TW201223642A - Method for making carbon nanotube-metal particle composite - Google Patents

Method for making carbon nanotube-metal particle composite Download PDF

Info

Publication number
TW201223642A
TW201223642A TW099143847A TW99143847A TW201223642A TW 201223642 A TW201223642 A TW 201223642A TW 099143847 A TW099143847 A TW 099143847A TW 99143847 A TW99143847 A TW 99143847A TW 201223642 A TW201223642 A TW 201223642A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
acid
carrier
particle composite
metal
Prior art date
Application number
TW099143847A
Other languages
Chinese (zh)
Other versions
TWI406711B (en
Inventor
Jian-Wei Guo
Li-Na Zhang
Li Wang
Cheng Wang
xiang-ming He
zhi-xiang Liu
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW099143847A priority Critical patent/TWI406711B/en
Publication of TW201223642A publication Critical patent/TW201223642A/en
Application granted granted Critical
Publication of TWI406711B publication Critical patent/TWI406711B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

The invention relates to a method for making a carbon nanotube-metal particle composite. In the method, a carrier is provided, and the carrier includes carbon nanotubes and a polymer coated on the surface of the carbon nanotubes. The carrier, a solution containing metal ions and a solution of carboxylic acid are mixed to form a mixed solution and reacted to form a complex compound. A reducing agent is added to the mixed solution. The metal ions are reduced to metal particles absorbed on the surface of the carrier. The carrier surface absorbed with the metal particles is purified.

Description

201223642 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種複合物的製備方法,尤其涉及一種奈米 碳管金屬粒子複合物的製備方法。 【先前技術】 [0002] 近年來,奈米碳管與金屬粒子的複合物成為人們研究的 熱點。由於奈米碳管具有大的比表面積及高的電導率使 奈米碳管成為金屬粒子催化劑的理想載體材料。將金屬 粒子擔載在奈米碳管上形成的複合物可應用於電化學電 〇 池、燃料電池及生物醫學領域,具有良好的催化活性。 [0003] 在將奈米碳管金屬粒子複合物作為催化劑使用時,金屬 粒子在奈米碳管表面的擔載量及均勻程度直接影響該催 化劑的催化性能。通常情況下,隨著奈米碳管表面擔載 的金屬粒子的含量增多,其催化性能變好,但隨著金屬 粒子的含量的增多,金屬粒子易於在奈米碳管表面團聚 而使金屬粒子的分散性降低,從而影響金屬粒子的催化 ϋ 性能。 [0004] 先前技術中,奈米碳管金屬粒子複合物的製備方法主要 分為物理法和化學法兩類,物理法中多採用濺射的方式 將金屬粒子負載於奈米碳管表面。化學法包括膠體法、 溶液還原法、浸潰法、電化學沈積法及超臨界流體法等 方法,其中,溶液還原法較為常用,該方法在奈米碳管 的懸浮液中加入含金屬離子的前驅體溶液,藉由加入還 原劑使金屬離子還原成單質金屬粒子擔載於奈米碳管表 面。但先前技術中利用溶液還原法製備的奈米碳管金屬 099143847 表單編號Α0101 第3頁/共23頁 0992075898-0 201223642 粒子複合物中,金屬粒子的含量及分散性難以平衡,從 而影響該奈米碳管金屬粒子複合物的催化性能。 【發明内容】 [0005] 有鑒於此,提供一種可提高金屬粒子含量且分散性較好 的奈米碳管金屬粒子複合物的製備方法實為必要。 [0006] 一種奈米碳管金屬粒子複合物的製備方法,包括以下步 驟:提供載體,該載體包括奈米碳管及包覆在奈米碳管 表面的聚合物;將該載體與含金屬離子的溶液及羧基酸 溶液混合形成一混合液並進行反應,得到一絡合產物; 在上述混合液中加入還原劑,將絡合產物中的金屬離子 還原成單質金屬粒子,該單質金屬粒子吸附於該載體表 面;及分離提純該表面吸附單質金屬粒子的載體。 [0007] 相較於先前技術,本發明以表面包覆聚合物的奈米碳管 為載體,在所述羧基酸的輔助下製備奈米碳管金屬粒子 複合物。在製備過程中,該羧基酸在該載體及金屬粒子 之間起到聯橋的作用,該羧基酸的羧基基團一方面與該 聚合物藉由化學鍵結合或靜電作用力相互吸引,另一方 面該羧基酸藉由與該含金屬離子的溶液之間的絡合作用 促進加入所述還原劑後金屬粒子在該載體表面均勻分佈 ,且該羧基酸的羧基基團對該金屬粒子具有較強的吸附 能力,從而提高了該金屬粒子在該載體表面的擔載量, 且可抑制該金屬粒子之間的團聚,使該金屬粒子在該載 體表面可均勻穩定地分佈,從而可提高該奈米碳管金屬 粒子複合物的催化性能。 【實施方式】 099143847 表單編號A0101 第4頁/共23頁 0992075898-0 201223642 [0008] [0009] [0010] [0011]201223642 VI. Description of the Invention: [Technical Field] The present invention relates to a method for preparing a composite, and more particularly to a method for preparing a carbon nanotube metal particle composite. [Prior Art] [0002] In recent years, a composite of a carbon nanotube and a metal particle has become a hot spot of research. Due to its large specific surface area and high electrical conductivity, the carbon nanotubes make the carbon nanotubes an ideal carrier material for metal particle catalysts. The composite formed by supporting metal particles on a carbon nanotube can be used in an electrochemical cell, a fuel cell, and a biomedical field, and has good catalytic activity. When the carbon nanotube metal particle composite is used as a catalyst, the amount of metal particles supported on the surface of the carbon nanotube and the degree of uniformity directly affect the catalytic performance of the catalyst. Generally, as the content of metal particles supported on the surface of the carbon nanotubes increases, the catalytic performance becomes better, but as the content of the metal particles increases, the metal particles tend to agglomerate on the surface of the carbon nanotubes to make the metal particles. The dispersibility is reduced, thereby affecting the catalytic enthalpy properties of the metal particles. [0004] In the prior art, the preparation method of the carbon nanotube metal particle composite is mainly divided into two types: physical method and chemical method. In the physical method, the metal particles are mostly supported on the surface of the carbon nanotube by sputtering. The chemical method includes a colloid method, a solution reduction method, a dipping method, an electrochemical deposition method, and a supercritical fluid method. Among them, a solution reduction method is commonly used, and the method adds a metal ion-containing suspension to a suspension of a carbon nanotube. The precursor solution is supported by a reducing agent to reduce metal ions to elemental metal particles supported on the surface of the carbon nanotubes. However, in the prior art, the carbon nanotube metal prepared by the solution reduction method is 099143847. Form No. 1010101 Page 3 of 23 0992075898-0 201223642 In the particle composite, the content and dispersion of the metal particles are difficult to balance, thereby affecting the nanometer. Catalytic properties of carbon nanotube metal particle composites. SUMMARY OF THE INVENTION [0005] In view of the above, it is necessary to provide a method for preparing a carbon nanotube metal particle composite which can improve the content of metal particles and has good dispersibility. [0006] A method for preparing a carbon nanotube metal particle composite, comprising the steps of: providing a carrier comprising a carbon nanotube and a polymer coated on a surface of the carbon nanotube; and the carrier and the metal ion The solution and the carboxylic acid solution are mixed to form a mixed solution and reacted to obtain a complex product; a reducing agent is added to the mixed solution to reduce the metal ions in the complex product into elemental metal particles, and the elemental metal particles are adsorbed to a surface of the carrier; and a carrier for separating and purifying the surface-adsorbing elemental metal particles. Compared with the prior art, the present invention prepares a carbon nanotube metal particle composite with the aid of the carboxylic acid by using a surface-coated polymer carbon nanotube as a carrier. In the preparation process, the carboxylic acid acts as a bridge between the carrier and the metal particles, and the carboxyl group of the carboxylic acid is mutually attracted to the polymer by chemical bonding or electrostatic interaction. The carboxylic acid promotes uniform distribution of the metal particles on the surface of the support after the addition of the reducing agent by the complexation with the metal ion-containing solution, and the carboxyl group of the carboxylic acid has a strong affinity for the metal particles. The adsorption capacity increases the loading of the metal particles on the surface of the carrier, and inhibits agglomeration between the metal particles, so that the metal particles can be uniformly and stably distributed on the surface of the carrier, thereby improving the nanocarbon. Catalytic properties of tube metal particle composites. [Embodiment] 099143847 Form No. A0101 Page 4 of 23 0992075898-0 201223642 [0008] [0009] [0011]

[0012] [0013] 以下將結合附圖詳細說明本發明實施例奈米碳管金屬粒 子複合物的製備方法。 本發明實施例提供一種奈米碳管金屬粒子複合物的製備 方法,包括以下步驟: 步驟一,提供載體,該載體包括奈米碳管及包覆在奈米 碳管表面的聚合物。 步驟一利用表面包覆聚合物的奈米碳管作為金屬粒子的 載體,與金屬粒子複合,形成奈米碳管金屬粒子複合物 。該聚合物優選為親水性聚合物,更為優選地,該聚合 物為具有胺基的親水性聚合物。由於奈米碳管本身分散 性較差,表面包覆親水性聚合物後可增強該奈米碳管在 水中的分散性,利於提高所述金屬粒子在該載體表面的 含量及分散性。該表面包覆聚合物的奈米碳管可藉由原 位合成法、化學表面修飾或化學接枝等方法來製備。本 發明實施例採用將聚合物原位合成於該奈米碳管表面的 方法來製備表面包覆親水性聚合物的奈米碳管,作為所 述載體。該方法具體包括如下步驟: S11,提供奈米碳管、聚合物單體及引發該聚合物單體聚 合的引發劑; S12,在水中混合該奈米碳管和聚合物單體形成一混合物 9 S13,將所述引發劑加入該混合物中,使所述聚合物單體 之間發生聚合反應,生成的聚合物包覆在該奈米碳管表 面,及 099143847 表單編號A0101 第5頁/共23頁 0992075898-0 [0014] 201223642 [0015] S14,分離提純該表面包覆聚合物的奈米碳管。 [0016] 在該步驟S11中,奈米碳管可為單壁奈米碳管、雙壁奈米 碳管或多壁奈米碳管中的一種或幾種。該奈米碳管可藉 由電弧放電法、化學氣相沈積法或鐳射蒸發法等方法製 備,本發明實施例採用化學氣相沈積法製備了多壁奈米 碳管。該多壁奈米碳管的内徑為10奈米〜50奈米,外徑為 30奈米〜80奈米,長度為50微米~100微米。 [0017] 該聚合物單體可為苯胺、吡咯、噻吩、醯胺、丙烯亞胺 或上述物質的衍生物,如乙醯苯胺、曱基吡咯、乙烯二 氧噻吩、醯胺二銨或己内醯胺等。另,所述聚合物單體 可不限於上述列舉的物質,該聚合物單體只需滿足藉由 發生聚合反應可完整的包覆在所述奈米碳管表面即可。 該引發劑可使該聚合物單體之間發生聚合反應生成聚合 物。該引發劑優選為水溶性聚合物單體引發劑,如過硫 酸銨、過硫酸鉀、硫酸、硝酸及碘酸鉀中的一種或複數 種。本發明實施例中採用笨胺作為所述聚合物單體,過 硫酸銨作為所述引發劑。 [0018] 所述奈米碳管與聚合物單體的質量比可為1:1〜1:10。該 引發劑與該聚合物單體的摩爾比大於1:1,從而使該引發 劑相對於該聚合物單體過量,從而保證該聚合物單體可 聚合完全。本發明實施例中所述多壁奈米碳管和所述苯 胺的質量比為1:2,該過硫酸銨與該苯胺的摩爾比為2:1 〇 [0019] 在上述步驟S12中,可將該奈米碳管與該聚合物單體同時 099143847 表單編號A0101 第6頁/共23頁 0992075898-0 201223642 [0020] [0021] Ο ❹ [0022] 加入或依次加入含有水的反應器中。本發明實施例中先 將該奈米碳管加入該含有水的反應器中經過超聲振盪後 ,然後再加入所述聚合物單體,並繼續超聲振盪該混合 物。 在上述步驟S12中,可進一步包括藉由羧基酸處理所述奈 米碳管的步驟。 該羧基酸優選為至少具有兩個羧基的羧基酸,該羧基酸 可為擰檬酸(CRHe07)、乙二酸(HqCpOJ、丙二酸 do/ Z ^ 4 (CqH4〇4)、丁二酸(C4Hfi〇4)、己二酸(CKHin〇4)、苯二曱 3 4 4 464 6104 酸及戊二酸(CJJJ等中的一種或複數種。該 8 8 4 5 8 4 羧基酸與所述聚合物單體的摩爾比可為1 : 1~10: 1。該羧 基酸中的一個羧基可對該奈米碳管進行表面功能化修飾 ,從而可增強該奈米碳管在水中的分散性。該羧基酸中 多餘的羧基藉由靜電吸引力吸附所述聚合物單體,從而 可使後續聚合反應生成的聚合物更好地包覆在該奈米碳 管表面。本發明實施例在加入奈米碳管後,向反應器中 加入檸檬酸水溶液並超聲分散卜4小時後,再將該聚合物 單體加入該反應器中混合。 在上述步驟S13中,可進一步包括攪拌該混合物的步驟, 使所述反應完全。本發明實施例在所述引發劑加入到該 混合物的過程中開始攪拌並持續到所述聚合反應結束。 所述聚合反應的溫度及時間與聚合物單體及引發劑的種 類有關,所述聚合反應的溫度可為0°C~60°C,所述反應 時間優選為10小時~20小時。本發明實施例在冰浴下(0 °C〜5°C )進行所述聚合反應,所述反應時間持續12小時 099143847 表單編號A0101 第7頁/共23頁 0992075898-0 201223642 [0023] [0024] [0025] 在上述步驟S14中,本發明實施例藉由過濾及複數次水洗 滌獲得所述表面包覆聚合物的奈米碳管。該表面包覆聚 合物的奈米碳管後續用來作為金屬粒子的載體,使該金 屬粒子吸附於所述聚合物表面。 步驟二,將該載體與含金屬離子的溶液及羧基酸溶液混 合形成一混合液並進行反應,得到一絡合產物; 在上述步驟二中,所述含金屬離子的溶液中的金屬離子 可為貴金屬離子或作為金屬單質時具有較好催化性能的 f ; 其他金屬的離子。該貴金屬離子可為金,(All)、銀(Ag )、鉑(Pt)、釕(RU)、姥(Rh)、鈀(Pd)、餓( Os)及銥(lr)等的離子中的一種或複數種。該作為金 屬單質時具有較好催化性能的其他金屬的離子可為銅( Cu)、鐵(Fe)、鈷(Co)及鎳(Ni)的離子中的一種 或複數種。相應地’該含金屬離子的蓉液;:可為含該金屬 離子的酸或鹽,如氣金酸(HAuClj):氣化金(AuCl ) 、硝酸銀(AgN〇3)、氣始酸(H2PtCl6)、氯化対( URuC13)、氣姥酸(H3RhCl6)、氣化|£(P(iCl2)、氣 锇酸(H2〇sC16)、氯銀酸(H2IrCl6)、硫酸銅( CuS〇4)及氯化亞鐵(FeCl2)中的一種或複數種。本發 明實施例中採用HAuC14水溶液為所述含金屬離子的溶液 [0026] 所述羧基酸優選為至少具有兩個羧基的羧基酸,該叛基 酸可為檸檬酸(C6H8〇7)、乙二酸(H2C2〇4) 丙二酸 099143847 表單編號A0101 第8頁/共23頁 0992075898-0 201223642 〇4)、丁二酸(c4h6〇4)、己二酸(Ίο、)、笨二甲酸 (C8H8〇4)及戊一酸(C5H8〇4)等中的一種或複數種。本發 明實施例採用檸檬酸(c6h8〇?)作為步驟二中所述叛基酸 [0027] 该羧基酸與所述含金屬離子的溶液中金屬離子的摩爾比 订為1:1〜10:1,本發明實施例中選取檸檬酸與氣金酸的 摩爾比為1 :1。 [0028] Ο 所述混合的步驟可為將該载體、含金屬離子的溶液及叛 恭酸溶液同時加入一反應器中混合,或將三者依次加入 .... ... 反應器中混合。該載體與該含金屬離子的溶液的質量比 ^為2. 3:1.至0, 4:1。本發明實施例中所述混合的步驟具 體為:先將該作為载體的表面包覆聚合物的奈米碳管加 入到該幾基酸溶液中,然後再在該羧基酸溶液中加入該 含金屬離子的溶液。[0013] Hereinafter, a method of preparing a carbon nanotube metal particle composite of an embodiment of the present invention will be described in detail with reference to the accompanying drawings. Embodiments of the present invention provide a method for preparing a carbon nanotube metal particle composite, comprising the following steps: Step one, providing a carrier comprising a carbon nanotube and a polymer coated on the surface of the carbon nanotube. In the first step, a carbon nanotube having a surface-coated polymer is used as a carrier of the metal particles, and is combined with the metal particles to form a carbon nanotube metal particle composite. The polymer is preferably a hydrophilic polymer, and more preferably, the polymer is a hydrophilic polymer having an amine group. Since the carbon nanotube itself is poorly dispersible, the surface coated with the hydrophilic polymer can enhance the dispersibility of the carbon nanotube in water, and is advantageous for increasing the content and dispersibility of the metal particle on the surface of the carrier. The surface-coated polymer carbon nanotubes can be prepared by in situ synthesis, chemical surface modification or chemical grafting. In the embodiment of the present invention, a carbon nanotube having a surface-coated hydrophilic polymer was prepared as a carrier by a method of synthesizing a polymer in situ on the surface of the carbon nanotube. The method specifically includes the following steps: S11, providing a carbon nanotube, a polymer monomer, and an initiator for initiating polymerization of the polymer monomer; S12, mixing the carbon nanotube and the polymer monomer in water to form a mixture 9 S13, adding the initiator to the mixture to cause polymerization between the polymer monomers, the resulting polymer is coated on the surface of the carbon nanotube, and 099143847 Form No. A0101 Page 5 of 23 Page 0992075898-0 [0014] S14, separating and purifying the surface-coated polymer carbon nanotubes. [0016] In this step S11, the carbon nanotubes may be one or more of a single-walled carbon nanotube, a double-walled carbon nanotube or a multi-walled carbon nanotube. The carbon nanotubes can be prepared by an arc discharge method, a chemical vapor deposition method or a laser evaporation method. In the embodiment of the invention, a multi-walled carbon nanotube is prepared by chemical vapor deposition. The multi-walled carbon nanotube has an inner diameter of 10 nm to 50 nm, an outer diameter of 30 nm to 80 nm, and a length of 50 μm to 100 μm. [0017] The polymer monomer may be aniline, pyrrole, thiophene, decylamine, acrylimine or a derivative of the above, such as acetanilide, decylpyrrole, ethylenedioxythiophene, guanamine diammonium or hexidine Amidoxime and the like. Further, the polymer monomer may be not limited to the above-exemplified ones, and the polymer monomer only needs to be completely coated on the surface of the carbon nanotube by a polymerization reaction. The initiator causes polymerization between the polymer monomers to form a polymer. The initiator is preferably a water-soluble polymer monomer initiator such as one or more of ammonium persulfate, potassium persulfate, sulfuric acid, nitric acid and potassium iodate. In the examples of the present invention, a strepamine is used as the polymer monomer, and ammonium persulfate is used as the initiator. [0018] The mass ratio of the carbon nanotube to the polymer monomer may be 1:1 to 1:10. The molar ratio of the initiator to the polymer monomer is greater than 1:1 such that the initiator is in excess relative to the polymer monomer to ensure complete polymerization of the polymer monomer. In the embodiment of the present invention, the mass ratio of the multi-walled carbon nanotubes to the aniline is 1:2, and the molar ratio of the ammonium persulfate to the aniline is 2:1 〇[0019] In the above step S12, The carbon nanotube and the polymer monomer are simultaneously 099143847 Form No. A0101 Page 6/23 pages 0992075898-0 201223642 [0021] 002 ❹ [0022] Add or sequentially add to the reactor containing water. In the embodiment of the present invention, the carbon nanotube is first added to the water-containing reactor after ultrasonic vibration, and then the polymer monomer is added, and the mixture is continuously ultrasonically shaken. In the above step S12, the step of treating the carbon nanotube by a carboxylic acid may be further included. The carboxylic acid is preferably a carboxylic acid having at least two carboxyl groups, which may be citric acid (CRHe07), oxalic acid (HqCpOJ, malonic acid do/Z^4 (CqH4〇4), succinic acid ( C4Hfi〇4), adipic acid (CKHin〇4), benzodiazepine 4 4 4 464 6104 acid and glutaric acid (CJJJ, etc. one or more of them. The 8 8 4 5 8 4 carboxylic acid and the polymerization The molar ratio of the monomer can be from 1:1 to 10: 1. One carboxyl group in the carboxylic acid can surface functionalize the carbon nanotube to enhance the dispersibility of the carbon nanotube in water. The excess carboxyl group in the carboxylic acid adsorbs the polymer monomer by electrostatic attraction, so that the polymer formed by the subsequent polymerization can be better coated on the surface of the carbon nanotube. After the carbon nanotubes are added, an aqueous citric acid solution is added to the reactor and ultrasonically dispersed for 4 hours, and then the polymer monomer is added to the reactor for mixing. In the above step S13, the step of stirring the mixture may be further included. The reaction is completed. Embodiments of the invention add the initiator to the mixture The stirring process is started and continues until the end of the polymerization reaction. The temperature and time of the polymerization reaction are related to the type of the polymer monomer and the initiator, and the polymerization reaction temperature may be 0 ° C to 60 ° C. The reaction time is preferably from 10 hours to 20 hours. In the embodiment of the present invention, the polymerization reaction is carried out under an ice bath (0 ° C to 5 ° C), and the reaction time lasts for 12 hours. 099143847 Form No. A0101 Page 7 / A total of 23 pages 0992075898-0 201223642 [0023] [0025] In the above step S14, the present invention obtains the surface-coated polymer carbon nanotube by filtration and multiple water washing. The polymer coated carbon nanotube is subsequently used as a carrier for the metal particles to adsorb the metal particles on the surface of the polymer. Step 2, the carrier is mixed with the metal ion-containing solution and the carboxylic acid solution to form a mixture. And reacting to obtain a complex product; in the above step 2, the metal ion in the metal ion-containing solution may be a noble metal ion or a metal having a good catalytic performance as a simple metal; The noble metal ion may be gold, (All), silver (Ag), platinum (Pt), ruthenium (RU), rhodium (Rh), palladium (Pd), hungry (Os), and strontium (lr). One or more of the ions. The ions of other metals having good catalytic properties as the elemental metal may be one of ions of copper (Cu), iron (Fe), cobalt (Co), and nickel (Ni) or Correspondingly, 'the metal ion-containing liquid;: may be an acid or a salt containing the metal ion, such as gas gold acid (HAuClj): gasified gold (AuCl), silver nitrate (AgN〇3), gas Acid (H2PtCl6), lanthanum chloride (URuC13), gas phthalic acid (H3RhCl6), gasification|£(P(iCl2), gas phthalic acid (H2〇sC16), chlorosilicic acid (H2IrCl6), copper sulfate (CuS〇) 4) and one or more of ferrous chloride (FeCl2). In the embodiment of the present invention, the aqueous solution of HAuC14 is used as the metal ion-containing solution. [0026] The carboxylic acid is preferably a carboxylic acid having at least two carboxyl groups, and the thio acid may be citric acid (C6H8〇7) or ethylene. Acid (H2C2〇4) Malonic acid 099143847 Form No. A0101 Page 8 of 23 0992075898-0 201223642 〇4), succinic acid (c4h6〇4), adipic acid (Ίο,), stupid dicarboxylic acid (C8H8 〇4) and one or more of pentanoic acid (C5H8〇4). In the embodiment of the present invention, citric acid (c6h8??) is used as the thio acid in the second step. [0027] The molar ratio of the carboxylic acid to the metal ion in the metal ion-containing solution is set to be 1:1 to 10:1. In the embodiment of the invention, the molar ratio of citric acid to gas gold acid is 1:1. [0028] Ο the step of mixing may be that the carrier, the metal ion-containing solution and the treproic acid solution are simultaneously added to a reactor for mixing, or the three are sequentially added to the reactor. mixing. The mass ratio of the carrier to the metal ion-containing solution is 2. 3:1. to 0, 4:1. The step of mixing in the embodiment of the present invention is specifically: first adding a surface-coated polymer nanocarbon tube as a carrier to the acid solution, and then adding the content to the carboxylic acid solution. A solution of metal ions.

[0029] G 上述步驟二可進一步包括攪拌的步驟使所述載體、含金 屬離子的溶液及羧基酸溶液均勻混合。本發明實施例在 所述混合的同時’對該混合物進行超聲分散0. 5小時〜24 小時使該混合物充分反應。所述反應溫度可為 ,且在該溫度範圍内,隨著溫度的升高,後續在該載體 表面的金屬粒子的擔載量增大。本發明實施例所述載體 表面為包覆該奈米碳管的聚合物的表面。本發明實施例 中所述反應溫度為25°C *在所述反應過程中,該叛基酸 一方面與所述奈米碳管表面的聚合物依靠靜電作用力相 互吸引或化學鍵結合,另一方面,該羧基酸同時作為穩 定劑和弱還原劑與所述含金屬離子的溶液發生較弱的絡 099143847 表單編號A0101 第9頁/共23頁 0992075898-0 201223642 合反應,金屬離子以絡離子的形式存在。所述羧基酸的 穩定性較好,利於調控後續所述載體表面生成的金屬粒 子的粒徑及粒子的均勻分佈。本發明實施例中檸檬酸的 羧基與聚苯胺的胺基可以羧胺(-C00NH-)形式的化學鍵 結合或羧基與胺基之間靜電作用相互吸引。另,檸檬酸 的羧基與氣金酸之間發生弱的絡合反應,金離子以絡離 子(如[AuClqC00]_)的形式存在。 ό [0030] 上述步驟二可進一步包括調節該混合後溶液的pH值為2〜8 。該pH值範圍内利於後續生成的金屬粒子均勻分佈於所 述載體表面。本發明實施例中,在所述反應的開始階段 調節反應器中的pH值為3. 3,並持續到所述反應結束。 [0031] 步驟三,在上述混合液中加入還原劑,將所述絡合產物 中的金屬離子還原成單質金屬粒子,該單質金屬粒子吸 附於該載體表面。 [0032] 所述還原劑能將該金屬離子還原成金屬單質,可為硼氫 化納(NaBH4)、甲搭(CH2〇)、雙氧水(H2〇2)、擰檬 酸、氫氣(h2)或抗壞血酸等。本發明實施例中採用硼氫 化鈉作為所述還原劑。該還原劑與該金屬離子的摩爾比 優選為l(hl〜60:1,本發明實施例中選取硼氫化鈉與該 氣金酸的摩爾比為50:1。 [0033] 在該步驟中,將大量的所述還原劑加入到上述混合液中 使金屬離子還原成單質金屬粒子並吸附於所述聚合物表 面。由於本發明實施例中在上述步驟二中加入了羧基酸 ,該羧基酸的羧基基團在所述金屬粒子與該奈米碳管表 099143847 表單編號A0101 第10頁/共23頁 0992075898-0 201223642 [0034] [0035] ❹[0029] G The above step 2 may further comprise the step of stirring to uniformly mix the carrier, the metal ion-containing solution and the carboxylic acid solution. The mixture of the mixture was subjected to ultrasonic dispersion for 0.5 hours to 24 hours to fully react the mixture. The reaction temperature may be, and within this temperature range, as the temperature increases, the amount of subsequent loading of the metal particles on the surface of the support increases. The surface of the carrier according to the embodiment of the invention is the surface of the polymer covering the carbon nanotube. The reaction temperature in the embodiment of the present invention is 25 ° C. * During the reaction, the thio acid is mutually attracted or chemically bonded to the polymer on the surface of the carbon nanotube by electrostatic force, and the other In the aspect, the carboxylic acid acts as a stabilizer and a weak reducing agent to form a weaker complex with the metal ion-containing solution. 099143847 Form No. A0101 Page 9 of 23 0992075898-0 201223642, metal ions with complex ions Form exists. The carboxylic acid has good stability and is advantageous for regulating the particle size of the metal particles formed on the surface of the carrier and the uniform distribution of the particles. In the examples of the present invention, the carboxyl group of citric acid and the amine group of polyaniline may be bonded to each other by a chemical bond of a carboxylamine (-C00NH-) form or an electrostatic interaction between a carboxyl group and an amine group. In addition, a weak complexation reaction occurs between the carboxyl group of citric acid and gas gold acid, and the gold ion exists as a complex ion (e.g., [AuClqC00]_). [0030] The above step 2 may further comprise adjusting the pH of the mixed solution to 2 to 8. This pH range facilitates the uniform distribution of subsequently generated metal particles on the surface of the support. In the embodiment of the present invention, the pH of the reactor was adjusted to 3.3 at the beginning of the reaction and continued until the end of the reaction. [0031] Step 3, adding a reducing agent to the mixed solution to reduce metal ions in the complexed product to elemental metal particles, and the elemental metal particles are adsorbed on the surface of the carrier. [0032] The reducing agent can reduce the metal ion to a metal element, which can be sodium borohydride (NaBH4), methicone (CH2 〇), hydrogen peroxide (H2〇2), citric acid, hydrogen (h2) or ascorbic acid. Wait. In the examples of the present invention, sodium borohydride is used as the reducing agent. The molar ratio of the reducing agent to the metal ion is preferably 1 (hl~60:1), and the molar ratio of sodium borohydride to the gas gold acid is 50:1 in the embodiment of the invention. [0033] In this step, A large amount of the reducing agent is added to the above mixture to reduce metal ions to elemental metal particles and adsorb to the surface of the polymer. Since the carboxylic acid is added to the second step in the embodiment of the present invention, the carboxylic acid A carboxyl group in the metal particle and the carbon nanotube table 099143847 Form No. A0101 Page 10 of 23 Page 0992075898-0 201223642 [0034] [0035]

[0036] 099143847 面的聚合物之間起到一個聯橋的作用。該羧基基團不僅 與所述奈米碳管表面的聚合物藉由靜電作用或化學鍵結 合相互連接,還可強烈的吸附金屬粒子,從而使該金屬 粒子穩定的分佈於所述載體表面。 步驟四,分離提純該表面吸附單質金屬粒子的載體。 本發明實施例藉由過濾及複數次水洗滌的方式獲得該表 面吸附單質金屬粒子的載體,該表面吸附單質金屬粒子 的載體即為本發明所述奈米碳管金屬粒子複合物。請參 閱圖1,圖1為本發明基於上述方法製備的所述奈米碳管 金屬粒子複合物100的結構示意圖。該奈米碳管金屬粒子 複合物100包括奈米碳管102,包覆於該奈米碳管102表 面的聚合物104,及吸附於該聚合物表面的金屬粒子106 。該金屬粒子106在該聚合物104表面均勻分佈,且該金 屬粒子106的粒徑為1奈米〜10奈米。該金屬粒子佔該奈米 碳管金屬粒子複合物的質量比為20%至60%。本發明實施 例中所述奈米碳管金屬粒子複合物100為金/聚苯胺/多壁 奈米碳管複合物。其中該聚苯胺表面的金粒子的粒徑為1 奈米~ 5奈求。 本發明以表面包覆聚合物的奈米碳管為載體,在所述羧 基酸的輔助下製備奈米碳管金屬粒子複合物。在製備過 程中,該羧基酸在該載體及金屬粒子之間起到聯橋的作 用,該羧基酸的羧基基團一方面與該聚合物藉由靜電作 用力相互吸引或以化學鍵結合,另一方面該羧基酸藉由 與該含金屬離子的溶液之間的絡合作用促進加入所述還 原劑後金屬粒子在該載體表面均句分佈,且該羧基酸的 表單編號A0101 第11頁/共23頁 0992075898-0 201223642 羧基基團對該金屬粒子具有較強的吸附能力,從而提二 了該金屬粒子在該載體表面的擔載量,且可抑制該金2 粒子之間的團聚,使該金屬粒子在該載體表面可岣勻^ 定地分佈,從而可提高該奈米碳管金屬粒子複合 、 化性能。 [0037] 本發明實施例基於上述方法利用多壁奈米碳管、 释樣駿 、苯胺及過硫酸銨首先製備了聚苯胺/多壁奈米碳敦_ 物載體,然後利用該載體、氣金酸及硼氫化鈉在添力檸 檬酸與未添加檸檬酸的條件下’製備了奈米碳管金屬粒 子複合物(金/聚苯肢/多壁奈米碳管複合物)。 [0038] 實施例1 [〇〇39]聚苯胺/多壁奈米碳管複合物載體的製備: [0040]將多壁奈米碳管和檸檬酸在300ml的水中混合形成混人物 ’將該混合物超聲分散2小時,將純化的笨胺加到該料 分散後的混合物中,在冰浴條件下( 〇(>C〜5。〇,將過石气 酸銨水溶液加到該已加入笨胺的混合物中,攪拌下使笨^ 胺發生聚。反應’ 12,j、g|後將反應生成的沈澱物過渡, 及水洗滌該沈极物複數次,獲得表面包覆聚笨胺的^壁 奈米碳管’即聚笨胺/多壁奈米碳管複合物載體。其中, 該多壁奈米碳管與笨胺的質量比為1:2,該過硫酸録、笨 胺及檸檬酸的摩爾比為2:i:2。 [刚金/聚苯胺/多壁奈米碳管複合物的製備: 丰胺/多壁奈米碳管複合物載體加入到 檸樣酸溶液中,拍垃按μ 並按衿棣酸和氣金酸的摩爾比1:1加入氣 表單編號Λ0101 « 19 ^ ' 2 買/共 23 * 099201 [0042] 099143847 201223642 金酸溶液’超聲分散30分鐘。該載體與氣金酸的質量比 為2· 2 :1。待穩定反應8小時後,按硼氫化鈉和氣金酸的 摩爾比為50 : 1加入硼氫化鈉溶液攪拌反應生成沈搬物, 過遽並水洗滌該沈澱物。獲得金/聚苯胺/多壁奈米唉管 複合物。其中,該金粒子的粒徑為2奈米〜5奈米,該複合 物中金粒子佔該複合物的質量百分比為40%。請參閱圖2 ’圖2為該實施例1中製備的奈米碳管金屬粒子複合物的 透射電鏡照片。 [0043] 對比實施例1 〇 [0044] 製備過程與實施例1相同,區別在於,利用制得的聚笨胺 /多壁奈米碳管複合物載體進一步製備金/聚苯胺/多壁奈 米碳管複合物時未使用檸檬酸。請參閱圖3,圖3為該對 比實施例1中製備的奈米碳管金屬粒子複合物的透射電鏡 照片。 ;,3 ir ·1 [0045] 請一併參閱圖2和圖3,從圖可看出,;金粒子分佈在聚苯 胺/多壁奈米碳管複合物載艚表面。且圖3中,部分金粒 〇 子在該載體表面面聚在一起,而圖2中,大量的金粒子均 勻地分佈於該載體表面,並未出現團聚現象,表明所述 擰檬酸的添加利於抑制該生成的奈米碳管金屬粒子複合 物中金屬粒子的團聚。 [0046] 實施例2 [0047] 製備過程與實施例1相同,區別在於,所述載體與氣金酸 的質量比為0.33:1,同時與氣金酸成比例的檸檬酸與還 原劑的含量對應提高,最終生成的金/聚苯胺/多壁奈米 099143847 表單編號Α0101 第13頁/共23頁 0992075898-0 201223642 碳管複合物中,金粒子佔該複合物的質量百分比為6 0 %。 請參閱圖4,圖4為該實施例2中製備的奈米碳管金屬粒子 複合物的透射電鏡照片。 [0048] 對比實施例2 [0049] 製備過程與實施例2相同,區別在於,利用制得的聚苯胺 /多壁奈米碳管複合物載體進一步製備金/聚苯胺/多壁奈 米碳管複合物時未使用檸檬酸。請參閱圖5,圖5為該對 比實施例2中製備的奈米碳管金屬粒子複合物的透射電鏡 照片。 [0050] 請一併參閱圖4和圖5,從圖中可看出,隨著金離子的含 量的增加,生成的金粒子的粒徑略微增大,大量的金粒 子吸附在聚苯胺/多壁奈米碳管複合物載體表面。比較圖 4和圖5可知,圖4中金粒子在該載體表面的擔載量明顯增 大,且在該載體表面均勻分佈。表明該羧基酸的添加, 既可增強該載體表面金屬粒子的有效吸附量,且可有效 地調控該金屬粒子均勻的分散於該截體表面。而圖5中, 該金粒子在該載體表面的含量相對較少,且分佈不夠均 勻。 [0051] 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡習知本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 099143847 表單編號Α0101 第14頁/共23頁 0992075898-0 201223642 [0052] 圖1為本發明提供的奈米碳管金屬粒子複合物的結構示意 圖。 [0053] 圖2為本發明實施例1提供的奈米碳管金屬粒子複合物的 透射電鏡(TEM)照片。 [0054] 圖3為本發明對比實施例1提供的奈米碳管金屬粒子複合 物的TEM照片。 [0055] 圖4為本發明實施例2提供的奈米碳管金屬粒子複合物的 TEM照片。[0036] The polymer of the surface of 099143847 acts as a bridge between the polymers. The carboxyl group is not only bonded to the polymer on the surface of the carbon nanotube by electrostatic interaction or chemical bonding, but also strongly adsorbs the metal particles, so that the metal particles are stably distributed on the surface of the carrier. In step four, the carrier for adsorbing the elemental metal particles on the surface is separated and purified. In the embodiment of the present invention, a carrier for adsorbing elemental metal particles on the surface is obtained by filtration and a plurality of water washing, and the carrier for adsorbing the elemental metal particles on the surface is the carbon nanotube metal particle composite of the present invention. Please refer to FIG. 1. FIG. 1 is a schematic structural view of the carbon nanotube metal particle composite 100 prepared by the above method according to the present invention. The carbon nanotube metal particle composite 100 includes a carbon nanotube 102, a polymer 104 coated on the surface of the carbon nanotube 102, and metal particles 106 adsorbed on the surface of the polymer. The metal particles 106 are uniformly distributed on the surface of the polymer 104, and the metal particles 106 have a particle diameter of from 1 nm to 10 nm. The metal particles account for 20% to 60% by mass of the carbon nanotube metal particle composite. The carbon nanotube metal particle composite 100 in the embodiment of the present invention is a gold/polyaniline/multiwalled carbon nanotube composite. The particle size of the gold particles on the surface of the polyaniline is from 1 nm to 5 nm. In the present invention, a carbon nanotube metal particle composite is prepared by using a carbon nanotube having a surface-coated polymer as a carrier and with the aid of the carboxylic acid. In the preparation process, the carboxylic acid acts as a bridge between the carrier and the metal particles, and the carboxyl group of the carboxylic acid is mutually attracted or chemically bonded to the polymer by electrostatic force on the one hand, and the other The carboxylic acid is promoted by the complexation with the metal ion-containing solution to facilitate the distribution of the metal particles on the surface of the carrier after the addition of the reducing agent, and the carboxylic acid has the form number A0101, page 11 of 23 Page 0992075898-0 201223642 The carboxyl group has a strong adsorption capacity for the metal particles, thereby increasing the loading of the metal particles on the surface of the carrier, and suppressing agglomeration between the gold particles, thereby making the metal The particles can be uniformly distributed on the surface of the carrier, thereby improving the composite property of the carbon nanotube metal particles. [0037] In the embodiment of the present invention, a polyaniline/multi-walled nanocarbon carrier is first prepared by using the multi-walled carbon nanotube, the sample, the aniline and the ammonium persulfate based on the above method, and then the carrier and the gas are used. The acid and sodium borohydride were used to prepare a carbon nanotube metal particle composite (gold/polyphenylene/multi-walled carbon nanotube composite) under the conditions of adding citric acid and no citric acid. Example 1 [〇〇39] Preparation of polyaniline/multi-walled carbon nanotube composite carrier: [0040] Multi-walled carbon nanotubes and citric acid were mixed in 300 ml of water to form a mixed character' The mixture was ultrasonically dispersed for 2 hours, and the purified strepamine was added to the dispersed mixture of the material under ice bath conditions (> C~5. 〇, the aqueous solution of ammonium sulphate was added to the already added stupid In the mixture of amines, the stearamine is polymerized under stirring. After the reaction of '12, j, g|, the precipitate formed by the reaction is transferred, and the counter electrode is washed with water several times to obtain a surface coated polyphenylamine. The wall-nanocarbon tube is a poly-aminoamine/multi-walled carbon nanotube composite carrier, wherein the mass ratio of the multi-walled carbon nanotube to the stupid amine is 1:2, the persulfate, the stupid amine and the lemon The molar ratio of acid is 2:i: 2. [Preparation of gold/polyaniline/multi-walled carbon nanotube composite: The amine/multi-walled carbon nanotube composite carrier is added to the lemon-like acid solution. Press μ and add the molar ratio of tannic acid and gas gold to 1:1 to add the gas form number Λ0101 « 19 ^ ' 2 Buy / Total 23 * 099201 [0042] 099143847 201223642 The liquid was ultrasonically dispersed for 30 minutes. The mass ratio of the carrier to the gas gold acid was 2·2:1. After the reaction was stabilized for 8 hours, the molar ratio of sodium borohydride to gas gold acid was 50:1, and the sodium borohydride solution was added and stirred. The reaction generates a sinking material, and the precipitate is washed with water and water. A gold/polyaniline/multi-walled nanotube composite is obtained, wherein the gold particle has a particle diameter of 2 nm to 5 nm, and the complex The gold-based particles accounted for 40% by mass of the composite. Referring to Figure 2, Figure 2 is a transmission electron micrograph of the carbon nanotube metal particle composite prepared in Example 1. [0043] Comparative Example 1 [0044] The preparation process is the same as in Example 1, except that the gold/polyaniline/multi-walled carbon nanotube composite is further prepared by using the obtained poly- and/or multi-walled carbon nanotube composite carrier. Please refer to FIG. 3, which is a transmission electron micrograph of the carbon nanotube metal particle composite prepared in Comparative Example 1. ;, 3 ir · 1 [0045] Please refer to FIG. 2 and FIG. 3 together. As can be seen from the figure, the gold particles are distributed on the surface of the polyaniline/multi-walled carbon nanotube composite. In Fig. 3, a part of the gold scorpion is gathered on the surface of the carrier, and in Fig. 2, a large amount of gold particles are uniformly distributed on the surface of the carrier, and no agglomeration occurs, indicating that the addition of the citric acid is favorable for the addition. The agglomeration of the metal particles in the generated carbon nanotube metal particle composite was suppressed. [0046] The preparation process was the same as in Example 1, except that the mass ratio of the carrier to gas gold acid was 0.33. :1, at the same time, the content of citric acid and reducing agent in proportion to gas gold acid is increased correspondingly, and the resulting gold/polyaniline/multi-walled nanometer 099143847 Form No. 1010101 Page 13/23 pages 0992075898-0 201223642 Carbon tube In the composite, the gold particles accounted for 60% by mass of the composite. Please refer to FIG. 4. FIG. 4 is a transmission electron micrograph of the carbon nanotube metal particle composite prepared in the second embodiment. Comparative Example 2 [0049] The preparation process was the same as in Example 2 except that the prepared polyaniline/multi-walled carbon nanotube composite carrier was used to further prepare a gold/polyaniline/multi-walled carbon nanotube. No citric acid was used in the composite. Referring to Fig. 5, Fig. 5 is a transmission electron micrograph of the carbon nanotube metal particle composite prepared in the comparative example 2. [0050] Please refer to FIG. 4 and FIG. 5 together. As can be seen from the figure, as the content of gold ions increases, the particle size of the generated gold particles increases slightly, and a large amount of gold particles are adsorbed on the polyaniline/multiple. Wall nanocarbon tube composite carrier surface. Comparing Fig. 4 with Fig. 5, it can be seen that the loading of the gold particles on the surface of the carrier in Fig. 4 is remarkably increased and uniformly distributed on the surface of the carrier. It is indicated that the addition of the carboxylic acid can enhance the effective adsorption amount of the metal particles on the surface of the carrier, and can effectively regulate the uniform dispersion of the metal particles on the surface of the segment. In Fig. 5, the content of the gold particles on the surface of the carrier is relatively small, and the distribution is not uniform enough. [0051] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS 099143847 Form No. Α0101 Page 14 of 23 0992075898-0 201223642 [0052] FIG. 1 is a schematic view showing the structure of a carbon nanotube metal particle composite provided by the present invention. 2 is a transmission electron microscope (TEM) photograph of a carbon nanotube metal particle composite provided in Example 1 of the present invention. 3 is a TEM photograph of a carbon nanotube metal particle composite provided in Comparative Example 1 of the present invention. 4 is a TEM photograph of a carbon nanotube metal particle composite provided in Example 2 of the present invention.

[0056] 圖5為本發明對比實施例2提供的奈米碳管金屬粒子複合 物的TEM照片。5 is a TEM photograph of a carbon nanotube metal particle composite provided in Comparative Example 2 of the present invention.

【主要元件符號說明】 [0057] 奈米礙管金屬粒子複合物: 100 [0058] 奈米碳管:102 [0059] 聚合物:104 ' :;ί ' 1· [0060] 金屬粒子:10 6 Γ ί V,” ·κ-:[Explanation of main component symbols] [0057] Nano-barrier metal particle composite: 100 [0058] Nano carbon tube: 102 [0059] Polymer: 104 ':; ί '1· [0060] Metal particles: 10 6 Γ ί V,” ·κ-:

099143847 表單編號A0101 第15頁/共23頁 0992075898-0099143847 Form No. A0101 Page 15 of 23 0992075898-0

Claims (1)

201223642 七、申請專利範圍: 1 . 一種奈米碳管金屬粒子複合物的製備方法,包括以下步驟 提供載體,該載體包括奈米碳管及包覆在奈米碳管表面的 聚合物; 將該載體與含金屬離子的溶液及羧基酸溶液混合形成一混 合液並進行反應,得到一絡合產物; 在上述混合液中加入還原劑,將絡合產物中的金屬離子還 原成單質金屬粒子,該單質金屬粒子吸附於該載體表面; 及 分離提純該表面吸附單質金屬粒子的載體。 2 .如申請專利範圍第1項所述的奈米碳管金屬粒子複合物的 製備方法,其中,所述金屬離子為金、銀、鉑、銅、釕、 姥、叙、鐵、銀、銅、鐵、姑及鎳的離子中的一種或複數 種。 3 .如申請專利範圍第1項所述的奈米碳管金屬粒子複合物的 製備方法,其中,該含金屬離子的溶液為氣金酸、氯化金 、石肖酸銀、氣始酸、氯化釘、氣姥酸、氣化把、氯鐵酸、 氣銥酸、硫酸銅及氣化亞鐵的溶液中的一種或複數種。 4 .如申請專利範圍第1項所述的奈米碳管金屬粒子複合物的 製備方法,其中,所述羧基酸溶液中的羧基酸至少具有兩 個羧基。 5 .如申請專利範圍第4項所述的奈米碳管金屬粒子複合物的 製備方法,其中,所述羧基酸為擰檬酸、乙二酸、丙二酸 、丁二酸、己二酸、苯二甲酸及戊二酸中的一種或複數種 099143847 表單編號A0101 第16頁/共23頁 0992075898-0 201223642 6 .如申請專利範圍第1項所述的奈米碳管金屬粒子複合物的 製備方法,其中,所述還原劑為硼氫化鈉、曱醛、雙氧水 、檸檬酸、氳氣及抗壞血酸中的一種或幾種。 7 .如申請專利範圍第1項所述的奈米碳管金屬粒子複合物的 製備方法,其中,所述還原劑與所述金屬離子的摩爾比為 10 :1 ~60 :1。 8 .如申請專利範圍第1項所述的奈米碳管金屬粒子複合物的 製備方法,其中,所述將該載體與含金屬離子的溶液及羧 〇 基酸溶液混合的過程為:先在該羧基酸溶液中加入該載體 ,然後加入該含金屬離子的溶液。 9 .如申請專利範圍第1項所述的奈米碳管金屬粒子複合物的 製備方法,其中,進一步包括攪拌的步驟使該載體、含金 屬離子的溶液及羧基酸溶液均勻混合。 10 .如申請專利範圍第9項所述的奈米碳管金屬粒子複合物的 製備方法,其中,該攪拌的步驟為超聲分散0. 5小時~24 小時。 ^ 11 .如申請專利範圍第1項所述的奈米碳管金屬粒子複合物的 製備方法,其中,所述載體與含金屬離子的溶液及羧基酸 溶液混合並進行反應的反應溫度為0°C〜100°C。 12 .如申請專利範圍第1項所述的奈米碳管金屬粒子複合物的 製備方法,其中,在所述將該載體與含金屬離子的溶液及 羧基酸溶液混合的過程中進一步調節該混合後溶液的pH值 為 2 ~ 8。 13 .如申請專利範圍第1項所述的奈米碳管金屬粒子複合物的 製備方法,其中,所述含金屬離子的溶液中的金屬離子與 099143847 表單編號A0101 第17頁/共23頁 0992075898-0 201223642 該羧基酸的摩爾比為1 :丨〜丨:丨〇。 14 15 項所述的奈米_屬粒子複合物的 、中,所述載體與所述含金屬離子的溶液的質 量比為2. 3 :1至0. 4 :1。 如申請專利範圍第i項所述的奈以管金屬粒子複合物的 製備方法,其中,所述載體藉由如下方法製備: 提供奈米碳管、聚合物單體及可引發該聚合物單體聚合的 引發劑; 在水中混合該奈米碳管和聚合物單體形成—混合物; 將所述引發劑加入碑,合物中,使所述聚合物單體之間發 生聚合反應,生成的聚合物包覆在該奈米碳管表面及 分離提純該表面包覆聚合物的奈米碳管。 16 .如申請專利範圍第15項所述的奈米碳管金屬粒子複合物的 製備方法,其中,所述聚合物單體為笨胺、吡咯、噻吩、 醯胺、丙烯亞胺、乙醯苯胺、曱基吡咯、乙烯二氧噻吩、 醯胺二銨或己内醯胺》 17 .如申請專利範圍第15項所述的奈米碳管金屬粒子複合物的 製備方法’其中,所述在水中混合讀奈米碳管和聚合物單 體的步驟進一步包括加入竣基酸溶液。 18 .如申請專利範圍第17項所述的奈米碳管金屬粒子複合物的 製備方法,其中,所述羧基酸為檸檬酸、乙二酸、丙二酸 、丁二酸、己二酸、苯二甲酸及戊二酸中的一種或複數種 099143847 表單編號A0101 第18頁/共23頁 0992075898-0201223642 VII. Patent application scope: 1. A method for preparing a carbon nanotube metal particle composite, comprising the steps of providing a carrier, the carrier comprising a carbon nanotube and a polymer coated on the surface of the carbon nanotube; The carrier is mixed with the metal ion-containing solution and the carboxylic acid solution to form a mixed solution and reacted to obtain a complex product; a reducing agent is added to the mixed solution to reduce the metal ions in the complexed product to elemental metal particles. The elemental metal particles are adsorbed on the surface of the carrier; and the carrier for adsorbing the elemental metal particles on the surface is separated and purified. 2. The method for preparing a carbon nanotube metal particle composite according to claim 1, wherein the metal ion is gold, silver, platinum, copper, rhodium, ruthenium, ruthenium, iron, silver, copper. One or more of the ions of iron, nickel, and nickel. 3. The method for preparing a carbon nanotube metal particle composite according to claim 1, wherein the metal ion-containing solution is gas gold acid, gold chloride, silver tartaric acid, gas anhydride, One or a plurality of solutions of chlorinated nails, gas phthalic acid, gasification, chloroferric acid, gas phthalic acid, copper sulfate, and ferrous ferrous oxide. 4. The method for producing a carbon nanotube metal particle composite according to claim 1, wherein the carboxylic acid in the carboxylic acid solution has at least two carboxyl groups. 5. The method for preparing a carbon nanotube metal particle composite according to claim 4, wherein the carboxylic acid is citric acid, oxalic acid, malonic acid, succinic acid, adipic acid. One or a plurality of phthalic acid and glutaric acid 099143847 Form No. A0101 Page 16 of 23 0992075898-0 201223642 6. The carbon nanotube metal particle composite according to claim 1 The preparation method, wherein the reducing agent is one or more of sodium borohydride, furfural, hydrogen peroxide, citric acid, xenon, and ascorbic acid. 7. The method for producing a carbon nanotube metal particle composite according to claim 1, wherein a molar ratio of the reducing agent to the metal ion is from 10:1 to 60:1. 8. The method for preparing a carbon nanotube metal particle composite according to claim 1, wherein the mixing of the carrier with the metal ion-containing solution and the carboxymethyl acid solution is as follows: The carrier is added to the carboxylic acid solution, and then the metal ion-containing solution is added. 9. The method for producing a carbon nanotube metal particle composite according to claim 1, wherein the step of stirring further comprises uniformly mixing the carrier, the metal ion-containing solution, and the carboxylic acid solution. 5小时至24小时。 The method of the preparation of the method of the invention is as follows: wherein the step of stirring is ultrasonic dispersion 0. 5 hours ~ 24 hours. The method for preparing a carbon nanotube metal particle composite according to claim 1, wherein the carrier is mixed with the metal ion-containing solution and the carboxylic acid solution and reacted at a temperature of 0°. C ~ 100 ° C. 12. The method for preparing a carbon nanotube metal particle composite according to claim 1, wherein the mixing is further adjusted during mixing of the carrier with a metal ion-containing solution and a carboxylic acid solution. The pH of the solution is 2-8. 13. The method for preparing a carbon nanotube metal particle composite according to claim 1, wherein the metal ion in the metal ion-containing solution and 099143847 Form No. A0101 Page 17 of 23 page 0992075898 -0 201223642 The molar ratio of the carboxylic acid is 1: 丨 ~ 丨: 丨〇. The ratio of the mass ratio of the carrier to the metal ion-containing solution is from 2. 3:1 to 0.4:1. The method for preparing a metal tube composite according to claim i, wherein the carrier is prepared by: providing a carbon nanotube, a polymer monomer, and initiating the polymer monomer a polymerization initiator; mixing the carbon nanotube and the polymer monomer to form a mixture in water; adding the initiator to the composition, causing polymerization between the polymer monomers to form a polymerization The material is coated on the surface of the carbon nanotube and the carbon nanotube of the surface-coated polymer is separated and purified. The method for producing a carbon nanotube metal particle composite according to claim 15, wherein the polymer monomer is strepamine, pyrrole, thiophene, decylamine, acrylimine, ethamidine. , a method for preparing a carbon nanotube metal particle composite according to claim 15 of the invention, wherein the water in the water The step of mixing the carbon nanotubes and the polymer monomer further comprises adding a mercapto acid solution. 18. The method for preparing a carbon nanotube metal particle composite according to claim 17, wherein the carboxylic acid is citric acid, oxalic acid, malonic acid, succinic acid, adipic acid, One or more of phthalic acid and glutaric acid 099143847 Form No. A0101 Page 18 of 23 0992075898-0
TW099143847A 2010-12-14 2010-12-14 Method for making carbon nanotube-metal particle composite TWI406711B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099143847A TWI406711B (en) 2010-12-14 2010-12-14 Method for making carbon nanotube-metal particle composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099143847A TWI406711B (en) 2010-12-14 2010-12-14 Method for making carbon nanotube-metal particle composite

Publications (2)

Publication Number Publication Date
TW201223642A true TW201223642A (en) 2012-06-16
TWI406711B TWI406711B (en) 2013-09-01

Family

ID=46725617

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099143847A TWI406711B (en) 2010-12-14 2010-12-14 Method for making carbon nanotube-metal particle composite

Country Status (1)

Country Link
TW (1) TWI406711B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI464953B (en) * 2012-07-05 2014-12-11 Hon Hai Prec Ind Co Ltd Membrane electrode and fuel cell using the same
TWI468225B (en) * 2012-07-05 2015-01-11 Hon Hai Prec Ind Co Ltd Carbon nanotube based composte and catalyst material including the same
TWI468340B (en) * 2012-08-07 2015-01-11 Univ Ishou Iridium doped nanotubes, electrodes and sensing devices
TWI506652B (en) * 2012-07-05 2015-11-01 Univ Nat Taiwan A conductive thin film of silver and carbon nanotubes, silver/carbon nanotube composites, and method for distributing cnt
US9669398B2 (en) 2012-07-05 2017-06-06 Tsinghua University Method for making carbon nanotube-metal particle composite

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200742749A (en) * 2006-05-02 2007-11-16 Ping-Lin Kuo Polyethyleniminated derivatives for preparing supported catalyst

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI464953B (en) * 2012-07-05 2014-12-11 Hon Hai Prec Ind Co Ltd Membrane electrode and fuel cell using the same
TWI468225B (en) * 2012-07-05 2015-01-11 Hon Hai Prec Ind Co Ltd Carbon nanotube based composte and catalyst material including the same
TWI506652B (en) * 2012-07-05 2015-11-01 Univ Nat Taiwan A conductive thin film of silver and carbon nanotubes, silver/carbon nanotube composites, and method for distributing cnt
US9669398B2 (en) 2012-07-05 2017-06-06 Tsinghua University Method for making carbon nanotube-metal particle composite
US9786942B2 (en) 2012-07-05 2017-10-10 Tsinghua University Membrane electrode and fuel cell using the same
US10029242B2 (en) 2012-07-05 2018-07-24 Tsinghua University Carbon nanotube-metal particle composite and catalyst comprising the same
TWI468340B (en) * 2012-08-07 2015-01-11 Univ Ishou Iridium doped nanotubes, electrodes and sensing devices

Also Published As

Publication number Publication date
TWI406711B (en) 2013-09-01

Similar Documents

Publication Publication Date Title
US8871300B2 (en) Method for making carbon nanotube based composite
CN101787502B (en) Method for preparing metal, metallic oxide or metallic hydroxide and carbon nano tube composite
Yang et al. Ultrafine palladium-gold-phosphorus ternary alloyed nanoparticles anchored on ionic liquids-noncovalently functionalized carbon nanotubes with excellent electrocatalytic property for ethanol oxidation reaction in alkaline media
Cornelio et al. Palladium nanoparticles on carbon nanotubes as catalysts of cross-coupling reactions
Guerra et al. Hybrid materials based on Pd nanoparticles on carbon nanostructures for environmentally benign C–C coupling chemistry
JPWO2021020377A5 (en)
CN1150997C (en) Method for coating mono-metal particles on carbon nano tube surface
KR101622033B1 (en) Method for manufacturing carbon carrior - metal nano particles composite and carbon carrior - metal nano particles composite manufactured by the method
TWI464953B (en) Membrane electrode and fuel cell using the same
TW201223642A (en) Method for making carbon nanotube-metal particle composite
Kardimi et al. Synthesis and characterization of carbon nanotubes decorated with Pt and PtRu nanoparticles and assessment of their electrocatalytic performance
JP2013514457A (en) Electrochemical oxygen reduction method in alkaline medium
WO2008138269A1 (en) A carbon nitride nanotube loaded with platinum and ruthenium nanoparticles electrode catalyst and its preparation
CN101857217A (en) Carbon nano tube metal composition and preparation method thereof
CN110385126B (en) High-dispersity ultra-small carbon-supported noble metal catalyst and preparation method thereof
CN1872417A (en) Nucleocapsid catalyst in use for fuel cell and preparation method
TWI468225B (en) Carbon nanotube based composte and catalyst material including the same
KR20150051184A (en) Fuel cell and method for manufacturing the same
TWI460125B (en) Method for making carbon nanotube based composite
KR20070028528A (en) Method for producing catalyst
Hossain Bimetallic Pd–Fe supported on nitrogen-doped reduced graphene oxide as electrocatalyst for formic acid oxidation
KR20110033652A (en) Manufacturing method of highly electrically conductive carbon nanotube-metal composite
CN108940333B (en) Preparation method of bimetal oxide/carbon nitride/carbon nano tube compound
JP2012030178A (en) Method of manufacturing metal particle-supported catalyst, metal particle-supported catalyst, and reaction method
Long et al. Ultrafine and Well-Dispersed Nickel Nanoparticles with Hierarchical Structure for Catalytically Breaking a Boron–Hydrogen Bond