WO2022076359A1 - Procédé de fabrication d'éthers énoliques - Google Patents

Procédé de fabrication d'éthers énoliques Download PDF

Info

Publication number
WO2022076359A1
WO2022076359A1 PCT/US2021/053498 US2021053498W WO2022076359A1 WO 2022076359 A1 WO2022076359 A1 WO 2022076359A1 US 2021053498 W US2021053498 W US 2021053498W WO 2022076359 A1 WO2022076359 A1 WO 2022076359A1
Authority
WO
WIPO (PCT)
Prior art keywords
ether
acid
found
exact mass
benzene
Prior art date
Application number
PCT/US2021/053498
Other languages
English (en)
Inventor
Matthew Allen BOONE
Original Assignee
Eastman Chemical Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Chemical Company filed Critical Eastman Chemical Company
Publication of WO2022076359A1 publication Critical patent/WO2022076359A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/009Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in combination with chemical reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/30Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/28Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/29Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group by introduction of oxygen-containing functional groups

Definitions

  • a PROCESS FOR MAKING ENOL ETHERS FIELD OF THE INVENTION This application relates to chemistry in general. In particular, this application relates to a process for preparing an enol ether. BACKGROUND OF THE INVENTION [0002]
  • Enol ethers are useful in a variety of chemical applications such as diluents, wetting agents and paint additives and as intermediates in chemical processes. Diluents, wetting agents and paint additives often are volatile and evaporate into the atmosphere during use. For example, coalescing aids that are added to water-based paints, act as temporary plasticizers in latex emulsions.
  • the coalescing aids lowers the glass transition temperature (Tg) of the latex polymer and as the paint dries, the polymers that have been softened by the coalescing aid are allowed to flow together and form a film after the water has left the system.
  • Coalescing aids that are volatile evaporate out of the film. This allows the polymer to return to the original Tg thereby giving harder films for better block and print resistant coatings.
  • Enol ethers are materials that can be used as paint additives, diluents, wetting agents and coalescing aids and that can exhibit low volatility.
  • Enol ethers are traditionally synthesized in a two-stage fashion by contacting an aldehyde with an alcohol in the presence of an acid catalyst to generate an intermediate acetal, which can be thermally cracked to generate the product (Scheme 1).
  • this equilibrium transformation is carried out in a refluxing solvent that forms an azeotrope with water (e.g. toluene) so that the water formed during the condensation can be removed thereby pushing the equilibrium to form the desired product.
  • the intermediate acetal Upon addition of another alcohol, the intermediate acetal will scramble and liberate the lower-boiling alcohol component.
  • the advantage of such a process lies in harnessing the ability of the lower-boiling alcohol to act as both an azeotroping aid and reactant. [0007] This process also enables the synthesis of a blend of enol ethers. The ability to “dial-in” a specific composition is desirable since the resulting mixture of components may influence the development of properties in a downstream application. For architectural coatings, this could have utility in development of overall film integrity.
  • the present application relates to enol ethers and a method of making enol ethers comprising reacting (i) an acetal and or an alcohol or mixtures thereof with (ii) an aldehyde, in the presence of an acidic catalyst to form an enol ether.
  • the invention is a method of making enol ethers comprising reacting a di-aldehyde and an alcohol in the presence of catalyst wherein the catalyst is selected from the group consisting of phosphoric acid, phosphonic acid, phosphinic acid, phosphotungstic acid, tungstosilicic acid, phosphomolybdic acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoromethane sulfonic acid, benzene sulfonic acid, ethane sulfonic acid, hydrogen chloride, sulfuric acid, trifluoroacetic acid, polystyrene sulfonate, perflurosulfonic acid polymers, sodium bisulfate, and alkaline metal salts thereof and mixtures thereof.
  • the catalyst is selected from the group consisting of phosphoric acid, phosphonic acid, phosphinic acid, phosphotungstic acid, tungstosilicic acid, phosphomolybdic acid, p
  • the invention is a method of making enol ethers comprising; a. combining a dialdehyde, an aliphatic alcohol and an acid catalyst in a solvent to form a first reaction mixture; b. heating said first reaction mixture under vacuum while removing alcohol and water from the reaction mixture; c. separating enol ether from said reaction mixture.
  • the invention is a method of making enol ethers comprising: a. combining a dialdehyde, an aliphatic alcohol and an acid catalyst in a solvent to form a first reaction mixture; b. heating said first reaction mixture under vacuum while removing alcohol and water from the reaction mixture to form a second reaction mixture; c.
  • the invention is a method to produce the following enol ethers: , ,
  • Alkyl means an aliphatic hydrocarbon.
  • the alkyl can specify the number of carbon atoms, for example (C1-5)alkyl.
  • the alkyl group can be unbranched or branched. In some embodiments, the alkyl group is branched. In some embodiments, the alkyl group is unbranched.
  • alkanes include methane, ethane, propane, isopropyl (i.e., branched propyl), butyl, and the like.
  • Alkenyl means an aliphatic hydrocarbon with one or more unsaturated carbon-carbon bonds. The alkenyl can specify the number of carbon atoms, for example (C 2-12 )alkenyl. Unless otherwise specified, the alkyl group can be unbranched or branched. In some embodiments, the alkyl group is branched. In some embodiments, the alkyl group is unbranched.
  • alkanes include ethynyl, propenyl, butenyl, hexa-3,5- dienyl, and the like.
  • Alcohol means a chemical containing one or more hydroxyl groups.
  • Aldehyde means a chemical containing one or more -C(O)H groups.
  • Cycloalkyl means a cyclic hydrocarbon compound. The cycloalkyl can specify the number of carbon atoms in ring system, for example (C3- 8)cycloalkyl.
  • Non-limiting examples of cycloalkyl include cyclopropyl, cyclobutyl, cyclohexyl, and cyclooctyl.
  • Aryl means a ring system made up carbon atoms that has at least one ring that is aromatic. The carbon units making up the aryl ring may be specified, for example 5- to 9-membered aryl.
  • Non-limiting examples of aryl include phenyl, naphthyl, 2,3-dihydro-1H-indene, and 1,2,3,4- tetrahydronaphthalene.
  • Values may be expressed as “about” or “approximately” a given number.
  • ranges may be expressed herein as from “about” one particular value and/or to “about” or another particular value. When such a range is expressed, another aspect includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another aspect. [0022] As used herein, the terms “a,” “an,” and “the” mean one or more. [0023] As used herein, the term “and/or,” when used in a list of two or more items, means that any one of the listed items can be employed by itself or any combination of two or more of the listed items can be employed.
  • composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination, B and C in combination; or A, B, and C in combination.
  • the terms “comprising,” “comprises,” and “comprise” are open-ended transition terms used to transition from a subject recited before the term to one or more elements recited after the term, where the element or elements listed after the transition term are not necessarily the only elements that make up the subject.
  • the terms “having,” “has,” and “have” have the same open-ended meaning as “comprising,” “comprises,” and “comprise” provided above.
  • the terms “including,” “includes,” and “include” have the same open-ended meaning as “comprising,” “comprises,” and “comprise” provided above.
  • “Chosen from” as used herein can be used with “or” or “and.” For example, Y is chosen from A, B, and C means Y can be individually A, B, or C.
  • Y is chosen from A, B, or C means Y can be individually A, B, or C; or a combination of A and B, A and C, B and C, or A, B, and C.
  • numerical ranges are intended to include the beginning number in the range and the ending number in the range and all numerical values and ranges in between the beginning and ending range numbers.
  • the range 40° C to 60° C includes the ranges 40° C to 59° C, 41° C to 60° C, 41.5° C to 55.75° C and 40°, 41°, 42°, 43°, etc. through 60° C.
  • enol ethers which can be used in applications such as (but not limited to) diluents, wetting agents, coalescing aids and paint additives.
  • the present application is directed to a process for preparing an enol ether which comprises reacting (i) an acetal or an alcohol, with (ii) an aldehyde, in the presence of an acid catalyst.
  • the alcohol is R 1a OH, R 1b OH, or HO-R 1c -OH or the acetal is R 1a , R 1b , and R 1c are independently (C 1-12 )alkyl, (C 2-12 )alkenyl, (C3- 8)cycloalkyl, or 5- to 9-membered aryl or each R 4 is independently hydrogen, (C 1-12 )alkyl, (C 2-12 )alkenyl, or - C(O)R 5 ; each R 5 is independently (C 1-12 )alkyl unsubstituted or substituted by R 6 , (C 2-12 )alkenyl unsubstituted or substituted by R 6 , (C 3-8 )cycloalkyl, or 5- to 9-membered aryl; each R 6 is independently (C 1-4 )alkoxy, or oxo; and each n is independently an integer from 1 to 15 or each R 7 is independently
  • the alcohol can contain one or more alcohol groups.
  • the alcohol can be a mono-ol, a diol or triol.
  • Suitable alcohols include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, ethylene glycol monomethyl ether, ethylenene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monoisopropyl ether, diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, triethylene glycol monopropyl ether, triethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol
  • the acetal can be made from one alcohol or a mixture of alcohols. Suitable acetals include any combination made from an alcohol or aldehyde described therein including an alcohol selected from ethylene glycol monomethyl ether, ethylenene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monoisopropyl ether, diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, triethylene glycol monopropyl ether, triethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether, dipropylene glycol mono
  • the aldehyde can contain one or more aldehyde groups.
  • the aldehyde can be a mono-al, a di-al or a trial.
  • Suitable aldehydes include 2-phenylpropanal, 4-(1-oxopropan-2-yl)benzonitrile, 2-(4- methoxyphenyl)propanal, 2-(3,4-dimethoxyphenyl)propanal, 2,2- diphenylacetaldehyde, 2-(4-methoxyphenyl)-2-phenylacetaldehyde, 2,2-bis(4- methoxyphenyl)acetaldehyde, 2-phenyl-2-(p-tolyl)acetaldehyde, 2,2-di-p- tolylacetaldehyde, 2,2'-(1,3-phenylene)dipropanal, 2,2'-(1,4- phenylene)dipropanal, 2,2'-(1,3-phenylene)
  • the acid and or acid salt catalyst can be any chemical capable of donating a proton or a chemical capable of forming a covalent bond with an electron pair.
  • Nonlimiting examples include phosphoric acid, phosphonic acid, phosphinic acid, phosphotungstic acid, tungstosilicic acid, phosphomolybdic acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoromethane sulfonic acid, benzene sulfonic acid, ethane sulfonic acid, hydrogen chloride, sulfuric acid, trifluoroacetic acid, polymeric acids such as polystyrene sulfonate, perfluorosulfonic acid resin (e.g.
  • the alcohol is present in an amount of 100 mol %, based on 100 mol % of the aldehyde. In some embodiments, the alcohol is present in the range of from about 100 mol % to about 400 mol %, based on 100 mol % of the aldehyde.
  • the alcohol is present in the range of from about 100 mol % to about 300 mol %, based on 100 mol % of the aldehyde. In some embodiments, the alcohol is present in the range of from about 100 mol % to about 200 mol %, based on 100 mol % of the aldehyde. [0037] In some embodiments of this invention, the process yields of the enol ether are greater than 50%, based on the acetal or the aldehyde. In some embodiments, the enol ether has a Gardner color of less than 2 as measured according to ASTM D 1544.
  • the enol ether has a Gardner color of less than 1 as measured according to ASTM D 1544.
  • the process further comprises 0.01 to about 50 mol % of an acid catalyst, and 0.99 to about 50 mol % of an acid catalyst, based on 100 mol % of the catalyst in the reaction mixture. In some embodiments, the process comprises 0.01 to 10 mol % of an acid catalyst.
  • the yield of the enol ether is greater than 60%, based on the acetal or the aldehyde. In some embodiments, the yield of the enol ether is greater than 70%, based on the acetal or the aldehyde.
  • the yield of the enol ether is greater than 80%, based on the acetal or the aldehyde. In some embodiments, the yield of the enol ether is greater than 90%, based on the acetal or the aldehyde.
  • the application is directed to a process for preparing an enol ether comprising: 1) reacting (i) an acetal or an alcohol, with (ii) an aldehyde, in the presence of an acid catalyst to form a reaction mixture; and 2) separating enol ether from said reaction mixture. [0041] In some embodiments, the process is carried out by reactive distillation conditions.
  • the distillation is carried out in two phases, wherein the excess glycol ether solvent is initially removed and then further removed as the intermediate acetal cracks to produce additional glycol ether and the product enol ether.
  • the distillative action of removing glycol ether as it is liberated in the thermal cracking reaction pushes the equilibrium to favor formation of the enol ether.
  • the yield of the separated enol ether is greater than 50%, based on the acetal or the aldehyde. In some embodiments, the yield of the separated enol ether is greater than 60%, based on the acetal or the aldehyde.
  • the yield of the separated enol ether is greater than 70%, based on the acetal or the aldehyde. In some embodiments, the yield of the separated enol ether is greater than 80%, based on the acetal or the aldehyde. In some embodiments, the yield of the separated enol ether is greater than 90%, based on the acetal or the aldehyde. [0043] In some embodiments, the separated enol ether of step 2) has a Gardner color of less than 3 as measured according to ASTM D 1544. In some embodiments, the separated enol ether of step 2) has a Gardner color of less than 2 as measured according to ASTM D 1544.
  • the reaction of step 1) is carried out at a temperature range of from about 80°C to about 300°C. In some embodiments, the temperature is 100°C to 300°C. In some embodiments, the temperature is 120°C to 300°C. In some embodiments, the temperature is 150°C to 300°C. In some embodiments, the temperature is 200°C to 300°C. In some embodiments, the temperature is 110°C to 185°C. [0045] In some embodiments of the process, the pressure at which the reaction of step 1) is carried out is from about 101.3 kPa to about 0.1 kPa. In some embodiments, the reaction pressure is 90 kPa to 0.1 kPa.
  • the pressure is 70 kPa to 0.1 kPa. In some embodiments, the pressure is 50 kPa to 0.1 kPa. In some embodiments, the pressure is 30 kPa to 0.1 kPa. In some embodiments, the pressure is 10 kPa to 0.1 kPa. In some embodiments, the pressure is 5 kPa to 0.1 kPa. In some embodiments, the pressure is 3 kPa to 0.1 kPa. In some embodiments, the pressure is 2 kPa to about 0.1 kPa. In some embodiments the pressure is 1 kPa to about 0.1 kPa.
  • step 2) the enol ether is separated by distillation.
  • the pressure of the distillation step 2) is from about 90 kPa to about 0.1 kPa and a temperature of from about 50°C to about 300°C.
  • the distillation pressure is 70 kPa to 0.1 kPa.
  • the pressure is 50 kPa to 0.1 kPa.
  • the pressure is 30 kPa to 0.1 kPa.
  • the pressure is 10 kPa to 0.1 kPa.
  • the pressure is 5 kPa to 0.1 kPa.
  • the pressure is 3 kPa to 0.1 kPa. In some embodiments, the pressure is 2 kPa to 0.1 kPa. In some embodiments, the pressure is 1 kPa to 0.1 kPa.
  • the temperature of the distillation step 2) from about 50°C to about 300°C, and a pressure of from about 101.3 kPa to about 0.1 kPa. In some embodiments, the temperature is 80°C to 300°C. In some embodiments, the temperature is 100°C to 300°C. In some embodiments, the temperature is 120°C to 300°C. In some embodiments, the temperature is 150°C to 300°C.
  • the temperature is 200°C to 300°C.
  • the distillation to separate the enol ether is carried out at a temperature range of from about 50°C to about 300°C, and at a pressure of from about 101.3 kPa to about 0.1 kPa.
  • step 2) the by-products or unreacted reagents (ex, excess alcohol and aldehyde or acetal) of the reaction can first be separated from the reaction mixture by distillation, followed by: (a) the enol ether being separated by distillation, or (b) the enol ether is removed from the reaction vessel without distillation.
  • the by-products or unreacted reagents is separated by distillation at a temperature in the range of from about 110°C to about 185°C, and the enol ether is separated at a temperature of from about 185°C to about 300°C.
  • the process comprises: 1) reacting: (i) an acetal; or (ii) an alcohol, and an aldehyde; in the presence of phosphoric acid, phosphotungstic acid, or tungstosilicic acid wherein the reaction is carried out at a temperature range of from about 50°C to about 300°C, wherein the acid catalyst is present from ab out 0.01 to about 20 mol % based on 100 mol % of the aldehyde or the acetal; and (2) separating the enol ether, wherein the enol ether has a Gardner color of less than 2 as measured according to ASTM D 1544, and wherein the yield of the separated enol ether is greater than 70%, based on the acetal or the aldehyde [0053]
  • step 1) further comprises 0.01 to about 50 mole % of an acid, chosen from phosphoric acid, phosphotungstic acid, or tungstosilicic acid.
  • the acid is the conjugate acid of the catalyst chosen from phosphoric acid, phosphotungstic acid, or tungstosilicic acid.
  • step 1) further comprises 0.01 to about 0.1 mole % of an acid, chosen from phosphoric acid, phosphotungstic acid, or tungstosilicic acid.
  • the acid is the conjugate acid of phosphoric acid, phosphotungstic acid, or tungstosilicic acid.
  • the aromatic enol ethers produced by this method are represented by Formula I.
  • Formula I is I wherein: A is (C 8-20 )alkylaryl; each R 1a and R 1b are independently (C1- 12)alkyl, (C 2-12 )alkenyl, (C 3-8 )cycloalkyl, or 5- to 9-membered aryl or each R 4 is independently hydrogen, (C 1-12 )alkyl, (C 2-12 )alkenyl or - C(O)R 5 ; each R 5 is (C 1-12 )alkyl unsubstituted or substituted by R 6 , (C2- 12)alkenyl unsubstituted or substituted by R 6 , (C 3-8 )cycloalkyl, or 5- to 9- membered aryl; R 6 is (C 1-4 )alkoxy, or oxo; and each n is independently an integer from 1 to 15 or each R 7 is independently (C 1-12 )alkyl.
  • a in Formula I is 1,2-, 1,3-, or 1,4- disubstituted phenyl.
  • each n is an integer from 1 to 3.
  • each R 4 is hydrogen.
  • each R 4 is (C 1-12 )alkyl.
  • each R 4 is independently ethyl.
  • each R 4 is (C 2-12 )alkenyl.
  • each R 4 is -C(O)R 5 .
  • each R 5 is (C 1-12 )alkyl unsubstituted or substituted by R 6 .
  • each R 5 is (C1- 12)alkenyl unsubstituted or substituted by R 6 . In some embodiments, each R 5 is (C 3-8 )cycloalkyl. In some embodiments, each R 5 is 5- to 9-membered aryl. [0060] In some embodiments of Formula I, each n is an integer from 1 to 2. In some embodiments, each n is an integer from 1 to 3. In some embodiments, each n is an integer from 1 to 4. In some embodiments, each n is an integer from 1 to 5. In some embodiments, n is an integer from 1 to 6. In some embodiments, n is an integer from 1 to 7. In some embodiments, n is an integer from 1 to 8.
  • n is an integer from 1 to 9. In some embodiments, n is an integer from 1 to 10. In some embodiments, n is an integer from 1 to 11. In some embodiments, n is an integer from 1 to 12. In some embodiments, n is an integer from 1 to 13. In some embodiments, n is an integer from 1 to 14. In some embodiments, n is an integer from 1 to 15. [0061] In some embodiments, the compounds of Formula I have a volatile organic content of less than 50 wt % according to ASTM D6886. In some embodiments, the volatile organic content is less than 30 wt %. In some embodiments, the volatile organic content is less than 10 wt %. In some embodiments, the volatile organic content is less than 5 wt %.
  • the volatile organic content is less than 3 wt %. In some embodiments, the volatile organic content is less than 2 wt %. In some embodiments, the volatile organic content is less than 1 wt %. In some embodiments, the volatile organic content is less than 0.8 wt %.
  • Compounds [0062] The enol ether compounds disclosed in the present application exhibit a low volatile organic content (less than 50 wt %, but as low as 0.7 wt % according to ASTM D6886). The enol ethers can be used as reactive film- hardening compounds. Reactive film-hardening compounds react with components in coating compositions to form bonds in the films providing improved film properties.
  • the enol ether compounds of this invention can be used as reactive film-hardening additives, we mean when added to a coating composition, that a harder film is obtained upon curing the composition than is obtained in the absence of the invention enol ether additives, or that the coating composition exhibits a higher gel fraction than in the absence of the enol ether additive, or that both coating composition hardness and increased gel fraction properties are improved by the addition of the enol ether reactive film-hardening additives.
  • the increase in hardness observed in a coating that contains the enol ether additives described herein may be the result of a chemical reaction, so that the additives described herein may be described as “reactive” enol ether film-hardening additives.
  • the materials described herein can also facilitate the individual latex particles coming together to form a continuous film at a given temperature by reducing the minimum film-forming temperature (MFFT) of the latex polymer.
  • the compounds of Formula I are enol ethers represented by Formulas 44-93:
  • the enol ethers depicted by Formulas 44-93 are representative of the enol ethers claimed herein. Isomers of the enol ethers depicted by Formulas 44-93 are also expected to be produced during synthesis of the enol ethers depicted by Formulas 44-93. All isomers of the enol ethers depicted by Formulas 44-93 and are within the scope of the claims set forth herein. Representative isomers are described in the examples herein below.
  • the compounds depicted by Formula I of the present invention include those having a weight percent volatile content of less than 50%, as measured according to ASTM Method D6886.
  • This test may be conducted generally by heating the sample in a forced air oven at 110°C. for 60 minutes. The weight loss after the test is deemed to result from a loss of volatiles originally present in the sample; the percent volatile present in the original sample may then be calculated.
  • the cited test can be conducted on coating compositions containing other components such as latex polymers, the values cited herein may be obtained from a sample of the additive itself. The weight percent volatile of a film-hardening aid may be used herein as a yardstick to measure the amount of VOC the additive would contribute to the VOC in a particular end use such as a component of a coating composition.
  • aqueous layer was back-extracted with 250 mL of ethyl acetate using a separatory funnel.
  • the organics were combined, dried with MgSO4 and simultaneously treated with 5g of activated carbon.
  • the mixture was filtered, and volatiles were removed under reduced pressure using a rotary evaporator.2,2'-(1,4-phenylene)bis(1-methoxypropan-2-ol) was isolated as a white solid [ LC-MS (Column A) tR : 3.80 min (Exact mass : 254.15 m/z, found 254.2 m/z )].
  • dialdehyde [0071] The 2,2'-(1,4-phenylene)bis(1-methoxypropan-2-ol) 100 was then dissolved in formic acid (88%, 98.0 g) contained within a 500 mL, 4-necked round-bottom flask fitted with thermocouple, overhead stirrer, and nitrogen inlet atop a reflux condenser. The mixture was heated to 100 °C. After 6 hrs, additional formic acid was added (98.0 g). After an additional 2 hrs, GC indicated >99% conversion to 2,2'-(1,4-phenylene)dipropanal. The volatiles were then removed under reduced pressure using a rotary evaporator.
  • 2,2'-(1,3-phenylene)dipropanal [4] [0072] 2,2'-(1,3-phenylene)bis(1-methoxypropan-2-ol) was prepared in a similar manner to di-carbinol 2 using the dicarbinol preparation procedure described herein above. [LC-MS (Column B) tR : 4.55 min, 4.68 min (Exact mass: 254.15 m/z, found 254.2 m/z)]. 2,2'-(1,3-phenylene)dipropanal was prepared using the di-aldehyde preparation procedure described herein above.
  • Example 1 Preparation of (E/Z)- (1-(2-(2-butoxyethoxy)ethoxy)prop-1- en-2-yl)benzene [1] GC-MS (Instrument A) tR: 9.54 min, 9.72 min (Exact mass: 280.1675 m/z, found 280.1675 m/z).
  • Example 2 Preparation of (E/Z)-13-phenyl-2,5,8,11-tetraoxatetradec-12- ene [2] GC-MS (Instrument A) tR: 9.54 min, 9.72 min (Exact mass: 280.1675 m/z, found 280.1675 m/z).
  • Example 4 Preparation of a mixture of (2E/Z, 14E/Z) 2,15-diphenyl- 4,7,10,13-tetraoxahexadeca-2,14-diene [4a] and (E/Z)-2-(2-(2-((2- phenylprop-1-en-1-yl)oxy)ethoxy)ethoxy)ethan-1-ol [4b] GC-MS (Instrument A) tR: 9.60 min, 9.80 min (Exact mass: 266.1518 m/z, found: 266.1518 m/z), 12.42 min, 12.62 min, 12.84 min (Exact mass: 382.2144 m/z, found: 382.2144 m/z).
  • Example 5 Preparation of an isomeric mixture of (E/Z) - 2,2,4-trimethyl- 3-((2-phenylprop-1-en-1-yl)oxy)pentyl isobutyrate [5a] and (E/Z) - 2,2,4- trimethyl-1-((2-phenylprop-1-en-1-yl)oxy)pentan-3-yl isobutyrate [5b] GC-MS (Instrument B) tR: 17.28 min, 17.46 min, 17.69 min, 18.06 min (Exact mass: 332.24 m/z, found: 332.3 m/z).
  • Example 6 Preparation of (E/Z)-1-(1-(2-(2-ethoxyethoxy)ethoxy)prop-1- en-2-yl)-4-methoxybenzene [6]
  • Example 8 Preparation of (E/Z)-1-methoxy-4-(1-((1-((1-methoxypropan- 2-yl)oxy)propan-2-yl)oxy)prop-1-en-2-yl)benzene [8] GC-MS (Instrument B) tR: 17.09 min, 17.21 min, 17.43 min, 17.55 min (Exact mass: 294.18 m/z, found: 294.1 m/z).
  • Example 10 Preparation of (E/Z) - 4-(1-(2-(2-butoxyethoxy)ethoxy)prop- 1-en-2-yl)-1,2-dimethoxybenzene [10] GC-MS (Instrument B) tR: 19.64 min, 20.22 min (Exact mass: 338.21 m/z, found: 338.3 m/z).
  • Example 12 Preparation of (2-(2-butoxyethoxy)ethene-1,1- diyl)dibenzene [12] GC-MS (Instrument A) tR: 10.34 min (Exact mass: 296.1776 m/z, found: 296.1776 m/z).
  • Example 13 Preparation of (2-(2-(2-methoxyethoxy)ethoxy)ethene-1,1- diyl)dibenzene [13] GC-MS (Instrument A) tR: 10.48 min (Exact mass: 298.1569 m/z, found: 298.1569 m/z).
  • Example14 Preparation of (2-(2-(2-ethoxyethoxy)ethoxy)ethene-1,1- diyl)dibenzene [14] GC-MS (Instrument A) tR: 10.67 min (Exact mass: 312.1725 m/z, found: 312.1725 m/z ).
  • Example 15 Preparation of (2-(2-(2-butoxyethoxy)ethoxy)ethene-1,1-diyl) dibenzene [15] GC-MS (Instrument A) tR: 11.29 min (Exact mass: 340.2038 m/z, found: 340.2038 m/z).
  • Example 16 Preparation of 1,1-diphenyl-3,6,9,12-tetraoxahexadec-1-ene [16] GC-MS (Instrument A) tR: 12.18 min (Exact mass: 384.2301 m/z, found: 384.2301 m/z).
  • Example 17 Preparation of 2-(2-((2,2-diphenylvinyl)oxy)ethoxy)ethyl acetate [17]
  • Example 19 Preparation of (E/Z)-1-(2-(2-(2-ethoxyethoxy)ethoxy)-1- phenylvinyl)-4-methylbenzene [19] GC-MS (Instrument B) tR: 19.94 min, 20.06 min (Exact mass: 326.19 m/z, found 326.3 m/z).
  • Example 20 Preparation of 4,4'-(2-(2-(2-ethoxyethoxy)ethoxy)ethene- 1,1-diyl)bis(methylbenzene) [20] GC-MS (Instrument B) tR: 20.95 min (Exact mass: 340.20 m/z, found: 340.3 m/z).
  • Example 21 Preparation of (E/Z)-1-methoxy-4-(2-((1-methoxypropan-2- yl)oxy)-1-phenylvinyl)benzene [21] GC-MS (Instrument B) tR : 18.58 min, 18.65 min (Exact mass: 298.16 m/z, found: 298.1 m/z).
  • Example 22 Preparation of (E/Z)-1-(2-(2-(2-ethoxyethoxy)ethoxy)-1- phenylvinyl)-4-methoxybenzene [22]
  • Example 24 Preparation of (E/Z) - 1-(2-(2-(2-butoxyethoxy)ethoxy)-1- phenylvinyl)-4-methoxybenzene [24] GC-MS (Instrument B) tR : 23.91 min, 24.16 min (Exact mass: 370.21 m/z, found: 370.3 m/z).
  • Example 25a and 25b A mixture of 1,1,14,14-tetraphenyl-3,6,9,12- tetraoxatetradeca-1,13-diene [25a] and 2-(2-(2-((2,2- diphenylvinyl)oxy)ethoxy)ethoxy)ethan-1-ol [25b] GC-MS (Instrument B) tR : 21.68 min (Exact mass 25b: 328.17 m/z, found: 238.2 m/z), 58.24 min (Exact mass 25a: 506.25 m/z, found: 506.3 m/z).
  • Example 26a and 26b Preparation of Example 26, a mixture of (E/Z, E/Z) 2,15-bis(4-methoxyphenyl)-4,7,10,13-tetraoxahexadeca-2,14-diene [26a] and (E/Z) - 2-(2-(2-((2-(4-methoxyphenyl)prop-1-en-1- yl)oxy)ethoxy)ethan-1-ol [26b].
  • Example 29 Preparation of (E,E/Z,Z) - 1,4-bis(4,7,10-trimethyl-2,5,8,11- tetraoxatetradec-12-en-13-yl)benzene [29].
  • GC-MS (Instrument B) tR 40.2 min, 43.0 min, 57.1 min, 67.9 min (Exact mass: 566.38 m/z, found 566 m/z).
  • Example 30 Preparation of (E,E/Z,Z) - 1,4-bis(1-(2-(2-methoxyethoxy) ethoxy)prop-1-en-2-yl)benzene [30].
  • Example 32 Preparation of (E,E/Z,Z) - 1,4-bis(1-(2-(2- propoxyethoxy)ethoxy) prop-1-en-2-yl)benzene [32].
  • Example 33 Preparation of (E,E/Z,Z) - 1,4-bis(1-(2-(2- butoxyethoxy)ethoxy)prop-1-en-2-yl)benzene [33].
  • Example 35 Preparation of (E,E/Z,Z) - 1,4-di(4,7,10,13-tetraoxaheptadec- 2-en-2-yl)benzene [35].
  • Example 36 Preparation of (E,E/Z,Z) - 1,3-bis(1-((1-((1-methoxypropan- 2-yl)oxy)propan-2-yl)oxy)prop-1-en-2-yl)benzene [36].
  • the mixture was sparged (sub-surface) with nitrogen at a flow rate of 250 mL/min. The system was then pulled under vacuum. The reaction mixture was heated to 75°C. The lower-boiling alcohol component was continuously removed from the reaction to facilitate water- removal. Over the course of the reaction, fresh lower-boiling alcohol component was added back to the reaction flask such that the liquid volume was maintained up to the marked liquid level on the flask.
  • GC and NMR confirmed >99.5% conversion of aldehyde
  • the reaction mixture was cooled to ambient temperature and then diluted with a minimal amount of toluene. This mixture was then poured into water containing 1.25 equiv. of NaOH. The layers were separated and the organics were washed with water three times.
  • the mixture was cooled to 65 °C and the organic liquid was removed via a filter-leg, leaving behind the NR50 catalyst for re-use in the next acetalization.
  • the organics were stripped under reduced pressure to remove excess butanol.
  • the acetal (200 g) was then transferred to a 4-necked 1L round-bottom flask with magnetic stir bar, thermocouple, and short-path distillation head.
  • Diethylene glycol mono-propyl ether (DP solvent, 164 g, 2.5 equiv.) was added, followed by molten ortho- phosphoric acid (250 microliters).
  • Example 44 A mixture of (E,E/Z,Z) - 1,4-bis(1-(2-(2- propoxyethoxy)ethoxy)prop-1-en-2-yl)benzene [32], (E,E/Z,Z) - 1-(1-(2-(2- propoxyethoxy)ethoxy)prop-1-en-2-yl)-4-(1-propoxyprop-1-en-2- yl)benzene [47], and (E,E/Z,Z) - 1,4-bis(1-propoxyprop-1-en-2-yl)benzene [44]
  • Example 45 A mixture of (E,E/Z,Z) - 1,4-bis(1-(2-(2- propoxyethoxy)ethoxy)prop-1-en-2-yl)benzene [32], (E,E/Z,Z) - 1-(1- butoxyprop-1-en-2-yl)-4-(1-(2-(2-propoxyethoxy)ethoxy)prop-1-en-2- yl)benzene [48], and (E,E/Z,Z) - 1,4-bis(1-butoxyprop-1-en-2-yl)benzene [45] GC-MS (Instrument B) tR : 29.65 min, 33.18 min, 37.42 min (32, Exact mass: 450.3 m/z, found: 450.4 m/z), 21.71 min, 22.84 min, 22.97 min, 24.34 min (48, Exact mass: 376.3 m/z, found: 376.3 m/z), 18.15 min, 18.68 min, 19.22 min
  • Example 46 A mixture of (E,E/Z,Z) - 1,4-bis(1-(2-(2- propoxyethoxy)ethoxy)prop-1-en-2-yl)benzene [32], (E,E/Z,Z) - 1-(1- isobutoxyprop-1-en-2-yl)-4-(1-(2-(2-propoxyethoxy)ethoxy)prop-1-en-2- yl)benzene [49], and (E,E/Z,Z) - 1,4-bis(1-isobutoxyprop-1-en-2- yl)benzene [46] GC-MS (Instrument B) tR : 29.60 min, 33.18 min, 37.48 min (32, Exact mass: 450.3 m/z, found: 450.4 m/z), 21.17 min, 22.28 min, 23.51 min (49, Exact mass: 376.3 m/z, found: 376.3 m/z), 17.58 min, 18.06 min, 18.55 min
  • Example 47 A mixture of (E,E/Z,Z) - 1,4-bis(1-(2-(2- isopropoxyethoxy)ethoxy)prop-1-en-2-yl)benzene [68], (E,E/Z,Z) - 1-(1-(2- (2-isopropoxyethoxy)ethoxy)prop-1-en-2-yl)-4-(1-propoxyprop-1-en-2- yl)benzene [50], and (E,E/Z,Z) - 1,4-bis(1-propoxyprop-1-en-2-yl)benzene [44]
  • Example 48 A mixture of (E,E/Z,Z) - 1,4-bis(1-(2-(2- isopropoxyethoxy)ethoxy)prop-1-en-2-yl)benzene [68], (E,E/Z,Z) - 1-(1- butoxyprop-1-en-2-yl)-4-(1-(2-(2-isopropoxyethoxy)ethoxy)prop-1-en-2- yl)benzene [51], and (E,E/Z,Z) - 1,4-bis(1-butoxyprop-1-en-2-yl)benzene [45] GC-MS (Instrument B) tR : 26.94 min, 29.67 min, 32.88 min (68, Exact mass: 450.3 m/z, found: 450.4 m/z), 21.08 min, 22.19 min, 23.43 min (51, Exact mass: 376.3 m/z, found: 376.3 m/z), 18.14 min, 18.68 min, 19.22 min (
  • Example 49 A mixture of (E,E/Z,Z) - 1,4-bis(1-(2-(2- isopropoxyethoxy)ethoxy)prop-1-en-2-yl)benzene [68], (E,E/Z,Z) - 1-(1- isobutoxyprop-1-en-2-yl)-4-(1-(2-(2-isopropoxyethoxy)ethoxy)prop-1-en- 2-yl)benzene [52], and (E,E/Z,Z) - 1,4-bis(1-isobutoxyprop-1-en-2- yl)benzene [46] GC-MS (Instrument B) tR : 27.00 min, 29.67 min, 32.92 min (68, Exact mass: 450.3 m/z, found: 450.4 m/z), 20.59 min, 21.61 min, 21.74 min, 22.71 min (52, Exact mass: 376.3 m/z, found: 376.3 m/z), 17.63 min,
  • Example 50 A mixture of (E,E/Z,Z) - 1,4-bis(1-(2-(2- butoxyethoxy)ethoxy)prop-1-en-2-yl)benzene [33], (E,E/Z,Z) - 1-(1-(2-(2- butoxyethoxy)ethoxy)prop-1-en-2-yl)-4-(1-propoxyprop-1-en-2- yl)benzene [53], and (E,E/Z,Z) - 1,4-bis(1-propoxyprop-1-en-2-yl)benzene [44] GC-MS (Instrument B) tR : 39.95 min, 41.67 min, 48.54 min (33, Exact mass: 478.3 m/z, found: 478.4 m/z), 21.82 min, 22.69 min, 23.13 min, 24.10 min (53, Exact mass: 376.3 m/z, found: 376.3 m/z), 17.20 min, 17.57 min,
  • Example 51 A mixture of (E,E/Z,Z) - 1,4-bis(1-(2-(2- butoxyethoxy)ethoxy)prop-1-en-2-yl)benzene [33], (E,E/Z,Z) - 1-(1-(2-(2- butoxyethoxy)ethoxy)prop-1-en-2-yl)-4-(1-butoxyprop-1-en-2-yl)benzene [54], and (E,E/Z,Z) - 1,4-bis(1-butoxyprop-1-en-2-yl)benzene [45] GC-MS (Instrument B) tR : 35.97 min, 41.73 min, 48.77 min (33, Exact mass: 478.3 m/z, found: 478.4 m/z), 22.88 min, 24.29 min, 24.45 min, 26.14 min (54, Exact mass: 390.3 m/z, found: 390.3 m/z), 18.15 min, 18.68 min,
  • Example 52 A mixture of (E,E/Z,Z) - 1,4-bis(1-(2-(2- butoxyethoxy)ethoxy)prop-1-en-2-yl)benzene [33], (E,E/Z,Z) - 1-(1-(2-(2- butoxyethoxy)ethoxy)prop-1-en-2-yl)-4-(1-isobutoxyprop-1-en-2- yl)benzene [55], and (E,E/Z,Z) - 1,4-bis(1-isobutoxyprop-1-en-2- yl)benzene [46]
  • Example 53 A mixture of (E,E/Z,Z) - 1,3-bis(1-(2-(2- propoxyethoxy)ethoxy)prop-1-en-2-yl)benzene [40], (E,E/Z,Z) - 1-(1-(2-(2- propoxyethoxy)ethoxy)prop-1-en-2-yl)-3-(1-propoxyprop-1-en-2- yl)benzene [59], and (E,E/Z,Z) - 1,3-bis(1-propoxyprop-1-en-2-yl)benzene [56] GC-MS (Instrument B) tR : 27.34 min, 29.70 min, 32.94 min (40, Exact mass: 450.3 m/z, found: 450.4 m/z), 20.09 min, 20.60 min, 20.88 min, 21.58 min (59, Exact mass: 362.2 m/z, found: 362.3 m/z),16.80 min, 17.16 min, 17.46
  • Example 54 A mixture of (E,E/Z,Z) - 1,3-bis(1-(2-(2- propoxyethoxy)ethoxy)prop-1-en-2-yl)benzene [40] (E,E/Z,Z) - 1-(1- butoxyprop-1-en-2-yl)-3-(1-(2-(2-propoxyethoxy)ethoxy)prop-1-en-2- yl)benzene [60], and (E,E/Z,Z) - 1,3-bis(1-butoxyprop-1-en-2-yl)benzene [57] GC-MS (Instrument B) tR : 27.35 min, 29.69 min, 32.96 min (40, Exact mass: 450.3 m/z, found: 450.4 m/z), 20.79 min, 21.62 min, 21.77 min, 22.84 min (60, Exact mass: 376.3 m/z, found: 376.3 m/z), 17.71 min, 18.18 min, 18.68 min
  • Example 55 A mixture of (E,E/Z,Z) - 1,3-bis(1-(2-(2- propoxyethoxy)ethoxy)prop-1-en-2-yl)benzene [40], (E,E/Z,Z) - 1-(1- isobutoxyprop-1-en-2-yl)-3-(1-(2-(2-propoxyethoxy)ethoxy)prop-1-en-2- yl)benzene [61], and (E,E/Z,Z) - 1,3-bis(1-isobutoxyprop-1-en-2- yl)benzene [58] GC-MS (Instrument B) tR : 27.35 min, 29.71 min, 32.95 min (40, Exact mass: 450.3 m/z, found: 450.4 m/z), 20.35 min, 21.08 min, 21.24 min, 22.18 min (61, Exact mass: 376.3 m/z, found: 376.3 m/z), 17.16 min, 17.61
  • Example 56 A mixture of (E,E/Z,Z) - 1,3-bis(1-(2-(2- isopropoxyethoxy)ethoxy)prop-1-en-2-yl)benzene [69], (E,E/Z,Z) - 1-(1-(2- (2-isopropoxyethoxy)ethoxy)prop-1-en-2-yl)-3-(1-propoxyprop-1-en-2- yl)benzene [62], and (E,E/Z,Z) - 1,3-bis(1-propoxyprop-1-en-2-yl)benzene [56] GC-MS (Instrument B) tR : 25.17 min, 26.96 min, 29.48 min (69, Exact mass: 450.3 m/z, found: 450.4 m/z), 19.66 min, 20.12 min, 20.38 min, 20.98 min (62, Exact mass: 362.2 m/z, found: 362.3 m/z), 16.79 min, 17.13 min,
  • Example 57 A mixture of (E,E/Z,Z) - 1,3-bis(1-(2-(2- isopropoxyethoxy)ethoxy)prop-1-en-2-yl)benzene [69], (E,E/Z,Z) - 1-(1- butoxyprop-1-en-2-yl)-3-(1-(2-(2-isopropoxyethoxy)ethoxy)prop-1-en-2- yl)benzene [63], and (E,E/Z,Z) - 1,3-bis(1-butoxyprop-1-en-2-yl)benzene [57]
  • Example 58 A mixture of (E,E/Z,Z) - 1,3-bis(1-(2-(2- isopropoxyethoxy)ethoxy)prop-1-en-2-yl)benzene [69], (E,E/Z,Z) - 1-(1- isobutoxyprop-1-en-2-yl)-3-(1-(2-(2-isopropoxyethoxy)ethoxy)prop-1-en- 2-yl)benzene [64], and (E,E/Z,Z) - 1,3-bis(1-isobutoxyprop-1-en-2- yl)benzene [58] GC-MS (Instrument B) tR : 25.18 min, 26.96 min, 29.51 min (69, Exact mass: 450.3 m/z, found: 450.4 m/z), 19.88 min, 20.58 min, 20.70 min, 21.54 min (64, Exact mass: 376.3 m/z, found: 376.3 m/z), 17.16 min
  • Example 59 A mixture of (E,E/Z,Z) - 1,3-bis(1-(2-(2- butoxyethoxy)ethoxy)prop-1-en-2-yl)benzene [41], (E,E/Z,Z) - 1-(1-(2-(2- butoxyethoxy)ethoxy)prop-1-en-2-yl)-3-(1-propoxyprop-1-en-2- yl)benzene [65], and (E,E/Z,Z) - 1,3-bis(1-propoxyprop-1-en-2-yl)benzene [56] GC-MS (Instrument B) tR : 32.75 min, 36.17 min, 41.29 min (41, Exact mass: 478.3 m/z, found: 478.4 m/z), 20.95 min, 21.58 min, 21.95 min, 22.72 min (65, Exact mass: 376.3 m/z, found: 376.3 m/z), 16.82 min, 17.16
  • Example 60 A mixture of (E,E/Z,Z) - 1,3-bis(1-(2-(2- butoxyethoxy)ethoxy)prop-1-en-2-yl)benzene [41], (E,E/Z,Z) - 1-(1-(2-(2- butoxyethoxy)ethoxy)prop-1-en-2-yl)-3-(1-butoxyprop-1-en-2-yl)benzene [66], and (E,E/Z,Z) - 1,3-bis(1-butoxyprop-1-en-2-yl)benzene [57] GC-MS (Instrument B) tR : 32.70 min, 36.14 min, 41.21 min (41, Exact mass: 478.3 m/z, found: 478.4 m/z), 21.83 min, 22.77 min, 23.02 min, 24.29 min (66, Exact mass: 390.3 m/z, found: 390.3 m/z), 17.73 min, 18.18 min,
  • Example 62 A mixture of (E,E/Z,Z) - 1,4-bis(1-((1-methoxypropan-2- yl)oxy)prop-1-en-2-yl)benzene [70], (E,E/Z,Z) - 1-(1-((1-methoxypropan-2- yl)oxy)prop-1-en-2-yl)-4-(1-propoxyprop-1-en-2-yl)benzene [71], and (E,E/Z,Z) - 1,4-bis(1-propoxyprop-1-en-2-yl)benzene [44]
  • Example 63 A mixture of (E,E/Z,Z) - 1,4-bis(1-((1-methoxypropan-2- yl)oxy)prop-1-en-2-yl)benzene [70], (E,E/Z,Z) - 1-(1-butoxyprop-1-en-2-yl)- 4-(1-((1-methoxypropan-2-yl)oxy)prop-1-en-2-yl)benzene [72], and (E,E/Z,Z) - 1,4-bis(1-butoxyprop-1-en-2-yl)benzene [45] GC-MS (Instrument B) tR : 19.79 min (70, Exact mass: 334.2 m/z, found: 334.2 m/z), 18.88 min, 18.95 min, 19.04 min, 19.50 min (72, Exact mass: 318.2 m/z, found: 318.2 m/z), 18.16 min, 18.70 min, 19.20 min (45, Exact mass
  • Example 64 (E,E/Z,Z) - 1,4-bis(1-((1-methoxypropan-2-yl)oxy)prop-1-en- 2-yl)benzene [70], (E,E/Z,Z) - 1-(1-isobutoxyprop-1-en-2-yl)-4-(1-((1- methoxypropan-2-yl)oxy)prop-1-en-2-yl)benzene [73], and (E,E/Z,Z) - 1,4- bis(1-isobutoxyprop-1-en-2-yl)benzene [46] GC-MS (Instrument B) tR : 19.77 min (70, Exact mass: 334.2 m/z, found: 334.2 m/z), 18.15 min, 18.24 min, 18.69 min, 19.40 min (73, Exact mass: 318.2 m/z, found: 318.2 m/z), 17.58 min, 17.64 min (46, Exact mass: 302.2 m
  • Example 65 A mixture of (E,E/Z,Z) - 1,3-bis(1-((1-methoxypropan-2- yl)oxy)prop-1-en-2-yl)benzene [74], (E,E/Z,Z) - 1-(1-((1-methoxypropan-2- yl)oxy)prop-1-en-2-yl)-3-(1-propoxyprop-1-en-2-yl)benzene [75], and (E,E/Z,Z) - 1,3-bis(1-propoxyprop-1-en-2-yl)benzene [56] GC-MS (Instrument B) tR : 18.54 min, 19.04 min (74, Exact mass: 334.2 m/z, found: 334.2 m/z), 17.78 min, 17.85 min (75, Exact mass: 304.2 m/z, found: 304.1 m/z), 16.75 min, 17.14 min, 17.46 min (56, Exact mass: 274.2 m/z,
  • Example 66 A mixture of (E,E/Z,Z) - 1,3-bis(1-((1-methoxypropan-2- yl)oxy)prop-1-en-2-yl)benzene [74], (E,E/Z,Z) - 1-(1-butoxyprop-1-en-2-yl)- 3-(1-((1-methoxypropan-2-yl)oxy)prop-1-en-2-yl)benzene [76], and (E,E/Z,Z) - 1,3-bis(1-butoxyprop-1-en-2-yl)benzene [60] GC-MS (Instrument B) tR : 19.06 min (74, Exact mass: 334.2 m/z, found: 334.2 m/z), 17.86 min, 18.37 min, 18.91 min (76, Exact mass: 318.2 m/z, found: 318.2 m/z), 17.68 min, 18.21 min, 18.73 min (57, Exact mass: 302.2
  • Example 67 A mixture of (E,E/Z,Z) - 1,3-bis(1-((1-methoxypropan-2- yl)oxy)prop-1-en-2-yl)benzene [74], (E,E/Z,Z) - 1-(1-isobutoxyprop-1-en-2- yl)-3-(1-((1-methoxypropan-2-yl)oxy)prop-1-en-2-yl)benzene [77], and (E,E/Z,Z) - 1,3-bis(1-isobutoxyprop-1-en-2-yl)benzene [58]
  • Example 68 A mixture of (E,E/Z,Z) - 1,4-bis(1-(3-methoxypropoxy)prop- 1-en-2-yl)benzene [78], (E,E/Z,Z) - 1-(1-(3-methoxypropoxy)prop-1-en-2- yl)-4-(1-propoxyprop-1-en-2-yl)benzene [79], and (E,E/Z,Z) - 1,4-bis(1- propoxyprop-1-en-2-yl)benzene [44] GC-MS (Instrument B) tR : 19.71 min, 20.54 min, 21.42 min (78, Exact mass: 334.2 m/z, found: 334.2 m/z), 18.31 min, 18.75 min, 18.90 min, 19.34 min (79, Exact mass: 304.2 m/z, found: 304.1 m/z), 17.19 min, 17.54 min, 17.83 min (44, Exact mass: 274.2 m/z,
  • Example 69 A mixture of (E,E/Z,Z) - 1,4-bis(1-(3-methoxypropoxy)prop- 1-en-2-yl)benzene [78], (E,E/Z,Z) - 1-(1-butoxyprop-1-en-2-yl)-4-(1-(3- methoxypropoxy)prop-1-en-2-yl)benzene [80], and (E,E/Z,Z) - 1,4-bis(1- butoxyprop-1-en-2-yl)benzene [45] GC-MS (Instrument B) tR : 19.71 min, 20.51 min, 21.41 min (78, Exact mass: 334.2 m/z, found: 334.2 m/z), 18.87 min, 19.50 min, 20.22 min (80, Exact mass: 318.2 m/z, found: 318.2 m/z), 18.14 min, 18.69 min, 19.24 min (45, Exact mass: 302.2 m/z,
  • Example 70 (E,E/Z,Z) - 1,4-bis(1-(3-methoxypropoxy)prop-1-en-2- yl)benzene [78], (E,E/Z,Z) - 1-(1-isobutoxyprop-1-en-2-yl)-4-(1-(3- methoxypropoxy)prop-1-en-2-yl)benzene [81], and (E,E/Z,Z) - 1,4-bis(1- isobutoxyprop-1-en-2-yl)benzene [46] GC-MS (Instrument B) tR : 19.74 min, 20.54 min, 21.42 min (78, Exact mass: 334.2 m/z, found: 334.2 m/z), 18.61 min, 19.16 min, 19.76 min (81, Exact mass: 318.2 m/z, found: 318.2 m/z), 17.57 min, 18.06 min, 18.53 min (46, Exact mass: 302.2 m/z
  • Example 71 A mixture of (E,E/Z,Z) - 1,3-bis(1-(3-methoxypropoxy)prop- 1-en-2-yl)benzene [82], 1-(1-(3-methoxypropoxy)prop-1-en-2-yl)-3-(1- propoxyprop-1-en-2-yl)benzene [83], and (E,E/Z,Z) - 1,3-bis(1- propoxyprop-1-en-2-yl)benzene [56] GC-MS (Instrument B) tR : 19.05 min, 19.74 min, 20.53 min (82, Exact mass: 334.2 m/z, found: 334.2 m/z), 17.83 min, 18.19 min, 18.36 min, 18.75 min (83, Exact mass: 304.2 m/z, found: 304.1 m/z), 16.73 min, 17.14 min, 17.42 min (56, Exact mass: 274.2 m/z, found: 274.1 m/z).
  • Example 72 A mixture of (E,E/Z,Z) - 1,3-bis(1-(3-methoxypropoxy)prop- 1-en-2-yl)benzene [82], (E,E/Z,Z) - 1-(1-butoxyprop-1-en-2-yl)-3-(1-(3- methoxypropoxy)prop-1-en-2-yl)benzene [84], and (E,E/Z,Z) - 1,3-bis(1- butoxyprop-1-en-2-yl)benzene [57]
  • Example 73 A mixture of (E,E/Z,Z) - 1,3-bis(1-(3-methoxypropoxy)prop- 1-en-2-yl)benzene [82], (E,E/Z,Z) - 1-(1-isobutoxyprop-1-en-2-yl)-3-(1-(3- methoxypropoxy)prop-1-en-2-yl)benzene [85], and (E,E/Z,Z) - 1,3-bis(1- isobutoxyprop-1-en-2-yl)benzene [58] GC-MS (Instrument B) tR : 19.06 min, 19.74 min, 20.51 min (82, Exact mass: 334.2 m/z, found: 334.2 m/z), 18.06 min, 18.55 min, 18.58 min, 19.15 min (85, Exact mass: 318.2 m/z, found: 318.2 m/z), 17.11 min, 17.61 min, 18.04 min (58, Exact mass: 30
  • Example 74 A mixture of (E,E/Z,Z) - 1,4-bis(1-(3-methoxybutoxy)prop-1- en-2-yl)benzene [86], (E,E/Z,Z) - 1-(1-(3-methoxybutoxy)prop-1-en-2-yl)-4- (1-propoxyprop-1-en-2-yl)benzene [87], and (E,E/Z,Z) - 1,4-bis(1- propoxyprop-1-en-2-yl)benzene [44] GC-MS (Instrument B) tR : 20.25 min, 21.33 min, 22.72 min (62, Exact mass: 362.2 m/z, found: 362.3 m/z), 18.52 min, 18.94 min, 19.27 min, 19.75 min (63, Exact mass: 318.2 m/z, found: 318.2 m/z), 17.16 min, 17.54 min, 17.83 min (20, Exact mass: 274.2 m
  • Example 75 A mixture of (E,E/Z,Z) - 1,4-bis(1-(3-methoxybutoxy)prop-1- en-2-yl)benzene [86], (E,E/Z,Z) - 1-(1-butoxyprop-1-en-2-yl)-4-(1-(3- methoxybutoxy)prop-1-en-2-yl)benzene [88], and (E,E/Z,Z) - 1,4-bis(1- butoxyprop-1-en-2-yl)benzene [45] GC-MS (Instrument B) tR : 20.25 min, 21.32 min, 22.71 min (86, Exact mass: 362.2 m/z, found: 362.3 m/z), 19.08 min, 19.74 min, 19.94 min, 20.72 min (88, Exact mass: 332.2 m/z, found: 332.3 m/z),18.12 min, 18.67 min, 19.22 min (45, Exact mass: 302.2 m/
  • Example 76 (E,E/Z,Z) - 1,4-bis(1-(3-methoxybutoxy)prop-1-en-2- yl)benzene [86], (E,E/Z,Z) - 1-(1-isobutoxyprop-1-en-2-yl)-4-(1-(3- methoxybutoxy)prop-1-en-2-yl)benzene [89], and (E,E/Z,Z) - 1,4-bis(1- isobutoxyprop-1-en-2-yl)benzene [46] GC-MS (Instrument B) tR : 20.29 min, 21.33 min, 22.74 min (86, Exact mass: 362.2 m/z, found: 363.2 m/z), 18.75 min, 19.34 min, 19.53 min, 20.22 min (89, Exact mass: 332.2 m/z, found: 332.3 m/z), 17.58 min, 18.06 min, 18.53 min (46, Exact mass: 302.2
  • Example 77 A mixture of (E,E/Z,Z) - 1,3-bis(1-(3-methoxybutoxy)prop-1- en-2-yl)benzene [90], (E,E/Z,Z) - 1-(1-(3-methoxybutoxy)prop-1-en-2-yl)-3- (1-propoxyprop-1-en-2-yl)benzene [91], and (E,E/Z,Z) - 1,3-bis(1- propoxyprop-1-en-2-yl)benzene [44]
  • Example 78 A mixture of (E,E/Z,Z) - 1,3-bis(1-(3-methoxybutoxy)prop-1- en-2-yl)benzene [90], (E,E/Z,Z) - 1-(1-butoxyprop-1-en-2-yl)-3-(1-(3- methoxybutoxy)prop-1-en-2-yl)benzene [92], and (E,E/Z,Z) - 1,3-bis(1- butoxyprop-1-en-2-yl)benzene [45] GC-MS (Instrument B) tR : 19.52 min, 20.39 min, 21.54 min (90, Exact mass: 362.2 m/z, found: 362.3 m/z), 18.52 min, 19.08 min, 19.25 min, 19.89 min (92, Exact mass: 332.2 m/z, found: 332.3 m/z), 17.67 min, 18.15 min, 18.67 min (45, Exact mass: 302.2 m/z,
  • Example 79 A mixture of (E,E/Z,Z) - 1,3-bis(1-(3-methoxybutoxy)prop-1- en-2-yl)benzene [90], (E,E/Z,Z) - 1-(1-isobutoxyprop-1-en-2-yl)-3-(1-(3- methoxybutoxy)prop-1-en-2-yl)benzene [93], and (E,E/Z,Z) - 1,3-bis(1- isobutoxyprop-1-en-2-yl)benzene [46] GC-MS (Instrument B) tR : 19.54 min, 20.42 min, 21.52 min (90, Exact mass: 362.2 m/z, found: 362.3 m/z), 18.21 min, 18.75 min, 18.93 min, 19.47 min (93, Exact mass: 332.2 m/z, found: 332.2 m/z), 17.11 min, 17.57 min, 18.05 min (46, Exact mass: 302.2
  • Methyl palmitate tR 8.67 min using this method.
  • Instrument Parameters – Agilent 6890N GC with Agilent 5975B VL MSD (Instrument B) [0079] Sample Prep: 100 ⁇ L sample diluted to 1 mL with toluene; Column: DB-5 30 m x 0.25 mm x 0.25 ⁇ m; Oven Ramp: 0-4.5 mins at 40 °C; Ramp 20C/min to 280C, Hold up to 85 mins; Injector: Temperature – 250 °C; Split Flow – 65 mL/min; Carrier Flow Rate – 1.3 mL/min; Volume – 1.0 ⁇ L; MS: Transfer Line – 280 °C; Ion Source Temp – 230 °C; Mass Range – 34 -700 amu.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

L'invention concerne un nouveau procédé de fabrication d'éthers énoliques. Le procédé comprend la réaction d'un acétal et d'un alcool ou de mélanges de ceux-ci avec un aldéhyde, en présence d'un catalyseur acide pour former un éther énolique. Le procédé est utile pour la fabrication d'éthers énoliques aromatiques. Les éthers énoliques aromatiques sont utiles en tant qu'additifs de durcissement de film pour une utilisation dans des formulations de revêtement.
PCT/US2021/053498 2020-10-06 2021-10-05 Procédé de fabrication d'éthers énoliques WO2022076359A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063087919P 2020-10-06 2020-10-06
US63/087,919 2020-10-06

Publications (1)

Publication Number Publication Date
WO2022076359A1 true WO2022076359A1 (fr) 2022-04-14

Family

ID=81126193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2021/053498 WO2022076359A1 (fr) 2020-10-06 2021-10-05 Procédé de fabrication d'éthers énoliques

Country Status (1)

Country Link
WO (1) WO2022076359A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4248957A (en) * 1978-07-05 1981-02-03 Hoechst Aktiengesellschaft Acid degradable radiation-sensitive mixture
US5053556A (en) * 1989-01-31 1991-10-01 Chisso Corporation Process for producing alkenyl ethers
US5354911A (en) * 1990-12-14 1994-10-11 Hoechst Aktiengesellschaft Process for the preparation of unsaturated ethers
US10865172B1 (en) * 2019-09-04 2020-12-15 Eastman Chemical Company Aromatic enol ethers
US20210062031A1 (en) * 2019-09-04 2021-03-04 Eastman Chemical Company Aromatic enol ether paint additives

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4248957A (en) * 1978-07-05 1981-02-03 Hoechst Aktiengesellschaft Acid degradable radiation-sensitive mixture
US5053556A (en) * 1989-01-31 1991-10-01 Chisso Corporation Process for producing alkenyl ethers
US5354911A (en) * 1990-12-14 1994-10-11 Hoechst Aktiengesellschaft Process for the preparation of unsaturated ethers
US10865172B1 (en) * 2019-09-04 2020-12-15 Eastman Chemical Company Aromatic enol ethers
US20210062031A1 (en) * 2019-09-04 2021-03-04 Eastman Chemical Company Aromatic enol ether paint additives

Similar Documents

Publication Publication Date Title
US8618315B2 (en) Method for producing 2-substituted tetrahydropyranols
US7569719B1 (en) Method of preparing electron deficient olefins
WO2018074305A1 (fr) Diol, procédé de production de diol, di (méth) acrylate et procédé de production de di (méth) acrylate
JP6213417B2 (ja) 2,2−ジフルオロアセトアルデヒドの保存安定性の向上方法
WO2018210274A1 (fr) Procédé de préparation pour la coproduction de composés d'acrylamide et de formamide
WO2021046007A1 (fr) Éthers d'énol aromatiques
WO2022076359A1 (fr) Procédé de fabrication d'éthers énoliques
CN104370875B (zh) 一种乙基香兰素1,2-丙二醇缩醛的制备方法
US10865171B1 (en) Process to make aromatic enol ethers and olefin isomers of aromatic enol ethers
WO2022076365A1 (fr) Éthers d'énol aromatiques
US10858304B1 (en) Aromatic enol ethers
WO2022125856A1 (fr) Éthers d'énol aromatiques
JPH0150690B2 (fr)
CN114341096A (zh) 制备二醛的方法
US10815179B1 (en) Aromatic dicarbinols
JP4437586B2 (ja) 2−アルキル−2−シクロペンテノンの製法
JPH06228039A (ja) ケタールの製造方法
JP4253366B2 (ja) ポリヒドロキシエーテルの製法及び新規非対称ポリヒドロキシエーテル
CN112920028B (zh) 一种烯烃氧化制备醛类化合物的方法
US2580494A (en) N-disubstituted-amino t-hydroxy ketones
JP4093647B2 (ja) クロマン化合物の製造方法
Lovett Zwitterionic quaternary ammonium alkoxides: organic strong bases
JP7280262B2 (ja) 新規なポリアシルオキシメチル-4,4’-アシルオキシビフェニル化合物
CN106883111B (zh) 一种2-环己烯-1-酮的制备方法
JP2001512093A (ja) 3−メチル−2−ブテナールのアセタールの製造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21878324

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21878324

Country of ref document: EP

Kind code of ref document: A1