WO2022079968A1 - 構造物、摺動部材、コネクタ、および構造物の製造方法 - Google Patents
構造物、摺動部材、コネクタ、および構造物の製造方法 Download PDFInfo
- Publication number
- WO2022079968A1 WO2022079968A1 PCT/JP2021/027145 JP2021027145W WO2022079968A1 WO 2022079968 A1 WO2022079968 A1 WO 2022079968A1 JP 2021027145 W JP2021027145 W JP 2021027145W WO 2022079968 A1 WO2022079968 A1 WO 2022079968A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- functional group
- nanocarbon material
- metal
- chch
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 33
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 22
- 125000000524 functional group Chemical group 0.000 claims abstract description 138
- 239000000463 material Substances 0.000 claims abstract description 128
- 229910021392 nanocarbon Inorganic materials 0.000 claims abstract description 119
- 229910052751 metal Inorganic materials 0.000 claims abstract description 94
- 239000002184 metal Substances 0.000 claims abstract description 94
- 238000000576 coating method Methods 0.000 claims abstract description 23
- 239000011248 coating agent Substances 0.000 claims abstract description 22
- 150000002894 organic compounds Chemical class 0.000 claims abstract description 15
- 150000002430 hydrocarbons Chemical group 0.000 claims description 66
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 55
- 229930195734 saturated hydrocarbon Natural products 0.000 claims description 37
- 229910052799 carbon Inorganic materials 0.000 claims description 35
- 229930195735 unsaturated hydrocarbon Natural products 0.000 claims description 33
- 239000002116 nanohorn Substances 0.000 claims description 27
- 238000007747 plating Methods 0.000 claims description 23
- 125000004122 cyclic group Chemical group 0.000 claims description 21
- 229910052709 silver Inorganic materials 0.000 claims description 20
- 239000004332 silver Substances 0.000 claims description 20
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 17
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 16
- 125000003368 amide group Chemical group 0.000 claims description 13
- 125000003396 thiol group Chemical group [H]S* 0.000 claims description 12
- 229910021389 graphene Inorganic materials 0.000 claims description 9
- 229910045601 alloy Inorganic materials 0.000 claims description 8
- 239000000956 alloy Substances 0.000 claims description 8
- 239000002041 carbon nanotube Substances 0.000 claims description 8
- 239000010931 gold Substances 0.000 claims description 8
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 7
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 7
- 229910052737 gold Inorganic materials 0.000 claims description 7
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 claims description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 6
- 229910003472 fullerene Inorganic materials 0.000 claims description 5
- GVNVAWHJIKLAGL-UHFFFAOYSA-N 2-(cyclohexen-1-yl)cyclohexan-1-one Chemical compound O=C1CCCCC1C1=CCCCC1 GVNVAWHJIKLAGL-UHFFFAOYSA-N 0.000 description 72
- 101150065749 Churc1 gene Proteins 0.000 description 72
- 102100038239 Protein Churchill Human genes 0.000 description 72
- 150000001875 compounds Chemical class 0.000 description 61
- 238000011282 treatment Methods 0.000 description 52
- 239000007788 liquid Substances 0.000 description 40
- 125000004432 carbon atom Chemical group C* 0.000 description 28
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 19
- 238000002360 preparation method Methods 0.000 description 18
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 15
- 238000010438 heat treatment Methods 0.000 description 11
- 150000002739 metals Chemical class 0.000 description 11
- 239000003960 organic solvent Substances 0.000 description 11
- 125000000217 alkyl group Chemical group 0.000 description 10
- 239000000523 sample Substances 0.000 description 10
- 230000003647 oxidation Effects 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 230000007704 transition Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 125000003277 amino group Chemical group 0.000 description 6
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 6
- 238000003780 insertion Methods 0.000 description 6
- 230000037431 insertion Effects 0.000 description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 238000007654 immersion Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000003570 air Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 4
- 239000000314 lubricant Substances 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 125000004434 sulfur atom Chemical group 0.000 description 4
- 241000132500 Dahlia <angiosperm> Species 0.000 description 3
- 235000012040 Dahlia pinnata Nutrition 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- DKVNPHBNOWQYFE-UHFFFAOYSA-N carbamodithioic acid Chemical group NC(S)=S DKVNPHBNOWQYFE-UHFFFAOYSA-N 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 125000001309 chloro group Chemical group Cl* 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 2
- 125000002950 monocyclic group Chemical group 0.000 description 2
- 239000002048 multi walled nanotube Substances 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- ULGGZAVAARQJCS-UHFFFAOYSA-N 11-sulfanylundecan-1-ol Chemical compound OCCCCCCCCCCCS ULGGZAVAARQJCS-UHFFFAOYSA-N 0.000 description 1
- GRUQGBJWKWOITP-UHFFFAOYSA-N 16-sulfanylhexadecan-1-ol Chemical compound OCCCCCCCCCCCCCCCCS GRUQGBJWKWOITP-UHFFFAOYSA-N 0.000 description 1
- CMNQZZPAVNBESS-UHFFFAOYSA-N 6-sulfanylhexanoic acid Chemical compound OC(=O)CCCCCS CMNQZZPAVNBESS-UHFFFAOYSA-N 0.000 description 1
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- -1 Cr) Chemical class 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000005577 anthracene group Chemical group 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910021387 carbon allotrope Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 150000001804 chlorine Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 210000003109 clavicle Anatomy 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229940035429 isobutyl alcohol Drugs 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012022 methylating agents Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- APVPOHHVBBYQAV-UHFFFAOYSA-N n-(4-aminophenyl)sulfonyloctadecanamide Chemical group CCCCCCCCCCCCCCCCCC(=O)NS(=O)(=O)C1=CC=C(N)C=C1 APVPOHHVBBYQAV-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/152—Fullerenes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/152—Fullerenes
- C01B32/156—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/168—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/18—Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/182—Graphene
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/182—Graphene
- C01B32/194—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M105/00—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
- C10M105/02—Well-defined hydrocarbons
- C10M105/04—Well-defined hydrocarbons aliphatic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M127/00—Lubricating compositions characterised by the additive being a non- macromolecular hydrocarbon
- C10M127/02—Lubricating compositions characterised by the additive being a non- macromolecular hydrocarbon well-defined aliphatic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M177/00—Special methods of preparation of lubricating compositions; Chemical modification by after-treatment of components or of the whole of a lubricating composition, not covered by other classes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C24/00—Coating starting from inorganic powder
- C23C24/02—Coating starting from inorganic powder by application of pressure only
- C23C24/04—Impact or kinetic deposition of particles
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C24/00—Coating starting from inorganic powder
- C23C24/08—Coating starting from inorganic powder by application of heat or pressure and heat
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/321—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/322—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/24—Brasses; Bushes; Linings with different areas of the sliding surface consisting of different materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/04—Elements
- C10M2201/041—Carbon; Graphite; Carbon black
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/04—Well-defined cycloaliphatic compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/14—Electric or magnetic purposes
- C10N2040/17—Electric or magnetic purposes for electric contacts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2050/00—Form in which the lubricant is applied to the material being lubricated
- C10N2050/015—Dispersions of solid lubricants
- C10N2050/02—Dispersions of solid lubricants dissolved or suspended in a carrier which subsequently evaporates to leave a lubricant coating
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2050/00—Form in which the lubricant is applied to the material being lubricated
- C10N2050/023—Multi-layer lubricant coatings
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2070/00—Specific manufacturing methods for lubricant compositions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2204/00—Metallic materials; Alloys
- F16C2204/02—Noble metals
- F16C2204/04—Noble metals based on silver
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2240/00—Specified values or numerical ranges of parameters; Relations between them
- F16C2240/40—Linear dimensions, e.g. length, radius, thickness, gap
Definitions
- the present invention relates to a structure, a sliding member, a connector, and a method for manufacturing the structure.
- the sliding surface is plated with a metal such as silver as a means for reducing the contact resistance of the structure having the sliding surface and improving the slidability.
- a metal such as silver
- metal plating is easily worn, including silver, which is a relatively soft metal
- Patent Document 1 a coating layer composed of a silver layer and a film formed by contacting the silver layer with a solution containing thiol and benzotriazole is formed at a contact portion that is in electrical contact with another conductive member. Discloses the technology to be used.
- Patent Document 1 in order to improve the wear resistance, it is required to form a coating layer having a certain thickness, which may increase the contact resistance of the sliding surface. ..
- An object of the present invention is to provide a structure having a surface (sliding surface) which is excellent in wear resistance and can maintain a low contact resistance for a long period of time, a sliding member and a connector, and a method for manufacturing the structure. To do.
- the present invention provides a structure, a sliding member, a connector, and a method for manufacturing the structure having the following configurations [1] to [18].
- a structure characterized by having a structure in which a nanocarbon material is arranged on the surface of at least a part of a metal.
- the nanocarbon material is at least one of carbon nanotubes, carbon nanohorn aggregates, graphene, and fullerenes.
- the nanocarbon material is a carbon nanohorn aggregate.
- the nanocarbon material has at least a first functional group having an affinity for the metal and a second functional group having an affinity for the nanocarbon material on the surface of at least a part of the metal.
- [5] The structure according to [4], wherein the first functional group is a thiol group.
- [6] The structure according to [4] or [5], wherein the second functional group is an amide group, a hydroxy group or a carboxy group.
- the second functional group is an amide group.
- the organic compound has at least one of a chain saturated hydrocarbon group, a chain unsaturated hydrocarbon group, a cyclic saturated hydrocarbon group and a cyclic unsaturated hydrocarbon group in the main chain skeleton. , [4] to any one of [7].
- the metal and the nanocarbon material are arranged via an organic compound having a first functional group having an affinity for the metal and a second functional group having an affinity for the nanocarbon material.
- a sliding member having the structure according to any one of [1] to [14] on at least a part of the sliding surface.
- a method for producing a structure which comprises a step of coating a nanocarbon material on the surface of at least a part of a metal.
- a method for manufacturing a structure which comprises a step of coating a material containing and.
- a structure having a surface (sliding surface) which is excellent in wear resistance and can maintain a low contact resistance for a long period of time, a sliding member and a connector, and a method for manufacturing the structure are provided. Can be done.
- the sliding surface is plated with a metal such as soft silver plating.
- metal plating such as soft silver plating has low contact resistance, it is soft and easily wears due to contact with other members (for example, by sliding). As the plating wears, the material portion of the structure may be exposed, increasing contact resistance and coefficient of friction. For this reason, it is conceivable to use hard silver plating, which is a hardened plating, but such metal plating is caused by a decrease in the conductivity of the coating film due to the inclusion of a curing agent and a decrease in the contact area due to the hard surface. , Contact resistance tends to be high.
- the nanocarbon material is applied to at least a part of the metal surface, the other members come into direct contact with the metal surface even when the other members are repeatedly contacted. It can be prevented and the wear resistance can be improved. Further, in the structure of the present invention, since the nanocarbon material has excellent conductivity, dispersibility, lubricity and appropriate hardness, it is possible to maintain a state in which the contact resistance is kept low, and the curing agent, the lubricant and the like. There is no need for complicated management, the surface is not sticky, the handling is good, and the productivity is excellent.
- an organic compound having a specific functional group is attached to at least a part of the metal surface together with the nanocarbon material, so that the nanocarbon material is interposed through the compound (for example, by chemical adsorption).
- the bond between the metal surface and the metal surface can be strengthened. Thereby, the wear resistance to repeated contact of other members can be further improved, and further, the contact resistance can be easily maintained low for a long period of time due to the above-mentioned properties of the nanocarbon material.
- the structure of the present invention has a structure in which a nanocarbon material is arranged on the surface of at least a part of a metal. Therefore, at least a part of the surface of the structure is made of metal, and at least a part of the metal surface is covered with a nanocarbon material. Further, the structure of the present invention has a first aspect of having an affinity for the nanocarbon material and the metal on the surface of at least a part of the metal from the viewpoint of improving the wear resistance and keeping the contact resistance low. It is preferable that a film containing a functional group and an organic compound having at least a second functional group having an affinity for the nanocarbon material (hereinafter, may be referred to as a first compound) is arranged.
- the coverage by the nanocarbon material or the coating film containing the first compound and the nanocarbon material on the metal surface of the structure is more desirable in order to obtain the effect of the present invention as it is closer to 100%.
- the coverage is preferably at least 5%, more preferably 20% or more, and more preferably 40% or more, from the viewpoint of maintaining wear resistance and contact resistance. Is more preferable, and 50% or more is particularly preferable.
- the coverage can be confirmed using a scanning electron microscope (SEM).
- the amount of nanocarbon material used can be changed as appropriate according to the total area of the metal surface of the structure to be coated.
- the blending ratio mass of the nanocarbon material: mass of the first compound
- it is preferably 1:10 to 10: 1, more preferably 1: 5 to 5: 1, and 1: 3 to 1. It is more preferably 3: 1 and particularly preferably 1: 2 to 2: 1.
- the thickness of the coating on the nanocarbon material or the metal surface composed of the nanocarbon material and the first compound is not particularly limited, and if the metal surface is slightly covered, the wear resistance is improved. And the contact resistance can be kept low.
- the film thickness is preferably 10 nm or more and 1 ⁇ m or less, and more preferably 10 nm or more and 500 nm or less from the viewpoint of suppressing an increase in contact resistance.
- a structure in which a nanocarbon material is applied on a metal surface (without the first compound) and a structure having the structure are referred to as a first structure and a first structure, respectively.
- a structure in which a film containing a nanocarbon material and a first compound is applied on a metal surface and a structure having the structure are referred to as a second structure and a second structure, respectively.
- the structure of the present invention has one or both of the first structure and the second structure.
- the specific use of the structure is not particularly limited as long as it is an object having a surface (sliding surface) that makes (repeatedly) contact with other members.
- the structure includes, for example, a member that requires wear resistance and low contact resistance during use, that is, a connector or switch having a portion (contact portion) on the surface with which another member (for example, slides) comes into contact.
- Electronic components mechanical devices such as relays, and sliding members for automobiles such as cylinders and pistons.
- the structure is a pair of connectors in which a male terminal is inserted into a female terminal and both terminals are in contact with each other and are fitted to each other
- the above-mentioned structure is formed on at least one surface of the contact portion between the male terminal and the female terminal. It is preferable to have at least one of the first structure and the second structure.
- the nanocarbon material is attached to at least a part of the surface of these contact portions, it is possible to prevent the metals (for example, silver and gold) constituting each contact portion from coming into contact with each other.
- the contact resistance and the coefficient of friction can be kept low and stable due to the conductivity and lubricity of the nanocarbon material while preventing the wear of the surface of each contact portion.
- the coefficient of friction can be kept low, it is possible to easily operate (insert / remove in the case of a connector) when using an electronic component (insertion / removal in the case of a connector).
- the metal includes gold (Au), silver (Ag), copper (Cu), platinum (Pt), zinc (Zn), tin (Sn), iron (Fe), nickel (Ni), and chromium (Ni).
- Various metals such as Cr), palladium (Pd), rhodium (Rh), ruthenium (Ru), osmium (Os), iridium (Ir), indium (In), alloys of these metals, and plating of these metals. Is included.
- the metal is preferably gold, silver, and alloys thereof, and at least one of plating thereof.
- the metal is more preferably silver and a silver alloy, and at least one of plating by them.
- one type of the metal may be used alone, or a plurality of types may be used in combination.
- sliding members such as electrical and electronic parts are required to maintain low contact resistance and have heat resistance.
- the material reduces the load when connecting the connector, that is, the insertion force. From this point of view, the above-mentioned metals, alloys or platings can be preferably used.
- a functional group may be introduced on the metal surface thereof.
- the functional group can be appropriately set according to the nanocarbon material to be used and the first compound, and is preferably a group having an affinity for these.
- the affinity is given to these groups and the first compound (specifically, the first functional group and the second functional group possessed by the first compound). It is preferably a group having.
- the nanocarbon material is a material mainly composed of carbon atoms (carbon) and having a one-dimensional shape composed of nanoscales (for example, a diameter of 100 nm or less), for example, particles composed of carbon atoms having a diameter of 100 nm or less. It is composed of (nanocarbon particles) and includes: Carbon nanotubes, carbon nanohorn aggregates, graphene, fullerenes, carbon nanofibers, carbon black, etc.
- the nanocarbon material from the viewpoint of improving wear resistance, it is preferable to use at least one of graphene, fullerene, carbon nanotubes and carbon nanohorn aggregates as the nanocarbon material. Further, from the viewpoint of maintaining contact resistance and improving wear resistance, it is more preferable to use a carbon nanohorn aggregate as the nanocarbon material.
- the nanocarbon material may be composed of only carbon atoms, or may have a surface functional group (third functional group) containing other atoms by performing a surface treatment such as an oxidation treatment. ..
- This surface functional group is not particularly limited and can be appropriately selected depending on the metal on the surface (sliding surface) of the structure and the first compound to be used, and has an affinity for these metals and the first compound. It is preferable to introduce a surface functional group having the above into the nanocarbon material.
- the nanocarbon material when a metal such as gold or silver, an alloy, or a plating thereof is used as the metal, the nanocarbon material has an affinity for these metals as the surface functional group from the viewpoint of affinity for these metals. It is preferable to have a group containing a sulfur atom having. Examples of the group containing a sulfur atom include a thiol group, a sulfo group, a dithiocarbamate group and the like, but from the viewpoint of ease of production, the nanocarbon material is more preferably modified with a thiol group.
- the surface of at least a part of the metal is coated with a nanocarbon material having a functional group having an affinity for the metal. It is preferable to have.
- the first compound particularly, the first functional group
- the first functional group may be present on the surface of the nanocarbon material in combination with or alone with the functional group having an affinity for the metal.
- a functional group having an affinity for the second functional group may be introduced.
- the nanocarbon material one type may be used alone, or a plurality of types may be used in combination, and for example, a mixture of these nanocarbon materials may be used.
- the shape (for example, aspect ratio) of the nanocarbon material used is not particularly limited, and various materials can be appropriately used.
- graphene is one of the allotropes of carbon composed of a single layer of carbon atoms, and is in the form of a sheet having a thickness of one atom (about 0.35 nm) in which carbon atoms are arranged in a hexagonal honeycomb lattice. It is a substance.
- Fullerene is a general term for molecules composed of a large number of carbon atoms in a closed shell cavity, and examples thereof include C60 fullerene composed of 60 carbon atoms, which is a ball-shaped graphene sheet.
- a carbon nanotube is a substance in which a graphene sheet composed of carbon atoms has a single-walled or multi-layered tubular shape (tube shape). Can be used. Among these, from the viewpoint of cost reduction, it is preferable to use multi-walled carbon nanotubes (particularly three or more layers) as the carbon nanotubes.
- the carbon nanohorn aggregate includes carbon nanohorn aggregates (CNHs) and fibrous carbon nanohorn aggregates.
- Carbon nanohorn aggregates (CNHs) are cone-shaped single-layer carbon nanohorns with a conical tip, with the tip of a structure wrapped with a graphene sheet pointed like a horn with a tip angle of about 20 °. It is a collection of radial parts with the parts on the outside, has a diameter of about 100 nm, and has a spherical shape.
- Carbon nanohorn aggregates are a seed-type aggregate structure, a bud-type aggregate structure, a dalia-type aggregate structure, a petal-type (several graphene sheet structures) aggregate structure, and a petal-dalia-type (petal and dalia mixed). It has at least one type of collective structure (state).
- the seed type has a shape with few or no angular protrusions on the spherical surface.
- the bud type has a shape in which some square protrusions are seen on the spherical surface.
- the dahlia type is a shape in which many square protrusions are found on the spherical surface.
- the petal type is a shape in which petal-like protrusions are seen on a spherical surface.
- the petal dahlia type is an intermediate structure between the dahlia type and the petal type.
- the fibrous carbon nanohorn aggregate is a fibrous aggregate of a plurality of single-layer carbon nanohorns, and is formed of at least one of the above aggregate structures. All of these carbon nanohorn aggregates have high conductivity because the single-layer carbon nanohorns are partially chemically bonded.
- the first compound has at least a first functional group and a second functional group.
- the first functional group and the second functional group can be appropriately set depending on the metal constituting at least a part of the surface of the structure and the nanocarbon material used, and the first functional group and the second functional group can be set appropriately.
- the functional groups of may be the same or different.
- the first compound may have one or more kinds of groups as the first functional group, and may have one or more kinds of groups as the second functional group. good. That is, the first compound may have one kind of functional group (the same first functional group and the second functional group), or may have a plurality of kinds of functional groups.
- the first compound may have a functional group other than the first functional group and the second functional group as long as the effect of the present invention can be obtained.
- the first functional group a functional group having an affinity for the metal on the surface of the structure is used, and the first compound may be chemically adsorbed on the metal via the first functional group. It doesn't have to be.
- the first functional group can be appropriately selected depending on the metal constituting the surface of the structure, and is not particularly limited. For example, when gold, silver, and alloys thereof, and plating thereof are used as the metal, a functional group containing a sulfur atom is used as the first functional group from the viewpoint of affinity for these metals. It is preferable to use a group.
- a thiol group as the first functional group from the viewpoint of handleability and availability.
- the effect of the present invention can be easily obtained by using a functional group having an affinity for each metal as the first functional group.
- the second functional group a functional group having an affinity for the nanocarbon material used is used, and the first compound is chemically adsorbed on the nanocarbon material via the second functional group. It may or may not be.
- the second functional group is more preferably an amide group, a hydroxy group or a carboxy group, and even more preferably an amide group. If the second functional group is an amide group, the treatment time for the object to be coated (material containing the nanocarbon material and the first compound) (for example, the object to be coated is immersed in the treatment solution). Time) can be shortened and productivity can be further improved.
- R 3 and R 4 in the amide group each independently indicate —H or an alkyl group having 1 to 6 carbon atoms which may have a double bond. From the viewpoint of affinity for nanocarbon materials, it is preferable that at least one of R 3 and R 4 is —H, and it is more preferable that both R 3 and R 4 are —H.
- the metal and the nanocarbon material have a first functional group having an affinity for the metal and a second functional group having an affinity for the nanocarbon material. It is preferable to have a structure arranged via the first compound.
- the first compound may have at least one of a chain saturated hydrocarbon group, a chain unsaturated hydrocarbon group, a cyclic saturated hydrocarbon group and a cyclic unsaturated hydrocarbon group in the main chain skeleton.
- a plurality of these groups may be contained.
- the first compound has a chain-type saturated hydrocarbon group in the main chain skeleton.
- the main clavicle refers to the part corresponding to the trunk having the maximum number of carbon atoms in the first compound.
- the first compound may or may not have one or more side chains in addition to the main chain.
- the number of carbon atoms in the side chain can be, for example, 1 to 6.
- the chain-type saturated hydrocarbon group may be a linear saturated hydrocarbon group or a branched saturated hydrocarbon group, but from the viewpoint of maintaining a low contact resistance, the linear saturated hydrocarbon group may be used. It is preferably a group.
- the (total) carbon number of the chain saturated hydrocarbon group is preferably 2 to 30, more preferably 2 to 20, and preferably 4 to 16 from the viewpoint of maintaining low contact resistance. More preferably, it is particularly preferably 5 to 16.
- the number of carbon atoms in the branched chain (side chain) portion can be, for example, 1 to 6, and specifically, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and the like. It can have a hexyl group as a branched chain.
- the position and number of the branched chains are not particularly limited and may be held at any position.
- chain saturated hydrocarbon group examples include, but are not limited to, the following. Although a methyl group is described here as an example of the branched chain, it may be another group (for example, an ethyl group, a propyl group, a butyl group, etc.). Further, in the following examples, among the chain saturated hydrocarbon groups, those having 2 to 12 carbon atoms are described as an example, but the present invention is not limited thereto.
- the two bond "-" of the chain-type saturated hydrocarbon group shown below are one of which is the bond on the first functional group side and the other of which is the bond on the second functional group side. ..
- bonds may be directly bonded to the first functional group or the second functional group, or other groups (for example, chain unsaturated hydrocarbon group, cyclic saturated hydrocarbon group, etc.). It may be bonded to a first functional group or a second functional group via a cyclic unsaturated hydrocarbon group). Further, although the form in which the first functional group and the second functional group are bonded to both ends of the main chain is described here, these functional groups may be bonded to the branched chain.
- the chain unsaturated hydrocarbon group may have one unsaturated bond (double bond or triple bond), or may have two or more unsaturated bonds, especially the position and number of unsaturated bonds. Not limited.
- the (total) carbon number of the chain unsaturated hydrocarbon group is preferably 2 to 30, more preferably 2 to 20, and preferably 4 to 16 from the viewpoint of maintaining low contact resistance. More preferably, it is particularly preferably 5 to 16.
- the chain unsaturated hydrocarbon group may be a linear unsaturated hydrocarbon group or a branched unsaturated hydrocarbon group, but from the viewpoint of maintaining a low contact resistance, the chain type unsaturated hydrocarbon group may be a direct chain unsaturated hydrocarbon group. It is preferably a chain unsaturated hydrocarbon group.
- the number of carbon atoms in the branched chain (side chain) portion can be, for example, 1 to 6, and specifically, a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group.
- a hexyl group can be provided as a branched chain.
- the position and number of the branched chains are not particularly limited and may be held at any position.
- chain unsaturated hydrocarbon group examples include, but are not limited to, the following. Although a methyl group is described here as an example of the branched chain, it may be another group (for example, an ethyl group, a propyl group, a butyl group, etc.). Further, in the following example, among the chain unsaturated hydrocarbon groups, those having 2 to 12 carbon atoms and having one double bond as an unsaturated bond (in the case of having a branched chain, those having one branched chain). Is described as an example, but the present invention is not limited to these.
- the two bond "-" of the chain unsaturated hydrocarbon group shown below are one of which is the bond on the first functional group side and the other of which is the bond on the second functional group side. be.
- these bonding groups may be directly bonded to the first functional group or the second functional group, or other groups (for example, chain saturated hydrocarbon group, cyclic saturated hydrocarbon group, ring). It may be attached to the first functional group or the second functional group via the (formula unsaturated hydrocarbon group).
- these functional groups may be bonded to the branched chain.
- the (total) carbon number of the cyclic saturated hydrocarbon group is preferably 3 to 20, more preferably 3 to 10, and preferably 3 to 8 from the viewpoint of maintaining low contact resistance. More preferably, it is particularly preferably 4 to 6.
- the saturated carbocycle contained in the cyclic saturated hydrocarbon group is preferably a 3- to 8-membered ring, and more preferably a 4- to 6-membered ring. Further, these saturated carbocycles may be monocyclic rings or condensed rings in which a plurality of rings are condensed. Further, these saturated carbocycles may have a side chain, and examples of the side chain include an alkyl group having 1 to 6 carbon atoms.
- cyclic saturated hydrocarbon group examples include, but are not limited to, the following compounds.
- cyclically saturated hydrocarbon groups having no side chain have been described, but the present invention is not limited thereto, and the ring has one or more side chains (for example, an alkyl group having 1 to 6 carbon atoms). You can also do it.
- "-*" represents a bond on the first functional group side, and the other represents a bond on the second functional group side. It should be noted that these bonds may be directly bonded to the first functional group or the second functional group, or other groups (for example, chain-type saturated hydrocarbon groups, chain-type unsaturated hydrocarbon groups, etc.).
- first functional group may be bonded to a first functional group or a second functional group via a cyclic unsaturated hydrocarbon group).
- first functional group and the second functional group may be bonded to the carbon ring.
- the cyclic unsaturated hydrocarbon group may have one unsaturated bond (double bond or triple bond), may have two or more unsaturated bonds, and the position of the unsaturated bond is not particularly limited. ..
- the (total) carbon number of the cyclic unsaturated hydrocarbon group is preferably 3 to 20, more preferably 3 to 10, and 3 to 8 from the viewpoint of maintaining low contact resistance. Is more preferable, and 4 to 6 is particularly preferable.
- the carbon ring contained in the cyclic unsaturated hydrocarbon group may be a monocyclic ring such as a benzene ring or a condensed ring such as a naphthalene ring or an anthracene ring.
- the carbon ring is preferably a 3- to 8-membered ring, more preferably a 4- to 6-membered ring. Further, these carbocycles may have a side chain, and examples of the side chain include an alkyl group having 1 to 6 carbon atoms.
- cyclic unsaturated hydrocarbon group examples include, but are not limited to, the following compounds.
- cyclic unsaturated hydrocarbon groups having no side chain are described, but the present invention is not limited to these, and one or more side chains (for example, an alkyl group having 1 to 6 carbon atoms) may be used. You can also have.
- "-*" represents a bond on the first functional group side, and the other represents a bond on the second functional group side. It should be noted that these bonds may be directly bonded to the first functional group or the second functional group, or other groups (for example, a chain-type saturated hydrocarbon group, a chain-type unsaturated hydrocarbon group, etc.).
- first functional group may be bonded to a first functional group or a second functional group via a cyclic saturated hydrocarbon group).
- first functional group and the second functional group may be bonded to the carbon ring.
- the positions of the first functional group and the second functional group in the first compound are not particularly limited, but from the viewpoint of arranging the metal and the nanocarbon material via the first compound, the first compound It is preferable that they are arranged at the opposite end portions of the main chain skeleton.
- the first compound is mainly composed of at least one of a chain-type saturated hydrocarbon group, a chain-type unsaturated hydrocarbon group, a ring-type saturated hydrocarbon group, and a ring-type unsaturated hydrocarbon group.
- One end of the chain skeleton (eg, one opposite end) has a first functional group and another end (eg, the other opposite end) has a second functional group. It is preferably a compound.
- the first functional group and the second functional group are most distant from each other, for example, in the case of a benzene ring, the first functional group and the second functional group are at the para position. Is preferably arranged. As described above, it is preferable that the first compound contains both the first functional group and the second functional group in the main chain skeleton.
- Equation 1 A 1 -R 11 -A 2
- a 1 represents a thiol group
- R 11 is a chain-type saturated hydrocarbon group having 2 to 30 carbon atoms, a chain-type unsaturated hydrocarbon group having 2 to 30 carbon atoms, a cyclic unsaturated hydrocarbon group having 3 to 20 carbon atoms, and 3 carbon atoms. It is a group consisting of at least one of 20 cyclic saturated hydrocarbon groups.
- R 3 and R 4 each independently represent —H, an alkyl group having 1 to 6 carbon atoms which may have a double bond. From the viewpoint of wear resistance and maintenance of low contact resistance, R 11 is preferably a linear saturated hydrocarbon group having 4 to 16 carbon atoms or a branched saturated hydrocarbon group having 4 to 16 carbon atoms.
- at least one of R 3 and R 4 represents —H.
- the following compounds can be more preferably used.
- Method for Manufacturing First Structure includes a step of coating a nanocarbon material on the surface of at least a part of the metal (coating step 1-1). ..
- the method for manufacturing the first structure may also have the following steps. -Process of preparing nanocarbon material (nanocarbon material preparation process). -A process of preparing a structure (object to be coated) having a metal surface for coating a nanocarbon material (process of preparing an object to be coated).
- the nanocarbon material preparation step may also include a step of processing the nanocarbon material (processing treatment step).
- the coating step 1-1 can also include a step of preparing a treatment liquid containing the nanocarbon material (treatment liquid preparation step 1-1). The order of these steps is not particularly limited and can be appropriately performed.
- the carbon nanohorn aggregate can be produced, for example, by a CO 2 laser ablation method. Specifically, a sintered round bar carbon as a solid carbon substance is placed in a vacuum vessel, and under the conditions of a laser power density of 30 kW / cm 2 and a target rotation speed of 2 rpm in an Ar atmosphere, CO 2 The solid carbon material is irradiated with laser light at room temperature (for example, 25 ° C.) for 30 minutes. This makes it possible to obtain soot-shaped carbon nanohorn aggregates. It can be confirmed by observing with a transmission electron microscope (TEM) that the obtained substance has a carbon nanohorn aggregate structure.
- TEM transmission electron microscope
- processing treatment step various processing treatments such as oxidation treatment, surface treatment, and crystallization treatment can be performed on the obtained carbon nanohorn aggregate (processing treatment step).
- oxidation treatment e.g., oxidation treatment, surface treatment, and crystallization treatment
- both the gas phase process and the liquid phase process can be used for the oxidation treatment.
- the oxidation treatment is performed by heat treatment in an atmospheric gas containing oxygen such as air, oxygen and carbon dioxide.
- oxygen such as air, oxygen and carbon dioxide.
- the temperature during the heat treatment is preferably 300 ° C to 650 ° C, more preferably 400 ° C to 550 ° C.
- the heat treatment temperature is 300 ° C. or higher, carbon is easily burned and pores can be easily formed.
- the heat treatment temperature is 650 ° C. or lower, it is possible to easily suppress the combustion of the entire carbon nanohorn aggregate.
- the oxidation treatment is performed in a liquid containing an oxidizing substance such as nitric acid, sulfuric acid, and hydrogen peroxide.
- an oxidizing substance such as nitric acid, sulfuric acid, and hydrogen peroxide.
- the temperature at the time of treatment is preferably room temperature (for example, 25 ° C.) to 120 ° C.
- the treatment temperature is 120 ° C. or lower, the oxidizing power can be easily maintained at an appropriate level, and excessive oxidation can be easily prevented.
- the treatment temperature is preferably room temperature to 100 ° C, more preferably 40 ° C or higher.
- the oxidizing power acts efficiently and pores can be formed efficiently, and when the treatment temperature is 40 ° C. to 100 ° C., the effect can be obtained more remarkably. Further, when the liquid phase process is combined with light irradiation, the oxidation treatment can be performed more effectively.
- the crystallinity can be improved by heat-treating the carbon nanohorn aggregate in a non-oxidizing atmosphere such as in an inert gas, hydrogen, or vacuum.
- the heat treatment temperature at that time is preferably 800 ° C. to 2000 ° C., more preferably 1000 ° C. to 1500 ° C.
- the surface of the nanocarbon material to be used can be modified with various functional groups by various processing treatments.
- the nanocarbon material is treated with a plasma treatment or a reaction reagent such as an oxidizing agent to form a hydroxy group, and then the hydroxy group is replaced with chlorine using SOCL 2 . Then, this chlorine moiety can be replaced with an amino group using ammonia.
- a thiol group can be formed by reacting a halogen atom such as chlorine with hydrogen sulfide in the presence of a base.
- a methoxy group can be formed by reacting the hydroxy group with a methylating agent in the presence of a base.
- hydroxy group can be reacted with methanol in the presence of a catalyst to form a methyl group.
- an amide group can also be formed by converting the hydroxy group in the carboxy group produced by heat treatment to chlorine with SOCL 2 and then substituting the chlorine moiety with an amino group using ammonia. As described above, a conventionally known method can be appropriately used for introducing the surface functional group.
- the surface functional groups of the carbon nanohorn aggregate can also be removed.
- the oxygen-containing surface functional group (carbonyl group, carboxy group, hydroxy group) formed in the opening portion by the pore opening treatment can be removed by heat treatment.
- the heat treatment temperature at that time can be 150 ° C. to 2000 ° C.
- the heat treatment temperature is preferably 600 ° C. or higher.
- Surface functional groups can also be removed by reduction in a gaseous or liquid atmosphere.
- Hydrogen can be used for reduction in a gaseous atmosphere, and can be used in combination with the above-mentioned improvement in crystallinity. Hydrazine and the like can be used in a liquid atmosphere.
- a commercially available product may be used as the nanocarbon material. Further, the nanocarbon material may be produced by appropriately introducing or removing these functional groups from the purchased raw material by using a conventionally known method.
- the structure to be covered can be appropriately used as long as it has a metal surface. Further, it can be appropriately produced by subjecting the surface of the structure to metal plating by a conventionally known method.
- a treatment liquid containing the nanocarbon material is prepared (treatment liquid preparation step 1-1). Specifically, the nanocarbon material and the organic solvent (dispersion medium) are added to the container, and ultrasonic vibration is applied until the nanocarbon material is uniformly dispersed in the organic solvent together with the container. Thereby, a treatment liquid (dispersion liquid) can be obtained.
- the treatment liquid may contain various additives (other lubricants and the like) as long as the effects of the present invention can be obtained.
- the organic solvent is not particularly limited, but from the viewpoint of mass production of the structure, it is preferable to use a solvent capable of producing a stable treatment liquid that does not cause precipitation when a nanocarbon material or the like is added.
- the organic solvent it is particularly preferable to use a solvent that can uniformly disperse the nanocarbon material and can be easily removed (for example, by natural drying) (having a low boiling point).
- the organic solvent include alcohols such as ethanol, isopropyl alcohol (IPA) and isobutyl alcohol, hexane, toluene, dichloroethane and N-methylpyrrolidone (NMP).
- the content ratio of the nanocarbon material in the treatment liquid can be appropriately set, but is preferably 0.01 to 1.0% by mass, preferably 0.02 to 0.5% by mass, from the viewpoint of workability and adhesion to the metal surface. % Is more preferable, and 0.05 to 0.2% by mass is further preferable.
- the nanocarbon material particularly carbon nanohorn aggregate
- the nanocarbon material is easy to maintain a stable dispersed state in the treatment liquid, and therefore has good productivity.
- the coated portion of the object to be coated is immersed in the treated liquid for a certain period of time, the treated liquid is adhered to the coated portion, then taken out and dried (for example, naturally in the air).
- the immersion time can be appropriately set according to the shape of the object to be coated, but the longer the immersion time is, the higher the coverage of the nanocarbon material on the object to be coated is, which is preferable.
- the immersion time is preferably 2 to 90 minutes, more preferably 10 to 60 minutes, and even more preferably 30 to 45 minutes. Even if the treatment liquid adheres to the surface of the structure, it does not become sticky and can maintain a good touch.
- dip coating is described as the coating method for the treatment liquid, but in addition to this, conventionally known methods such as spray coating and roll coating can be appropriately used.
- a nanocarbon material and a first functional group and a second functional group are formed on the surface of at least a part of the metal. It has a step (coating step 2-1) of coating a material containing at least an organic compound (first compound) having.
- the method for producing the second structure may include a step of preparing the first compound (first compound preparation step), the above-mentioned nanocarbon material preparation step, and a covering object preparation step.
- the nanocarbon material preparation step may also include the above-mentioned processing treatment step.
- the coating step 2-1 can also include a step of preparing a treatment liquid containing the nanocarbon material and the first compound (treatment liquid preparation step 2-1). The order of these steps is not particularly limited and can be appropriately performed. These steps will be described below. Since the nanocarbon material preparation step, the covering object preparation step, and the processing treatment step are as described above, the description thereof will be omitted.
- First compound preparation step As the first compound having the first functional group and the second functional group described above, a commercially available product may be purchased, or these functional groups may be purchased with respect to the purchased raw material by using a conventionally known method. May be produced by appropriately introducing the above. In the examples described later, a commercially available product was used.
- a treatment liquid containing the nanocarbon material and the first compound is prepared (treatment liquid preparation step 2-1). Specifically, the nanocarbon material, the first compound, and the organic solvent are added to the container, and ultrasonic vibration is performed until the nanocarbon material and the first compound are uniformly dispersed in the organic solvent together with the container. Is applied. Thereby, a treatment liquid (dispersion liquid) can be obtained.
- the treatment liquid may contain various additives as long as the effects of the present invention can be obtained.
- the organic solvent is not particularly limited, but from the viewpoint of mass production of the structure, it is preferable to use a solvent capable of producing a stable treatment liquid that does not cause precipitation when a nanocarbon material, the first compound or the like is added. ..
- the organic solvent it is particularly preferable to use a solvent in which the nanocarbon material and the first compound can be uniformly dispersed and easily removed (for example, by natural drying) (having a low boiling point).
- a solvent in which the nanocarbon material and the first compound can be uniformly dispersed and easily removed for example, by natural drying
- the one described in the coating step 1-1 can be used in the same manner.
- the content ratio of the nanocarbon material in the treatment liquid can be appropriately set, but is preferably 0.01 to 1.0% by mass, preferably 0.02 to 0%, from the viewpoint of workability and adhesion to the metal surface. 5% by mass is more preferable, and 0.05 to 0.2% by mass is further preferable.
- the content ratio of the first compound in the treatment liquid can be appropriately set, but is preferably 0.01 to 1.0% by mass, preferably 0.02 to 0, from the viewpoint of workability and adhesion to the metal surface. 5.5% by mass is more preferable, and 0.05 to 0.2% by mass is further preferable.
- the remaining amount is an organic solvent (and other additives if necessary).
- the coated portion of the object to be coated is immersed in this treated liquid for a certain period of time, the treated liquid is adhered to the coated portion, then taken out and dried (for example, naturally in the air).
- the immersion time those described in the coating step 1-1 can be applied in the same manner. Even if the treatment liquid adheres to the surface of the structure, it does not become sticky and can maintain a good touch.
- other application methods such as spray application and roll application can be appropriately adopted.
- the sliding member of the present invention has at least one of the surface structures of the first structure and the second structure on at least a part of the sliding surface.
- the sliding member is not particularly limited as long as it has a sliding surface with which other members come into contact, and can be used as a sliding member for automobiles such as a cylinder and a piston, for example. ..
- the connector of the present invention has at least one of the surface structures of the first structure and the second structure on at least a part of the sliding surface.
- a connector pair composed of two connectors that can be fitted (contacted) with each other (for example, by sliding) can be used.
- each connector can be a board connector mounted on a circuit board or the like, and can be suitably used as other connectors.
- Examples 1 to 14 described later are examples corresponding to Examples of the structure of the present invention
- Example 15 is an example corresponding to a comparative example.
- CNHs carbon nanohorn aggregates
- CNT multi-walled carbon nanotubes
- Two types manufactured by Showa Denko KK, trade name: VGCF-H
- the CNTs were previously heat-treated at 770 ° C.
- a flat plate 1 imitating the contact portion of the structure shown in FIG. 1 and a probe 2 having a tip processed into the shape of a sphere R1 were prepared.
- the plate and the probe are made of copper or an alloy thereof, and the surface is silver-plated with a thickness of 5 ⁇ m.
- the plate and the probe are immersed in the treatment liquid containing the (combination) nanocarbon material (and the first compound) shown in Table 1 for the immersion time shown in Table 1, and then taken out and taken out into the atmosphere. It was naturally dried in.
- a plate to which the nanocarbon material (and the first compound) shown in Table 1 was attached to the silver-plated surface and a probe were prepared.
- the treatment liquid itself was not prepared, and the plate and the probe were not immersed in the treatment liquid.
- the surface of the sphere R1 of the probe is brought into contact with the plate surface obtained in each example, and the surface of the plate surface is reciprocated in the slide direction indicated by the arrow S with a width of 10 mm one way while being held vertically with a force of 6N.
- the coefficient of friction and the state of wear were observed.
- the device for sliding is not shown. This repeated operation of reciprocating sliding is considered to be the same operation as repeated insertion and removal of a structure, for example, a connector, and wear of the connector contact portion induced by the repeated insertion and removal, and insertion force and removal force. Can reproduce the rise of.
- FIG. 2 shows the plate surface in the case of Example 15 (the surface is silver-plated only)
- FIG. 3 shows the case of Example 1
- FIG. 4 shows the case of Example 3
- FIG. 5 shows the case of Example 4 with respect to the number of slides. It shows the transition of the friction coefficient of.
- the above-mentioned plates and probes were prepared and measured three times in each example.
- the vertical axis of these graphs shows the coefficient of friction of the plate surface
- the horizontal axis shows the number of reciprocating slides of 10 mm as one time and the number of times of reciprocating slides as the number of times of sliding.
- the wear state of the plate surface is observed, and the number of slides at the time when the silver plating disappears from the sliding surface of the plate and the material (Cu) appears is displayed as an inverted triangle on the upper side of the polygonal line. do.
- FIG. 6 shows the transition of the contact resistance of the plate surface with respect to the number of slides in the case of Example 15 and FIG. 7 in the case of Example 4.
- the above plates and probes were prepared three times in each example, and measurements were performed respectively.
- the vertical axis of these graphs indicates the contact resistance [m ⁇ ], and the horizontal axis and the symbol of the inverted triangle mean the same as the graphs of FIGS. 2 to 5 above.
- Example 15 is an example using a plate and a probe prepared for comparison with the present invention, which are not treated with the above-mentioned treatment liquid and have only silver plating on the surface.
- the average life in Table 1 indicates the average value of the number of slides when the silver plating is peeled off from the plate surface (the average value when the silver plating is performed three times in each example), and only in Example 4 It is a numerical value for one test.
- Example 15 Compared with the life of only silver plating in Example 15, it can be seen that the life is extended in all of Examples 1 to 14. Further, in Example 15, as shown in FIG. 2, the coefficient of friction of the plate surface has changed to about 1. On the other hand, in Examples 1, 3, and 4 of the embodiments of the present invention, as shown in FIGS. 3 to 5, the coefficient of friction remains as low as about 0.2 until the life is reached. , The coefficient of friction exceeds 1 near the end of its life. Therefore, in these examples, it can be seen that the friction coefficient can be kept low for a long period of time.
- the lubricity is improved as compared with the conventional structure, and the material of the contact portion (contact portion) is made of the contact portion (contact portion) while maintaining low insertion force, removal force and low contact resistance. The life until exposure can be extended.
- the structure of the present invention has excellent wear resistance and can maintain low contact resistance for a long period of time.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Carbon And Carbon Compounds (AREA)
- Sliding-Contact Bearings (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Lubricants (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
[1]金属の少なくとも一部の表面上に、ナノカーボン材料が配された構造を有することを特徴とする構造物。
[2]前記ナノカーボン材料が、カーボンナノチューブ、カーボンナノホーン集合体、グラフェン、およびフラーレンのうちの少なくとも1つである、[1]に記載の構造物。
[3]前記ナノカーボン材料が、カーボンナノホーン集合体である、[2]に記載の構造物。
[4]前記金属の少なくとも一部の表面上に、前記ナノカーボン材料と、前記金属に親和性を有する第1の官能基および前記ナノカーボン材料に親和性を有する第2の官能基を少なくとも有する有機化合物とを含む被膜が配されている、[1]~[3]のいずれかに記載の構造物。
[5]前記第1の官能基が、チオール基である、[4]に記載の構造物。
[6]前記第2の官能基が、アミド基、ヒドロキシ基またはカルボキシ基である、[4]または[5]に記載の構造物。
[7]前記第2の官能基が、アミド基である、[6]に記載の構造物。
[8]前記有機化合物が、主鎖骨格に、鎖式飽和炭化水素基、鎖式不飽和炭化水素基、環式飽和炭化水素基および環式不飽和炭化水素基のうちの少なくとも1つを有する、[4]~[7]のいずれかに記載の構造物。
[9]前記有機化合物が、主鎖骨格に、鎖式飽和炭化水素基を有する、[8]に記載の構造物。
[10]前記ナノカーボン材料が、第3の官能基で修飾されている、[1]~[9]のいずれかに記載の構造物。
[11]前記ナノカーボン材料が、チオール基で修飾されている、[1]~[10]のいずれかに記載の構造物。
[12]前記金属が、金、銀、およびそれらの合金、並びにそれらのめっきのうちの少なくとも1つである、[1]~[11]のいずれかに記載の構造物。
[13]金属の少なくとも一部の表面上に、前記金属に親和性を有する官能基を備えたナノカーボン材料が被覆された構造を有することを特徴とする構造物。
[14]金属と、ナノカーボン材料とが、前記金属に親和性を有する第1の官能基および前記ナノカーボン材料に親和性を有する第2の官能基を備えた有機化合物を介して配された構造を有することを特徴とする構造物。
[15]摺動面の少なくとも一部に、[1]~[14]のいずれかに記載の構造を有することを特徴とする摺動部材。
[16]摺動面の少なくとも一部に、[1]~[14]のいずれかに記載の構造を有することを特徴とするコネクタ。
[17]金属の少なくとも一部の表面上に、ナノカーボン材料を被覆する工程を有することを特徴とする構造物の製造方法。
[18]金属の少なくとも一部の表面上に、ナノカーボン材料と、前記金属に親和性を有する第1の官能基および前記ナノカーボン材料に親和性を有する第2の官能基を少なくとも有する有機化合物とを含む材料を被覆する工程を有することを特徴とする構造物の製造方法。
本発明の構造物は、金属の少なくとも一部の表面上に、ナノカーボン材料が配された構造を有する。従って、構造物は、表面の少なくとも一部が金属で構成され、その金属表面の少なくとも一部がナノカーボン材料で被覆されている。また、本発明の構造物は、耐摩耗性を向上させ、接触抵抗を低く維持する観点から、金属の少なくとも一部の表面上に、ナノカーボン材料と、前記金属に親和性を有する第1の官能基および前記ナノカーボン材料に親和性を有する第2の官能基を少なくとも有する有機化合物(以下、第1の化合物と称することがある)とを含む被膜が配されていることが好ましい。
ここで、前記金属とは、金(Au)、銀(Ag)、銅(Cu)、白金(Pt)、亜鉛(Zn)、錫(Sn)、鉄(Fe)、ニッケル(Ni)、クロム(Cr)、パラジウム(Pd)、ロジウム(Rh)、ルテニウム(Ru)、オスミウム(Os)、イリジウム(Ir)、インジウム(In)などの各種金属、これらの金属の合金、並びに、これらの金属のめっきを含むものである。これらの中でも、接触抵抗の維持および耐摩耗性の向上の観点から、前記金属は、金、銀、およびそれらの合金、並びにそれらのめっきのうちの少なくとも1つであることが好ましい。さらに、摺動面の接触抵抗を低くする観点から、前記金属は、銀および銀合金、ならびにそれらによるめっきのうちの少なくとも1つであることがより好ましい。
このように、前記金属は、1種類を単独で用いてもよいし、複数種を併用してもよい。
ナノカーボン材料とは、主に炭素原子(カーボン)から構成され、一次元形状が、ナノスケール(例えば、直径100nm以下)で構成される材料であり、例えば、直径100nm以下の炭素原子からなる粒子(ナノカーボン粒子)で構成され、以下のものを含むのである:
カーボンナノチューブ、カーボンナノホーン集合体、グラフェン、フラーレン、カーボンナノファイバー、カーボンブラックなど。
カーボンナノホーン集合体(CNHs)は、グラフェンシートが巻かれた構造の先端が、先端角約20°の角(ホーン)状に尖った、円錐型の形状の単層カーボンナノホーンが、円錐状の先端部を外側にして放射状に集合したものであり、直径は100nm程度で、形状は球状である。
カーボンナノホーン集合体(CNHs)は、種型の集合構造、つぼみ型の集合構造、ダリア型の集合構造、ペタル型(数枚のグラフェンシート構造)の集合構造、ペタルダリア型(ペタルとダリアが混在した状態)の集合構造のうち少なくとも1種類の集合構造を有している。種型は、球状の表面に角状の突起がほとんどみられないか、あるいは全くみられない形状である。また、つぼみ型は、球状の表面に角状の突起が多少みられる形状である。ダリア型は、球状の表面に角状の突起が多数みられる形状である。ペタル型は、球状の表面に花びら状の突起がみられる形状である。ペタルダリア型は、ダリア型とペタル型の中間的な構造である。
繊維状カーボンナノホーン集合体は、複数の単層カーボンナノホーンが繊維状に集合したものであり、上記の集合構造のうち少なくとも1種類のカーボンナノホーン集合体で形成される。
これらのカーボンナノホーン集合体は、単層カーボンナノホーンが部分的に化学的に結合しているため、いずれも導電性が高い。
第1の化合物は、第1の官能基および第2の官能基を少なくとも有する。第1の官能基および第2の官能基は、構造物の表面の少なくとも一部を構成する金属、および使用するナノカーボン材料に応じて適宜設定することができ、第1の官能基および第2の官能基は、同一であってもよいし、異なっていてもよい。また、第1の化合物は、第1の官能基として、1種または複数種の基を有していてもよく、第2の官能基として、1種または複数種の基を有していてもよい。すなわち、第1の化合物は、1種の官能基(同一の第1の官能基および第2の官能基)を有していてもよく、複数種の官能基を有していてもよい。第1の化合物は、本発明の効果を得られる範囲で、第1の官能基および第2の官能基以外の他の官能基を有していてもよい。
CH2CH2CH2CH2CH2CH2CH2CH2CH(CH3)-、-CH2CH2CH2CH2CH2CH2CH2CH2CH2CH(CH3)CH2-、-CH2CH2CH2CH2CH2CH2CH2CH2CH(CH3)CH2CH2-、-CH2CH2CH2CH2CH2CH2CH2CH(CH3)CH2CH2CH2-、-CH2CH2CH2CH2CH2CH2CH(CH3)CH2CH2CH2CH2-、-CH2CH2CH2CH2CH2CH(CH3)CH2CH2CH2CH2CH2-、-CH2CH2CH2CH2CH2CH2CH2CH2CH(CH3)CH(CH3)-、-CH2CH2CH2CH2CH2CH2CH2CH2CH(CH3)CH(CH3)-、-CH2CH2CH2CH2CH2CH2CH(CH3)CH(CH3)CH(CH3)-、-CH2CH2CH2CH2CH(CH3)CH(CH3)CH(CH3)CH(CH3)-、-CH2CH2CH(CH3)CH(CH3)CH(CH3)CH(CH3)CH(CH3)-、-CH(CH3)CH(CH3)CH(CH3)CH(CH3)CH(CH3)CH(CH3)-、-CH2CH2CH2CH2CH2CH2CH2CH(CH3)CH2CH(CH3)-、-CH2CH2CH2CH2CH(CH3)CH2CH(CH3)CH2CH(CH3)-、-CH2CH(CH3)(CH3)CH2CH(CH3)CH2CH(CH3)CH2CH(CH3)-、-CH2CH2CH2CH2CH2CH2CH(CH3)CH2CH2CH(CH3)-、-CH2CH2CH(CH3)CH2CH2CH(CH3)CH2CH2CH(CH3)-。
2CH2CH2CH2-、-CH2CH=CHCH(CH3)CH2CH2CH2CH2-、-CH2CH2CH=C(CH3)CH2CH2CH2CH2-、-CH=CHCH2CH2CH2CH2CH2CH2CH2CH2-、-CH2CH=CHCH2CH2CH2CH2CH2CH2CH2-、-CH2CH2CH=CHCH2CH2CH2CH2CH2CH2-、-CH2CH2CH2CH=CHCH2CH2CH2CH2CH2-、-CH2CH2CH2CH2CH=CHCH2CH2CH2CH2-、-CH=CHCH2CH2CH2CH2CH2CH2CH(CH3)-、-CH2CH=CHCH2CH2CH2CH2CH2CH(CH3)-、-CH2CH2CH=CHCH2CH2CH2CH2CH(CH3)-、-CH2CH2CH2CH=CHCH2CH2CH2CH(CH3)-、-CH2CH2CH2CH2CH=CHCH2CH2CH(CH3)-、-CH2CH2CH2CH2CH2CH=CHCH2CH(CH3)-、-CH2CH2CH2CH2CH2CH2CH=CHCH(CH3)-、-CH2CH2CH2CH2CH2CH2CH2CH=C(CH3)-、-CH2CH2CH2CH2CH2CH2CH2CH(CH3)CH2-、-CH=CHCH2CH2CH2CH2CH2CH(CH3)CH2-、-CH2CH=CHCH2CH2CH2CH2CH(CH3)CH2-、-CH2CH2CH=CHCH2CH2CH2CH(CH3)CH2-、-CH2CH2CH2CH=CHCH2CH2CH(CH3)CH2-、-CH2CH2CH2CH2CH=CHCH2CH(CH3)CH2-、-CH2CH2CH2CH2CH2CH=CHCH(CH3)CH2-、-CH2CH2CH2CH2CH2CH2CH=C(CH3)CH2-、-CH=CHCH2CH2CH2CH2CH(CH3)CH2CH2-、-CH2CH=CHCH2CH2CH2CH(CH3)CH2CH2-、-CH2CH2CH=CHCH2CH2CH(CH3)CH2CH2-、-CH2CH2CH2CH=CHCH2CH(CH3)CH2CH2-、-CH2CH2CH2CH2CH=CHCH(CH3)CH2CH2-、-CH2CH2CH2CH2CH2CH=C(CH3)CH2CH2-、-CH2CH2CH2CH2CH2CH2CH(CH3)CH=CH-、-CH2CH2CH2CH2CH2CH(CH3)CH2CH2CH2-、-CH=CHCH2CH2CH2CH(CH3)CH2CH2CH2-、-CH2CH=CHCH2CH2CH(CH3)CH2CH2CH2-、-CH2CH2CH=CHCH2CH(CH3)CH2CH2CH2-、-CH2CH2CH2CH=CHCH(CH3)CH2CH2CH2-、-CH2CH2CH2CH2CH=C(CH3)CH2CH2CH2-、-CH2CH2CH2CH2CH2CH(CH3)CH=CHCH2-、-CH2CH2CH2CH2CH2CH(CH3)CH2CH=CH-、-CH=CHCH2CH2CH(CH3)CH2CH2CH2CH2-、-CH2CH=CHCH2CH(CH3)CH2CH2CH2CH2-、-CH2CH2CH=CHCH(CH3)CH2CH2CH2CH2-、-CH2CH2CH2CH=C(CH3)CH2CH2CH2CH2-、-CH2CH2CH2CH2CH(CH3)CH=CHCH2CH2-、-CH2CH2CH2CH2CH(CH3)CH2CH=CHCH2-、-CH2CH2CH2CH2CH(CH3)CH2CH2CH=CH2-、-CH=CHCH2CH2CH2CH2CH2CH2CH2CH2CH2-、-CH2CH=CHCH2CH2CH2CH2CH2CH2CH2CH2-、-CH2CH2CH=CHCH2CH2CH2CH2CH2CH2CH2-、-CH2CH2CH2CH=CHCH2CH2CH2CH2CH2CH2-、-CH2CH2CH2CH2CH=CHCH2CH2CH2CH2CH2-、-CH=CHCH2CH2CH2CH2CH2CH2CH2CH(CH3)-、-CH2CH=CHCH2CH2CH2CH2CH2CH2CH(CH3)-、-CH2CH2CH=CHCH2CH2CH2CH2CH2CH(CH3)-、-CH2CH2CH2CH=CHCH2CH2CH2CH2CH(CH3)-、-CH2CH2CH2CH2CH=CHCH2CH2CH2CH(CH3)-、-CH2CH2CH2CH2CH2CH=CHCH2CH2CH(CH3)-、-CH2CH2CH2CH2CH2CH2CH=CHCH2CH(CH3)-、-CH2CH2CH2CH2CH2CH2CH2CH=CHCH(CH3)-、-CH2CH2CH2CH2CH2CH2CH2CH2CH=C(CH3)-、-CH=CHCH2CH2CH2CH2CH2CH2CH(CH3)CH2-、-CH2CH=CHCH2CH2CH2CH2CH2CH(CH3)CH2-、-CH2CH2CH=CHCH2CH2CH2CH2CH(CH3)CH2-、-CH2CH2CH2CH=CHCH2CH2CH2CH(CH3)CH2-、-CH2CH2CH2CH2CH=CHCH2CH2CH(CH3)CH2-、-CH2CH2CH2CH2CH2CH=CHCH2CH(CH3)CH2-、-CH2CH2CH2CH2CH2CH2CH=CHCH(CH3)CH2-、-CH2CH2CH2CH2CH2CH2CH2CH=C(CH3)CH2-、-CH=CHCH
2CH2CH2CH2CH2CH(CH3)CH2CH2-、-CH2CH=CHCH2CH2CH2CH2CH(CH3)CH2CH2-、-CH2CH2CH=CHCH2CH2CH2CH(CH3)CH2CH2-、-CH2CH2CH2CH=CHCH2CH2CH(CH3)CH2CH2-、-CH2CH2CH2CH2CH=CHCH2CH(CH3)CH2CH2-、-CH2CH2CH2CH2CH2CH=CHCH(CH3)CH2CH2-、-CH2CH2CH2CH2CH2CH2CH=C(CH3)CH2CH2-、-CH2CH2CH2CH2CH2CH2CH2CH(CH3)CH=CH-、-CH2CH2CH2CH2CH2CH2CH(CH3)CH2CH2CH2-、-CH=CHCH2CH2CH2CH2CH(CH3)CH2CH2CH2-、-CH2CH=CHCH2CH2CH2CH(CH3)CH2CH2CH2-、-CH2CH2CH=CHCH2CH2CH(CH3)CH2CH2CH2-、-CH2CH2CH2CH=CHCH2CH(CH3)CH2CH2CH2-、-CH2CH2CH2CH2CH=CH2CH(CH3)CH2CH2CH2-、-CH2CH2CH2CH2CH2CH=C(CH3)CH2CH2CH2-、-CH2CH2CH2CH2CH2CH2CH(CH3)CH=CHCH2-、-CH2CH2CH2CH2CH2CH2CH(CH3)CH2CH=CH-、-CH=CHCH2CH2CH2CH(CH3)CH2CH2CH2CH2-、-CH2CH=CHCH2CH2CH(CH3)CH2CH2CH2CH2-、-CH2CH2CH=CHCH2CH(CH3)CH2CH2CH2CH2-、-CH2CH2CH2CH=CHCH(CH3)CH2CH2CH2CH2-、-CH2CH2CH2CH2CH=C(CH3)CH2CH2CH2CH2-、-CH2CH2CH2CH2CH2CH(CH3)CH=CHCH2CH2-、-CH2CH2CH2CH2CH2CH(CH3)CH2CH=CHCH2-、-CH2CH2CH2CH2CH2CH(CH3)CH2CH2CH=CH2-、-CH=CHCH2CH2CH(CH3)CH2CH2CH2CH2CH2-、-CH2CH=CHCH2CH(CH3)CH2CH2CH2CH2CH2-、-CH2CH2CH=CHCH(CH3)CH2CH2CH2CH2CH2-、-CH2CH2CH2CH=C(CH3)CH2CH2CH2CH2CH2-、-CH=CHCH2CH2CH2CH2CH2CH2CH2CH2CH2CH2-、-CH2CH=CHCH2CH2CH2CH2CH2CH2CH2CH2CH2-、-CH2CH2CH=CHCH2CH2CH2CH2CH2CH2CH2CH2-、-CH2CH2CH2CH=CHCH2CH2CH2CH2CH2CH2CH2-、-CH2CH2CH2CH2CH=CHCH2CH2CH2CH2CH2CH2-、-CH=CHCH2CH2CH2CH2CH2CH2CH2CH2CH(CH3)-、-CH2CH=CHCH2CH2CH2CH2CH2CH2CH2CH(CH3)-、-CH2CH2CH=CHCH2CH2CH2CH2CH2CH2CH(CH3)-、-CH2CH2CH2CH=CHCH2CH2CH2CH2CH2CH(CH3)-、-CH2CH2CH2CH2CH=CHCH2CH2CH2CH2CH(CH3)-、-CH2CH2CH2CH2CH2CH=CHCH2CH2CH2CH(CH3)-、-CH2CH2CH2CH2CH2CH2CH=CHCH2CH2CH(CH3)-、-CH2CH2CH2CH2CH2CH2CH2CH2CH=CHCH(CH3)-、-CH2CH2CH2CH2CH2CH2CH2CH2CH2CH=C(CH3)-、-CH=CHCH2CH2CH2CH2CH2CH2CH2CH(CH3)CH2-、-CH2CH=CHCH2CH2CH2CH2CH2CH2CH(CH3)CH2-、-CH2CH2CH=CHCH2CH2CH2CH2CH2CH(CH3)CH2-、-CH2CH2CH2CH=CHCH2CH2CH2CH2CH(CH3)CH2-、-CH2CH2CH2CH2CH=CHCH2CH2CH2CH(CH3)CH2-、-CH2CH2CH2CH2CH2CH=CH2CH2CH2CH(CH3)CH2-、-CH2CH2CH2CH2CH2CH2CH=CHCH2CH(CH3)CH2-、-CH2CH2CH2CH2CH2CH2CH2CH=CH2H(CH3)CH2-、-CH2CH2CH2CH2CH2CH2CH2CH2CH=C(CH3)CH2-、-CH=CHCH2CH2CH2CH2CH2CH2CH(CH3)CH2CH2-、-CH2CH=CHCH2CH2CH2CH2CH2CH(CH3)CH2CH2-、-CH2CH2CH=CHCH2CH2CH2CH2CH(CH3)CH2CH2-、-CH2CH2CH2CH=CHCH2CH2CH2CH(CH3)CH2CH2-、-CH2CH2CH2CH2CH=CHCH2CH2CH(CH3)CH2CH2-、-CH2CH2CH2CH2CH2CH=CHCH2CH(CH3)CH2CH2-、-CH2CH2CH2CH2CH2CH2CH=CHCH(CH3)CH2CH2-、-CH2CH2CH2CH2CH2CH2CH2CH=
C(CH3)CH2CH2-、-CH2CH2CH2CH2CH2CH2CH2CH2CH(CH3)CH=CH-、-CH=CHCH2CH2CH2CH2CH2CH(CH3)CH2CH2CH2-、-CH2CH=CHCH2CH2CH2CH2CH(CH3)CH2CH2CH2-、-CH2CH2CH=CHCH2CH2CH2CH(CH3)CH2CH2CH2-、-CH2CH2CH2CH=CHCH2CH2CH(CH3)CH2CH2CH2-、-CH2CH2CH2CH2CH=CHCH2CH(CH3)CH2CH2CH2-、-CH2CH2CH2CH2CH2CH=CH2CH(CH3)CH2CH2CH2-、-CH2CH2CH2CH2CH2CH2CH=C(CH3)CH2CH2CH2-、-CH2CH2CH2CH2CH2CH2CH2CH(CH3)CH=CHCH2-、-CH2CH2CH2CH2CH2CH2CH2CH(CH3)CH2CH=CH-、-CH=CHCH2CH2CH2CH2CH(CH3)CH2CH2CH2CH2-、-CH2CH=CHCH2CH2CH2CH(CH3)CH2CH2CH2CH2-、-CH2CH2CH=CHCH2CH2CH(CH3)CH2CH2CH2CH2-、-CH2CH2CH2CH=CHCH2CH(CH3)CH2CH2CH2CH2-、-CH2CH2CH2CH2CH=CHCH(CH3)CH2CH2CH2CH2-、-CH2CH2CH2CH2CH2CH=C(CH3)CH2CH2CH2CH2-、-CH2CH2CH2CH2CH2CH2CH(CH3)CH=CHCH2CH2-、-CH2CH2CH2CH2CH2CH2CH(CH3)CH2CH=CHCH2-、-CH2CH2CH2CH2CH2CH2CH(CH3)CH2CH2CH=CH-、-CH=CHCH2CH2CH2CH(CH3)CH2CH2CH2CH2CH2-、-CH2CH=CHCH2CH2CH(CH3)CH2CH2CH2CH2CH2-、-CH2CH2CH=CHCH2CH(CH3)CH2CH2CH2CH2CH2-、-CH2CH2CH2CH=CHCH(CH3)CH2CH2CH2CH2CH2-、-CH2CH2CH2CH2CH=C(CH3)CH2CH2CH2CH2CH2-。
式1
A1-R11-A2
式1中、A1は、チオール基を表し、A2は、アミド基(-C(=O)NR3R4)、ヒドロキシ基、カルボキシ基、カルボニル基、アミノ基、スルホ基またはフェロセニル基を表し、R11は、炭素数2~30の鎖式飽和炭化水素基、炭素数2~30の鎖式不飽和炭化水素基、炭素数3~20の環式不飽和炭化水素基および炭素数3~20の環式飽和炭化水素基のうちの少なくとも1つからなる基である。R3およびR4は各々独立して、-H、二重結合を有していてもよい炭素数1~6のアルキル基を表す。なお、耐摩耗性及び低い接触抵抗維持の観点から、R11は、炭素数4~16の直鎖状飽和炭化水素基または炭素数4~16の分岐状飽和炭化水素基であることが好ましく、炭素数5~16の直鎖状飽和炭化水素基または炭素数5~16の分岐状飽和炭化水素基であることがより好ましい。金属への親和性の観点から、A2は、ヒドロキシ基、カルボキシ基または-C(=O)NR3R4であることが好ましく、-C(=O)NR3R4であることがより好ましく、R3およびR4の少なくとも一方は-Hを表すことが好ましい。
(1)第1の構造物の製造方法
上述した第1の構造物を製造する方法は、金属の少なくとも一部の表面上に、ナノカーボン材料を被覆する工程(被覆工程1-1)を有する。
・ナノカーボン材料を用意する工程(ナノカーボン材料用意工程)。
・ナノカーボン材料を被覆するための、金属表面を有する構造物(被覆対象物)を用意する工程(被覆対象物用意工程)。
これらの工程の順序は特に限定されず、適宜行うことができる。
カーボンナノホーン集合体は、例えば、CO2レーザーアブレーション法により作製することができる。具体的には、固体状炭素物質としての焼結丸棒炭素を、真空容器内に設置し、Ar雰囲気下で、レーザーパワー密度:30kW/cm2、ターゲット回転数:2rpmの条件で、CO2レーザー光を、前記固体状炭素物質に、室温(例えば、25℃)中、30分間照射する。これにより、煤状のカーボンナノホーン集合体を得ることができる。得られた物質が、カーボンナノホーン集合体構造を有していることは、透過型電子顕微鏡(TEM)により観察することで、確認できる。
具体的には、カーボンナノホーン集合体の分散性や反応性を向上させるために、カーボンナノホーン集合体を酸化処理することによって微細な孔を開ける(開孔する)こともできる。この酸化処理により、カーボンナノホーン集合体の開孔部に、酸素を含む表面官能基(例えば、-OH、-C(=O)-、-COOH)を形成することができる。
被覆対象物となる構造物は、金属表面を有するものであれば、適宜用いることができる。また、構造物の表面に、従来公知の方法で金属めっきを施すことにより、適宜作製することができる。
まず、前記ナノカーボン材料を含む処理液を作製する(処理液作製工程1-1)。具体的には、容器に、ナノカーボン材料と、有機溶剤(分散媒)とを加え、容器ごとナノカーボン材料が、有機溶剤中に均一に分散するまで、超音波振動を印加する。これにより、処理液(分散液)を得ることができる。なお、処理液には、本発明の効果が得られる範囲で、各種添加剤(他の潤滑剤等)を含んでいてもよい。有機溶剤は、特に限定されないが、構造物の大量生産の観点から、ナノカーボン材料等を加えた際に、沈殿を生じない安定した処理液を作製できるものを用いることが好ましい。有機溶剤としては、特に、ナノカーボン材料を均一に分散でき、かつ(例えば自然乾燥により)容易に除去できるもの(沸点が低いもの)を用いることがより好ましい。有機溶剤の具体例としては、エタノール、イソプロピルアルコール(IPA)、イソブチルアルコールなどのアルコール類、ヘキサン、トルエン、ジクロロエタン、N-メチルピロリドン(NMP)などを挙げることができる。
処理液中のナノカーボン材料の含有割合は、適宜設定できるが、作業性及び金属表面への付着性の観点から、0.01~1.0質量%が好ましく、0.02~0.5質量%がより好ましく、0.05~0.2質量%が更に好ましい。
なお、ナノカーボン材料(特にカーボンナノホーン集合体)は、処理液中で、安定した分散状態を維持しやすいため、生産性も良好である。
ここでは、上記処理液の塗布(コーティング)方法として、浸漬塗布を記載したが、この他にも、スプレー塗布や、ロール塗布など、従来公知の方法を適宜用いることができる。
上述した第2の構造物を製造する方法は、金属の少なくとも一部の表面上に、ナノカーボン材料と、第1の官能基および第2の官能基を少なくとも有する有機化合物(第1の化合物)とを含む材料を被覆する工程(被覆工程2-1)を有する。
これらの工程の順序は特に限定されず、適宜行うことができる。以下にこれらの工程について説明する。なお、ナノカーボン材料用意工程、被覆対象物用意工程および加工処理工程は、上述した通りであるため、説明を省略する。
上述した第1の官能基および第2の官能基を有する第1の化合物は、市販品を購入してもよいし、従来公知の手法を用いて、購入した原料に対して、これらの官能基を適宜導入することにより、作製してもよい。後述の実施例では市販品を用いた。
まず、前記ナノカーボン材料および前記第1の化合物を含む処理液を作製する(処理液作製工程2-1)。具体的には、容器に、ナノカーボン材料と、第1の化合物と、有機溶剤とを加え、容器ごとナノカーボン材料および第1の化合物が、有機溶剤中に均一に分散するまで、超音波振動を印加する。これにより、処理液(分散液)を得ることができる。処理液は、本発明の効果が得られる範囲で各種添加剤を含んでいてもよい。有機溶剤は、特に限定されないが、構造物の大量生産の観点から、ナノカーボン材料および第1の化合物等を加えた際に、沈殿を生じない安定した処理液を作製できるものを用いることが好ましい。有機溶剤としては、特に、ナノカーボン材料および第1の化合物を均一に分散でき、かつ(例えば自然乾燥により)容易に除去できるもの(沸点が低いもの)を用いることがより好ましい。有機溶剤の具体例としては、被覆工程1-1で記載したものを同様に用いることができる。また、処理液中のナノカーボン材料の含有割合は、適宜設定できるが、作業性及び金属表面への付着性の観点から、0.01~1.0質量%が好ましく、0.02~0.5質量%がより好ましく、0.05~0.2質量%が更に好ましい。さらに、処理液中の第1の化合物の含有割合は、適宜設定できるが、作業性、金属表面への付着性の観点から、0.01~1.0質量%が好ましく、0.02~0.5質量%がより好ましく、0.05~0.2質量%が更に好ましい。なお、残量は有機溶剤(および必要に応じて他の添加剤)である。
本発明の摺動部材は、摺動面の少なくとも一部に、上記第1の構造物および第2の構造物の表面構造の少なくとも一方の構造を有するものである。摺動部材としては、他の部材が接触する摺動面を有するものであれば、その使用用途は特に限定されず、例えば、シリンダーやピストンなどの自動車用の摺動部材として使用することができる。
本発明のコネクタは、摺動面の少なくとも一部に、上記第1の構造物および第2の構造物の表面構造のすくなくとも一方の構造を有するものである。コネクタとしては、例えば、互いに(例えば、スライドして)嵌合(接触)可能な2つのコネクタから構成されるコネクタ対を用いることができる。また、各コネクタは、回路基板に搭載される基板コネクタなどとすることができ、それ以外のコネクタとしても好適に用いることができる。
第1の化合物として、表1に示すように、7-アミド-1-ヘプタンチオール、5-カルボキシ-1-ペンタンチオール、11-ヒドロキシ-1-ウンデカンチオール、10-アミド-1-デカンチオール、15-カルボキシ-1-ペンタデカンチオール、16-ヒドロキシ-1-ヘキサデカンチオール(いずれも(株)同仁化学研究所製)の6種類を用意した。
これらの化合物は、主鎖骨格に、直鎖状飽和炭化水素基を有し、その一方の末端部にチオール基を、もう一方の末端部に、カルボキシ基、ヒドロキシ基またはアミド基を有するものである。
ナノカーボン材料として、カーボンナノホーン集合体(以下、CNHsと略する場合がある)(日本電気(株)製、商品名:カーボンナノホーン)、および多層カーボンナノチューブ(以下、CNTと略する場合がある)(昭和電工(株)製、商品名:VGCF-H)の2種類を用いた。また、CNTは、あらかじめ770℃で加熱処理を施した。
例1~例14に示す各例において、溶剤(分散媒)としてイソプロピルアルコール(IPA)50mlを容器に入れた。そして、この溶液中に、表1に示すナノカーボン材料50mgと、表1に示す第1の化合物100mgを加え、容器ごとナノカーボン材料および第1の化合物が溶剤中に均一に分散するまで超音波振動を印加した。これにより、処理液を得た。なお、例13及び例14では、処理液中に第1の化合物を含まず、ナノカーボン材料のみをIPA中に分散させた。また、例15では、処理液自体を作製しなかった。
図1に示す構造物の接触部を模した平面状のプレート1と、先端が球R1の形状に加工されたプローブ2を準備した。前記プレートと前記プローブは、銅またはその合金でできており、表面に厚さ5μmの銀めっきが施されている。そして、このプレートおよびプローブを、表1に示す(組み合わせの)ナノカーボン材料(と第1の化合物)を含む処理液中に、表1に示す浸漬時間、浸漬させた後、取り出して、大気中で自然乾燥させた。これにより、銀めっき表面に、表1に示すナノカーボン材料(および第1の化合物)が付着したプレートと、プローブとを作製した。なお、例15では、上述したように、処理液自体を作製しておらず、処理液中へのプレート及びプローブの浸漬を行わなかった。
この往復摺動の繰り返し動作は、構造物、例えば、コネクタの挿入と抜去の繰り返しと同じ動作と考えられ、前記挿入と抜去の繰り返しによって誘発されるコネクタ接触部の摩耗と、挿入力及び抜去力の上昇を再現できる。
2 プローブ
S スライド方向
Claims (18)
- 金属の少なくとも一部の表面上に、ナノカーボン材料が配された構造を有することを特徴とする構造物。
- 前記ナノカーボン材料が、カーボンナノチューブ、カーボンナノホーン集合体、グラフェン、およびフラーレンのうちの少なくとも1つである、請求項1に記載の構造物。
- 前記ナノカーボン材料が、カーボンナノホーン集合体である、請求項2に記載の構造物。
- 前記金属の少なくとも一部の表面上に、前記ナノカーボン材料と、前記金属に親和性を有する第1の官能基および前記ナノカーボン材料に親和性を有する第2の官能基を少なくとも有する有機化合物とを含む被膜が配されている、請求項1~3のいずれか一項に記載の構造物。
- 前記第1の官能基が、チオール基である、請求項4に記載の構造物。
- 前記第2の官能基が、アミド基、ヒドロキシ基またはカルボキシ基である、請求項4または5に記載の構造物。
- 前記第2の官能基が、アミド基である、請求項6に記載の構造物。
- 前記有機化合物が、主鎖骨格に、鎖式飽和炭化水素基、鎖式不飽和炭化水素基、環式飽和炭化水素基および環式不飽和炭化水素基のうちの少なくとも1つを有する、請求項4~7のいずれか一項に記載の構造物。
- 前記有機化合物が、主鎖骨格に、鎖式飽和炭化水素基を有する、請求項8に記載の構造物。
- 前記ナノカーボン材料が、第3の官能基で修飾されている、請求項1~9のいずれか一項に記載の構造物。
- 前記ナノカーボン材料が、チオール基で修飾されている、請求項1~10のいずれか一項に記載の構造物。
- 前記金属が、金、銀、およびそれらの合金、並びにそれらのめっきのうちの少なくとも1つである、請求項1~11のいずれか一項に記載の構造物。
- 金属の少なくとも一部の表面上に、前記金属に親和性を有する官能基を備えたナノカーボン材料が被覆された構造を有することを特徴とする構造物。
- 金属と、ナノカーボン材料とが、前記金属に親和性を有する第1の官能基および前記ナノカーボン材料に親和性を有する第2の官能基を備えた有機化合物を介して配された構造を有することを特徴とする構造物。
- 摺動面の少なくとも一部に、請求項1~14のいずれか一項に記載の構造を有することを特徴とする摺動部材。
- 摺動面の少なくとも一部に、請求項1~14のいずれか一項に記載の構造を有することを特徴とするコネクタ。
- 金属の少なくとも一部の表面上に、ナノカーボン材料を被覆する工程を有することを特徴とする構造物の製造方法。
- 金属の少なくとも一部の表面上に、ナノカーボン材料と、前記金属に親和性を有する第1の官能基および前記ナノカーボン材料に親和性を有する第2の官能基を少なくとも有する有機化合物とを含む材料を被覆する工程を有することを特徴とする構造物の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21879710.8A EP4212750A4 (en) | 2020-10-14 | 2021-07-20 | STRUCTURE, SLIDING ELEMENT, CONNECTOR AND METHOD FOR PRODUCING THE STRUCTURE |
US18/248,112 US20240002990A1 (en) | 2020-10-14 | 2021-07-20 | Structure, sliding member, connector, and method for producing structure |
CN202180067070.7A CN116490699A (zh) | 2020-10-14 | 2021-07-20 | 构造物、滑动构件、连接器、以及构造物的制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020172896A JP7044847B1 (ja) | 2020-10-14 | 2020-10-14 | 摺動部材およびその製造方法 |
JP2020-172896 | 2020-10-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022079968A1 true WO2022079968A1 (ja) | 2022-04-21 |
Family
ID=81207950
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/027145 WO2022079968A1 (ja) | 2020-10-14 | 2021-07-20 | 構造物、摺動部材、コネクタ、および構造物の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240002990A1 (ja) |
EP (1) | EP4212750A4 (ja) |
JP (1) | JP7044847B1 (ja) |
CN (1) | CN116490699A (ja) |
WO (1) | WO2022079968A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5464284B1 (ja) | 2013-01-10 | 2014-04-09 | 株式会社オートネットワーク技術研究所 | コネクタ端子及びコネクタ端子の製造方法 |
JP2015014019A (ja) * | 2013-07-03 | 2015-01-22 | パナソニック株式会社 | 電気接点の表面処理方法、電気接点部材、コネクタ並びに接点処理剤 |
JP2016052965A (ja) * | 2014-09-03 | 2016-04-14 | 株式会社ナノテクバンク | カーボンナノホーン及びその利用 |
WO2016078664A1 (en) * | 2014-11-11 | 2016-05-26 | Lundorf Pedersen Materials Aps | Design of composite materials with desired characteristics |
WO2019138077A1 (en) * | 2018-01-11 | 2019-07-18 | Nanocore Aps | Composite materials comprising mechanical ligands |
JP2020172896A (ja) | 2019-04-11 | 2020-10-22 | 愛知機械工業株式会社 | 吸気管およびブローバイガス還流構造並びに内燃機関 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2002359240A1 (en) | 2001-07-27 | 2003-04-22 | Shawn M. Dirk | Molecular electronic interconnects |
US6989325B2 (en) * | 2003-09-03 | 2006-01-24 | Industrial Technology Research Institute | Self-assembled nanometer conductive bumps and method for fabricating |
-
2020
- 2020-10-14 JP JP2020172896A patent/JP7044847B1/ja active Active
-
2021
- 2021-07-20 WO PCT/JP2021/027145 patent/WO2022079968A1/ja active Application Filing
- 2021-07-20 CN CN202180067070.7A patent/CN116490699A/zh active Pending
- 2021-07-20 US US18/248,112 patent/US20240002990A1/en active Pending
- 2021-07-20 EP EP21879710.8A patent/EP4212750A4/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5464284B1 (ja) | 2013-01-10 | 2014-04-09 | 株式会社オートネットワーク技術研究所 | コネクタ端子及びコネクタ端子の製造方法 |
JP2015014019A (ja) * | 2013-07-03 | 2015-01-22 | パナソニック株式会社 | 電気接点の表面処理方法、電気接点部材、コネクタ並びに接点処理剤 |
JP2016052965A (ja) * | 2014-09-03 | 2016-04-14 | 株式会社ナノテクバンク | カーボンナノホーン及びその利用 |
WO2016078664A1 (en) * | 2014-11-11 | 2016-05-26 | Lundorf Pedersen Materials Aps | Design of composite materials with desired characteristics |
WO2019138077A1 (en) * | 2018-01-11 | 2019-07-18 | Nanocore Aps | Composite materials comprising mechanical ligands |
JP2020172896A (ja) | 2019-04-11 | 2020-10-22 | 愛知機械工業株式会社 | 吸気管およびブローバイガス還流構造並びに内燃機関 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4212750A4 |
Also Published As
Publication number | Publication date |
---|---|
EP4212750A4 (en) | 2024-03-20 |
US20240002990A1 (en) | 2024-01-04 |
EP4212750A1 (en) | 2023-07-19 |
JP2022064338A (ja) | 2022-04-26 |
JP7044847B1 (ja) | 2022-03-30 |
CN116490699A (zh) | 2023-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Saha et al. | Functionalizing carbon nanotubes for proton exchange membrane fuel cells electrode | |
Sun et al. | Ultrasonic-electrodeposition of PtPd alloy nanoparticles on ionic liquid-functionalized graphene paper: towards a flexible and versatile nanohybrid electrode | |
Maharana et al. | Surface-mechanical and electrical properties of pulse electrodeposited Cu–graphene oxide composite coating for electrical contacts | |
Huang et al. | Pd nanoparticles supported on low-defect graphene sheets: for use as high-performance electrocatalysts for formic acid and methanol oxidation | |
Tian et al. | Synthesis and characterization of platinum catalysts on multiwalled carbon nanotubes by intermittent microwave irradiation for fuel cell applications | |
Hu et al. | Self-assembled palladium nanocrystals on helical carbon nanofibers as enhanced electrocatalysts for electro-oxidation of small molecules | |
JP2009001481A (ja) | 金属前駆体を含むカーボンナノチューブ組成物、カーボンナノチューブ薄膜およびその製造方法 | |
Zhao et al. | Development of a highly active electrocatalyst via ultrafine Pd nanoparticles dispersed on pristine graphene | |
JP2008231530A (ja) | 表面被覆材 | |
JP2015164896A (ja) | 金属または合金コーティングへの炭素/錫混合物の適用方法 | |
TW201240916A (en) | Methods of preparing carbinized nanotube composite and metal-nanotube composite catalyst | |
JP6950894B2 (ja) | 銀/酸化グラフェン複合体およびその製造方法 | |
JP2013540196A5 (ja) | ||
EP2305601A1 (en) | Nanotube-nanohorn composite and process for production thereof | |
Feng et al. | One-step synthesis of nitrogen-doped graphene supported PdSn bimetallic catalysts for ethanol oxidation in alkaline media | |
Bhakta et al. | Decoration of tricarboxylic and monocarboxylic aryl diazonium functionalized multi-wall carbon nanotubes with iron nanoparticles | |
TW201510110A (zh) | 傳導性填料及其製造方法、以及傳導性糊劑及其製造方法 | |
KR101473752B1 (ko) | 간단한 합성 방법을 통한 질소가 도핑된 탄소 나노구조체의 제조방법 및 이로부터 합성된 질소가 도핑된 탄소 나노구조체 | |
Geng et al. | Ect of carbon nanotube types in fabricating flexible transparent conducting films | |
JP7044847B1 (ja) | 摺動部材およびその製造方法 | |
Akbarzadeh et al. | Intensified electrochemical hydrogen storage capacity of multi-walled carbon nanotubes supported with Ni nanoparticles | |
KR20110033652A (ko) | 고 전기 전도성 탄소나노튜브-금속 복합체의 제조방법 | |
TW201223642A (en) | Method for making carbon nanotube-metal particle composite | |
Dingsheng et al. | Electroless deposition of Cu on multiwalled carbon nanotubes | |
Kaimal et al. | Laser-assisted decoration of carbon nanotubes with palladium nanoparticles for application in electrochemical methanol oxidation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21879710 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180067070.7 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18248112 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2021879710 Country of ref document: EP Effective date: 20230412 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |