WO2022083289A1 - 一种小区天线方位角确定的方法,相关装置以及设备 - Google Patents

一种小区天线方位角确定的方法,相关装置以及设备 Download PDF

Info

Publication number
WO2022083289A1
WO2022083289A1 PCT/CN2021/115271 CN2021115271W WO2022083289A1 WO 2022083289 A1 WO2022083289 A1 WO 2022083289A1 CN 2021115271 W CN2021115271 W CN 2021115271W WO 2022083289 A1 WO2022083289 A1 WO 2022083289A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
data
angle
arrival
data set
Prior art date
Application number
PCT/CN2021/115271
Other languages
English (en)
French (fr)
Inventor
郭笑潇
胡小峰
刘沁心
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022083289A1 publication Critical patent/WO2022083289A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/72Diversity systems specially adapted for direction-finding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C1/00Measuring angles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to a method for determining an azimuth angle of a cell antenna, a related apparatus, and a device.
  • the antenna plays a pivotal role.
  • the antenna azimuth is a very important part, and its accuracy directly affects the efficiency and quality of subsequent network optimization. Therefore, the accurate azimuth angle can ensure that the actual coverage of the base station is basically consistent with the expected, thereby ensuring the operation quality of the entire network.
  • Appropriate adjustment of the multi-azimuth angle according to the traffic volume or the specific situation of the existing network can better optimize the existing network.
  • the azimuth angle will be shifted due to various external influences (earthquakes, strong winds, and human errors), resulting in a decrease in network quality.
  • the antenna azimuth angle can be calculated through the Minimization of Drive Tests (MDT) measured by the terminal equipment. Specifically, according to the MDT data and site engineering parameters, the square grid weighted average is used, and the weight is defined in combination with the signal strength. Determine the antenna azimuth.
  • MDT Minimization of Drive Tests
  • the calculation of the azimuth angle of the radio frequency antenna based on the MDT data depends on the data volume and data distribution of the MDT data.
  • the model accuracy will be reduced, thereby reducing the accuracy of the obtained antenna azimuth angle. .
  • the embodiments of the present application provide a method for determining the azimuth angle of a cell antenna, related devices and equipment, which are used to accurately reflect the user's horizontal direction arrival angle, and thereby establish a target loss function. Therefore, the target cell antenna azimuth obtained by the target loss function is The angle can be closer to the real azimuth angle of the cell antenna, thereby improving the accuracy of the cell antenna azimuth angle.
  • the present application provides a method for determining the azimuth angle of a cell antenna. Since the target cell includes at least one terminal device, the apparatus for determining the azimuth angle of the cell antenna can acquire the data information of the at least one terminal device, and the data information includes the position information of the at least one terminal device, the beam strength information of the downlink signal and the beam of the downlink signal. phase information. And the location information of the terminal device is specific location information in a Global Positioning System (Global Positioning System, GPS), that is, including the specific longitude and latitude where the terminal device is located.
  • GPS Global Positioning System
  • the estimated user's horizontal direction of arrival angle is calculated and obtained, and then the actual user's horizontal direction of arrival angle is calculated according to the position information of at least one terminal device.
  • Estimate the user's horizontal arrival angle and the real user's horizontal arrival angle and establish a target loss function, and the target loss function includes but is not limited to Mean Absolute Error (MAE), Mean Square Error (MSE) And the root mean square error (Root Mean Square Error, RMSE), etc., and finally determine the target cell antenna azimuth according to the target loss function.
  • MAE Mean Absolute Error
  • MSE Mean Square Error
  • RMSE Root Mean Square Error
  • the estimated user angle of arrival in the horizontal direction and the actual user angle of arrival in the horizontal direction are determined according to the beam intensity information, beam phase information and position information, the user's horizontal direction angle of arrival can be accurately reflected, and thus A target loss function is established, so the azimuth angle of the target cell antenna obtained by the target loss function can be closer to the real azimuth angle of the cell antenna, thereby improving the accuracy of the cell antenna azimuth angle.
  • the device for determining the azimuth angle of the cell antenna may also obtain a first data set corresponding to the estimated user angle of arrival in the horizontal direction.
  • the data set includes a plurality of first data, and the first data is the estimated angle of arrival of the user in the horizontal direction.
  • the device for determining the azimuth angle of the cell antenna can also obtain a second data set corresponding to the angle of arrival in the horizontal direction of the real user, where the second data set includes a plurality of second data, and the second data is the angle of arrival in the horizontal direction of the real user.
  • the device for determining the azimuth angle of the cell antenna determines the confidence level of the azimuth angle of the target cell antenna according to the relationship between each first data in the first data set and each second data in the second data set.
  • the first data set and the second data set are obtained in combination with linear regression or other fitting methods, and the relationship between each first data in the first data set and each second data in the second data set is Evaluate the confidence of the antenna azimuth of the target cell, so that the determined confidence can accurately reflect the error degree of the antenna azimuth of the target cell.
  • the apparatus for determining the azimuth angle of the cell antenna may obtain the first information between each first data in the first data set and each second data in the second data set by calculation, the The first information is used to indicate the stability of the difference between each first data in the first data set and each second data in the second data set, wherein the difference is a plurality of first data and a plurality of first data.
  • the gap between the two data (gap).
  • the apparatus for determining the azimuth angle of the cell antenna may also obtain second information between each first data in the first data set and each second data in the second data set, where the second information is the first data in the first data set The variance of the difference between each first data set and each second data set in the second data set.
  • the apparatus for determining the azimuth angle of the cell antenna can determine the confidence level of the azimuth angle of the target cell antenna according to the magnitude relationship between the first information and the first threshold, and the magnitude relationship between the second information and the second threshold.
  • the stability of the difference between each first data in the second data set and each second data in the second data set, and the second information can reflect the degree of dispersion between a plurality of first data and a plurality of second data, so The stability and dispersion of the antenna azimuth angle of the target cell can be determined by comparing with the size of the first threshold and the second threshold respectively, thereby improving the reliability and feasibility of the solution.
  • the device for determining the azimuth angle of the cell antenna also needs to acquire the location information of the target cell, and the location information of the target cell is the location information of the cell antenna panel.
  • the location information of the target cell may also be the location information of the base station that performs the server on the target cell, which is not specifically limited here. Therefore, the angle of arrival in the horizontal direction of the real user can be calculated according to the location information of the target cell and the location information of the terminal device.
  • the actual user horizontal direction arrival angle is calculated through the location information of the target cell and the location information of the terminal device, thereby improving the feasibility of this solution.
  • the apparatus for determining the azimuth angle of the cell antenna needs to determine the angle value corresponding to the minimum value in the target loss function, and then determine the angle value corresponding to the minimum value as the target cell antenna azimuth angle.
  • the angle value corresponding to the minimum value in the objective loss function can be determined by traversing 0° to 360°, or other optimization methods, which are not limited here.
  • the angle value corresponding to the minimum value in the target loss function is determined as the azimuth angle of the target cell antenna, which improves the feasibility of this solution.
  • the data information is any one of minimized drive test MDT data or drive test DT data.
  • the data information may be different drive test data, thereby improving the flexibility of the solution.
  • the data information is data information when at least one terminal device is in the target cell.
  • the data information is the data information when the terminal device is in the target cell, so that the acquired data information is reliable, thereby improving the reliability of the obtained antenna azimuth of the target cell.
  • the present application provides an apparatus for determining an azimuth angle of a cell antenna, and the apparatus for determining an azimuth angle of a cell antenna includes:
  • an acquisition module configured to acquire data information of at least one terminal device, wherein the data information includes location information of at least one terminal device, beam strength information of downlink signals and beam phase information of downlink signals;
  • a calculation module configured to calculate and obtain the estimated user angle of arrival in the horizontal direction according to the beam intensity information of the at least one downlink signal and the beam phase information of the at least one downlink signal;
  • a building module is used to establish a target loss function according to the estimated user's horizontal arrival angle and the real user's horizontal arrival angle, wherein the real user's horizontal arrival angle is calculated according to the position information of at least one terminal device;
  • the determining module is used for determining the azimuth angle of the target cell antenna according to the target loss function.
  • the obtaining module is further configured to obtain the first data set corresponding to the estimated user's horizontal direction arrival angle after the target cell antenna azimuth is determined according to the target loss function;
  • the obtaining module is further configured to obtain the second data set corresponding to the angle of arrival in the horizontal direction of the real user after determining the azimuth angle of the target cell antenna according to the target loss function;
  • the determining module is further configured to determine the confidence level of the antenna azimuth angle of the target cell according to the relationship between each first data in the first data set and each second data in the second data set.
  • the relationship includes first information between each first data in the first data set and each second data in the second data set, and each Second information between the first data and each second data in the second data set, wherein the first information is used to indicate each first data in the first data set and each second data in the second data set
  • the stability of the difference between, the second information is the variance of the difference between each first data in the first data set and each second data in the second data set
  • the confidence of the antenna azimuth of the target cell is determined according to the magnitude relationship between the first information and the first threshold, and the magnitude relationship between the second information and the second threshold.
  • the acquisition module is also used to acquire the location information of the target cell
  • the calculation module is further configured to calculate and obtain the angle of arrival in the horizontal direction of the real user according to the position information of the at least one terminal device and the position information of the target cell.
  • a determination module which is specifically used to determine the angle value corresponding to the minimum value in the objective loss function
  • the angle value corresponding to the minimum value is determined as the antenna azimuth angle of the target cell.
  • the data information is any one of minimized drive test MDT data or drive test DT data.
  • the data information is data information when at least one terminal device is in the target cell.
  • a network device in a third aspect, may be the apparatus for determining the azimuth angle of a cell antenna in the above method design, or a chip provided in the apparatus for determining the azimuth angle of the cell antenna.
  • the network device includes: a processor, coupled to the memory, and configured to execute instructions in the memory, so as to implement the method executed by the network device in the second aspect and any possible implementation manner thereof, or, in the fourth aspect above
  • the network device further includes a memory.
  • the network device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a program is provided, which, when executed by a processor, is used to execute any method in the first aspect and its possible implementation manners.
  • a fifth aspect provides a computer program product (or computer program) storing one or more computers, when the computer program product is executed by the processor, the processor executes the first aspect and possible implementations thereof any of the methods.
  • a chip in a sixth aspect, includes at least one processor, and is used to support a terminal device to implement the functions involved in the first aspect or any possible implementation manner of the first aspect.
  • the chip system may also It includes a memory, at least one processor is connected in communication with at least one memory, and instructions are stored in at least one memory for storing necessary program instructions and data of the terminal device and the network device.
  • the chip system further includes an interface circuit, and the interface circuit provides program instructions and/or data for the at least one processor.
  • a computer-readable storage medium where a program is stored in the computer-readable storage medium, and the program causes a terminal device to execute any method in the first aspect and possible implementation manners thereof.
  • a communication system including a network device, where the network device executes any method in the first aspect and possible implementations thereof.
  • the location information of at least one terminal device, the beam intensity information of the downlink signal of the at least one terminal device, and the beam phase information of the downlink signal of the at least one terminal device are obtained first. Therefore, according to the at least one terminal device
  • the beam intensity information of the downlink signal and the beam phase information of the downlink signal of at least one terminal equipment are calculated to obtain the estimated user's horizontal direction of arrival angle, and the real user's horizontal direction of arrival angle is calculated according to the position information of at least one terminal equipment, and then according to Estimate the user's horizontal arrival angle and the real user's horizontal arrival angle, establish a target loss function, and finally determine the target cell antenna azimuth according to the target loss function.
  • the estimated user's horizontal direction of arrival angle and the real user's horizontal direction of arrival angle are determined according to the beam intensity information, beam phase information and position information, it can accurately reflect the user's horizontal direction of arrival angle, and thus establish the target loss function, so The azimuth angle of the target cell antenna obtained by the target loss function can be closer to the real azimuth angle of the cell antenna, thereby improving the accuracy of the cell antenna azimuth angle.
  • FIG. 1 is a schematic diagram of a system framework in an embodiment of the application.
  • FIG. 2 is a schematic diagram of network elements involved based on a system framework in an embodiment of the application
  • FIG. 3 is a schematic diagram of an embodiment of the true azimuth angle in the embodiment of the present application.
  • FIG. 4 is a schematic diagram of an embodiment of a method for determining an azimuth angle of a cell antenna in an embodiment of the present application
  • FIG. 5 is a schematic diagram of an embodiment of estimating the angle of arrival in the horizontal direction of the user in the embodiment of the present application
  • FIG. 6 is a schematic diagram of an embodiment of the angle of arrival in the horizontal direction of a real user in an embodiment of the present application
  • FIG. 7 is a schematic diagram of another embodiment of a method for determining an azimuth angle of a cell antenna in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an embodiment of an apparatus for determining an azimuth angle of a cell antenna in an embodiment of the present application.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • 5G fifth generation
  • NR new radio
  • future networks such as 6G systems or even future systems
  • D2D device-to-device
  • M2M machine-to-machine
  • the network device in the communication system can be any device with a wireless transceiver function or a chip that can be provided in the device, and the device includes but is not limited to: evolved Node B (evolved Node B, eNB), wireless Network Controller (Radio Network Controller, RNC), Node B (Node B, NB), Base Station Controller (Base Station Controller, BSC), Base Transceiver Station (Base Transceiver Station, BTS), Home Base Station (for example, Home evolved NodeB , or Home Node B, HNB), baseband unit (BaseBand Unit, BBU), access point (Access Point, AP), wireless relay node, wireless backhaul node, wireless fidelity (Wireless Fidelity, WIFI) system Transmission point (TP) or transmit and receive point (TRP), etc., can also be used in 5G, 6G and even future systems, such as NR, gNB in the system, or transmission point (TRP or TP), 5G One or a group (including multiple antenna panels), 5G,
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (RU).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU implements the functions of the radio resource control (RRC) layer and the packet data convergence protocol (PDCP) layer
  • the DU implements the functions of the radio resource control (RRC) layer.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • RRC radio resource control
  • the network device may be a CU node, a DU node, or a device including a CU node and a DU node.
  • the CU may be divided into network equipment in the access network RAN, and the CU may also be divided into network equipment in the core network CN, which is not limited herein.
  • the apparatus for implementing the function of the network device may be a network device; it may also be an apparatus capable of supporting the network device to implement the function, such as a chip system, which may be installed in the network device.
  • terminal equipment in the communication system may also be referred to as user equipment (UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user Terminal, terminal, wireless communication device, user agent or user equipment.
  • UE user equipment
  • the terminal device in the embodiments of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, and an augmented reality (Augmented Reality, AR) terminal equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation security ( Wireless terminals in transportation safety), wireless terminals in smart cities, wireless terminals in smart homes, wireless terminals in the aforementioned V2X Internet of Vehicles or RSUs of wireless terminal type, etc.
  • the embodiments of the present application do not limit application scenarios.
  • the numbering may start from 0 consecutively.
  • the 0th symbol in a certain time slot may refer to the first symbol of the time slot.
  • the specific implementation is not limited to this.
  • it can also be numbered consecutively from 1.
  • the first symbol in a certain time slot may also refer to the first symbol of the time slot. Since the starting values of the numbers are different, the numbers corresponding to the same symbol in the time slots are also different.
  • At least one means one or more, and “plurality” means two or more.
  • And/or which describes the association relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, which can indicate: the existence of A alone, the existence of A and B at the same time, and the existence of B alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one (a) of a, b and c can represent: a, or, b, or, c, or, a and b, or, a and c, or, b and c, or, a , b and c.
  • a, b and c can be single or multiple respectively.
  • the embodiments disclosed herein will present various aspects, embodiments or features of the present application around a system including a plurality of devices, components, modules, and the like. It is to be understood and appreciated that the various systems may include additional devices, components, modules, etc., and/or may not include all of the devices, components, modules, etc. discussed in connection with the figures. In addition, combinations of these schemes can also be used.
  • FIG. 1 is the system framework in the embodiment of the present application.
  • FIG. 1 A schematic diagram, as shown in Figure 1, in Figure 1 (A), the base station Base station and UE1 to UE6 form a communication system, wherein the base station can include one or more panels (panel), and in the communication system Among them, UE1 to UE6 send uplink data to the base station, and the base station needs to receive the uplink data sent by UE1 to UE6.
  • UE4 to UE6 can also form a communication system. Therefore, in this communication system, the base station can send downlink data to UE1, UE2 and UE5, and the base station needs to receive the uplink data sent by UE1, UE2 and UE5.
  • Base station 1 to Base station 3 and UE1 to UE3 can also form a communication system, and Base station 1 to Base station 3 serve UE2 at the same time.
  • FIG. 1 is the system framework in the embodiment of the present application.
  • FIG. 1 A schematic diagram, as shown in Figure 1, in Figure 1 (A), the base station Base station and UE1 to UE6 form a communication system, wherein the base station can include one or more panels (panel), and in the communication system Among them, UE1 to UE6 send uplink data to the base station, and the base station needs to receive the uplink data sent by UE1 to UE6.
  • UE4 to UE6 can also form a communication system. Therefore, in this communication system, the base station can send downlink data to UE1, UE2 and UE5, and the base station needs to receive the uplink data sent by UE1, UE2 and UE5.
  • Base station 1 to Base station 3 and UE1 to UE3 can also form a communication system, and Base station 1 to Base station 3 serve UE2 at the same time.
  • FIG. 2 is a schematic diagram of network elements involved in the system framework in the embodiment of the present application.
  • the communication system used in the embodiment of the present application specifically includes a base station, a terminal device, and a work station.
  • the reference calibration center, the industrial parameter calibration center is the device for determining the azimuth angle of the cell antenna introduced in the embodiment of the present application. Therefore, the industrial parameter calibration center obtains the location information of the terminal equipment, the beam intensity information of the downlink signal and the beam phase of the downlink signal. information, calculate the estimated user horizontal arrival angle and the real user horizontal arrival angle, and establish the target loss function according to the estimated user horizontal arrival angle and the real user horizontal arrival angle, and finally determine the target cell antenna according to the target loss function.
  • the network device adjusts the direction angle of the cell antenna through the determined azimuth of the target cell antenna, so that the antenna beam alignment between the terminal device and the network device is more accurate.
  • the real azimuth is the normal direction of the base station antenna panel.
  • the true north direction is zero degrees, and clockwise is positive, and the value range of the real azimuth is [0°, 360°].
  • FIG. 3 is a schematic diagram of an embodiment of the real azimuth in this embodiment of the application.
  • A1 is used to indicate the base station
  • A2 is used to indicate the antenna panel of the base station A1
  • A3 is used to indicate Base station A1 corresponds to the normal direction of the antenna panel
  • A3 is used to indicate the true azimuth.
  • an embodiment of the present application provides a method for determining the azimuth angle of a cell antenna, which is used to improve the accuracy of the azimuth angle of the cell antenna.
  • the method for determining the azimuth angle of a cell antenna used in the embodiment of the present application will be described in detail below. Since the target area served by the base station includes at least one cell, this embodiment will be located in any cell in the target area. It is defined as a target cell, so in this embodiment, for the method for determining the cell antenna azimuth angle of the target cell, please refer to FIG. 4 , which is a schematic diagram of an embodiment of the method for determining the cell antenna azimuth angle in this embodiment of the application, as shown in the figure. As shown, the method for determining the azimuth angle of the cell antenna includes the following steps.
  • S101 Acquire data information of at least one terminal device, where the data information includes location information of at least one terminal device, beam strength information of downlink signals, and beam phase information of downlink signals.
  • the apparatus for determining the azimuth angle of the cell antenna can acquire data information of the at least one terminal device, and the data information includes the position information of the at least one terminal device and the beam intensity information of the downlink signal. and beam phase information of the downlink signal.
  • the location information of the terminal device is specific location information in a Global Positioning System (Global Positioning System, GPS), that is, including the specific longitude and latitude where the terminal device is located.
  • GPS Global Positioning System
  • the data information is any one of Minimization of Drive Tests (MDT) data or Drive Test (Drive Test, DT) data.
  • MDT Minimization of Drive Tests
  • DT Drive Test
  • the data information is data information when the at least one terminal device is in the target cell.
  • the data information may also include a cell identity (Identity Document, id) corresponding to the target cell, so that the cell antenna azimuth angle can determine which cell among the multiple cells included in the target area the device data information is located.
  • the target area includes cell A, cell B and cell C, and the cell ID corresponding to cell A is "1", the cell ID corresponding to cell B is "2", and the cell ID corresponding to cell C is "3".
  • the data information includes the cell identifier "2", which can indicate that the terminal device is located in the cell B, that is, the data information is the data information corresponding to when the terminal device is located in the cell B. It can be understood that the foregoing examples are only used to understand this solution, and the specific data information needs to be flexibly determined according to the actual situation.
  • S102 Calculate and obtain an estimated user angle of arrival in the horizontal direction according to the beam intensity information of the at least one downlink signal and the beam phase information of the at least one downlink signal.
  • the device for determining the azimuth angle of the cell antenna calculates and obtains the estimated user horizontal direction angle of arrival (Horizon Angle of Arrival, hAOA).
  • the specific estimated user angle of arrival in the horizontal direction is the angle between the user location information estimated by the algorithm and the real azimuth angle, that is, the normal direction of the antenna panel corresponding to the base station is zero degrees, and the counterclockwise direction is positive. Value range [0°, 360°]. It can be understood that when the target cell includes only one terminal device, one terminal device needs to collect multiple pieces of data information, so the obtained estimated user angle of arrival in the horizontal direction may also be multiple.
  • the target cell only includes multiple terminal devices, there are multiple beam intensity information of the downlink signal and beam phase information of the downlink signal, and the obtained estimated user horizontal direction arrival angles are also multiple, and one estimated user horizontal direction
  • the angle of arrival corresponds to beam strength information of a downlink signal and beam phase information of a downlink signal. Therefore, it is estimated that the number of arrival angles in the horizontal direction of the user should be greater than 1, and the specific number is not limited here.
  • the estimated user angle of arrival in the horizontal direction can be calculated according to the beam intensity information of the downlink signal and the beam phase information of the downlink signal:
  • hAOA_est P Beam_Angle
  • hAOA_est indicates the estimated angle of arrival of the user in the horizontal direction
  • P indicates the beam strength information of the downlink signal
  • Beam_Angle indicates the beam phase information of the downlink signal.
  • FIG. 5 is a schematic diagram of an embodiment of estimating the angle of arrival in the horizontal direction of the user in the embodiment of the present application.
  • B1 is used to indicate the base station
  • B2 is used to indicate the estimated terminal equipment.
  • Position B3 is used to indicate the antenna panel of the base station B1
  • B4 is used to indicate the normal direction of the antenna panel corresponding to the base station B1
  • B5 is used to estimate the angle of arrival of the user in the horizontal direction.
  • S103 Establish a target loss function according to the estimated user's horizontal arrival angle and the real user's horizontal arrival angle, where the real user's horizontal arrival angle is calculated according to the position information of at least one terminal device.
  • the device for determining the azimuth angle of the cell antenna calculates the angle of arrival in the horizontal direction of the real user according to the position information of at least one terminal device obtained in step S101, and then calculates the angle of arrival in the horizontal direction of the real user and the estimated user calculated in step S102.
  • the angle of arrival in the horizontal direction is used to establish a loss function. It can be understood that, when the target cell includes only one terminal device, the terminal device needs to collect multiple pieces of data information, so the obtained real user horizontal direction arrival angles are also multiple. When the target cell only includes multiple terminal devices, the location information of the terminal devices is multiple, and the obtained real user horizontal arrival angles are also multiple, and an estimated user horizontal arrival angle and the location information of a terminal device correspond. Therefore, the number of real user horizontal arrival angles should be greater than 1, and the specific number is not limited here. It is understandable that the obtained number of real user horizontal arrival angles is the same as the estimated user horizontal arrival angles. .
  • the device for determining the azimuth angle of the cell antenna also needs to acquire the location information of the target cell
  • the device for determining the azimuth angle of the cell antenna also needs to acquire the location information of the target cell.
  • the location information of the target cell is the location information of the cell antenna panel.
  • the location information of the target cell may also be the location information of the base station that serves the target cell, which is not specifically limited here. Therefore, the angle of arrival in the horizontal direction of the real user can be calculated according to the location information of the target cell and the location information of the terminal device.
  • FIG. 6 is a schematic diagram of an embodiment of the angle of arrival in the horizontal direction of a real user in this embodiment of the present application.
  • C1 is used to indicate the base station
  • C2 is used to indicate the real position of the terminal device
  • C3 It is used to indicate the antenna panel of the base station C1
  • C4 is used to indicate the normal direction of the antenna panel corresponding to the base station C1
  • C5 is used for the arrival angle of the real user in the horizontal direction.
  • the target loss function can be established according to the estimated user horizontal direction arrival angle and the real user horizontal direction arrival angle:
  • Loss(Azimuth) indicates the target loss function
  • hAOA_est indicates the estimated user's horizontal angle of arrival
  • hAOA_gps(Azimuth) indicates the actual user's horizontal angle of arrival.
  • the objective loss function in formula (2) may include, but is not limited to, mean absolute error (Mean Absolute Error, MAE), mean square error (Mean Square Error, MSE) and root mean square error (Root Mean Square Error, RMSE), etc., which are not specifically limited here.
  • mean absolute error Mean Absolute Error, MAE
  • mean square error MSE
  • Root Mean Square Error RMSE
  • the apparatus for determining the azimuth angle of the cell antenna needs to determine the angle value corresponding to the minimum value in the target loss function, and then determine the angle value corresponding to the minimum value as the azimuth angle of the target cell antenna.
  • the target cell antenna azimuth can be determined according to the target loss function:
  • Azimuth arg Azimuth min(Loss(Azimuth)); (3)
  • Azimuth indicates the azimuth angle of the target cell antenna
  • Loss (Azimuth) indicates the target loss function
  • the angle value corresponding to the minimum value in the objective loss function may be determined by traversing 0° to 360°, or other optimization methods, which are not specifically limited here.
  • the above mainly introduces the scheme for determining the azimuth angle of the cell antenna.
  • the confidence of the cell antenna azimuth angle can also be evaluated.
  • FIG. 7 which is implemented in this application.
  • a schematic diagram of another embodiment of the method for determining the azimuth angle of the cell antenna is shown. As shown in the figure, the method for determining the azimuth angle of the cell antenna includes the following steps.
  • S201 Acquire data information of at least one terminal device, where the data information includes location information of multiple terminal devices, beam strength information of downlink signals, and beam phase information of downlink signals.
  • step S201 the specific implementation manner in which the apparatus for determining the azimuth angle of the cell antenna acquires the data information of at least one terminal device and the specific data information are similar to step S201, and are not repeated here.
  • the device for determining the azimuth angle of the cell antenna calculates and obtains the specific implementation method of estimating the angle of arrival of the user in the horizontal direction according to the beam intensity information of the at least one downlink signal and the beam phase information of the at least one downlink signal. Similar to step S202, in This will not be repeated here.
  • the device for determining the azimuth angle of the cell antenna establishes the specific implementation of the target loss function according to the estimated horizontal direction arrival angle of the user and the real user horizontal direction arrival angle, which is similar to step S203 and will not be repeated here.
  • step S104 the specific implementation of the device for determining the azimuth angle of the cell antenna to determine the azimuth angle of the target cell antenna according to the target loss function is similar to step S104, and details are not repeated here.
  • S205 Acquire a first data set corresponding to the estimated user's angle of arrival in the horizontal direction.
  • the apparatus for determining the azimuth angle of the cell antenna obtains a first data set corresponding to the estimated user's horizontal direction arrival angle, the first data set includes a plurality of first data, and the first data is the estimated user's horizontal direction arrival angle horn.
  • S206 Acquire a second data set corresponding to the angle of arrival in the horizontal direction of the real user.
  • the apparatus for determining the azimuth angle of the cell antenna acquires a second data set corresponding to the angle of arrival in the horizontal direction of the real user, the second data set includes a plurality of second data, and the second data is the angle of arrival in the horizontal direction of the real user.
  • S207 Determine the confidence level of the antenna azimuth angle of the target cell according to the relationship between each first data in the first data set and each second data in the second data set.
  • the device for determining the azimuth angle of the cell antenna determines the confidence level of the azimuth angle of the target cell antenna according to the relationship between each first data in the first data set and each second data in the second data set.
  • the apparatus for determining the azimuth angle of the cell antenna adopts the method exemplified in steps S205 and S206, by acquiring the first data set and the second data set, and then by fitting multiple estimated user horizontal direction arrival angles and multiple real user horizontal directions
  • the difference between the directional arrival angles yields a robust linear regression function. It should be understood that in practical applications, results corresponding to differences between multiple estimated user horizontal arrival angles and multiple real user horizontal arrival angles may also be fitted in other ways, which are not specifically limited here.
  • the apparatus for determining the azimuth angle of the cell antenna may also calculate and obtain the first information between each first data in the first data set and each second data in the second data set, where the first information is used to indicate the first data.
  • the apparatus for determining the azimuth angle of the cell antenna may also obtain second information between each first data in the first data set and each second data in the second data set, where the second information is the first data in the first data set The variance of the difference between each first data set and each second data set in the second data set.
  • the apparatus for determining the azimuth angle of the cell antenna can determine the confidence of the azimuth angle of the target cell antenna according to the magnitude relationship between the first information and the first threshold, and the magnitude relationship between the second information and the second threshold.
  • the confidence can be defined in the form of a score, a percentage or a direct description. For example, if the confidence is a score and is defined based on a 100-point scale, then the value of the confidence ranges from 1 to 100. The higher the score, the higher the confidence. higher. Or the confidence level is a percentage, then the value range of the confidence level is 1% to 100%, and the larger the percentage, the higher the confidence level. Or directly describe the confidence, then the confidence can be low, medium or high, and the specific confidence needs to be flexibly defined according to the actual situation.
  • the first threshold can be data such as 1, 2, 3, and the second threshold can be data such as 1, 2, 3, and the first threshold can be equal to or not equal to the second threshold. Specifically, the first threshold And the second threshold needs to be flexibly determined according to the actual situation of the acquired data information.
  • the first information is greater than the first threshold and the second information is greater than the second threshold, since the first information is used to indicate the first data
  • the stability of the difference between each first data in the set and each second data in the second data set, and the greater the first information the lower the stability, so it shows that a plurality of first data and a plurality of The stability of the difference between the two data is relatively low, and the degree of dispersion between the plurality of first data and the plurality of second data is relatively large, so it can be known that the obtained target cell antenna azimuth angle is relatively stable and discrete.
  • the confidence level can be 10 at this time, indicating that the obtained target cell antenna azimuth has a large error.
  • the first information is greater than the first threshold, but the second information is less than the second threshold, it means that the stability of the difference between the plurality of first data and the plurality of second data is relatively low, but the plurality of first data and the plurality of second data have low stability.
  • the degree of dispersion between the second data is small, and the obtained azimuth angle of the target cell antenna has low stability and small degree of dispersion.
  • the confidence level can be 50, indicating that the obtained antenna azimuth angle of the target cell is The error is medium.
  • the first information is smaller than the first threshold and the second information is smaller than the second threshold, it means that the difference between the plurality of first data and the plurality of second data has high stability, and the plurality of first data and the plurality of second data have high stability.
  • the degree of dispersion between the second data is small, the obtained azimuth angle of the target cell antenna is relatively stable, and the degree of dispersion is small, and the confidence level can be 90 at this time, indicating that the obtained azimuth angle of the target cell antenna has a small degree of dispersion. Error is small. It should be understood that the foregoing examples are only used to understand this solution, and the specific confidence level needs to be flexibly determined according to the actual conditions of the first information and the first threshold, as well as the second information and the second threshold, which is not limited here.
  • the apparatus for determining the azimuth angle of the cell antenna includes corresponding hardware structures and/or software modules for executing each function.
  • the present application can be implemented in hardware or in the form of a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • This embodiment of the present application may divide the functional modules of the apparatus for determining the azimuth angle of a cell antenna based on the foregoing method example.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation.
  • the angle determination device 800 includes:
  • An acquisition module 801, configured to acquire data information of at least one terminal device, wherein the data information includes location information of at least one terminal device, beam strength information of downlink signals, and beam phase information of downlink signals;
  • a calculation module 802 configured to calculate and obtain the estimated user angle of arrival in the horizontal direction according to the beam intensity information of the at least one downlink signal and the beam phase information of the at least one downlink signal;
  • the establishment module 803 is used to establish a target loss function according to the estimated user's horizontal direction of arrival angle and the real user's horizontal direction of arrival angle, wherein the real user's horizontal direction of arrival angle is calculated according to the position information of at least one terminal device;
  • the determining module 804 is configured to determine the antenna azimuth angle of the target cell according to the target loss function.
  • the obtaining module 801 is further configured to obtain the first data set corresponding to the estimated user horizontal direction arrival angle after determining the target cell antenna azimuth according to the target loss function;
  • the obtaining module 801 is further configured to obtain the second data set corresponding to the angle of arrival in the horizontal direction of the real user after determining the antenna azimuth of the target cell according to the target loss function;
  • the determining module 804 is further configured to determine the confidence level of the antenna azimuth angle of the target cell according to the relationship between each first data in the first data set and each second data in the second data set.
  • the relationship includes first information between each first data in the first data set and each second data in the second data set, and each first data in the first data set Second information between each of the first data in the first data set and each second data in the second data set, wherein the first information is used to indicate the difference between each first data in the first data set and each second data in the second data set
  • the stability of the difference between, the second information is the variance of the difference between each first data in the first data set and each second data in the second data set;
  • the confidence of the antenna azimuth of the target cell is determined according to the magnitude relationship between the first information and the first threshold, and the magnitude relationship between the second information and the second threshold.
  • the obtaining module 801 is further configured to obtain the location information of the target cell;
  • the calculation module 802 is further configured to calculate and obtain the angle of arrival in the horizontal direction of the real user according to the position information of the at least one terminal device and the position information of the target cell.
  • the determining module 801 is specifically configured to determine the angle value corresponding to the minimum value in the objective loss function
  • the angle value corresponding to the minimum value is determined as the antenna azimuth angle of the target cell.
  • the data information is any one of minimized drive test MDT data or drive test DT data.
  • the data information is data information when at least one terminal device is in the target cell.
  • the apparatus for determining the azimuth angle of a cell antenna in this embodiment of the present application may be a network device, a chip applied in the network device, or other combined devices, components, etc. that can implement the functions of the above-mentioned network device.
  • the acquiring module 801 may be a transceiver or a transceiver unit, the transceiver may include an antenna and a radio frequency circuit, etc., the transceiver may be a transmitter and/or a receiver, and the transceiver unit may be The sending unit and/or the receiving unit, the sending unit may be replaced by a transmitter, the receiving unit may be replaced by a receiver, the calculation module 802, the establishment module 803, and the determination module 804 may be processors, eg, baseband chips, etc.
  • the acquisition module 801 may be a radio frequency unit
  • the calculation module 802, the establishment module 803, and the determination module 804 may be processors.
  • the acquisition module 801 may be an input port of the chip system
  • the calculation module 802, the establishment module 803, and the determination module 804 may be processors of the chip system, for example, a central processing unit (central processing unit) processing unit, CPU).
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be implemented in the present application.
  • the implementation of the examples constitutes no limitation.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center via wired (eg, coaxial cable, optical fiber, Digital Subscriber Line, DSL) or wireless (eg, infrared, wireless, microwave, etc.) means.
  • wired eg, coaxial cable, optical fiber, Digital Subscriber Line, DSL
  • wireless eg, infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be stored by a computer, or a data storage device such as a server, data center, etc., which includes one or more available media integrated.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), and the like.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined. Either it can be integrated into another system, or some features can be omitted, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a storage medium , including dry instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种小区天线方位角确定的方法,包括:先获取至少一个终端设备的数据信息,数据信息包括至少一个终端设备的位置信息,下行信号的波束强度信息以及下行信号的波束相位信息,然后根据至少一个下行信号的波束强度信息以及至少一个下行信号的波束相位信息,计算得到预估用户水平方向到达角,并且根据至少一个终端设备的位置信息计算得到真实用户水平方向到达角,再根据预估用户水平方向到达角以及真实用户水平方向到达角,建立目标损失函数,最后根据目标损失函数确定目标小区天线方位角。还提供了一种小区天线方位角确定装置、网络设备以及计算机可读存储介质。

Description

一种小区天线方位角确定的方法,相关装置以及设备
本申请要求于2020年10月23日提交中国国家知识产权局、申请号为202011148720.4、发明名称为“一种小区天线方位角确定的方法,相关装置以及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,尤其涉及一种小区天线方位角确定的方法,相关装置以及设备。
背景技术
在目前的移动通讯系统中,天线起着举足轻重的作用,作为日常网络优化的基本数据,天线方位角是非常重要的一环,其准确性直接影响后续网络优化的效率和质量。因此准确的方位角能保证基站的实际覆盖与所预期的基本吻合,从而保证了整个网络的运行质量。而根据话务量或现网具体情况多方位角进行适当调整可以更好的优化现有的网络。然而实际的移动通信网络中,方位角会因为各种外部影响(地震、强风、人为误差)发生偏移,从而导致网络质量下降。
目前,可以通过终端设备测量的最小化路测(Minimization of Drive Tests,MDT)计算天线方位角,具体根据MDT数据以及站点工程参数,通过方形栅格化加权平均,并结合信号强度定义权重,能够确定天线方位角。
然而,根据MDT数据计算无线射频天线方位角,依赖于MDT数据的数据量及数据分布,在数据量较小或者分布较离散时,会降低模型精度,从而降低所得到的天线方位角的准确度。
发明内容
本申请实施例提供了一种小区天线方位角确定的方法,相关装置以及设备,用于准确反映用户水平方向到达角,并由此建立目标损失函数,因此目标损失函数所得到的目标小区天线方位角能够更接近小区天线真实的方位角,从而提升小区天线方位角的准确度。
第一方面,本申请提供了一种小区天线方位角确定的方法。由于目标小区内包括至少一个终端设备,因此小区天线方位角确定装置可以获取至少一个终端设备的数据信息,并且数据信息包括至少一个终端设备的位置信息,下行信号的波束强度信息以及下行信号的波束相位信息。并且终端设备的位置信息为全球卫星定位系统(Global Positioning System,GPS)中具体的位置信息,即包括终端设备所处的具体经度以及维度。然后根据至少一个下行信号的波束强度信息以及至少一个下行信号的波束相位信息,计算得到预估用户水平方向到达角,再根据至少一个终端设备的位置信息计算得到真实用户水平方向到达角,并根据预估用户水平方向到达角以及真实用户水平方向到达角,建立目标损失函数,且目标损失函数包括但不限于为平均绝对误差(Mean Absolute Error,MAE),均方误差(Mean Square Error,MSE)以及均方根误差(Root Mean Square Error,RMSE)等,最 后根据目标损失函数确定目标小区天线方位角。
在该实施方式中,由于预估用户水平方向到达角以及真实用户水平方向到达角是根据波束强度信息,波束相位信息以及位置信息所确定的,因此能够准确反映用户水平方向到达角,并由此建立目标损失函数,因此目标损失函数所得到的目标小区天线方位角能够更接近小区天线真实的方位角,从而提升小区天线方位角的准确度。
在本申请的一种可选实施方式中,根据目标损失函数确定目标小区天线方位角之后,小区天线方位角确定装置还可以获取预估用户水平方向到达角对应的第一数据集合,该第一数据集合中包括多个第一数据,第一数据即为预估用户水平方向到达角。其次,小区天线方位角确定装置还可以获取真实用户水平方向到达角对应的第二数据集合,该第二数据集合中包括多个第二数据,第二数据即为真实用户水平方向到达角。再通过拟合多个预估用户水平方向到达角与多个真实用户水平方向到达角之间的差值,得到稳健的线性回归函数。应理解,在实际应用中,还可以通过其他方式拟合多个预估用户水平方向到达角与多个真实用户水平方向到达角之间的差值对应的结果,具体此处不做限定。进一步地小区天线方位角确定装置根据第一数据集合中每个第一数据以及第二数据集合中每个第二数据之间的关系,确定目标小区天线方位角的置信度。
在该实施方式中,结合线性回归或者其他拟合方式得到第一数据集合以及第二数据集合,通过第一数据集合中每个第一数据以及第二数据集合中每个第二数据之间的关系,评估目标小区天线方位角的置信度,使得所确定的置信度能够准确反映目标小区天线方位角的误差程度。
在本申请的一种可选实施方式中,小区天线方位角确定装置可以计算得到第一数据集合中每个第一数据以及第二数据集合中每个第二数据之间的第一信息,该第一信息用于指示第一数据集合中每个第一数据以及第二数据集合中每个第二数据之间的差值的稳定性,其中差值即为多个第一数据与多个第二数据之间的差距(gap)。其次,小区天线方位角确定装置还可以计算得到第一数据集合中每个第一数据以及第二数据集合中每个第二数据之间的第二信息,该第二信息为第一数据集合中每个第一数据以及第二数据集合中每个第二数据之间的差值的方差。由于第一信息用于指示第一数据集合中每个第一数据以及第二数据集合中每个第二数据之间的差值的稳定性,且第一信息越大则稳定性越低,即所得到的目标小区天线方位角稳定度较低,其次,第二信息可以反映多个第一数据与多个第二数据之间的离散程度,因此第二信息越大说明多个预估用户水平方向到达角与多个真实用户水平方向到达角之间的差值的离散程度越大,因此所得到的目标小区天线方位角离散程度较大。因此,小区天线方位角确定装置可以根据第一信息与第一阈值的大小关系,以及第二信息与第二阈值的大小关系确定目标小区天线方位角的置信度。
在该实施方式中,通过计算第一数据集合中每个第一数据以及第二数据集合中每个第二数据之间第一信息以及第二信息,由于第一信息用于指示第一数据集合中每个第一数据以及第二数据集合中每个第二数据之间的差值的稳定性,而第二信息可以反映多个第一数据与多个第二数据之间的离散程度,因此通过分别与第一阈值以及第二阈值的大小对比买可以确定目标小区天线方位角的稳定度以及离散程度,从而提升本方案的可靠性以及可行性。
在本申请的一种可选实施方式中,小区天线方位角确定装置还需要获取目标小区的位置信息,目标小区的位置信息为小区天线面板所在位置信息,在实际应用中,在无法获取区天线面板所在位置信息时,目标小区的位置信息还可以为对目标小区进行服务器的基站的位置信息,具体此处不做限定。因此可以根据目标小区的位置信息与终端设备的位置信息,计算得到真实用户水平方向到达角。
在该实施方式中,通过目标小区的位置信息与终端设备的位置信息,计算得到真实用户水平方向到达角,从而提升本方案的可行性。
在本申请的一种可选实施方式中,小区天线方位角确定装置需要确定目标损失函数中最小值对应的角度值,然后将最小值对应的角度值确定为目标小区天线方位角。确定目标损失函数中最小值对应的角度值可以通过遍历0°至360°的方法,或者采用其他优化方法,具体此处不做限定。
在该实施方式中,将目标损失函数中最小值对应的角度值确定为目标小区天线方位角,提升本方案的可行性。
在本申请的一种可选实施方式中,数据信息为最小化路测MDT数据或路测DT数据中任一项。
在该实施方式中,数据信息可以为不同的路测数据,从而提升本方案的灵活性。
在本申请的一种可选实施方式中,数据信息为至少一个终端设备处于目标小区时的数据信息。
在该实施方式中,数据信息为终端设备处于目标小区时的数据信息,使得所获取的数据信息是可靠的,从而提升所得到目标小区天线方位角的可靠性。
第二方面,本申请提供了一种小区天线方位角确定装置,该小区天线方位角确定装置包括:
获取模块,用于获取至少一个终端设备的数据信息,其中,数据信息包括至少一个终端设备的位置信息,下行信号的波束强度信息以及下行信号的波束相位信息;
计算模块,用于根据至少一个下行信号的波束强度信息以及至少一个下行信号的波束相位信息,计算得到预估用户水平方向到达角;
建立模块,用于根据预估用户水平方向到达角以及真实用户水平方向到达角,建立目标损失函数,其中,真实用户水平方向到达角是根据至少一个终端设备的位置信息计算得到的;
确定模块,用于根据目标损失函数确定目标小区天线方位角。
在本申请的一种可选实施方式中,
获取模块,还用于根据目标损失函数确定目标小区天线方位角之后,获取预估用户水平方向到达角对应的第一数据集合;
获取模块,还用于根据目标损失函数确定目标小区天线方位角之后,获取真实用户水平方向到达角对应的第二数据集合;
确定模块,还用于根据第一数据集合中每个第一数据以及第二数据集合中每个第二数据之间的关系,确定目标小区天线方位角的置信度。
在本申请的一种可选实施方式中,关系包括第一数据集合中每个第一数据以及第二数 据集合中每个第二数据之间的第一信息,以及第一数据集合中每个第一数据以及第二数据集合中每个第二数据之间的第二信息,其中,第一信息用于指示第一数据集合中每个第一数据以及第二数据集合中每个第二数据之间的差值的稳定性,第二信息为第一数据集合中每个第一数据以及第二数据集合中每个第二数据之间的差值的方差;
目标小区天线方位角的置信度是根据第一信息与第一阈值的大小关系,以及第二信息与第二阈值的大小关系确定的。
在本申请的一种可选实施方式中,
获取模块,还用于获取目标小区的位置信息;
计算模块,还用于根据至少一个终端设备的位置信息以及目标小区的位置信息,计算得到真实用户水平方向到达角。
在本申请的一种可选实施方式中,
确定模块,具体用于确定目标损失函数中最小值对应的角度值;
将最小值对应的角度值确定为目标小区天线方位角。
在本申请的一种可选实施方式中,数据信息为最小化路测MDT数据或路测DT数据中任一项。
在本申请的一种可选实施方式中,数据信息为至少一个终端设备处于目标小区时的数据信息。
第三方面,提供一种网络设备,该网络设备可以为上述方法设计中的小区天线方位角确定装置,或者,为设置在小区天线方位角确定装置中的芯片。该网络设备包括:处理器,与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面及其任意一种可能的实施方式中网络设备所执行的方法,或,上述第四方面中小区天线方位角确定装置所执行的方法可选地,该网络设备还包括存储器。可选地,该网络设备还包括通信接口,处理器与通信接口耦合。
当该网络设备置为小区天线方位角确定装置时,该通信接口可以是收发器,或,输入/输出接口。
当该网络设备为设置于小区天线方位角确定装置中的芯片时,该通信接口可以是输入/输出接口。
可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
第四方面,提供了一种程序,该程序在被处理器执行时,用于执行第一方面及其可能的实施方式中的任一方法。
第五方面,提供了一种存储一个或多个计算机的计算机程序产品(或称计算机程序),当计算机程序产品被该处理器执行时,该处理器执行上述第一方面及其可能的实施方式中的任一方法。
第六方面,提供了一种芯片,该芯片包括至少一个处理器,用于支持终端设备实现上述第一方面或第一方面任意一种可能的实施方式中所涉及的功能,该芯片系统还可以包括存储器,至少一个处理器与至少一个存储器通信连接,至少一个存储器中存储有指令,用于保存该终端设备以及网络设备必要的程序指令和数据。可选的,所述芯片系统还包括接口电路,所述接口电路为所述至少一个处理器提供程序指令和/或数据。
第七方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得终端设备执行上述第一方面及其可能的实施方式中的任一方法。
第八方面,提供了一种通信系统,包括网络设备,网络设备执行上述第一方面及其可能的实施方式中的任一方法。
需要说明的是,本申请第二方面至第八方面的实施方式所带来的有益效果,以及对各方面的实施方式的说明可以参照第一方面的实施方式进行理解,因此没有重复赘述。
在本申请提供的技术方案中,首先获取至少一个终端设备的位置信息,至少一个终端设备的下行信号的波束强度信息以及至少一个终端设备的下行信号的波束相位信息,因此可以根据至少一个终端设备的下行信号的波束强度信息以及至少一个终端设备的下行信号的波束相位信息,计算得到预估用户水平方向到达角,并且根据至少一个终端设备的位置信息计算得到真实用户水平方向到达角,再根据预估用户水平方向到达角以及真实用户水平方向到达角,建立目标损失函数,最后根据目标损失函数确定目标小区天线方位角。由于预估用户水平方向到达角以及真实用户水平方向到达角是根据波束强度信息,波束相位信息以及位置信息所确定的,因此能够准确反映用户水平方向到达角,并由此建立目标损失函数,因此目标损失函数所得到的目标小区天线方位角能够更接近小区天线真实的方位角,从而提升小区天线方位角的准确度。
附图说明
图1为本申请实施例中系统框架的一个示意图;
图2为本申请实施例中基于系统框架所涉及网元的一个示意图;
图3为本申请实施例中真实方位角一个实施例示意图;
图4为本申请实施例中小区天线方位角确定的方法一个实施例示意图;
图5为本申请实施例中预估用户水平方向到达角一个实施例示意图;
图6为本申请实施例中真实用户水平方向到达角一个实施例示意图;
图7为本申请实施例中小区天线方位角确定的方法另一实施例示意图;
图8为本申请实施例中小区天线方位角确定装置一个实施例示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)。随着通信系统的不断发展,本申请的技术方案可应用于第五代(5th generation,5G)系统或新无线(new radio,NR),还可应用于未来网络,如6G系统甚至未来系统;或者还可用于设备到设备(device to device,D2D)系统,机器到机器(machine to machine,M2M)系统等等。
应理解,该通信系统中的网络设备可以是任意一种具有无线收发功能的设备或可设置 于该设备的芯片,该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(Radio Network Controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(BaseBand Unit,BBU),无线保真(Wireless Fidelity,WIFI)系统中的接入点(Access Point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(TRP)等,还可以为5G、6G甚至未来系统中使用的设备,如NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU),或微微基站(Picocell),或毫微微基站(Femtocell),或,车联网(vehicle to everything,V2X)或者智能驾驶场景中的路侧单元(road side unit,RSU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC)层,分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理层(physical layer,PHY)的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限制。
本申请公开的实施例中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。
还应理解,该通信系统中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、前述的V2X车联网中的无线终端或无线终端类型的RSU等等。本申请的实施例对应用场景不做限定。
此外,为了便于理解本申请实施例,作出以下几点说明。
第一,在本申请中,为便于描述,在涉及编号时,可以从0开始连续编号。例如,某一时隙中的第0个符号,可以是指该时隙的首个符号。当然,具体实现时不限于此。例如,也可以从1开始连续编号。例如,某一时隙中的第1个符号,也可以是指该时隙的首个符号。由于编号的起始值不同,同一个符号在时隙中所对应的编号也不同。
应理解,上文所述均为便于描述本申请实施例提供的技术方案而进行的设置,而并非用于限制本申请的范围。
第二,在下文示出的实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”描述的技术特征间无先后顺序或者大小顺序。
第三,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b和c中的至少一项(个),可以表示:a,或,b,或,c,或,a和b,或,a和c,或,b和c,或,a、b和c。其中a、b和c分别可以是单个,也可以是多个。
第四,在下文示出的实施例中,部分场景以无线通信网络中NR网络的场景为例进行说明,应当指出的是,本申请公开的实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
第五,本申请公开的实施例将围绕包括多个设备、组件、模块等的系统来呈现本申请的各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
第六,本申请公开的实施例中,“的(of)”,“相应的(relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
为了更好地理解本申请实施例公开的一种信息传输的方法、装置以及设备,首先,对本申请实施例所使用的通信系统的系统架构进行描述。本申请可以用于一个基站(Base station)和多个UE组成一个通信系统,也可以用于多个Base station和多个UE组成一个通信系统,基于此,图1为本申请实施例中系统框架的一个示意图,如图1所示,在图1中(A)图中,基站Base station与UE1到UE6组成一个通信系统,其中基站可以包含一个或多个面板(panel),而在该通信系统中,UE1到UE6向基站发送上行数据,基站则需要接收UE1到UE6发送的上行数据。此外,UE4到UE6也可以组成一个通信系统,因此,在该通信系统中,基站可以向UE1、UE2以及UE5发送下行数据,基站则需要接收UE1、UE2以及UE5发送的上行数据,而在UE4到UE6组成的通信系统中,UE5向UE4以及UE6发送下行数据,并且UE5需要接收UE4以及UE6发送的上行信息。其次,在图1中(B)图中,Base station 1至Base station 3与UE1到UE3也可以组成一个通信系统,并且Base station 1至Base station 3同时服务UE2。
为了更好地理解本申请实施例公开的一种小区天线方位角确定的方法,相关装置以及设备,首先,对本申请实施例所使用的通信系统的系统架构进行描述。本申请可以用于一个基站(Base station)和多个UE组成一个通信系统,也可以用于多个Base station和多个UE组成一个通信系统,基于此,图1为本申请实施例中系统框架的一个示意图,如图 1所示,在图1中(A)图中,基站Base station与UE1到UE6组成一个通信系统,其中基站可以包含一个或多个面板(panel),而在该通信系统中,UE1到UE6向基站发送上行数据,基站则需要接收UE1到UE6发送的上行数据。此外,UE4到UE6也可以组成一个通信系统,因此,在该通信系统中,基站可以向UE1、UE2以及UE5发送下行数据,基站则需要接收UE1、UE2以及UE5发送的上行数据,而在UE4到UE6组成的通信系统中,UE5向UE4以及UE6发送下行数据,并且UE5需要接收UE4以及UE6发送的上行信息。其次,在图1中(B)图中,Base station 1至Base station 3与UE1到UE3也可以组成一个通信系统,并且Base station 1至Base station 3同时服务UE2。
具体地,请参阅图2,图2为本申请实施例中基于系统框架所涉及网元的一个示意图,如图所示,本申请实施例所使用的通信系统中具体包括基站,终端设备以及工参校正中心,工参校正中心即为本申请实施例中所介绍的小区天线方位角确定装置,因此工参校正中心通过获取终端设备的位置信息,下行信号的波束强度信息以及下行信号的波束相位信息,计算得到预估用户水平方向到达角以及真实用户水平方向到达角,并且根据预估用户水平方向到达角以及真实用户水平方向到达角,建立目标损失函数,最后根据目标损失函数确定目标小区天线方位角,网络设备通过所确定的目标小区天线方位角调整小区天线方向角,使得终端设备与网络设备的天线波束对准更为准确。
其次,对本申请实施例涉及到的一些术语或概念进行解释,以便于本领域技术人员理解。
1、真实方位角。
真实方位角为基站天线面板法线方向,在本申请实施例中,以正北方向为零度,顺时针为正,真实方位角取值范围为[0°,360°]。为了便于理解,请参阅图3,图3为本申请实施例中真实方位角一个实施例示意图,如图所示,A1用于指示基站,A2用于指示基站A1的天线面板,A3用于指示基站A1对应天线面板法线方向,A3用于指示真实方位角。
基于此,本申请实施例提供了一种小区天线方位角确定的方法,用于提升小区天线方位角的准确度。为了便于理解,下面对本申请实施例中使用的小区天线方位角确定的方法进行详细描述,由于,Base station所服务的目标区域内包括至少一个小区,本实施例将处于目标区域中的任意一个小区定义为目标小区,因此本实施例中为确定目标小区的小区天线方位角的方法,请参阅图4,图4为本申请实施例中小区天线方位角确定的方法一个实施例示意图,如图所示,小区天线方位角确定的方法包括如下步骤。
S101、获取至少一个终端设备的数据信息,其中,数据信息包括至少一个终端设备的位置信息,下行信号的波束强度信息以及下行信号的波束相位信息。
本实施例中,由于目标小区内包括至少一个终端设备,因此小区天线方位角确定装置可以获取至少一个终端设备的数据信息,并且数据信息包括至少一个终端设备的位置信息,下行信号的波束强度信息以及下行信号的波束相位信息。并且终端设备的位置信息为全球卫星定位系统(Global Positioning System,GPS)中具体的位置信息,即包括终端设备所处的具体经度以及维度。
可选地,数据信息为最小化路测(Minimization of Drive Tests,MDT)数据或路测(Drive Test,DT)数据中任一项。
可选地,由于目标小区内包括至少一个终端设备,因此数据信息为至少一个终端设备处于目标小区时的数据信息。
可选地,数据信息还可以包括目标小区所对应小区标识(Identity Document,id),便于小区天线方位角确定装置数据信息处于从目标区域所包括的多个小区中的哪个小区。例如,目标区域中包括小区A,小区B以及小区C,且小区A对应的小区标识为“1”,小区B对应的小区标识为“2”,小区C对应的小区标识为“3”,若数据信息中包括小区标识“2”,可以说明该终端设备处于小区B,即数据信息为终端设备处于小区B时对应的数据信息。可以理解的是,前述示例仅用于理解本方案,具体数据信息需要根据实际情况灵活确定。
S102、根据至少一个下行信号的波束强度信息以及至少一个下行信号的波束相位信息,计算得到预估用户水平方向到达角。
本实施例中,小区天线方位角确定装置通过步骤S101所获取的至少一个下行信号的波束强度信息以及至少一个下行信号的波束相位信息,计算得到预估用户水平方向到达角(Horizon Angle of Arrival,hAOA)。具体预估用户水平方向到达角是通过算法估算出的用户位置信息与真实方位角的夹角,即以基站对应天线面板法线方向为零度,逆时针为正,预估用户水平方向到达角的取值范围[0°,360°]。可以理解的是,当目标小区仅包括一个终端设备时,一个终端设备需要收集多个数据信息,因此所得到的预估用户水平方向到达角也可以为多个。当目标小区仅包括多个终端设备时,下行信号的波束强度信息以及下行信号的波束相位信息为多个,所得到的预估用户水平方向到达角也为多个,并且一个预估用户水平方向到达角与一个下行信号的波束强度信息以及下行信号的波束相位信息对应。因此预估用户水平方向到达角的数量应该大于1,具体数量此处不做限定。
具体地,基于公式(1)可以根据下行信号的波束强度信息以及下行信号的波束相位信息,计算得到预估用户水平方向到达角:
hAOA_est=P·Beam_Angle;     (1)
其中,hAOA_est指示预估用户水平方向到达角,P指示下行信号的波束强度信息,Beam_Angle指示下行信号的波束相位信息。
为了便于理解,请参阅图5,图5为本申请实施例中预估用户水平方向到达角一个实施例示意图,如图所示,B1用于指示基站,B2用于指示估算出的终端设备的位置,B3用于指示基站B1的天线面板,B4用于指示基站B1对应天线面板法线方向,B5用于预估用户水平方向到达角。
S103、根据预估用户水平方向到达角以及真实用户水平方向到达角,建立目标损失函数,其中,真实用户水平方向到达角是根据至少一个终端设备的位置信息计算得到的。
本实施例中,小区天线方位角确定装置通过步骤S101所获取的至少一个终端设备的位置信息计算得到真实用户水平方向到达角,然后根据真实用户水平方向到达角以及步骤S102计算得到的预估用户水平方向到达角,建立损失函数。可以理解的是,当目标小区仅包括一个终端设备时,终端设备需要收集多个数据信息,因此所得到的真实用户水平方向到达角也为多个。当目标小区仅包括多个终端设备时,终端设备的位置信息为多个,所得到的真实用户水平方向到达角也为多个,并且一个预估用户水平方向到达角与一个终端设 备的位置信息对应。因此真实用户水平方向到达角的数量应该大于1,具体数量此处不做限定,可以理解的是,所得到的真实用户水平方向到达角的数量与预估用户水平方向到达角的数量是相同的。
具体地,小区天线方位角确定装置还需要获取目标小区的位置信息,小区天线方位角确定装置还需要获取目标小区的位置信息,目标小区的位置信息为小区天线面板所在位置信息,在实际应用中,在无法获取区天线面板所在位置信息时,目标小区的位置信息还可以为对目标小区进行服务器的基站的位置信息,具体此处不做限定。因此可以根据目标小区的位置信息与终端设备的位置信息,计算得到真实用户水平方向到达角。
为了便于理解,请参阅图6,图6为本申请实施例中真实用户水平方向到达角一个实施例示意图,如图所示,C1用于指示基站,C2用于指示终端设备的真实位置,C3用于指示基站C1的天线面板,C4用于指示基站C1对应天线面板法线方向,C5用于真实用户水平方向到达角。
进一步地,基于公式(2)可以根据预估用户水平方向到达角以及真实用户水平方向到达角,建立目标损失函数:
Loss(Azimuth)=loss_function(hAOA_est,hAOA_gps(Azimuth));    (2)
其中,Loss(Azimuth)指示目标损失函数,hAOA_est指示预估用户水平方向到达角,hAOA_gps(Azimuth)指示真实用户水平方向到达角。
可选地,公式(2)中目标损失函数可以包括但不限于为平均绝对误差(Mean Absolute Error,MAE),均方误差(Mean Square Error,MSE)以及均方根误差(Root Mean Square Error,RMSE)等,具体此处不做限定。
S104、根据目标损失函数确定目标小区天线方位角。
本实施例中,小区天线方位角确定装置需要确定目标损失函数中最小值对应的角度值,然后将最小值对应的角度值确定为目标小区天线方位角。
具体地,基于公式(3)可以根据目标损失函数确定目标小区天线方位角:
Azimuth=arg Azimuthmin(Loss(Azimuth));     (3)
其中,Azimuth指示目标小区天线方位角,Loss(Azimuth)指示目标损失函数。
可选地,确定目标损失函数中最小值对应的角度值可以通过遍历0°至360°的方法,或者采用其他优化方法,具体此处不做限定。
上述主要对确定小区天线方位角的方案进行了介绍,本申请实施例中,在确定小区天线方位角之后,还可以评估小区天线方位角的置信度,请参阅图7,图7为本申请实施例中小区天线方位角确定的方法另一实施例示意图,如图所示,小区天线方位角确定的方法包括如下步骤。
S201、获取至少一个终端设备的数据信息,其中,数据信息包括多个终端设备的位置信息,下行信号的波束强度信息以及下行信号的波束相位信息。
本实施例中,小区天线方位角确定装置获取至少一个终端设备的数据信息的具体实施方式,以及具体数据信息与步骤S201类似,在此不再赘述。
S202、根据根据至少一个下行信号的波束强度信息以及至少一个下行信号的波束相位 信息,计算得到预估用户水平方向到达角。
本实施例中,小区天线方位角确定装置根据至少一个下行信号的波束强度信息以及至少一个下行信号的波束相位信息,计算得到预估用户水平方向到达角的具体实施方式,与步骤S202类似,在此不再赘述。
S203、根据预估用户水平方向到达角以及真实用户水平方向到达角,建立目标损失函数,其中,真实用户水平方向到达角是根据至少一个终端设备的位置信息计算得到的。
本实施例中,小区天线方位角确定装置根据预估用户水平方向到达角以及真实用户水平方向到达角,建立目标损失函数的具体实施方式,与步骤S203类似,在此不再赘述。
S204、根据目标损失函数确定目标小区天线方位角。
本实施例中,小区天线方位角确定装置根据目标损失函数确定目标小区天线方位角的具体实施方式与步骤S104类似,在此不再赘述。
S205、获取预估用户水平方向到达角对应的第一数据集合。
本实施例中,小区天线方位角确定装置获取预估用户水平方向到达角对应的第一数据集合,该第一数据集合中包括多个第一数据,第一数据即为预估用户水平方向到达角。
S206、获取真实用户水平方向到达角对应的第二数据集合。
本实施例中,小区天线方位角确定装置获取真实用户水平方向到达角对应的第二数据集合,该第二数据集合中包括多个第二数据,第二数据即为真实用户水平方向到达角。
S207、根据第一数据集合中每个第一数据以及第二数据集合中每个第二数据之间的关系,确定目标小区天线方位角的置信度。
本实施例中,小区天线方位角确定装置根据第一数据集合中每个第一数据以及第二数据集合中每个第二数据之间的关系,确定目标小区天线方位角的置信度。
具体地,若小区天线方位角确定装置采用步骤S205以及S206示例的方式,通过获取第一数据集合以及第二数据集合,再通过拟合多个预估用户水平方向到达角与多个真实用户水平方向到达角之间的差值,得到稳健的线性回归函数。应理解,在实际应用中,还可以通过其他方式拟合多个预估用户水平方向到达角与多个真实用户水平方向到达角之间的差值对应的结果,具体此处不做限定。
可选地,小区天线方位角确定装置还可以计算得到第一数据集合中每个第一数据以及第二数据集合中每个第二数据之间的第一信息,该第一信息用于指示第一数据集合中每个第一数据以及第二数据集合中每个第二数据之间的差值的稳定性,其中差值即为多个第一数据与多个第二数据之间的差距(gap)。其次,小区天线方位角确定装置还可以计算得到第一数据集合中每个第一数据以及第二数据集合中每个第二数据之间的第二信息,该第二信息为第一数据集合中每个第一数据以及第二数据集合中每个第二数据之间的差值的方差。由于第一信息用于指示第一数据集合中每个第一数据以及第二数据集合中每个第二数据之间的差值的稳定性,且第一信息越大则稳定性越低,即所得到的目标小区天线方位角稳定度较低,其次,第二信息可以反映多个第一数据与多个第二数据之间的离散程度,因此第二信息越大说明多个预估用户水平方向到达角与多个真实用户水平方向到达角之间的差值的离散程度越大,因此所得到的目标小区天线方位角离散程度较大。因此,小区天线方位角确定装置可以根据第一信息与第一阈值的大小关系,以及第二信息与第二阈值的大 小关系确定目标小区天线方位角的置信度。
具体地,置信度可以采用分数,百分比或者直接描述的方式进行定义,例如,置信度为分数并且基于100分制定义,那么置信度的取值范围为1至100,分数越高即为置信度越高。或者置信度为百分比,那么置信度的取值范围为1%至100%,百分比越大即为置信度越高。或者直接描述置信度,那么置信度可以为低,中以及高等,具体置信度需要根据实际情况灵活定义。其次,第一阈值可以为1,2,3等数据,第二阈值可以为1,2,3等数据,并且第一阈值可以等于第二阈值,也可以不等于第二阈值,具体第一阈值以及第二阈值需要根据所获取的数据信息的实际情况灵活确定。
示例性地,以置信度为分数并且基于100分制定义作为一个示例进行说明,当第一信息大于第一阈值,并且第二信息大于第二阈值时,由于第一信息用于指示第一数据集合中每个第一数据以及第二数据集合中每个第二数据之间的差值的稳定性,且第一信息越大则稳定性越低,因此说明多个第一数据与多个第二数据之间的差值的稳定性较低,并且多个第一数据与多个第二数据之间的离散程度较大,从而可知所得到的目标小区天线方位角稳定度较低,并且离散程度较大,此时置信度可以为10,说明所得到的目标小区天线方位角的误差较大。当第一信息大于第一阈值,但第二信息小于第二阈值时,说明多个第一数据与多个第二数据之间的差值的稳定性较低,但多个第一数据与多个第二数据之间的离散程度较小,此所得到的目标小区天线方位角稳定度较低,而离散程度较小,此时置信度可以为50,说明所得到的目标小区天线方位角是的误差为中。当第一信息小于第一阈值,且第二信息小于第二阈值时,说明多个第一数据与多个第二数据之间的差值的稳定性较高,且多个第一数据与多个第二数据之间的离散程度较小,此所得到的目标小区天线方位角稳定度较大,而离散程度较小,此时置信度可以为90,说明所得到的目标小区天线方位角的误差较小。应理解,前述示例仅用于理解本方案,具体置信度需要根据第一信息与第一阈值,以及第二信息与第二阈值的实际情况灵活确定,在此不做限定。
上述主要以方法的角度对本申请实施例提供的方案进行了介绍。可以理解的是,小区天线方位角确定装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的模块及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以基于上述方法示例对小区天线方位角确定装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
由此,下面对本申请中的小区天线方位角确定装置进行详细描述,请参阅图8,图8为本申请实施例中小区天线方位角确定装置一个实施例示意图,如图所示,小区天线方位角确定装置800包括:
获取模块801,用于获取至少一个终端设备的数据信息,其中,数据信息包括至少一个终端设备的位置信息,下行信号的波束强度信息以及下行信号的波束相位信息;
计算模块802,用于根据至少一个下行信号的波束强度信息以及至少一个下行信号的波束相位信息,计算得到预估用户水平方向到达角;
建立模块803,用于根据预估用户水平方向到达角以及真实用户水平方向到达角,建立目标损失函数,其中,真实用户水平方向到达角是根据至少一个终端设备的位置信息计算得到的;
确定模块804,用于根据目标损失函数确定目标小区天线方位角。
在本申请的一些可选实施例中,
获取模块801,还用于根据目标损失函数确定目标小区天线方位角之后,获取预估用户水平方向到达角对应的第一数据集合;
获取模块801,还用于根据目标损失函数确定目标小区天线方位角之后,获取真实用户水平方向到达角对应的第二数据集合;
确定模块804,还用于根据第一数据集合中每个第一数据以及第二数据集合中每个第二数据之间的关系,确定目标小区天线方位角的置信度。
在本申请的一些可选实施例中,关系包括第一数据集合中每个第一数据以及第二数据集合中每个第二数据之间的第一信息,以及第一数据集合中每个第一数据以及第二数据集合中每个第二数据之间的第二信息,其中,第一信息用于指示第一数据集合中每个第一数据以及第二数据集合中每个第二数据之间的差值的稳定性,第二信息为第一数据集合中每个第一数据以及第二数据集合中每个第二数据之间的差值的方差;
目标小区天线方位角的置信度是根据第一信息与第一阈值的大小关系,以及第二信息与第二阈值的大小关系确定的。
在本申请的一些可选实施例中,
获取模块801,还用于获取目标小区的位置信息;
计算模块802,还用于根据至少一个终端设备的位置信息以及目标小区的位置信息,计算得到真实用户水平方向到达角。
在本申请的一些可选实施例中,
确定模块801,具体用于确定目标损失函数中最小值对应的角度值;
将最小值对应的角度值确定为目标小区天线方位角。
在本申请的一些可选实施例中,数据信息为最小化路测MDT数据或路测DT数据中任一项。
在本申请的一些可选实施例中,数据信息为至少一个终端设备处于目标小区时的数据信息。
本申请实施例中的小区天线方位角确定装置,可以是网络设备,也可以是应用于网络设备中的芯片或者其他可实现上述网络设备功能的组合器件、部件等。当小区天线方位角确定装置是网络设备时,获取模块801可以是收发器或收发单元,该收发器可以包括天线和射频电路等,收发器可以为发射器和/或接收器,收发单元可以为发送单元和/或接收单元,发送单元可以由发射器代替,接收单元可以由接收器代替,计算模块802,建立模块 803,以及确定模块804可以是处理器,例如,基带芯片等。当小区天线方位角确定装置是具有上述网络设备功能的部件时,获取模块801可以是射频单元,计算模块802,建立模块803,以及确定模块804可以是处理器。当小区天线方位角确定装置是芯片系统时,获取模块801可以是芯片系统的输入端口,计算模块802,建立模块803,以及确定模块804可以是芯片系统的处理器,例如,中央处理器(central processing unit,CPU)。
应理解,图4至图7中的例子仅仅是为了便于本领域技术人员理解本申请实施例,并非要将本申请实施例限于例示的具体场景。本领域技术人员根据图4至图7的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本申请实施例的范围内。
还应理解,本申请实施例的各个方案可以进行合理的组合使用,并且实施例中出现的各个术语的解释或说明可以在各个实施例中互相参考或解释,对此不作限定。
还应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如,同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如,红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如,固态硬盘Solid State Disk(SSD))等。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各 个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种小区天线方位角确定的方法,其特征在于,包括:
    获取至少一个终端设备的数据信息,其中,所述数据信息包括所述至少一个终端设备的位置信息,下行信号的波束强度信息以及下行信号的波束相位信息;
    根据至少一个所述下行信号的波束强度信息以及至少一个所述下行信号的波束相位信息,计算得到预估用户水平方向到达角;
    根据所述预估用户水平方向到达角以及真实用户水平方向到达角,建立目标损失函数,其中,所述真实用户水平方向到达角是根据所述至少一个终端设备的位置信息计算得到的;
    根据所述目标损失函数确定目标小区天线方位角。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述目标损失函数确定目标小区天线方位角之后,所述方法还包括:
    获取所述预估用户水平方向到达角对应的第一数据集合;
    获取所述真实用户水平方向到达角对应的第二数据集合;
    根据所述第一数据集合中每个第一数据以及所述第二数据集合中每个第二数据之间的关系,确定所述目标小区天线方位角的置信度。
  3. 根据权利要求2所述的方法,其特征在于,所述关系包括所述第一数据集合中每个第一数据以及所述第二数据集合中每个第二数据之间的第一信息,以及所述第一数据集合中每个第一数据以及所述第二数据集合中每个第二数据之间的第二信息,其中,所述第一信息用于指示所述第一数据集合中每个第一数据以及所述第二数据集合中每个第二数据之间的差值的稳定性,所述第二信息为所述第一数据集合中每个第一数据以及所述第二数据集合中每个第二数据之间的差值的方差;
    所述目标小区天线方位角的置信度是根据所述第一信息与第一阈值的大小关系,以及所述第二信息与第二阈值的大小关系确定的。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取目标小区的位置信息;
    根据所述至少一个终端设备的位置信息以及所述目标小区的位置信息,计算得到所述真实用户水平方向到达角。
  5. 根据权利要求1所述的方法,其特征在于,所述根据所述目标损失函数确定目标小区天线方位角,包括:
    确定所述目标损失函数中最小值对应的角度值;
    将所述最小值对应的角度值确定为所述目标小区天线方位角。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述数据信息为最小化路测MDT数据或路测DT数据中任一项。
  7. 根据权利要求1至5中任一项所述的方法,其特征在于,所述数据信息为所述至少一个终端设备处于目标小区时的数据信息。
  8. 一种小区天线方位角确定装置,其特征在于,包括:
    获取模块,用于获取至少一个终端设备的数据信息,其中,所述数据信息包括所述至少一个终端设备的位置信息,下行信号的波束强度信息以及下行信号的波束相位信息;
    计算模块,用于根据至少一个所述下行信号的波束强度信息以及至少一个所述下行信号的波束相位信息,计算得到预估用户水平方向到达角;
    建立模块,用于根据所述预估用户水平方向到达角以及真实用户水平方向到达角,建立目标损失函数,其中,所述真实用户水平方向到达角是根据所述至少一个终端设备的位置信息计算得到的;
    确定模块,用于根据所述目标损失函数确定目标小区天线方位角。
  9. 一种网络设备,其特征在于,包括:
    处理器、存储器、输入输出(I/O)接口;
    所述处理器与所述存储器、所述输入输出接口耦合;
    所述处理器通过运行所述存储器中的代码执行如权利要求1至7中任一项所述的方法。
  10. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1至7中任一项所述的方法。
PCT/CN2021/115271 2020-10-23 2021-08-30 一种小区天线方位角确定的方法,相关装置以及设备 WO2022083289A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011148720.4A CN114487995A (zh) 2020-10-23 2020-10-23 一种小区天线方位角确定的方法,相关装置以及设备
CN202011148720.4 2020-10-23

Publications (1)

Publication Number Publication Date
WO2022083289A1 true WO2022083289A1 (zh) 2022-04-28

Family

ID=81291539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115271 WO2022083289A1 (zh) 2020-10-23 2021-08-30 一种小区天线方位角确定的方法,相关装置以及设备

Country Status (2)

Country Link
CN (1) CN114487995A (zh)
WO (1) WO2022083289A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115835231A (zh) * 2023-02-14 2023-03-21 中国铁建电气化局集团有限公司 基站角度确定方法、装置、设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6351237B1 (en) * 1995-06-08 2002-02-26 Metawave Communications Corporation Polarization and angular diversity among antenna beams
CN106289154A (zh) * 2016-07-19 2017-01-04 中国科学院重庆绿色智能技术研究院 一种通信基站天线方位角监测方法
CN106559118A (zh) * 2015-09-24 2017-04-05 中国电信股份有限公司 用于大规模天线下用户终端方位角估计的方法和装置
CN111447001A (zh) * 2020-03-09 2020-07-24 航天行云科技有限公司 终端设备的上行功率控制方法以及装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102340806B (zh) * 2010-07-20 2015-12-02 电信科学技术研究院 一种确定天线方向角的方法和设备
CN103096459B (zh) * 2011-10-27 2015-06-17 华为技术有限公司 定位用户设备的方法及定位服务器
CN104080094A (zh) * 2013-03-25 2014-10-01 电信科学技术研究院 一种调整小区天线方位角的方法和装置
WO2016070931A1 (en) * 2014-11-07 2016-05-12 Sony Corporation Determining the geographic location of a portable electronic device with a synthetic antenna array
CN107466043B (zh) * 2016-06-03 2020-11-27 中国移动通信集团河北有限公司 一种确定基站天线的方位角的方法和设备
JP6910028B2 (ja) * 2017-11-28 2021-07-28 日本無線株式会社 方位探知アンテナ
CN109963300B (zh) * 2017-12-22 2022-08-23 中国移动通信集团浙江有限公司 方位角的确定方法、装置、电子设备和存储介质
CN108777842B (zh) * 2018-06-01 2020-04-24 东南大学 基于波束训练的移动终端定位方法、装置及系统
CN110492911B (zh) * 2019-07-10 2021-10-15 鹰潭泰尔物联网研究中心 一种用于无人机通信的波束追踪方法与系统
CN110505651B (zh) * 2019-08-23 2023-03-24 中国联合网络通信集团有限公司 天线方位角的优化方法、装置、设备和存储介质
CN111487582A (zh) * 2020-05-28 2020-08-04 北京爱笔科技有限公司 获得蓝牙阵列天线参数标定模型、到达角的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6351237B1 (en) * 1995-06-08 2002-02-26 Metawave Communications Corporation Polarization and angular diversity among antenna beams
CN106559118A (zh) * 2015-09-24 2017-04-05 中国电信股份有限公司 用于大规模天线下用户终端方位角估计的方法和装置
CN106289154A (zh) * 2016-07-19 2017-01-04 中国科学院重庆绿色智能技术研究院 一种通信基站天线方位角监测方法
CN111447001A (zh) * 2020-03-09 2020-07-24 航天行云科技有限公司 终端设备的上行功率控制方法以及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115835231A (zh) * 2023-02-14 2023-03-21 中国铁建电气化局集团有限公司 基站角度确定方法、装置、设备及介质
CN115835231B (zh) * 2023-02-14 2023-06-13 中国铁建电气化局集团有限公司 基站角度确定方法、装置、设备及介质

Also Published As

Publication number Publication date
CN114487995A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
WO2020164339A1 (zh) 定向发送定位参考信号的方法及装置
US12004105B2 (en) Time synchronization method and apparatus
US9107041B2 (en) Systems and methods for determining a user equipment location based on measurements from multiple base stations
US20170079006A1 (en) Positioning method, network side device, positioning node, and positioning system
JP6239769B2 (ja) Ap位置クエリ
US20150126158A1 (en) Method and System for Characterizing Location and/or Range Based on Transmit Power
WO2021031714A1 (zh) 一种基于相对角度的定位方法及装置
WO2021063397A1 (zh) 一种参考信号配置的确定方法及装置
CN111742535B (zh) 提供用于etsi mec的基于ieee 802.11的无线网络信息服务的方法和过程
WO2021022952A1 (zh) 信号传输的方法与装置
JP6937434B2 (ja) ダウンリンクデータ送達状態を管理する方法
EP2898735B1 (en) Network node and method for managing maximum transmission power levels for a d2d communication link
WO2020164517A1 (zh) 用于测量信号的方法和通信装置
WO2022037352A1 (zh) 一种信息传输方法和通信装置
JP2022521719A (ja) 電力制御方法および電力制御装置
WO2021027919A9 (zh) 传输参考信号的方法及设备
US9954642B2 (en) Spatial contention in dense wireless network
WO2022083289A1 (zh) 一种小区天线方位角确定的方法,相关装置以及设备
CN114586318A (zh) 使用波束成形进行数据传输的网络节点、终端设备及其中的方法
WO2022222772A1 (zh) 一种定位信息上报方法、设备及通信系统
WO2022106972A1 (en) Application layer preemptive scheduling requests for ultra-low latency
WO2021237463A1 (en) Method and apparatus for position estimation
CN116158107A (zh) 无线通信网络中的参考信号波束配置
WO2022016548A1 (zh) 第一基站的天线定位方法及通信装置
US20240107495A1 (en) Automated Determination of Access-Point Geographic Locations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21881708

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21881708

Country of ref document: EP

Kind code of ref document: A1