WO2022080978A1 - 리튬 이차 전지용 분리막 및 이의 제조방법 - Google Patents

리튬 이차 전지용 분리막 및 이의 제조방법 Download PDF

Info

Publication number
WO2022080978A1
WO2022080978A1 PCT/KR2021/014421 KR2021014421W WO2022080978A1 WO 2022080978 A1 WO2022080978 A1 WO 2022080978A1 KR 2021014421 W KR2021014421 W KR 2021014421W WO 2022080978 A1 WO2022080978 A1 WO 2022080978A1
Authority
WO
WIPO (PCT)
Prior art keywords
binder polymer
separator
weight
coating layer
parts
Prior art date
Application number
PCT/KR2021/014421
Other languages
English (en)
French (fr)
Inventor
장대성
성동욱
정소미
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to JP2022572420A priority Critical patent/JP2023527809A/ja
Priority to EP21880624.8A priority patent/EP4152507A1/en
Priority to US17/928,817 priority patent/US20230223656A1/en
Priority to CN202180037416.9A priority patent/CN115668622A/zh
Publication of WO2022080978A1 publication Critical patent/WO2022080978A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention claims priority based on Korean Patent Application No. 10-2020-0134283 filed on October 16, 2020.
  • the present invention relates to a separator that can be used in an electrochemical device such as a lithium secondary battery and a method for manufacturing the same.
  • Electrochemical devices are receiving the most attention in this aspect, and among them, the development of rechargeable batteries that can be charged and discharged is the focus of interest. and research and development of battery design.
  • lithium secondary batteries developed in the early 1990s have a higher operating voltage and significantly higher energy density than conventional batteries such as Ni-MH, Ni-Cd, and lead sulfate batteries using aqueous electrolyte solutions. is in the spotlight as
  • Electrochemical devices such as lithium secondary batteries are produced by many companies, but their safety characteristics show different aspects. It is very important to evaluate the safety and secure the safety of these electrochemical devices.
  • the separator prevents a short circuit between the positive electrode and the negative electrode, while at the same time providing a passage for lithium ions to move. Accordingly, the separator is an important factor affecting the safety and output characteristics of the battery.
  • polyolefin-based porous polymer substrates commonly used as separators for electrochemical devices exhibit extreme heat shrinkage behavior at temperatures above 100° C. due to material properties and characteristics of the manufacturing process including elongation. caused a short circuit.
  • a separator in which a porous coating layer is formed by coating a mixture of an excessive amount of inorganic particles and a binder polymer on at least one surface of a porous polymer substrate having a plurality of pores has been proposed.
  • Such a porous coating layer can largely create pores through humidified phase separation or immersion phase separation.
  • the porous coating layer formed by the humidified phase separation is superior to the submerged phase separation in terms of thermal shrinkage, but there is a problem in that the binder polymer contained in the slurry clogs the pores of the porous polymer substrate when the porous coating layer is formed.
  • the submerged phase separation has the advantage of low resistance before/after coating the porous polymer substrate according to the existing humidified phase separation because the coating layer is solidified at the same time as the slurry is applied to the substrate. That is, there is an advantage that the pores of the porous polymer substrate are not blocked by the binder polymer.
  • the porous coating layer prepared according to the submerged phase separation has a problem in that heat shrinkage at a high temperature is particularly inferior to that of the humidified phase separation, and the adhesive strength (Lami Strength) between the separator and the electrode is inferior.
  • the problem to be solved by the present invention is to take advantage of the advantages of submerged phase separation, to reduce clogging of pores in a porous polymer substrate, and at the same time to improve adhesion to electrodes and to provide a separator with improved thermal shrinkage and a method for manufacturing the same.
  • One aspect of the present invention provides a separator for a lithium secondary battery according to the following embodiments.
  • a porous coating layer formed on at least one surface of the porous polymer substrate and comprising inorganic particles, a fluorine-based binder polymer, and a polyvinyl acetate (PVAc) binder polymer;
  • the porous coating layer has a structure in which the inorganic particles are dispersed in a matrix formed by the fluorine-based binder polymer and the polyvinyl acetate binder polymer, and in the thickness direction of the porous coating layer, the fluorine-based binder polymer, the polyvinyl acetate binder polymer, and the Inorganic particles are uniformly distributed,
  • the content of the inorganic particles is 70 parts by weight or more based on 100 parts by weight of the porous coating layer,
  • the content of the polyvinyl acetate binder polymer relates to a separator for a lithium secondary battery, characterized in that less than 80 parts by weight based on 100 parts by weight of the total binder polymer content.
  • a porous coating layer formed on at least one surface of the porous polymer substrate and comprising inorganic particles, a fluorine-based binder polymer, and a polyvinyl acetate (PVAc) binder polymer;
  • the pores in the porous coating layer are formed by material exchange of a solvent and a non-solvent for the binder polymers
  • the content of the inorganic particles is 70 parts by weight or more based on 100 parts by weight of the porous coating layer,
  • the content of the polyvinyl acetate binder polymer relates to a separator for a lithium secondary battery, characterized in that less than 80 parts by weight based on 100 parts by weight of the total binder polymer content.
  • a third embodiment according to the first or second embodiment,
  • the content of the polyvinyl acetate binder polymer may be 5 to 75 parts by weight based on 100 parts by weight of the binder polymer.
  • a fourth embodiment according to the second or third embodiment,
  • the solvent may include at least one selected from N-methyl-2-pyrrolidone, dimethylacetamide and dimethylformamide.
  • a fifth embodiment according to any one of the second to fourth embodiments,
  • the non-solvent may be water.
  • the weight average molecular weight of the fluorine-based binder polymer may be 100,000 to 1,500,000.
  • a seventh embodiment according to any one of the first to sixth embodiments,
  • the weight average molecular weight of the polyvinyl acetate binder polymer may be 100,000 to 1,000,000.
  • the separator may have an electrode strength (Lami Strength) of 60 gf/25 mm or more.
  • a ninth embodiment according to any one of the first to eighth embodiments,
  • the separation membrane may have a thermal contraction rate measured after applying heat at 150° C. for 30 minutes in at least one of a machine direction and a right angle direction of 10% or less.
  • Another aspect of the present invention provides an electrochemical device according to the following embodiments.
  • It includes a positive electrode, a negative electrode, and a separator interposed between the negative electrode and the positive electrode,
  • the separator relates to an electrochemical device, characterized in that the separator according to any one of the above-described embodiments.
  • the electrochemical device may be a lithium secondary battery.
  • a separation membrane using a fluorine-based binder polymer and a polyvinyl acetate binder polymer at the same time while maintaining a higher content of inorganic particles than before. Accordingly, it is possible to improve adhesion to the electrode (Lami Strength) and increase the heat resistance of the separator. In addition, it is possible to reduce the clogging of pores in the porous polymer substrate, thereby reducing the resistance in the separator.
  • FIG. 1 shows a schematic schematic diagram of a separation membrane prepared according to humidified phase separation according to a comparative example of the present invention.
  • FIG. 2 is a SEM photograph of a separation membrane prepared according to a humidified phase separation according to a comparative example of the present invention, respectively.
  • FIG. 3 is a schematic schematic diagram of a separation membrane prepared according to immersion phase separation according to an embodiment of the present invention.
  • FIG. 4 is an SEM photograph of a separation membrane prepared according to immersion phase separation according to an embodiment of the present invention, respectively.
  • Example 7 is a SEM photograph showing the surface of the separator according to Example C.
  • connection when a part is “connected” with another part, this includes not only “directly connected” but also “indirectly connected” with another member interposed therebetween. . Further, the connection includes an electrochemical connection as well as a physical connection.
  • the term "combination(s) of these" included in the surface of the Markush-type means one or more mixtures or combinations selected from the group consisting of the components described in the expression of the Markush-type, It means to include one or more selected from the group consisting of the above components.
  • a separator is interposed between the positive electrode and the negative electrode to prevent physical contact and electrical short between the positive electrode and the negative electrode.
  • a separator mainly uses a polyolefin-based porous polymer substrate.
  • a separator having a porous coating layer containing inorganic particles and a binder polymer on at least one surface of the porous polymer substrate is mainly used
  • the porous coating layer can largely form a pore structure by humidified phase separation or immersion phase separation.
  • a slurry for forming a porous coating layer is applied on a porous polymer substrate and then dried under humidified conditions.
  • the binder polymer in the slurry together with the solvent rises to the surface of the porous coating layer to increase adhesion to the electrode, and pores are formed at the place where the solvent is volatilized.
  • the porous coating layer can be largely divided into a dispersion layer in which inorganic particles and a binder polymer are evenly dispersed, and an adhesive layer in which the binder polymer is mainly distributed.
  • the submerged phase separation is a structure in which inorganic particles are uniformly dispersed in a binder polymer matrix.
  • an object of the present invention is to provide a separator with improved thermal contraction rate and increased adhesion to electrodes at the same time in a separator manufactured by immersion phase separation.
  • porous polymer substrate One aspect of the present invention, a porous polymer substrate
  • a porous coating layer formed on at least one surface of the porous polymer substrate and comprising inorganic particles, a fluorine-based binder polymer, and a polyvinyl acetate (PVAc) binder polymer;
  • the porous coating layer has a structure in which the inorganic particles are dispersed in a matrix formed by the fluorine-based binder polymer and the polyvinyl acetate binder polymer, and in the thickness direction of the porous coating layer, the fluorine-based binder polymer, the polyvinyl acetate binder polymer, and the Inorganic particles are uniformly distributed,
  • the content of the inorganic particles is 70 parts by weight or more based on 100 parts by weight of the porous coating layer,
  • the content of the polyvinyl acetate binder polymer is characterized in that less than 80 parts by weight based on 100 parts by weight of the total binder polymer content.
  • a porous coating layer is formed by a so-called immersion phase separation method. That is, the binder polymer and inorganic particles are evenly and uniformly distributed in the porous coating layer. In other words, it does not include a separate adhesive layer. Since the coating layer is solidified at the same time as the slurry is applied in the separation membrane by the submerged phase separation method, it is possible to reduce the phenomenon that pores in the porous polymer substrate are blocked by the binder polymer, which is a problem with the existing humidified phase separation.
  • the complexity of the separator is low compared to the pores in the porous coating layer formed by humidified phase separation, and thus the resistance of the separator is relatively low.
  • FIG. 1 and 2 are schematic diagrams and SEM photographs of separation membranes prepared according to humidified phase separation according to a comparative example of the present invention, respectively.
  • the binder polymer 22 is mainly located on the surface of the porous coating layer 20 .
  • FIGS. 3 and 4 are schematic diagrams and SEM photographs of a separation membrane prepared according to immersion phase separation according to an embodiment of the present invention, respectively.
  • the binder polymer 42 forms a matrix structure, and the inorganic particles 41 are dispersed in the matrix.
  • the content of inorganic particles in the porous coating layer is 70 parts by weight or more based on 100 parts by weight of the porous coating layer.
  • the content of inorganic particles was about 60 parts by weight based on 100 parts by weight of the porous coating layer.
  • the content of the binder polymer in the porous coating layer was about 40 parts by weight based on 100 parts by weight of the porous coating layer. This is a figure containing about 15 to 20% less inorganic particles than a commercially available humidified phase separation.
  • the adhesive force with the electrode has been increased by relatively increasing the content of the binder polymer.
  • the content of inorganic particles was reduced as a result of the opposite payment, and the thermal contraction rate was relatively inferior to that of the conventional humidified phase separation.
  • the present inventors have invented the present invention in order to improve the thermal contraction rate by increasing the content of inorganic particles even in the separation membrane by immersion phase separation, and at the same time to increase the adhesion to the electrode.
  • the content of the inorganic particles is 70 parts by weight or more, 71 parts by weight or more, 72 parts by weight or more, 73 parts by weight or more, 74 parts by weight or more, or 75 parts by weight based on 100 parts by weight of the porous coating layer. or more, 95 parts by weight or less, 90 parts by weight or less, or 85 parts by weight or less.
  • the content of the inorganic particles is less than 70 parts by weight, it is not possible to obtain a desired thermal contraction rate in the present invention.
  • the content of the inorganic particles satisfies the above-mentioned range, a desired thermal contraction rate can be obtained and adhesion to the electrode can be secured at the same time.
  • the inorganic particles are not particularly limited as long as they are electrochemically stable. That is, the inorganic particles that can be used in the present invention are not particularly limited as long as oxidation and/or reduction reactions do not occur in the operating voltage range of the applied electrochemical device (eg, 0-5V based on Li/Li+).
  • the ionic conductivity of the electrolyte can be improved by contributing to an increase in the degree of dissociation of an electrolyte salt, such as a lithium salt, in a liquid electrolyte.
  • the inorganic particles may be inorganic particles having a dielectric constant of 5 or more, inorganic particles having lithium ion transport ability, or a mixture thereof.
  • the inorganic particles having a dielectric constant of 5 or more are Al 2 O 3 , SiO 2 , ZrO 2 , AlO(OH), Al(OH) 3 , Mg(OH) 2 , BaSO 4 , TiO 2 , BaTiO 3 , Pb(Zr x Ti 1-x )O 3 (PZT, where 0 ⁇ x ⁇ 1), Pb 1-x La x Zr 1-y Ti y O 3 (PLZT, where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) , (1-x)Pb(Mg 1/3 Nb 2/3 )O 3-x PbTiO 3 (PMN-PT, where 0 ⁇ x ⁇ 1), hafnia (HfO 2 ), SrTiO 3 , SnO 2 , CeO 2 , may be one or a mixture of two or more selected from the group consisting of MgO, NiO, CaO, ZnO, and SiC.
  • the inorganic particles having the lithium ion transport ability are lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3), lithium aluminum titanium phosphate (Li x Al y Ti z (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 3), (LiAlTiP) x O y series glass (0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 13), lithium lanthanum titanate (Li x La y TiO 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3), lithium germanium thiophosphate (Li x Ge y P z S w , 0 ⁇ x ⁇ 4) , 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, 0 ⁇ w ⁇
  • the average particle diameter of the inorganic particles is not particularly limited, but for the formation of a porous coating layer having a uniform thickness and an appropriate porosity, it is preferably in the range of 0.001 to 10 ⁇ m, more preferably 10 nm to 2 ⁇ m, even more preferably 50 It may be in the range of nm to 1 ⁇ m.
  • the average particle diameter of the inorganic particles means the D 50 particle diameter
  • the “D 50 particle diameter” means the particle diameter at 50% of the cumulative distribution of the number of particles according to the particle diameter.
  • the particle size may be measured using a laser diffraction method. Specifically, after dispersing the powder to be measured in a dispersion medium, it is introduced into a commercially available laser diffraction particle size measuring device (eg Microtrac S3500) to measure the diffraction pattern difference according to the particle size when the particles pass through the laser beam to measure the particle size distribution to calculate The D50 particle diameter can be measured by calculating the particle diameter at the point used as 50% of the particle number cumulative distribution according to the particle diameter in a measuring apparatus.
  • a laser diffraction particle size measuring device eg Microtrac S3500
  • the porous coating layer includes a fluorine-based binder polymer and a polyvinyl acetate binder polymer.
  • the fluorine-based binder polymer has adhesive properties, and provides binding force between the porous polymer substrate and the porous coating layer or between the porous coating layer and the electrode. In addition, it serves to fix the inorganic particles in the porous coating layer so that they do not detach.
  • the fluorine-based binder polymer is polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymer, polyvinylidene fluoride-trifluoroethylene copolymer, polyvinylidene fluoride-chlorotrifluoroethylene copolymer, polyvinylidenefluoride-tetrafluoroethylene copolymer, or two or more of these.
  • the weight average molecular weight of the fluorine-based binder polymer may be 100,000 or more, 200,000 or more, or 300,000 or more, and may be 1,500,000 or less, 1,000,000 or less, or 800,000 or less. For example, it may be 300,000 to 800,000 in terms of ensuring fairness while ensuring heat resistance and adhesion.
  • the weight average molecular weight of the fluorine-based binder polymer may be measured using gel permeation chromatography (GPC, PL GPC220, Agilent Technologies).
  • the adhesion to the electrode was not sufficient.
  • the fluorine-based binder polymer and the polyvinyl acetate binder polymer at the same time, it is possible to secure the adhesion between the separator and the electrode.
  • the content of the polyvinyl acetate binder polymer is less than 80 parts by weight based on the total content of the binder polymer.
  • the content of the polyvinyl acetate binder polymer is 5 parts by weight or more, 6 parts by weight or more, 7 parts by weight or more, 10 parts by weight or more, 20 parts by weight or more, It may be 30 parts by weight or more, and less than 80 parts by weight, 75 parts by weight or less, 70 parts by weight or less, 65 parts by weight or less, 60 parts by weight or less, 55 parts by weight or less, 50 parts by weight or less, 45 parts by weight or less, or 40 parts by weight or less. may be below.
  • the content of the polyvinyl acetate binder polymer is 80 parts by weight or more, it is not suitable for achieving the effect of the present invention because the air permeability increase rate is large compared to the electrode adhesion improvement.
  • the weight average molecular weight of the polyvinyl acetate binder polymer may be 100,000 or more, 200,000 or more, or 300,000 or more, and may be 1,000,000 or less, 900,000 or less, or 800,000 or less. For example, it may be 300,000 to 800,000 in terms of ensuring fairness while ensuring heat resistance and adhesion.
  • the weight average molecular weight of the polyvinyl acetate binder polymer can be measured using gel permeation chromatography (GPC, PL GPC220, Agilent Technologies).
  • the porous polymer substrate may be, specifically, a porous polymer film substrate or a porous polymer nonwoven substrate.
  • the porous polymer film substrate may be a porous polymer film made of polyolefin such as polyethylene or polypropylene, and the polyolefin porous polymer film substrate exhibits a shutdown function at a temperature of, for example, 80 to 150°C.
  • the polyolefin porous polymer film may include polyethylene such as high-density polyethylene, linear low-density polyethylene, low-density polyethylene, and ultra-high molecular weight polyethylene; polypropylene; polybutylene; polypentene; Polyolefin-based polymers such as these may be formed individually or by mixing two or more thereof.
  • the porous polymer film substrate may be manufactured by molding into a film shape using various polymers such as polyester in addition to polyolefin.
  • the porous polymer film substrate may be formed in a structure in which two or more film layers are laminated, and each film layer may be formed of a polymer such as the aforementioned polyolefin or polyester alone or a polymer obtained by mixing two or more thereof. there is.
  • porous polymer film substrate and the porous nonwoven substrate are polyethyleneterephthalate, polybutyleneterephthalate, polyester, polyacetal, polyamide, in addition to the polyolefin-based substrate as described above.
  • polycarbonate, polyimide, polyetheretherketone, polyethersulfone, polyphenyleneoxide, polyphenylenesulfide, polyethylenenaphthalene and the like may be formed of polymers each alone or a mixture thereof.
  • the thickness of the porous polymer substrate is not particularly limited, but is specifically 1 to 100 ⁇ m, more specifically 5 to 50 ⁇ m, and the pore size and pores present in the porous polymer substrate are also not particularly limited, but 0.01 to 50, respectively. ⁇ m and preferably 20 to 75%.
  • the porosity and pore size of the porous polymer substrate are measured by a scanning electron microscope (SEM) image, a mercury porosimeter, a capillary flow porometer, or a porosimetry analyzer; Bell Japan Inc. , Belsorp-II mini) can be used to measure by the BET 6-point method by the nitrogen gas adsorption flow method.
  • SEM scanning electron microscope
  • the thickness of the porous coating layer is not particularly limited, but specifically 1 to 15 ⁇ m, more specifically 1.5 to 10 ⁇ m, based on single-sided coating, and the porosity of the porous coating layer is also not particularly limited, but 35 to 85% desirable.
  • the porosity of the porous coating layer is a scanning electron microscope (SEM) image, a mercury porosimeter, a capillary flow porometer, or a porosimetry analyzer; Bell Japan Inc, Belsorp-II mini) using the BET 6-point method by the nitrogen gas adsorption flow method.
  • SEM scanning electron microscope
  • inorganic particles are charged and bound to each other by the binder polymer in a state in which they are in contact with each other, thereby forming an interstitial volume between the inorganic particles, and the interstitial volume between the inorganic particles.
  • the interstitial volume may become an empty space to form pores.
  • the binder polymer may attach the inorganic particles to each other so as to maintain a state in which they are bound to each other, for example, the binder polymer may connect and fix the inorganic particles between the inorganic particles.
  • the pores of the porous coating layer are pores formed as an interstitial volume between inorganic particles becomes an empty space, which is an inorganic material that is substantially interviewed in a structure filled with inorganic particles (closed packed or densely packed). It may be a space defined by particles.
  • a dispersant and other additives may be further included.
  • the separator for a lithium secondary battery according to an embodiment of the present invention may have a Lami Strength of 60 gf/25 mm or more with an electrode.
  • the adhesive strength between the separator and the electrode was measured by overlapping the separator and the electrode, sandwiching the PET film of 100 ⁇ m, and heating and pressing for 1 second at a pressure of 6.5 MPa at 60° C. After attaching it to the glass slide using the help of a slide glass, remove the distal end of the adhesive surface of the separator and attach it in the longitudinal direction using PET film and single-sided adhesive tape. It can be obtained by measuring the force required to peel off the electrode and the porous coating layer facing the electrode by attaching the attached PET film and applying a force at 180° at a measuring speed of 300 mm/min.
  • the separator for a lithium secondary battery according to an embodiment of the present invention may have a thermal contraction rate of 10% or less in at least one of a machine direction and a perpendicular direction.
  • the thermal contraction rate is a value measured after applying heat at 150° C. for 30 minutes.
  • the heat shrinkage rate is calculated as (initial length - length after heat shrinkage treatment for 150° C./min)/(initial length) X 100.
  • the content of the inorganic particles is characterized in that 70 parts by weight or more based on 100 parts by weight of the porous coating layer.
  • (S1) prepare a slurry for forming a porous coating layer containing inorganic particles, a fluorine-based binder polymer, a polyvinyl acetate binder polymer, and a solvent for the fluorine-based binder polymer.
  • the fluorine-based binder polymer and the polyvinyl acetate binder polymer, refer to the above description.
  • the inorganic particles are dispersed in the solvent, and the fluorine-based binder polymer and the polyvinyl acetate binder polymer are dissolved in the solvent.
  • the solvent of the slurry for forming the porous coating layer dissolves the binder polymer, and specifically, it means that at least 10 Wt% of the binder polymer can be dissolved at 25°C.
  • the solvent may include at least one selected from N-methyl-2-pyrrolidone, dimethylacetamide and dimethylformamide.
  • the slurry for forming the porous coating layer is applied to at least one surface of the porous polymer substrate (S2).
  • a conventional coating method in the art of the present invention such as a Meyer bar, a die coater, a reverse roll coater, and a gravure coater, may be applied.
  • a conventional coating method in the art of the present invention such as a Meyer bar, a die coater, a reverse roll coater, and a gravure coater, may be applied.
  • the porous coating layer is formed on both sides of the porous polymer substrate, it is possible to apply the coating solution on one side at a time and then solidify, wash and dry it, but the coating solution is coated on both sides at the same time on the porous polymer substrate and then solidified, washed and dried This is more preferable from the viewpoint of productivity.
  • step (S2) is immersed in a coagulating solution containing a non-solvent for the fluorine-based binder polymer (S3).
  • a non-solvent is one capable of dissolving less than 5 wt% of the fluorine-based binder polymer and the polyvinyl acetate binder polymer independently, respectively, at 25°C. That is, it means a solvent that does not dissolve the above-described binder polymer, and is not particularly limited as long as it is a liquid miscible with the solvent used to facilitate phase separation.
  • the non-solvent may include at least one selected from water, methanol, ethanol, propyl alcohol, butyl alcohol, butanediol, ethylene glycol, propylene glycol, and tripropylene glycol.
  • the immersion may be controlled for 30 to 100 seconds, or 40 to 90 seconds.
  • the immersion time satisfies this range, it can be easy to prevent the problem that the separation of the coating layer occurs due to excessive phase separation and lowering of adhesion between the porous polymer substrate and the porous coating layer, and uniform pores are formed in the thickness direction can be easy to do.
  • the step (S3) may be a process of phase-separating the slurry for forming a porous coating layer coated on the porous polymer substrate through material exchange between the solvent and the non-solvent.
  • drying the phase-separated slurry for forming the porous coating layer may include a step of forming the porous coating layer.
  • the drying may be performed in a drying chamber, and in this case, the conditions of the drying chamber are not particularly limited due to non-solvent application.
  • An electrochemical device includes an anode, a cathode, and a separator interposed between the anode and the cathode, wherein the separator is the separator according to an embodiment of the present invention described above.
  • the electrochemical device includes all devices that undergo an electrochemical reaction, and specific examples thereof include all kinds of primary, secondary batteries, fuel cells, solar cells, or capacitors such as super capacitor devices.
  • a lithium secondary battery including a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery, or a lithium ion polymer secondary battery among the secondary batteries is preferable.
  • the positive electrode and the negative electrode to be applied together with the separator of the present invention are not particularly limited, and the electrode active material may be prepared in a form bound to the electrode current collector according to a conventional method known in the art.
  • the electrode active materials include conventional positive electrode active materials that can be used in positive electrodes of conventional electrochemical devices, and in particular, lithium manganese oxide, lithium cobalt oxide, lithium nickel oxide, lithium iron oxide, or a combination thereof. It is preferable to use one lithium composite oxide.
  • a conventional negative electrode active material that can be used for a negative electrode of a conventional electrochemical device can be used, and in particular, lithium metal or lithium alloy, carbon, petroleum coke, activated carbon, A lithium adsorbent material such as graphite or other carbons is preferable.
  • the positive electrode current collector include a foil made of aluminum, nickel, or a combination thereof, and non-limiting examples of the negative electrode current collector include copper, gold, nickel, or a copper alloy or a combination thereof. foil, etc.
  • the electrolyte that can be used in the electrochemical device of the present invention is a salt having the same structure as A + B - , and A + contains an ion composed of an alkali metal cation such as Li + , Na + , K + or a combination thereof, and B - is PF 6 - , BF 4 - , Cl - , Br - , I - , ClO 4 - , AsF 6 - , CH 3 CO 2 - , CF 3 SO 3 - , N(CF 3 SO 2 ) 2 - , C (CF 2 SO 2 ) 3 -
  • a salt comprising an anion or a combination thereof, such as propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl Carbonate (DPC), dimethyl sulfoxide, acetonitrile, dimethoxyethane, diethoxyethane, tetrahydr
  • the electrolyte injection may be performed at an appropriate stage during the battery manufacturing process according to the manufacturing process and required physical properties of the final product. That is, it may be applied before assembling the battery or in the final stage of assembling the battery.
  • Al 2 O 3 (Sumitomo, AES11) as inorganic particles was dispersed in a solvent N-methyl-2-pyrrolidone, and polyvinylidene fluoride-hexafluoropropylene (Solvay, Solef 21510) was mixed with polyvinylidene fluoride-hexafluoropropylene as a fluorine-based binder polymer.
  • a slurry for forming a porous coating layer was prepared by dissolving a polyvinyl acetate binder polymer (Sigma Aldrich). At this time, the weight ratio of inorganic particles: fluorine-based binder polymer: polyvinyl acetate binder polymer was 70: 25: 5.
  • the prepared slurry for forming the porous coating layer was applied to one side of a 9 ⁇ m thick polyethylene-based porous polymer substrate (W scope, WL11B, ventilation time: 150 sec/100cc) using a doctor blade.
  • the temperature of the slurry at the time of application of the slurry was 15 °C.
  • Polyvinylidene fluoride-hexafluoropropylene (Solvay, Solef 21510) as a fluorine-based binder polymer was added to the solvent acetone and dissolved at 50° C. for about 4 hours to prepare a binder polymer solution.
  • Al 2 O 3 Suditomo, AES11
  • the inorganic particles were crushed and dispersed using a ball mill method for 12 hours to prepare a slurry for forming a porous coating layer.
  • the weight ratio of the inorganic particles: the fluorine-based binder polymer was 70:30.
  • the slurry for forming the porous coating layer was applied on both sides of a polyethylene porous film (porosity: 45%) with a thickness of 9 ⁇ m so that the total loading amount on both sides was 13.5 g/m 2 at 23° C. and 40% relative humidity by dip coating method. and drying to prepare a separator with a porous coating layer formed thereon.
  • Table 1 The results are shown in Table 1 below.
  • Polyvinylidene fluoride-hexafluoropropylene (Solvay, Solef 21510) and polyvinyl acetate binder polymer (Sigma Aldrich) were added as a fluorine-based binder polymer in acetone, and dissolved at 50° C. for about 4 hours to obtain a binder polymer solution. was prepared. After adding Al 2 O 3 (Sumitomo, AES11) as inorganic particles to the prepared binder polymer solution, the inorganic particles were crushed and dispersed using a ball mill method for 12 hours to prepare a slurry for forming a porous coating layer. At this time, the weight ratio of inorganic particles: fluorine-based binder polymer: polyvinyl acetate binder polymer was 70: 25: 5.
  • the slurry for forming the porous coating layer was applied on both sides of a polyethylene porous film (porosity: 45%) with a thickness of 9 ⁇ m so that the total loading amount on both sides was 13.5 g/m 2 at 23° C. and 40% relative humidity by dip coating method. and drying to prepare a separator with a porous coating layer formed thereon.
  • Table 1 The results are shown in Table 1 below.
  • a separator was prepared in the same manner as in Example I. except that the composition of the slurry for forming the porous coating layer was controlled.
  • a separator was prepared in the same manner as in Example I. except that the composition of the slurry for forming the porous coating layer was controlled.
  • Comparative Example I is a case in which a separation membrane is manufactured according to the existing humidified phase separation. As can be seen in Table 2, there is an advantage in that it is excellent in terms of heat shrinkage compared to the submerged phase separation. In addition, the adhesion to the electrode is also excellent at 90 gf/25 mm. However, there is a problem in that the occlusion degree of the porous polymer substrate is 1.15 ohm, and thus the resistance is large.
  • Comparative Example III. to V. relate to a separation membrane prepared according to the existing submerged phase separation.
  • the content of inorganic particles was about 60 parts by weight based on 100 parts by weight of the porous coating layer.
  • the adhesive strength with the electrode has been increased by relatively increasing the content of the binder polymer. This can also be confirmed in Table 2.
  • the thermal contraction rate of Comparative Example III. was 12/15, confirming that it was inferior to Comparative Example I., which is a separation membrane according to humidified phase separation.
  • Comparative Example IV when the weight ratio of the inorganic particles to the binder polymer was 70:30, it was still inferior to Comparative Example I., which is a separator according to humidified phase separation, in terms of adhesion and thermal contraction rate. Rather, compared to Comparative Example III., the adhesive force was significantly lowered, and a significant effect could not be obtained in terms of thermal contraction rate.
  • Comparative Example V when the weight ratio of the inorganic particles to the binder polymer was 90: 10, the same or similar values to Comparative Example I. could be obtained in terms of thermal contraction rate, but there was a problem that the adhesion with the electrode was significantly lowered. .
  • Example I according to an aspect of the present invention.
  • the degree of pore occlusion of the porous polymer substrate is 1.0 ohm or less
  • the thermal contraction rate is 10% or less in at least one of the orthogonal direction (TD)/machine direction (MD) and it was confirmed that the effect of the present invention was achieved with an adhesive force of 60 gf/25 mm or more with the electrode.
  • Experimental Example 3 is to investigate the difference in adhesive strength according to the content of the fluorine-based binder polymer and polyvinyl acrylate. For this purpose, the experiment was conducted except for inorganic particles.
  • the prepared slurry for forming the porous coating layer was applied to one side of a 9 ⁇ m thick polyethylene-based porous polymer substrate (W scope, WL11B, ventilation time: 150 sec/100cc) using a doctor blade.
  • the temperature of the slurry at the time of application of the slurry was 15 °C.
  • a separator was prepared in the same manner as in Example A, except that the weight ratio of the fluorine-based binder polymer and the polyvinyl acrylate binder polymer was controlled as shown in Table 3 below.
  • a separator was prepared in the same manner as in Example A, except that the weight ratio of the fluorine-based binder polymer and the polyvinyl acrylate binder polymer was controlled as shown in Table 3 below.
  • Experimental Example 4 shows Examples and Comparative Examples in which other binder polymers were used instead of polyvinyl acrylate binder polymers.
  • a separation membrane was prepared in the same manner as in Example II. The results are shown in Table 4.
  • a separator was prepared in the same manner as in Example 1, except that a polymethyl methacrylate (PMMA) binder polymer was used instead of the polyvinyl acrylate binder polymer.
  • PMMA polymethyl methacrylate
  • a separator was prepared in the same manner as in Example 1, except that a polyamide binder polymer was used instead of the polyvinyl acrylate binder polymer. The results are shown in Table 4.
  • a separator was prepared in the same manner as in Example 1, except that a polyacrylate binder polymer was used instead of the polyvinyl acrylate binder polymer. The results are shown in Table 4.
  • the heat shrinkage rate is calculated as (initial length - length after heat shrinkage treatment for 150° C./min)/(initial length) X 100.
  • the anode was prepared as follows.
  • the anode is made by mixing artificial graphite, carbon black, carboxymethyl cellulose (CMC, Carboxy Methyl Cellulose), and styrene-butadiene rubber (SBR, Styrene-Butadiene Rubber) with water in a weight ratio of 96: 1: 2: 2 to mix the anode slurry with water.
  • CMC carboxymethyl cellulose
  • SBR styrene-butadiene Rubber
  • the anode slurry was coated on copper foil (Cu-foil) with a capacity of 3.5 mAh/cm 2 to form a thin electrode plate, dried at 135° C. for 3 hours or more, and then pressed to prepare an anode.
  • the prepared anode was prepared by cutting it to a size of 25mm X 100mm.
  • the separators prepared in Examples and Comparative Examples were prepared by cutting them to a size of 25 mm X 100 mm. After overlapping the prepared separator and anode, they were sandwiched between PET films of 100 ⁇ m and adhered using a flat plate press. At this time, the conditions of the flat press machine were heated and pressurized for 1 second at a pressure of 6.5 MPa at 60°C. The bonded separator and anode were attached to the slide glass using double-sided tape.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Cell Separators (AREA)

Abstract

본 발명은 리튬 이차 전지용 분리막 및 이의 제조방법에 관한 것으로서, 구체적으로, 침지상분리에 있어서, 무기물 입자의 함량을 소정 함량으로 제어하고, 불소계 바인더 고분자와 폴리비닐아세테이트 바인더 고분자를 함께 사용함으로써, 열수축률을 개선하고 전극과의 접착력을 향상시킨 분리막 및 이의 제조방법을 제공할 수 있다.

Description

리튬 이차 전지용 분리막 및 이의 제조방법
본 발명은 2020년 10월 16일에 출원된 한국특허출원 제10-2020-0134283호에 기초한 우선권을 주장한다.
본 발명은 리튬 이차 전지 등의 전기화학소자에 이용될 수 있는 분리막 및 이의 제조방법에 관한 것이다.
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기 자동차의 에너지까지 적용분야가 확대되면서 전기화학소자의 연구와 개발에 대한 노력이 점점 구체화되고 있다. 전기화학소자는 이러한 측면에서 가장 주목받고 있는 분야이고 그 중에서도 충방전이 가능한 이차전지의 개발은 관심의 초점이 되고 있으며, 최근에는 이러한 전지를 개발함에 있어서 용량 밀도 및 비에너지를 향상시키기 위하여 새로운 전극과 전지의 설계에 대한 연구개발로 진행되고 있다.
현재 적용되고 있는 이차전지 중에서 1990 년대 초에 개발된 리튬 이차전지는 수용액 전해액을 사용하는 Ni-MH, Ni-Cd, 황산-납 전지 등의 재래식 전지에 비해서 작동 전압이 높고 에너지 밀도가 월등히 크다는 장점으로 각광을 받고 있다.
리튬 이차 전지 등의 전기화학소자는 많은 회사에서 생산되고 있으나 그들의 안전성 특성은 각각 다른 양상을 보인다. 이러한 전기화학소자의 안전성 평가 및 안전성 확보는 매우 중요하다. 이러한 예로서, 분리막은 양극과 음극 사이의 단락을 방지하며, 이와 동시에 리튬 이온의 이동 통로를 제공한다. 이에 따라 분리막은 전지의 안전성 및 출력 특성에 영향을 미치는 중요한 인자이다. 특히, 전기화학소자의 분리막으로서 통상적으로 사용되는 폴리올레핀계 다공성 고분자 기재는 재료적 특성과 연신을 포함하는 제조공정상의 특성으로 인하여 100 ℃이상의 온도에서 극심한 열 수축 거동을 보임으로서, 양극과 음극 사이의 단락을 일으켰다.
이와 같은 전기화학소자의 안전성 문제를 해결하기 위하여, 다수의 기공을 갖는 다공성 고분자 기재의 적어도 일면에, 과량의 무기물 입자와 바인더 고분자의 혼합물을 코팅하여 다공성 코팅층을 형성한 분리막이 제안되었다.
이러한 다공성 코팅층은 크게 가습상분리 또는 침지상분리를 통해 기공을 만들 수 있다. 이 중 가습상분리에 따라 형성된 다공성 코팅층은 열수축률 면에서는 침지상분리에 비해 우수하나, 다공성 코팅층 형성시 슬러리 내에 포함된 바인더 고분자가 다공성 고분자 기재의 기공을 폐색시키는 문제가 있다.
반면, 침지상분리는 슬러리를 기재에 도포시킴과 동시에 코팅층이 고화되기 때문에 기존 가습상분리에 따른 다공성 고분자 기재의 코팅 전/후 저항이 낮은 장점이 있다. 즉, 다공성 고분자 기재의 기공이 바인더 고분자에 의해 폐색되지 않는 장점이 있다. 그러나, 침지상분리에 따라 제조된 다공성 코팅층은, 가습상분리에 비해 특히 고온에서의 열수축이 열위에 놓이며, 분리막과 전극 사이의 접착력(Lami Strength)이 열위에 있다는 문제가 있다.
본 발명이 해결하고자 하는 과제는, 침지상분리의 장점을 살려, 다공성 고분자 기재 내 기공의 폐색을 감소시키면서, 동시에 전극과의 접착력이 개선되고, 열수축률이 향상된 분리막 및 이의 제조방법을 제공하는 것이다.
본 발명의 일 측면은 하기 구현예들에 따른 리튬 이차 전지용 분리막을 제공한다.
제1 구현예는,
다공성 고분자 기재;
상기 다공성 고분자 기재의 적어도 일면 상에 형성되어 있으며, 무기물 입자, 불소계 바인더 고분자 및 폴리비닐아세테이트(PVAc) 바인더 고분자를 포함하는 다공성 코팅층;을 구비하며,
상기 다공성 코팅층은 상기 불소계 바인더 고분자와 상기 폴리비닐아세테이트 바인더 고분자에 의해 형성된 매트릭스 내에 상기 무기물 입자가 분산된 구조이며, 상기 다공성 코팅층의 두께 방향으로, 상기 불소계 바인더 고분자, 상기 폴리비닐아세테이트 바인더 고분자 및 상기 무기물 입자가 균일하게 분포되어 있는 것이며,
상기 무기물 입자의 함량은, 상기 다공성 코팅층 100 중량부 기준으로 70 중량부 이상이며,
상기 폴리비닐아세테이트 바인더 고분자의 함량은 바인더 고분자 총 함량 100 중량부를 기준으로 80 중량부 미만인 것을 특징으로 하는 리튬 이차 전지용 분리막에 관한 것이다.
제2 구현예는,
다공성 고분자 기재;
상기 다공성 고분자 기재의 적어도 일면 상에 형성되어 있으며, 무기물 입자, 불소계 바인더 고분자 및 폴리비닐아세테이트(PVAc) 바인더 고분자를 포함하는 다공성 코팅층;을 구비하며,
상기 다공성 코팅층 내 기공은, 상기 바인더 고분자들에 대한 용매와 비용매의 물질 상호 교환에 의해 형성된 것이며,
상기 무기물 입자의 함량은, 상기 다공성 코팅층 100 중량부 기준으로 70 중량부 이상이며,
상기 폴리비닐아세테이트 바인더 고분자의 함량은 바인더 고분자 총 함량 100 중량부를 기준으로 80 중량부 미만인 것을 특징으로 하는 리튬 이차 전지용 분리막에 관한 것이다.
제3 구현예는, 제1 또는 제2 구현예에 있어서,
상기 폴리비닐아세테이트 바인더 고분자의 함량은, 상기 바인더 고분자의 함량 100 중량부를 기준으로 5 내지 75 중량부일 수 있다.
제4 구현예는, 제2 구현예 또는 제3 구현예에 있어서,
상기 용매는 N-메틸-2-피롤리돈, 디메틸아세트아미드 및 디메틸포름아미드 중 선택된 1종 이상을 포함할 수 있다.
제5 구현예는, 제2 구현예 내지 제4 구현예 중 어느 한 구현예에 있어서,
상기 비용매는 물일 수 있다.
제6 구현예는, 제1 구현예 내지 제5 구현예 중 어느 한 구현예에 있어서,
상기 불소계 바인더 고분자의 중량평균분자량은, 100,000 내지 1,500,000일 수 있다.
제7 구현예는, 제1 구현예 내지 제6 구현예 중 어느 한 구현예에 있어서,
상기 폴리비닐아세테이트 바인더 고분자의 중량평균분자량은, 100,000 내지 1,000,000일 수 있다.
제8 구현예는, 제1 구현예 내지 제7 구현예 중 어느 한 구현예에 있어서,
상기 분리막은 전극과의 접착력(Lami Strength)이 60 gf/25mm 이상일 수 있다.
제9 구현예는, 제1 구현예 내지 제8 구현예 중 어느 한 구현예에 있어서,
상기 분리막은 150 ℃에서 30분간 열을 가한 후 측정한 열수축률이 기계 방향 및 직각 방향 중 적어도 어느 하나에서 10% 이하일 수 있다.
본 발명의 다른 일 측면은 하기 구현예들에 따른 전기화학소자를 제공한다.
제10 구현예는,
양극, 음극 및 상기 음극과 양극 사이에 개재된 분리막을 포함하며,
상기 분리막은 전술한 구현예 중 어느 한 구현예에 따른 분리막인 것을 특징으로 하는 전기 화학 소자에 관한 것이다.
제11 구현예는, 제10 구현예에 있어서,
상기 전기화학소자는 리튬 이차 전지일 수 있다.
본 발명의 일 실시예에 따르면, 무기물 입자를 기존 대비 높은 함량으로 유지하며, 불소계 바인더 고분자와 폴리비닐아세테이트 바인더 고분자를 동시에 사용한 분리막을 제공할 수 있다. 이에 따라, 전극과의 접착력(Lami Strength)이 향상되고, 분리막의 내열성을 증가시킬 수 있다. 또한 다공성 고분자 기재 내 기공 폐색을 감소시킬 수 있어 분리막 내 저항을 감소시킬 수 있다.
본 명세서에 첨부되는 도면들은 본 발명의 바람직한 실시예를 예시한 것이며, 전술한 발명의 내용과 함께 본 발명의 기술 사상을 더욱 잘 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되는 것은 아니다. 한편, 본 명세서에 수록된 도면에서의 요소의 형상, 크기, 축척 또는 비율 등은 보다 명확한 설명을 강조하기 위해서 과장될 수 있다.
도 1은 본 발명의 비교예에 따른 가습상분리에 따라 제조된 분리막의 개략적인 모식도를 나타낸 것이다.
도 2는 본 발명의 비교예에 따른 가습상분리에 따라 제조된 분리막의 SEM 사진을 각각 나타낸 것이다.
도 3은 본 발명의 일 실시예에 따른 침지상분리에 따라 제조된 분리막의 개략적인 모식도를 나타낸 것이다.
도 4는 본 발명의 일 실시예에 따른 침지상분리에 따라 제조된 분리막의 SEM 사진을 각각 나타낸 것이다.
도 5는 비교예 A에 따른 분리막의 표면을 나타낸 SEM 사진이다.
도 6은 실시예 B에 따른 분리막의 표면을 나타낸 SEM 사진이다.
도 7은 실시예 C에 따른 분리막의 표면을 나타낸 SEM 사진이다.
도 8은 비교예 B에 따른 분리막의 표면을 나타낸 SEM 사진이다.
이하, 본 발명을 상세히 설명하도록 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 「연결」되어 있다고 할 때, 이는 「직접적으로 연결되어 있는 경우」뿐만 아니라 그 중간에 다른 부재를 사이에 두고 「간접적으로 연결」되어 있는 경우도 포함한다. 또한, 상기 연결은 물리적 연결뿐만 아니라 전기화학적 연결을 내포한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 「포함한다」고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
또한, 본 명세서에서 사용되는 경우 「포함한다(comprise)」 및/또는 「포함하는(comprising) 」은 언급한 형상들, 숫자, 단계, 동작, 부재, 요소 및/또는 이들 그룹의 존재를 특정하는 것이며, 하나 이상의 다른 형상, 숫자, 동작, 부재, 요소 및/또는 그룹들의 존재 또는 부가를 배제하는 것이 아니다.
본원 명세서 전체에서 사용되는 용어 「약」, 「실질적으로」 등은 언급된 의미에 고유한 제조 및 물질 허용 오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로서 사용되고 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.
본원 명세서 전체에서, 마쿠시 형식의 표면에 포함된 「이들의 조합(들)」의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어지는 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어지는 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.
본원 명세서 전체에서, 「A 및/또는 B」의 기재는 「A 또는 B 또는 이들 모두」를 의미한다.
리튬 이차 전지는 양극과 음극 사이의 물리적 접촉 및 전기적 단락을 방지하기 위하여 양극과 음극 사이에 분리막을 개재한다. 이러한 분리막은 폴리올레핀계 다공성 고분자 기재를 주로 사용하는데, 다공성 고분자 기재의 열수축을 방지하고 전극과의 접착력을 높이기 위하여, 다공성 고분자 기재의 적어도 일면상에 무기물 입자 및 바인더 고분자를 포함한 다공성 코팅층을 구비한 분리막을 주로 사용한다.
이 때 다공성 코팅층은 크게 가습상분리 또는 침지상분리에 의해 기공 구조를 형성할 수 있다. 소위 가습상분리는 다공성 코팅층 형성용 슬러리를 다공성 고분자 기재 상에 도포한 후, 가습 조건 하에서 건조시키는 것이다. 이 경우, 용매와 함께 슬러리 내 바인더 고분자가 다공성 코팅층 표면부로 올라와 전극과의 접착을 높일 수 있으며, 용매가 휘발된 자리에 기공이 형성된다. 이에 따라 가습상분리에 의하면, 다공성 코팅층이 크게 무기물 입자와 바인더 고분자가 골고루 분산되어 있는 분산층과, 바인더 고분자가 주로 분포하는 접착층으로 구분할 수 있다.
반면, 소위 침지상분리는, 다공성 코팅층 형성용 슬러리를 다공성 고분자 기재 상에 도포한 후, 비용매를 포함하는 응고조에 상기 기재를 침지시켜 슬러리 내 용매와 응고조 내 비용매의 물질 상호교환에 의해 기공을 형성하는 방식이다. 침지상분리에 따르면, 용매가 건조되어 휘발되는 것이 아니기 때문에, 가습상 분리와 달리 다공성 코팅층 표면부에 이른바 접착층이 형성되지 않는다. 환언하면, 침지상분리는 바인더 고분자 매트릭스 내에 무기물 입자가 골고루 분산되어 있는 구조이다.
이러한 침지상분리에 따른 다공성 코팅층은, 가습상분리에 따른 다공성 코팅층 대비 접착층이 존재하지 않기 때문에 전극과의 접착력이 떨어지며, 무기물 입자의 함량이 더 적기 때문에 열수축률이 열위에 놓인다. 열수축률을 개선하기 위하여 무기물 입자 함량을 늘리는 경우에는 전극과의 접착력이 더 감소하는 문제가 있다.
이에 따라, 본 발명은 침지상분리에 의해 제조된 분리막에 있어서, 열수축률을 개선시키고 동시에 전극과의 접착력이 증가된 분리막을 제공하고자 한다.
본 발명의 일 측면은, 다공성 고분자 기재;
상기 다공성 고분자 기재의 적어도 일면 상에 형성되어 있으며, 무기물 입자, 불소계 바인더 고분자 및 폴리비닐아세테이트(PVAc) 바인더 고분자를 포함하는 다공성 코팅층;을 구비하며,
상기 다공성 코팅층은 상기 불소계 바인더 고분자와 상기 폴리비닐아세테이트 바인더 고분자에 의해 형성된 매트릭스 내에 상기 무기물 입자가 분산된 구조이며, 상기 다공성 코팅층의 두께 방향으로, 상기 불소계 바인더 고분자, 상기 폴리비닐아세테이트 바인더 고분자, 상기 무기물 입자가 균일하게 분포되어 있는 것이며,
상기 무기물 입자의 함량은, 상기 다공성 코팅층 100 중량부 기준으로 70 중량부 이상이며,
상기 폴리비닐아세테이트 바인더 고분자의 함량은 바인더 고분자 총 함량 100 중량부를 기준으로 80 중량부 미만인 것을 특징으로 한다.
본 발명의 일 측면에 따른, 리튬 이차 전지용 분리막은, 소위 침지상분리법에 의해 다공성 코팅층이 형성되는 것이다. 즉, 다공성 코팅층 내에 바인더 고분자, 무기물 입자가 골고루 균일하게 분포되어 있는 것이다. 환언하면, 별도의 접착층을 포함하지 않는 것이다. 이러한 침지상분리법에 의한 분리막은, 슬러리의 도포와 동시에 코팅층이 고화되기 때문에, 기존 가습상분리에 따른 문제점인, 다공성 고분자 기재 내 기공이 바인더 고분자에 의해 폐색되는 현상을 감소시킬 수 있다. 또한, 본 발명의 일측면에 따른 분리막은 용매와 비용매의 교환반응으로 기공이 형성되므로, 가습상분리에 의해 형성된 다공성 코팅층 내 기공에 비해 복잡도가 낮아 분리막의 저항이 상대적으로 낮은 장점이 있다.
도 1 및 도 2는 본 발명의 비교예에 따른 가습상분리에 따라 제조된 분리막의 개략적인 모식도 및 SEM 사진을 각각 나타낸 것이다. 도 1에서 알 수 있는 바와 같이, 기존 가습상분리에 따라 제조된 분리막은 바인더 고분자(22)가 다공성 코팅층(20)의 표면부에 주로 위치한다.
반면, 도 3 및 도 4는 본 발명의 일 실시예에 따른 침지상분리에 따라 제조된 분리막의 개략적인 모식도 및 SEM 사진을 각각 나타낸 것이다.
도 3에서 알 수 있는 바와 같이, 본 발명의 일 측면에 따른 분리막에서는, 바인더 고분자(42)가 매트릭스 구조를 형성하며 상기 매트릭스 내에 무기물 입자(41)가 분산되어 있다.
본 발명의 일 측면에 따른, 상기 분리막은 다공성 코팅층 내 무기물 입자의 함량이 다공성 코팅층 100 중량부 기준으로 70 중량부 이상인 것이다.
기존 침지상분리법에 의하면, 무기물 입자의 함량이, 다공성 코팅층 100 중량부 기준으로 60 중량부 정도였다. 환언하면, 기존 침지상분리법에 의하면, 다공성 코팅층 내 바인더 고분자의 함량이 다공성 코팅층 100 중량부 기준으로 40 중량부 정도였다. 이는 상용되는 가습상분리에 비해 무기물 입자의 함량이 약 15~20% 적게 들어간 수치이다. 침지상분리법에 의하면, 구조적인 한계에 의해 다공성 코팅층의 표면에 별도의 접착층이 형성되지 않기 때문에, 상대적으로 바인더 고분자의 함량을 늘림으로써 전극과의 접착력을 높여왔다. 그러나, 반대 급부로 무기물 입자의 함량이 적어지게 되어 기존 가습상분리에 비해 상대적으로 열수축률이 열위에 놓였다.
본 발명자들은, 침지상분리에 의한 분리막에서도 무기물 입자의 함량을 높여 열수축률을 개선하고, 동시에 전극과의 접착력을 높이기 위하여 본 발명을 발명하였다.
즉, 본 발명의 일 측면에 따르면, 무기물 입자의 함량이 다공성 코팅층 100중량부 기준으로 70 중량부 이상, 71 중량부 이상, 72 중량부 이상, 73 중량부 이상, 74 중량부 이상 또는 75 중량부 이상이며, 95 중량부 이하, 90 중량부 이하, 또는 85 중량부 이하인 것이다. 무기물 입자의 함량이 70 중량부 미만인 경우에는, 본 발명에서 소망하는 열수축률을 얻을 수 없다. 무기물 입자의 함량이 전술한 범위를 만족하는 경우, 소망하는 열수축률을 얻으며 동시에 전극과의 접착력을 확보할 수 있다.
본 발명에서 상기 무기물 입자는 전기화학적으로 안정하기만 하면 특별히 제한되지 않는다. 즉, 본 발명에서 사용할 수 있는 무기물 입자는 적용되는 전기화학소자의 작동 전압 범위(예컨대, Li/Li+기준으로 0~5V)에서 산화 및/또는 환원 반응이 일어나지 않는 것이면 특별히 제한되지 않는다. 특히, 무기물 입자로서 유전율이 높은 무기물 입자를 사용하는 경우, 액체 전해질 내 전해질 염, 예컨대 리튬염의 해리도 증가에 기여하여 전해액의 이온 전도도를 향상시킬 수 있다.
전술한 이유들로 인해, 상기 무기물 입자는 유전율 상수가 5 이상인 무기물 입자, 리튬 이온 전달 능력을 갖는 무기물 입자, 또는 이들의 혼합물일 수 있다.
상기 유전율 상수가 5 이상인 무기물 입자는 Al2O3, SiO2, ZrO2, AlO(OH), Al(OH)3, Mg(OH)2, BaSO4, TiO2, BaTiO3, Pb(ZrxTi1-x)O3 (PZT, 여기서 0 < x < 1), Pb1-xLaxZr1-yTiyO3 (PLZT, 여기서, 0 < x < 1, 0 < y < 1임), (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT, 여기서 0 < x < 1), 하프니아(HfO2), SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, 및 SiC로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물일 수 있다.
상기 리튬 이온 전달 능력을 갖는 무기물 입자는 리튬포스페이트(Li3PO4), 리튬티타늄포스페이트(LixTiy(PO4)3, 0 < x < 2, 0 < y < 3), 리튬알루미늄티타늄포스페이트(LixAlyTiz(PO4)3, 0 < x < 2, 0 < y < 1, 0 < z < 3), (LiAlTiP)xOy 계열glass (0 < x < 4, 0 < y < 13), 리튬란탄티타네이트(LixLayTiO3, 0 < x < 2, 0 < y < 3), 리튬게르마니움티오포스페이트(LixGeyPzSw, 0 < x < 4, 0 < y < 1, 0 < z < 1, 0 < w < 5), 리튬나이트라이드(LixNy, 0 < x <4, 0 < y < 2), SiS2 계열 glass(LixSiySz, 0 < x < 3, 0 < y < 2, 0 < z < 4) 및 P2S5 계열 glass(LixPySz, 0 < x < 3, 0 < y < 3, 0 < z < 7)로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물일 수 있다.
상기 무기물 입자의 평균 입경은 특별한 제한이 없으나 균일한 두께의 다공성 코팅층 형성 및 적절한 공극률을 위하여, 0.001 내지 10 ㎛ 범위인 것이 바람직하며, 보다 바람직하게는 10 nm 내지 2㎛, 보다 더 바람직하게는 50 nm 내지 1㎛ 일 수 있다.
본 명세서 전체에서, 무기물 입자의 평균 입경은 D50 입경을 의미하며, "D50 입경"은, 입경에 따른 입자 개수 누적 분포의 50% 지점에서의 입경을 의미한다. 상기 입경은 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 구체적으로, 측정 대상 분말을 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac S3500)에 도입하여 입자들이 레이저빔을 통과할 때 입자 크기에 따른 회절패턴 차이를 측정하여 입도 분포를 산출한다. 측정 장치에 있어서의 입경에 따른 입자 개수 누적 분포의 50%가 되는 지점에서의 입자 직경을 산출함으로써, D50 입경을 측정할 수 있다.
상기 다공성 코팅층은 불소계 바인더 고분자와 폴리비닐아세테이트 바인더 고분자를 포함하는 것이다.
상기 불소계 바인더 고분자는 접착 특성을 갖는 것으로서, 상기 다공성 고분자 기재와 다공성 코팅층 간의 결착력을 제공하거나 상기 다공성 코팅층과 전극 사이의 결착력을 제공한다. 또한 다공성 코팅층 내 무기물 입자가 탈리되지 않도록 고정하는 역할을 한다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 불소계 바인더 고분자는 폴리비닐리덴플루오라이드, 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머, 폴리비닐리덴플루오라이드-트리플루오로에틸렌 코폴리머, 폴리비닐리덴플루오라이드-클로로트리플루오로에틸렌 코폴리머, 폴리비닐리덴플루오라이드-테트라플루오로에틸렌 코폴리머, 또는 이들 중 2 이상을 포함할 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 불소계 바인더 고분자의 중량평균분자량은 100,000 이상, 200,000 이상 또는 300,000 이상일 수 있으며, 1,500,000 이하, 1,000,000 이하, 또는 800,000 이하일 수 있다. 예를 들어, 내열성 및 접착성을 확보하면서도 공정성이 확보된다는 측면에서 300,000 내지 800,000일 수 있다.
이 때, 불소계 바인더 고분자의 중량평균분자량은 겔 투과 크로마토그래피 (GPC: gel permeation chromatography, PL GPC220, Agilent Technologies)를 이용하여 측정할 수 있다.
구체적으로, 하기 분석 조건 하에 측정할 수 있다:
- 컬럼: PL MiniMixed B x 2
- 용매 : DMF
- 유속 : 0.3 ml/min
- 시료농도 : 2.0 mg/ml
- 주입량 : 10 ㎕
- 컬럼온도 : 40℃
- Detector : Agilent RI detector
- Standard : Polystyrene (3차 함수로 보정)
- Data processing : ChemStation
기존과 같이 침지상분리에 따라 제조된 분리막에 있어서, 불소계 바인더 고분자만을 다공성 코팅층에 포함하는 경우에는, 전극과의 접착력이 충분하지 않았다. 반면, 본 발명의 일 측면에서는, 상기 불소계 바인더 고분자와 상기 폴리비닐아세테이트 바인더 고분자를 동시에 사용함으로써, 분리막과 전극간의 접착력을 확보할 수 있다.
본 발명의 일 측면에 따른 분리막에 있어서, 상기 폴리비닐아세테이트 바인더 고분자의 함량은 바인더 고분자 총 함량 기준으로 80 중량부 미만인 것이다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 폴리비닐아세테이트 바인더 고분자의 함량은 바인더 고분자 총 함량 기준으로 5 중량부 이상, 6 중량부 이상, 7 중량부 이상, 10 중량부 이상, 20 중량부 이상, 30 중량부 이상일 수 있으며, 80 중량부 미만, 75 중량부 이하, 70 중량부 이하, 65 중량부 이하, 60 중량부 이하, 55 중량부 이하, 50 중량부 이하, 45 중량부 이하 또는 40 중량부 이하일 수 있다. 상기 폴리비닐아세테이트 바인더 고분자의 함량이 80 중량부 이상인 경우, 전극 접착력이 향상되는 것에 비해 통기도 상승률이 커 본 발명의 효과를 달성하기에 적합하지 못하다.
본 발명의 일 측면에 있어서, 상기 폴리비닐아세테이트 바인더 고분자의 중량평균분자량은 100,000 이상, 200,000 이상 또는 300,000 이상일 수 있으며, 1,000,000 이하, 900,000 이하 또는 800,000 이하일 수 있다. 예를 들어, 내열성 및 접착성을 확보하면서도 공정성이 확보된다는 측면에서 300,000 내지 800,000일 수 있다.
이 때, 폴리비닐아세테이트 바인더 고분자의 중량평균분자량은 겔 투과 크로마토그래피 (GPC: gel permeation chromatography, PL GPC220, Agilent Technologies)를 이용하여 측정할 수 있다.
구체적으로, 하기 분석 조건 하에 측정할 수 있다:
- 컬럼: PL MiniMixed B x 2
- 용매 : DMF
- 유속 : 0.3 ml/min
- 시료농도 : 2.0 mg/ml
- 주입량 : 10 ㎕
- 컬럼온도 : 40℃
- Detector : Agilent RI detector
- Standard : Polystyrene (3차 함수로 보정)
- Data processing : ChemStation
본 발명의 일 측면에 따른 분리막에 있어서 상기 다공성 고분자 기재는, 구체적으로 다공성 고분자 필름 기재 또는 다공성 고분자 부직포 기재일 수 있다.
상기 다공성 고분자 필름 기재로는 폴리에틸렌, 폴리프로필렌과 같은 폴리올레핀으로 이루어진 다공성 고분자 필름일 수 있으며, 이러한 폴리올레핀 다공성 고분자 필름 기재는 예를 들어 80 내지 150 ℃의 온도에서 셧다운 기능을 발현한다.
이때, 폴리올레핀 다공성 고분자 필름은 고밀도 폴리에틸렌, 선형 저밀도 폴리에틸렌, 저밀도 폴리에틸렌, 초고분자량 폴리에틸렌과 같은 폴리에틸렌; 폴리프로필렌; 폴리부틸렌; 폴리펜텐; 등의 폴리올레핀계 고분자를 각각 단독 또는 이들의 2종 이상 혼합하여 형성할 수 있다.
또한, 상기 다공성 고분자 필름 기재는 폴리올레핀 외에 폴리에스테르 등의 다양한 고분자들을 이용하여 필름 형상으로 성형하여 제조될 수도 있다. 또한, 상기 다공성 고분자 필름 기재는 2층 이상의 필름층이 적층된 구조로 형성될 수 있으며, 각 필름층은 전술한 폴리올레핀, 폴리에스테르 등의 고분자 단독으로 또는 이들을 2종 이상 혼합한 고분자로 형성될 수도 있다.
또한, 상기 다공성 고분자 필름 기재 및 다공성 부직포 기재는 상기와 같은 폴리올레핀계 외에 폴리에틸렌테레프탈레이트(polyethyleneterephthalate), 폴리부틸렌테레프탈레이트(polybutyleneterephthalate), 폴리에스테르(polyester), 폴리아세탈(polyacetal), 폴리아미드(polyamide), 폴리카보네이트(polycarbonate), 폴리이미드(polyimide), 폴리에테르에테르케톤(polyetheretherketone), 폴리에테르설폰(polyethersulfone), 폴리페닐렌옥사이드(polyphenyleneoxide), 폴리페닐렌설파이드(polyphenylenesulfide), 폴리에틸렌나프탈렌(polyethylenenaphthalene) 등을 각각 단독으로 또는 이들을 혼합한 고분자로 형성될 수 있다.
상기 다공성 고분자 기재의 두께는 특별히 제한되지 않으나, 상세하게는 1 내지 100 ㎛, 더욱 상세하게는 5 내지 50 ㎛이고, 다공성 고분자 기재에 존재하는 기공 크기 및 기공도 역시 특별히 제한되지 않으나 각각 0.01 내지 50 ㎛ 및 20 내지 75 %인 것이 바람직하다.
상기 다공성 고분자 기재의 기공도 및 기공 크기는 주사 전자 현미경(SEM) 이미지, 수은 포로시미터(Mercury porosimeter), 모세관 유동 기공분포 측정기(capillary flow porometer), 또는 기공 분포 측정기(Porosimetry analyzer; Bell Japan Inc, Belsorp-II mini)를 사용하여 질소 가스 흡착 유통법에 의해 BET 6 점법으로 측정할 수 있다.
상기 다공성 코팅층의 두께는 특별히 제한되지 않으나, 상세하게는 단면 코팅 기준으로 1 내지 15 ㎛, 더욱 상세하게는 1.5 내지 10 ㎛이고, 상기 다공성 코팅층의 기공도 역시 특별히 제한되지 않으나 35 내지 85%인 것이 바람직하다.
상기 다공성 코팅층의 기공도는 주사 전자 현미경(SEM) 이미지, 수은 포로시미터(Mercury porosimeter), 모세관 유동 기공 분포 측정기(capillary flow porometer), 또는 기공 분포 측정기(Porosimetry analyzer; Bell Japan Inc, Belsorp-II mini)를 사용하여 질소 가스 흡착 유통법에 의해 BET 6 점법으로 측정할 수 있다.
상기 다공성 코팅층에서는 무기물 입자들은 충전되어 서로 접촉된 상태에서 상기 바인더 고분자에 의해 서로 결착되고, 이로 인해 무기물 입자들 사이에 인터스티셜 볼륨(interstitial volume)이 형성될 수 있고, 상기 무기물 입자 사이의 인터스티셜 볼륨(Interstitial Volume)은 빈 공간이 되어 기공을 형성할 수 있다.
즉, 바인더 고분자는 무기물 입자들이 서로 결착된 상태를 유지할 수 있도록 이들을 서로 부착, 예를 들어, 바인더 고분자가 무기물 입자 사이를 연결 및 고정시킬 수 있다. 또한, 상기 다공성 코팅층의 기공은 무기물 입자들 간의 인터스티셜 볼륨(interstitial volume)이 빈 공간이 되어 형성된 기공이고, 이는 무기물 입자들에 의한 충진 구조(closed packed or densely packed)에서 실질적으로 면접하는 무기물 입자들에 의해 한정되는 공간일 수 있다.
상기 다공성 코팅층 형성용 슬러리 성분으로 전술한 무기물 입자 및 바인더 고분자 이외에, 분산제, 기타 첨가제를 더 포함할 수 있다.
본 발명의 일 실시양태에 따른 리튬 이차 전지용 분리막은 전극과의 접착력(Lami Strength)이 60 gf/25mm 이상일 수 있다.
상기 분리막과 전극과의 접착력은 분리막과 전극을 서로 겹친 뒤 100㎛의 PET 필름 사이에 끼운 후 평판 프레스로 60℃의 6.5 MPa의 압력으로 1초 동안 가열 및 가압하여 접착시킨 후, 이를 양면 테이프를 이용해 슬라이드 글라스에 부착하고 세퍼레이터 접착면의 말단부를 떼어내어 PET 필름과 단면 접착 테이프를 이용하여 길이 방향이 연결되도록 붙인 후 UTM 장비의 아래쪽 홀더에 슬라이드 글라스를 장착한 후 UTM 장비의 위쪽 홀더에서는 세퍼레이터와 붙어 있는 PET 필름을 장착하고 측정 속도 300mm/min으로 180°로 힘을 가해 전극과 전극에 대향된 다공성 코팅층이 박리되는 데 필요한 힘을 측정하여 구할 수 있다.
본 발명의 일 실시양태에 따른 리튬 이차 전지용 분리막은 기계방향 및 직각방향 중 적어도 어느 하나에서의 열수축율이 10% 이하일 수 있다.
이 때, 상기 열수축율은 150℃에서 30분간 열을 가한 후 측정한 값이다.
상기 열수축율은 (최초 길이 - 150℃/분 동안 열수축 처리 후 길이)/(최초 길이) X 100으로 산정한다.
본 발명의 다른 일 측면에 따른 리튬 이차 전지용 분리막의 제조방법은,
(S1) 무기물 입자, 불소계 바인더 고분자, 폴리비닐아세테이트 바인더 고분자 및 상기 불소계 바인더 고분자에 대한 용매를 포함하는 다공성 코팅층 형성용 슬러리를 준비하는 단계;
(S2) 상기 다공성 코팅층 형성용 슬러리를 다공성 고분자 기재의 적어도 일면에 도포하는 단계; 및
(S3) 상기 (S2)의 결과물을 상기 불소계 바인더 고분자에 대한 비용매가 포함된 침지조에 침지시켜 다공성 코팅층을 형성하는 단계;를 포함하며,
상기 무기물 입자의 함량은, 상기 다공성 코팅층 100 중량부 기준으로 70 중량부 이상인 것을 특징으로 한다.
먼저, (S1) 무기물 입자, 불소계 바인더 고분자, 폴리비닐아세테이트 바인더 고분자 및 상기 불소계 바인더 고분자에 대한 용매를 포함하는 다공성 코팅층 형성용 슬러리를 준비한다.
상기 무기물 입자, 불소계 바인더 고분자, 폴리비닐아세테이트 바인더 고분자에 대한 것은 전술한 내용을 참조한다.
이 때, 상기 무기물 입자는 상기 용매에 분산되는 것이며, 상기 불소계 바인더 고분자 및 상기 폴리비닐아세테이트 바인더 고분자는 상기 용매에 용해되는 것이다.
본 발명에서 다공성 코팅층 형성을 위한 슬러리의 용매는 바인더 고분자를 용해시키는 것으로서, 구체적으로 25℃ 조건에서 바인더 고분자를 10 Wt% 이상 용해시킬 수 있는 것을 의미한다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 용매는 N-메틸-2-피롤리돈, 디메틸아세트아미드 및 디메틸포름아미드 중 선택된 1종 이상을 포함할 수 있다
다음으로, 상기 다공성 코팅층 형성용 슬러리를 다공성 고분자 기재의 적어도 일면에 도포한다(S2).
상기 슬러리의 도포는 마이어바, 다이 코터, 리버스 롤 코터, 그라비아 코터 등의 본 발명의 기술분야의 통상의 도공 방식을 적용할 수 있다. 상기 다공성 코팅층을 다공성 고분자 기재의 양면에 형성할 경우, 도공액을 편면씩 도공하고 나서 응고, 수세 및 건조하는 것도 가능하지만, 도공액을 양면 동시에 다공성 고분자 기재 위에 도공하고 나서 응고, 수세 및 건조하는 쪽이, 생산성의 관점에서 바람직하다.
이 후 상기 (S2) 단계의 결과물을 불소계 바인더 고분자에 대한 비용매를 포함하는 응고액에 침지시킨다(S3).
본 발명에서 비용매(non-solvent)란 25℃ 조건에서 상기 불소계 바인더 고분자 및 폴리비닐아세테이트 바인더 고분자를 각각 독립적으로 5 wt% 미만 용해시킬 수 있는 것이다. 즉, 전술한 바인더 고분자를 용해시키지 않는 용매를 의미하며, 상분리를 용이하게 하기 위해 사용된 용매와 혼화성이 있는 액체면 특별히 제한되지 않는다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 비용매는 물, 메탄올, 에탄올, 프로필알코올, 부틸알코올, 부탄디올, 에틸렌글리콜, 프로필렌글리콜, 및 트리프로필렌글리콜 중 선택된 1종 이상을 포함할 수 있다
한편, 본 발명의 일 실시양태에 있어서 상기 침지는 30 내지 100초, 또는 40 내지 90초로 제어될 수 있다. 침지 시간이 이러한 범위를 만족하는 경우에, 상분리가 과도하게 일어나 다공성 고분자 기재와 다공성 코팅층 간의 접착력이 저하되어 코팅층의 탈리가 발생되는 문제를 방지하기 용이할 수 있고, 두께 방향으로 균일한 기공을 형성하기 용이할 수 있다.
상기 (S3) 단계는 상기 용매와 상기 비용매가 물질 상호 교환을 통해 상기 다공성 고분자 기재에 코팅된 다공성 코팅층 형성용 슬러리를 상분리(phase separation)시키는 과정일 수 있다.
상기 (S3) 단계 이후에, 상분리 된 다공성 코팅층 형성용 슬러리를 건조하여 다공성 코팅층을 형성하는 과정을 포함할 수 있다.
상기 건조는 건조 챔버(drying chamber)에서 수행될 수 있으며, 이 때 비용매 도포로 인해 건조 챔버의 조건은 특별히 제한되지 않는다.
본 발명의 일 측면에 따른 전기화학소자는 양극, 음극 및 상기 양극과 음극 사이에 개재된 분리막을 포함하고, 상기 분리막이 전술한 본 발명의 일 실시예에 따른 분리막이다.
이러한 전기화학소자는 전기 화학 반응을 하는 모든 소자를 포함하며, 구체적인 예를 들면, 모든 종류의 1차, 이차 전지, 연료 전지, 태양 전지 또는 수퍼 캐패시터 소자와 같은 캐퍼시터(capacitor) 등이 있다. 특히, 상기 2차 전지 중 리튬 금속 이차 전지, 리튬 이온 이차 전지, 리튬 폴리머 이차 전지 또는 리튬 이온 폴리머 이차 전지 등을 포함하는 리튬 이차전지가 바람직하다.
본 발명의 분리막과 함께 적용될 양극과 음극의 양 전극으로는 특별히 제한되지 않으며, 당업계에 알려진 통상적인 방법에 따라 전극활물질을 전극 집전체에 결착된 형태로 제조할 수 있다. 상기 전극 활물질 중 양극 활물질의 비제한적인 예로는 종래 전기화학소자의 양극에 사용될 수 있는 통상적인 양극 활물질이 사용 가능하며, 특히 리튬망간산화물, 리튬코발트산화물, 리튬니켈산화물, 리튬철산화물 또는 이들을 조합한 리튬복합산화물을 사용하는 것이 바람직하다. 음극 활물질의 비제한적인 예로는 종래 전기화학소자의 음극에 사용될 수 있는 통상적인 음극 활물질이 사용 가능하며, 특히 리튬 금속 또는 리튬 합금, 탄소, 석유코크(petroleum coke), 활성화 탄소(activated carbon), 그래파이트(graphite) 또는 기타 탄소류 등과 같은 리튬 흡착물질 등이 바람직하다. 양극 집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있으며, 음극 집전체의 비제한적인 예로는 구리, 금, 니켈 또는 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등이 있다.
본 발명의 전기화학소자에서 사용될 수 있는 전해액은 A+B-와 같은 구조의 염으로서, A+는 Li+, Na+, K+와 같은 알칼리 금속 양이온 또는 이들의 조합으로 이루어진 이온을 포함하고 B-는 PF6 -, BF4 -, Cl-, Br-, I-, ClO4 -, AsF6 -, CH3CO2 -, CF3SO3 -, N(CF3SO2)2 -, C(CF2SO2)3 -와 같은 음이온 또는 이들의 조합으로 이루어진 이온을 포함하는 염이 프로필렌 카보네이트(PC), 에틸렌 카보네이트(EC), 디에틸카보네이트(DEC), 디메틸카보네이트(DMC), 디프로필카보네이트(DPC), 디메틸설폭사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 테트라하이드로퓨란, N-메틸-2-피롤리돈(NMP), 에틸메틸카보네이트(EMC), 감마 부티로락톤 (γ-부티로락톤) 또는 이들의 혼합물로 이루어진 유기 용매에 용해 또는 해리된 것이 있으나, 이에만 한정되는 것은 아니다.
상기 전해액 주입은 최종 제품의 제조 공정 및 요구 물성에 따라, 전지 제조 공정 중 적절한 단계에서 행해질 수 있다. 즉, 전지 조립 전 또는 전지 조립 최종 단계 등에서 적용될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
[실험예 1]
표 1에서는 가습상분리, 침지상분리에 따라 각각 제조된 분리막을 비교하였다.
실시예 Ⅰ.
용매 N-메틸-2-피롤리돈에 무기물 입자로서 Al2O3(Sumitomo社, AES11)를 분산시키고, 불소계 바인더 고분자로서 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌(Solvay社, Solef 21510)와 폴리비닐아세테이트 바인더 고분자(sigma aldrich社)를 용해시켜 다공성 코팅층 형성용 슬러리를 제조하였다. 이 때, 무기물 입자 : 불소계 바인더 고분자 : 폴리비닐아세테이트 바인더 고분자의 중량비는 70 : 25 : 5로 하였다.
제조된 다공성 코팅층 형성용 슬러리를 닥터 블레이드를 이용하여 두께 9 ㎛ 폴리에틸렌계 다공성 고분자 기재(W scope社, WL11B, 통기시간 150초/100cc)의 일면에 도포하였다. 슬러리 도포시 슬러리의 온도는 15 ℃이었다.
이후, 상기 결과물을 비용매인 물을 포함하는 응고액에 침지시켰다. 이후, 건조로로서 오븐(oven)을 이용하여 75℃의 온도 조건에서 건조 처리하여 최종적으로 전기화학소자용 분리막을 제조하였다. 이에 따른 결과를 하기 표 1에 나타내었다.
비교예 Ⅰ.
용매 아세톤에 불소계 바인더 고분자로서 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌(Solvay社, Solef 21510)을 투입하여 50 ℃에서 약 4시간 동안 용해시켜 바인더 고분자 용액을 제조하였다. 제조된 바인더 고분자 용액에 무기물 입자로서 Al2O3(Sumitomo社, AES11)를 투입한 후, 12시간 동안 볼밀법을 이용하여 무기물 입자를 파쇄 및 분산시켜 다공성 코팅층 형성용 슬러리를 제조하였다. 이 때, 무기물 입자 : 불소계 바인더 고분자의 중량비는 70 : 30으로 하였다.
상기 다공성 코팅층 형성용 슬러리를 딥 코팅 방식으로 23 ℃, 상대습도 40% 조건에서 양면에 로딩량 총합이 13.5 g/m2이 되도록 두께 9 ㎛ 폴리에틸렌 다공성 필름 (기공도: 45%)의 양면에 도포 및 건조하여 다공성 코팅층이 형성된 분리막을 제조하였다. 이에 따른 결과를 하기 표 1에 나타내었다.
비교예 Ⅱ.
용매 아세톤에 불소계 바인더 고분자로서 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌(Solvay社, Solef 21510)과 폴리비닐아세테이트 바인더 고분자(sigma aldrich社)를 투입하여 50 ℃에서 약 4시간 동안 용해시켜 바인더 고분자 용액을 제조하였다. 제조된 바인더 고분자 용액에 무기물 입자로서 Al2O3(Sumitomo社, AES11)를 투입한 후, 12시간 동안 볼밀법을 이용하여 무기물 입자를 파쇄 및 분산시켜 다공성 코팅층 형성용 슬러리를 제조하였다. 이 때, 무기물 입자 : 불소계 바인더 고분자 : 폴리비닐아세테이트 바인더 고분자의 중량비는 70 : 25 : 5로 하였다.
상기 다공성 코팅층 형성용 슬러리를 딥 코팅 방식으로 23 ℃, 상대습도 40% 조건에서 양면에 로딩량 총합이 13.5 g/m2이 되도록 두께 9 ㎛ 폴리에틸렌 다공성 필름 (기공도: 45%)의 양면에 도포 및 건조하여 다공성 코팅층이 형성된 분리막을 제조하였다. 이에 따른 결과를 하기 표 1에 나타내었다.
Figure PCTKR2021014421-appb-img-000001
표 1에서 알 수 있는 바와 같이, 실시예 I에 따라 제조된 분리막은 코팅층 제거 및 세척 후에 오히려 다공성 고분자 기재의 기공 폐색 정도가 줄어듦을 확인할 수 있었다. 반면, 비교예 Ⅰ, Ⅱ와 같이, 가습상분리에 따라 다공성 코팅층을 형성한 경우, 코팅 후 다공성 코팅층의 폐색 정도가 100% 이상 증가하였다. 또한, 비교예 Ⅰ과 같이 가습상분리에 따라 다공성 코팅층을 형성한 경우에는, 다공성 코팅층 제거 및 세척 후에 기공 폐색 정도가 실시예 Ⅰ에 따른 결과보다 400% 증가한 것을 확인할 수 있었다. 비교예 Ⅱ와 같이, 실시예 Ⅰ과 동일한 조성을 이용하여 가습상분리에 따라 다공성 코팅층을 형성한 경우, 다공성 코팅층 제거 및 세척 후에 기공 폐색 정도가 실시예 Ⅰ에 따른 결과보다 200% 증가한 것을 확인할 수 있었다.
[실험예 2]
표 2에서는, 기존 가습상분리, 기존 침지상분리에 따라 제조된 분리막과 본 발명의 일 측면에서 제조된 분리막을 비교하였다.
실시예 Ⅱ 내지 Ⅴ.
하기 표 2와 같이, 다공성 코팅층 형성용 슬러리의 조성을 제어한 것을 제외하고는 실시예 Ⅰ.과 동일한 방법으로 분리막을 제조하였다.
비교예 Ⅲ 내지 Ⅴ.
하기 표 2와 같이, 다공성 코팅층 형성용 슬러리의 조성을 제어한 것을 제외하고는 실시예 Ⅰ.과 동일한 방법으로 분리막을 제조하였다.
Figure PCTKR2021014421-appb-img-000002
비교예 Ⅰ.은 기존 가습상분리에 따라 분리막을 제조한 경우이다. 상기 표 2에서 확인할 수 있는 바와 같이, 침지상분리와 비교했을 때 열수축률 면에서 우수하다는 장점이 있다. 또한, 전극과의 접착력도 90 gf/25mm로 우수하다. 다만, 다공성 고분자 기재의 폐색 정도가 1.15 ohm으로 커 저항이 큰 문제가 있다.
비교예 Ⅲ. 내지 Ⅴ.는 기존 침지상분리에 따라 제조된 분리막에 관한 것이다. 종래 침지상분리법에 따르면, 무기물 입자의 함량이, 다공성 코팅층 100 중량부 기준으로 60 중량부 정도였다. 침지상분리법에 따르면, 구조적인 한계에 의해 다공성 코팅층의 표면에 별도의 접착층이 형성되지 않기 때문에, 상대적으로 바인더 고분자의 함량을 높여 전극과의 접착력을 높여왔다. 이는 표 2에서도 확인할 수 있다. 반면, 비교예 Ⅲ.의 열수축률은 12/15로 가습상분리에 따른 분리막인 비교예 Ⅰ.에 비해 열위에 놓임을 확인할 수 있었다.
비교예 Ⅳ.와 같이 무기물 입자와 바인더 고분자의 중량비를 70 : 30으로 하는 경우, 여전히 가습상분리에 따른 분리막인 비교예 Ⅰ.에 비해 접착력 및 열수축률 면에서 열위에 놓임을 확인할 수 있었다. 오히려, 비교예 Ⅲ.에 비해 접착력은 현저히 떨어지며 열수축률 면에서 유의미한 효과를 얻을 수 없었다.
비교예 Ⅴ.와 같이, 무기물 입자와 바인더 고분자의 중량비를 90 : 10으로 하는 경우, 열수축률 면에서는 비교예 Ⅰ.과 동등 또는 유사한 수치를 얻을 수 있었으나, 전극과의 접착력이 현저히 떨어지는 문제가 있었다.
반면, 본 발명의 일 측면에 따른 실시예 Ⅰ. 내지 Ⅴ.를 보면, 표 2에서 알 수 있는 바와 같이, 다공성 고분자 기재의 기공 폐색 정도가 1.0 ohm 이하이며, 열수축률이 직각방향(TD)/기계방향(MD) 중 적어도 어느 하나는 10% 이하이고, 전극과의 접착력이 60 gf/25mm 이상으로 본 발명의 효과를 달성하는 것을 확인할 수 있었다.
[실험예 3]
실험예 3는 불소계 바인더 고분자와 폴리비닐아크릴레이트 함량에 따른 접착력 차이를 알아보기 위한 것이다. 이를 위해 무기물 입자를 제외하고 실험하였다.
실시예 A
용매 N-메틸-2-피롤리돈에 불소계 바인더 고분자로서 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌(Solvay社, Solef 21510)와 폴리비닐아세테이트 바인더 고분자(sigma aldrich社)를 용해시켜 다공성 코팅층 형성용 슬러리를 제조하였다. 이 때, 불소계 바인더 고분자와 폴리비닐아크릴레이트 바인더 고분자의 중량비는 95 : 5로 하였다.
제조된 다공성 코팅층 형성용 슬러리를 닥터 블레이드를 이용하여 두께 9 ㎛ 폴리에틸렌계 다공성 고분자 기재(W scope社, WL11B, 통기시간 150초/100cc)의 일면에 도포하였다. 슬러리 도포시 슬러리의 온도는 15 ℃이었다.
이후, 상기 결과물을 비용매인 물을 포함하는 응고액에 침지시켰다. 이후, 건조로로서 오븐(oven)을 이용하여 75℃의 온도 조건에서 건조 처리하여 최종적으로 전기화학소자용 분리막을 제조하였다. 이에 따른 결과를 하기 표 1에 나타내었다.
실시예 B 내지 D
불소계 바인더 고분자와 폴리비닐아크릴레이트 바인더 고분자의 중량비를 하기 표 3과 같이 제어한 것을 제외하고는, 실시예 A와 동일한 방법으로 분리막을 제조하였다.
비교예 A, B
불소계 바인더 고분자와 폴리비닐아크릴레이트 바인더 고분자의 중량비를 하기 표 3과 같이 제어한 것을 제외하고는, 실시예 A와 동일한 방법으로 분리막을 제조하였다.
Figure PCTKR2021014421-appb-img-000003
표 3에서, 비교예 B의 경우, 통기도 상승률에 비해 전극 접착력 상승률이 높지 않아 본 발명의 효과를 기대하기 어려웠다. 한편, 비교예 A의 경우 전극 접착력이 본 발명에서 목적하는 수치까지 달성되지 않았다.
[실험예 4]
실험예 4는 폴리비닐아크릴레이트 바인더 고분자 대신에 다른 바인더 고분자를 사용한 경우에 따른 실시예 및 비교예를 나타낸 것이다.
실시예 1
실시예 Ⅱ.와 같은 방법으로 분리막을 제조하였다. 이에 따른 결과를 표 4에 나타내었다.
비교예 1
폴리비닐아크릴레이트 바인더 고분자 대신에 폴리메틸메타크릴레이트(PMMA) 바인더 고분자를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 분리막을 제조하였다. 이에 따른 결과를 표 4에 나타내었다.
비교예 2
폴리비닐아크릴레이트 바인더 고분자 대신에 폴리아마이드 바인더 고분자를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 분리막으로 제조하였다. 이에 따른 결과를 표 4에 나타내었다.
비교예 3
폴리비닐아크릴레이트 바인더 고분자 대신에 폴리아크릴레이트 바인더 고분자를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 분리막을 제조하였다. 이에 따른 결과를 표 4에 나타내었다.
Figure PCTKR2021014421-appb-img-000004
표 4에서와 같이, 폴리비닐아크릴레이트 바인더 고분자가 아닌 폴리아마이드, 폴리메틸메타크릴레이트, 또는 폴리아크릴레이트 바인더 고분자를 사용한 경우에는, 다공성 고분자 기재의 폐색 정도, 열수축률, 전극과의 접착력을 동시에 만족시키는 데에 어려움이 있었다.
평가방법
1) 다공성 고분자 기재의 기공 폐색 정도 측정 방법
분리막 내 다공성 코팅층을 셀로판 테이프(3M cat. 810D)로 2~3회 제거한 후 지름이 19 π가 되도록 타발하였다. 타발된 분리막을 CR2610 코인셀에 넣고, 1M의 리튬헥사플루오로포스페이트(LiPF6)가 용해된 에틸렌카보네이트 / 프로필렌카보네이트 / 디에틸카보네이트 (EC/PC/DEC=30:20:50 중량%)인 전해액으로 충진하여 코인셀을 제작하였다. 제작된 코인셀의 AC 저항을 측정하고, 그 결과를 표 1에 나타내었다. 이 때, AC 저항은 EIS(Ametek사)로 1KHz에서의 저항을 측정한 값이며 5회 측정하여 평균치로 나타내었다.
2) 열수축률 측정 방법
상기 열수축율은 (최초 길이 - 150℃/분 동안 열수축 처리 후 길이)/(최초 길이) X 100으로 산정한다.
3) 전극과 분리막 간 접착력(Lami Strength) 측정방법
전극과 세퍼레이터 간 접착력(Lami Strength)을 측정하기 위하여 다음과 같이 애노드를 준비하였다.
먼저, 애노드는 인조 흑연, 카본 블랙, 카르복시메틸셀룰로오스(CMC, Carboxy Methyl Cellulose), 스티렌 부타디엔 고무(SBR, Styrene-Butadiene Rubber)를 96 : 1 : 2 : 2의 중량비로 물과 혼합하여 애노드 슬러리를 제조하였다. 상기 애노드 슬러리를 3.5 mAh/cm2 용량으로 구리 호일(Cu-foil) 위에 코팅하여 얇은 극판의 형태로 만든 후 135 ℃에서 3시간 이상 건조시킨 후 압연(pressing)하여 애노드를 제조하였다.
제조된 애노드를 25mm X 100mm 크기로 재단하여 준비하였다. 실시예 및 비교예에서 제조된 세퍼레이터를 25mm X 100mm 크기로 재단하여 준비하였다. 준비된 세퍼레이터와 애노드를 서로 겹친 뒤 100㎛의 PET 필름 사이에 끼운 후 평판 프레스를 사용하여 접착시켰다. 이때, 평판 프레스기의 조건은 60℃의 6.5 MPa의 압력으로 1초 동안 가열 및 가압하였다. 접착된 세퍼레이터와 애노드는 양면 테이프를 이용해 슬라이드 글라스에 부착하였다. 세퍼레이터 접착면의 말단부(접착면 끝에서 10 mm 이하)를 떼어내어 25mm X 100mm PET 필름과 단면 접착 테이프를 이용하여 길이 방향이 연결되도록 붙였다. 이 후, UTM 장비(LLOYD Instrument LF Plus)의 아래쪽 홀더에 슬라이드 글라스를 장착한 후 UTM 장비의 위쪽 홀더에서는 세퍼레이터와 붙어 있는 PET 필름을 장착하고 측정 속도 300mm/min으로 180°로 힘을 가해 애노드와 애노드에 대향된 다공성 코팅층이 박리되는 데 필요한 힘을 측정하였다.

Claims (11)

  1. 다공성 고분자 기재;
    상기 다공성 고분자 기재의 적어도 일면 상에 형성되어 있으며, 무기물 입자, 불소계 바인더 고분자 및 폴리비닐아세테이트(PVAc) 바인더 고분자를 포함하는 다공성 코팅층;을 구비하며,
    상기 다공성 코팅층은 상기 불소계 바인더 고분자와 상기 폴리비닐아세테이트 바인더 고분자에 의해 형성된 매트릭스 내에 상기 무기물 입자가 분산된 구조이며, 상기 다공성 코팅층의 두께 방향으로, 상기 불소계 바인더 고분자, 상기 폴리비닐아세테이트 바인더 고분자 및 상기 무기물 입자가 균일하게 분포되어 있는 것이며,
    상기 무기물 입자의 함량은, 상기 다공성 코팅층 100 중량부 기준으로 70 중량부 이상이며,
    상기 폴리비닐아세테이트 바인더 고분자의 함량은 바인더 고분자 총 함량 100 중량부를 기준으로 80 중량부 미만인 것을 특징으로 하는 리튬 이차 전지용 분리막.
  2. 다공성 고분자 기재;
    상기 다공성 고분자 기재의 적어도 일면 상에 형성되어 있으며, 무기물 입자, 불소계 바인더 고분자 및 폴리비닐아세테이트(PVAc) 바인더 고분자를 포함하는 다공성 코팅층;을 구비하며,
    상기 다공성 코팅층 내 기공은, 상기 바인더 고분자들에 대한 용매와 비용매의 물질 상호 교환에 의해 형성된 것이며,
    상기 무기물 입자의 함량은, 상기 다공성 코팅층 100 중량부 기준으로 70 중량부 이상이며,
    상기 폴리비닐아세테이트 바인더 고분자의 함량은 바인더 고분자 총 함량 100 중량부를 기준으로 80 중량부 미만인 것을 특징으로 하는 리튬 이차 전지용 분리막.
  3. 제1항 또는 제2항에 있어서,
    상기 폴리비닐아세테이트 바인더 고분자의 함량은, 상기 바인더 고분자의 함량 100 중량부를 기준으로 5 내지 75 중량부인 것을 특징으로 하는 리튬 이차 전지용 분리막.
  4. 제2항에 있어서,
    상기 용매는 N-메틸-2-피롤리돈, 디메틸아세트아미드 및 디메틸포름아미드 중 선택된 1종 이상을 포함하는 것을 특징으로 하는 리튬 이차 전지용 분리막.
  5. 제2항에 있어서,
    상기 비용매는 물인 것을 특징으로 하는 리튬 이차 전지용 분리막.
  6. 제1항 또는 제2항에 있어서,
    상기 불소계 바인더 고분자의 중량평균분자량은, 100,000 내지 1,500,000 인 것을 특징으로 하는 리튬 이차 전지용 분리막.
  7. 제1항 또는 제2항에 있어서,
    상기 폴리비닐아세테이트 바인더 고분자의 중량평균분자량은, 100,000 내지 1,000,000인 것을 특징으로 하는 리튬 이차 전지용 분리막.
  8. 제1항 또는 제2항에 있어서,
    상기 분리막은 전극과의 접착력(Lami Strength)이 60 gf/25mm 이상인 것을 특징으로 하는 리튬 이차 전지용 분리막.
  9. 제1항 또는 제2항에 있어서,
    상기 분리막은 150 ℃에서 30분간 열을 가한 후 측정한 열수축률이 기계 방향 및 직각 방향 중 적어도 어느 하나에서 10% 이하인 것을 특징으로 하는 리튬 이차 전지용 분리막.
  10. 양극, 음극 및 상기 음극과 양극 사이에 개재된 분리막을 포함하며,
    상기 분리막은 제1항 내지 제2항 중 어느 한 항에 따른 분리막인 것을 특징으로 하는 전기화학 소자.
  11. 제10항에 있어서,
    상기 전기화학소자는 리튬 이차 전지인 것을 특징으로 하는 전기 화학 소자.
PCT/KR2021/014421 2020-10-16 2021-10-15 리튬 이차 전지용 분리막 및 이의 제조방법 WO2022080978A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022572420A JP2023527809A (ja) 2020-10-16 2021-10-15 リチウム二次電池用分離膜及びその製造方法
EP21880624.8A EP4152507A1 (en) 2020-10-16 2021-10-15 Separator for lithium secondary battery and preparation method therefor
US17/928,817 US20230223656A1 (en) 2020-10-16 2021-10-15 Separator for lithium secondary battery and method for manufacturing the same
CN202180037416.9A CN115668622A (zh) 2020-10-16 2021-10-15 用于锂二次电池的隔板和用于制造该隔板的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200134283 2020-10-16
KR10-2020-0134283 2020-10-16

Publications (1)

Publication Number Publication Date
WO2022080978A1 true WO2022080978A1 (ko) 2022-04-21

Family

ID=81207411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/014421 WO2022080978A1 (ko) 2020-10-16 2021-10-15 리튬 이차 전지용 분리막 및 이의 제조방법

Country Status (6)

Country Link
US (1) US20230223656A1 (ko)
EP (1) EP4152507A1 (ko)
JP (1) JP2023527809A (ko)
KR (1) KR20220050815A (ko)
CN (1) CN115668622A (ko)
WO (1) WO2022080978A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140017762A (ko) * 2012-07-31 2014-02-12 삼성에스디아이 주식회사 세퍼레이터, 이를 채용한 리튬전지 및 상기 세퍼레이터 제조방법
KR20170037556A (ko) * 2015-09-25 2017-04-04 주식회사 엘지화학 상분리를 이용하여 무기물 코팅층을 포함하는 분리막을 제조하는 방법
KR20200021435A (ko) * 2018-08-20 2020-02-28 주식회사 엘지화학 분리막의 제조방법 및 그에 의해 제조된 분리막
KR20200034470A (ko) * 2018-09-21 2020-03-31 주식회사 엘지화학 세퍼레이터 및 이를 포함하는 전기화학소자
KR20200085190A (ko) * 2019-01-04 2020-07-14 주식회사 엘지화학 전기화학소자용 분리막, 이를 포함하는 전기화학소자 및 분리막의 제조방법
KR20200134283A (ko) 2018-03-27 2020-12-01 게이츠 코포레이션 인장기

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106876640B (zh) * 2014-08-29 2018-04-20 住友化学株式会社 层叠体、间隔件和非水二次电池
WO2018055882A1 (ja) * 2016-09-21 2018-03-29 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
JP2018163872A (ja) * 2017-03-03 2018-10-18 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
JP6682481B2 (ja) * 2017-08-04 2020-04-15 矢崎総業株式会社 導体モジュール

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140017762A (ko) * 2012-07-31 2014-02-12 삼성에스디아이 주식회사 세퍼레이터, 이를 채용한 리튬전지 및 상기 세퍼레이터 제조방법
KR20170037556A (ko) * 2015-09-25 2017-04-04 주식회사 엘지화학 상분리를 이용하여 무기물 코팅층을 포함하는 분리막을 제조하는 방법
KR20200134283A (ko) 2018-03-27 2020-12-01 게이츠 코포레이션 인장기
KR20200021435A (ko) * 2018-08-20 2020-02-28 주식회사 엘지화학 분리막의 제조방법 및 그에 의해 제조된 분리막
KR20200034470A (ko) * 2018-09-21 2020-03-31 주식회사 엘지화학 세퍼레이터 및 이를 포함하는 전기화학소자
KR20200085190A (ko) * 2019-01-04 2020-07-14 주식회사 엘지화학 전기화학소자용 분리막, 이를 포함하는 전기화학소자 및 분리막의 제조방법

Also Published As

Publication number Publication date
JP2023527809A (ja) 2023-06-30
CN115668622A (zh) 2023-01-31
KR20220050815A (ko) 2022-04-25
EP4152507A1 (en) 2023-03-22
US20230223656A1 (en) 2023-07-13

Similar Documents

Publication Publication Date Title
WO2020096310A1 (ko) 전기화학소자용 세퍼레이터 및 이를 포함하는 전기화학소자
WO2014092334A1 (ko) 수계 코팅액을 이용한 유/무기 복합 코팅 다공성 분리막과 그의 제조방법 및 상기 분리막을 이용한 전기화학소자
WO2021172958A1 (ko) 리튬 이차 전지용 분리막 및 이의 제조방법
WO2020060310A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2020055217A1 (ko) 전기화학소자용 세퍼레이터 및 이의 제조방법
WO2022050801A1 (ko) 전기화학소자용 분리막 및 이의 제조방법
WO2020130723A1 (ko) 전기화학소자용 세퍼레이터 및 이를 포함하는 전기화학소자
WO2020067845A1 (ko) 개선된 전극접착력 및 저항 특성을 갖는 리튬이차전지용 분리막 및 상기 분리막을 포함하는 리튬이차전지
WO2022086246A1 (ko) 리튬 이차전지용 세퍼레이터 및 이를 구비한 리튬 이차전지
WO2019103545A1 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자
WO2022015026A1 (ko) 이차전지용 세퍼레이터, 이의 제조방법 및 상기 세퍼레이터를 구비한 이차전지
WO2021086088A1 (ko) 개선된 전극접착력 및 저항 특성을 갖는 리튬이차전지용 분리막 및 상기 리튬이차전지용 분리막을 포함하는 리튬이차전지
WO2022015119A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2020091537A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2022158951A2 (ko) 리튬 이차전지용 세퍼레이터 및 이를 구비한 리튬 이차전지
WO2020171661A1 (ko) 리튬이차전지용 세퍼레이터 및 이의 제조방법
WO2022071775A1 (ko) 리튬 이차 전지용 분리막, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2020197102A1 (ko) 전기화학소자용 세퍼레이터의 제조방법
WO2022086142A1 (ko) 분리막 및 이를 포함하는 리튬 이차 전지
WO2024091010A1 (ko) 분리막용 중합체 조성물 및 이를 포함하는 이차전지
WO2021020887A1 (ko) 전기화학소자용 복합 분리막 및 이를 포함하는 전기화학소자
WO2021256905A1 (ko) 분리막의 제조방법 및 이에 의해 제조된 분리막
WO2019245202A1 (ko) 전기화학소자용 세퍼레이터, 이의 제조방법 및 이를 포함하는 전기화학소자
WO2022075658A1 (ko) 이차전지용 세퍼레이터의 제조 방법, 이로부터 제조된 세퍼레이터, 및 이를 구비한 이차전지
WO2022080978A1 (ko) 리튬 이차 전지용 분리막 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21880624

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022572420

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021880624

Country of ref document: EP

Effective date: 20221215

NENP Non-entry into the national phase

Ref country code: DE