WO2022079979A1 - ロジン変性樹脂とその製造方法、活性エネルギー線硬化型インキ用ワニス、活性エネルギー線硬化型インキ、および印刷物 - Google Patents

ロジン変性樹脂とその製造方法、活性エネルギー線硬化型インキ用ワニス、活性エネルギー線硬化型インキ、および印刷物 Download PDF

Info

Publication number
WO2022079979A1
WO2022079979A1 PCT/JP2021/028491 JP2021028491W WO2022079979A1 WO 2022079979 A1 WO2022079979 A1 WO 2022079979A1 JP 2021028491 W JP2021028491 W JP 2021028491W WO 2022079979 A1 WO2022079979 A1 WO 2022079979A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
rosin
active energy
energy ray
modified resin
Prior art date
Application number
PCT/JP2021/028491
Other languages
English (en)
French (fr)
Inventor
智也 宮▲崎▼
Original Assignee
東洋インキScホールディングス株式会社
東洋インキ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋インキScホールディングス株式会社, 東洋インキ株式会社 filed Critical 東洋インキScホールディングス株式会社
Publication of WO2022079979A1 publication Critical patent/WO2022079979A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/01Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to unsaturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/04Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/52Polycarboxylic acids or polyhydroxy compounds in which at least one of the two components contains aliphatic unsaturation
    • C08G63/54Polycarboxylic acids or polyhydroxy compounds in which at least one of the two components contains aliphatic unsaturation the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/553Acids or hydroxy compounds containing cycloaliphatic rings, e.g. Diels-Alder adducts
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/106Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds

Definitions

  • Embodiments of the present invention relate to a rosin-modified resin and a method for producing the same, a varnish for active energy ray-curable ink, an active energy ray-curable ink, and a printed matter.
  • the active energy ray-curable ink includes a binder resin, an active energy ray-curable compound such as an acrylic acid ester compound, a pigment, a radical polymerization initiator, and various additives.
  • the active energy ray-curable ink (hereinafter, also simply referred to as "ink”) is required to have printability such as initial density stability and misting resistance. At the same time, the ink is required to have print film characteristics such as curability and adhesion.
  • Japanese Unexamined Patent Publication No. 2011-225748 Japanese Unexamined Patent Publication No. 2018-65912 Japanese Unexamined Patent Publication No. 2020-66649
  • Patent Document 1 discloses a polyester resin containing a polyvalent carboxylic acid and hydrogenated bisphenol obtained by an addition reaction between logonic acids and ⁇ , ⁇ -unsaturated carboxylic acid.
  • the disclosed resin mainly contains hydrogenated bisphenol A as an alcohol component, the Tg of the resin becomes too high, so that both adhesion to a plastic substrate and abrasion resistance tend to be insufficient.
  • Patent Document 2 discloses a rosin-modified alkyd resin obtained by a polycondensate of logonic acids, fatty acids, polybasic acids and polyhydric alcohols.
  • vegetable oil occupies more than half of the resin component, it is insufficient to achieve both adhesion to the plastic substrate and curability of the composition.
  • Patent Document 3 discloses a polyester resin containing a polyvalent carboxylic acid and one cyclohexane ring obtained by an addition reaction between logonic acids and ⁇ , ⁇ -unsaturated carboxylic acid.
  • the current evaluation method tends to have insufficient adhesion to the plastic substrate.
  • various studies have been conducted on binder resins for active energy ray-curable inks, but none of them are sufficiently satisfactory in terms of printability and print film characteristics required for active energy ray-curable inks. , Further improvement is desired.
  • an object of the embodiment of the present invention is printing film characteristics such as blocking resistance, abrasion resistance, solvent resistance, and adhesion, and printability such as initial density stability and misting resistance. It is an object of the present invention to provide an active energy ray-curable varnish and an active energy ray-curable ink capable of achieving both, and a composition thereof. Another object of the embodiment of the present invention is to provide an active energy ray-curable varnish that can achieve both print film characteristics and printability, a rosin-modified resin that can obtain an active energy ray-curable ink, and a method for producing the same. It is to be.
  • an addition reaction product of rosin acids (A) and ⁇ , ⁇ -unsaturated carboxylic acid or an acid anhydride thereof (B), a polyol (C), and a fatty acid (D) are reacted.
  • the polyol (C) comprises a divalent and / or trivalent polyol.
  • the blending amount of the rosin acid (A) is 35 to 60% by mass based on the total blending amount.
  • the present invention relates to a rosin-modified resin in which the blending amount of the fatty acid (D) is 5 to 25% by mass based on the total blending amount.
  • the embodiment of the present invention relates to the above-mentioned rosin-modified resin having a weight average molecular weight of 3,000 to 25,000.
  • the embodiment of the present invention relates to the above-mentioned rosin-modified resin, wherein the fatty acid (D) contains a fatty acid (D-1) having 15 to 18 carbon atoms.
  • the embodiment of the present invention relates to the above-mentioned rosin-modified resin in which the polyol (C) contains an aliphatic polyol.
  • an embodiment of the present invention relates to a varnish for an active energy ray-curable ink containing the above-mentioned rosin-modified resin and an active energy ray-curable compound.
  • an embodiment of the present invention relates to an active energy ray-curable ink containing the above-mentioned rosin-modified resin and an active energy ray-curable compound.
  • the embodiment of the present invention relates to a printed matter obtained by printing the above-mentioned active energy ray-curable ink on a substrate and curing the ink with the active energy ray.
  • an embodiment of the present invention is a method for producing a rosin-modified resin.
  • the polyol (C) comprises a divalent and / or trivalent polyol.
  • the blending amount of the rosin acid (A) is 35 to 60% by mass based on the total blending amount.
  • the present invention relates to a method for producing a rosin-modified resin, wherein the amount of the fatty acid (D) is 5 to 25% by mass based on the total amount.
  • active energy ray curing capable of achieving both printing film characteristics such as blocking resistance, abrasion resistance, solvent resistance, and adhesion and printing suitability such as initial density stability and misting resistance. It is possible to provide a mold varnish and an active energy ray-curable ink, and a printed matter using these. Further, according to an embodiment of the present invention, there is provided a rosin-modified resin capable of obtaining an active energy ray-curable varnish and an active energy ray-curable ink capable of achieving both print film characteristics and printability, and a method for producing the same. Can be done.
  • conjugated double bond refers to a bond in which a plurality of double bonds are alternately connected with a single bond in between.
  • the ⁇ -electron conjugated system contained in the aromatic compound is excluded from the conjugated double bond.
  • the rosin-modified resin used to obtain the rosin-modified resin (A) refers to a monobasic acid having a cyclic diterpene skeleton.
  • the loginic acids (A) represent, for example, loginic acid, disproportionated loginic acid, hydrogenated loginic acid, alkali metal salts of the above compounds, and specifically, avietic acid having a conjugated double bond, and examples thereof include organic acids such as neoavietic acid, palastolic acid and levopimaric acid, which are conjugated compounds thereof, and pimaric acid, isopimaric acid, sandaracopimalic acid and dehydroavietic acid which do not have a conjugated double bond.
  • a natural resin containing these rosin acids (A) gum rosin, wood rosin, tall oil rosin and the like can be mentioned.
  • the blending amount of the rosin-modified resin (A) used to obtain the rosin-modified resin is preferably 35 to 60% by mass, preferably 35 to 50% by mass, based on the total blending amount of the resin raw materials. Is more preferable.
  • the blending amount of the rosin acids (A) is 35% by mass or more, the curability of the active energy ray-curable ink containing the resin is good, and when the blending amount is 60% by mass or less, the active energy ray-curing is performed. The solvent resistance of the mold ink composition is improved.
  • the organic acid having the above-mentioned conjugated double bond is preferably contained in the total rosin acid group (A) in an amount of 40% by mass or more, preferably 50% by mass or more. It is more preferable to do so.
  • the amount of the organic acid having a conjugated double bond in the loginic acids (A) is less than 40% by mass, the amount of the deal alder addition reaction product with the ⁇ , ⁇ -unsaturated carboxylic acid or the acid anhydride (B) thereof is small. As a result, the dispersibility of the pigment tends to decrease.
  • the content of the organic acid having a conjugated double bond may be 100% by mass or less in the total rosin acids (A).
  • the ⁇ , ⁇ -unsaturated carboxylic acid or acid anhydride thereof (B) used for obtaining the rosin-modified resin includes maleic acid, fumaric acid, citraconic acid, itaconic acid, crotonic acid and isocroton. Acids and the like and their acid anhydrides are exemplified. In view of the reactivity with the rosin acids (A), maleic acid or an acid anhydride thereof is preferable.
  • the blending amount of the ⁇ , ⁇ -unsaturated carboxylic acid or the acid anhydride (B) thereof in the embodiment of the present invention is preferably in the range of 60 to 180 mol% with respect to the loginic acids (A). More preferably, it is in the range of 70 to 155 mol%.
  • the blending amount of ⁇ , ⁇ -unsaturated carboxylic acid or its acid anhydride (B) is adjusted within the above range, it is easy to obtain a rosin-modified resin having excellent friction resistance, adhesion and misting property. ..
  • organic acids include, but are not limited to, the following.
  • Aromatic monobasic acids such as benzoic acid, methyl benzoic acid, tertiary butyl benzoic acid, naphthoic acid, orthobenzoyl benzoic acid, Examples thereof include compounds having a conjugated double bond such as conjugated linoleic acid, eleostearic acid, parinalic acid, and calendic acid but not having a cyclic diterpene skeleton.
  • alcyclic polybasic acid or its acid anhydride 1,2,3,6-tetrahydrophthalic acid, 3-methyl-1,2,3,6-tetrahydrophthalic acid, 4-methyl-1,2,3,6-tetrahydrophthalic acid, 1,2-cyclohexanedicarboxylic acid
  • examples thereof include acids, 1,3-cyclohexanedicarboxylic acids, 1,4-cyclohexanedicarboxylic acids, and acid anhydrides thereof.
  • Alkenyl succinic acid such as oxalic acid, malonic acid, succinic acid, glutaric acid, pimelic acid, sebacic acid, azelaic acid, dodecenyl succinic acid, pentadecenyl succinic acid, o-phthalic acid, terephthalic acid, trimellitic acid, pyromerit Acids and their acid anhydrides and the like can be mentioned.
  • the polyol (C) is rosin, a compound obtained by a deal alder reaction between an organic acid having a conjugated double bond contained in logonic acids (A) and an ⁇ , ⁇ -unsaturated carboxylic acid or an acid anhydride thereof (B).
  • the acids (A) an organic acid having no conjugated double bond, a fatty acid (D) and other organic acids are reacted with a carboxylic acid to form an ester bond.
  • the rosin-modified resin contains a divalent and / or trivalent polyol as the polyol (C) to impart appropriate flexibility to the obtained rosin-modified resin, and the rosin-modified resin thereof. It is possible to achieve both excellent printability of the ink using rosin and the development and improvement of adhesion.
  • divalent and / or trivalent polyols may be used alone or in combination of two or more in order to obtain a rosin-modified resin.
  • divalent and / or trivalent polyols include, but are not limited to:
  • Linear alkylene divalent polyol 1,2-ethanediol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol, 1,2-pentanediol, 1,5-pentanediol, 1 , 6-Hexanediol, 1,2-hexanediol, 1,5-hexanediol, 2,5-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,2-octanediol, 1, 9-Nonandiol, 1,2-decanediol, 1,10-decanediol, 1,12-dodecanediol, 1,2-dodecanediol, 1,14-tetradecanediol, 1,2-tetradecanediol, 1,16 -
  • Trivalent polyol Glycerin, trimethylolpropane, 1,2,6-hexanetriol, 3-methylpentane-1,3,5-triol, hydroxymethylhexanediol, trimethyloloctane, etc.
  • Polycarbonates other than divalent and / or trivalent polyols> (Polycarbonate with a valence of 4 or more) Linear, branched, and cyclic tetravalent or higher valent polyols such as pentaerythritol, diglycerin, dimethylolpropane, dipentaerythritol, sorbitol, inositol, and tripentaerythritol.
  • the total blending amount of the divalent and / or trivalent polyol in the embodiment of the present invention is preferably 10 to 55% by mass based on the total blending amount of the resin raw material.
  • the total amount of the divalent and / or trivalent polyol is more preferably 20 to 50% by mass, further preferably 20 to 45% by mass.
  • the total blending amount of the divalent and / or trivalent polyol is preferably 80 to 100% by mass, more preferably 85 to 100% by mass, based on the total blending amount of the polyol (C).
  • the polyol (C) preferably contains an aliphatic polyol. Since the obtained rosin-modified resin has flexibility by containing the aliphatic polyol, it is possible to develop and improve the adhesion of the ink using the rosin-modified resin.
  • the blending amount of the aliphatic polyol with respect to the total blending amount of the polyol (C) is preferably 80 to 100% by mass, more preferably 90 to 100% by mass.
  • the fatty acid (D) is, for example, a compound obtained by a deal alder reaction between an organic acid having a conjugated double bond contained in logonic acids (A) and an ⁇ , ⁇ -unsaturated carboxylic acid or an acid anhydride thereof (B).
  • fatty acid (D) examples include, but are not limited to, the following. Amani oil fatty acid, tung oil fatty acid, castor oil fatty acid, soybean oil fatty acid, tall oil fatty acid, nuka oil fatty acid, palm oil fatty acid, palm oil fatty acid, dehydrated castor oil fatty acid, capric acid, undecanoic acid, lauric acid, myristic acid, palmitic acid, stear Examples thereof include acid, isostearic acid, oleic acid, linoleic acid, and linolenic acid.
  • the rosin-modified resin contains a fatty acid (D-1) having 15 to 18 carbon atoms as the fatty acid (D), thereby imparting appropriate flexibility to the obtained rosin-modified resin. It is possible to develop and improve the adhesion of ink using a rosin-modified resin.
  • the blending amount of the fatty acid (D) in the embodiment of the present invention is preferably 5 to 25% by mass based on the total blending amount of the resin raw material.
  • the blending amount of the fatty acid (D) is more preferably 5 to 20% by mass based on the total blending amount of the resin raw material.
  • the fatty acid (D) contains 50 to 100% by mass of the fatty acid (D-1) having 15 to 18 carbon atoms, and more preferably 60 to 100% by mass.
  • the rosin-modified resin preferably has a weight average molecular weight of 3,000 to 25,000, more preferably 4,000 to 15,000.
  • the weight average molecular weight is 3,000 to 25,000, it is possible to develop and improve adhesion and misting resistance.
  • the weight average molecular weight can be measured by gel permeation chromatography (GPC) using a standard polystyrene calibration curve.
  • the method for producing a rosin-modified resin according to an embodiment of the present invention is a step 1 in which a fatty acid (A) is subjected to an addition reaction with an ⁇ , ⁇ -unsaturated carboxylic acid or an acid anhydride (B) thereof, and in step 1.
  • the polyol (C) has a step 2 of reacting the obtained reactant with the polyol (C) and a step 3 of reacting the reaction product obtained in step 2 with the fatty acid (D).
  • the blending amount of carboxylic acids (A) is 35 to 60% by mass based on the total blending amount
  • the blending amount of fatty acid (D) is based on the total blending amount. It is 5 to 25% by mass.
  • the rosin-modified resin is composed of (1) a reaction between the loginic acids (A) and ⁇ , ⁇ -unsaturated carboxylic acid or an acid anhydride (B) thereof, and then (2) the above (1).
  • the reaction mixture obtained in the above reaction and other organic acids and the polyol (C) are reacted, and finally (3) the reaction mixture obtained in the above (2) and the fatty acid (D) are reacted. Be done.
  • the reaction of (1) above is a deal between a conjugated double bond (diene) in the logonic acids (A) and a double bond (dienophile) in the ⁇ , ⁇ -unsaturated carboxylic acid or its acid anhydride (B). It is an Alder addition reaction.
  • the reaction (2) is an esterification reaction between the carboxyl group in the reaction mixture obtained in the reaction (1) and other organic acids and the hydroxyl group in the polyol (C).
  • the reaction (3) is an esterification reaction between the residual hydroxyl group in the reaction mixture obtained in the reaction (2) and the carboxyl group in the fatty acid (D).
  • the deal alder addition reaction product of the conjugated double bond in the logonic acids (A) and the ⁇ , ⁇ -unsaturated carboxylic acid or its acid anhydride (B) is a polyvalent carboxylic acid compound. Therefore, polymerization is possible by the esterification reaction with the polyol (C). Further, by the Diels-Alder addition reaction, the conjugated double bond in the rosin (A) can be eliminated, and the polycyclic structure derived from the rosin (A) can be introduced into the rosin-modified resin. Usually, the conjugated double bond in the rosin acids (A) causes curing inhibition during irradiation with active energy rays for ink curing. However, in the embodiment of the present invention, since the conjugated double bond in the rosin (A) is eliminated by the Diels-Alder addition reaction, it becomes easy to improve the curability of the ink.
  • both film strength such as abrasion resistance and solvent resistance and printability such as initial density stability and misting resistance can be achieved. Is possible.
  • by incorporating a flexible long-chain fatty acid into the structure it is possible to develop excellent adhesion in addition to the above-mentioned film characteristics.
  • the conditions for the Diels-Alder addition reaction are not particularly limited and can be carried out according to a conventional method.
  • the reaction temperature can be determined in consideration of the boiling point of the compound used and the reactivity.
  • the reaction temperature is preferably in the range of 80 to 200 ° C, more preferably in the range of 100 to 200 ° C, and even more preferably in the range of 100 to 180 ° C.
  • the Diels-Alder addition reaction may be carried out in the presence of a polymerization inhibitor.
  • a polymerization inhibitor examples include hydroquinone, p-methoxyphenol, methylhydroquinone, methoxyhydroquinone, 2,6-di-t-butylphenol, 2,6-di-t-butyl-4-hydroxytoluene, and t.
  • -Butylcatechol, 4-methoxy-1-naphthol, phenothiazine and the like can be mentioned.
  • the conditions for the esterification reaction are not particularly limited, and can be carried out according to a conventional method.
  • the reaction temperature can be determined in consideration of the boiling point of the compound used and the reactivity.
  • the reaction temperature is preferably in the range of 200 to 300 ° C, more preferably in the range of 200 to 280 ° C, and even more preferably in the range of 200 to 260 ° C.
  • a catalyst in the esterification reaction.
  • examples of usable catalysts include organic sulfonic acids such as benzenesulfonic acid, p-toluenesulfonic acid, p-dodecylbenzenesulfonic acid, methanesulfonic acid and ethanesulfonic acid, mineral acids such as sulfuric acid and hydrochloric acid, and trifluoromethylsulfate. , Trifluoromethylacetic acid and the like.
  • a metal complex such as tetrabutylzirconate or tetraisobutyltitanate, magnesium oxide, magnesium hydroxide, magnesium acetate, calcium oxide, calcium hydroxide, calcium acetate, zinc oxide, zinc acetate And the like as a metal salt catalyst.
  • These catalysts are usually used in the range of 0.01 to 5% by mass based on the total amount of all the components used in the production of the rosin-modified resin.
  • Hypophosphorous acid, triphenylphosphine, triphenylphosphine, triphenylphosphine and the like can also be used in combination during the production of the resin in order to suppress the coloring of the resin due to the use of the catalyst.
  • the monomers (A) to (D) forming the resin can be blended at the same time or stepwise.
  • a reaction is carried out in three steps using a mixture of logoic acids (A), ⁇ , ⁇ -unsaturated carboxylic acid or its acid anhydride (B), other organic acids, polyol (C), and fatty acid (D).
  • the reaction temperature may be adjusted so that the deal alder addition reaction between the loginates (A) and the ⁇ , ⁇ -unsaturated carboxylic acid or the acid anhydride thereof (B) occurs.
  • the reaction temperature is controlled to the temperature at which the deal alder addition reaction proceeds, and after maintaining the reaction temperature for a certain period of time, until the temperature at which the esterification reaction between the polyol (C) and the fatty acid (D) proceeds.
  • the reaction may be carried out by heating to a temperature at which the esterification reaction for polymerization proceeds.
  • a loginic acid (A), ⁇ , ⁇ -unsaturated carboxylic acid or an acid anhydride thereof (B) is blended, and after a deal alder addition reaction, other organic acids and a polyol (C) are blended.
  • the fatty acid (D) may be added to the reaction mixture obtained by the esterification reaction and reacted.
  • reaction can be carried out in two steps using a mixture of logoic acids (A), ⁇ , ⁇ -unsaturated carboxylic acid or its acid anhydride (B), other organic acids and polyol (C). ..
  • the reaction temperature is first controlled to the temperature at which the Diels-Alder addition reaction proceeds, maintained for a certain period of time, then heated to the temperature at which the reaction mixture and the polyol (C) esterification reaction proceed, and then the fatty acid ( D) may be blended and reacted.
  • the melting point of the rosin-modified resin is preferably 50 ° C. or higher, more preferably 60 to 100 ° C.
  • the melting point can be measured using MeltingPoint M-565 manufactured by BUCHI under the condition of a heating rate of 0.5 ° C./min.
  • the rosin-modified resin according to the embodiment of the present invention can be used to produce a varnish for active energy ray-curable ink.
  • the varnish for active energy ray-curable ink contains at least the rosin-modified resin according to the embodiment of the present invention and the active energy ray-curable compound, and the rosin modification according to the embodiment of the present invention is based on the total mass of the varnish. It is preferable to contain 30 to 80% by mass of the resin and 20 to 70% by mass of the active energy ray-curable compound.
  • the compounding ratio of the rosin-modified resin and the active energy ray-curable compound in the varnish for active energy ray-curable ink is preferably in the range of 30:70 to 75:25 in terms of mass ratio, 35: The range of 65 to 70:30 is more preferable.
  • the active energy ray-curable compound means a compound having a (meth) acryloyl group in the molecule.
  • the active energy ray-curable compound that can be used for producing a varnish for active energy ray-curable ink.
  • Pentaerythritol tetraacrylate pentaerythritol ethylene oxide adduct (4-40 mol) tetraacrylate, pentaerythritol propylene oxide adduct (4-40 mol) tetraacrylate, diglycerin tetraacrylate, diglycerin ethylene oxide adduct (4-40 mol) Mol) Tetraacrylate, Diglycerin propylene oxide adduct (4-40 mol) Tetraacrylate, Ditrimethylolpropanetetraacrylate, Ditrimethylolpropaneethyleneoxide adduct (4-40 mol) Tetraacrylate, Ditrimethylolpropanepropylene oxide adduct (mol) 4-40 mol) 4-functional active energy ray-curable compound such as tetraacrylate, dipentaerythritol hexaacrylate, dipentaerythritol ethylene oxide adduct (6-60 mol) hexaacrylate, dip
  • a compound in which an acryloyl group is replaced with a methacryloyl group can be mentioned.
  • the active energy ray-curable compound the exemplified compounds may be used alone or in combination of two or more.
  • the active energy ray-curable compound can be appropriately selected according to the required cured film characteristics. If necessary, in addition to the above compounds, oligomers such as polyester acrylate, polyurethane acrylate, and epoxy acrylate can be used in combination. Moreover, in these acrylates, an oligomer in which an acryloyl group is replaced with a methacryloyl group can be mentioned.
  • the varnish for active energy ray-curable ink may further contain a photopolymerization inhibitor in addition to the above components.
  • a photopolymerization inhibitor can be added and used by a conventional method.
  • the blending amount thereof is preferably 3% by mass or less based on the total mass of the varnish for active energy ray-curable ink from the viewpoint of not impairing the curability. It is more preferable to use it in the range of 0.01 to 1% by mass.
  • photopolymerization inhibitors that can be used include (alkyl) phenol, hydroquinone, catechol, resorcin, p-methoxyphenol, t-butylcatechol, t-butylhydroquinone, pyrogallol, 1,1-picrylhydrazyl, phenothiline.
  • one or more compounds selected from the group consisting of hydroquinone, p-methoxyphenol, t-butylhydroquinone, p-benzoquinone, and 2,5-di-tert-butyl-p-benzoquinone It is preferable to use it.
  • the varnish for active energy ray-curable ink can be produced, for example, by mixing the above components under a temperature condition between normal temperature and 160 ° C.
  • a varnish obtained by heating and melting a rosin-modified resin, trimethylolpropane triacrylate, and hydroquinone under a temperature condition of 100 ° C. can be preferably used.
  • the active energy ray-curable ink can be produced by using the rosin-modified resin according to the embodiment of the present invention.
  • the active energy ray-curable ink contains at least the rosin-modified resin according to the embodiment of the present invention and the active energy ray-curable compound.
  • the active energy ray-curable ink contains a pigment when it is a colored ink, but it is an overcoat varnish or a clear ink when no pigment is used. Therefore, the ink is not limited to the one using a pigment.
  • Examples of the active energy ray-curable compound include the compounds exemplified above as the components contained in the varnish.
  • the active energy ray-curable ink contains 5 to 40% by mass of the rosin-modified resin, 20 to 70% by mass of the active energy ray-curable compound, and 0 to 50% by mass of the pigment. (However, the total content of each component is 100% by mass).
  • the rosin-modified resin and the active energy ray-curable compound may be prepared in advance in the form of the varnish described above and used.
  • the pigments that can be used may be various publicly known and public pigments, and inorganic pigments and organic pigments can be used.
  • inorganic pigments include chrome yellow, zinc yellow, navy blue, barium sulfate, cadmium red, titanium oxide, zinc flower, petals, alumina white, calcium carbonate, magnesium carbonate, aluminum silicate, silicon dioxide, ultramarine blue, carbon black, etc. Examples include graphite and aluminum powder.
  • organic pigments include soluble azo pigments such as ⁇ -naphthol type, ⁇ -oxynaphthoic acid type, ⁇ -oxynaphthoic acid type anilides type, acetoacetic acid anilides type, and pyrazolone type.
  • Insoluble azo pigments such as ⁇ -naphthol type, ⁇ -oxynaphthoic acid type anilides type, acetoacetic acid anilides type monoazo, acetoacetic acid anilides type disazo, and pyrazolone type
  • Phthalocyanine pigments such as copper phthalocyanine blue, halogenated (chlorinated or brominated) copper phthalocyanine blue, and sulfonated copper phthalocyanine blue, metal-free phthalocyanine, Quinacridone-based, dioxazine-based, slene-based (pyrantron, anthrantron, indantron, anthrapyrimidine, flavantron, thioindigo-based, anthraquinone-based, perinone-based, perylene-based, etc.), isoindoleinone-based, metal complex-based, quinophthalone-based, etc. Examples thereof include polycyclic pigments and heterocyclic pigments
  • the active energy ray-curable ink is cured by irradiation with active energy rays.
  • a photopolymerization initiator to the ink.
  • photopolymerization initiators can be roughly classified into two types: a type in which a bond is cleaved in a molecule by light to generate an active species, and a type in which a hydrogen abstraction reaction occurs between molecules to generate an active species.
  • the former includes, for example, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, diethoxyacetophenone, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl).
  • Ketone 2-methyl-2-morpholino (4-thiomethylphenyl) propane-1-one, 2-hydroxy-2-methyl-1-phenyl-propane-1-one, 1-hydroxy-cyclohexyl-phenylketone, [4- (2-Hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propane-1-one, benzyldimethylketone, oligo ⁇ 2-hydroxy-2-methyl-1- [4- (1) -Methylvinyl) phenyl] propane ⁇ , 4- (2-acryloyl-oxyethoxy) phenyl-2-hydroxy-2-propylketone and other acetophenone-based, benzoin, benzoin-isopropyl ether, benzoin-isobutyl ether and other benzoin-based, 1- A mixture of hydroxycyclohexyl-phenylketone and benzophenone, acylphosphine oxides such as 2,4,6-trimethylbenzo
  • Examples of the latter include benzophenone, methyl o-benzoylbenzoate, 4-phenylbenzophenone, 4,4'-dichlorobenzophenone, hydroxybenzophenone, 4-benzoyl-4'-methyl-diphenylsulfide, acrylicized benzophenone, 3,3'.
  • the active energy ray-curable ink when the active energy ray-curable ink is irradiated with ultraviolet rays to cure the ink, it is only necessary to add a photopolymerization initiator to the ink, but in order to further improve the curability, light is used.
  • a sensitizer can also be used in combination. Examples of the photosensitizer include triethanolamine, methyldiethanolamine, dimethylethanolamine, triisopropanolamine, methyl 4-dimethylaminobenzoate, ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, and benzoic acid.
  • Examples thereof include amines such as (2-dimethylamino) ethyl, 4-dimethylaminobenzoic acid (n-butoxy) ethyl, and 2-ethylhexyl 4-dimethylaminobenzoate.
  • the blending amount of the photopolymerization initiator is preferably 0.01 to 15% by mass, preferably 0.05 to 10% by mass, based on the total mass of the active energy ray-curable ink. It is more preferably by mass%.
  • the blending amount is 0.01% by mass or more, the curing reaction proceeds sufficiently. Further, when the blending amount is 15% by mass or less, it is easy to suppress the occurrence of a thermal polymerization reaction and bring the stability of the active energy ray-curable lithographic printing ink into a suitable state.
  • ionizing radiation other than ultraviolet rays is used as the active energy ray, it is not necessary to add a photopolymerization initiator.
  • the active energy ray-curable ink may further contain various additives such as a photopolymerization inhibitor, an anti-friction agent, an anti-blocking agent, and a slip agent, depending on the purpose.
  • various additives can be added to the ink by a conventional method. When various additives are added to the ink, it is preferable to adjust the blending amount within a range that does not impair the effects of other ink materials.
  • the blending amount of the various additives is preferably 15% by mass or less based on the total mass of the active energy ray-curable lithographic printing ink.
  • a photopolymerization inhibitor for example, a compound exemplified as a photopolymerization inhibitor that can be used for a varnish for an active energy ray-curable ink can be used.
  • Irradiation of the active energy beam is preferably carried out in an atmosphere of substitution with an inert gas such as nitrogen gas, but irradiation in the atmosphere may be used.
  • an inert gas such as nitrogen gas
  • Irradiation in the atmosphere may be used.
  • the active energy ray typically means ionizing radiation such as ultraviolet rays, electron beams, X-rays, ⁇ rays, ⁇ rays, and ⁇ rays, microwaves, high frequencies, and the like.
  • the active energy ray is not limited to the above, and may be any energy species as long as it can generate a radically active species, and may be visible light, infrared light, and laser light.
  • Examples of those that generate ultraviolet rays include LEDs, ultra-high pressure mercury lamps, high pressure mercury lamps, medium pressure mercury lamps, low pressure mercury lamps, metal halide lamps, xenon lamps, carbon arc lamps, helium / cadmium lasers, YAG lasers, and excima lasers. , And an argon laser and the like.
  • the active energy ray-curable ink can be printed by a known printing method, for example, flat plate printing, letterpress printing, screen printing, gravure printing, flexographic printing, in the same manner as ordinary printing ink. ..
  • the active energy ray-curable ink is a printed matter for foam, printed matter for various books, printed matter for various packaging such as carton paper, various plastic printed matter, printed matter for seal / label, art printed matter, metal printed matter (art). It is applied to printed matter such as printed matter, printed matter of beverage cans, printed matter of food such as canned matter). In addition, as another embodiment, it may be used as an overcoat varnish for the printed matter.
  • the base material to which the above ink is applied is not particularly limited.
  • Specific examples of usable base materials include non-coated paper such as high-quality paper, finely coated paper, art paper, coated paper, lightweight coated paper, coated paper such as cast coated paper, white paperboard, and ball coat.
  • Examples include paperboard, synthetic paper, aluminum-deposited paper, and plastic sheets such as polypropylene, polyethylene, polyethylene terephthalate, and polyvinyl chloride.
  • the details of the various measurements performed in the following examples are as follows.
  • the weight average molecular weight was measured by gel permeation chromatography (HLC-8320) manufactured by Tosoh Corporation.
  • the calibration curve was prepared from a standard polystyrene sample. Tetrahydrofuran was used as the eluent, and three TSKgel SuperHM-M (manufactured by Tosoh Corporation) were used as columns.
  • the measurement was performed under the conditions of a flow rate of 0.6 mL / min, an injection volume of 10 ⁇ L, and a column temperature of 40 ° C.
  • rosin acids used as raw materials were analyzed by gas chromatography-mass spectrometer, and the ratio (%) of each peak area to 100% of the total rosin peak area was determined. More specifically, a conjugated loginic acid contained in logonic acids and causing a deal alder addition reaction with ⁇ , ⁇ -unsaturated carboxylic acid or its acid anhydride (B), and other than the conjugated loginic acid. The content ratio was determined from the ratio of the corresponding peak areas.
  • the reaction solution of the deal alder addition reaction was analyzed by a gas chromatography mass spectrometer, and the detection peaks of the loginic acids (A) and ⁇ , ⁇ -unsaturated carboxylic acids or their acid anhydrides (B) used as raw materials were used. The progress of the reaction was confirmed by the decrease. The reaction was terminated when there was no change in the decrease in the detected peak.
  • the rosin-modified resin, varnish, and active energy ray-curable slab printing ink composition are respectively prepared according to the formulations of Examples and Comparative Examples shown below. Prepared.
  • the gum rosin used in the formulation shown below has a content of a conjugated loginic acid that causes a deal alder addition reaction with ⁇ , ⁇ -unsaturated carboxylic acid or its acid anhydride (B) in an amount of 80% by mass.
  • the content other than the conjugated carboxylic acid was 20% by mass.
  • the content of rosin acids (A) contained in gum rosin was 100% by mass.
  • Example 1 A four-necked flask equipped with a stirrer, a reflux condenser with a water separator, and a thermometer is charged with 58 parts of gum rosin and 15 parts of maleic anhydride, and heated at 180 ° C. for 1 hour while blowing nitrogen gas. To obtain a reaction mixture. Then, as described above, gas chromatography-mass spectrometry of the reaction mixture confirmed that the Diels-Alder addition reaction was completed.
  • Example 2 A four-necked flask equipped with a stirrer, a reflux condenser with a water separator, and a thermometer is charged with 35 parts of gum rosin and 10 parts of maleic anhydride, and heated at 180 ° C. for 1 hour while blowing nitrogen gas. To obtain a reaction mixture. Next, 10 parts of tetrahydrophthalic anhydride, 4 parts of 1,4-cyclohexanedimethanol, 22 parts of neopentyl glycol, 8 parts of trimethylolpropane, and p-toluenesulfonic acid 1 as a catalyst were added to the reaction mixture.
  • Example 3 A four-necked flask equipped with a stirrer, a reflux condenser with a water separator, and a thermometer is charged with 42 parts of gum rosin and 11 parts of maleic anhydride, and heated at 180 ° C. for 1 hour while blowing nitrogen gas. To obtain a reaction mixture. Next, 2 parts of 1,4-cyclohexanedimethanol, 17 parts of neopentyl glycol, 4 parts of trimethylolpropane, and 0.1 part of p-toluenesulfonic acid monohydrate as a catalyst were added to the reaction mixture. Was added and a dehydration condensation reaction was carried out at 240 ° C. for 8 hours, then 24 parts of a tall oil fatty acid was added and a dehydration condensation reaction was carried out for 3 hours to obtain a resin 3 (R3). The acid value of the resin 3 (R3) was 63, and Mw7,400.
  • Example 4 By the same operation as in Example 3, resin 4 (R4) having an acid value of 44 and Mw15,000 was obtained with the compounding composition shown in Table 1.
  • the unit of the compounding composition shown in Table 1 is "part".
  • Example 5 By the same operation as in Example 3, resin 5 (R5) having an acid value of 51 and Mw23, 900 was obtained with the compounding composition shown in Table 1.
  • Example 6 By the same operation as in Example 3, resin 6 (R6) having an acid value of 61 and Mw 3,400 was obtained with the compounding composition shown in Table 1.
  • Example 7 By the same operation as in Example 3, resin 7 (R7) having an acid value of 55 and Mw11,700 was obtained with the compounding composition shown in Table 1.
  • Example 8 A four-necked flask equipped with a stirrer, a reflux condenser with a water separator, and a thermometer is charged with 50 parts of gum rosin and 13 parts of maleic anhydride, and heated at 180 ° C. for 1 hour while blowing nitrogen gas. To obtain a reaction mixture. Next, 6 parts of 1,4-cyclohexanedimethanol, 21 parts of neopentyl glycol, and 0.1 part of p-toluenesulfonic acid monohydrate as a catalyst were added to the above reaction mixture at 240 ° C.
  • Example 9 A four-necked flask equipped with a stirrer, a reflux condenser with a water separator, and a thermometer is charged with 44 parts of gum rosin and 12 parts of maleic anhydride, and heated at 180 ° C. for 1 hour while blowing nitrogen gas. To obtain a reaction mixture. Next, 27 parts of trimethylol propane and 0.1 part of p-toluenesulfonic acid monohydrate as a catalyst were added to the above reaction mixture, and a dehydration condensation reaction was carried out at 240 ° C. for 8 hours. 17 parts of tall oil fatty acid was added, and a dehydration condensation reaction was carried out for 3 hours to obtain resin 9 (R9). The acid value of the resin 9 (R9) was 47, and Mw18,600.
  • Example 11 A four-necked flask equipped with a stirrer, a reflux condenser with a water separator, and a thermometer is charged with 51 parts of gum rosin and 13 parts of maleic anhydride, and heated at 180 ° C. for 1 hour while blowing nitrogen gas. To obtain a reaction mixture. Next, 2 parts of 1,4-cyclohexanedimethanol, 18 parts of neopentyl glycol, 7 parts of trimethylolpropane, and 0.1 part of p-toluenesulfonic acid monohydrate as a catalyst were added to the reaction mixture. Was added and a dehydration condensation reaction was carried out at 240 ° C. for 8 hours, then 9 parts of coconut oil fatty acid was added and a dehydration condensation reaction was carried out for 3 hours to obtain resin 11 (R11). The acid value of the resin 11 (R11) was 43, and Mw13,700.
  • Example 14 A four-necked flask equipped with a stirrer, a reflux condenser with a water separator, and a thermometer is charged with 45 parts of gum rosin and 13 parts of maleic anhydride, and heated at 180 ° C. for 1 hour while blowing nitrogen gas. To obtain a reaction mixture. Next, in the reaction mixture, 2 parts of 1,4-cyclohexanedimethanol, 14 parts of neopentyl glycol, 3 parts of trimethylolpropane, 11 parts of bisphenol A, and 0.1 part of p-toluenesulfonic acid monohydrate were added. Add part and 24 After the dehydration condensation reaction was carried out at 0 ° C. for 8 hours, 12 parts of the tall oil fatty acid was added and the dehydration condensation reaction was carried out for 3 hours to obtain resin 14 (R14). The acid value of the resin 14 (R14) was 58, and Mw 6,300.
  • Example 15 A four-necked flask equipped with a stirrer, a reflux condenser with a water separator, and a thermometer is charged with 39 parts of gum rosin and 10 parts of maleic anhydride, and heated at 180 ° C. for 1 hour while blowing nitrogen gas. To obtain a reaction mixture. Next, 40 parts of bisphenol A and 0.1 part of p-toluenesulfonic acid monohydrate as a catalyst were added to the above reaction mixture, and a dehydration condensation reaction was carried out at 240 ° C. for 8 hours, followed by tall oil. 11 parts of fatty acid was added, and a dehydration condensation reaction was carried out for 3 hours to obtain resin 15 (R15). The acid value of the resin 15 (R15) was 56, and Mw 7,500.
  • a resin (RA) The acid value of the resin A (RA) was 79, and the weight average molecular weight (Mw) in terms of GPC-measured polystyrene was 3,600.
  • the tall oil fatty acid is SYLFAT FA1 manufactured by Clayton Corporation (ratio of fatty acid (D-1) having 15-18 carbon atoms: 97%), and the coconut oil fatty acid is coconut oil fatty acid DC manufactured by Shin Nihon Rika Co., Ltd. (Ratio of fatty acid (D-1) having 15-18 carbon atoms: 8%) was used.
  • the trimethylolpropane ethylene oxide adduct triacrylate was added to the mixture so that the ink tack was 9 to 10, and the active energy ray-curable lithographic printing ink (1 to 15, A to H) was added. Obtained.
  • the ink tack was measured at a roll temperature of 30 ° C., 400 rpm, and a value after 1 minute with an incometer manufactured by Toyo Seiki Co., Ltd.
  • Aronix M-350 manufactured by Toagosei Co., Ltd. was used as the trimethylolpropane ethylene oxide adduct triacrylate.
  • the blocking resistance is such that when the printed matter of the created printed matter is overlapped with each other, a load of 0.5 kg / cm 2 is continuously applied for 24 hours in a test environment of 40 ° C., and the overlapped printed matter is peeled off.
  • the state of the printed surface was visually observed and evaluated on a 5-point scale according to the following criteria.
  • the usable level is "3" or higher. 5: No change on the printed surface. 4: Scratches are seen on a part of the printed surface, but no peeling is seen. 3: Peeling is seen on a part of the printed surface (less than 10% of the area). 2: Peeling is seen on a part of the printed surface (less than 10 to 50% of the area). 1: Peeling is seen on part or all of the printed surface (50% or more of the area).
  • solvent resistance The solvent resistance was evaluated on a 5-point scale according to the following criteria by visually observing the state of the printed surface after rubbing the printed surface 30 times with a cotton swab soaked with MEK (methyl ethyl ketone). The usable level is "3" or higher. 5: No change on the printed surface. 4: Dissolution is seen on a part of the printed surface, but no peeling is seen. 3: Peeling is seen on a part of the printed surface (less than 10% of the area). 2: Peeling is seen on a part of the printed surface (less than 10 to 50% of the area). 1: Peeling is seen on part or all of the printed surface (50% or more of the area).
  • the abrasion resistance was evaluated by conducting a test on the printed surface (coating film) of the printed matter according to JIS-K5701-1. Specifically, using a Gakushin type friction fastness tester (manufactured by Tester Sangyo Co., Ltd.), 500 g of high-quality paper was reciprocated 500 times on the surface of the coating film as friction paper. Next, changes in the friction surface (coating film surface) were visually observed and evaluated on a 5-point scale according to the following criteria. The usable level is "3" or higher. 5: No change on the printed surface. 4: Scratches are seen on a part of the printed surface, but no peeling is seen.
  • the inks 1 to 15 of the examples and the inks A to H of the comparative examples were printed on the PET film at a coating amount of 1 g / m 2 using an RI tester (a simple color spreading device manufactured by Ming Seisakusho).
  • a printed matter was obtained by irradiating ultraviolet rays at 60 m / min using one 100 W / cm air-cooled metal halide lamp (manufactured by Toshiba Corporation). Further, a PP film was used instead of the PET film, and a printed matter was obtained in the same manner as described above.
  • a cellophane tape peeling test was performed on each printed matter on the PET film and the PP film obtained as described above, and the adhesion was evaluated. The surface of the printed matter after the test was visually observed, and the adhesion was evaluated on a 5-point scale according to the following criteria. The usable level is "3" or higher. 5: No change on the printed surface. 4: Scratches are seen on a part of the printed surface, but no peeling is seen. 3: Peeling is seen on a part of the printed surface (less than 10% of the area). 2: Peeling is seen on a part of the printed surface (less than 10 to 50% of the area). 1: Peeling is seen on part or all of the printed surface (50% or more of the area).
  • the "lower limit of the water width” means the minimum supply amount of dampening water that enables normal printing
  • the "water dial” means the above-mentioned dampening water supply amount in order to adjust the supply amount. It means a dial provided in a printing machine.
  • the initial density stability was evaluated in four stages according to the following criteria from the number of waste papers generated until the density fluctuation became stable at the time of printing.
  • the usable level is "2" or higher, but "3" or higher is more preferable.
  • the evaluation results are shown in Table 2. 4: The number of waste paper is 200 or less. 3: The number of waste paper is 201 or more and 500 or less. 2: The number of waste papers is 501 or more and 800 or less. 1: The number of waste paper is 801 or more.
  • a blank sheet was attached to the inside of the safety cover of the printing machine at the time of printing, and after 10,000 threads, the blank sheet was taken out, and the degree of ink scattering was evaluated on a 4-point scale according to the following criteria.
  • the usable level is "2" or higher, but "3" or higher is more preferable.
  • 4 A small amount of ink mist is scattered on a part of the blank paper. 3: Ink mist is thinly scattered on the entire surface of the blank paper. 2: Ink mist is scattered on the entire surface of the blank paper. 1: Ink mist is scattered all over the blank sheet.
  • the inks 1 to 15 of the examples are at a usable level in all evaluations of blocking resistance, abrasion resistance, solvent resistance, adhesion, initial concentration stability and misting resistance. It can be seen that both excellent print film suitability and print suitability can be achieved. On the other hand, in the inks A to H of the comparative examples, it was difficult to achieve both printability and printability. More specifically, as seen in the inks A and G of the comparative example, the rosin-modified resin used as the binder resin contains an excessive amount of the loginic acid (A), or is an ⁇ , ⁇ -unsaturated carboxylic acid.
  • A loginic acid
  • the inks C and H of the comparative examples resulted in a decrease in misting resistance. It is considered that this is because the fatty acid (D) is contained in an excessive amount, the viscosity of the ink is increased, and the cohesive force is insufficient. Further, it is considered that the blocking resistance and the friction resistance are also lowered because the Tg in the resin is lowered due to the excess fatty acid (D).
  • the inks D, E, and F of the comparative example resulted in a decrease in adhesion to the PET and PP films.
  • Comparative Examples D and F the fatty acid (D) is deficient, and in Comparative Example E, the bifunctional and / or trifunctional alcohol is not contained and only the tetrafunctional alcohol is used. The flexibility of the resin is lost. Although the cured film is excellent in curability, it is considered that the balance with the adhesiveness is poor. Further, in Comparative Example E, it is considered that the filament easily stretches and becomes mist because the elasticity increases for the above reason.
  • the trimethylolpropane ethylene oxide adduct diacrylate was added to the mixture so that the ink tack was 8 to 9, and the ink was adjusted to obtain an active energy ray-curable letterpress printing ink.
  • the ink tack was measured at a roll temperature of 30 ° C., 400 rpm, and a value after 1 minute with an incometer manufactured by Toyo Seiki Co., Ltd.
  • each of the prepared active energy ray-curable letterpress printing inks was evaluated in the same manner as the active energy ray-curable lithographic printing ink, all of them satisfied the usable level.
  • 6-Hexanediol ethylene oxide adduct diacrylate (Viscoat # 230D manufactured by Osaka Organic Industry Chemical Co., Ltd.) 30.9 parts, 4,4'-bis (diethylamino) benzophenone 2.5 parts, 2-methyl-2-monohorino ( 2.5 parts of 4-thiomethylphenyl) propane-1-one and 0.1 part of hydroquinone were kneaded with a three-roll mill at 40 ° C. to obtain a mixture.
  • 1,6-hexanediol ethylene oxide adduct diacrylate was added to the mixture so that the viscosity of the ink became 500 to 1000 mPa ⁇ s, and the mixture was stirred with a disper to obtain an active energy ray-curable flexographic printing ink. ..
  • the viscosity of the ink was measured at 25 ° C. with an E-type viscometer (TVE25L-type viscometer manufactured by Toki Sangyo Co., Ltd.).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

一実施形態は、ロジン酸類(A)およびα,β-不飽和カルボン酸又はその酸無水物(B)の付加反応物と、ポリオール(C)と、脂肪酸(D)との反応物であるロジン変性樹脂であって、ポリオール(C)が、2価および/または3価のポリオールを含み、ロジン酸類(A)の配合量が、全配合量を基準として35~60質量%であり、脂肪酸(D)の配合量が、全配合量を基準として5~25質量%であるロジン変性樹脂に関する。

Description

ロジン変性樹脂とその製造方法、活性エネルギー線硬化型インキ用ワニス、活性エネルギー線硬化型インキ、および印刷物
 本発明の実施形態は、ロジン変性樹脂とその製造方法、活性エネルギー線硬化型インキ用ワニス、活性エネルギー線硬化型インキ、および印刷物に関する。
 一般に、活性エネルギー線硬化型インキは、バインダー樹脂と、アクリル酸エステル化合物のような活性エネルギー線硬化型化合物と、顔料と、ラジカル重合開始剤と、各種添加剤とを含む。
 活性エネルギー線硬化型インキ(以下、単に「インキ」ともいう)には、初期濃度安定性、および耐ミスチング性といった印刷適性が要求される。また、同時に、上記インキには、硬化性、密着性といった印刷皮膜特性が要求される。
 活性エネルギー線硬化型インキ組成物は一般に、極性の高いポリエステル樹脂、ポリ塩化ビニル樹脂、ポリカーボネート樹脂、ABS樹脂等に対しては密着するものが多い。その一方で、極性の低いポリエチレンやポリプロピレン等のオレフィン系樹脂は、素材自体の特徴として非常に極性が低いためインキの受理性が低く、充分なインキの密着性および着肉性を確保することが難しかった。
 そのため、コロナ処理などを行って素材表面の極性を上げ、インキの濡れ性を上げることで密着性および着肉性を確保する工夫がなされているが、コロナ処理やフレーム処理を施したものでも、コロナ処理は処理直後から効果が落ち始めるため、処理度が低下したフィルムを使用したことによる印刷トラブル(密着不良)がしばしば発生することより性能面で満足いく結果が得られていないことが現状である。
 さらに、近年では、印刷時の省人、省力化、自動化、および高速化の要求が高まってきており、特に、印刷スピードは益々高速化してきている。そして、様々な印刷条件下において、トラブルなく長時間にわたって安定して高品位な印刷物が得られるインキが望まれており、これまでに種々なインキの改良が検討されている。
 上記要求に応えるために、これまで、活性エネルギー線硬化型インキ用のバインダー樹脂として、不飽和ポリエステル樹脂、エポキシアクリレート樹脂、ウレタンアクリレート樹脂、ポリエステルアクリレート樹脂等が検討されてきた(例えば、特許文献1~3)。
特開2011-225748号公報 特開2018-65912号公報 特開2020-66649号公報
 特許文献1は、ロジン酸類と、α,β-不飽和カルボン酸との付加反応によって得られる、多価カルボン酸と、水素添加ビスフェノールを含むポリエステル樹脂を開示している。しかし、開示された樹脂はアルコール成分として、水素添加ビスフェノールAを主に含むことで、樹脂のTgが高くなりすぎるため、プラスチック基材への密着性と耐摩擦性の両立が不十分である傾向がある。
 また、特許文献2は、ロジン酸類と、脂肪酸および多塩基酸と、多価アルコールとの重縮合体によって得られる、ロジン変性アルキッド樹脂を開示している。しかし、樹脂成分の半分以上を植物油が占めるため、プラスチック基材への密着性と組成物の硬化性の両立が不十分である。
 また、特許文献3は、ロジン酸類と、α,β-不飽和カルボン酸との付加反応によって得られる、多価カルボン酸と、一つのシクロヘキサン環を含むポリエステル樹脂を開示している。しかし、現行の評価方法では、プラスチック基材への密着性が不十分である傾向にある。
 このように、活性エネルギー線硬化型インキ用のバインダー樹脂について、種々の検討が行われているが、活性エネルギー線硬化型インキに要求される印刷適性および印刷皮膜特性において十分に満足できるものはなく、さらなる改善が望まれている。
 本発明の実施形態の目的は、上述の状況を鑑みて、耐ブロッキング性、耐摩擦性、耐溶剤性、および、密着性といった印刷皮膜特性と、初期濃度安定性、耐ミスチング性といった印刷適性とを両立できる活性エネルギー線硬化型ワニスおよび活性エネルギー線硬化型インキ、並びにその組成物を提供することである。また、本発明の実施形態の他の目的は、印刷皮膜特性と印刷適性とを両立できる活性エネルギー線硬化型ワニスおよび活性エネルギー線硬化型インキを得ることができるロジン変性樹脂およびその製造方法を提供することである。
 本発明者らは、鋭意検討した結果、ロジン酸類と、α,β-不飽和カルボン酸又はその酸無水物とを付加反応させ、さらに2価および/または3価のポリオールを含むポリオール(C)と、脂肪酸とを反応させて得たロジン変性樹脂をバインダー樹脂に使用することにより、優れた印刷適性と印刷皮膜特性を両立し得る活性エネルギー線硬化型インキが得られることを見出し、本発明を完成させるに至った。
 すなわち、本発明の実施形態は、ロジン酸類(A)およびα,β-不飽和カルボン酸又はその酸無水物(B)の付加反応物と、ポリオール(C)と、脂肪酸(D)との反応物であるロジン変性樹脂であって、
 ポリオール(C)が、2価および/または3価のポリオールを含み、
 ロジン酸類(A)の配合量が、全配合量を基準として35~60質量%であり、
 脂肪酸(D)の配合量が、全配合量を基準として5~25質量%であるロジン変性樹脂に関する。
 また、本発明の実施形態は、重量平均分子量が3,000~25,000である、上記ロジン変性樹脂に関する。
 また、本発明の実施形態は、脂肪酸(D)が、炭素数15~18の脂肪酸(D-1)を含む、上記ロジン変性樹脂に関する。
 また、本発明の実施形態は、ポリオール(C)が、脂肪族ポリオールを含む、上記ロジン変性樹脂に関する。
 また、本発明の実施形態は、上記ロジン変性樹脂と、活性エネルギー線硬化型化合物とを含む、活性エネルギー線硬化型インキ用ワニスに関する。
 また、本発明の実施形態は、上記ロジン変性樹脂と、活性エネルギー線硬化型化合物とを含む、活性エネルギー線硬化型インキに関する。
 また、本発明の実施形態は、基材上に、上記活性エネルギー線硬化型インキを印刷し、活性エネルギー線にて硬化してなる印刷物に関する。
 また、本発明の実施形態は、ロジン変性樹脂の製造方法であって、
 ロジン酸類(A)と、α,β-不飽和カルボン酸又はその酸無水物(B)とを付加反応させる工程1と、
 工程1で得られた反応物と、ポリオール(C)とを反応させる工程2と、
 工程2で得られた反応物と、脂肪酸(D)とを反応させる工程3とを有し、
 ポリオール(C)が、2価および/または3価のポリオールを含み、
 ロジン酸類(A)の配合量が、全配合量を基準として35~60質量%であり、
 脂肪酸(D)の配合量が、全配合量を基準として5~25質量%である、ロジン変性樹脂の製造方法に関する。
 本発明の実施形態によれば、耐ブロッキング性、耐摩擦性、耐溶剤性、および、密着性といった印刷皮膜特性と、初期濃度安定性、耐ミスチング性といった印刷適性とを両立できる活性エネルギー線硬化型ワニスおよび活性エネルギー線硬化型インキ、並びにこれらを用いた印刷物を提供することができる。また、本発明の実施形態によれば、印刷皮膜特性と印刷適性とを両立できる活性エネルギー線硬化型ワニスおよび活性エネルギー線硬化型インキを得ることができるロジン変性樹脂およびその製造方法を提供することができる。
 以下、本発明の実施形態について詳細に説明する。但し、本発明は、以下に記載の実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲内で種々の変形が可能である。
 なお、本明細書中に記載される「共役二重結合」とは、複数の二重結合が単結合を挟んで交互に連なっている結合を指す。ただし、芳香族化合物に含まれるπ電子共役系は、共役二重結合からは除かれる。
 以下、各構造単位を形成する単量体について説明する。
<ロジン酸類(A)>
 本発明の実施形態において、ロジン変性樹脂を得るために用いるロジン酸類(A)とは、環式ジテルペン骨格を有する一塩基酸を指す。ロジン酸類(A)とは、例えば、ロジン酸、不均化ロジン酸、水添ロジン酸、または前記化合物のアルカリ金属塩等を表し、具体的には、共役二重結合を有するアビエチン酸、およびその共役化合物である、ネオアビエチン酸、パラストリン酸、レボピマル酸や、共役二重結合を有さないピマル酸、イソピマル酸、サンダラコピマル酸、およびデヒドロアビエチン酸等の有機酸が挙げられる。またこれらのロジン酸類(A)を含有する天然樹脂として、ガムロジン、ウッドロジン、トール油ロジン等が挙げられる。
 本発明の実施形態において、ロジン変性樹脂を得るために用いるロジン酸類(A)の配合量は、樹脂原料の全配合量を基準として35~60質量%であることが好ましく、35~50質量%であることがより好ましい。ロジン酸類(A)の配合量が35質量%以上であれば、その樹脂を含む活性エネルギー線硬化型インキの硬化性が良好になり、配合量が60質量%以下であると、活性エネルギー線硬化型インキ組成物の耐溶剤性が良好となる。
 本発明の実施形態における、ロジン酸類(A)としては、前記の共役二重結合を有する有機酸を、全ロジン酸類(A)中に40質量%以上含有することが好ましく、50質量%以上含有することがさらに好ましい。ロジン酸類(A)中に共役二重結合を有する有機酸が40質量%未満の場合、α,β-不飽和カルボン酸またはその酸無水物(B)とのディールスアルダー付加反応物の量が少なくなり、その結果、顔料分散性が低下する傾向がある。前記の共役二重結合を有する有機酸の含有量は、全ロジン酸類(A)中に100質量%以下であってよい。
<α,β-不飽和カルボン酸またはその酸無水物(B)>
 本発明の実施形態において、ロジン変性樹脂を得るために用いるα,β-不飽和カルボン酸またはその酸無水物(B)としては、マレイン酸、フマル酸、シトラコン酸、イタコン酸、クロトン酸、イソクロトン酸等およびこれらの酸無水物が例示される。ロジン酸類(A)との反応性を鑑みると、好ましくはマレイン酸またはその酸無水物である。
 本発明の実施形態における、α,β-不飽和カルボン酸又はその酸無水物(B)の配合量は、ロジン酸類(A)に対して、60~180モル%の範囲であることが好ましく、70~155モル%の範囲であることがより好ましい。α,β-不飽和カルボン酸又はその酸無水物(B)の配合量を上記範囲内に調整した場合、対摩擦性、密着性、およびミスチング性に優れるロジン変性樹脂を得ることが容易である。
<(A)、(B)、および(D)以外のカルボン酸(以下「その他の有機酸類」ともいう)>
 本発明の実施形態において、ロジン変性樹脂を得るために、ロジン酸類(A)、α,β-不飽和カルボン酸又はその酸無水物(B)、および脂肪酸(D)に加えて、その他の有機酸類を、単独または2種類以上用いることもできる。
 その他の有機酸類の配合量は、樹脂原料の全配合量を基準として0~30質量%であることが好ましく、0~20質量%であることが更に好ましい。
 その他の有機酸類の具体的な例としては以下が挙げられるが、これらに限定されるものではない。
(有機一塩基酸)
 安息香酸、メチル安息香酸、ターシャリーブチル安息香酸、ナフトエ酸、オルトベンゾイル安息香酸等の芳香族一塩基酸、
 共役リノール酸、エレオステアリン酸、パリナリン酸、カレンジン酸等の共役二重結合を有するが環式ジテルペン骨格を有さない化合物
 等が挙げられる。
(脂環式多塩基酸またはその酸無水物)
 1,2,3,6-テトラヒドロフタル酸、3-メチル-1,2,3,6-テトラヒドロフタル酸、4-メチル-1,2,3,6-テトラヒドロフタル酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、およびこれらの酸無水物等が挙げられる。
(その他の有機多塩基酸またはその酸無水物)
 シュウ酸、マロン酸、コハク酸、グルタル酸、ピメリン酸、セバシン酸、アゼライン酸、ドデセニルコハク酸、ペンタデセニルコハク酸などのアルケニルコハク酸、o-フタル酸、テレフタル酸、トリメリット酸、ピロメリット酸、およびこれらの酸無水物等が挙げられる。
<ポリオール(C)>
 ポリオール(C)は、ロジン酸類(A)に含まれる共役二重結合を有する有機酸とα,β-不飽和カルボン酸又はその酸無水物(B)とのディールスアルダー反応によって得られる化合物、ロジン酸類(A)のうち共役二重結合を有さない有機酸、脂肪酸(D)およびその他の有機酸、それぞれにおけるカルボン酸との反応によってエステル結合を形成する。
 本発明の実施形態において、ロジン変性樹脂は、ポリオール(C)として、2価および/または3価のポリオールを含むことで、得られるロジン変性樹脂に適度な柔軟性が付与され、そのロジン変性樹脂を用いたインキの優れた印刷適性と、密着性の発現および向上の両立が可能となる。
<2価および/または3価のポリオール>
 本発明の実施形態において、ロジン変性樹脂を得るために、2価および/または3価のポリオールを、単独または2種類以上用いることもできる。2価および/または3価のポリオールの具体的な例としては以下が挙げられるが、これらに限定されるものではない。
(直鎖状アルキレン2価ポリオール)
 1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,4-ブタンジオール、1,2-ペンタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,2-ヘキサンジオール、1,5-ヘキサンジオール、2,5-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,2-オクタンジオール、1,9-ノナンジオール、1,2-デカンジオール、1,10-デカンジオール、1,12-ドデカンジオール、1,2-ドデカンジオール、1,14-テトラデカンジオール、1,2-テトラデカンジオール、1,16-ヘキサデカンジオール、1,2-ヘキサデカンジオール等。
(分岐状アルキレン2価ポリオール)
 2-メチル-2,4-ペンタンジオール、3-メチル-1,5-ペンタンジオール、2-メチル-2-プロピル-1,3-プロパンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、2,4-ジメチル-2,4-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオ-ル、2,2,4-トリメチル-1,3-ペンタンジオール、ジメチロールオクタン、2-エチル-1,3-ヘキサンジオール、2,5-ジメチル-2,5-ヘキサンジオール、2-メチル-1,8-オクタンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、2,4-ジエチル-1,5-ペンタンジオール等。
(環状2価ポリオール)
 1,2-シクロヘプタンジオール、トリシクロデカンジメタノール、1,2-シクロヘキサンジオール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジオール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、水添ビスフェノールA、水添ビスフェノールF、水添ビスフェノールS、水添カテコール、水添レゾルシン、水添ハイドロキノン等の環状アルキレン2価ポリオール;ビスフェノールA、ビスフェノールF、ビスフェノールS、カテコール、レゾルシン、ハイドロキノン等の芳香族2価ポリオール。
(その他の2価のポリオール)
 ポリエチレングリコール(n=2~20)、ポリプロピレングリコール(n=2~20)、ポリテトラメチレングリコール(n=2~20)等の2価のポリエーテルポリオール、ポリエステルポリオール等。nは、アルキレンオキシ基の数を表す。
(3価のポリオール)
 グリセリン、トリメチロールプロパン、1,2,6-ヘキサントリオール、3-メチルペンタン-1,3,5-トリオール、ヒドロキシメチルヘキサンジオール、トリメチロールオクタン等。
<2価および/または3価のポリオール以外のポリオール>
(4価以上のポリオール)
 ペンタエリスリトール、ジグリセリン、ジトリメチロールプロパン、ジペンタエリスリト-ル、ソルビトール、イノシトール、トリペンタエリスリトール等の直鎖状、分岐状、および環状の4価以上のポリオール。
 本発明の実施形態における、2価および/または3価のポリオールの合計配合量は、樹脂原料の全配合量を基準として10~55質量%含むことが好ましい。2価および/または3価のポリオールの合計配合量がこの範囲内の場合、密着性を発現させ、かつ、印刷皮膜適性や印刷適性を向上させることが容易となる。2価および/または3価のポリオールの合計配合量は20~50質量%であることがより好ましく、20~45質量%であることがさらに好ましい。
 また、ポリオール(C)の全配合量に対する2価および/または3価のポリオールの合計配合量は、80~100質量%であることが好ましく、85~100質量%であることがより好ましい。
 また、ポリオール(C)は、脂肪族ポリオールを含むことが好ましい。脂肪族ポリオールを含むことで、得られるロジン変性樹脂が柔軟性を有するため、そのロジン変性樹脂を用いたインキの密着性の発現および向上が可能となる。ポリオール(C)の全配合量に対する脂肪族ポリオールの配合量は、80~100質量%であることが好ましく、90~100質量%であることがより好ましい。
 <脂肪酸(D)>
 脂肪酸(D)は、ポリオール(C)に由来する水酸基と反応しエステル結合を形成する。脂肪酸(D)は、例えば、ロジン酸類(A)に含まれる共役二重結合を有する有機酸とα,β-不飽和カルボン酸又はその酸無水物(B)とのディールスアルダー反応によって得られる化合物、ロジン酸類(A)のうち共役二重結合を有さない有機酸、およびその他の有機酸、それぞれにおけるカルボン酸とポリオール(C)との反応によってエステル結合を形成した化合物が有する水酸基と反応しエステル結合を形成する。脂肪酸(D)の具体的な例としては以下が挙げられるが、これらに限定されるものではない。アマニ油脂肪酸、桐油脂肪酸、ひまし油脂肪酸、大豆油脂肪酸、トール油脂肪酸、ヌカ油脂肪酸、パーム油脂肪酸、ヤシ油脂肪酸、脱水ひまし油脂肪酸、カプリン酸、ウンデカン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、イソステアリン酸、オレイン酸、リノール酸、リノレン酸等が挙げられる。
 本発明の実施形態において、ロジン変性樹脂は、脂肪酸(D)として、炭素数15~18の脂肪酸(D-1)を含むことで、得られるロジン変性樹脂に適度な柔軟性が付与され、そのロジン変性樹脂を用いたインキの密着性の発現および向上が可能となる。
 本発明の実施形態における、前記脂肪酸(D)の配合量は、樹脂原料の全配合量を基準として5~25質量%であることが好ましい。脂肪酸(D)の配合量がこの範囲内の場合、その樹脂を含む活性エネルギー線硬化型インキの密着性が良好になる。配合量が25質量%を超えると、活性エネルギー線硬化型インキ組成物の耐ブロッキング性と耐摩擦性が劣化する傾向がある。脂肪酸(D)の配合量は、樹脂原料の全配合量を基準として5~20質量%であることがより好ましい。また、脂肪酸(D)中に、炭素数15~18の脂肪酸(D-1)が50~100質量%含まれることが望ましく、60~100%質量%含まれることがより好ましい。
 本発明の実施形態において、ロジン変性樹脂は、重量平均分子量が3,000~25,000であることが好ましく、4,000~15,000であることがより好ましい。重量平均分子量が3,000~25,000であることで、密着性および耐ミスチング性の発現および向上が可能となる。
 重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により、標準ポリスチレンの検量線を用いて測定することができる。
<ロジン変性樹脂の製造方法>
 本発明の実施形態であるロジン変性樹脂の製造方法は、ロジン酸類(A)と、α,β-不飽和カルボン酸又はその酸無水物(B)とを付加反応させる工程1と、工程1で得られた反応物と、ポリオール(C)とを反応させる工程2と、工程2で得られた反応物と、脂肪酸(D)とを反応させる工程3とを有し、ポリオール(C)が、2価および/または3価のポリオールを含み、ロジン酸類(A)の配合量が、全配合量を基準として35~60質量%であり、脂肪酸(D)の配合量が、全配合量を基準として5~25質量%である。
 本発明の実施形態において、ロジン変性樹脂は、(1)ロジン酸類(A)と、α,β-不飽和カルボン酸又はその酸無水物(B)との反応、次いで(2)上記(1)の反応で得た反応混合物、およびその他の有機酸類と、ポリオール(C)との反応、最後に(3)上記の(2)で得られた反応混合物と脂肪酸(D)との反応を経て得られる。
 上記(1)の反応は、ロジン酸類(A)中の共役二重結合(ジエン)と、α,β-不飽和カルボン酸又はその酸無水物(B)における二重結合(ジエノフィル)とのディールスアルダー付加反応である。また、上記(2)の反応は、(1)の反応で得た反応混合物、およびその他の有機酸類におけるカルボキシル基と、ポリオール(C)における水酸基との間のエステル化反応である。また、上記(3)の反応は、(2)の反応で得た反応混合物における残存水酸基と、脂肪酸(D)におけるカルボキシル基との間のエステル化反応である。
 ロジン酸類(A)中の共役二重結合と、α,β-不飽和カルボン酸又はその酸無水物(B)とのディールスアルダー付加反応物は、多価カルボン酸化合物となる。そのため、ポリオール(C)とのエステル化反応により高分子化が可能となる。また、ディールスアルダー付加反応によって、ロジン酸類(A)中の共役二重結合を消滅させることができるとともに、ロジン酸類(A)由来の多環構造をロジン変性樹脂に導入することができる。通常、ロジン酸類(A)中の共役二重結合は、インキ硬化のための活性エネルギー線照射時に硬化阻害を引き起こす。しかし、本発明の実施形態では、ディールスアルダー付加反応によってロジン酸類(A)中の共役二重結合を消滅させるため、インキの硬化性を向上することが容易となる。
 以上により、本発明の実施形態であるロジン変性樹脂の製造方法によれば、耐摩擦性、耐溶剤性等の皮膜強度と、初期濃度安定性、耐ミスチング性等の印刷適性とを両立することが可能となる。加えて、上記の通り、柔軟性を有する長鎖脂肪酸を構造中に組み込むことによって、上記皮膜特性に加えて、優れた密着性を発現させることも可能となる。
 ディールスアルダー付加反応の条件は、特に限定されず、常法に従って行うことができる。反応温度は、使用する化合物の沸点、および反応性を考慮して決定することができる。上記反応温度は、80~200℃の範囲が好ましく、100~200℃の範囲がより好ましく、100~180℃の範囲がさらに好ましい。
 ディールスアルダー付加反応は、重合禁止剤の存在下で行なっても良い。使用可能な重合禁止剤の具体例として、ハイドロキノン、p-メトキシフェノール、メチルハイドロキノン、メトキシハイドロキノン、2,6-ジ-t-ブチルフェノール、2,6-ジ-t-ブチル-4-ヒドロキシトルエン、t-ブチルカテコール、4-メトキシ-1-ナフトール、およびフェノチアジン等が挙げられる。
 エステル化反応の条件も、特に限定されず、常法に従って行うことができる。反応温度は、使用する化合物の沸点、および反応性を考慮して決定することができる。上記反応温度は、200~300℃の範囲が好ましく、200~280℃の範囲がより好ましく、200~260℃の範囲がさらに好ましい。
 また、必要に応じて、エステル化反応において、触媒を用いることが可能である。使用可能な触媒の一例として、ベンゼンスルホン酸、p-トルエンスルホン酸、p-ドデシルベンゼンスルホン酸、メタンスルホン酸、エタンスルホン酸等の有機スルホン酸類、硫酸、塩酸等の鉱酸、トリフルオロメチル硫酸、トリフルオロメチル酢酸等が挙げられる。さらに、使用可能な触媒の他の例として、テトラブチルジルコネート、テトライソブチルチタネート等の金属錯体、酸化マグネシウム、水酸化マグネシウム、酢酸マグネシウム、酸化カルシウム、水酸化カルシウム、酢酸カルシウム、酸化亜鉛、酢酸亜鉛等の金属塩触媒なども挙げられる。これら触媒は、ロジン変性樹脂の製造時に使用した全成分の総量を基準として、通常、0.01~5質量%の範囲で使用される。触媒を使用することによる樹脂の着色を抑制するために、樹脂の製造時に、次亜リン酸、トリフェニルホスファイト、トリフェニルホスフェート、およびトリフェニルホスフィン等を併用することもできる。
 上記ロジン変性樹脂の製造において、樹脂を形成する上記(A)~(D)の単量体は、同時に配合することもできるし、段階的に配合することもできる。
 例えば、ロジン酸類(A)、α,β-不飽和カルボン酸又はその酸無水物(B)、その他の有機酸類、ポリオール(C)、および脂肪酸(D)の混合物を用いて、3段階で反応を実施することができる。この場合、最初に、ロジン酸類(A)と、α,β-不飽和カルボン酸又はその酸無水物(B)とのディールスアルダー付加反応が起こるように反応温度を調整すればよい。より具体的には、最初に、反応温度をディールスアルダー付加反応が進行する温度に制御し、一定時間にわたって維持した後に、ポリオール(C)と脂肪酸(D)とのエステル化反応が進行する温度まで加熱したのちに、高分子化させるためのエステル化反応が進行する温度まで加熱し反応を実施すればよい。
 別法として、ロジン酸類(A)、α,β-不飽和カルボン酸又はその酸無水物(B)を配合し、ディールスアルダー付加反応させた後、その他の有機酸類、およびポリオール(C)を配合し、エステル化反応して得られた反応混合物に脂肪酸(D)を配合して、反応させてもよい。
 また、ロジン酸類(A)、α,β-不飽和カルボン酸又はその酸無水物(B)、その他の有機酸類、ポリオール(C)の混合物を用いて、2段階で反応を実施することができる。この場合、最初に、反応温度をディールスアルダー付加反応が進行する温度に制御し、一定時間にわたって維持した後に、反応混合物とポリオール(C)エステル化反応が進行する温度まで加熱したのちに、脂肪酸(D)を配合して、反応させてもよい。
 また、本発明の実施形態において、ロジン変性樹脂の融点は50℃以上であることが好ましく、60~100℃の範囲がより好ましい。なお融点は、BUCHI社製のMeltingPointM-565を用い、昇温速度0.5℃/分の条件下で測定できる。
<活性エネルギー線硬化型インキ用ワニス>
 本発明の実施形態であるロジン変性樹脂を使用して、活性エネルギー線硬化型インキ用ワニスを製造することができる。
 活性エネルギー線硬化型インキ用ワニスは、少なくとも本発明の実施形態であるロジン変性樹脂と、活性エネルギー線硬化型化合物とを含み、ワニスの全質量を基準として、本発明の実施形態であるロジン変性樹脂を30~80質量%と、活性エネルギー線硬化型化合物を20~70質量%とを含有することが好ましい。
 本発明の実施形態において、活性エネルギー線硬化型インキ用ワニスにおける、ロジン変性樹脂と活性エネルギー線硬化型化合物との配合比は、質量比で30:70~75:25の範囲が好ましく、35:65~70:30の範囲がさらに好ましい。
 本明細書において、活性エネルギー線硬化型化合物とは、分子内に(メタ)アクリロイル基を有する化合物を意味する。
 本発明の実施形態において、活性エネルギー線硬化型インキ用ワニスを製造するために使用可能な活性エネルギー線硬化型化合物の具体例として、
 2-エチルヘキシルアクリレート、メトキシジエチレングリコールアクリレート、ジエチレングリコールモノフェニルエーテルアクリレート、テトラエチレングリコールモノフェニルエーテルアクリレート、アクリロイルモルホリン等の単官能活性エネルギー線硬化型化合物、
 エチレングリコールジアクリレート、ポリエチレングリコールジアクリレート(n=2~20)、プロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート(n=2~20)、アルキレン(炭素数4~12)グリコールジアクリレート、アルキレン(炭素数4~12)グリコールエチレンオキサイド付加物(2~20モル)ジアクリレート、アルキレン(炭素数4~12)グリコールプロピレンオキサイド付加物(2~20モル)ジアクリレート、ヒドロキシピバリルヒドロキシピバレートジアクリレート、トリシクロデカンジメチロールジアクリレート、水添ビスフェノールAジアクリレート、ビスフェノールAエチレンオキサイド付加物(2~20モル)ジアクリレート、水添ビスフェノールAプロピレンオキサイド付加物(2~20モル)ジアクリレート等の2官能活性エネルギー線硬化型化合物、
 グリセリントリアクリレート、グリセリンエチレンオキサイド付加物(3~30モル)トリアクリレート、グリセリンプロピレンオキサイド付加物(3~30モル)トリアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンエチレンオキサイド付加物(3~30モル)トリアクリレート、トリメチロールプロパンプロピレンオキサイド付加物(3~30モル)トリアクリレート等の3官能活性エネルギー線硬化型化合物、
 ペンタエリスリトールテトラアクリレート、ペンタエリスリトールエチレンオキサイド付加物(4~40モル)テトラアクリレート、ペンタエリスリトールプロピレンオキサイド付加物(4~40モル)テトラアクリレート、ジグリセリンテトラアクリレート、ジグリセリンエチレンオキサイド付加物(4~40モル)テトラアクリレート、ジグリセリンプロピレンオキサイド付加物(4~40モル)テトラアクリレート、ジトリメチロールプロパンテトラアクリレート、ジトリメチロールプロパンエチレンオキサイド付加物(4~40モル)テトラアクリレート、ジトリメチロールプロパンプロピレンオキサイド付加物(4~40モル)テトラアクリレート等の4官能活性エネルギー線硬化型化合物、および
 ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールエチレンオキサイド付加物(6~60モル)ヘキサアクリレート、ジペンタエリスリトールプロピレンオキサイド付加物(6~60モル)ヘキサアクリレート等の多官能活性エネルギー線硬化型化合物(5官能以上)
 が挙げられる。
 また、これらのアクリレートにおいて、アクリロイル基をメタクリロイル基に置き換えた化合物が挙げられる。
 活性エネルギー線硬化型化合物として、例示した化合物を単独で使用しても、2種以上を組合せて使用してもよい。
 活性エネルギー線硬化型化合物は、要求される硬化皮膜特性に応じて、適宜選択することが可能である。必要に応じて、上記化合物に加えて、ポリエステルアクリレート、ポリウレタンアクリレート、およびエポキシアクリレート等のオリゴマーを併用することも可能である。また、これらのアクリレートにおいて、アクリロイル基をメタクリロイル基に置き換えたオリゴマーが挙げられる。
 本発明の実施形態において、活性エネルギー線硬化型インキ用ワニスは、上記成分に加えて、さらに光重合禁止剤を含んでもよい。このような実施形態では、光重合禁止剤を常法により添加し、使用することができる。上記ワニスに光重合禁止剤を添加する場合、硬化性を阻害しない観点から、その配合量は、活性エネルギー線硬化型インキ用ワニスの全質量を基準として、3質量%以下にすることが好ましく、0.01~1質量%の範囲で使用することがさらに好ましい。
 使用可能な光重合禁止剤の具体例として、(アルキル)フェノール、ハイドロキノン、カテコール、レゾルシン、p-メトキシフェノール、t-ブチルカテコール、t-ブチルハイドロキノン、ピロガロール、1,1-ピクリルヒドラジル、フェノチアジン、p-ベンゾキノン、ニトロソベンゼン、2,5-ジ-tert-ブチル-p-ベンゾキノン、ジチオベンゾイルジスルフィド、ピクリン酸、クペロン、アルミニウムN-ニトロソフェニルヒドロキシルアミン、トリ-p-ニトロフェニルメチル、N-(3-オキシアニリノ-1,3-ジメチルブチリデン)アニリンオキシド、ジブチルクレゾール、シクロヘキサノンオキシムクレゾール、グアヤコール、o-イソプロピルフェノール、ブチラルドキシム、メチルエチルケトキシム、およびシクロヘキサノンオキシム等が挙げられる。特に限定するものではないが、ハイドロキノン、p-メトキシフェノール、t-ブチルハイドロキノン、p-ベンゾキノン、2,5-ジ-tert-ブチル-p-ベンゾキノンからなる群から選択される1種以上の化合物を使用することが好ましい。
 本発明の実施形態において、活性エネルギー線硬化型インキ用ワニスは、例えば、常温から160℃の間の温度条件下で、上記成分を混合することで製造することができる。
 例えば、ロジン変性樹脂と、トリメチロールプロパントリアクリレートと、ハイドロキノンとを、100℃の温度条件下で、加熱溶融して得たワニスを好適に使用することができる。
<活性エネルギー線硬化型インキ>
 本発明の実施形態であるロジン変性樹脂を使用して、活性エネルギー線硬化型インキを製造することができる。
 活性エネルギー線硬化型インキは、少なくとも本発明の実施形態であるロジン変性樹脂と、活性エネルギー線硬化型化合物とを含む。
 さらに、本発明の実施形態において、活性エネルギー線硬化型インキは、着色インキとする場合には顔料を含むが、顔料を使用しない場合にはオーバーコートワニス、またはクリアインキとなる。このため、インキは、顔料を使用するものに限定されない。
 活性エネルギー線硬化型化合物としては、先にワニスに含まれる成分として例示した化合物が挙げられる。
 本発明の実施形態において、活性エネルギー線硬化型インキは、ロジン変性樹脂を5~40質量%、上記活性エネルギー線硬化型化合物を20~70質量%、および顔料を0~50質量%含有するものであることが好ましい(但し、各成分の含有量の合計が100質量%とする)。ここで、上記ロジン変性樹脂、および上記活性エネルギー線硬化型化合物は、予め上述したワニスの形態に調製して使用してもよい。
 使用することのできる顔料は、公知公用の各種顔料であってよく、無機顔料および有機顔料を使用することができる。
 無機顔料の具体例として、黄鉛、亜鉛黄、紺青、硫酸バリウム、カドミウムレッド、酸化チタン、亜鉛華、弁柄、アルミナホワイト、炭酸カルシウム、炭酸マグネシウム、珪酸アルミニウム、二酸化珪素、群青、カーボンブラック、グラファイト、およびアルミニウム粉等が挙げられる。
 有機顔料の具体例として、β-ナフトール系、β-オキシナフトエ酸系、β-オキシナフトエ酸系アニリド系、アセト酢酸アニリド系、およびピラゾロン系等の溶性アゾ顔料、
 β-ナフトール系、β-オキシナフトエ酸系アニリド系、アセト酢酸アニリド系モノアゾ、アセト酢酸アニリド系ジスアゾ、およびピラゾロン系等の不溶性アゾ顔料、
 銅フタロシアニンブルー、ハロゲン化(塩素又は臭素化)銅フタロシアニンブルー、およびスルホン化銅フタロシアニンブルー、金属フリーフタロシアニン等のフタロシアニン系顔料、
 キナクリドン系、ジオキサジン系、スレン系(ピラントロン、アントアントロン、インダントロン、アントラピリミジン、フラバントロン、チオインジゴ系、アントラキノン系、ペリノン系、ペリレン系等)、イソインドリノン系、金属錯体系、キノフタロン系等の多環式顔料および複素環式顔料等が挙げられる。
 本発明の実施形態において、活性エネルギー線硬化型インキは、活性エネルギー線の照射によって硬化する。紫外線でインキを硬化させる場合は、インキに光重合開始剤を添加することが好ましい。一般に、光重合開始剤は、光により分子内で結合が開裂して活性種を生成するタイプと、分子間で水素引き抜き反応を起こして活性種を生成するタイプとの2種類に大別できる。
 前者として、例えば、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、ジエトキシアセトフェノン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニルケトン、[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、ベンジルジメチルケタール、オリゴ{2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパン}、4-(2-アクリロイル-オキシエトキシ)フェニル-2-ヒドロキシ-2-プロピルケトン等のアセトフェノン系、ベンゾイン、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾイン系、1-ヒドロキシシクロヘキシル-フェニルケトンとベンゾフェノンとの混合物、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド等のアシルホスフィンオキサイド系、ベンジル、メチルフェニルグリオキシエステル、および3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン等が挙げられる。
 後者として、例えば、ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4,4’-ジクロロベンゾフェノン、ヒドロキシベンゾフェノン、4-ベンゾイル-4’-メチル-ジフェニルサルファイド、アクリル化ベンゾフェノン、3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、3,3’-ジメチル-4-メトキシベンゾフェノン等のベンゾフェノン系、2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン等のチオキサントン系、ミヒラーケトン、4,4’-ビスジエチルアミノベンゾフェノン等のアミノベンゾフェノン系、10-ブチル-2-クロロアクリドン、2-エチルアンスラキノン、9,10-フェナンスレンキノン、およびカンファーキノン等がある。
 光重合開始剤は、1種を単独で使用しても、必要に応じて2種以上を組合せて使用しても良い。
 本発明の実施形態において、活性エネルギー線硬化型インキに紫外線を照射して、インキを硬化させる場合、インキに光重合開始剤を添加するだけでよいが、硬化性をより向上させるために、光増感剤を併用することもできる。
 光増感剤としては、例えば、トリエタノールアミン、メチルジエタノールアミン、ジメチルエタノールアミン、トリイソプロパノールアミン、4-ジメチルアミノ安息香酸メチル、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミル、安息香酸(2-ジメチルアミノ)エチル、4-ジメチルアミノ安息香酸(n-ブトキシ)エチル、および4-ジメチルアミノ安息香酸2-エチルヘキシル等のアミン類が挙げられる。
 活性エネルギー線として紫外線を使用する場合、光重合開始剤の配合量は、活性エネルギー線硬化型インキの全質量を基準として、0.01~15質量%であることが好ましく、0.05~10質量%であることがより好ましい。上記配合量を0.01質量%以上とした場合、硬化反応が十分に進行する。また、上記配合量を15質量%以下とした場合、熱重合反応の発生を抑制し活性エネルギー線硬化型平版印刷インキの安定性を好適な状態にすることが容易である。活性エネルギー線として、紫外線以外の電離放射線を使用する場合には、光重合開始剤を配合しなくてもよい。
 活性エネルギー線硬化型インキは、光重合禁止剤、耐摩擦剤、ブロッキング防止剤、スベリ剤等の各種添加剤を、目的に応じて、さらに含んでもよい。各種添加剤は、常法によりインキに添加することができる。インキに対して各種添加剤を添加する場合、他のインキ材料の効果を阻害しない範囲で配合量を調整することが好ましい。各種添加剤の配合量は、活性エネルギー線硬化型平版印刷インキ全質量を基準として、15質量%以下であることが好ましい。なお、光重合禁止剤を使用する場合、例えば、活性エネルギー線硬化型インキ用ワニスに使用可能な光重合禁止剤として例示した化合物を用いることができる。
 活性エネルギー線の照射は、窒素ガス等の不活性ガス置換雰囲気下で実施することが好ましいが、大気中で照射しても差し支えない。活性エネルギー線を照射する前に、赤外線ヒーター等によって活性エネルギー線硬化型インキの塗布層を加温するか、又は活性エネルギー線を照射した後に、活性エネルギー線硬化型インキの硬化層を赤外線ヒーター等で加温することは、硬化を速く終了させるために有効である。
 本明細書において、活性エネルギー線とは、代表的に、紫外線、電子線、X線、α線、β線、γ線のような電離放射線、マイクロ波、高周波等を意味する。しかし、活性エネルギー線は、上記に限定されるものではなく、ラジカル性活性種を発生させ得るならば、いかなるエネルギー種でもよく、可視光線、赤外線、およびレーザー光線でもよい。
 紫外線を発生するものとしては、例えば、LED、超高圧水銀ランプ、高圧水銀ランプ、中圧水銀ランプ、低圧水銀ランプ、メタルハライドランプ、キセノンランプ、カーボンアークランプ、ヘリウム・カドミウムレーザー、YAGレーザー、エキシマレーザー、およびアルゴンレーザーなどが挙げられる。
 本発明の実施形態において、活性エネルギー線硬化型インキは、通常の印刷用インキと同様に公知の印刷方法、例えば平版印刷、凸版印刷、スクリーン印刷、グラビア印刷、フレキソ印刷にて印刷することができる。
 本発明の実施形態において、活性エネルギー線硬化型インキは、フォーム用印刷物、各種書籍用印刷物、カルトン紙等の各種包装用印刷物、各種プラスチック印刷物、シール/ラベル用印刷物、美術印刷物、金属印刷物(美術印刷物、飲料缶印刷物、缶詰等の食品印刷物)などの印刷物に適用される。また、他の実施形態として、上記印刷物のオーバーコートワニスとして使用されることもある。
 上記インキが適用される基材は、特に限定されない。使用可能な基材の具体例として、上質紙等の非塗工紙、微塗工紙、アート紙、コート紙、軽量コート紙、キャストコート紙等の塗工紙、白板紙、ボールコート等の板紙、合成紙、アルミ蒸着紙、およびポリプロピレン、ポリエチレン、ポリエチレンテレフタレート、ポリ塩化ビニル等のプラスチックシートが挙げられる。
 以下、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、本明細書に記載の「部」は質量部を表し、「%」は質量%を示す。
 以下の実施例で実施した各種測定の詳細は以下のとおりである。
(重量平均分子量)
 重量平均分子量は、東ソー(株)製のゲルパーミエーションクロマトグラフィ(HLC-8320)で測定した。検量線は標準ポリスチレンサンプルにより作成した。また、溶離液としてテトラヒドロフランを用い、カラムとしてTSKgel SuperHM-M(東ソー(株)製)を3本用いた。測定は、流速0.6mL/分、注入量10μL、およびカラム温度40℃の条件下で行った。
(酸価)
 酸価は、中和滴定法によって測定した。具体的には、先ず、ロジン変性樹脂1gをキシレン:エタノール=2:1の質量比で混合した溶媒20mLに溶解させた。次いで、調製したロジン変性樹脂の溶液に、指示薬として3質量%のフェノールフタレイン溶液を3mL加えた後に、0.1mol/Lのエタノール性水酸化カリウム溶液で中和滴定を行った。酸価の単位は、mgKOH/gである。
(ロジン酸類の成分分析)
 原料として使用するロジン酸類をガスクロマトグラフィー質量分析計で分析し、全ロジン酸ピーク面積100%に対する、各ピーク面積比(%)を求めた。より具体的には、ロジン酸類中に含まれ、α,β-不飽和カルボン酸又はその酸無水物(B)とディールスアルダー付加反応を起こす共役系ロジン酸と、前記共役系ロジン酸以外との含有比を、それぞれ該当するピーク面積の比から求めた。
(ディールスアルダー付加反応の進行の確認と、生成した付加反応物の定量)
 ディールスアルダー付加反応の反応液をガスクロマトグラフィー質量分析計で分析し、原料として使用した、ロジン酸類(A)、およびα,β-不飽和カルボン酸又はその酸無水物(B)の検出ピークの減少によって反応の進行を確認した。検出ピークの減少に変化が見られない時点で反応を終了した。
1.ロジン変性樹脂、ワニス、および活性エネルギー線硬化型平版印刷インキ組成物の調製
 以下に示す実施例および比較例の処方に従い、ロジン変性樹脂、ワニス、および活性エネルギー線硬化型平版印刷インキ組成物をそれぞれ調製した。
 なお、以下に示す処方で使用したガムロジンは、α,β-不飽和カルボン酸又はその酸無水物(B)とディールスアルダー付加反応を起こす共役系ロジン酸の含有量が80質量%であり、前記共役系ロジン酸以外の含有量が20質量%であった。また、ガムロジンに含まれるロジン酸類(A)の含有量は、100質量%であった。
(実施例1)
 攪拌機、水分離器付き還流冷却器、および温度計を備えた4つ口フラスコに、ガムロジン58部と無水マレイン酸15部とを仕込み、窒素ガスを吹き込みながら、180℃で1時間にわたって加熱することにより、反応混合物を得た。次いで、先に説明したように、反応混合物のガスクロマトグラフィー質量分析によって、ディールスアルダー付加反応が完了したことを確認した。
 次に、上記反応混合物に、ネオペンチルグリコール11部と、トリメチロールプロパン8部と、触媒として、p-トルエンスルホン酸一水和物0.1部とを添加し、240℃で8時間にわたって脱水縮合反応を行った後、トール油脂肪酸8部を添加し、3時間にわたって脱水縮合反応を行い、樹脂1(R1)を得た。樹脂1(R1)の酸価は70であり、GPC測定ポリスチレン換算での重量平均分子量(Mw)は13,300であった。
(実施例2)
 攪拌機、水分離器付き還流冷却器、および温度計を備えた4つ口フラスコに、ガムロジン35部と無水マレイン酸10部とを仕込み、窒素ガスを吹き込みながら、180℃で1時間にわたって加熱することにより、反応混合物を得た。次に、上記反応混合物に、テトラヒドロ無水フタル酸10部と、1,4-シクロヘキサンジメタノール4部と、ネオペンチルグリコール22部と、トリメチロールプロパン8部と、触媒として、p-トルエンスルホン酸一水和物0.1部とを添加し、240℃で8時間にわたって脱水縮合反応を行った後、トール油脂肪酸11部を添加し、3時間にわたって脱水縮合反応を行い、樹脂2(R2)を得た。樹脂2(R2)の酸価は41であり、Mw6,800であった。
(実施例3)
 攪拌機、水分離器付き還流冷却器、および温度計を備えた4つ口フラスコに、ガムロジン42部と無水マレイン酸11部とを仕込み、窒素ガスを吹き込みながら、180℃で1時間にわたって加熱することにより、反応混合物を得た。次に、上記反応混合物に、1,4-シクロヘキサンジメタノール2部と、ネオペンチルグリコール17部と、トリメチロールプロパン4部と、触媒として、p-トルエンスルホン酸一水和物0.1部とを添加し、240℃で8時間にわたって脱水縮合反応を行った後、トール油脂肪酸24部を添加し、3時間にわたって脱水縮合反応を行い、樹脂3(R3)を得た。樹脂3(R3)の酸価は63であり、Mw7,400であった。
(実施例4)
 実施例3と同様の操作にて、表1に示す配合組成で酸価44、Mw15,000の樹脂4(R4)を得た。表1に示す配合組成の単位は「部」である。
(実施例5)
 実施例3と同様の操作にて、表1に示す配合組成で酸価51、Mw23,900の樹脂5(R5)を得た。
(実施例6)
 実施例3と同様の操作にて、表1に示す配合組成で酸価61、Mw3,400の樹脂6(R6)を得た。
(実施例7)
 実施例3と同様の操作にて、表1に示す配合組成で酸価55、Mw11,700の樹脂7(R7)を得た。
(実施例8)
 攪拌機、水分離器付き還流冷却器、および温度計を備えた4つ口フラスコに、ガムロジン50部と無水マレイン酸13部とを仕込み、窒素ガスを吹き込みながら、180℃で1時間にわたって加熱することにより、反応混合物を得た。次に、上記反応混合物に、1,4-シクロヘキサンジメタノール6部と、ネオペンチルグリコール21部と、触媒として、p-トルエンスルホン酸一水和物0.1部とを添加し、240℃で8時間にわたって脱水縮合反応を行った後、トール油脂肪酸10部を添加し、3時間にわたって脱水縮合反応を行い、樹脂8(R8)を得た。樹脂8(R8)の酸価は52であり、Mw5,500であった。
(実施例9)
 攪拌機、水分離器付き還流冷却器、および温度計を備えた4つ口フラスコに、ガムロジン44部と無水マレイン酸12部とを仕込み、窒素ガスを吹き込みながら、180℃で1時間にわたって加熱することにより、反応混合物を得た。次に、上記反応混合物に、トリメチロールプロパン27部と、触媒として、p-トルエンスルホン酸一水和物0.1部とを添加し、240℃で8時間にわたって脱水縮合反応を行った後、トール油脂肪酸17部を添加し、3時間にわたって脱水縮合反応を行い、樹脂9(R9)を得た。樹脂9(R9)の酸価は47であり、Mw18,600であった。
(実施例10)
 実施例3と同様の操作にて、表1に示す配合組成で酸価35、Mw30,700の樹脂10(R10)を得た。
(実施例11)
 攪拌機、水分離器付き還流冷却器、および温度計を備えた4つ口フラスコに、ガムロジン51部と無水マレイン酸13部とを仕込み、窒素ガスを吹き込みながら、180℃で1時間にわたって加熱することにより、反応混合物を得た。次に、上記反応混合物に、1,4-シクロヘキサンジメタノール2部と、ネオペンチルグリコール18部と、トリメチロールプロパン7部と、触媒として、p-トルエンスルホン酸一水和物0.1部とを添加し、240℃で8時間にわたって脱水縮合反応を行った後、ヤシ油脂肪酸9部を添加し、3時間にわたって脱水縮合反応を行い、樹脂11(R11)を得た。樹脂11(R11)の酸価は43であり、Mw13,700であった。
(実施例12)
 実施例3と同様の操作にて、表1に示す配合組成で酸価48、Mw11,200の樹脂12(R12)を得た。
(実施例13)
 実施例3と同様の操作にて、表1に示す配合組成で酸価60、Mw4,900の樹脂13(R13)を得た。
(実施例14)
 攪拌機、水分離器付き還流冷却器、および温度計を備えた4つ口フラスコに、ガムロジン45部と無水マレイン酸13部とを仕込み、窒素ガスを吹き込みながら、180℃で1時間にわたって加熱することにより、反応混合物を得た。次に、上記反応混合物に、1,4-シクロヘキサンジメタノール2部と、ネオペンチルグリコール14部と、トリメチロールプロパン3部と、ビスフェノールA11部と、p-トルエンスルホン酸一水和物0.1部とを添加し、24
0℃で8時間にわたって脱水縮合反応を行った後、トール油脂肪酸12部を添加し、3時間にわたって脱水縮合反応を行い、樹脂14(R14)を得た。樹脂14(R14)の酸価は58であり、Mw6,300であった。
(実施例15)
 攪拌機、水分離器付き還流冷却器、および温度計を備えた4つ口フラスコに、ガムロジン39部と無水マレイン酸10部とを仕込み、窒素ガスを吹き込みながら、180℃で1時間にわたって加熱することにより、反応混合物を得た。次に、上記反応混合物に、ビスフェノールA40部と、触媒として、p-トルエンスルホン酸一水和物0.1部とを添加し、240℃で8時間にわたって脱水縮合反応を行った後、トール油脂肪酸11部を添加し、3時間にわたって脱水縮合反応を行い、樹脂15(R15)を得た。樹脂15(R15)の酸価は56であり、Mw7,500であった。
(比較例A)
 攪拌機、水分離器付き還流冷却器、および温度計を備えた4つ口フラスコに、ガムロジン64部と無水マレイン酸15部とを仕込み、窒素ガスを吹き込みながら、180℃で1時間にわたって加熱することにより、反応混合物を得た。次に、上記反応混合物に、1,4-シクロヘキサンジメタノール2部と、ネオペンチルグリコール8部と、トリメチロールプロパン4部と、触媒として、p-トルエンスルホン酸一水和物0.1部とを添加し、240℃で8時間にわたって脱水縮合反応を行った後、トール油脂肪酸7部を添加し、3時間にわたって脱水縮合反応を行い、樹脂(RA)を得た。樹脂A(RA)の酸価は79であり、GPC測定ポリスチレン換算での重量平均分子量(Mw)は3,600であった。
(比較例B)
 実施例2と同様の操作にて、表1に示す配合組成で酸価31、Mw9,200の樹脂B(RB)を得た。
(比較例C)
 実施例3と同様の操作にて、表1に示す配合組成で酸価42、Mw6,900の樹脂C(RC)を得た。
(比較例D)
 実施例2と同様の操作にて、表1に示す配合組成で酸価47、Mw13,800の樹脂D(RD)を得た。
(比較例E)
 攪拌機、水分離器付き還流冷却器、および温度計を備えた4つ口フラスコに、ガムロジン44部と無水マレイン酸12部とを仕込み、窒素ガスを吹き込みながら、180℃で1時間にわたって加熱することにより、反応混合物を得た。次に、上記反応混合物に、ペンタエリスリトール19部と、触媒として、p-トルエンスルホン酸一水和物0.1部とを添加し、240℃で8時間にわたって脱水縮合反応を行った後、トール油脂肪酸17部を添加し、3時間にわたって脱水縮合反応を行い、樹脂(RA)を得た。樹脂E(RE)の酸価は37であり、Mw22,500であった。
(比較例F)
 攪拌機、水分離器付き還流冷却器、および温度計を備えた4つ口フラスコに、ガムロジン44部と無水マレイン酸14部とを仕込み、窒素ガスを吹き込みながら、180℃で1時間にわたって加熱することにより、反応混合物を得た。次に、上記反応混合物に、1,4-シクロヘキサンジメタノール42部と、触媒として、p-トルエンスルホン酸一水和物0.1部とを添加し、220℃で5時間にわたって脱水縮合反応を行い、樹脂(RF)を得た。樹脂F(RF)の酸価は84であり、Mw4,800であった。
(比較例G)
 攪拌機、水分離器付き還流冷却器、および温度計を備えた4つ口フラスコに、ガムロジン46部と、テトラヒドロ無水フタル酸14部と、1,4-シクロヘキサンジメタノール6部と、ネオペンチルグリコール17部と、トリメチロールプロパン4部とを仕込み、触媒として、p-トルエンスルホン酸一水和物0.1部とを添加し、240℃で8時間にわたって脱水縮合反応を行った後、トール油脂肪酸13部を添加し、3時間にわたって脱水縮合反応を行い、樹脂(RG)を得た。樹脂G(RG)の酸価は78であり、Mw3,400であった。
 なお、樹脂Gは、特許文献3に記載の樹脂に相当するものである。
(比較例H)
 攪拌機、水分離器付き還流冷却器、および温度計を備えた4つ口フラスコに、ヤシ油脂肪酸76部とペンタエリスリトール4部とを仕込み、窒素ガスを吹き込みながら、250℃で1時間にわたって加熱することにより、反応混合物を得た。次に、上記反応混合物に、ロジン15部と、テトラヒドロ無水フタル酸5部と、還流用キシレンを添加し、250℃で6時間にわたって脱水縮合反応を行った後、3時間にわたって減圧脱溶剤を行い、樹脂H(RH)を得た。樹脂H(RH)の酸価は13であり、Mw7,000であった。
 なお、樹脂Hは、特許文献2に記載の樹脂に相当するものである。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 なお、トール油脂肪酸としては、クレイトンコーポレーション製 SYLFAT FA1(炭素数15-18の脂肪酸(D-1)の割合:97%)を、ヤシ油脂肪酸としては、新日本理化株式会社製 ヤシ油脂肪酸DC(炭素数15-18の脂肪酸(D-1)の割合:8%)を使用した。
(活性エネルギー線硬化型インキ用ワニスの作成)
 前記方法で得られた樹脂を55部、トリメチロールプロパントリアクリレート44.9部、およびハイドロキノン0.1部を入れて混合し、これらを100℃で加熱溶融することでワニス1~15、A~Hを得た。
(活性エネルギー線硬化型平版印刷インキの作成)
 前記方法で得られた、活性エネルギー線硬化型インキ用ワニス41部、リオノールブルーFG7330(トーヨーカラー社製の藍顔料)20部、トリメチロールプロパンエチレンオキサイド付加物トリアクリレート22部、ジトリメチロールプロパンテトラアクリレート11.9部、4,4’-ビス(ジエチルアミノ)ベンゾフェノン2.5部、2-メチル-2-モノホリノ(4-チオメチルフェニル)プロパン-1-オン2.5部、およびハイドロキノン0.1部を、40℃の三本ロールミルにて練肉し混合物を得た。次いで、インキのタックが9~10になるように、上記混合物にトリメチロールプロパンエチレンオキサイド付加物トリアクリレートを加えて調整し、活性エネルギー線硬化型平版印刷インキ(1~15、A~H)を得た。インキのタックは、東洋精機社製のインコメーターにてロール温度30℃、400rpm、1分後の値を測定した。
 なお、トリメチロールプロパンエチレンオキサイド付加物トリアクリレートとしては、東亞合成社製アロニックスM-350を用いた。
2.活性エネルギー線硬化型平版印刷インキの評価
 実施例および比較例で調製した活性エネルギー線硬化型平版印刷インキについて、下記の方法に従い、印刷皮膜適性と印刷適性を評価した。
<印刷皮膜適性の評価>
 実施例のインキ1~15、比較例のインキA~Hを、RIテスター(明製作所製簡易展色装置)を用いて、マリコート紙(北越製紙社製コートボール紙)へ1g/mの塗布量で印刷し、120W/cmの空冷メタルハライドランプ(東芝社製)1灯を用いて60m/minで紫外線を照射した。
 紫外線照射後の印刷物の硬化性、および光沢性について、以下に従って評価した。各評価の結果を表2に示す。
(耐ブロッキング性)
 耐ブロッキング性は、作成した印刷物の印刷面同士を重ね合わせたものに、40℃の試験環境で24時間経過する間、0.5kg/cmの荷重をかけ続け、重ねた印刷物を剥がした時の印刷面の状態を目視にて観察し、以下の基準に従い5段階で評価した。使用可能なレベルは「3」以上である。
  5:印刷面の変化なし。
  4:印刷面の一部でキズが見られるが、剥離は見られない。
  3:印刷面の一部(面積の10%未満)に剥離が見られる。
  2:印刷面の一部(面積の10~50%未満)に剥離が見られる。
  1:印刷面の一部(面積の50%以上)、又は全部に剥離が見られる。
(耐溶剤性)
 耐溶剤性は、MEK(メチルエチルケトン)を浸した綿棒で印刷面を30回擦った後、印刷面の状態を目視にて観察し、以下の基準に従い5段階で評価した。使用可能なレベルは「3」以上である。
  5:印刷面の変化なし。
  4:印刷面の一部で溶解が見られるが、剥離は見られない。
  3:印刷面の一部(面積の10%未満)に剥離が見られる。
  2:印刷面の一部(面積の10~50%未満)に剥離が見られる。
  1:印刷面の一部(面積の50%以上)、又は全部に剥離が見られる。
(耐摩擦性)
 耐摩擦性は、印刷物の印刷面(塗膜)に対し、JIS-K5701-1に準じて、試験を行い評価した。具体的には、学振型摩擦堅牢度試験機(テスター産業社製)を用いて、摩擦用紙として上質紙を500g加重で塗膜表面を500回往復させた。次いで、摩擦面(塗膜表面)の変化を目視にて観察し、以下の基準に従い5段階で評価した。使用可能なレベルは「3」以上である。
  5:印刷面の変化なし。
  4:印刷面の一部でキズが見られるが、剥離は見られない。
  3:印刷面の一部(面積の10%未満)に剥離が見られる。
  2:印刷面の一部(面積の10~50%未満)に剥離が見られる。
  1:印刷面の一部(面積の50%以上)、又は全部に剥離が見られる。
 また、実施例のインキ1~15、比較例のインキA~Hを、RIテスター(明製作所製簡易展色装置)を用いて、PETフィルムに対して1g/mの塗布量で印刷し、100W/cmの空冷メタルハライドランプ(東芝社製)1灯を用いて60m/minで紫外線を照射し、印刷物を得た。またPETフィルムの代わりにPPフィルムを使用し、上記方法と同様にして印刷物を得た。
 紫外線照射後の各印刷物の密着性を以下に従って評価した。評価結果を表2に示す。
(密着性)
 上記のようにして得たPETフィルムおよびPPフィルムへの各印刷物に対し、セロハンテープ剥離試験を行い、密着性を評価した。試験後の印刷物の表面を目視で観察し、密着性を以下の基準に従い、5段階で評価した。使用可能なレベルは「3」以上である。
  5:印刷面の変化なし。
  4:印刷面の一部でキズが見られるが、剥離は見られない。
  3:印刷面の一部(面積の10%未満)に剥離が見られる。
  2:印刷面の一部(面積の10~50%未満)に剥離が見られる。
  1:印刷面の一部(面積の50%以上)、又は全部に剥離が見られる。
<印刷適性の評価>
 実施例のインキ1~15、比較例のインキA~Hを用いて、インキごとに2万枚の印刷試験を行った。印刷試験は、リスロン226(コモリコーポレーション社製の枚葉印刷機)を用いて、三菱特菱アート紙斤量90kg/連(三菱製紙社製)に対して、10,000枚/時の速度で印刷する条件下で実施した。
 また、印刷試験では、湿し水として、アストロマークIIIクリア(東洋インキ社製)1.5%と、イソプロピルアルコール3%とを含む水道水を使用した。正常に印刷できる条件範囲の境界付近における印刷状態の比較を行うために、水巾の下限値よりも2%高い水ダイヤル値で印刷を行った。なお「水巾の下限」とは、正常な印刷が可能である、湿し水の最低供給量を意味し、「水ダイヤル」とは、上記湿し水の供給量を調整するために、上記印刷機に備えられたダイヤルを意味する。
(初期濃度安定性の評価)
 また、前記印刷試験において、刷り出し時、濃度変動が安定するまでに発生する損紙枚数から、以下の基準に従い、初期濃度安定性を4段階で評価した。使用可能なレベルは「2」以上であるが、「3」以上がより好ましい。評価結果を表2に示す。
  4:損紙枚数が200枚以下である。
  3:損紙枚数が201枚以上、500枚以下である。
  2:損紙枚数が501枚以上、800枚以下である。
  1:損紙枚数が801枚以上である。
(耐ミスチング性)
 印刷時に印刷機の安全カバーの内側に白紙を張り付け、10,000通し後に白紙を取り出し、インキの飛散の程度を、以下の基準に従い、4段階で評価した。使用可能なレベルは「2」以上であるが、「3」以上がより好ましい。
  4:白紙の一部分に微量のインキミストが飛散している。
  3:白紙全面に薄くインキミストが飛散している。
  2:白紙全面にやや厚くインキミストが飛散している。
  1:白紙全面にベッタリとインキミストが飛散している。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表2に示すように、実施例のインキ1~15は、耐ブロッキング性、耐摩擦性、耐溶剤性、密着性、初期濃度安定性および耐ミスチング性の全ての評価において、使用可能なレベルであり、優れた印刷皮膜適性と印刷適性とを両立できることが分かる。一方、比較例のインキA~Hでは、印刷皮膜適性と印刷適性との両立は困難であった。
 より詳細には、比較例のインキA、Gに見られるように、バインダー樹脂として使用されたロジン変性樹脂が、ロジン酸類(A)が過剰量含まれている、またはα,β-不飽和カルボン酸無水物(B)がロジン酸類(A)中の共役二重結合を有する化合物に対し不足している時、全ての共役二重結合を有する化合物を十分にディールスアルダー付加反応できず、樹脂中に共役二重結合が存在するため、硬化皮膜の強度が不十分になり、耐ブロッキング性、耐摩擦性、耐溶剤性が低下した。
 一方、比較例のインキBでは、ロジン酸類(A)が少ないため、樹脂中にロジン酸類(A)由来の剛直な骨格の導入が不十分になり、樹脂中のTgが低下するため、耐ブロッキング性、耐摩擦性が低下していると考えられる。
 比較例のインキC、Hでは、耐ミスチング性が低下する結果となった。これは、脂肪酸(D)が過剰量含まれており、インキとしての粘性が増大し、凝集力が不足したためだと考えられる。また、過剰な脂肪酸(D)により樹脂中のTgが低下するため、耐ブロッキング性、耐摩擦性も低下したと考えられる。
 比較例のインキD,E、Fでは、PETおよびPPフィルムへの密着性が低下する結果となった。比較例D、Fでは、脂肪酸(D)が不足していること、比較例Eでは2官能および/または3官能アルコールを含まず、4官能アルコールのみであること、それぞれ樹脂の柔軟性が失われ、硬化被膜の硬化性には優れるが、密着性とのバランスが悪くなっていると考えられる。また、比較例Eについては、前記の理由から弾性が増大したため、フィラメントが伸張しやすくミスト化しやすくなったと考えられる。
(活性エネルギー線硬化型凸版印刷インキの作成)
 前記方法で得られた、活性エネルギー線硬化型インキ用ワニス1~15、A~H45部、リオノールブルーFG7330(トーヨーカラー社製の藍顔料)20部、トリプロピレングリコールジアクリレート11部、トリメチロールプロパンエチレンオキサイド付加物トリアクリレート18.9部、4,4’-ビス(ジエチルアミノ)ベンゾフェノン2.5部、2-メチル-2-モノホリノ(4-チオメチルフェニル)プロパン-1-オン2.5部、およびハイドロキノン0.1部を、40℃の三本ロールミルにて練肉し混合物を得た。次いで、インキのタックが8~9になるように、上記混合物にトリメチロールプロパンエチレンオキサイド付加物ジアクリレートを加えて調整し、活性エネルギー線硬化型凸版印刷インキを得た。インキのタックは、東洋精機社製のインコメーターにてロール温度30℃、400rpm、1分後の値を測定した。作成した活性エネルギー線硬化型凸版印刷インキそれぞれについて、前記活性エネルギー線硬化型平版印刷インキと同様の評価を行ったところ、いずれも使用可能なレベルを満たしていた。
(活性エネルギー線硬化型フレキソ印刷インキの作成)
 前記方法で得られた、活性エネルギー線硬化型インキ用ワニス1~15、A~H34部、リオノールブルーFG7330(トーヨーカラー社製の藍顔料)19部、トリプロピレングリコールジアクリレート11部、1,6-ヘキサンジオールエチレンオキサイド付加物ジアクリレート(大阪有機工業化学株式会社製 ビスコート#230D)30.9部、4,4’-ビス(ジエチルアミノ)ベンゾフェノン2.5部、2-メチル-2-モノホリノ(4-チオメチルフェニル)プロパン-1-オン2.5部、およびハイドロキノン0.1部を、40℃の三本ロールミルにて練肉し混合物を得た。次いで、インキの粘度が500~1000mPa・sになるように、上記混合物に1,6-ヘキサンジオールエチレンオキサイド付加物ジアクリレートを加えてディスパーで撹拌し、活性エネルギー線硬化型フレキソ印刷インキを得た。インキの粘度は、E型粘度計(東機産業社製TVE25L型粘度計)にて25℃で測定した。作成した活性エネルギー線硬化型フレキソ印刷インキそれぞれについて、前記活性エネルギー線硬化型平版印刷インキと同様の評価を行ったところ、いずれも使用可能なレベルを満たしていた。
 本願の開示は、2020年10月16日に出願された特願2020-174433号に記載の主題と関連しており、その全ての開示内容は参照によりここに援用される。

Claims (8)

  1.  ロジン酸類(A)およびα,β-不飽和カルボン酸又はその酸無水物(B)の付加反応物と、ポリオール(C)と、脂肪酸(D)との反応物であるロジン変性樹脂であって、
     ポリオール(C)が、2価および/または3価のポリオールを含み、
     ロジン酸類(A)の配合量が、全配合量を基準として35~60質量%であり、
     脂肪酸(D)の配合量が、全配合量を基準として5~25質量%であるロジン変性樹脂。
  2.  重量平均分子量が、3,000~25,000である、請求項1記載のロジン変性樹脂。
  3.  脂肪酸(D)が、炭素数15~18の脂肪酸(D-1)を含む、請求項1または2記載のロジン変性樹脂。
  4.  ポリオール(C)が、脂肪族ポリオールを含む、請求項1~3いずれか記載のロジン変性樹脂。
  5.  請求項1~4いずれか記載のロジン変性樹脂と、活性エネルギー線硬化型化合物とを含む、活性エネルギー線硬化型インキ用ワニス。
  6.  請求項1~4いずれか記載のロジン変性樹脂と、活性エネルギー線硬化型化合物とを含む、活性エネルギー線硬化型インキ。
  7.  基材上に、請求項6記載の活性エネルギー線硬化型インキを印刷し、活性エネルギー線にて硬化してなる印刷物。
  8.  ロジン変性樹脂の製造方法であって、
     ロジン酸類(A)と、α,β-不飽和カルボン酸又はその酸無水物(B)とを付加反応させる工程1と、
     工程1で得られた反応物と、ポリオール(C)とを反応させる工程2と、
     工程2で得られた反応物と、脂肪酸(D)とを反応させる工程3とを有し、
     ポリオール(C)が、2価および/または3価のポリオールを含み、
     ロジン酸類(A)の配合量が、全配合量を基準として35~60質量%であり、
     脂肪酸(D)の配合量が、全配合量を基準として5~25質量%である、ロジン変性樹脂の製造方法。
PCT/JP2021/028491 2020-10-16 2021-07-30 ロジン変性樹脂とその製造方法、活性エネルギー線硬化型インキ用ワニス、活性エネルギー線硬化型インキ、および印刷物 WO2022079979A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020174433A JP6933288B1 (ja) 2020-10-16 2020-10-16 活性エネルギー線硬化型インキ用ワニス、活性エネルギー線硬化型インキ、および印刷物
JP2020-174433 2020-10-16

Publications (1)

Publication Number Publication Date
WO2022079979A1 true WO2022079979A1 (ja) 2022-04-21

Family

ID=77549986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028491 WO2022079979A1 (ja) 2020-10-16 2021-07-30 ロジン変性樹脂とその製造方法、活性エネルギー線硬化型インキ用ワニス、活性エネルギー線硬化型インキ、および印刷物

Country Status (2)

Country Link
JP (1) JP6933288B1 (ja)
WO (1) WO2022079979A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7067662B1 (ja) 2021-08-19 2022-05-16 東洋インキScホールディングス株式会社 活性エネルギー線硬化型コーティングニス、および積層体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4816332B1 (ja) * 1966-12-29 1973-05-21
JP2000212493A (ja) * 1999-01-25 2000-08-02 Toyo Ink Mfg Co Ltd 樹脂および印刷インキ
JP2006111849A (ja) * 2004-04-22 2006-04-27 Dainippon Ink & Chem Inc 平版インキワニス用変性ロジンエステル樹脂組成物の製造方法および平版インキワニスの製造方法
JP2006160806A (ja) * 2004-12-03 2006-06-22 Harima Chem Inc 印刷インキ用樹脂、並びに当該樹脂を用いた印刷用インキ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169563A (ja) * 1998-12-07 2000-06-20 Toyo Ink Mfg Co Ltd 樹脂および印刷インキ
CN103992466B (zh) * 2014-03-20 2016-04-20 杭华油墨股份有限公司 一种平版印刷油墨用松香聚酯树脂及其合成方法
DK3434711T3 (da) * 2016-03-22 2021-09-06 Toyo Ink Sc Holdings Co Ltd Harpiksmodificeret resin og fremgangsmåde til fremstilling deraf, lak til aktivenergistrålehærdbar litografiblæk, aktivenergistrålehærdbart litografiblæk og trykt produkt
JP6665910B2 (ja) * 2017-12-25 2020-03-13 東洋インキScホールディングス株式会社 活性エネルギー線硬化型平版印刷インキ用ロジン変性樹脂とその製造方法、活性エネルギー線硬化型平版印刷インキ用ワニス、活性エネルギー線硬化型平版印刷インキ、及び印刷物
JP6421268B1 (ja) * 2018-05-14 2018-11-07 東洋インキScホールディングス株式会社 ロジン変性樹脂とその製造方法、活性エネルギー線硬化型平版印刷インキ用ワニス、活性エネルギー線硬化型平版印刷インキ、及び印刷物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4816332B1 (ja) * 1966-12-29 1973-05-21
JP2000212493A (ja) * 1999-01-25 2000-08-02 Toyo Ink Mfg Co Ltd 樹脂および印刷インキ
JP2006111849A (ja) * 2004-04-22 2006-04-27 Dainippon Ink & Chem Inc 平版インキワニス用変性ロジンエステル樹脂組成物の製造方法および平版インキワニスの製造方法
JP2006160806A (ja) * 2004-12-03 2006-06-22 Harima Chem Inc 印刷インキ用樹脂、並びに当該樹脂を用いた印刷用インキ

Also Published As

Publication number Publication date
JP2022065754A (ja) 2022-04-28
JP6933288B1 (ja) 2021-09-08

Similar Documents

Publication Publication Date Title
JP6706413B2 (ja) ロジン変性樹脂とその製造方法、活性エネルギー線硬化型平版印刷インキ用ワニス、活性エネルギー線硬化型平版印刷インキ、及び印刷物
JP7099247B2 (ja) 活性エネルギー線硬化型平版印刷インキ用ロジン変性樹脂とその製造方法、活性エネルギー線硬化型平版印刷インキ用ワニス、活性エネルギー線硬化型平版印刷インキ、及び印刷物
JP6421268B1 (ja) ロジン変性樹脂とその製造方法、活性エネルギー線硬化型平版印刷インキ用ワニス、活性エネルギー線硬化型平版印刷インキ、及び印刷物
JP6665910B2 (ja) 活性エネルギー線硬化型平版印刷インキ用ロジン変性樹脂とその製造方法、活性エネルギー線硬化型平版印刷インキ用ワニス、活性エネルギー線硬化型平版印刷インキ、及び印刷物
JP7163844B2 (ja) 活性エネルギー線硬化型平版印刷インキ用ロジン変性ポリエステル樹脂、活性エネルギー線硬化型平版印刷インキ、および印刷物
JP2016199727A (ja) ポリエステル樹脂、平版印刷インキおよび印刷物
JP5493424B2 (ja) 活性エネルギー線硬化型平版印刷インキおよびその印刷物
JP7005834B1 (ja) 活性エネルギー線硬化型平版印刷インキ及び印刷物
JP6933288B1 (ja) 活性エネルギー線硬化型インキ用ワニス、活性エネルギー線硬化型インキ、および印刷物
JP7318520B2 (ja) 活性エネルギー線硬化型平版印刷インキおよびその印刷物
JP2018150469A (ja) ロジン変性樹脂の製造方法、および活性エネルギー線硬化型平版印刷インキ
JP2010070743A (ja) 活性エネルギー線硬化型平版印刷インキおよびその印刷物
JP2011225748A (ja) 活性エネルギー線硬化型平版印刷インキおよびその印刷物
JP6256212B2 (ja) 平版印刷インキおよび印刷物
JP2015172137A (ja) 平版印刷インキおよび印刷物
JP7067662B1 (ja) 活性エネルギー線硬化型コーティングニス、および積層体
JP7164782B1 (ja) 活性エネルギー線硬化型コーティングニス、および積層体
JP2011225751A (ja) Uv硬化型平版印刷インキおよびその印刷物
JP7255055B2 (ja) 電子線硬化型組成物、および積層体
JP2016199726A (ja) ポリエステル樹脂、平版印刷インキおよび印刷物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21879721

Country of ref document: EP

Kind code of ref document: A1