WO2022080792A1 - 모터 - Google Patents
모터 Download PDFInfo
- Publication number
- WO2022080792A1 WO2022080792A1 PCT/KR2021/013972 KR2021013972W WO2022080792A1 WO 2022080792 A1 WO2022080792 A1 WO 2022080792A1 KR 2021013972 W KR2021013972 W KR 2021013972W WO 2022080792 A1 WO2022080792 A1 WO 2022080792A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- housing
- rotor
- shaft
- disposed
- region
- Prior art date
Links
- 230000004323 axial length Effects 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims description 9
- 239000000314 lubricant Substances 0.000 claims description 4
- 239000012530 fluid Substances 0.000 description 5
- 239000012212 insulator Substances 0.000 description 4
- 230000003993 interaction Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/003—Couplings; Details of shafts
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/04—Casings or enclosures characterised by the shape, form or construction thereof
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/04—Casings or enclosures characterised by the shape, form or construction thereof
- H02K5/16—Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
- H02K5/167—Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using sliding-contact or spherical cap bearings
- H02K5/1675—Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using sliding-contact or spherical cap bearings radially supporting the rotary shaft at only one end of the rotor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/10—Structural association with clutches, brakes, gears, pulleys or mechanical starters
- H02K7/116—Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/14—Structural association with mechanical loads, e.g. with hand-held machine tools or fans
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2205/00—Specific aspects not provided for in the other groups of this subclass relating to casings, enclosures, supports
- H02K2205/09—Machines characterised by drain passages or by venting, breathing or pressure compensating means
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2213/00—Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
- H02K2213/03—Machines characterised by numerical values, ranges, mathematical expressions or similar information
Definitions
- the present invention relates to a motor.
- the motor may be a driving source for supplying oil to a hydraulic line in a transmission or braking device requiring oil circulation.
- a motor may include a motor unit and a pump unit.
- the motor unit may include a shaft, a rotor, a stator, and a housing accommodating the rotor and the stator therein.
- the pump unit may include a second housing, an inner rotor connected to the shaft, and an outer rotor disposed on the second housing and engaged with the inner rotor.
- a suction port and an exhaust port may be disposed in the second housing.
- the shaft must be disposed across the motor and pump parts, bearings are required to support the shaft.
- the bearings may be respectively disposed on one side and the other side of the rotor with respect to the rotor. Since the bearing must be supported by a housing and a washer, the housing structure is complicated, the number of parts increases, and the assembly process is complicated.
- an object of the present invention is to solve the above problems, and an object of the present invention is to provide a motor capable of implementing smooth rotation of a pump gear without a bearing.
- An embodiment for achieving the above object includes a first housing, a stator disposed inside the first housing, a rotor disposed to correspond to the stator, a shaft coupled to the rotor, and the shaft passing through a second housing, a pump gear disposed in the second housing, and the shaft includes a first area coupled to the pump gear, a second area coupled to the second housing, a third area coupled to the rotor, and and a fourth region protruding from the rotor to the bottom surface of the first housing, wherein the axial length of the fourth region is less than the minimum distance between the bottom surface of the rotor and the bottom surface of the first housing.
- An embodiment includes a first housing, a rotor disposed inside the first housing, a shaft fixed to the rotor, a second housing supporting the shaft to rotate, a pump gear fixed to the shaft,
- the second housing includes a protrusion protruding toward the rotor, and the protrusion includes a hole into which the shaft is to be rotated and a second groove connected to the hole and through which lubricant is introduced, the bottom of the first housing It is possible to provide a motor in which a bearing is not disposed between the surface and the rotor.
- a first housing including a base and a sidewall extending from the base, a stator disposed inside the first housing, a rotor disposed to correspond to the stator, a shaft coupled to the rotor, A second housing through which the shaft passes, a pump gear disposed in the second housing, and the shaft are coupled to a first region coupled to the pump gear, a second region coupled to the second housing, and the rotor
- the motor may include a third region and a fourth region protruding from the rotor to the bottom surface of the first housing, wherein the fourth region does not overlap the base in a direction perpendicular to an axial direction.
- a ball bearing may not be disposed between the pump gear and the rotor.
- a ratio of the axial length of the first region to the axial length of the second region may be 1:2.0 to 1:3.0.
- a ratio of the axial length of the second region to the axial length of the third region may be 1:1.2 to 1:1.3.
- the second housing and the shaft may be in contact.
- the lowermost end of the coil of the stator may be disposed closer to the bottom surface of the first housing than the lowermost end of the shaft.
- the lowermost end of the coil of the stator may be disposed closer to the base than the lowermost end of the shaft.
- the protrusion may overlap a portion of the first housing in a direction perpendicular to the shaft.
- FIG. 1 is a perspective view of a motor according to a preferred embodiment of the present invention.
- Figure 2 is a side cross-sectional view of the motor shown in Figure 1,
- FIG. 3 is a view showing the outer surface of the first part of the second housing
- FIG. 5 is an enlarged view of A of FIG. 2;
- Fig. 6 is an enlarged view of A of Fig. 2, showing the length of each of the first region, the second region, the third region, and the fourth region of the shaft;
- FIG. 7 is a cross-sectional view illustrating a bottom portion of the first housing.
- the direction parallel to the longitudinal direction (up and down direction) of the shaft is called the axial direction
- the direction perpendicular to the axial direction with respect to the shaft is called the radial direction
- the direction along a circle having a radial radius around the shaft is the circumference called the direction.
- FIG. 1 is a perspective view of a motor according to a preferred embodiment of the present invention
- FIG. 2 is a side cross-sectional view of the motor shown in FIG. 1 .
- 1 and 2 are only the main characteristic parts clearly shown in order to understand the present invention clearly conceptually, and as a result, various modifications of the illustration are expected, and the scope of the present invention is limited by the specific shape shown in the drawings. It need not be limited.
- the term “inside” refers to a direction from the housing 200 toward the shaft 100, which is the center of the motor
- “outside” refers to a direction opposite to the inside, which is a direction from the shaft 100 to the housing 200.
- the circumferential direction or the radial direction is based on the axial center, respectively.
- the motor may include a housing 200 and a second housing 300 .
- the housing 200 may include a motor unit M.
- the second housing 300 may include a pump unit P.
- the second housing 300 may be coupled to the housing 200 .
- the motor unit M transmits power to the pump unit P, and may include a shaft 100 , a rotor 10 , and a stator 20 .
- the pump unit P is a pump gear, and includes an inner rotor 50 and an outer rotor 40 .
- the shaft 100 may be coupled to the rotor 10 .
- the shaft 100 is disposed extending from the motor unit M to the pump unit P.
- the shaft 100 may be rotatably disposed in the second housing 300 .
- the end of the shaft 100 may be coupled to the inner rotor 50 of the pump unit (P).
- the pump unit P operates while the inner rotor 50 rotates.
- the rotor 10 rotates through electrical interaction with the stator 20 .
- the rotor 10 may be disposed to correspond to the stator 20 and may be disposed inside.
- the stator 20 is disposed outside the rotor 10 .
- the stator 20 may include a stator core 21 , an insulator 22 , and a coil 23 .
- the insulator 22 is seated on the stator core 21 .
- the coil 23 is mounted on the insulator 22 .
- the coil 23 causes an electrical interaction with the magnet of the rotor 10 .
- the bus bar 30 may be disposed on one side of the stator 20 and may be connected to the coil 23 .
- the housing 200 may be disposed outside the stator 20 .
- the housing 200 may be a cylindrical member.
- the pump unit P serves to receive power from the motor unit M to pump the fluid.
- the pump unit P is a pump gear, and may include an outer rotor 40 and an inner rotor 50 .
- the outer rotor 40 is disposed outside the inner rotor 50 .
- the inner rotor 50 may have N outer lobes formed along the circumferential direction outward in the radial direction with respect to the axial center.
- the outer rotor 40 may be radially inwardly formed with N+1 inner lobes. At this time, the outer lobe may be formed to be caught on the inner lobe.
- the outer rotor 40 rotates at a rotation ratio of (N+1)/N.
- the pump unit P has a certain eccentric structure when the inner rotor 50 rotates. Due to this eccentricity, there is a space for transporting fluid (oil) between the inner rotor 50 and the outer rotor 40. Occurs. That is, during the rotational movement of the inner rotor 50, the portion with the increased volume sucks the surrounding fluid due to the pressure drop, and the portion with the reduced volume discharges the fluid due to the increase in pressure.
- the second housing 300 may be divided into a first part 310 and a second part 320 that are coupled to each other.
- the first part 310 may be coupled to the housing 200
- the second part 320 may be coupled to an external device.
- FIG 3 is a view illustrating an outer surface of the first part 310 of the second housing 300 .
- a hole H is disposed in the first part 310 of the second housing 300 .
- the suction port IP and the discharge port OP may be respectively concavely disposed around the hole H in the first part 310 of the second housing 300 .
- a first groove G1 and a second groove G2 may be disposed in the first part 310 .
- the first groove G1 may be disposed to be connected to the hole H.
- the second groove G2 may be disposed inside the hole H, and may be disposed to be connected to the first groove G1.
- the second groove G2 may be concavely disposed in the inner wall of the hole H.
- the first groove G1 and the second groove G2 guide the lubricant to flow smoothly into the gap between the shaft 100 and the hole H.
- FIG 4 is a view illustrating an inner surface of the first part 310 of the second housing 300 .
- the first part 310 of the second housing 300 may include a body 311 and a protrusion 312 .
- the protrusion 312 protrudes in the axial direction from one surface of the body 311 .
- the protrusion 312 protrudes toward the rotor 10 in the axial direction.
- the protrusion 312 may be a truncated conical member.
- a part of the hole H may be disposed on the body 311 , and the remainder of the hole H may be disposed on the protrusion 312 .
- the protrusion 312 may be disposed to overlap the bus bar 30 in a direction perpendicular to the axial direction. Alternatively, the protrusion 312 may be disposed to overlap a portion of the insulator 22 in a direction perpendicular to the shaft 100 . In addition, the protrusion 312 may be disposed to overlap a portion of the first housing 200 in a direction perpendicular to the shaft 100 .
- the shaft 100 is rotatably supported by the second housing 300 without a separate bearing. Specifically, the shaft 100 is rotatably supported by the hole H.
- the shaft 100 can be sufficiently supported without a separate bearing.
- the protrusion 312 may be disposed adjacent to the rotor 10 in the axial direction to secure a sufficient length of the hole H.
- the shaft 100 since the shaft 100 is disposed long from the motor part M to the pump part P, the hole H is disposed between the motor part M and the pump part P with respect to the axial direction.
- the shaft 100 may be stably supported without a bearing.
- FIG. 5 is an enlarged view of A of FIG. 2 .
- the shaft may include a first region 101 , a second region 102 , a third region 103 , and a fourth region 104 sequentially along the longitudinal direction.
- the first region 101 is a partial region of the shaft 100 coupled to the inner rotor 50 .
- the second region 102 is a partial region of the shaft 100 coupled to the second housing 300 .
- the third region 103 is a partial region of the shaft 100 coupled to the rotor 10 .
- the fourth region 104 is a partial region of the shaft 100 protruding from the rotor 10 to the bottom surface of the first housing 200 .
- One end of the shaft 100 is press-fitted into the inner rotor 50 .
- the other end of the shaft 100 is press-fitted into the rotor 10 .
- the shaft 100 is rotatably supported by the protrusion 312 of the second housing 300 . Because a second groove (G2) is provided on the inner surface of the hole (H) of the protrusion (312) and the lubricant is supplied to the gap between the shaft (100) and the hole (H).
- the shaft 100 may rotate smoothly inside the hole H.
- both ends of the shaft 100 are fixed by the inner rotor 50 and the rotor 10, respectively, and rotatably supported by the protrusion 312, not only between the inner rotor 50 and the rotor 10 , between the end of the shaft 100 and the bottom surface of the first housing 200 , all bearings supporting the shaft 100 may be deleted.
- a gap between the shaft 100 and the hole H may be within a range of 0.01 mm to 0.05 mm. In this clearance range, radially, support for the shaft 100 is possible and smooth rotation can be maintained at the same time.
- a gap T between the inner rotor 50 and the second part 320 of the second housing 300 may be within a range of 0.01 mm to 0.1 mm. In this clearance range, in the axial direction, support for the shaft 100 is possible and smooth rotation can be maintained at the same time. At this time, since the inner rotor 50 serves to support the axial load, it is possible to increase the structural stability of the shaft 100 without a bearing.
- FIG. 6 is an enlarged view of FIG. 2A , showing the length of each of the first region 101 , the second region 102 , the third region 103 , and the fourth region 104 of the shaft 100 . am.
- the ratio of the axial length L1 of the first region 101 to the axial length L2 of the second region 102 is 1:2.0 to 1:3.0 days.
- a ratio of the axial length L2 of the second region 102 to the axial length L3 of the third region 103 may be 1:1.2 to 1:1.3. In this condition, support for the shaft 100 is possible and smooth rotation can be maintained at the same time.
- the axial length L1 of the fourth region 104 is smaller than the minimum distance L5 between the lower surface of the rotor 10 and the bottom surface of the first housing 200 . This configuration is possible because the fourth region 104 does not come into contact with other parts and there is no bearing between the rotor 10 and the bottom surface of the first housing 200 in the axial direction.
- FIG. 7 is a cross-sectional view illustrating a bottom portion of the first housing 200 .
- the lowermost end of the coil of the stator may be disposed closer to the bottom surface of the first housing 200 than the lowermost end of the shaft 100 .
- the lowest end of the coil 23 of the stator 20 and the minimum of the base 210 The distance D1 may be smaller than the minimum distance D2 between the lowermost end of the shaft 100 and the base 210 .
- the base 210 it may have a simple structure in the form of a flat plate.
- the fourth region 104 of the shaft 100 does not overlap the base 210 in a direction perpendicular to the axial direction.
- the inner rotor type motor has been described as an example, but the present invention is not limited thereto.
- the present invention is also applicable to an outer rotor type motor.
- the motor in which the bus bar 30 is disposed has been described as an example, but it is also applicable to a motor without the bus bar 30 .
- it can be used in various devices such as vehicles or home appliances.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
- Details And Applications Of Rotary Liquid Pumps (AREA)
- Rotary Pumps (AREA)
- Motor Or Generator Frames (AREA)
Abstract
본 발명은 제1 하우징; 상기 제1 하우징의 내부에 배치되는 스테이터; 상기 스테이터와 대응되게 배치되는 로터; 상기 로터와 결합된 샤프트; 상기 샤프트가 관통하는 제2 하우징; 상기 제2 하우징에 배치되는 펌프 기어; 상기 샤프트는 상기 펌프 기어와 결합하는 제1 영역, 상기 제2 하우징과 결합하는 제2 영역, 상기 로터와 결합하는 제3 영역, 상기 로터로부터 상기 제1 하우징의 바닥면으로 돌출된 제4 영역을 포함하고, 상기 제4 영역의 축방향 길이는 상기 로터의 하면과 상기 제1 하우징의 바닥면까지의 최소거리보다 작은 모터를 제공할 수 있다.
Description
본 발명은 모터에 관한 것이다.
모터는 오일의 순환이 필요한 변속기 또는 제동장치 등에서 유압 라인에 오일을 공급하는 구동원일 수 있다. 이러한 모터는 모터부와 펌프부를 포함할 수 있다. 모터부는 샤프트와 로터와 스테이터와 로터와 스테이터를 내부에 수용하는 하우징을 포함할 수 있다. 펌프부는 제2 하우징과, 샤프트에 연결되는 내부로터와, 제2 하우징에 배치되어 내부로터와 맞물리는 외부로터를 포함할 수 있다. 제2 하우징에는 흡입포트와 배출포트가 배치될 수 있다. 모터부의 로터가 회전하면 유체(오일)는 흡입포트로 유입되어 배출포트로 유출된다.
샤프트는 모터부와 펌프부를 걸쳐 배치되어야 하기 때문에 축 지지를 위한 베어링이 필요하다. 베어링은 로터를 기준으로, 로터의 일측과 타측에 각각 배치될 수 있다. 베어링은 하우징과 와셔등에 의해 지지되어야 하기 때문에 하우징 구조가 복잡하고, 부품수가 늘어나며, 조립 공정이 복잡한 문제점이 있다.
또한, 베어링의 불량으로 인하여, 모터의 구동에 치명적인 문제를 야기할 수 있다. 그리고 베어링과 이를 지지하기 위한 구조의 조합으로 누적되는 공차는 모터의 성능을 저하시키는 문제가 있다.
이에, 본 발명은 상기한 문제점을 해결하기 위한 것으로, 베어링 없이 펌프 기어의 원활한 회전을 구현할 수 있는 모터를 제공하는 것을 그 목적으로 한다.
본 발명이 해결하고자 하는 과제는 이상에서 언급된 과제에 국한되지 않으며 여기서 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 목적을 달성하기 위한 실시예는, 제1 하우징과, 상기 제1 하우징의 내부에 배치되는 스테이터와, 상기 스테이터와 대응되게 배치되는 로터와, 상기 로터와 결합된 샤프트와, 상기 샤프트가 관통하는 제2 하우징과, 상기 제2 하우징에 배치되는 펌프 기어와, 상기 샤프트는 상기 펌프 기어와 결합하는 제1 영역, 상기 제2 하우징과 결합하는 제2 영역, 상기 로터와 결합하는 제3 영역, 상기 로터로부터 상기 제1 하우징의 바닥면으로 돌출된 제4 영역을 포함하고, 상기 제4 영역의 축방향 길이는 상기 로터의 하면과 상기 제1 하우징의 바닥면까지의 최소거리보다 작은 모터를 제공할 수 있다.
실시예는, 제1 하우징과, 상기 제1 하우징의 내부에 배치되는 로터와, 상기 로터와 고정된 샤프트와, 상기 샤프트가 회전하도록 지지하는 제2 하우징과, 상기 샤프트에 고정된 펌프 기어와, 상기 제2 하우징은 상기 로터를 향해 돌출된 돌출부를 포함하고, 상기 돌출부는 상기 샤프트가 회전하도록 삽입되는 홀과 상기 홀과 연결되고 윤활유가 유입되는 제2 홈을 포함하고, 상기 제1 하우징의 바닥면과 상기 로터 사이에는 베어링이 배치되지 않는 모터를 제공할 수 있다.
실시예는, 베이스와 상기 베이스로부터 연장된 측벽을 포함하는 제1 하우징과, 상기 제1 하우징의 내부에 배치되는 스테이터와, 상기 스테이터와 대응되게 배치되는 로터와, 상기 로터와 결합된 샤프트와, 상기 샤프트가 관통하는 제2 하우징과, 상기 제2 하우징에 배치되는 펌프 기어와, 상기 샤프트는 상기 펌프 기어와 결합하는 제1 영역, 상기 제2 하우징과 결합하는 제2 영역, 상기 로터와 결합하는 제3 영역, 상기 로터로부터 상기 제1 하우징의 바닥면으로 돌출된 제4 영역을 포함하고, 상기 제4 영역은 상기 베이스와 축방향과 수직한 방향으로 오버랩되지 않는 모터를 제공할 수 있다.
상기 펌프 기어와 상기 로터 사이에 볼 베어링이 배치되지 않을 수 있다.
상기 제1 영역의 축방향 길이와 상기 제2 영역의 축방향 길이의 비는 1:2.0 내지 1:3.0일 수 있다.
상기 제2 영역의 축방향 길이와 상기 제3 영역의 축방향 길이의 비는 1:1.2 내지 1:1.3일 수 있다.
상기 제2 하우징과 상기 샤프트는 접촉될 수 있다.
상기 스테이터의 코일의 최하단 끝단이 상기 샤프트의 최하단 끝단보다 제1 하우징 바닥면에 인접하여 배치될 수 있다.
상기 스테이터의 코일의 최하단 끝단이 상기 샤프트의 최하단 끝단보다 상기 베이스에 인접하여 배치될 수 있다.
상기 돌출부는 상기 샤프트와 수직한 방향으로 상기 제1 하우징의 일부와 오버랩될 수 있다.
본 발명의 일 실시예에 따르면, 베어링 없이 펌프 기어의 원활한 회전을 구현할 수 있는 이점이 있다.
본 발명의 일 실시예에 따르면, 축계 지지를 위한 부품을 줄여, 누적 공차를 크게 줄인 이점이 있다.
본 발명의 일 실시예에 따르면, 하우징 구조를 단순화하고, 조립 공정을 줄이는 이점이 있다.
본 발명의 일 실시예에 따르면, 베어링을 제거함으로써, 베어링의 불량에 의해 발생할 수 있는 모터의 불량을 원천적으로 제거할 수 있는 이점이 있다.
도 1은 본 발명의 바람직한 일 실시예에 따른 모터의 사시도,
도 2는 도 1에서 도시한 모터의 측단면도,
도 3은 제2 하우징의 제1 파트의 외면을 도시한 도면,
도 4는 제2 하우징의 제1 파트의 내면을 도시한 도면,
도 5는 도 2의 A의 확대도,
도 6은 도 2의 A의 확대도로서, 샤프트의 제1 영역, 제2 영역, 제3 영역, 제4 영역 각각의 길이를 나타낸 도면,
도 7은 제1 하우징의 바닥 부분을 도시한 단면도이다.
샤프트의 길이 방향(상하 방향)과 평행한 방향을 축방향이라 하고, 샤프트를 중심으로 축방향과 수직한 방향을 반경 방향이라 하고, 샤프트를 중심으로 반경 방향의 반지름을 갖는 원을 따라가는 방향을 원주 방향이라 부른다.
도 1은 본 발명의 바람직한 일 실시예에 따른 모터의 사시도이고, 도 2는 도 1에서 도시한 모터의 측단면도이다. 이러한, 도 1 및 도 2는 본 발명을 개념적으로 명확히 이해하기 위하여, 주요 특징 부분만을 명확히 도시한 것이며, 그 결과 도해의 다양한 변형이 예상되며, 도면에 도시된 특정 형상에 의해 본 발명의 범위가 제한될 필요는 없다. 이하, 내측이라 함은 하우징(200)에서 모터의 중심인 샤프트(100)를 향하는 방향을 나타내며, 외측이라 함은 샤프트(100)에서 하우징(200)을 향하는 방향인 내측의 반대 방향을 나타낸다. 또한, 이하 원주방향 또는 반경방향은 각각 축중심을 기준으로 한다.
도 1 및 도 2를 병행 참조하면, 본 발명의 바람직한 일 실시예에 따른 모터는 하우징(200)과 제2 하우징(300)을 포함할 수 있다. 하우징(200)은 모터부(M)를 포함할 수 있다. 제2 하우징(300)은 펌프부(P)를 포함할 수 있다. 제2 하우징(300)은 하우징(200)에 결합될 수 있다.
모터부(M)는 펌프부(P)에 동력을 전달하는 것으로, 샤프트(100)와, 로터(10)와, 스테이터(20)를 포함할 수 있다. 펌프부(P)는 펌프 기어로서, 내측로터(50)와 외측로터(40)를 포함한다.
샤프트(100)는 로터(10)에 결합될 수 있다. 샤프트(100)는 모터부(M)에서 펌프부(P)까지 연장되어 배치된다. 샤프트(100)는 제2 하우징(300)에 회전 가능하게 배치될 수 있다. 샤프트(100)의 단부는 펌프부(P)의 내측로터(50)와 결합될 수 있다. 전류 공급을 통해 로터(10)와 스테이터(20)에 전자기적 상호 작용이 발생하면, 로터(10)가 회전하고 이에 연동하여 샤프트(100)가 회전한다. 샤프트(100)가 회전하면, 내측로터(50)가 회전하면서 펌프부(P)가 작동한다.
로터(10)는 스테이터(20)와 전기적 상호 작용을 통해 회전한다. 로터(10)는 스테이터(20)와 대응되어 배치될 수 있고, 내측에 배치될 수 있다.
스테이터(20)는 로터(10)의 외측에 배치된다. 스테이터(20)는 스테이터 코어(21)와, 인슐레이터(22)와, 코일(23)을 포함할 수 있다. 인슐레이터(22)는 스테이터 코어(21)에 안착된다. 코일(23)은 인슐레이터(22)에 장착된다. 코일(23)은 로터(10)의 마그넷과 전기적 상호 작용을 유발한다.
버스바(30)는 스테이터(20)의 일측에 배치되어, 코일(23)과 연결될 수 있다.
하우징(200)은 스테이터(20)의 외측에 배치될 수 있다. 하우징(200)은 원통형 부재일 수 있다.
펌프부(P)는 모터부(M)로부터 동력을 전달받아 유체를 펌핑시키는 역할을 한다. 펌프부(P)는 펌프 기어로서, 외측로터(40)와 내측로터(50)를 포함할 수 있다. 외측로터(40)는 내측로터(50)의 바깥쪽에 배치된다. 그리고 내측로터(50)에는 축중심을 기준하여 반경방향으로 외향하여 N개의 외측로브가 원주 방향을 따라 형성될 수 있다. 한편, 외측로터(40)에는 반경 방향으로 내향하여 N+1개의 내측로브가 형성될 수 있다. 이때, 외측로브가 내측로브에 걸리도록 형성될 수 있다. 내측로터(50)가 회전함에 따라 외측로터(40)는 (N+1)/N의 회전비로 회전하게 된다. 펌프부(P)는 내측로터(50)가 회전할 때 일정한 편심 구조를 갖게 되는데, 이러한 편심에 의해 내측로터(50)와 외측로터(40) 사이에 유체(오일)를 운반할 수 있는 공간이 발생한다. 즉, 내측로터(50)의 회전 운동시 체적이 증가한 부분은 압력 강하로 주위의 유체를 흡입하고, 체적이 감소한 부분은 압력의 증가로 유체를 토출하게 된다.
제2 하우징(300)은 서로 결합하는 제1 파트(310)와 제2 파트(320)로 구분되어 배치될 수 있다. 제1 파트(310)는 하우징(200)과 결합되고, 제2 파트(320)는 외부장치에 결합될 수 있다.
도 3은 제2 하우징(300)의 제1 파트(310)의 외면을 도시한 도면이다.
도 3을 참조하면, 제2 하우징(300)의 제1 파트(310)에는 홀(H)이 배치된다. 그리고 제2 하우징(300)의 제1 파트(310)에서 홀(H)의 주변에는 흡입포트(IP)와 배출포트(OP)가 각각 오목하게 배치될 수 있다. 그리고 제1 파트(310)에는 제1 홈(G1)과 제2 홈(G2)이 배치될 수 있다. 제1 홈(G1)은 홀(H)과 연결되도록 배치될 수 있다. 제2 홈(G2)은 홀(H)의 내측에 배치되되, 제1 홈(G1)에 연결되도록 배치될 수 있다. 제2 홈(G2)은 홀(H)의 내벽에서 오목하게 배치될 수 있다. 제1 홈(G1)과 제2 홈(G2)은 샤프트(100)와 홀(H)의 틈새로 윤활유가 원활하게 흘러갈 수 있도록 유도한다.
도 4는 제2 하우징(300)의 제1 파트(310)의 내면을 도시한 도면이다.
도 3 및 도 5를 참조하면, 제2 하우징(300)의 제1 파트(310)는 바디(311)와 돌출부(312)를 포함할 수 있다. 돌출부(312)는 바디(311)의 일면에서 축방향으로 돌출된다. 제2 파트(320)가 하우징(200)에 결합된 상태에서 돌출부(312)는 축방향으로 로터(10)를 향하여 돌출된다. 돌출부(312)는 끝단이 잘린 원추형 부재일 수 있다. 홀(H)의 일부는 바디(311)에 배치되고, 홀(H)의 나머지는 돌출부(312)에 배치될 수 있다.
돌출부(312)는 축방향과 수직한 방향으로 버스바(30)와 오버랩되게 배치될 수 있다. 또는 돌출부(312)는 샤프트(100)와 수직한 방향으로 인슐레이터(22) 일부와 오버랩되게 배치될 수 있다. 그리고 돌출부(312)는 샤프트(100)와 수직한 방향으로 제1 하우징(200)의 일부와 오버랩되게 배치될 수 있다.
샤프트(100)는 별도의 베어링 없이 제2 하우징(300)에 의해 회전 가능하게 지지된다. 구체적으로 샤프트(100)는 홀(H)에 의해 회전 가능하게 지지된다.
돌출부(312)를 통해 홀(H)의 길이가 연장되기 때문에 별도의 베어링 없이 샤프트(100)가 충분히 지지될 수 있다. 돌출부(312)는 홀(H)의 충분한 길이를 확보하기 위해 축방향으로 로터(10)에 근접하게 배치될 수 있다. 특히, 샤프트(100)가 모터부(M)에서 펌프부(P)에 걸쳐 길게 배치되지만, 홀(H)이 축방향을 기준으로 모터부(M)와 펌프부(P) 사이에 배치되기 때문에 베어링 없이도 샤프트(100)를 안정적으로 지지될 수 있다.
도 5는 도 2의 A의 확대도이다.
도 5를 참조하면, 샤프트는 길이방향을 따라 순차적으로 제1 영역(101)과 제2 영역(102)과 제3 영역(103)과 제4 영역(104)을 포함할 수 있다.
제1 영역(101)은 내측로터(50)와 결합하는 샤프트(100)의 일부 영역이다. 제2 영역(102)은 제2 하우징(300)과 결합하는 샤프트(100)의 일부 영역이다. 제3 영역(103)은 로터(10)와 결합하는 샤프트(100)의 일부 영역이다. 그리고, 제4 영역(104)은 로터(10)에서 제1 하우징(200)의 바닥면으로 돌출된 샤프트(100)의 일부 영역이다.
샤프트(100)는 일단은 내측로터(50)에 압입된다. 샤프트(100)의 타단은 로터(10)에 압입된다. 그리고 샤프트(100)는 제2 하우징(300)의 돌출부(312)에 의해 회전 가능하게 지지된다. 돌출부(312)의 홀(H)의 내면에는 제2 홈(G2)이 마련되어 윤활유가 샤프트(100)와 홀(H)의 틈새로 공급되기 때문에. 샤프트(100)가 홀(H) 내측에서 원활하게 회전할 수 있다. 샤프트(100)의 양 단이 각각 내측로터(50)와 로터(10)에 의해 고정되고, 돌출부(312)에 의해 회전 가능하게 지지되기 때문에, 내측로터(50)와 로터(10) 사이 뿐만아니라, 샤프트(100)의 끝단과 제1 하우징(200)의 바닥면 사이에서, 샤프트(100)를 지지하는 베어링은 모두 삭제할 수 있다.
샤프트(100)와 홀(H)의 틈새는 0.01mm 내지 0.05mm 범위 이내일 수 있다. 이러한 틈새 범위에서, 반경방향으로, 샤프트(100)에 대한 지지가 가능하고 동시에 원활한 회전이 유지될 수 있다.
또한, 축방향으로, 내측로터(50)와 제2 하우징(300)의 제2 파트(320) 사이의 틈새(T)는 0.01mm 내지 0.1mm 범위 이내일 수 있다. 이러한 틈새 범위에서, 축방향으로, 샤프트(100)에 대한 지지가 가능하고 동시에 원활한 회전이 유지될 수 있다. 이때, 내측로터(50)가 축방향 하중을 지지하는 역할을 함으로써, 베어링 없이 샤프트(100)의 구조적 안정성을 높일 수 있다.
도 6은 도 2의 A의 확대도로서, 샤프트(100)의 제1 영역(101), 제2 영역(102), 제3 영역(103), 제4 영역(104) 각각의 길이를 나타낸 도면이다.
도 2, 도 5 및 도 6을 참조하면, 제1 영역(101)의 축방향 길이(L1)와 제2 영역(102)의 축방향 길이(L2)의 비는 1:2.0 내지 1:3.0일 수 있다. 또한, 또한, 제2 영역(102)의 축방향 길이(L2)와 제3 영역(103)의 축방향 길이(L3)의 비는 1:1.2 내지 1:1.3일 수 있다. 이러한 조건에서, 샤프트(100)에 대한 지지가 가능하고 동시에 원활한 회전이 유지될 수 있다.
한편, 제4 영역(104)의 축방향 길이(L1)는 로터(10)의 하면과 제1 하우징(200)의 바닥면까지의 최소거리(L5)보다 작다. 제4 영역(104)이 다른 부품과 접촉하지 않고, 축방향으로 로터(10)와 제1 하우징(200)의 바닥면 사이에 베어링이 없기 때문에 가능한 구성이다.
도 7은 제1 하우징(200)의 바닥 부분을 도시한 단면도이다.
도 2 및 도 7을 참조하면, 스테이터의 코일의 최하단 끝단이 상기 샤프트(100)의 최하단 끝단보다 제1 하우징(200) 바닥면에 인접하여 배치될 수 있다. 제1 하우징(200)을 바닥면을 이루는 베이스(210)와 베이스(210)에서 연장되는 측벽(220)으로 구분할 때, 스테이터(20)의 코일(23)의 최하단 끝단과 베이스(210)의 최소거리(D1)가 샤프트(100)의 최하단 끝단과 베이스(210)의 최소거리(D2)보다 작을 수 있다. 베이스(210)의 경우, 평판형태의 단순한 구조일 수 있다.
따라서, 샤프트(100)의 제4 영역(104)은 베이스(210)와 축방향과 수직한 방향으로 오버랩되지 않는다. 이는 축방향으로 로터(10)와 베이스(210) 사이에 베어링이 없기 때문에 가능한 구성이다. 베어링이 삭제되어, 제1 하우징(200)의 베이스(210)가 평판 형태로 단순하기 때문에, 제1 하우징(200)의 제작이 용이하고, 공정이 크게 감소하고, 조립이 용이한 이점이 있다. 제1 하우징(200)에 베어링과 이를 지지하기 위한 와셔를 수용하기 위한 포켓 구조를 생략할 수 있기 때문에 모터 전체의 축방향 길이도 줄일 수 있는 이점이 있다.
전술된 실시예에는 이너 로터형 모터를 예를 들어 설명하였으나, 이에 한정되지 않는다. 본 발명은 아우터 로터형 모터에도 적용 가능하다. 또한, 전술된 실시예에서, 버스바(30)가 배치되는 모터를 예를 들어 설명하였으나, 버스바(30)가 없는 모터에도 적용 가능하다. 또한, 차량용 또는 가전용 등 다양한 기기에 이용할 수 있다.
Claims (10)
- 제1 하우징;상기 제1 하우징의 내부에 배치되는 스테이터;상기 스테이터와 대응되게 배치되는 로터;상기 로터와 결합된 샤프트;상기 샤프트가 관통하는 제2 하우징;상기 제2 하우징에 배치되는 펌프 기어;상기 샤프트는 상기 펌프 기어와 결합하는 제1 영역, 상기 제2 하우징과 결합하는 제2 영역, 상기 로터와 결합하는 제3 영역, 상기 로터로부터 상기 제1 하우징의 바닥면으로 돌출된 제4 영역을 포함하고,상기 제4 영역의 축방향 길이는 상기 로터의 하면과 상기 제1 하우징의 바닥면까지의 최소거리보다 작은 모터.
- 제1 하우징;상기 제1 하우징의 내부에 배치되는 로터;상기 로터와 고정된 샤프트;상기 샤프트가 회전하도록 지지하는 제2 하우징;상기 샤프트에 고정된 펌프기어;상기 제2 하우징은 상기 로터를 향해 돌출된 돌출부를 포함하고,상기 돌출부는 상기 샤프트가 회전하도록 삽입되는 홀과 상기 홀과 연결되고 윤활유가 유입되는 제2 홈을 포함하고,상기 제1 하우징의 바닥면과 상기 로터 사이에는 베어링이 배치되지 않는 모터.
- 베이스와 상기 베이스로부터 연장된 측벽을 포함하는 제1 하우징;상기 제1 하우징의 내부에 배치되는 스테이터;상기 스테이터와 대응되게 배치되는 로터;상기 로터와 결합된 샤프트;상기 샤프트가 관통하는 제2 하우징;상기 제2 하우징에 배치되는 펌프 기어;상기 샤프트는 상기 펌프 기어와 결합하는 제1 영역, 상기 제2 하우징과 결합하는 제2 영역, 상기 로터와 결합하는 제3 영역, 상기 로터로부터 상기 제1 하우징의 바닥면으로 돌출된 제4 영역을 포함하고,상기 제4 영역은 상기 베이스와 축방향과 수직한 방향으로 오버랩되지 않는 모터.
- 제1 항 내지 제3 항 중 어느 한 항에 있어서,상기 펌프 기어와 상기 로터 사이에 볼 베어링이 배치되지 않는 모터.
- 제1 항 내지 제3 항 중 어느 한 항에 있어서,상기 제1 영역의 축방향 길이와 상기 제2 영역의 축방향 길이의 비는 1:2.0 내지 1:3.0인 모터.
- 제1 항 내지 제3 항 중 어느 한 항에 있어서,상기 제2 영역의 축방향 길이와 상기 제3 영역의 축방향 길이의 비는 1:1.2 내지 1:1.3인 모터.
- 제1 항 내지 제3 항 중 어느 한 항에 있어서,상기 제2 하우징과 상기 샤프트는 접촉되는 모터.
- 제1 항에 있어서,상기 스테이터의 코일의 최하단 끝단이 상기 샤프트의 최하단 끝단보다 제1 하우징 바닥면에 인접하여 배치되는 모터.
- 제3 항에 있어서,상기 스테이터의 코일의 최하단 끝단이 상기 샤프트의 최하단 끝단보다 상기 베이스에 인접하여 배치되는 모터.
- 제2 항에 있어서,상기 돌출부는 상기 샤프트와 수직한 방향으로 상기 제1 하우징의 일부와 오버랩되는 모터.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/030,829 US20230378840A1 (en) | 2020-10-12 | 2021-10-12 | Motor |
CN202180069930.0A CN116325443A (zh) | 2020-10-12 | 2021-10-12 | 电机 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2020-0131040 | 2020-10-12 | ||
KR1020200131040A KR20220048187A (ko) | 2020-10-12 | 2020-10-12 | 모터 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022080792A1 true WO2022080792A1 (ko) | 2022-04-21 |
Family
ID=81207523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2021/013972 WO2022080792A1 (ko) | 2020-10-12 | 2021-10-12 | 모터 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230378840A1 (ko) |
KR (1) | KR20220048187A (ko) |
CN (1) | CN116325443A (ko) |
WO (1) | WO2022080792A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0984303A (ja) * | 1995-09-18 | 1997-03-28 | Teikoku Denki Seisakusho:Kk | 軸方向軸受摩耗検出装置を備えたキャンドモータ |
US6365998B1 (en) * | 1998-06-02 | 2002-04-02 | Wilo Gmbh | Canned motor pump with winding carrier |
WO2003083311A2 (en) * | 2002-02-28 | 2003-10-09 | Standex International Corp. | Motor pump |
JP3566781B2 (ja) * | 1995-04-26 | 2004-09-15 | 株式会社 日立インダストリイズ | 液化ガスタンク用立軸形潜没ポンプ装置 |
JP2017099147A (ja) * | 2015-11-24 | 2017-06-01 | トヨタ紡織株式会社 | モータ及びこれを備える電動過給機 |
-
2020
- 2020-10-12 KR KR1020200131040A patent/KR20220048187A/ko unknown
-
2021
- 2021-10-12 WO PCT/KR2021/013972 patent/WO2022080792A1/ko active Application Filing
- 2021-10-12 US US18/030,829 patent/US20230378840A1/en active Pending
- 2021-10-12 CN CN202180069930.0A patent/CN116325443A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3566781B2 (ja) * | 1995-04-26 | 2004-09-15 | 株式会社 日立インダストリイズ | 液化ガスタンク用立軸形潜没ポンプ装置 |
JPH0984303A (ja) * | 1995-09-18 | 1997-03-28 | Teikoku Denki Seisakusho:Kk | 軸方向軸受摩耗検出装置を備えたキャンドモータ |
US6365998B1 (en) * | 1998-06-02 | 2002-04-02 | Wilo Gmbh | Canned motor pump with winding carrier |
WO2003083311A2 (en) * | 2002-02-28 | 2003-10-09 | Standex International Corp. | Motor pump |
JP2017099147A (ja) * | 2015-11-24 | 2017-06-01 | トヨタ紡織株式会社 | モータ及びこれを備える電動過給機 |
Also Published As
Publication number | Publication date |
---|---|
US20230378840A1 (en) | 2023-11-23 |
KR20220048187A (ko) | 2022-04-19 |
CN116325443A (zh) | 2023-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019066257A1 (en) | ELECTRONIC BRAKE MOTOR STRUCTURE WITH BALL SCREW | |
EP2565376A2 (en) | Electric pump unit | |
WO2021010673A1 (ko) | 에어 포일 저널 베어링 | |
WO2022080792A1 (ko) | 모터 | |
WO2016117838A1 (ko) | 모터의 하우징 및 이를 포함하는 모터 | |
WO2022196907A1 (ko) | 에어포일 저널 베어링의 하우징 고정 구조 | |
JP2012189015A (ja) | 電動ポンプユニット | |
WO2022220586A1 (ko) | 모터 | |
WO2020013568A1 (ko) | 모터 | |
WO2022086199A1 (ko) | 모터 | |
WO2022182084A1 (ko) | 회전식 감속 액추에이터 | |
WO2022108292A1 (ko) | 모터 | |
WO2021060817A1 (ko) | 모터 | |
WO2024029750A1 (ko) | 모터 및 이를 포함하는 펌프 | |
WO2023210977A1 (ko) | 펌프 | |
WO2012015175A2 (ko) | 하우징 일체형 다중 베어링 유닛 | |
WO2020145645A1 (ko) | 모터 | |
WO2024117400A1 (ko) | 비대칭 회전자를 구비하는 모터 일체형 펌프 | |
WO2023204664A1 (ko) | 모터 | |
WO2023113259A1 (ko) | 펌프 | |
WO2022191572A1 (ko) | 모터 | |
WO2023282476A1 (ko) | 펌프 | |
WO2024080465A1 (ko) | 전동 압축기 | |
WO2022177113A1 (ko) | 에어 포일 저널베어링 | |
WO2022220588A1 (ko) | 모터 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21880439 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21880439 Country of ref document: EP Kind code of ref document: A1 |