the capacitor field.
  • the purpose of the present invention is to provide an inspection method for metallized polypropylene films for DC support capacitors.
  • the present invention provides a method for inspecting metallized polypropylene films for DC support capacitors, comprising the following steps:
  • the present invention discloses the following technical effects:
  • the inspection method provided by the invention can judge the actual electrical performance level and quality stability of batches of metallized polypropylene films, improve the inspection efficiency of incoming materials, and effectively eliminate serious quality defects of capacitor batch products.
  • FIG. 1 is a flow chart of an inspection method of a metallized polypropylene film for a DC support capacitor according to an embodiment of the present invention.
  • a method for testing metallized polypropylene films for DC support capacitors includes the following steps.
  • Appearance inspection extract 2-5 bags of metallized polypropylene film to be inspected from the material, and check whether the outer packaging bag is sealed. If there is air leakage in the outer packaging bag, it is considered to be unqualified; open 1- 2 bags of metallized polypropylene film to be inspected, check the whole roll for defects such as appearance bumps, scratches, uneven end faces, oxidation points, etc. If the roll of metallized polypropylene film to be inspected is defective, it is considered to be inspected Unqualified, if the roll of metallized polypropylene film to be inspected has no defects, continue to follow-up inspection steps;
  • the visual inspection can be as follows: extract 2 bags of metallized polypropylene film to be inspected from the incoming material, check whether the outer packaging bag is sealed, if there is air leakage in the outer packaging bag , the inspection is considered unqualified; open 1 bag of the metallized polypropylene film to be inspected, and check whether the whole roll has defects such as appearance bumps, scratches, uneven end faces, oxidation points, etc. If the metallized polypropylene film to be inspected is If the polypropylene film roll is defective, the inspection is considered unqualified. If the metallized polypropylene film roll to be inspected has no defects, the subsequent inspection steps are continued;
  • the visual inspection can be as follows: extract 5 bags of the metallized polypropylene film to be inspected from the incoming material, check whether the outer packaging bag is sealed, if there is air leakage in the outer packaging bag , the inspection is considered unqualified; open the two bags of the metallized polypropylene film to be inspected, and check whether the whole roll has defects such as appearance bumps, scratches, uneven end faces, oxidation points, etc. If the metallized polypropylene film to be inspected is If the polypropylene film roll is defective, the inspection is considered to be unqualified. If the metallized polypropylene film roll to be inspected has no defects, the subsequent inspection steps are continued.
  • Parameter measurement measure the thickness, width and margin of the metallized polypropylene film to be inspected, measure the square resistance of the thickened side of the metal layer and the square resistance of the active area, and compare the measured value with the corresponding technical requirements , if the measured value does not meet the technical requirements, the inspection is deemed unqualified, and if the measured value meets the technical requirements, the subsequent inspection steps are continued.
  • the metallized polypropylene film to be inspected is made into 10 to 20 test elements after successively winding, gold spraying, thermal polymerization, and energizing processes, and the winding parameters are based on the designed element winding parameters.
  • the design working voltage of the metallized polypropylene film to be inspected is U N ;
  • the test element can be made as follows: the metallized polypropylene film to be tested is successively wound, gold sprayed, thermally polymerized, and energized to make 10 test pieces. element, its winding parameters are based on the designed element winding parameters, and the designed working voltage of the metallized polypropylene film to be inspected is U N ;
  • the test element can be made as follows: the metallized polypropylene film to be inspected is made into 20 test pieces after successively winding, gold spraying, thermal polymerization, and energizing processes. element, the winding parameters of which are based on the designed winding parameters of the element, and the designed working voltage of the metallized polypropylene film to be inspected is U N .
  • Ultimate withstand voltage test select 2 to 4 components to be tested, record their initial capacitance value, loss angle tangent value, initial test voltage of 1.5U N , and then gradually increase the voltage test, each time the voltage increase value is 100 ⁇ 200VDC, The test time is maintained for 5 minutes, and the test ends when the test element has failures such as outer burst, flame, "short circuit", etc., and record the voltage value of each test, the capacitance value and loss tangent value after the test, and the occurrence of intensive self-healing sound. If the initial voltage value of the dense self-healing sound is less than 1.6 U N , or the voltage value is less than 2 U N when the test element fails, it is considered that the component test is unqualified;
  • the ultimate withstand voltage test can be: select 2 components to be tested, record their initial capacitance value, loss tangent value, and initial test voltage 1.5U N , and then gradually increase the voltage test, each time the voltage increase value is 100 ⁇ 200V DC, and the test time is maintained for 5 minutes.
  • the test element has failure phenomena such as outer burst, flame, "short circuit", the test ends, and each test is recorded.
  • the voltage value, the capacitance value and loss tangent value after the test the initial voltage value of the intensive self-healing sound; if the initial voltage value of the intensive self-healing sound is less than 1.6 U N , or the voltage when the test element fails If the value is less than 2U N , the component test is considered to be unqualified;
  • the ultimate withstand voltage test can be: select 2 components to be tested, record their initial capacitance value, loss tangent value, and initial test voltage of 1.5 U N , and then gradually increase the voltage test, each time the voltage increase value is 200V DC, and the test time is maintained for 5 minutes.
  • the test element has failure phenomena such as outer burst, flame, "short circuit", the test ends, and the voltage value of each test is recorded.
  • the capacitance value and loss tangent value after the test the initial voltage value of the intensive self-healing sound; if the initial voltage value of the intensive self-healing sound is less than 1.6 U N , or the voltage value is less than 2 U when the test element fails N , the component test is considered unqualified;
  • the ultimate withstand voltage test can be: select 4 components to be tested, record their initial capacitance value, loss tangent value, initial test voltage 1.5U N , and then gradually increase the voltage test, each time the voltage increase value is 100V DC, and the test time is maintained for 5min.
  • the test element has failure phenomena such as outer burst, flame, "short circuit", the test ends, and the voltage of each test is recorded.
  • the initial voltage value of the intensive self-healing sound if the initial voltage value of the intensive self-healing sound is less than 1.6 U N , or the voltage value is less than the failure phenomenon of the test element 2U N , the component test is considered unqualified;
  • the ultimate withstand voltage test can be: select 4 components to be tested, record their initial capacitance value, loss tangent value, and initial test voltage of 1.5 U N , and then gradually increase the voltage test, each time the voltage increase value is 200V DC, and the test time is maintained for 5 minutes.
  • the test element has failure phenomena such as outer burst, flame, "short circuit", the test ends, and the voltage value of each test is recorded.
  • the capacitance value and loss tangent value after the test the initial voltage value of the intensive self-healing sound; if the initial voltage value of the intensive self-healing sound is less than 1.6 U N , or the voltage value is less than 2 U when the test element fails N , the component test is considered unqualified.
  • High current impact test select 2 to 4 components to be tested, record their initial capacitance value and loss tangent value, apply DC voltage U N to the component to be tested, and then short-circuit discharge 200 times, measure the capacitance value and loss after the test The tangent value; if the capacitance value before and after the test changes by more than ⁇ 1%, or if the loss tangent value after the test changes by 0.0002, the component test is considered unqualified;
  • the high current impact test can be as follows: select 2 components to be tested, record their initial capacitance value and loss tangent value, and apply a DC voltage U N to the components to be tested, Then short-circuit and discharge 200 times, and measure the capacitance value and loss tangent value after the test; if the capacitance value before and after the test changes by more than ⁇ 1%, or if the loss angle tangent value after the test changes by 0.0002, the component test is considered unqualified;
  • the high-current impact test can be as follows: select 4 components to be tested, record their initial capacitance value and loss tangent value, and apply a DC voltage U N to the components to be tested, Then short-circuit discharge 200 times, and measure the capacitance value and loss tangent value after the test; if the capacitance value before and after the test changes by more than ⁇ 1%, or if the loss angle tangent value after the test changes by 0.0002, the component test is considered unqualified.
  • Voltage aging test select 2 to 4 components to be tested and potting resin at both ends, record their initial capacitance value and loss tangent value, place the components to be tested in a constant temperature drying oven, heat them to 70°C, apply 1.4U N , continuous 96 hours, after cooling for 24 hours, measure the capacitance value and loss tangent value, if the change of capacitance value before and after the test exceeds ⁇ 0.5%, the component test is considered unqualified;
  • the voltage aging test can be as follows: select 2 components to be tested and potting resin at both ends, record the initial capacitance value and loss tangent value, and the components to be tested Place it in a constant temperature drying oven, heat it to 70°C, apply 1.4U N for 96 hours continuously, and measure the capacitance value and loss tangent value after cooling for 24 hours. If the capacitance value before and after the test changes by more than ⁇ 0.5%, it is considered that the element failed the test;
  • the voltage aging test can be as follows: select 4 components to be tested and potting resin at both ends, record the initial capacitance value, loss tangent value, and the components to be tested. Place it in a constant temperature drying oven, heat it to 70°C, apply 1.4U N for 96 hours continuously, and measure the capacitance value and loss tangent value after cooling for 24 hours. If the capacitance value before and after the test changes by more than ⁇ 0.5%, it is considered that the element The test failed.
  • the judgment can be as follows: the three tests in steps (4) to (6), if all the test elements meet the requirements, the metallized polypropylene film to be inspected is qualified; When the test element has unqualified items, it is necessary to select another element for the second test. If the second test of the element meets the requirements, the metallized polypropylene film to be inspected is qualified; if the second test of the element still fails If the requirements are met, the metallized polypropylene film to be inspected is unqualified, and one bag of metallized polypropylene film needs to be extracted for re-inspection;
  • the judgment can be as follows: the three tests in steps (4) to (6), if all the test elements meet the requirements, the metallized polypropylene film to be inspected is qualified; When the test element has unqualified items, it is necessary to select 2 more elements for the second test. If the second test of the element meets the requirements, the metallized polypropylene film to be inspected is qualified; if the second test of the element still fails If the requirements are met, the metallized polypropylene film to be inspected is unqualified, and 2 bags of metallized polypropylene film need to be extracted for re-inspection.
  • the number of inspections of metallized polypropylene films can be increased during the actual inspection, and the corresponding number of test elements can also be increased.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

一种直流支撑电容器用金属化聚丙烯薄膜的检验方法,包括以下步骤:外观检查(1)、参数测量(2)、试验元件制作(3)、极限耐压试验(4)、大电流冲击试验(5)、电压老化试验(6)、判定(7)。直流支撑电容器用金属化聚丙烯薄膜的检验方法能判断出批次金属化聚丙烯薄膜的实际电性能水平和质量稳定性,提高入库来料检验效率,有效杜绝电容器批量产品的严重质量缺陷。

Description

一种直流支撑电容器用金属化聚丙烯薄膜的检验方法
本申请要求于2021年07月08日提交中国专利局、申请号为202110770461.7、发明名称为“一种直流支撑电容器用金属化聚丙烯薄膜的检验方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及金属化薄膜技术领域,特别是涉及一种直流支撑电容器用金属化聚丙烯薄膜的检验方法。
背景技术
直流支撑电容器是变流器的关键器件,在变流器中的直流侧起到稳定电压、滤波等作用。目前,在大功率变流器如几十兆瓦级的高压变频器、高速动车变流器、大功率STATCOM、柔性直流输电工程用直流电容器等设备中,均需使用高电压大容量的直流支撑电容器。
这些直流支撑电容器都采用金属化聚丙烯薄膜,每台电容器的金属化聚丙烯薄膜重量范围1kg~80kg。每批金属化聚丙烯薄膜入库的数量从1~10吨不等,甚至更多。整个电容器领域,金属化聚丙烯薄膜也被广泛使用。
金属化聚丙烯薄膜常规检验方法按照《GB/T 24123-2009电容器用金属化薄膜》中第5-7条执行。但是常规的检验方法不能判断出金属化聚丙烯薄膜的实际电性能水平和质量水平。
因而,需要新的金属化聚丙烯薄膜的入库检验方法来判断其质量水平。
发明内容
基于此,本发明的目的是提供一种直流支撑电容器用金属化聚丙烯薄膜的检验方法。
为实现上述目的,本发明提供了一种直流支撑电容器用金属化聚丙烯薄膜的检验方法,包括以下步骤:
(1)外观检查;
(2)参数测量;
(3)试验元件制作;
(4)极限耐压试验;
(5)大电流冲击试验;
(6)电压老化试验;
(7)判定。
上述步骤(4)、(5)、(6)的相关试验是同步进行。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
本发明提供的检验方法能判断出批次金属化聚丙烯薄膜的实际电性能水平和质量稳定性,提高入库来料检验效率,有效杜绝电容器批量产品的严重质量缺陷。
说明书附图
图1为本发明实施例直流支撑电容器用金属化聚丙烯薄膜的检验方法的流程图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
如图1所示,一种直流支撑电容器用金属化聚丙烯薄膜的检验方法,包括以下步骤。
1、外观检查:从来料中抽取2~5袋待检的金属化聚丙烯薄膜,检查其外包装袋是否密封,如果外包装袋有漏气,则认为被检验不合格;打开其中的1~2袋待检的金属化聚丙烯薄膜,检查其整卷是否有外观碰伤、划痕、端面不齐、氧化点等缺陷,如果待检的金属化聚丙烯薄膜卷有缺陷,则被认为检验不合格,如果待检的金属化聚丙烯薄膜卷没有缺陷,则继续进行后续检验步骤;
例如,如果来料金属化聚丙烯薄膜重量小于1吨,外观检查可以是:从来料中抽取2袋待检的金属化聚丙烯薄膜,检查其外包装袋是否密封,如果外包装袋有漏气,则认为被检验不合格;打开其中的1袋待检的金属化聚丙烯薄膜,检查其整卷是否有外观碰伤、划痕、端面不齐、氧化点等缺陷,如果待检的金属化聚丙烯薄膜卷有缺陷,则被认为检验不合格,如果待检的金属化聚丙烯薄膜卷没有缺陷,则继续进行后续检验步骤;
或者,如果来料金属化聚丙烯薄膜重量大于5吨,外观检查可以是:从来料中抽取5袋待检的金属化聚丙烯薄膜,检查其外包装袋是否密封,如果外包装袋有漏气,则认为被检验不合格;打开其中的2袋待检的金属化聚丙烯薄膜,检查其整卷是否有外观碰伤、划痕、端面不齐、氧化点等缺陷,如果待检的金属化聚丙烯薄膜卷有缺陷,则被认为检验不合格,如果待检的金属化聚丙烯薄膜卷没有缺陷,则继续进行后续检验步骤。
2、参数测量:测量待检的金属化聚丙烯薄膜的厚度、宽度、留边,测量其金属层的加厚边方阻值、活动区的方阻值,测量值与相对应的技术要求比较,如果测量值不符合技术要求,则认为被检验不合格,如果测量值符合技术要求,则继续进行后续检验步骤。
3、试验元件制作:将待检的金属化聚丙烯薄膜依次经过卷绕、喷金、热聚合、赋能工序后制作成10~20只试验元件,其卷绕参数依据设计的元件卷绕参数,待检的金属化聚丙烯薄膜设计工作电压为U N
例如,如果来料金属化聚丙烯薄膜重量小于1吨,试验元件制作可以是:将待检的金属化聚丙烯薄膜依次经过卷绕、喷金、热聚合、赋能工序后制作成10只试验元件,其卷绕参数依据设计的元件卷绕参数,待检的金属化聚丙烯薄膜设计工作电压为U N
或者,如果来料金属化聚丙烯薄膜重量大于5吨,试验元件制作可以是:将待检的金属化聚丙烯薄膜依次经过卷绕、喷金、热聚合、赋能工序后制作成20只试验元件,其卷绕参数依据设计的元件卷绕参数,待检的金属化聚丙烯薄膜设计工作电压为U N
4、极限耐压试验:选取2~4只待试验元件,记录其初始电容值、损耗角正切值,起始试验电压1.5U N,然后逐步增加电压试验,每次电压增加值100~200VDC,试验时间均是维持5min,当试验元件出现外包炸裂、火焰、“短路”等失效现象时试验结束,记录每次试验的电压值、试验后的电容值和损耗角正切值、出现密集自愈声音的起始电压值;如果出现密集自愈声音的起始电压值小于1.6 U N,或试验元件出现失效现象时电压值小于2U N,则认为元件试验不合格;
例如,如果来料金属化聚丙烯薄膜厚度小于等于4.5μm并且重量小于1吨,极限耐压试验可以是:选取2只待试验元件,记录其初始电容值、 损耗角正切值,起始试验电压1.5U N,然后逐步增加电压试验,每次电压增加值100~200V DC,试验时间均是维持5min,当试验元件出现外包炸裂、火焰、“短路”等失效现象时试验结束,记录每次试验的电压值、试验后的电容值和损耗角正切值、出现密集自愈声音的起始电压值;如果出现密集自愈声音的起始电压值小于1.6 U N,或试验元件出现失效现象时电压值小于2U N,则认为元件试验不合格;
或者,如果来料金属化聚丙烯薄膜厚度大于4.5μm并且重量小于1吨,极限耐压试验可以是:选取2只待试验元件,记录其初始电容值、损耗角正切值,起始试验电压1.5U N,然后逐步增加电压试验,每次电压增加值200V DC,试验时间均是维持5min,当试验元件出现外包炸裂、火焰、“短路”等失效现象时试验结束,记录每次试验的电压值、试验后的电容值和损耗角正切值、出现密集自愈声音的起始电压值;如果出现密集自愈声音的起始电压值小于1.6 U N,或试验元件出现失效现象时电压值小于2U N,则认为元件试验不合格;
或者,如果来料金属化聚丙烯薄膜厚度小于等于4.5μm并且重量大于5吨,极限耐压试验可以是:选取4只待试验元件,记录其初始电容值、损耗角正切值,起始试验电压1.5U N,然后逐步增加电压试验,每次电压增加值100V DC,试验时间均是维持5min,当试验元件出现外包炸裂、火焰、“短路”等失效现象时试验结束,记录每次试验的电压值、试验后的电容值和损耗角正切值、出现密集自愈声音的起始电压值;如果出现密集自愈声音的起始电压值小于1.6 U N,或试验元件出现失效现象时电压值小于2U N,则认为元件试验不合格;
或者,如果来料金属化聚丙烯薄膜厚度大于4.5μm并且重量大于5吨,极限耐压试验可以是:选取4只待试验元件,记录其初始电容值、损耗角正切值,起始试验电压1.5U N,然后逐步增加电压试验,每次电压增加值200V DC,试验时间均是维持5min,当试验元件出现外包炸裂、火焰、“短路”等失效现象时试验结束,记录每次试验的电压值、试验后的电容值和损耗角正切值、出现密集自愈声音的起始电压值;如果出现密集自愈声音的起始电压值小于1.6 U N,或试验元件出现失效现象时电压值小于2U N,则认为元件试验不合格。
5、大电流冲击试验:选取2~4只待试验元件,记录其初始电容值、损耗角正切值,对待试元件进行施加直流电压U N,然后短路放电200次,测量试验后电容值、损耗角正切值;如果试验前后的电容值变化超过±1%,或如果试验后的损耗角正切值变化0.0002,则认为元件试验不合格;
例如,如果来料金属化聚丙烯薄膜重量小于1吨,大电流冲击试验可以是:选取2只待试验元件,记录其初始电容值、损耗角正切值,对待试元件进行施加直流电压U N,然后短路放电200次,测量试验后电容值、损耗角正切值;如果试验前后的电容值变化超过±1%,或如果试验后的损耗角正切值变化0.0002,则认为元件试验不合格;
或者,如果来料金属化聚丙烯薄膜重量大于5吨,大电流冲击试验可以是:选取4只待试验元件,记录其初始电容值、损耗角正切值,对待试元件进行施加直流电压U N,然后短路放电200次,测量试验后电容值、损耗角正切值;如果试验前后的电容值变化超过±1%,或如果试验后的损耗角正切值变化0.0002,则认为元件试验不合格。
6、电压老化试验:选取2~4只待试验元件并对其两端灌封树脂,记录其初始电容值、损耗角正切值,待试验元件置于恒温干燥箱中,加热到70℃,施加1.4U N,连续96小时,待冷却24小时后测电容值和损耗角正切值,如果试验前后的电容值变化超过±0.5%,则认为元件试验不合格;
例如,如果来料金属化聚丙烯薄膜重量小于1吨,电压老化试验可以是:选取2只待试验元件并对其两端灌封树脂,记录其初始电容值、损耗角正切值,待试验元件置于恒温干燥箱中,加热到70℃,施加1.4U N,连续96小时,待冷却24小时后测电容值和损耗角正切值,如果试验前后的电容值变化超过±0.5%,则认为元件试验不合格;
或者,如果来料金属化聚丙烯薄膜重量大于5吨,电压老化试验可以是:选取4只待试验元件并对其两端灌封树脂,记录其初始电容值、损耗角正切值,待试验元件置于恒温干燥箱中,加热到70℃,施加1.4U N,连续96小时,待冷却24小时后测电容值和损耗角正切值,如果试验前后的电容值变化超过±0.5%,则认为元件试验不合格。
7、判定:经过极限耐压、大电流冲击和电压老化试验后,如果试验元件全部符合要求,则待检的金属化聚丙烯薄膜合格;当试验元件有不合 格项试验,需再选取1~2只元件重新做相关试验,如果元件试验符合要求,则待检的金属化聚丙烯薄膜合格;如果元件再次试验仍然不符合要求,则待检的金属化聚丙烯薄膜不合格,需要抽取1~2袋金属化聚丙烯薄膜重新检验;
例如,如果来料金属化聚丙烯薄膜重量小于1吨,判定可以是:步骤(4)~(6)的三项试验,如果试验元件全部符合要求,则待检的金属化聚丙烯薄膜合格;当试验元件有不合格项试验,需再选取1只元件重新做第二次试验,如果元件第二次试验符合要求,则待检的金属化聚丙烯薄膜合格;如果元件第二次试验仍然不符合要求,则待检的金属化聚丙烯薄膜不合格,需要抽取1袋金属化聚丙烯薄膜重新检验;
或者,如果来料金属化聚丙烯薄膜重量大于5吨,判定可以是:步骤(4)~(6)的三项试验,如果试验元件全部符合要求,则待检的金属化聚丙烯薄膜合格;当试验元件有不合格项试验,需再选取2只元件重新做第二次试验,如果元件第二次试验符合要求,则待检的金属化聚丙烯薄膜合格;如果元件第二次试验仍然不符合要求,则待检的金属化聚丙烯薄膜不合格,需要抽取2袋金属化聚丙烯薄膜重新检验。
上述步骤(4)、(5)、(6)的相关试验是同步进行。
金属化聚丙烯薄膜的检验数量实际检验时可以增加,相应的试验元件数量也增加。
检验合格后的金属化薄膜生产过程中,元件及电容器按照过程控制要求继续做相关的试验。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (2)

  1. 一种直流支撑电容器用金属化聚丙烯薄膜的检验方法,其特征在于,所述方法包括:
    (1)外观检查:从来料中抽取2~5袋待检的金属化聚丙烯薄膜,检查其外包装袋是否密封,如果外包装袋有漏气,则认为被检验不合格;打开其中的1~2袋待检的金属化聚丙烯薄膜,检查其整卷是否有外观碰伤、划痕、端面不齐、氧化点等缺陷,如果待检的金属化聚丙烯薄膜卷有缺陷,则被认为检验不合格,如果待检的金属化聚丙烯薄膜卷没有缺陷,则继续进行后续检验步骤;
    (2)参数测量:测量待检的金属化聚丙烯薄膜的厚度、宽度、留边,测量其金属层的加厚边方阻值、活动区的方阻值,测量值与相对应的技术要求比较,如果测量值不符合技术要求,则认为被检验不合格,如果测量值符合技术要求,则继续进行后续检验步骤;
    (3)试验元件制作:将待检的金属化聚丙烯薄膜依次经过卷绕、喷金、热聚合、赋能工序后制作成10~20只试验元件,其卷绕参数依据设计的元件卷绕参数,待检的金属化聚丙烯薄膜设计工作电压为U N
    (4)极限耐压试验:选取2~4只待试验元件,记录其初始电容值、损耗角正切值,起始试验电压1.5U N,然后逐步增加电压试验,每次电压增加值100~200VDC,试验时间均是维持5min,当试验元件出现外包炸裂、火焰、“短路”等失效现象时试验结束,记录每次试验的电压值、试验后的电容值和损耗角正切值、出现密集自愈声音的起始电压值;如果出现密集自愈声音的起始电压值小于1.6U N,或试验元件出现失效现象时电压值小于2U N,则认为元件试验不合格;
    (5)大电流冲击试验:选取2~4只待试验元件,记录其初始电容值、损耗角正切值,对待试元件进行施加直流电压U N,然后短路放电200次,测量试验后电容值、损耗角正切值;如果试验前后的电容值变化超过±1%,或如果试验后的损耗角正切值变化0.0002,则认为元件试验不合格;
    (6)电压老化试验:选取2~4只待试验元件并对其两端灌封树脂,记录其初始电容值、损耗角正切值,待试验元件置于恒温干燥箱中,加热到70℃,施加1.4U N,连续96小时,待冷却24小时后测电容值和损耗角正切值,如果试验前后的电容值变化超过±0.5%,则认为元件试验不合格;
    (7)判定:经过极限耐压、大电流冲击和电压老化试验后,如果试验元件全部符合要求,则待检的金属化聚丙烯薄膜合格;当试验元件有不合格项试验,需再选取1~2只元件重新做第二次试验,如果元件第二次试验符合要求,则待检的金属化聚丙烯薄膜合格;如果元件第二次试验仍然不符合要求,则待检的金属化聚丙烯薄膜不合格,需要抽取1~2袋金属化聚丙烯薄膜重新检验。
  2. 根据权利要求1所述的直流支撑电容器用金属化聚丙烯薄膜的检验方法,其特征在于:所述极限耐压试验、大电流冲击试验和电压老化试验是同步进行。
PCT/CN2021/141230 2021-07-08 2021-12-24 一种直流支撑电容器用金属化聚丙烯薄膜的检验方法 WO2022083798A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2022/05427A ZA202205427B (en) 2021-07-08 2022-05-17 Inspection method for metallized polypropylene film for dc link capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110770461.7A CN113358159A (zh) 2021-07-08 2021-07-08 一种直流支撑电容器用金属化聚丙烯薄膜的检验方法
CN202110770461.7 2021-07-08

Publications (1)

Publication Number Publication Date
WO2022083798A1 true WO2022083798A1 (zh) 2022-04-28

Family

ID=77538875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141230 WO2022083798A1 (zh) 2021-07-08 2021-12-24 一种直流支撑电容器用金属化聚丙烯薄膜的检验方法

Country Status (3)

Country Link
CN (1) CN113358159A (zh)
WO (1) WO2022083798A1 (zh)
ZA (1) ZA202205427B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113358159A (zh) * 2021-07-08 2021-09-07 无锡市电力滤波有限公司 一种直流支撑电容器用金属化聚丙烯薄膜的检验方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308331A (ja) * 1997-04-30 1998-11-17 Nippon Chemicon Corp 電解コンデンサのエージング装置
CN102495295A (zh) * 2011-12-26 2012-06-13 南开大学 一种半导体薄膜材料电容特性的测量方法及装置
CN103293425A (zh) * 2013-06-28 2013-09-11 指月集团有限公司 一种金属化电力电容器快速老化试验方法
CN103617889A (zh) * 2013-11-26 2014-03-05 上海田伏电子科技有限公司 一种铜箔薄膜电容器及其制作工艺
CN106855596A (zh) * 2016-12-27 2017-06-16 深圳市汇北川电子技术有限公司 一种新能源汽车用金属化薄膜电容器的寿命试验方法
CN109269866A (zh) * 2018-09-18 2019-01-25 安徽铜峰电子股份有限公司 快速判定电容器用聚丙烯薄膜电热老化的方法及其应用和验证方法
CN113358159A (zh) * 2021-07-08 2021-09-07 无锡市电力滤波有限公司 一种直流支撑电容器用金属化聚丙烯薄膜的检验方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060026933A (ko) * 2006-03-02 2006-03-24 최호욱 이필름 칩 콘덴서의 제조 방법과 설비 구조
CN201007944Y (zh) * 2007-01-26 2008-01-16 唐军 耐大电流冲击金属化聚丙烯薄膜介质中、高压固定电容器
JP5585090B2 (ja) * 2010-01-21 2014-09-10 王子ホールディングス株式会社 コンデンサー用ポリプロピレンフィルム、その製法及び金属化フィルム
CN102998599B (zh) * 2011-09-16 2016-08-17 珠海格力电器股份有限公司 一种聚丙烯金属薄膜电容器检测方法
CN103344861B (zh) * 2013-07-03 2016-04-13 指月集团有限公司 一种金属化电力电容器快速老化试验装置
JP6794647B2 (ja) * 2015-03-31 2020-12-02 王子ホールディングス株式会社 フィルムコンデンサ用二軸延伸ポリプロピレンフィルム
CN106855601A (zh) * 2017-01-16 2017-06-16 广西吉光电子科技有限公司 一种用于测试电容器内爆或短路的测试电路
CN207215167U (zh) * 2017-04-18 2018-04-10 青岛科技大学 模拟薄膜热成型的检测试验设备
CN109031079A (zh) * 2018-06-28 2018-12-18 安徽开博电容科技有限公司 一种高压金属化膜电容器模拟自愈试验方法
CN109545554B (zh) * 2018-11-05 2020-10-27 铜陵市超越电子有限公司 一种脉冲储能电容器专用金属化薄膜替代物
JP2020200188A (ja) * 2019-06-05 2020-12-17 王子ホールディングス株式会社 ポリプロピレンフィルムロール及び金属化ポリプロピレンフィルムロール
CN112444700B (zh) * 2020-11-25 2023-11-03 桂林电力电容器有限责任公司 一种自愈式金属化膜电容器自愈性能的测试方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308331A (ja) * 1997-04-30 1998-11-17 Nippon Chemicon Corp 電解コンデンサのエージング装置
CN102495295A (zh) * 2011-12-26 2012-06-13 南开大学 一种半导体薄膜材料电容特性的测量方法及装置
CN103293425A (zh) * 2013-06-28 2013-09-11 指月集团有限公司 一种金属化电力电容器快速老化试验方法
CN103617889A (zh) * 2013-11-26 2014-03-05 上海田伏电子科技有限公司 一种铜箔薄膜电容器及其制作工艺
CN106855596A (zh) * 2016-12-27 2017-06-16 深圳市汇北川电子技术有限公司 一种新能源汽车用金属化薄膜电容器的寿命试验方法
CN109269866A (zh) * 2018-09-18 2019-01-25 安徽铜峰电子股份有限公司 快速判定电容器用聚丙烯薄膜电热老化的方法及其应用和验证方法
CN113358159A (zh) * 2021-07-08 2021-09-07 无锡市电力滤波有限公司 一种直流支撑电容器用金属化聚丙烯薄膜的检验方法

Also Published As

Publication number Publication date
ZA202205427B (en) 2022-08-31
CN113358159A (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
WO2022083798A1 (zh) 一种直流支撑电容器用金属化聚丙烯薄膜的检验方法
CN108321444B (zh) 一种分容补偿方法
WO2016125679A1 (ja) 蓄電装置の製造方法、構造体の検査装置
CN106855596B (zh) 一种新能源汽车用金属化薄膜电容器的寿命试验方法
CN107367694A (zh) 一种锂电池使用寿命的评估方法和系统
CN108088786A (zh) 一种橡胶制0型密封圈老化寿命试验方法
CN111054663A (zh) 一种高可靠性钽电容器的筛选方法
CN113156281A (zh) 一种考核汽车电容器耐电压性能的试验方法
CN104681286B (zh) 导电聚合物电解质铝电容器制造方法
JP2013165029A (ja) 電池の検査方法
CN113311275A (zh) 金属化膜电容器在交直流复合电压下劣化机理的解耦方法
CN117517981A (zh) 一种铅蓄电池自放电质量判定方法
CN110514724B (zh) 一种软包锂离子电容电芯内微水含量的检测方法
CN112014661B (zh) 一种确定直流避雷器电阻片的老化特性的方法及系统
CN205404736U (zh) 一种多层瓷介电容器无损检测装置
CN111982413A (zh) 一种软包锂电池泄漏检测方法
Mach et al. Loss factor and non-linearity of volt-ampere characteristic of capacitors from metalized PP film
JP3144224B2 (ja) セラミックコンデンサのスクリーニング方法
CN115792522B (zh) 一种容性负载绝缘检测方法、装置和设备
CN111381132A (zh) 一种htcc管壳交流隔离电压测试的方法
CN115127928B (zh) 一种载人潜器用锂离子蓄电池安全性能测试方法
Alers Solar photovoltaic module failure analysis
Liu et al. An analysis and calculation on the problems of CVT caused by capacitor element breakdown
Lei et al. Fault Analysis of Zinc Oxide Surge Arresters Based on Infrared Thermal Imaging and Resistive Leakage Current Detection Method
JPS62165850A (ja) 密閉形鉛蓄電池の検査方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882210

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21882210

Country of ref document: EP

Kind code of ref document: A1